Recent interactions between online learning and active statistics

Vianney Perchet
Colloquium Paris 13
Paris, June 2020
Crest, ENSAE
\& Criteo Research, Paris

Original Motivations

The Original Motivating Problem

Heterogenous Source Estimation

- d different sources $X_{k}(t) \sim \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)$ to estimate
- Total of N samples to allocate: $\left(N_{1}, N_{2}, \ldots, N_{d}\right)$
- Minimization of $\mathbb{E}\|\hat{\mu}-\mu\|^{2}=\sum_{k} \frac{\sigma_{k}^{2}}{N_{k}}=\frac{1}{N} \sum_{k} \frac{\sigma_{k}^{2}}{p_{k}}$

Loss defined on Proportions

$$
\mathcal{L}\left(p_{1}, \ldots, p_{k}\right)=\sum_{k} \frac{\sigma_{k}^{2}}{p_{k}}, \text { with } p \in \Delta_{d}
$$

The solution ?

Min. of $\mathcal{L}\left(p_{1}, \ldots, p_{d}\right)=\sum_{k} \frac{\sigma_{k}^{2}}{p_{k}}$, constraint to $p \in \Delta_{d}$

- Easy to solve, $p_{k}^{*}=\frac{\sigma_{k}}{\sum \sigma_{j}}$ with error $\mathcal{L}\left(p^{*}\right)=\left(\sum \sigma_{k}\right)^{2} \simeq \sigma^{2} d^{2}$

The Question

What if the σ_{k} are also unknown?

- Sequentially estimate $\widehat{\sigma}_{k}^{2}=\frac{1}{N_{k}} \sum_{t=1}^{N_{k}}\left(X_{k}(t)-\bar{X}_{k}(t)\right)^{2}$
- Bigger N_{k}, better estimation of σ_{k}^{2}
- Do not overshoot! Smaller σ_{k}^{2}, smaller N_{k}

Sequential (simultaneous) Estimation vs. Optimization

More complex: Linear Regression

Standard Linear Regression: $Y_{i}=X_{i}^{\top} \beta+\varepsilon_{i}$

Homoscedastic case

- Design Matrix: $\mathbb{X}=\left(X_{1}, \ldots, X_{N}\right)^{\top}$
- Unbiased Estimate: $\widehat{\beta}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} Y=\beta+\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \varepsilon$
- Expected Error: $\mathbb{E}\|\widehat{\beta}-\beta\|^{2}=\sigma^{2} \operatorname{Tr}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$ if $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right.$ Id $)$.

Heteroscedastic case

- Known variance: $\operatorname{Var}(\varepsilon)=\Omega$
- Unbiased Estimate: $\widehat{\beta}=\left(\mathbb{X}^{\top} \Omega^{-1} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \Omega^{-1} Y$
- Expected Error: $\mathbb{E}\|\widehat{\beta}-\beta\|^{2}=\operatorname{Tr}\left(\mathbb{X}^{\top} \Omega^{-1} \mathbb{X}\right)^{-1}$.

Active Linear Regression

- Fixed Design: $\mathbb{X} \subset \mathbb{R}^{N \times d}$ is fixed and given
- Random Design: $X_{i} \in \mathbb{R}^{d}$ are iid $\sim \mathcal{M}\left(\mathbb{R}^{d}\right)$

$$
\text { Active Design: From a given set }\left\{X^{(1)}, \ldots, X^{(K)}\right\} \subset \mathbb{R}^{d}
$$

- Choose $X_{i} \in\left\{X^{(1)}, \ldots, X^{(K)}\right\}$ to sample and Observe $Y_{i}=X_{i}^{\top} \beta+\varepsilon\left(X_{i}\right)$
- Sample X_{i+1}, observe Y_{i+1}, etc.
- Estimate β from Y_{1}, \ldots, Y_{N} and \mathbb{X}
- Easy cases: Homoscedastic or known variance

Active Heteroscedastic Linear Regression ??

- "Optimization of design matrix" vs "Estimation of variance"
- Minimize $\operatorname{Tr}\left(\mathbb{X}^{\top} \Omega^{-1} \mathbb{X}\right)^{-1}$ and estimate $\hat{\Omega}$

Best solution in hindsight

$$
\text { Minimize } \operatorname{Tr}\left(\mathbb{X}^{\top} \Omega^{-1} \mathbb{X}\right)^{-1} \text { with } X_{i} \in\left\{X^{(1)}, \ldots, X^{(\kappa)}\right\}
$$

- Assume ε_{t} independent, Gaussian $\mathcal{N}\left(0, \sigma^{2}\left(X^{(k)}\right)\right)$
- Total number \mathbf{N} of samples allowed
- Optimal allocation $\mathbf{N}^{(1)}, \ldots, \mathbf{N}^{(k)}$ s.t., $\sum \mathbf{N}^{(k)}=N$.
- Discretization errors. Consider proportion $\mathbf{p}^{(1)}, \ldots, \mathbf{p}^{(k)}$

$$
\mathbb{X}^{\top} \Omega^{-1} \mathbb{X}=\mathbf{N} \sum_{k} \mathbf{p}^{(k)} \frac{x^{(k)}\left(X^{(k)}\right)^{\top}}{\sigma_{k}^{2}}
$$

- Asymptotically, it boils down to

Min. over "sampling simplex" $\operatorname{Tr}\left(\sum_{k} \mathbf{p}^{(k)} \frac{X^{(k)}\left(x^{(k)}\right)^{\top}}{\sigma_{k}^{2}}\right)^{-1}$

Related questions

Activification of Statistical Procedures

- Heterogenous Source Estimation
- Linear regression
- Estimation of Gaussian mixtures
- Clustering
- ..

Sounds like Exploration vs Exploitation
and multi-armed bandits

An intro to multi-armed Bandit

Classical Examples of Bandits Problems

- Size of data: n patients with some proba of getting cured
- Choose one of two treatments to prescribe

- Patients cured or dead

1) Inference: Find the best treatment between the red and blue 2) Cumul: Save as many patients as possible

Classical Examples of Bandits Problems

- Size of data: n banners with some proba of click
- Choose one of two ads to display

- Banner clicked or ignored

1) Inference: Find the best ad between the red and blue
2) Cumul: Get as many clicks as possible

Classical Examples of Bandits Problems

- Size of data: n auctions with some expected revenue
- Choose one of two strategies(bid/opt out) to follow

Or

- Auction won or lost

1) Inference: Find the best strategy between the red and blue
2) Cumul: Win as many profitable auctions as possible

Classical Examples of Bandits Problems

- Size of data: n mails with some proba of spam
- Choose one of two actions: spam or ham

or

- Mail correctly or incorrectly classified

1) Inference: Find the best strategy between the red and blue
2) Cumul: as possibleMinimize number of errors

Classical Examples of Bandits Problems

- Size of data: n patients with some proba of getting cured
- Choose one of two treatments to prescribe

- Patients cured $\mathrm{O}_{\text {or dead }}^{8}$

1) Inference: Find the best treatment between the red and blue 2) Cumul: Save as many patients as possible

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.

Two-Armed Bandit

- Patients arrive and are treated sequentially.
- Save as many as possible.

Estimation of Means

Discrete-time proc.: $X_{n}^{(1)}$ in $[0,1]$
"The efficiency of treatment 1 on patient n "
Estimate the mean μ_{1}
Hoeffding inequality: exponential decay

$$
\left|\bar{X}_{n}^{(k)}-\mu_{1}\right|>\varepsilon \text { with proba at most } 2 \exp \left(-2 n \varepsilon^{2}\right) .
$$

Finite number of mistakes:

$$
\mathbb{E} \sum_{n \in \mathbb{N}} \mathbb{1}\left\{\left|\bar{X}_{n}^{(k)}-\mu_{1}\right|>\varepsilon\right\} \leq \frac{1}{\varepsilon^{2}}
$$

Regret Minimization

- Choose one ad to display k_{n}. Reward: $X_{n}^{\left(k_{n}\right)}$

Maximize cumulative reward $\sum_{m=1}^{n} X_{m}^{\left(k_{m}\right)}$ or $\sum_{m=1}^{n} \mu^{\left(k_{m}\right)}$
Minimize Regret [Hannan'56]

$$
R_{n}=n \mu^{\star}-\sum_{m=1}^{n} \mu_{k_{m}}, \text { with } \mu^{\star}=\max \left\{\mu_{k}\right\}
$$

- Equivalent formulation with $\Delta_{k}=\mu^{\star}-\mu_{k}$:

$$
R_{n}=\sum_{k} \Delta_{k} \sum_{m=1}^{n} \mathbb{1}\left\{k_{m}=k \neq *\right\}
$$

Stochastic \& Full Monitoring

- Full Monitoring: all values $X_{n}^{(k)}$ observed.
- Optimal algorithm: $k_{n}=\arg \max \bar{X}_{n}^{(k)}$:

$$
\mathbb{E} R_{n} \leq \sum_{k} \frac{1}{\Delta_{k}} \quad \text { and for small } n, \mathbb{E} R_{N} \leq n \max \Delta_{k}
$$

Bounded regret, uniformly in n !

- Given n, worst Δ is $\sqrt{\frac{d}{n}}$ and $\mathbb{E} R_{n} \leq \sqrt{d n}$
- But in the examples, only $X_{n}^{\left(k_{n}\right)}$ is observed (bandit monitoring)!

Stochastic \& Bandit Monitoring

$-\bar{X}_{n}^{(k)}=\frac{1}{n} \sum_{m=1}^{n} X_{m}^{(k)}$ not available, only $\widehat{X}_{n}^{(k)}=\frac{\sum_{m: k_{m}=k} X_{m}^{(k)}}{\sharp\left\{m: k_{m}=k\right\}}$

- with $k_{n}=\arg \max \widehat{X}_{n}^{(k)}, \mathbb{E} R_{n}=\Theta(n)$.
because $\mathbb{E}\left[\bar{X}_{n}^{(k)}\right] \leq \mu_{k}$ negatively biased
- Positive (vanishing) bias ? Tradeoff Exploitation/Exploration

Upper Confidence Bound [Auer,Cesa-Bianchi,Fischer'02]

$$
k_{n}=\arg \max \widehat{X}_{n}^{(k)}+\sqrt{\frac{2 \log (n)}{\sharp\left\{m: k_{m}=k\right\}}}
$$

$$
\text { Regret: } \mathbb{E} R_{n} \leq \sum_{k} \frac{\log (n)}{\Delta_{k}}
$$

An active linear optim on Multi-Armed Bandits

- different sources $X_{k}(t) \sim \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)$
- Total of N samples to sequentially allocate: $\left(N_{1}, N_{2}, \ldots, N_{d}\right)$
- Minimization of $\frac{1}{N} \sum_{k} N_{k} \mu_{k}=\sum_{k} p_{k} \mu_{k}$

Loss defined on Proportions

$$
\mathcal{L}\left(p_{1}, \ldots, p_{d}\right)=\sum_{k} p_{k} \mu_{k}=p^{\top} \mu, \text { with } p \in \Delta_{d}
$$

- Let's take $\sigma_{k}^{2}=1$ in bandits to simplify

Back to UCB

Upper-Confidence Bound - algorithm

1) Estimate μ_{k} by $\bar{\mu}_{k}(t)=\frac{1}{N_{k}(t)} \sum_{s=1}^{N_{k}(t)} X_{k}(s)$, but biased
2) "Positively-bias it" with $\bar{\mu}_{k}(t)-\sqrt{2 \frac{\log (t)}{N_{k}(t)}}$
3) Sample/pull the "arm" with smallest "unbiased" estimate

UCB-algo

$$
\pi_{t+1}=\arg \min _{k}\left\{\bar{\mu}_{k}(t)-\sqrt{2 \frac{\log (t)}{N_{k}(t)}}\right\}
$$

4) Enjoy Optimization error / "regret"

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \lesssim \frac{\log (N)}{N} \sum_{k} \frac{1}{\mu_{k}-\mu_{k^{*}}}
$$

Ugly \& useless but insightful 1 page proof

$$
\mathcal{L}\left(p_{t+1}\right)-\mathcal{L}\left(p^{*}\right)=\mathcal{L}\left(p_{t}+\frac{1}{t+1}\left(e_{\pi_{t+1}}-p_{t}\right)\right)-\mathcal{L}\left(p^{*}\right)
$$

Ugly \& useless but insightful 1 page proof

$$
\begin{aligned}
\mathcal{L}\left(p_{t+1}\right)-\mathcal{L}\left(p^{*}\right) & =\mathcal{L}\left(p_{t}+\frac{1}{t+1}\left(e_{\pi_{t+1}}-p_{t}\right)\right)-\mathcal{L}\left(p^{*}\right) \\
& =\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p_{t}\right)
\end{aligned}
$$

Ugly \& useless but insightful 1 page proof

$$
\begin{aligned}
\mathcal{L}\left(p_{t+1}\right)-\mathcal{L}\left(p^{*}\right)= & \mathcal{L}\left(p_{t}+\frac{1}{t+1}\left(e_{\pi_{t+1}}-p_{t}\right)\right)-\mathcal{L}\left(p^{*}\right) \\
= & \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p_{t}\right) \\
= & \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(p^{*}-p_{t}\right) \\
& \quad+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right)
\end{aligned}
$$

Ugly \& useless but insightful 1 page proof

$$
\begin{aligned}
\mathcal{L}\left(p_{t+1}\right)-\mathcal{L}\left(p^{*}\right)= & \mathcal{L}\left(p_{t}+\frac{1}{t+1}\left(e_{\pi_{t+1}}-p_{t}\right)\right)-\mathcal{L}\left(p^{*}\right) \\
= & \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p_{t}\right) \\
= & \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(p^{*}-p_{t}\right) \\
& \quad+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right) \\
\leq & \left(1-\frac{1}{t+1}\right)\left[\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)\right]+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right)
\end{aligned}
$$

Ugly \& useless but insightful 1 page proof

$$
\begin{aligned}
\mathcal{L}\left(p_{t+1}\right)-\mathcal{L}\left(p^{*}\right)= & \mathcal{L}\left(p_{t}+\frac{1}{t+1}\left(e_{\pi_{t+1}}-p_{t}\right)\right)-\mathcal{L}\left(p^{*}\right) \\
= & \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p_{t}\right) \\
= & \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(p^{*}-p_{t}\right) \\
& \quad+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right) \\
\leq & \left(1-\frac{1}{t+1}\right)\left[\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)\right]+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right) \\
\leq & \frac{t}{t+1}\left[\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)\right]+\frac{1}{t+1}(\underbrace{\mu_{\pi_{t+1}}-\mu_{k^{*}}}_{:=\varepsilon_{t+1}})
\end{aligned}
$$

Ugly \& useless but insightful 1 page proof

$$
\begin{aligned}
& \mathcal{L}\left(p_{t+1}\right)-\mathcal{L}\left(p^{*}\right)= \mathcal{L}\left(p_{t}+\frac{1}{t+1}\left(e_{\pi_{t+1}}-p_{t}\right)\right)-\mathcal{L}\left(p^{*}\right) \\
&= \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p_{t}\right) \\
&= \mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(p^{*}-p_{t}\right) \\
&+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right) \\
& \leq\left(1-\frac{1}{t+1}\right)\left[\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)\right]+\underbrace{\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right)}_{:=\varepsilon_{t+1}} \\
& \leq \frac{t}{t+1}\left[\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)\right]+\frac{1}{t+1}(\underbrace{\mu_{1}}_{\pi_{t+1}-\mu_{k^{*}}})
\end{aligned}
$$

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \leq \frac{1}{N} \sum_{t=1}^{N} \mu_{\pi_{t}}-\mu_{k^{*}}:=\frac{1}{N} \sum_{t=1}^{N} \varepsilon_{t}
$$

Still that proof !

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right)=\frac{1}{N} \sum_{t=1}^{N} \varepsilon_{t}=\frac{1}{N} \sum_{k} N_{k}\left(\mu_{k}-\mu_{k^{*}}\right)
$$

$-\pi_{t+1}=k$ if $\bar{X}_{k}(t)-\sqrt{\frac{\log (t)}{N_{k}(t)}} \simeq \mu_{k}-\sqrt{\frac{\log (N)}{N_{k}(t)}} \leq \mu_{k^{*}} \Rightarrow \varepsilon_{t} \lesssim \sqrt{\frac{\log (t)}{N_{k}(t)}}$

Slow rate of convergence

$$
\begin{aligned}
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) & \lesssim \frac{1}{N} \sum_{k} \sum_{s=1}^{N_{k}} \sqrt{\frac{\log (N)}{s}} \\
& \lesssim \frac{1}{N} \sum_{k} \sqrt{\log (N) N_{k}} \leq \sqrt{\frac{d \log (N)}{N}}
\end{aligned}
$$

From slow to fast rates

- Start from the slow rate

$$
\frac{1}{N} \sum_{k \neq k^{*}} N_{k}\left(\mu_{k}-\mu_{k^{*}}\right)=\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \lesssim \frac{1}{N} \sum_{k} \sqrt{\log (N) N_{k}}
$$

- Enforce $\mu_{k}-\mu_{k^{*}}$ and Cauchy-Schwartz

$$
\sum_{k \neq k^{*}} N_{k}\left(\mu_{k}-\mu_{k^{*}}\right) \lesssim \sqrt{\sum_{k \neq k^{*}} N_{k}\left(\mu_{k}-\mu_{k^{*}}\right)} \sqrt{\sum_{k \neq k^{*}} \frac{\log (N)}{\mu_{k}-\mu_{k^{*}}}}
$$

- Enjoy your fast rates !

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \leq \frac{\log (N)}{N} \sum_{k} \frac{1}{\mu_{k}-\mu_{k^{*}}}
$$

What did we learn with UCB ?

1. Optimistic Estimation of $\nabla \mathcal{L}(p)$ or "positively-biased"

$$
\bar{\mu}_{k}(t)-\sqrt{2 \frac{\log (t)}{N_{k}(t)}}=\hat{\nabla}_{k}^{-} \mathcal{L}\left(p_{t}\right) \text { and } e_{t+1}=\arg \min _{p \in \Delta_{d}} \hat{\nabla}^{-} \mathcal{L}\left(p_{t}\right)^{\top} p
$$

2. Variant of Frank-Wolfe: $p_{t+1}=\left(1-\gamma_{t}\right) p_{t}+\gamma_{t} \arg \min _{p \in \Delta_{d}} \nabla \mathcal{L}\left(p_{t}\right)^{\top} p$

$$
\begin{aligned}
p_{t+1} & =\left(1-\frac{1}{t+1}\right) p_{t}+\frac{1}{t+1} e_{t+1} \\
& =\left(1-\frac{1}{t+1}\right) p_{t}+\frac{1}{t+1} \arg \min _{p \in \Delta_{d}} \widehat{\nabla}^{-} \mathcal{L}\left(p_{t}\right)^{\top} p
\end{aligned}
$$

3. From Slow to Fast Rates with some simple algebra

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \lesssim \sqrt{\frac{\log (N)}{N}} \text { vs. } \frac{\log (N)}{N}
$$

Links with active statistics

More General Model

Optimization of convex loss $\mathcal{L}\left(p_{N}\right)$ on Δ_{d}, think of $\mathcal{L}(p)=\sum_{k} \frac{\sigma_{k}^{2}}{p_{k}}$

- Typical parametric form: $\mathcal{L}_{\theta}(p)=\sum_{k} f_{k}\left(\theta_{k}, p_{k}\right)$ with θ_{k} unknown Main assumption (typical case)
f_{k} is smooth w.r.t. p and θ
- $\left\|\nabla f_{k}\left(\theta_{k}, p_{k}\right)-\nabla f_{k}\left(\theta_{k}^{\prime}, p_{k}^{\prime}\right)\right\| \leq C\left|p_{k}-p_{k}^{\prime}\right|+C^{\prime}\left\|\theta_{k}-\theta_{k}^{\prime}\right\|$
- At stage t, choose $e_{\pi_{t}}$ and observe $X_{\pi_{t}}(t) \sim \mathcal{N}\left(\theta_{\pi_{t}}, 1\right)$

After $N_{k}(t)$ observations, $\bar{X}_{k}(t) \simeq \theta_{k} \pm \sqrt{\frac{\log (t / \delta)}{N_{k}(t)}}$

- Noisy information on $\nabla_{k} \mathcal{L}(\cdot)$ only when sampling process k

Other examples

- Utility maximization Optim. basket of substitutes goods

Other examples

- Utility maximization Optim. basket of substitutes goods
- V. thinks of "cardio", "bench-press" and "squats" for fitness training

Other examples

- Utility maximization Optim. basket of substitutes goods
- V. thinks of "cardio", "bench-press" and "squats" for fitness training

- Q. thinks of "wine", "bread" and "cheese" for his breakfast

Other examples

- Utility maximization Optim. basket of substitutes goods
- V. thinks of "cardio", "bench-press" and "squats" for fitness training

- Q. thinks of "wine", "bread" and "cheese" for his breakfast

- Kobb-Douglas utility $\mathcal{U}\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{d}^{\beta_{d}}$
- Use/buy one good (same price 1), estimate log-utility increase
- online Markovitz portfolio optimization
- Optimize $\mathcal{L}(p)=p^{\top} \Sigma p-\lambda \mu^{\top} p \quad$ with Σ known, μ unknown
- General Case
- \mathcal{L} is C-smooth w.r.t. p and $\left|\widehat{\nabla}_{k} \mathcal{L}(p)-\nabla_{k} \mathcal{L}(p)\right| \leq C^{\prime} \sqrt{\frac{\log (t / \delta)}{N_{k}(t)}}$

The algorithm - Stochastic/Online optimization

UC-FW: Upper Confident Frank-Wolfe

- Optimistic/Unbiased grad. $\widehat{\nabla}_{k}^{-} \mathcal{L}(p)=\widehat{\nabla}_{k} \mathcal{L}(p)-C^{\prime} \sqrt{\frac{\log (t / \delta)}{N_{k}(t)}}$
- Frank-Wolfe: $e_{\pi_{t+1}}=\arg \min _{p \in \Delta_{k}} p^{\top} \hat{\nabla}_{k}^{-} \mathcal{L}\left(p_{t}\right)$, with $\delta=1 / t$

First result (rather easy) Slow Rate of FwUC

$$
\mathbb{E} \mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \lesssim \sqrt{\frac{d \log (N)}{N}}+\frac{\log (N)}{N}
$$

- Proof ? (almost) identical to UCB!

Frank-Wolfe vs Gradient Descent

- For linear functions:

Projected gradient descent (in red) can converge slowly
Frank-Wolfe goes straight to the minimum

The proof. Identical !!

$$
\begin{aligned}
& \mathcal{L}\left(p_{t+1}\right)-\mathcal{L}^{*}=\mathcal{L}\left(p_{t}+\frac{1}{t+1}\left(e_{\pi_{t+1}}-p_{t}\right)\right)-\mathcal{L}^{*} \\
& \leq \mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p_{t}\right)+\frac{C}{(t+1)^{2}} \\
&= \mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(p^{*}-p_{t}\right) \\
& \quad+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right)+\frac{C}{(t+1)^{2}} \\
& \leq \frac{t}{t+1}\left[\mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}\right]+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p^{*}\right)+\frac{C}{(t+1)^{2}} \\
& \leq \frac{t}{t+1}\left[\mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}\right]+\frac{1}{t+1} \varepsilon_{t}+\frac{C}{(t+1)^{2}}
\end{aligned}
$$

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}^{*} \leq \frac{1}{N} \sum_{t=1}^{N} \varepsilon_{t}+C \frac{\log (N)}{N} \text { and } \sum \varepsilon_{t} \simeq C \sum_{k} \sum_{t} \sqrt{\frac{\log (t)}{N_{k}(t)}}
$$

Similar results/techniques

- Stochastic Frank Wolfe (errors independent of algorithms)
- [Jaggi], [Lacoste-Julien et al.], [Lafond et al.]
- Global Cost. Specific $\mathcal{L}(p)=f\left(\theta^{\top} p\right)$ with θ unknown, f known
- Adversarial: [Even-Dar et al.], [Blackwell], [Mannor et al.], [Rakhlin et al.]etc.
- Stochastic: [Agrawal and Devanur], [Agrawal et al] Also use stochastic Frank Wolfe
- Specific Cases. with pb tailored algorithm
- [Carpentier et al.], [the bandit community]

Fast Rates !

Slow to Fast rates ?

$$
\text { As in bandit } ? \sqrt{\frac{d \log (N)}{N}} \text { transformed into } \frac{d \log (N)}{N} ?
$$

1) Slow rate: $\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \lesssim \frac{1}{N} \sum_{k} \sqrt{\log (N) N_{k}}$
2) Lower bound the convex functions

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \gtrsim\left(p_{N}-p^{*}\right) \nabla \mathcal{L}\left(p^{*}\right) \gtrsim \frac{1}{N} \sum_{k \neq k^{*}} N_{k}\left(\nabla_{k} \mathcal{L}\left(p^{*}\right)-\nabla_{k^{*}} \mathcal{L}\left(p^{*}\right)\right)
$$

3) Cauchy-Schwartz

$$
\frac{1}{N} \sum_{k \neq k^{*}} N_{k}\left(\nabla_{k} \mathcal{L}\left(p^{*}\right)-\nabla_{k^{*}} \mathcal{L}\left(p^{*}\right)\right) \lesssim \frac{\log (N)}{N} \sum_{k \neq k^{*}} \frac{1}{\nabla_{k} \mathcal{L}\left(p^{*}\right)-\nabla_{k^{*}} \mathcal{L}\left(p^{*}\right)}
$$

4) Another lower bound: fast rate!

$$
\mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \lesssim\left(1+\frac{C K}{\min _{k} \nabla_{k} \mathcal{L}\left(p^{*}\right)-\nabla_{k^{*}} \mathcal{L}\left(p^{*}\right)}\right) \cdot \mathrm{lhs} \lesssim O\left(\frac{\log (N)}{N}\right)
$$

What about interior minimized functions ?

- General Case. Can we do the same ?
- Without more assumption, no.
- Maybe with strong convexity

Strong convexity

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)+\mu\|y-x\|^{2}
$$

- Positive Results. Fast rates sometimes possible
- without noise [Garben and Hazan] [Jaggi][...]
- with decaying noise [Lafond et al.]
- in online convex optim. [Polyak-Tsybakov], [Bach-P.][...]
- Negative Results
- Cannot leverage strong convexity in online convex optim. [Shamir], [Jamieson et al.]
- No choice of parameter in FW, has to be $\frac{1}{t+1}$

The model for fast rates

- On top of the previous assumptions

Assumptions

\mathcal{L} is μ-strongly convex and minimized in the interior of Δ_{d}
$\eta:=d\left(\partial \Delta_{d}, p^{*}\right)$ will play a role [Lacoste-Julien \& Jaggi]

$$
\mathcal{L}(p)-\mathcal{L}\left(p^{*}\right) \leq \frac{1}{2 \mu \eta^{2}}\left|\nabla \mathcal{L}(p)^{\top}\left(e_{\star, p}-p\right)\right|^{2}
$$

where $e_{\star, p}=\arg \min _{q \in \Delta_{d}} \mathcal{L}(p)^{\top} q$

The model for fast rates

The model for fast rates

- On top of the previous assumptions

Assumptions

\mathcal{L} is μ-strongly convex and minimized in the interior of Δ_{d}
$\eta:=d\left(\partial \Delta_{d}, p^{*}\right)$ will play a role [Lacoste-Julien \& Jaggi]

$$
\mathcal{L}(p)-\mathcal{L}\left(p^{*}\right) \leq \frac{1}{2 \mu \eta^{2}}\left|\nabla \mathcal{L}(p)^{\top}\left(e_{\star, p}-p\right)\right|^{2}
$$

where $e_{\star, p}=\arg \min _{q \in \Delta_{d}} \mathcal{L}(p)^{\top} q$

- Main idea - change in proofs
- Before $\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{*, p_{t}}-p_{t}\right) \leq-\frac{1}{t+1}\left(\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)\right)$
- Now $\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\star, p_{t}}-p_{t}\right) \leq-\frac{\sqrt{2 \mu \eta^{2}}}{t+1} \sqrt{\left(\mathcal{L}\left(p_{t}\right)-\mathcal{L}\left(p^{*}\right)\right)}$

Fast rates, our result

$$
\text { FwUC: } e_{\pi_{t+1}}=\arg \min _{p \in \Delta_{k}} p^{\top} \hat{\nabla}_{k}^{-} \mathcal{L}\left(p_{t}\right) \text {, with } \delta=1 / t
$$

Assumptions:

- C-smoothness/gradient estimation,
- μ-strong convexity,
- η-interior minimum

Main result, Fast rates of FwUC

$$
\mathbb{E} \mathcal{L}\left(p_{N}\right)-\mathcal{L}\left(p^{*}\right) \leq c_{1} \frac{\log ^{2}(N)}{N}+c_{2} \frac{\log (N)}{N}+c_{3} \frac{1}{N}
$$

with $c_{1}=3 \frac{d\left(C^{\prime}\right)^{2}}{\mu \eta^{2}}, c_{2}=3 \frac{d C^{\prime}\|\mathcal{L}\|_{\infty}}{\left(\mu \eta^{2}\right)^{3}}, c_{3}=d C^{\prime}\|L\|_{\infty}+C$

Some remarks

- FwUC Fully adaptive to
- The strong/non-strong convexity and the parameter μ
- The horizon N
- And any other constants/parameters except C^{\prime}
- Parameters dependencies (Leading Term)
- Linear in the ambiant dimension d
- inverse-Linear in the strongly-convexity parameter μ
- inverse-square in the distance to the boundary η (but $\frac{1}{d}$ on Δ_{d})
- Generalizations
- Gradients errors $\left(\frac{\log (t / \delta)}{N_{k}(t)}\right)^{\beta}$ with $\beta \leq 1 / 2$

Slow rate $\left(\frac{\log (N)}{N}\right)^{\beta}$, and fast rates $\frac{\log (N)}{N^{2}}$

- (Non-strongly convex) without interior minimum but $\nabla \mathcal{L}\left(p^{*}\right) \ll 0$
- Lower bounds matching in N (classic in bandits/stoc. optim)

Ideas of proof

$$
\text { Objective: } \mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*} \leq \frac{\sum_{t-1}^{T} \varepsilon_{t}^{2}}{T} \simeq \frac{1}{T} \sum_{t} \frac{\log ^{(t)}}{t} \simeq \frac{\log ^{2}(T)}{T}
$$

$$
\begin{aligned}
\mathcal{L}\left(p_{t+1}\right)-\mathcal{L}^{*} & \leq \mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}+\frac{1}{t+1} \nabla \mathcal{L}\left(p_{t}\right)^{\top}\left(e_{\pi_{t+1}}-p_{t}\right)+\frac{C}{(t+1)^{2}} \\
& \leq \mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}-\frac{\sqrt{2 \mu \eta^{2}}}{t+1} \sqrt{\mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}}+\frac{\varepsilon_{t}}{t+1}+\frac{C}{(t+1)^{2}}
\end{aligned}
$$

- Introducing $\rho_{t}=\mathcal{L}\left(p_{t}\right)-\mathcal{L}^{*}$ and $\psi(x)=x-\sqrt{\alpha x}$, we get

$$
(t+1) \rho_{t+1} \leq t \rho_{t}+\left[\psi\left(\rho_{t}\right)-\psi\left(\frac{\varepsilon_{t}^{2}}{\alpha}\right)\right]+\frac{\varepsilon_{t}^{2}}{\alpha}+\frac{c}{t+1}
$$

- if $\psi\left(\rho_{t}\right)-\psi\left(\frac{\varepsilon_{t}^{2}}{\alpha}\right) \leq 0$ then ok. but not always... more or less only asymptotically, if everything goes right.

Some details (again from slow to fast)

- If $\rho_{t} \leq \frac{\varepsilon_{t}^{2}}{\alpha}$ then $(t+1) \rho_{t+1} \leq t \rho_{t}+\frac{\varepsilon_{t}^{2}}{\alpha}+\frac{c}{t+1}$

$$
T \rho_{T} \leq \frac{\tau \varepsilon_{\tau}^{2}}{\alpha}+\frac{1}{\alpha} \sum_{t=\tau+1}^{T} \varepsilon_{s}^{2}+C \log (e T)
$$

- $\tau \varepsilon_{\tau}^{2} \simeq \frac{\log (T)}{p_{\tau}\left(\pi_{\tau}\right)}$, with $p_{\tau}\left(\pi_{\tau}\right)$ the current proportion of action π_{t}
- Use again the slow rates!and strong cvx + interior minimum

$$
\left\|p_{\tau}-p_{*}\right\|^{2} \leq \frac{1}{\mu}\left(L\left(p_{\tau}\right)-L\left(p_{*}\right)\right) \leq \frac{1}{\mu} \frac{\sum_{s=1}^{\tau} \varepsilon_{s}}{\tau} \leq \sqrt{\frac{d \log (T)}{\mu^{2} T}}
$$

- Conclude: $p_{\tau}\left(\pi_{\tau}\right) \simeq p_{\star}\left(\pi_{\tau}\right)-\frac{1}{T^{1 / 4}}>\frac{p_{\star}\left(\pi_{\tau}\right)}{2}$ is a constant !

Back to heterogeneous estimation

$$
\mathcal{L}(p)=\sum_{k} \frac{\sigma_{k}^{2}}{p_{k}}, \quad p_{k}^{*}=\frac{\sigma_{k}}{\sum_{j} \sigma_{j}}, \quad, \quad \mathcal{L}\left(p^{*}\right)=\left(\sum_{j} \sigma_{j}\right)^{2}
$$

- Main issue: \mathcal{L} not smooth in p nor $\sigma^{2} \ldots$
- But smooth "around" p^{*}, with $C^{\prime} \simeq \frac{\sum \sigma_{j}}{\sigma_{\text {min }}}$ and $C \simeq \frac{\left(\sum \sigma_{j}\right)^{3}}{\sigma_{\text {min }}}$
- First phase of rough estimation of σ_{k}^{2}
- Difficult to estimate $\sigma_{k}^{2} \pm \varepsilon$, easy for $\left[\frac{\sigma_{k}^{2}}{2}, \frac{3 \sigma_{k}^{2}}{2}\right]$
- $X_{t} \sim \mathcal{N}\left(\theta_{k}, 1\right)$, sample as long as $\bar{X}_{\tau} \leq \sqrt{\frac{\log (T / \delta)}{\tau}}$
- Need roughly $\frac{\log (T / \delta)}{\theta^{2}}=o(T)$ samples
- Second phase of sampling linear time
- k sampled $N \frac{\widehat{\sigma}_{k} / 2}{\sum_{j} 3 \hat{\sigma}_{j} / 2} \leq N_{k}$ times
- Third phase of optimization, using FwUC
- p_{t} far from boundary, close to p^{*}. Valid upper-bounds on C, C^{\prime}

