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Overview

Boolean functions are important objects in discrete mathematics. They play a role in mathematics
and almost all the domains of computer science. In this book, we are mainly interested in their
relationships with error-correcting codes and private-key cryptography. Mathematically, Boolean
functions are mostly considered in this book in their univariate representations over finite fields.
The theory of finite fields is a branch of modern algebra that has come to the fore in the last
60 years because of its diverse applications in combinatorics, coding theory, cryptology, among
others.

The book is devoted to special families of Boolean functions which are viewed as important
objects in combinatorics and the information theory framework (namely, cryptography and coding
theory).

In fact, one of the most important cryptographic characteristics of a Boolean function is its
nonlinearity. Most interest is attracted by the extremal nonlinear functions. Bent functions
are maximally nonlinear Boolean functions with an even number of variables and are optimal
combinatorial objects.

In the mathematical field of combinatorics, a bent function is a special type of Boolean
function. Defined and named in the 1960’s by Oscar Rothaus [3] in research not published until
1976, bent functions are so called because they are as different as possible from all linear and
affine functions.The first paper on bent functions has been written in 1966 by O. Rothaus (as
indicated by J. Dillon in his thesis), but its final version was published ten years later in [3].
The definition of bent function can be extended in several ways, leading to different classes of
generalized bent functions that share many of the useful properties of the original.

Bent functions are wonderful creatures, initially studied by John Francis Dillon in his PhD
thesis [2]. They have attracted a lot of research, especially in the last 20 years for their own
sake as interesting combinatorial objects (e.g. difference sets), in design theory (any difference
set can be used to construct a symmetric design) but also for their relations to coding theory
(e.g. Reed-Muller codes, Kerdock codes, etc.) and applications in cryptography (design of stream
ciphers) and sequence theory. A jubilee survey paper on bent functions giving an historical
perspective, and making pertinent connections to designs, codes and cryptography is [I].

In cryptography, bent functions play a central role in the robustness of stream and block
ciphers, since they are the only source of their nonlinearity, by providing confusion in these
cryptosystems. The main cryptographic weaknesses of these functions in symmetric cryptography,
forbidding to directly use them in stream ciphers, is that bentness makes it impossible for them
to be balanced (that is, to have output uniformly distributed over the smallest field of cardinality
2); this induces a statistical correlation between the plaintext and the ciphertext.

A natural generalization of Boolean functions are the multi-output Boolean functions. Such
vectorial functions constitute the so-called Substitution boxes (S-boxes) in symmetric cryptosys-
tems which are fundamental parts of block ciphers. Bent vectorial functions can be involved in
the substitution boxes (S-boxes) of block ciphers, whose role is also to bring some amount of
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nonlinearity allowing them to resist differential and linear attacks.

Bent functions are particular plateaued functions. The notion of plateaued function has been
introduced in 1999 by Zheng and Zhang as good candidates for designing cryptographic functions
since they possess desirable various cryptographic characteristics. They are defined in terms of the
Walsh-Hadamard spectrum. Plateaued functions bring together various nonlinear characteristics
and include two important classes of Boolean functions defined in even dimension: the well-known
bent functions and the semi-bent functions. Very recently, the study of semi-bent functions has
attracted the attention of several researchers. Many progresses in the design of such functions
have been made.

Bent functions, their subclasses (e.g. hyper-bent functions) and their generalizations (e.g.
plateaued functions) have many theoretical and practical applications in combinatorics, coding
theory, (symmetric) cryptography and sequence theory. Bent functions (including their construc-
tions) have been extensively investigated since 1974. A complete classification of bent functions
is elusive and looks hopeless today, therefore, not only their characterization, but also their
generation are challenging problems.

The research activity on bent functions has been important for four decades and remains
very intensive. However, very recently, many advances have been obtained on super classes
of bent functions (plateauted functions, partially bent functions, etc), related classes of bent
functions (semi-bent functions, near-bent functions, etc) and subclasses (hyper-bent functions,
Niho bent functions, symmetric bent functions, bent nega-bent functions ect.). In particular,
many new connections in the framework of semi-bent functions with other domains of mathematics
and computer science (Dickson polynomial, Kloosterman sums, spreads, oval polynomial, finite
geometry, coding, cryptography, sequences, etc) have been exhibited. The research in this
framework is relatively new and becomes very active.

This book provides a detailed survey of main results in binary and generalized bent functions,
presents a systematic overview of their generalizations, their variations, their applications,
considers open problems in classification and systematization of bent functions, discusses proofs
of several results and reflects recent developments and trends in the field. Up to now, there is
no analog of this book in detail and completeness of material on bent functions, their variations
and their generalizations. It is the first book in this field collecting essential material and is
complementary to the existing surveys, since the emphasis is on bent functions via a univariate
approach based on finite fields.

In this book we have aimed at presenting both the classical and the applications-oriented
aspects of the subject. The reader will find many results and several techniques that are of
importance. Because of the vastness of the subject, limitations had to be imposed on the choice
of the material: we are mostly dealing with binary bent functions. The book tries to be as
self-contained as possible. It contains information from highly regarded sources. Wide varieties
of references are listed.

The book is split into 18 chapters. In most chapters, we bring some preliminaries providing
enough background for the unfamiliar reader to understand the content of the chapter in which we
present advanced results, significant advancements and the recent contributions of the researchers
to the subject.

The noteworthy prerequisite for the book is a background in linear algebra and basic concepts
in finite fields such as the general structure theory of finite fields, the theory of polynomials over
finite fields and the theory of Boolean functions.

Chapter 1, is basic for the rest of the book as it contains the general notions related to
Boolean functions as well as notions and concepts used throughout the book. In Chapter 2,
we provide several technical results and some mathematical tools that we need subsequently in
several chapters. Chapter 3 presents and discusses Boolean functions as important primitives of
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symmetric cryptosystems playing a central role in their security. From chapter 4, we enter in the
core of the main subject of the book. After a short historical note, we present definitions, main
properties, classes and main constructions of binary bent functions as well as their relationship
with error-correcting codes and private-key cryptography and combinatorics. Chapters 5, 6 and
7 are devoted to primary and secondary constructions of bent Boolean functions. In chapter 8,
we will be interested in the connexion between the theory of bent functions and some important
objects from finite geometry. Chapters 9, 10 and 11 concern a subclass of bent functions: the
so-called hyper-bent functions. We shall show how we can treat the property of being hyperbent
using tools from the theory of exponentials sums and the one of hyper-elliptic curves. Chapter 12
is dealing with multi-output bent functions. In chapter 13, we study bent functions in arbitrary
characteristic. Chapter 14 deals with connections of bent functions and spreads. Chapter 15
is devoted to various cryptographic and algebraic generalizations of bent functions. We shall
present partially bent functions, rotation symmetric bent functions, homogeneous bent functions,
negabent functions and several generalized bent functions. Chapters 16 and 17 are concerned
with the so-called plateaued functions which are cryptographic generalizations of bent functions.
In particular, we discuss near and semi-bent functions. Finally, the last Chapter is devoted to
recent advances related to linear error-correcting codes with few weights constructed via bent
functions.

We hope that this book will be useful firstly to researchers in discrete mathematics and their
applications in cryptography and coding theory; to students and professors of mathematical and
theoretical computer science. It will also be useful to all interested in mathematical foundations of
cryptography, engineers and managers in security. It can be used as a material for such university
courses as discrete mathematics, Boolean functions, symmetric cryptography etc. The book will
contain parts of different levels: from basic (available to students of the first year of Master) to
very advanced (specialists in discrete mathematics, cryptography, coding theory, sequences, etc.).

This book is both a reader book on an exciting field and a reference of an extreme wealth.
The Notation section can be found before the table of contents. An Index towards the end of this
book gives some terms used. Readers are encouraged to send their comments to: smesnager@univ-
paris8.fr
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Although T speak of its wonderful works in almost all my talks, I had never got the chance to
meet John Dillon !
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