Recent interactions between online learning and active statistics

Vianney Perchet Colloquium Paris 13 Paris, June 2020

Crest, ENSAE & Criteo Research, Paris

Original Motivations

Heterogenous Source Estimation

- **d** different sources $X_k(t) \sim \mathcal{N}(\mu_k, \sigma_k^2)$ to estimate
- Total of N samples to allocate: (N_1, N_2, \ldots, N_d)
- Minimization of $\mathbb{E}\|\hat{\mu} \mu\|^2 = \sum_k \frac{\sigma_k^2}{N_k} = \frac{1}{N} \sum_k \frac{\sigma_k^2}{p_k}$

Loss defined on Proportions

$$\mathcal{L}(p_1,\ldots,p_{\mathcal{K}})=\sum_k rac{\sigma_k^2}{p_k}, \ ext{with} \ p\in \Delta_d$$

The solution ?

Min. of $\mathcal{L}(p_1, \ldots, p_d) = \sum_k \frac{\sigma_k^2}{p_k}$, constraint to $p \in \Delta_d$

– Easy to solve,
$$p_k^* = rac{\sigma_k}{\sum \sigma_j}$$
 with error $\mathcal{L}(p^*) = (\sum \sigma_k)^2 \simeq \sigma^2 d^2$

The Question

What if the σ_k are also unknown?

- Sequentially estimate $\widehat{\sigma}_{k}^{2} = \frac{1}{N_{k}} \sum_{t=1}^{N_{k}} (X_{k}(t) \overline{X}_{k}(t))^{2}$
 - Bigger N_k , better estimation of σ_k^2
 - Do not overshoot ! Smaller σ_k^2 , smaller N_k

Sequential (simultaneous) Estimation vs. Optimization

Standard Linear Regression: $Y_i = X_i^{\top}\beta + \varepsilon_i$

Homoscedastic case

- Design Matrix: $\mathbb{X} = (X_1, \dots, X_N)^\top$
- Unbiased Estimate: $\widehat{\beta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}Y = \beta + (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\varepsilon$
- Expected Error: $\mathbb{E} \|\widehat{\beta} \beta\|^2 = \sigma^2 \operatorname{Tr}(\mathbb{X}^\top \mathbb{X})^{-1}$ if $\varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id})$.

Heteroscedastic case

- Known variance: $Var(\varepsilon) = \Omega$
- Unbiased Estimate: $\widehat{\beta} = (\mathbb{X}^{\top} \Omega^{-1} \mathbb{X})^{-1} \mathbb{X}^{\top} \Omega^{-1} Y$
- Expected Error: $\mathbb{E} \|\widehat{\beta} \beta\|^2 = \mathsf{Tr}(\mathbb{X}^\top \Omega^{-1} \mathbb{X})^{-1}.$

Active Linear Regression

- Fixed Design: $\mathbb{X} \subset \mathbb{R}^{N \times d}$ is fixed and given
- Random Design: $X_i \in \mathbb{R}^d$ are iid $\sim \mathcal{M}(\mathbb{R}^d)$

Active Design: From a given set $\{X^{(1)}, \ldots, X^{(K)}\} \subset \mathbb{R}^d$

- Choose $X_i \in \{X^{(1)}, \dots, X^{(K)}\}$ to sample and Observe $Y_i = X_i^\top \beta + \varepsilon(X_i)$
- Sample X_{i+1}, observe Y_{i+1}, etc.
- Estimate β from Y_1, \ldots, Y_N and \mathbb{X}
- Easy cases: Homoscedastic or known variance

Active Heteroscedastic Linear Regression ??

- "Optimization of design matrix" vs "Estimation of variance"
- Minimize $Tr(X^{\top}\Omega^{-1}X)^{-1}$ and estimate $\widehat{\Omega}$

Minimize $\operatorname{Tr}(\mathbb{X}^{\top}\Omega^{-1}\mathbb{X})^{-1}$ with $X_i \in \{X^{(1)}, \ldots, X^{(K)}\}$

- Assume ε_t independent, Gaussian $\mathcal{N}(0, \sigma^2(X^{(k)}))$
- Total number N of samples allowed
 - **Optimal allocation** $N^{(1)}, \dots, N^{(K)}$ s.t., $\sum N^{(k)} = N$.
 - Discretization errors. Consider proportion $\mathbf{p}^{(1)},\ldots,\mathbf{p}^{(\mathcal{K})}$

$$\mathbb{X}^{\top} \Omega^{-1} \mathbb{X} = \mathbf{N} \sum_{k} \mathbf{p}^{(k)} \frac{X^{(k)} (X^{(k)})^{\top}}{\sigma_{k}^{2}}$$

Asymptotically, it boils down to

Min. over "sampling simplex" $\operatorname{Tr}(\sum_{k} \mathbf{p}^{(k)} \frac{X^{(k)}(X^{(k)})^{\top}}{\sigma_{*}^{2}})^{-1}$

Activification of Statistical Procedures

- Heterogenous Source Estimation
- Linear regression
- Estimation of Gaussian mixtures
- Clustering
- • •

Sounds like Exploration vs Exploitation

and multi-armed bandits

An intro to multi-armed Bandit

- Size of data: *n* patients with some proba of getting cured
- Choose one of two treatments to prescribe

- Patients cured or dead
 - Inference: Find the best treatment between the red and blue
 Cumul: Save as many patients as possible

or

- Size of data: *n* banners with some proba of click
- Choose one of two ads to display

- Banner clicked or ignored

Inference: Find the best ad between the red and blue
 Cumul: Get as many clicks as possible

- Size of data: *n* auctions with some expected revenue
- Choose one of two strategies(bid/opt out) to follow

- Auction won or lost

1) Inference: Find the best strategy between the red and blue
 2) Cumul: Win as many profitable auctions as possible

- Size of data: *n* mails with some proba of spam
- Choose one of two actions: spam or ham

- Mail correctly or incorrectly classified

Inference: Find the best strategy between the red and blue
 Cumul: as possibleMinimize number of errors

- Size of data: *n* patients with some proba of getting cured
- Choose one of two treatments to prescribe

– Patients cured \heartsuit or dead \bigotimes

Inference: Find the best treatment between the red and blue
 Cumul: Save as many patients as possible

or

Two-Armed Bandit

- Patients arrive and are treated sequentially.
- Save as many as possible.

Discrete-time proc.: $X_n^{(1)}$ in [0, 1]"The efficiency of treatment 1 on patient n"

Estimate the mean μ_1

Hoeffding inequality: exponential decay

$$\left|\overline{X}_{n}^{(k)}-\mu_{1}\right|>\varepsilon$$
 with proba at most $2\exp\left(-2n\varepsilon^{2}\right)$.

Finite number of mistakes:

$$\mathbb{E}\sum_{n\in\mathbb{N}}\mathbb{1}\left\{\left|\overline{X}_{n}^{(k)}-\mu_{1}\right|>\varepsilon\right\}\leq\frac{1}{\varepsilon^{2}}$$

- Choose **one** ad to display k_n . Reward: $X_n^{(k_n)}$ Maximize cumulative reward $\sum_{m=1}^n X_m^{(k_m)}$ or $\sum_{m=1}^n \mu^{(k_m)}$

Minimize Regret [Hannan'56]

$$R_n = n\mu^* - \sum_{m=1}^n \mu_{k_m}, \text{ with } \mu^* = \max\{\mu_k\}$$

– Equivalent formulation with $\Delta_k = \mu^* - \mu_k$:

$$R_n = \sum_k \Delta_k \sum_{m=1}^n \mathbb{1}\{k_m = k \neq \star\}$$

- Full Monitoring: all values $X_n^{(k)}$ observed.
- Optimal algorithm: $k_n = \arg \max \overline{X}_n^{(k)}$:

$$\mathbb{E}R_n \leq \sum_k \frac{1}{\Delta_k}$$
 and for small $n, \mathbb{E}R_N \leq n \max \Delta_k$

Bounded regret, **uniformly** in *n*!

- Given *n*, worst Δ is $\sqrt{\frac{d}{n}}$ and $\mathbb{E}R_n \leq \sqrt{dn}$
- But in the examples, **only** $X_n^{(k_n)}$ is observed (bandit monitoring)!

$$- \overline{X}_n^{(k)} = \frac{1}{n} \sum_{m=1}^n X_m^{(k)} \text{ not available, only } \widehat{X}_n^{(k)} = \frac{\sum_{m:k_m=k} X_m^{(k)}}{\sharp \{m:k_m=k\}}$$

- with
$$k_n = \arg \max \widehat{X}_n^{(k)}$$
, $\mathbb{E}R_n = \Theta(n)$.

because $\mathbb{E}[\overline{X}_n^{(k)}] \leq \mu_k$ negatively biased

- Positive (vanishing) bias ? Tradeoff Exploitation/Exploration

Upper Confidence Bound [Auer, Cesa-Bianchi, Fischer'02]

$$k_n = \arg \max \widehat{X}_n^{(k)} + \sqrt{\frac{2\log(n)}{\sharp\{m:k_m=k\}}}$$

Regret:
$$\mathbb{E}R_n \leq \sum_k \frac{\log(n)}{\Delta_k}$$

- **d** different sources $X_k(t) \sim \mathcal{N}(\mu_k, \sigma_k^2)$
- Total of N samples to sequentially allocate: (N_1, N_2, \ldots, N_d)
- Minimization of $\frac{1}{N}\sum_k N_k \mu_k = \sum_k p_k \mu_k$

Loss defined on Proportions

$$\mathcal{L}(p_1,\ldots,p_d) = \sum_k p_k \mu_k = p^\top \mu$$
, with $p \in \Delta_d$

– Let's take $\sigma_k^2 = 1$ in bandits to simplify

Upper-Confidence Bound - algorithm

- 1) Estimate μ_k by $\overline{\mu}_k(t) = \frac{1}{N_k(t)} \sum_{s=1}^{N_k(t)} X_k(s)$, but biased
- 2) "Positively-bias it" with $\overline{\mu}_k(t) \sqrt{2 \frac{\log(t)}{N_k(t)}}$
- 3) Sample/pull the "arm" with smallest "unbiased" estimate

UCB-algo

$$\pi_{t+1} = \arg\min_k \left\{ \overline{\mu}_k(t) - \sqrt{2 rac{\log(t)}{N_k(t)}}
ight\}$$

4) Enjoy Optimization error / "regret"

$$\mathcal{L}(p_N) - \mathcal{L}(p^*) \lesssim rac{\log(N)}{N} \sum_k rac{1}{\mu_k - \mu_{k^*}}$$

Ugly & useless but insightful 1 page proof

$$\mathcal{L}(p_{t+1}) - \mathcal{L}(p^*) = \mathcal{L}(p_t + rac{1}{t+1}(e_{\pi_{t+1}} - p_t)) - \mathcal{L}(p^*)$$

Ugly & useless but insightful 1 page proof

$$egin{aligned} \mathcal{L}(p_{t+1}) - \mathcal{L}(p^*) &= \mathcal{L}(p_t + rac{1}{t+1}(e_{\pi_{t+1}} - p_t)) - \mathcal{L}(p^*) \ &= \mathcal{L}(p_t) - \mathcal{L}(p^*) + rac{1}{t+1}
abla \mathcal{L}(p_t)^{ op}(e_{\pi_{t+1}} - p_t) \end{aligned}$$

Ugly & useless but insightful 1 page proof

$$\begin{split} \mathcal{L}(p_{t+1}) - \mathcal{L}(p^*) &= \mathcal{L}(p_t + \frac{1}{t+1}(e_{\pi_{t+1}} - p_t)) - \mathcal{L}(p^*) \\ &= \mathcal{L}(p_t) - \mathcal{L}(p^*) + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p_t) \\ &= \mathcal{L}(p_t) - \mathcal{L}(p^*) + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (p^* - p_t) \\ &+ \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p^*) \end{split}$$

Ugly & useless but insightful 1 page proof

$$\begin{split} \mathcal{L}(p_{t+1}) - \mathcal{L}(p^*) &= \mathcal{L}(p_t + \frac{1}{t+1}(e_{\pi_{t+1}} - p_t)) - \mathcal{L}(p^*) \\ &= \mathcal{L}(p_t) - \mathcal{L}(p^*) + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p_t) \\ &= \mathcal{L}(p_t) - \mathcal{L}(p^*) + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (p^* - p_t) \\ &\qquad + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p^*) \\ &\leq (1 - \frac{1}{t+1}) \Big[\mathcal{L}(p_t) - \mathcal{L}(p^*) \Big] + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p^*) \end{split}$$

Ugly & useless but insightful 1 page proof

$$\begin{split} \mathcal{L}(p_{t+1}) - \mathcal{L}(p^*) &= \mathcal{L}(p_t + \frac{1}{t+1}(e_{\pi_{t+1}} - p_t)) - \mathcal{L}(p^*) \\ &= \mathcal{L}(p_t) - \mathcal{L}(p^*) + \frac{1}{t+1}\nabla\mathcal{L}(p_t)^{\top}(e_{\pi_{t+1}} - p_t) \\ &= \mathcal{L}(p_t) - \mathcal{L}(p^*) + \frac{1}{t+1}\nabla\mathcal{L}(p_t)^{\top}(p^* - p_t) \\ &\quad + \frac{1}{t+1}\nabla\mathcal{L}(p_t)^{\top}(e_{\pi_{t+1}} - p^*) \\ &\leq (1 - \frac{1}{t+1}) \Big[\mathcal{L}(p_t) - \mathcal{L}(p^*) \Big] + \frac{1}{t+1}\nabla\mathcal{L}(p_t)^{\top}(e_{\pi_{t+1}} - p^*) \\ &\leq \frac{t}{t+1} \Big[\mathcal{L}(p_t) - \mathcal{L}(p^*) \Big] + \frac{1}{t+1} \underbrace{(\mu_{\pi_{t+1}} - \mu_{k^*})}_{:=\varepsilon_{t+1}} \end{split}$$

Ugly & useless but insightful 1 page proof

$$\begin{split} \mathcal{L}(p_{t+1}) - \mathcal{L}(p^{*}) &= \mathcal{L}(p_{t} + \frac{1}{t+1}(e_{\pi_{t+1}} - p_{t})) - \mathcal{L}(p^{*}) \\ &= \mathcal{L}(p_{t}) - \mathcal{L}(p^{*}) + \frac{1}{t+1}\nabla\mathcal{L}(p_{t})^{\top}(e_{\pi_{t+1}} - p_{t}) \\ &= \mathcal{L}(p_{t}) - \mathcal{L}(p^{*}) + \frac{1}{t+1}\nabla\mathcal{L}(p_{t})^{\top}(p^{*} - p_{t}) \\ &+ \frac{1}{t+1}\nabla\mathcal{L}(p_{t})^{\top}(e_{\pi_{t+1}} - p^{*}) \\ &\leq (1 - \frac{1}{t+1}) \Big[\mathcal{L}(p_{t}) - \mathcal{L}(p^{*}) \Big] + \frac{1}{t+1}\nabla\mathcal{L}(p_{t})^{\top}(e_{\pi_{t+1}} - p^{*}) \\ &\leq \frac{t}{t+1} \Big[\mathcal{L}(p_{t}) - \mathcal{L}(p^{*}) \Big] + \frac{1}{t+1} (\underbrace{\mu_{\pi_{t+1}} - \mu_{k^{*}}}_{:=\varepsilon_{t+1}}) \\ \end{split}$$

$$\mathcal{L}(p_N) - \mathcal{L}(p^*) = \frac{1}{N} \sum_{t=1}^N \varepsilon_t = \frac{1}{N} \sum_k N_k (\mu_k - \mu_{k^*})$$

$$- \pi_{t+1} = k \text{ if } \overline{X}_k(t) - \sqrt{\frac{\log(t)}{N_k(t)}} \simeq \mu_k - \sqrt{\frac{\log(N)}{N_k(t)}} \le \mu_{k^*} \ \Rightarrow \varepsilon_t \lesssim \sqrt{\frac{\log(t)}{N_k(t)}}$$

Slow rate of convergence

$$\mathcal{L}(p_N) - \mathcal{L}(p^*) \lesssim rac{1}{N} \sum_k \sum_{s=1}^{N_k} \sqrt{rac{\log(N)}{s}} \ \lesssim rac{1}{N} \sum_k \sqrt{\log(N)N_k} \leq \sqrt{rac{d\log(N)}{N}}$$

- Start from the slow rate

$$\frac{1}{N}\sum_{k\neq k^*} N_k(\mu_k - \mu_{k^*}) = \mathcal{L}(p_N) - \mathcal{L}(p^*) \lesssim \frac{1}{N}\sum_k \sqrt{\log(N)N_k}$$

– Enforce $\mu_k-\mu_{k^*}$ and Cauchy-Schwartz

$$\sum_{k \neq k^*} N_k(\mu_k - \mu_{k^*}) \lesssim \sqrt{\sum_{k \neq k^*} N_k(\mu_k - \mu_{k^*})} \sqrt{\sum_{k \neq k^*} \frac{\log(N)}{\mu_k - \mu_{k^*}}}$$

- Enjoy your fast rates !

$$\mathcal{L}(p_N) - \mathcal{L}(p^*) \leq \frac{\log(N)}{N} \sum_k \frac{1}{\mu_k - \mu_{k^*}}$$

What did we learn with UCB ?

1. **Optimistic Estimation of** $\nabla \mathcal{L}(p)$ or "positively-biased"

$$\overline{\mu}_k(t) - \sqrt{2 rac{\log(t)}{N_k(t)}} = \widehat{
abla}_k^- \mathcal{L}(p_t) \text{ and } e_{t+1} = \arg\min_{p \in \Delta_d} \widehat{
abla}^- \mathcal{L}(p_t)^\top p_t$$

2. Variant of Frank-Wolfe: $p_{t+1} = (1 - \gamma_t)p_t + \gamma_t \arg \min_{p \in \Delta_d} \nabla \mathcal{L}(p_t)^\top p_t$

$$egin{aligned} & p_{t+1} = (1 - rac{1}{t+1}) p_t + rac{1}{t+1} e_{t+1} \ & = (1 - rac{1}{t+1}) p_t + rac{1}{t+1} rg \min_{p \in \Delta_d} \widehat{
abla}^- \mathcal{L}(p_t)^ op p_t \end{aligned}$$

3. From Slow to Fast Rates with some simple algebra

$$\mathcal{L}(p_N) - \mathcal{L}(p^*) \lesssim \sqrt{rac{\log(N)}{N}}$$
 vs. $rac{\log(N)}{N}$

Links with active statistics

Optimization of convex loss $\mathcal{L}(p_N)$ on Δ_d , think of $\mathcal{L}(p) = \sum_k \frac{\sigma_k^2}{p_k}$

• Typical parametric form: $\mathcal{L}_{\theta}(p) = \sum_{k} f_{k}(\theta_{k}, p_{k})$ with θ_{k} unknown Main assumption (typical case)

 f_k is smooth w.r.t. p and θ

- $\|\nabla f_k(\theta_k, p_k) \nabla f_k(\theta'_k, p'_k)\| \leq C|p_k p'_k| + C' \|\theta_k \theta'_k\|$
- At stage *t*, choose e_{π_t} and observe $X_{\pi_t}(t) \sim \mathcal{N}(heta_{\pi_t}, 1)$

After $N_k(t)$ observations, $\overline{X}_k(t) \simeq heta_k \pm \sqrt{rac{\log(t/\delta)}{N_k(t)}}$

• Noisy information on $\nabla_k \mathcal{L}(\cdot)$ only when sampling process k

- Utility maximization Optim. basket of substitutes goods

Other examples

- Utility maximization Optim. basket of substitutes goods
 - V. thinks of "cardio", "bench-press" and "squats" for fitness training

Other examples

- Utility maximization Optim. basket of substitutes goods
 - V. thinks of "cardio", "bench-press" and "squats" for fitness training

• Q. thinks of "wine", "bread" and "cheese" for his breakfast

Other examples

- Utility maximization Optim. basket of substitutes goods
 - V. thinks of "cardio", "bench-press" and "squats" for fitness training

• Q. thinks of "wine", "bread" and "cheese" for his breakfast

- Kobb-Douglas utility $\mathcal{U}(x_1, \ldots, x_d) = x_1^{\beta_1} x_2^{\beta_2} \ldots x_d^{\beta_d}$
- Use/buy one good (same price 1), estimate log-utility increase
- online Markovitz portfolio optimization
 - Optimize $\mathcal{L}(p) = p^{\top} \Sigma p \lambda \mu^{\top} p$ with Σ known, μ unknown
- General Case
 - \mathcal{L} is C-smooth w.r.t. p and $\left|\widehat{\nabla}_k \mathcal{L}(p) \nabla_k \mathcal{L}(p)\right| \leq C' \sqrt{\frac{\log(t/\delta)}{N_k(t)}}$

UC-FW: Upper Confident Frank-Wolfe

- Optimistic/Unbiased grad. $\widehat{\nabla}_{k}^{-}\mathcal{L}(p) = \widehat{\nabla}_{k}\mathcal{L}(p) C'\sqrt{\frac{\log(t/\delta)}{N_{k}(t)}}$
- Frank-Wolfe: $e_{\pi_{t+1}} = \arg \min_{p \in \Delta_k} p^\top \widehat{\nabla}_k^- \mathcal{L}(p_t)$, with $\delta = 1/t$

First result (rather easy) Slow Rate of FwUC

$$\mathbb{E}\mathcal{L}(p_N) - \mathcal{L}(p^*) \lesssim \sqrt{rac{d\log(N)}{N}} + rac{\log(N)}{N}$$

• Proof ? (almost) identical to UCB !

Frank-Wolfe vs Gradient Descent

• For linear functions:

Projected gradient descent (in red) can converge slowly Frank-Wolfe goes straight to the minimum

The proof. Identical !!

$$\begin{split} \mathcal{L}(p_{t+1}) - \mathcal{L}^* &= \mathcal{L}(p_t + \frac{1}{t+1}(e_{\pi_{t+1}} - p_t)) - \mathcal{L}^* \\ &\leq \mathcal{L}(p_t) - \mathcal{L}^* + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p_t) + \frac{\mathcal{C}}{(t+1)^2} \\ &= \mathcal{L}(p_t) - \mathcal{L}^* + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (p^* - p_t) \\ &\qquad + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p^*) + \frac{\mathcal{C}}{(t+1)^2} \\ &\leq \frac{t}{t+1} \Big[\mathcal{L}(p_t) - \mathcal{L}^* \Big] + \frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\pi_{t+1}} - p^*) + \frac{\mathcal{C}}{(t+1)^2} \\ &\leq \frac{t}{t+1} \Big[\mathcal{L}(p_t) - \mathcal{L}^* \Big] + \frac{1}{t+1} \varepsilon_t + \frac{\mathcal{C}}{(t+1)^2} \end{split}$$

$$\mathcal{L}(p_N) - \mathcal{L}^* \leq \frac{1}{N} \sum_{t=1}^{N} \varepsilon_t + C \frac{\log(N)}{N} \text{ and } \sum \varepsilon_t \simeq C \sum_k \sum_t \sqrt{\frac{\log(t)}{N_k(t)}}$$

- Stochastic Frank Wolfe (errors independent of algorithms)
 - [Jaggi], [Lacoste-Julien et al.], [Lafond et al.]
- **Global Cost.** Specific $\mathcal{L}(p) = f(\theta^{\top}p)$ with θ unknown, f known
 - Adversarial: [Even-Dar et al.], [Blackwell], [Mannor et al.], [Rakhlin et al.]etc.
 - Stochastic: [Agrawal and Devanur], [Agrawal et al] Also use stochastic Frank Wolfe
- Specific Cases. with pb tailored algorithm
 - [Carpentier et al.], [the bandit community]

Fast Rates !

As in **bandit** ? $\sqrt{\frac{d \log(N)}{N}}$ transformed into $\frac{d \log(N)}{N}$?

- 1) Slow rate: $\mathcal{L}(p_N) \mathcal{L}(p^*) \lesssim \frac{1}{N} \sum_k \sqrt{\log(N)N_k}$
- 2) Lower bound the convex functions

$$\mathcal{L}(p_N) - \mathcal{L}(p^*) \gtrsim (p_N - p^*) \nabla \mathcal{L}(p^*) \gtrsim \frac{1}{N} \sum_{k \neq k^*} N_k(\nabla_k \mathcal{L}(p^*) - \nabla_{k^*} \mathcal{L}(p^*))$$

3) Cauchy-Schwartz

$$\frac{1}{N}\sum_{k\neq k^*} N_k(\nabla_k \mathcal{L}(p^*) - \nabla_{k^*} \mathcal{L}(p^*)) \lesssim \frac{\log(N)}{N}\sum_{k\neq k^*} \frac{1}{\nabla_k \mathcal{L}(p^*) - \nabla_{k^*} \mathcal{L}(p^*)}$$

4) Another lower bound: fast rate !

$$\mathcal{L}(p_N) - \mathcal{L}(p^*) \lesssim (1 + rac{CK}{\min_k \nabla_k \mathcal{L}(p^*) - \nabla_{k^*} \mathcal{L}(p^*)}).$$
lhs $\lesssim O(rac{\log(N)}{N})$

What about interior minimized functions ?

- General Case. Can we do the same ?
 - Without more assumption, no.
 - Maybe with strong convexity

Strong convexity

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \mu ||y - x||^2$$

- Positive Results. Fast rates sometimes possible
 - without noise [Garben and Hazan] [Jaggi][...]
 - with decaying noise [Lafond et al.]
 - in online convex optim. [Polyak-Tsybakov], [Bach-P.][...]
- Negative Results
 - Cannot leverage strong convexity in online convex optim. [Shamir], [Jamieson et al.]
 - No choice of parameter in FW, has to be $\frac{1}{t+1}$

The model for fast rates

On top of the previous assumptions Assumptions

 \mathcal{L} is μ -strongly convex and minimized in the interior of Δ_d

 $\eta := d(\partial \Delta_d, p^*)$ will play a role [Lacoste-Julien & Jaggi]

$$\mathcal{L}(p) - \mathcal{L}(p^*) \leq rac{1}{2\mu\eta^2} |
abla \mathcal{L}(p)^{ op} (e_{\star,p} - p)|^2$$

where $e_{\star,p} = \arg \min_{q \in \Delta_d} \mathcal{L}(p)^\top q$

The model for fast rates

On top of the previous assumptions Assumptions

 $\mathcal L$ is μ -strongly convex and minimized in the interior of Δ_d

 $\eta := d(\partial \Delta_d, p^*)$ will play a role [Lacoste-Julien & Jaggi]

$$\mathcal{L}(p) - \mathcal{L}(p^*) \leq rac{1}{2\mu\eta^2} |
abla \mathcal{L}(p)^{ op} (e_{\star,p} - p)|^2$$

where $e_{\star,p} = \arg\min_{q \in \Delta_d} \mathcal{L}(p)^\top q$

Main idea - change in proofs

• Before
$$\frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\star,p_t} - p_t) \leq -\frac{1}{t+1} (\mathcal{L}(p_t) - \mathcal{L}(p^*))$$

• Now
$$\frac{1}{t+1} \nabla \mathcal{L}(p_t)^\top (e_{\star,p_t} - p_t) \leq -\frac{\sqrt{2\mu\eta^2}}{t+1} \sqrt{(\mathcal{L}(p_t) - \mathcal{L}(p^*))}$$

FwUC: $e_{\pi_{t+1}} = \arg \min_{p \in \Delta_k} p^\top \widehat{\nabla}_k^- \mathcal{L}(p_t)$, with $\delta = 1/t$

Assumptions:

- C-smoothness/gradient estimation,
- μ -strong convexity,
- η -interior minimum

Main result, Fast rates of FwUC $\mathbb{E}\mathcal{L}(p_N) - \mathcal{L}(p^*) \leq c_1 \frac{\log^2(N)}{N} + c_2 \frac{\log(N)}{N} + c_3 \frac{1}{N}$

with
$$c_1 = 3 \frac{d(C')^2}{\mu \eta^2}$$
, $c_2 = 3 \frac{dC' \|\mathcal{L}\|_{\infty}}{(\mu \eta^2)^3}$, $c_3 = dC' \|L\|_{\infty} + C$

- FwUC Fully adaptive to
 - The strong/non-strong convexity and the parameter μ
 - The horizon N
 - And any other constants/parameters except C'
- Parameters dependencies (Leading Term)
 - Linear in the ambiant dimension d
 - inverse-Linear in the strongly-convexity parameter μ
 - inverse-square in the distance to the boundary η (but $\frac{1}{d}$ on Δ_d)
- Generalizations

- Gradients errors $\left(\frac{\log(t/\delta)}{N_k(t)}\right)^{\beta}$ with $\beta \leq 1/2$ Slow rate $\left(\frac{\log(N)}{N}\right)^{\beta}$, and fast rates $\frac{\log(N)}{N^{2\beta}}$ - (Non-strongly convex) without interior minimum but $\nabla \mathcal{L}(p^*) \ll 0$

• Lower bounds matching in *N* (classic in bandits/stoc. optim)

Ideas of proof

Objective:
$$\mathcal{L}(p_t) - \mathcal{L}^* \leq \frac{\sum_{t=1}^T \varepsilon_t^2}{T} \simeq \frac{1}{T} \sum_t \frac{\log(t)}{t} \simeq \frac{\log^2(T)}{T}$$

$$egin{aligned} \mathcal{L}(p_{t+1}) - \mathcal{L}^* &\leq \mathcal{L}(p_t) - \mathcal{L}^* + rac{1}{t+1}
abla \mathcal{L}(p_t)^ op (e_{\pi_{t+1}} - p_t) + rac{C}{(t+1)^2} \ &\leq \mathcal{L}(p_t) - \mathcal{L}^* - rac{\sqrt{2\mu\eta^2}}{t+1} \sqrt{\mathcal{L}(p_t) - \mathcal{L}^*} + rac{arepsilon_t}{t+1} + rac{C}{(t+1)^2} \end{aligned}$$

• Introducing $\rho_t = \mathcal{L}(p_t) - \mathcal{L}^*$ and $\psi(x) = x - \sqrt{\alpha x}$, we get

$$(t+1)
ho_{t+1} \leq t
ho_t + \left[\psi(
ho_t) - \psi(rac{arepsilon_t^2}{lpha})
ight] + rac{arepsilon_t^2}{lpha} + rac{C}{t+1}$$

• if $\psi(\rho_t) - \psi(\frac{\varepsilon_t^2}{\alpha}) \le 0$ then ok. but not always...

more or less only asymptotically, if everything goes right.

Some details (again from slow to fast)

$$- \text{ If } \rho_t \leq \frac{\varepsilon_t^2}{\alpha} \text{ then } (t+1)\rho_{t+1} \leq t\rho_t + \frac{\varepsilon_t^2}{\alpha} + \frac{C}{t+1}$$
$$T\rho_T \leq \frac{\tau\varepsilon_\tau^2}{\alpha} + \frac{1}{\alpha} \sum_{t=\tau+1}^T \varepsilon_s^2 + C\log(eT)$$

• $\tau \varepsilon_{\tau}^2 \simeq \frac{\log(T)}{p_{\tau}(\pi_{\tau})}$, with $p_{\tau}(\pi_{\tau})$ the current proportion of action π_t

- Use again the slow rates ! and strong cvx + interior minimum

$$\|\boldsymbol{p}_{\tau} - \boldsymbol{p}_{*}\|^{2} \leq \frac{1}{\mu} (L(\boldsymbol{p}_{\tau}) - L(\boldsymbol{p}_{*})) \leq \frac{1}{\mu} \frac{\sum_{s=1}^{\tau} \varepsilon_{s}}{\tau} \leq \sqrt{\frac{d \log(T)}{\mu^{2} T}}$$

- Conclude: $p_{\tau}(\pi_{\tau}) \simeq p_{\star}(\pi_{\tau}) - \frac{1}{T^{1/4}} > \frac{p_{\star}(\pi_{\tau})}{2}$ is a constant !

Back to heterogeneous estimation

$$\mathcal{L}(p) = \sum_k \frac{\sigma_k^2}{p_k}$$
, $p_k^* = \frac{\sigma_k}{\sum_j \sigma_j}$, , $\mathcal{L}(p^*) = \left(\sum_j \sigma_j\right)^2$

- Main issue: \mathcal{L} not smooth in p nor σ^2 ...
 - But smooth "around" p^* , with $C' \simeq \frac{\sum \sigma_j}{\sigma_{\min}}$ and $C \simeq \frac{\left(\sum \sigma_j\right)^s}{\sigma_{\min}}$
- First phase of rough estimation of σ_k^2
 - Difficult to estimate $\sigma_k^2 \pm \varepsilon$, easy for $\left[\frac{\sigma_k^2}{2}, \frac{3\sigma_k^2}{2}\right]$
 - $X_t \sim \mathcal{N}(heta_k, 1)$, sample as long as $\overline{X}_{ au} \leq \sqrt{rac{\log(T/\delta)}{ au}}$
 - Need roughly $\frac{\log(T/\delta)}{\theta^2} = o(T)$ samples
- Second phase of sampling linear time
 - k sampled $N_{\frac{\widehat{\sigma}_k/2}{\sum_i 3\widehat{\sigma}_i/2}} \leq N_k$ times
- Third phase of optimization, using FwUC
 - p_t far from boundary, close to p^* . Valid upper-bounds on C, C'