
Habilitation à Diriger des Recherches

Université Paris 8, Département de Mathématiques

Laboratoire Analyse, Géométrie et Applications (LAGA), Université
Paris 13 et Université Paris 8, UMR 7539, CNRS

Équipe Mathématiques pour le traitement de l’information et de
l’image (MTII)

Spécialité : Mathématiques

Sihem Mesnager
10 décembre 2012

Contributions aux fonctions booléennes pour la cryptographie
symétrique et aux codes correcteurs d’erreurs

Jury

Mme. Pascale CHARPIN, Directrice de Recherche, INRIA-Rocquencourt, France Rapporteure
M. Tom H∅HOLDT, Professeur, Université de Copenhague, Danemark Rapporteur
M. Matthew Geoffrey PARKER, Professeur, Université de Bergen, Norvège Rapporteur

Mme. Anne CANTEAUT, Directrice de Recherche, INRIA-Rocquencourt, France Examinatrice
M. Claude CARLET, Professeur, Université de Paris 8, France Examinateur
M. Gérard D. COHEN, Professeur, Télécom ParisTech, France Examinateur

H

A

B

I

L

I

T

A

T

I

O

N
Université Paris 8

Département de mathématiques
Ecole Doctorale Sciences CLI

2, rue de la liberté — 93526 Saint-Denis — Tél. + 33 (0)1 49 40 64 20 — http ://www.univ-paris8.fr/





Contributions on Boolean functions
for Symmetric Cryptography
and Error-Correcting Codes

(This manuscript is dedicated to the memory of Philippe Flajolet1)

Sihem MESNAGER

1 Philippe Flajolet was a great mathematician and computer scientist. Although Philippe has not worked in
my field, he was very curious about my research area during our scientific discussions. It was a real pleasure to
exchange ideas with him during our joint ANR Boole meetings. I’ll always remember his human qualities and
stimulating mathematical discussions.



Sihem Mesnager: Contributions aux fonctions Booléennes pour la cryptographie symétrique et
aux codes correcteurs d’erreurs, Habilitation, c©decembre 2012.



et à maman chérie



Abstract

In this manuscript are presented our results about Boolean functions and Coding theory.
Our main contributions are on bent functions, hyper-bent functions and the covering radii of
Reed-Muller codes.

Our main contribution about bent functions is to extend a class proposed by Dillon, in which
he did not succeed in exhibiting new bent functions. That extension can be linked to a classical
family of polynomials in finite projective geometry, the o-polynomials. That allows us to establish
a relationship between classes of bent Boolean functions and geometric objects: hyperovals. That
link leads to many potentially new families of bent functions, especially new Niho bent functions.
It also offers a new framework to study Niho bent functions and to compute their dual functions.

In the line of Charpin, Dillon and Gong we have found, the first non monomial families of
hyper-bent functions. Notably Dillon (1974) has linked zeros of Kloosterman sums to monomial
bent functions. In the same vein, we establish a link between the value 4 of Kloosterman sums
and non monomial bent functions. We extend that result to many others families characterizing
the hyper-bent elements by means of exponential sums involving Dickson polynomials (and more
efficiently by means of cardinalities of hyperelliptic curves).

In Coding theory, the most important result is to have significantly improved the upper
bounds (dating from 15 years ago) on the covering radii of Reed-Muller codes of orders greater
than 1. That results has been obtained thanks to character sums and the analysis of the structure
of codewords of low weights of the dual of the Reed-Muller code of order 2.



Résumé

Dans ce manuscrit sont présentés nos principaux travaux sur les fonctions booléennes et en
théorie des codes. Nos avancées les plus importantes portent sur les fonctions courbes, les fonctions
hyper-courbes et le rayon de recouvrement des codes de Reed-Muller.

Sur les fonctions courbes, la principale contribution est une extension d’une classe de fonctions
courbes proposée par Dillon dans laquelle il n’avait pas reussi à exhiber de nouvelles fonctions
courbes. Le principal apport de cette extension est que les fonctions courbes de cette nouvelle
famille peuvent être reliées avec des polynômes connus et étudiés en géométrie projective discrète :
les o-polynômes. Cela conduit à un lien entre les fonctions booléennes courbes et des objets
géométriques : les hyper-ovales. Ce lien permet d’obtenir plusieurs familles de fonctions courbes
potentiellement nouvelles. En outre, cette extension permet de générer de nouvelles fonctions
courbes de type Niho et d’offrir un nouvel angle d’attaque pour calculer les duales des fonctions
courbes de Niho.

Dans la continuité des travaux de Charpin, Dillon et Gong, nous avons obtenu les premières
familles infinies non monomiales de fonctions hyper-courbes. En particulier, Dillon (1974) avait
montré comment construire à partir des zéros des sommes de Kloosterman des fonctions mo-
nomiales courbes. Dans la même veine, nous établissons un lien entre la valeur 4 de la somme
de Kloosterman et des fonctions non monomiales courbes. Nous étendons ensuite ce résultat et
et caractérisons au moyen de sommes exponentielles et des polynômes de Dickson les éléments
hyper-courbes de plusieurs familles de fonctions booléennes (et même efficacement au moyen de
cardinaux de courbes hyperelliptiques).

En théorie des codes, le résultat le plus important est d’avoir réussi à améliorér les bornes
supérieures (vieilles de plus de 15 ans) sur le rayon de recouvrement des codes de Reed-Muller
d’ordres strictement supérieurs à 1. Ce succès a été obtenu au moyen de sommes de caractères
et grâce à l’analyse de la structure des mots de poids faibles du dual du code de Reed-Muller
d’ordre 2.
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Overview

The manuscript is split into two parts even if there is a link between the two parties. The first
part is composed of 9 chapters. In each chapter (except Chapter 1), we first begin by some
preliminaries providing enough background for the unfamiliar reader to understand the contents
of the chapter in which we present advanced results and the contribution of the author to the
subject. The second part is dealing with the covering radius of Reed-Muller codes.

A notation list can be found on Page xix, before the table of contents. In the following, we
summarize the contains of each chapter as well as our main contribution and the references of the
published papers. In each chapter, we shall give the technical details and proofs of our results
(which have already been published, except Section 6.4, Section 6.5 and Section 6.6 of Chapter 6
and Subsection 7.3.4 of Chapter 7 which are extended the part of [202]). For the results of other
authors, the reader may refer to the corresponding reference.

0.1 Chapter 1
In Chapter 1 we briefly present some generalities on Boolean functions including some of their
different representations used in the whole the manuscript.

0.2 Chapter 2
0.2.1 Summary of the main contributions
We provide several technical results and some mathematical tools that we need subsequently in
Chapter 5, Chapter 7 and Chapter 8. More precisely, firstly, we are interested to express some
particular exponential sums over the unit circle in F2n (that is, the cyclic group of 2m + 1 st roots
of unity in F2n) by means of Kloosterman sums and cubic sums. Such expressions will be used
to exhibit conditions of bentness and semi-bentness (of some Boolean functions in polynomial
forms) involving Kloosterman sums and cubic sums. Secondly, we study the action of Dickson
polynomials on subsets of finite fields of even characteristic related to the trace of the inverse of
an element and provide an alternate proof of a not so well-known result. Such properties are then
applied to the study of families of Boolean functions and characterizations of their hyper-bentness
in terms of exponential sums.

0.2.2 Publications
The results presented in this chapter constitute some excerpts from the following references:

• S. Mesnager. A new family of hyper-bent Boolean functions in polynomial form. Proceedings
of Twelfth International Conference on Cryptography and Coding. Cirencester, United
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Kingdom. M. G. Parker (Ed.) IMACC 2009, LNCS 5921, Springer, pages 402–417, 2009
([196]).

• S. Mesnager. Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and
Dickson polynomials. IEEE Transactions on Information Theory-IT, Vol 57, No 11, pages
744–7458, 2011 ([199]).

• J-P Flori and S. Mesnager. Dickson polynomials, hyperelliptic curves and hyper-bent
functions, Proceedings of 7th International conference SEquences and Their Applications
SETA 2012, LNCS 7280, Springer, pages 40–52, 2012 ([102]).

0.3 Chapter 3
Boolean functions, that is, F2-valued functions defined over the vector space Fn2 of all binary
vectors of a given length n, are used in the S-boxes of block ciphers and in the pseudo-random
generators of stream ciphers. They are very important primitives of symmetric cryptosystems and
play a central role in their security. In stream ciphers, the main model for the generation of the
keystream consists of a linear part, producing a sequence with a large period, usually composed
of one or several LFSRs, and a nonlinear combining or filtering function f which produces the
output, given the state of the linear part. In the nonlinear combiner sub-model, the outputs to
several LFSRs are combined using a nonlinear Boolean function to produce the keystream. In
the nonlinear filter sub-model, the content of some of the flip-flops in a single (longer) LFSR
constitute the input to a nonlinear Boolean function which produces the keystream. These models
which are very efficient, in particular in hardware, have undergone a lot of cryptanalysis and
to resist those attacks, different design criteria have been proposed for both the LFSRs and
the combining Boolean function. Obviously, the properties of such functions are critical for the
security requirements of the final system built upon them. If not carefully chosen, the use of a
weak Boolean function can indeed jeopardize the entire system. Therefore, several cryptographic
properties have been defined and studied to ensure immunity of the system to different kinds
of attacks; the ever evolving design of those naturally entails new restrictions on the classes of
eligible Boolean functions, so that they become narrower and narrower and their constructions,
or even their characterizations, become harder and harder.

At the beginning of Chapter 3, we survey the main cryptographic criteria for designing the
(cryptographic) Boolean functions. Note that some of these notions are muturally incompatible
and trade-offs have to be made to meet as many criteria as possible. The corresponding attacks
will also be mentioned, but not thoroughly described. For a more classical and deeper exposition
we refer the reader to Carlet’s chapter ([31], Chapter 8).

0.3.1 Summary of the main contributions
In this chapter, our contributions were in the following topics which fall within the cryptographic
framework of Boolean functions:

1- Immunity profile of Boolean function:
The combining function must be balanced for the good statistical properties of the generated
stream sequence. Moreover, to avoid a divide and conquer attack (see e.g.[22, 251, 187, 236]), the
combining function must avoid low order correlation . This is the reason why such a combining
function is often chosen with a rather high correlation immunity order.
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There are two equivalent ways for characterising the correlation immunity: either by means
of the Walsh transform or by means of the sub-functions. Originally, an n-variable Boolean
function f is said to be correlation immune of order t (or t-th order correlation immune) if
any sub-function deduced from f by fixing at most t inputs has the same output distribution
as f . On the other hand, correlation immunity can be characterised by means of the Walsh
transform of f : χ̂f (ω) =

∑
x∈Fn2

(−1)f(x)+ω·x ( that is, the Fourier transform of the sign function
χf (x) = (−1)f(x)). A Boolean function f is correlation immune of order t if and only if the
Walsh transform of f vanishes at every non zero vector of Hamming weight at most t [266]. If f
is moreover balanced, then f is said to be t-resilient.

Siegenthaler’s bound [236] states that the algebraic degree of an n-variable t-th order corre-
lation immune Boolean function is necessarily less than or equal to n − t [236]. On the other
hand, the nonlinearity of a t-th order correlation immune Boolean function is necessarily less
than or equal to 2n−1 − 2t if t > n

2 − 1 and 2n−1 − 2n2−1 − 2t (if n even) otherwise [46]. When
the Boolean function is moreover balanced, the upper bounds on its algebraic degree and its
nonlinearity are lower. Indeed, the algebraic degree is less than or equal to n − t − 1 and the
nonlinearity is upper bounded by 2n−1 − 2t+1 if n2 − 1 < t < n − 1 and 2n−1 − 2n2−1 − 2t+1 if
t ≤ n

2 − 1 (n even). Therefore, the correlation immunity criterion is not compatible with an
high algebraic degree (necessary to withstand Berlekamp-Massey attack) and a high nonlinearity
(necessary for avoiding attacks using linear approximation of the function). Moreover, the recent
algebraic attacks, e.g [72, 73], highlighted the need for having an high algebraic degree as well as
an high algebraic immunity so that stream ciphers can resist to these attacks. Now, there seems
to be some kind of contradiction for Boolean functions between having high correlation immunity
and optimum or nearly optimum algebraic immunity; also, much attention having been given to
algebraic immunity recently, several examples of functions having optimum algebraic immunity
could be found but no example of correlation immune Boolean function of order larger than 1
with optimum algebraic immunity.

Fortunately, as observed by Kurosawa and Matsumoto ([155]), strict correlation immunity
is not absolutely required. The work factor to reconstitute the sequences coming from several
registers increases with the number of registers, and a strict correlation immunity is necessary for
small orders only. For higher orders, low non-zero correlations are sufficient (the lower the order,
the lower the allowed correlations). In [155], the notion of resilient function has been weakened
to match more properly the features required for Boolean functions used in stream ciphers. The
resiliency constraints have been relaxed by introducing the notion of almost-resiliency, that
amounts to saying that the values of the Walsh transform is upper bounded on all vectors of
weight lower than some positive integer. Kurosawa and Matsumoto allow the restrictions to have
output distributions slightly differing from the distribution of the global function.

On our side, we have proposed an alternate way of relaxing the constraint of correlation
immunity. We have allowed the Walsh transform to take low values for low orders instead of
being null. We have introduced the new concept of immunity profile of a Boolean function:

Definition 0.3.1. Let n be any integer, n ≥ 2. Let ϕ be any integer valued mapping over the set
{0, . . . , n}. A Boolean function f over Fn2 is said to be ϕ-correlation immune if, for any vector
ω ∈ Fn2 ,

|χ̂f (ω)| ≤ ϕ(wt(ω))

where wt(ω) denotes the Hamming weight of vector ω which is by definition the number of non
zero components. If f is moreover balanced then f is said to be ϕ-resilient. The integer mapping
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ϕ is called the immunity profile of f .

Our definition generalizes correlation immunity as t-th order correlation immune Boolean
functions are ϕ-correlation immune with ϕ(i) = 0 for 1 ≤ i ≤ t and ϕ(i) = 2n for i ≥ t + 1 or
i = 0. Every Boolean function is clearly ϕ-correlation immune for some ϕ. It is advisable to
carefully choose the integer mapping ϕ. It seems natural to consider increasing mappings ϕ,
which take low values for low orders. Because of Parseval’s identity, the immunity profile ϕ of f
must satisfy

n∑
l=0

(
n

l

)
ϕ2(l) ≥ 22n.

We have studied the notion of ϕ-correlation immune and provided a way to transfer this
notion for n-variable Boolean functions to sub-functions ((n− r)-variable Boolean functions) :

Proposition 0.3.2. Let f ∈ Bn and let ϕ be any integer-valued mapping over {0, . . . , n}. For
any subset I = {i1, . . . , ir} of {1, . . . , n}, we denote by fσI the sub-function on Fn−r2 obtained by
setting the ijth input to σj for every j ∈ {1, . . . , r}. Assume that f is ϕ-correlation immune.
Let r ∈ {1, . . . , n− 1}, σ ∈ Fr2 and {i1, . . . , ir} ⊂ {1, . . . , n}.
Then fσI is ϕr-correlation immune with ϕr(k) = 1

2r
∑r
j=0

(
r
j

)
ϕ(k + j), k ∈ {0, . . . , n− r}.

We have studied the alternate notion of almost resilient function and we have seen that both
definitions go in the same direction, but with non-negligible differences. We have seen that the
notion that we have introduced is slightly more general as we are interested in the whole profile
and in a way which sticks more precisely to the effective difficulty of the correlation attack. We
have studied the relationship between the immunity profile and the approach of almost resiliency
introduced by Kurosawa and Matsumoto. We have proved the following connection between the
two notions:

Proposition 0.3.3. Let n be any integer, n ≥ 2. Let ϕ be any integer-valued mapping over
the set {1, . . . , n}. Let f be a Boolean function over Fn2 . Assume that f is ϕ-correlation im-
mune. Then f is εϕ,t-almost (n, 1, t) resilient for any positive integer t less than n where
εϕ,t = 1

2n+1

∑t
j=1

(
t
j

)
ϕ(j).

Moreover we wondered which immunity profile should have the combining Boolean function
to have a good resistance to fast correlation attacks [22, 251]. Fast correlation attacks model the
combining function as a noise on a communication channel and the cryptanalysis as a decoding
problem of the keystream. There are then two ways of making hard the task of the cryptanalyst:
either to oblige him to have a very large amount of the keystream or make the decoding step
having a too high complexity. By considering these two points of view separately, we find two
possible types of immunity profile: with arguments taken from the information theory, we explain
that the immunity profile could increase in proportion to the square root of the order; next,
considering the complexities of the decoding procedures used in fast correlation attacks, we have
seen that the combining Boolean function could have an exponential immunity profile. Next, we
have considered another class of ciphers that are iterated ciphers (for example, self synchronizing
stream ciphers). We explain that in this kind of cipher, a round ciphering function with an
exponential immunity profile may provide a better resistance to linear cryptanalysis.

Finally, we have proposed two primary constructions and two secondary constructions of
ϕ-correlation immune Boolean functions. For the primary constructions, we have showed that one
can design ψ-correlation immune Boolean functions from the class of Maiorana-McFarland with
ψ(i) = λ2rϕ(min(i, r)) for i ∈ {0, . . . , n} provided that λ

∑r
l=0
(
r
l

)
ϕ(`) ≥ 2s under the assumption
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#π−1(a) ≤ λϕ(wt(a)) for every a ∈ Fr2. We have also proposed symmetric Boolean functions
with exponential correlation immunity profile using the Krawtchouk polynomials.

To conclude, we have introduced a new concept of immunity profile leading to a notion of
ϕ-correlation immunity for relaxing the constraint of correlation immunity. We have studied an
alternative notion of almost resilient function. We have showed that our concept corresponds
more closely to the requirements that make the cipher more resistant to precise attacks and
proposed primary and secondary constructions with the selected profile.

2- On the number of resilient Boolean functions:
To increase the security of symmetric cryptopsystems, Boolean functions have to fit several
security criteria. It is important to ensure that the selected criteria for the Boolean functions,
supposed to be used in some cryptosystems, do not restrict the choice of fonction too severely that
is, the set of functions must be enumerated. Cryptographic functions needing to satisfy specific
criteria. Having specific criteria, it is important to know if there exist sufficiently large numbers
of functions satisfying them. As a result the problem arises of enumerating sets of functions
satisfying various criteria or even (as a starting point) satisfying one criterion. But even such
simplified enumeration is unknown for most criteria.

Among all the security criteria, two crucial criteria are: the Boolean function has be balanced,
that is takes the value 1 with probability 1, and m-correlation immune, that is, the output
distribution does not change if we fix at most m inputs. The Boolean functions that are both
balanced and m-correlation immune are said to be m-resilient. The literature about correlation
immune or resilient Boolean functions is very rich and a lot of problems on this subject remain
open. Notably, the problem of counting the size of the set of m-resilient n-variable Boolean
functions (denoted by Resmn ) is still challenging. Indeed, this number is only known for m = 1 up
to 7 variables (the number of 1-resilient 7-variable Boolean function have been found in 2007 [3])
and for m ≥ n− 3 for every n [17]. This problem seems to be untractable. In 2010, Canfield et
al.[18] have obtained an asymptotic estimatimation of the number of n-variable m correlation
immune Boolean functions.

Our approach for the problem of counting the number of m-resilient n-variable Boolean
functions was to use the numerical normal form2 of Boolean functions of to reword the problem
of counting the number of m-resilient n-variable Boolean functions in that to count the number
of integer solutions of a system of linear inequalities:

Proposition 0.3.4. Let Rm
n be the subset of RΘmn defined as

Rm
n =

{
(xJ)J∈Θmn ∈ RΘmn

∣∣∣ ∀I ∈ Pn, 0 ≤
∑
J∈Θmn
J⊂I

xJ ≤ 1
}
. (1)

Then,
#Resmn = #(ZΘmn ∩Rm

n ).

We then use a classical approach of enumerative combinatorics to count integer solutions of
linear systems with integer coefficients, that is, we introduce a multivariate generating function
and express the number of m-resilient n-variable Boolean functions with respect to the coefficients
of this multivariate generating function. We then use multivariate residue calculus to derive a
representation formula by means of the Cauchy integral:

2Notion introduced by Carlet and Guillot (see [38, 39])
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Proposition 0.3.5. We have

#Resmn = 1
(2iπ)2n

∮
G(z)dz

z
(2)

where G is defined for z = (zI)I∈Pn as

G(z) =
∏
I∈Pn

(1 + zI)z−bI−1
I ·

∏
J∈Θmn

1
1−

∏
I∈Pn
J⊂I

zI
.

In a second stage, we have proposed an alternative representation formula for the number of
m-resilient n-variable Boolean function. More precisely, we have showed that this number can
also be interpreted as a coefficient of a term of a multivariate polynomial with integer coefficients:

Proposition 0.3.6.
#Resmn = 1

(2iπ)#Γmn

∮
P (z)

∏
I∈Γmn

z
−(bI+1)
I

dz

z

where P is the multivariate polynomial defined as

∀z ∈ C, P (z) =
∏
I∈Γmn

(1 + zI)
∏
J∈Θmn

1 +
∏
I∈Γmn
J⊂I

z
aI,J
I


with

∀(I, J) ∈ Γmn ×Θm
n , aI,J =

(
#I −#J − 1

n−m−#J − 1

)
.

To conclude, the class of m-resilient Boolean function has been widely studied by cryptog-
raphers. Nevertheless, the problem of counting the number of m-resilient n-variable Boolean
functions is still challenging. We provide an approach to this question. We reword this question
in a problem to count integer solutions of a system of linear inequalities. This allows us to deduce
two representation formulas for the number of m-resilient n-variable Boolean functions by means
of Cauchy integral. The main difficulty is the large number of variables making it difficult to
use directly the known results on this type of integral. New ideas to continue this work are needed.

3- Improving the lower bound on the higher order nonlinearity of Boolean func-
tions with prescribed algebraic immunity:
The recent algebraic attacks have received a lot of attention in cryptographic literature. The
algebraic immunity of a Boolean function quantifies its resistance to the standard algebraic attacks
of the pseudo-random generators using it as a nonlinear filtering or combining function.

Carlet introduced in [30] the term of nonlinearity profile of Boolean functions, which is the
sequence whose rth-order term equals the rth-order nonlinearity of the function denote by nlr(f),
and that is the minimum distance between f and all n-variable Boolean functions of algebraic
degrees at most r. This parameter extends the standard (first-order) nonlinearity nl(f) of a
Boolean function f . Several papers [72, 113, 137, 152, 204] have shown the role played by this
parameter in relation to some cryptanalyses (note that contrary to the (first-order) nonlinearity,
it must have low value for allowing the attacks to be realistic). Computing theoretically and
algorithmically the rth-order nonlinearity of an n-variable Boolean function is a hard task for
r > 1. Therefore the knowledge of upper and lower bounds for the rth-order nonlinearity on a



0.3. Chapter 3 7

particular class of Boolean functions is important.

Very few results have been found concerning its relation with the other cryptographic param-
eters or with the r-th order nonlinearity. Many recent papers have illustrated the importance
of the rth-order nonlinearity profile (which includes the first-order nonlinearity). In 2006, two
lower bounds involving the algebraic immunity on the rth-order nonlinearity have been shown by
Carlet [30] and Carlet et al. [34]. None of them improves upon the other one in all situations.

In 2008, we have proved a new lower bound on the rth-order nonlinearity profile of Boolean
functions, given their algebraic immunity, that improves significantly upon one of the known
lower bounds for all orders and upon the other one for low orders:

Theorem 0.3.7. Let f be an n-variable Boolean function of algebraic immunity k and let r be a
positive integer strictly less than k. Then

nlr(f) ≥
k−r−1∑
i=0

(
n

i

)
+

k−r−1∑
i=k−2r

(
n− r
i

)

To obtain our lower bound, our idea was first to study the dimension dk,g of the annihilators
of degrees at most k (denoted by Ank(g)) with prescribed algebraic degrees of Boolean functions
with given algebraic degrees. In fact, dk,g is an important parameter for evaluating the complexity
of algebraic attacks on the systems using a given Boolean function. Moreover, such parameter
corresponds to the number of linearly independent low degree annihilators of this Boolean function
g and g ⊕ 1. Little is known on the behavior of dk,g. We have proved a simple relation between
dk,g and the dimension (denoted by dimMulk(g)) of the vector space of all n-variable Boolean
functions p that can be written as p = gh where h is of algebraic degree at most k:

Lemma 0.3.8. 3.6.5 Let g be an n-variable Boolean function of algebraic degree r. Let k be any
positive integer less than n. Then dimMulk(g) =

∑k
i=0
(
n
i

)
− dk,g.

This lead us to derive a lower bound on dk,g:

Proposition 0.3.9. 3.6.6 Let g be an n-variable Boolean function of algebraic degree at most
r. Then, for every positive integer k, one has dk,g ≥

∑k−r
i=0

(
n−r
i

)
. If g is the complement of the

indicator of an (n− r)-dimensional affine subspace of Fn2 then dk,g =
∑k−r
i=0

(
n−r
i

)
.

Next, we have proved a lower bound on the difference dimMulk(g)− dk,1⊕g valid for every
Boolean function of degree at most r.

Corollary 0.3.10. 3.6.9 Let k be a positive integer. Then, for every n-variable Boolean function
g of algebraic degree at most r, we have

dimMulk(g)− dk,1⊕g ≥
k∑

i=k−r+1

(
n− r
i

)

At this stage, our approach was to establish a lower bound on dist(f, g) holding for every
Boolean function g of algebraic degree r. To this end, we have established a lower bound on
dist(f, g) involving the sum of the two dimensions dk−1,g and dk−1,1⊕g. This is the key result
that enabled us to improve further the lower bounds of Carlet [30] and Carlet et al. [34].
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Lemma 0.3.11. Let f be an n-variable Boolean function. Suppose that AI(f) = k. Let r be a
positive integer strictly less than k. Then, for every n-variable Boolean function g of algebraic
degree at most r, we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.

To obtain this result, we have proved the following identity which links dk,f to rank (<f (k, n))
(where (<f (k, n)) denotes the restriction to the support of f of the generator matrix of the
kth-order Reed-Muller code of length 2n, whose the columns correspond to the evaluation of the
monomials of algebraic degrees at most k on the support of f).

Proposition 0.3.12. An n-variable Boolean function f has no annihilator of algebraic degree at
most k if and only if all the matrices <f (r, n), r ≤ k− 1, are of full rank. Moreover, one has, for
every positive integer k ≤ n,

dk,f + rank (<f (k, n)) =
k∑
i=0

(
n

i

)
. (3)

Getting a lower bound on the sum dk−1,g + dk−1,1⊕g (rather than considering separately the
two dimensions dk−1,g and dk−1,1⊕g) enable us to get our new lower bound on nlr(f).

To conclude, we have studied more deeply than Carlet ([30]) the structure of vector spaces
of annihilators with prescribed algebraic degrees for all Boolean functions. Notably, we have
established lower and upper bounds on their dimensions (which plays an important role in
relation to the rth-order nonlinearity). That allowed us in 2008 to get a new lower bound on
the rth-order nonlinearity profile of Boolean functions, given their algebraic immunity, that
improves significantly upon one of the known lower bounds for all orders and upon another
one for low orders (that is the most interesting case in cryptography). Our results give further
information on the relation between the distance of a function to all low-degree functions and its
algebraic immunity. It states in particular that it should thus be possible to find Boolean functions
having a high algebraic immunity of high nonlinearity and rth-order nonlinearity for low values of r.

4- On a conjecture about binary strings distribution
Building a Boolean function meeting as many criteria as possible is a difficult task. Trade-offs must
usually be made between them. Since the introduction of algebraic immunity, several constructions
of Boolean functions with high algebraic immunity have been suggested, but very few of them
are of optimal algebraic immunity. More importantly, those having other good cryptographic
properties, as balancedness or high nonlinearity for instance, are even rarer. Among those having
optimal algebraic immunity AI(f) = dn/2e, most have a poor nonlinearity [49, 78, 164, 165, 51],
close to the lower bound of Lobanov [172] that is, nl(f) ≥ 2n−1 −

(
n
bn2 c
)
.

We survey in Chapter 3 different known good families, i.e. meeting most of the criteria
mentioned in a satisfactory way.

In 2010, Tu and Deng [249] discovered that there may be Boolean functions of optimal
algebraic immunity in a classical class of Partial Spread functions due to Dillon [86] provided
that the following combinatorial conjecture is correct.

Conjecture 0.3.13 (Tu–Deng conjecture). For all k ≥ 2 and all t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 |a+ b = t and wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

Tu and Deng checked the validity of the conjecture for k ≤ 29. They also proved that, if the
conjecture is true, then one can get in even dimension balanced Boolean functions of optimal
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algebraic immunity and of high nonlinearity (better than that of the functions proposed by Carlet
and Feng [50].

Next, Tang et al. [246] applied a degree optimized version of an iterative construction of
balanced Boolean functions with very high nonlinearity by Dobbertin [94] to the functions con-
structed by Tu and Deng [249, 248] and obtained functions with better nonlinearity.

Unfortunately, Carlet [47] observed that the functions introduced by Tu and Deng are weak
against fast algebraic attacks and unsuccessfully tried to repair their weakness. It was subsequently
shown by Wang and Johansson [259] that this family can not be easily repaired.

Nonetheless, more recent developments have shown that the construction of Tu and Deng
and the associated conjecture are not of purely æsthetic interest, but are interesting tools in a
cryptographic context.

In 2011, inspired by the previous work of Tu and Deng [249], Tang, Carlet and Tang [245]
constructed an infinite family of Boolean functions with many good cryptographic properties.
The main idea of their construction is to change the division in the construction of Tu and Deng
by a multiplication. The associated combinatorial conjecture is then modified as follows.

Conjecture 0.3.14 (Tang–Carlet–Tang conjecture). For all k ≥ 2 and all t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | a− b = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

They verified it experimentally for k ≤ 29, as well as the following generalized property for
k ≤ 15 where u ∈ Z/(2k − 1)Z is such that gcd(u, 2k − 1) = 1 and ε = ±1.

This generalized conjecture includes the original conjecture proposed by Tu and Deng (Con-
jecture 3.7.2) for u = 1 and ε = +1.

Finally, Jin et al. [139] generalized the construction of Tang, Carlet and Tang [245] in a way
that included back the construction of Tu and Deng [249]. In their paper, the main idea is to
replace y by y2k−1−u in the construction of the function. Hence, the family of Tu and Deng [249]
is included for u = 1, and the family of Tang, Carlet and Tang [245] for u = 2k−2. The associated
combinatorial conjecture is then modified as follows.

Conjecture 0.3.15 (Jin et al. conjecture). Let k ≥ 2 be an integer, t, u, v ∈
(
Z/(2k − 1)Z

)∗
such that gcd(u, 2k − 1) = gcd(v, 2k − 1) = 1. Then

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

This generalized conjecture obviously includes all the previous ones.
The good cryptographic properties of the Boolean functions of the Jin et al. family [138]

and more precisely the optimality of their algebraic immunity, depend on the validity of an
combinatorial conjecture.

In this context, we have studied3 these combinatoric problems. More precisely, we have studied
the properties of the cardinality of the set St,v,u,k of interest (that is the set of the generalized

3 J-P. Flori continued this work in the general case and got a lot of interesting results on this topic in [106].
Unfortunately, there is no complete proof of the conjecture up to now.
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Tu–Deng conjecture):

St,v,u,k =
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t; wH(a) + wH(b) ≤ k − 1
}

,

where k ≥ 2, t ∈
(
Z/(2k − 1)Z

)∗ and u, v ∈ (Z/(2k − 1)Z
)×, i.e. u and v are invertible modulo

2k − 1.
With the above notation, the conjecture of Tu and Deng says that #St,+1,1,k ≤ 2k−1; the

conjectures of Tang et al. says that #St,−1,1,k ≤ 2k−1 and #St,ε,u,k ≤ 2k−1 and the one of Jin et
al. says that #St,v,u,k ≤ 2k−1.

We have defined the main tool we used to study the conjecture of Tu and Deng4(this tool is
also useful to study the other conjectures):

Definition 0.3.16. For a ∈
(
Z/(2k − 1)Z

)∗, we set

r(a, t) = wH(a) + wH(t)− wH(a+ t) ,

i.e. r(a, t) is the number of carries occurring while performing the addition. By convention, we set

r(0, t) = k ,

i.e. 0 behaves like the 1...1︸ ︷︷ ︸
k

binary string. We also remark that r(−t, t) = k.

We have therefore reformulated the conjectures in terms of carries occurring in an addition
modulo 2k − 1 which gives more insight on it than a simple counting argument. Successful
applications of our tools include in particular explicit formulas of #St,+1,1,k for numbers whose
binary expansion is made of one block, a proof that the conjecture of Tu and Deng is asymptotically
true, and a proof that a family of numbers (whose binary expansion has high number of 1s and
isolated 0s), reaches the bound of the conjecture. We also conjecture that the numbers in that
family are the only ones reaching the bound. Moreover, we provide already enough information
which allowed Cohen and Flori to prove very recently that the special case of the conjecture
required by the family of Tang, Carlet and Tang [245] is true. Our results contributed to better
understanding these conjectures of a combinatorial nature. As far we know, the conjectures
presented in this section are still open. Only the variation proposed by Tang, Carlet and Tang
has been proved very recently by G. Cohen and J-P. Flori [67].

0.3.2 Publications
The results presented in this chapter have been the subject of the following publications:

• S. Mesnager. Improving the lower bound on the higher order nonlinearity of Boolean
functions with prescribed algebraic immunity. IEEE Transactions on Information Theory-
IT, volume n◦54 (8), pages 3656-3662, 2008 ([193]).

• S. Mesnager. On the number of resilient Boolean functions, Journal Number Theory and
its Applications World Scientific, volume 5, pages 139-153, 2008 ([194]).

• C. Carlet, P. Guillot and S. Mesnager . On immunity profile of Boolean functions. Pro-
ceedings of 4-th International conference SEquences and Their Applications, SETA 2006.
LNCS, pages 364-375, Springer, Heidelberg, 2006 ([40]).

4In fact, we have studied these combinatorial problems in 2010 therefore, our results have focused on the
conjecture of Tu and Deng since the other conjectures were formulated only in 2011.
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• J-P. Flori, H. Randriambololona, G. Cohen and S. Mesnager. On a conjecture about binary
strings distribution. Proceedings of 6-th International conference SEquences and Their
Applications, SETA 2010, LNCS 6338, pages 346-358. Springer, Heidelberg, 2010 ([104]).

0.4 Chapter 4
Bent functions were introduced in the 1960’s by Oscar Rothaus [227] in a research not published
until 1976 and studied firstly by Dillon in his PhD thesis [82] (1974). They are extremal objects
in combinatorics and Boolean function theory. Bent functions have been studied for about
40 years; even more, under the name of difference sets in elementary Abelian 2-groups. The
motivation for the study of these particular difference sets is mainly cryptographic (but bent
functions play also a role in coding theory and sequences; and as difference sets they lead to
designs). Symmetric cryptosystems using Boolean functions can be cryptanalyzed when these
Boolean functions can be approximated by affine Boolean functions, that is, by functions of
the form `(x1, . . . , xn) = a0 + a1x1 + · · · + anxn = a0 + a · x, where x = (x1, . . . , xn) ∈ Fn2 ,
a = (a1, . . . , an) ∈ Fn2 and a0 ∈ F2. The set of affine functions can be viewed as the Reed-Muller
code of order 1 (see [98]), denoted by RM(1, n). We say that ` approximates a Boolean function
f if the Hamming distance dH(f, `) = #{x ∈ Fn2 | f(x) 6= `(x)} between them is small. So, a
Boolean function resists attacks by affine approximation if its distance to RM(1, n) (i.e. its
minimum distance to all affine functions) is large. This distance is called the nonlinearity of
the function. The maximal possible nonlinearity of n-variable Boolean functions, given by the
so-called covering radius bound 2n−1 − 2n/2−1 (see for instance in [31] a survey on Boolean
functions), can be achieved with equality for n even only.
A Boolean function f on Fn2 (n = 2m even) is called bent if its nonlinearity equals 2n−1 − 2m−1

(hence its resistance to the attacks based on affine approximation is optimal). Equivalently, as
shown in [82, 227], f is bent if and only if its Walsh transform χ̂f defined at every a ∈ Fn2 by
χ̂f (a) =

∑
x∈Fn2

(−1)f(x)+a·x, where “·” denotes any inner product in Fn2 (for instance the inner
product defined above), takes values ±2m only (this characterization is independent of the choice
of the inner product in Fn2 , since any other inner product has the form 〈x, s〉 = x · L(s), where
L is an auto-adjoint linear automorphism, i.e. an automorphism whose associated matrix is
symmetric). If f is bent, then the dual function f̃ of f , defined on Fn2 by: χ̂f (u) = 2m(−1)f̃(u) is
also bent and its own dual is f itself.
As any Boolean functions, bent functions can be represented in a unique way by their algebraic
normal form (ANF). The global degree of their ANF (called their algebraic degree) is not large:
it is upper bounded by m. For this reason (since a cryptographic Boolean function should have
high algebraic degree, to allow resistance to the Berlekamp-Massey and Rønjom-Helleseth attacks
[179, 226]) and also because bent functions are not balanced, that is, do not have an output
uniformly distributed over F2, they are improper for being used as is in cryptosystems. But they
can be used to build proper balanced functions, see [90].
Bent functions are often better viewed in their bivariate representation and can also be viewed in
their univariate representation. The univariate representation of any Boolean function is defined
as follows: we identify Fn2 with F2n (which is an n-dimensional vector space over F2) and we
consider then the input to f as an element of F2n . An inner product in F2n is x · y = Trn1 (xy)
where Trn1 (x) =

∑n−1
i=0 x

2i is the trace function from F2n to F2. There exists a unique univariate
polynomial

∑2n−1
i=0 aix

i over F2n such that f is the polynomial function over F2n associated to
it (this is true for every function from F2n to F2n). Then the algebraic degree of f equals the
maximum 2-weight of the exponents with nonzero coefficients, where the 2-weight w2(i) of an
integer i is the number of 1’s in its binary expansion. Hence, in the case of a bent function, all
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exponents i whose 2-weights are larger than m have null coefficient ai. Moreover, f being Boolean,
its univariate representation can be written in the form f(x) =

∑
j∈Γn Tro(j)1 (ajxj), where Γn is

the set of integers obtained by choosing one element in each cyclotomic coset of 2 modulo 2n − 1,
o(j) is the size of the cyclotomic coset of 2 modulo 2n − 1 containing j and aj ∈ F2o(j) . This
expression is unique. It can also be written under a non-unique form Trn1 (P (x)) where P (x) is a
polynomial over F2n .
The bivariate representation of Boolean functions is defined as follows: we identify Fn2 with
F2m × F2m and we consider then the input to f as an ordered pair (x, y) of elements of F2m .
There exists a unique bivariate polynomial

∑
0≤i,j≤2m−1 ai,jx

iyj over F2m such that f is the
bivariate polynomial function over F2m associated to it. Then the algebraic degree of f equals
max(i,j) | ai,j 6=0(w2(i) + w2(j)). And f being Boolean, its bivariate representation can be written
in the form f(x, y) = Trm1 (P (x, y)) where P (x, y) is some polynomial over F2m .
The automorphism group of the set of bent functions (i.e., the group of permutations π on Fn2 or
F2n such that f ◦π is bent for every bent function f) is the general affine group, that is, the group
of linear automorphisms composed by translations [31]. The corresponding notion of equivalence
between functions is called affine equivalence. Also, if f is bent and ` is affine, then f + ` is bent.
A class of bent functions is called a complete class if it is globally invariant under the action of
the general affine group and under the addition of affine functions. The corresponding notion of
equivalence is called extended affine equivalence, in brief, EA-equivalence.
Any function f is bent if and only if, for any nonzero vector a, the Boolean function Daf(x) =
f(x) + f(x + a) is balanced (i.e. has Hamming weight 2n−1). For this reason, bent functions
are also called perfect nonlinear functions. Equivalently, f is bent if and only if the 2n × 2n
matrix H = [(−1)f(x+y)]x,y∈Fn2 is a Hadamard matrix (i.e. satisfies H ×Ht = 2n I, where I is
the identity matrix), and if and only if the support of f is a difference set. Bent functions have
also the property that, for every even positive integer w, the sum

∑
a∈Fn2

χ̂f
w(a) is minimum.

Bent functions are all known for n ≤ 8, only (their determination for 8 variables [215] has
been achieved only recently) as well as their classification under the action of the general affine
group. For n ≥ 10, only classes of bent functions are known, which do not cover a large part of
them, apparently. Determining all bent functions (or more practically, classifying them under the
action of the general affine group) seems elusive. Several constructions of explicit bent functions
are known which lead to infinite classes. We describe the main ones in the next section. The two
most well-known are the Maiorana-McFarland class and the PSap class. Both were studied in
Dillon’s thesis [82] and have been later revisited in numerous papers.

0.4.1 Summary of the main contributions
1- On Dillon’s class H of bent functions, class H and Niho bent functions
One of the classes of bent Boolean functions introduced by John Dillon in his thesis is family H.
While this class corresponds to a nice original construction of bent functions in bivariate form,
Dillon could exhibit in it only functions which already belonged to the well-known Maiorana-
McFarland class. In fact, the class H is a third family of bent functions introduced by Dillon
whose expression is given but whose bentness is achieved under some non-obvious condition (so
the class is less explicit than classM or class PSap, but it happens to be more explicit than class
PS, the condition for H being easier to satisfy than for PS, as we shall see). He defines these
functions in bivariate form (but we have observed they can also be seen in univariate form). The
functions of this family are defined as f(x, y) = Trm1 (y + xG(yx2m−2)), with x, y ∈ F2m where G
is a permutation of F2m such that G(x) + x does not vanish and, for every β ∈ F?2m , the function
G(x) + βx is two-to-one (i.e. the pre-image by this function of any element of F2m is either a pair
or the empty set).
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We have first noticed that H can be extended to a slightly larger class that we denote by
H. The definition that we give of the functions in class H are also in terms of their bivariate
representation. More precisely, we call H the extended class of H equal to the set of functions g
defined by (4)

g(x, y) =
{

Trm1
(
xψ
(
y
x

))
if x 6= 0

Trm1 (µy) if x = 0
(4)

where µ ∈ F2m and ψ is a mapping from F2m to itself satisfying (5) and (6) :

G is a permutation on F2m where G is defined by G(z) = ψ(z) + µz (5)

For every β ∈ F?2m , the function z 7→ G(z) + βz is 2-to-1 on F2m . (6)
Next, we have studied the stability of functions G satisfying Conditions (5) and (6). We have

noticed that the transformation which corresponds to applying the same field automorphism
to x and y, those which correspond to multiplying x and/or y by constants in g(x, y) and to
adding linear functions to g; and the one which corresponds when G(0) = 0 to swaping x and y
in g(x, y) result in particular cases of EA-equivalence. On the contrary, the bent functions related
by transformation z 7→ G−1(z) are not EA-equivalent, in general. We shall say that two functions
G are o-equivalent (the reason why we choose such term will come below in sebsection 3) if one
can be obtained from the other by a sequence of the transformations G 7→ G′ above. This gives a
notion of equivalence of functions in class H which is not a sub-equivalence of the EA-equivalence
of bent functions and is not a super-equivalence either.

Moreover, we have observed that the bent functions constructed via Niho power functions,
for which four examples are known due to Dobbertin et al. [93] and to Leander-Kholosha, are
the univariate form of the functions of class H. Their restrictions to the vector spaces ωF2n/2 ,
ω ∈ F?2n , are linear.

Since class H is the set of bent functions whose restrictions to the ωF2m ’s are linear, a natural
extension to consider is the set of those bent functions whose restrictions to the ωF?2m ’s are
affine. We have then characterized all the bent functions whose restrictions to the ωF?2m ’s are affine.

2- On the dual of bent functions via Niho exponents
In [93], Dobbertin et al. introduced three classes of binomial Niho5 bent functions whose
expressions (in polynomial forms) are of the type

f(t) = Trm1 (at2
m+1) + Trn1 (bt(2

m−1)d+1)

with d ∈ { 1
4 , 3,

1
6} (where the fractions 1

4 and 1
6 are interpreted modulo 2m + 1). The problem of

knowing whether the duals of these functions are affinely equivalent to these Niho bent functions
was left open since 2006. In a joint work with Carlet, we have answered the open question raised
by Dobbertin et al. on whether the duals of the Niho bent functions introduced in the paper are
affinely equivalent to them, by explicitely calculating the dual of one of these functions:

Theorem 0.4.1. Let n = 2m with m odd and f be defined as

∀t ∈ F2n , f(t) = Trm1 (at2
m+1) + Trn1 (bt(2

m−1) 1
4 +1)

5The name of Niho exponent comes from a theorem dealing with power functions by Niho [220], which has
been later extended to linear combinations of such power functions in [93] (see also [160]), and which relates the
value of the Walsh transform of such sum to the number of solutions in U of some equation.
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where a ∈ F?2m and b ∈ F?2n are such that b2m+1 = a and b4 6= a2. Let v be such that
Trnm(v) = 1 and b4 = a2v2m−1. Then the dual of f is such that

f̃(a 1
2w) = Trm1

(v 2m+1
2 + 1 + Trnm(v2mw)

)(Trnm(vw) + v
2m+1

2

Trnm(v−1)

) 1
3
 .

It has algebraic degree m+3
2 . Hence, for m > 3, f̃ is EA-inequivalent to the functions introduced

in [93].

In a joint work with Carlet, Helleseth and Kholosha, we have also computed the dual function
of the Niho bent function proposed by Leander and Kholosha in [160] consisting of 2r exponents
and which extends one of the three binomial Niho bent function in [93] (which is obtained with
d = 1

4 ). The algebraic degree of the dual is calculated and have showed that this new bent
function is not of the Niho type.

Theorem 0.4.2. Let n = 2m, r > 1 be a positive integer with gcd(r,m) = 1 and bent Boolean
function f over F2n be defined as

f(t) = Trn1
(
at2

m+1 +
2r−1−1∑
i=1

t(2
m−1) i

2r +1
)
,

where a ∈ F2n with a+ a2m = 1. Take any u ∈ F2n with u+ u2m = 1. Then the dual of f(t) is
equal to

f̃(w) = Trm1
((
u(1 + w + w2m) + u2n−r + w2m)(1 + w + w2m)1/(2r−1)

)
.

Moreover, if d < m is a positive integer defined uniquely by dr ≡ 1 (mod m) then the algebraic
degree of f̃(w) is equal to d+ 1.

Finally in a joint work with Carlet and next with Carlet, Helleseth and Kholosha, we have
proved that the infinite classes of binomial cubique of Niho bent functions given in [93] and the
multinomial Niho bent given [160] belong to the completed Maiorana-McFarland class.

3- Class H and o-polynomials

Firstly, with Carlet, we have observed that Condition (6) implies Condition (5) and is
equivalent to the fact that G is an o-polynomial (also called oval polynomial) which is a notion
related to a geometric object from finite projective geometry called hyperoval..

Definition 0.4.3. Let m be any positive integer. A permutation polynomial G over F2m is called
an o-polynomial (an oval polynomial) if, for every γ ∈ F2m , the function

z ∈ F2m 7→

{
G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation of F2m .

We then showed that the condition for a function in bivariate form to belong to class H is
equivalent to the fact that a polynomial directly related to its definition is an o-polynomial .

Lemma 0.4.4. Any function G from F2m to F2m satisfies Condition (6) if and only if it is an
o-polynomial.
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We have therefore established a link between a class of bent functions and the notion of
o-polynomial from the field of finite geometry.

Thanks to the existence in the literature of 8 classes of nonlinear o-polynomials obtained
by the geometers in 40 years, we have deduced a large number of new cases of bent functions
in H, which are potentially affinely inequivalent to known bent functions (in particular, to
Maiorana-McFarland’s functions):

1. G(z) = z6 where m is odd [219];

2. G(z) = z3·2k+4, where m = 2k − 1 [111];

3. G(z) = z2k+22k , where m = 4k − 1 [111];

4. G(z) = z22k+1+23k+1 , where m = 4k + 1 [111];

5. G(z) = z2k + z2k+2 + z3·2k+4, where m = 2k − 1 [133];

6. G(z) = z
1
6 + z

1
2 + z

5
6 where m is odd [221]; note that G(z) = D5

(
z

1
6

)
, where D5 is the

Dickson polynomial of index 5 [224];

7. G(z) = δ2(z4+z)+δ2(1+δ+δ2)(z3+z2)
z4+δ2z2+1 + z1/2, where Trm1 (1/δ) = 1 and, if m ≡ 2 [mod 4], then

δ 6∈ F4 [262];

8. G(z) = 1
Trnm(v)

[
Trnm(vr)(z + 1) + Trnm

[
(vz + v2m)r

] (
z + Trnm(v)z1/2 + 1

)1−r]+z1/2, where
m is even, r = ± 2m−1

3 , v ∈ F22m , v2m+1 = 1 and v 6= 1 [263].

For each of the six first o-polynomials G of the list above, we have two potentially new
n-variable bent functions: Trm1

(
xG
(
y
x

))
and Trm1

(
xG−1 ( y

x

))
. For each of the two last ones,

we have one potentially new bent function. We indicate now the bent functions we can obtain
with the 6 first o-polynomials (we do not do the same for the two last o-polynomials since we
conjecture that in these two cases, either G or G−1 corresponds to one of the classes of Niho-bent
functions from [93] and since the expression of these bent functions would be complex - they are
probably simpler in univariate form):

1. for m odd and x, y ∈ F2m :

• f(x, y) = Trm1 (x−5y6);
• f(x, y) = Trm1 (x 5

6 y
1
6 ).

The two functions have algebraic degree m, which does not allow proving these two functions
are EA-inequivalent; we leave open this question.

2. for m = 2k − 1 and x, y ∈ F2m :

• f(x, y) = Trm1 (x−3·(2k+1)y3·2k+4);

• f(x, y) = Trm1 (x−3·(2k−1−1)y3·2k−1−2).

The first function has degree m− 1 (if k > 2) and the second has degree m (if k > 2); hence
the two functions are EA-inequivalent.

3. for m = 4k − 1 and x, y ∈ F2m :
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• f(x, y) = Trm1 (x1−2k−22k
y2k+22k);

• f(x, y) = Trm1 (x23k−1−22k+2ky1−23k−1+22k−2k).

The two functions are of degree 3k which does not allow proving these two functions are
EA-inequivalent; we leave open this question.

4. for m = 4k + 1 and x, y ∈ F2m :

• f(x, y) = Trm1 (x1−22k+1−23k+1
y22k+1+23k+1);

• f(x, y) = Trm1 (x23k+1−22k+1+2ky1−23k+1+22k+1−2k).

The first function has degree 2k + 1 and the second has degree 3k + 2; hence the two
functions are EA-inequivalent.

5. for m = 2k − 1 and x, y ∈ F2m :

• f(x, y) = Trm1 (x1−2ky2k + x−(2k+1)y2k+2 + x−3·(2k+1)y3·2k+4);

• f(x, y) = Trm1
(
y
(
y2k+1x−(2k+1) + y3x−3 + yx−1

)2k−1−1
)
.

The two functions are of degree m (if k > 2). This does not allow proving these two
functions are EA-inequivalent; we leave open this question.

6. for m odd and x, y ∈ F2m :

• f(x, y) = Trm1 (x 5
6 y

1
6 + x

1
2 y

1
2 + x

1
6 y

5
6 );

• f(x, y) = Trm1
(
x
[
D 1

5

(
y
x

)]6)
where D 1

5
is the Dickson polynomial of index 1

5 , the

inverse of 5 modulo 22m − 1.

The first function has degree max(m, 2,m) = m, since we already saw that w2
( 1

6
)

= m+1
2

and w2
( 5

6
)

= m−1
2 . We leave open the question of an explicit expression of the second and

of the determination of its algebraic degree.

4- Niho bent Functions and Subiaco/ Adelaide hyperovals
In a joint work with Helleseth and Kholosha, we have studied the first binomial Niho bent function
discovered by Dobbertin et al. that is, the function defined over F2n by

f(t) = Trm1 (at2
m+1) + Trn1 (bt3(2m−1)+1)

where a ∈ F∗2m , b ∈ F∗2n are such that b2m+1 = a and with the condition that if m is even then b is
a 5-th power of an element in F2n . We have showed that the relation between the above binomial
Niho bent functions and the o-polynomials give rise to Subiaco class of hyperovals. This allows
to expand the original class of bent functions in the case when m ≡ 2 (mod 4) and prove that
even in the case when m ≡ 2 (mod 4), the value of b can be taken arbitrary under the condition
b2
m+1 = a:

Theorem 0.4.5. Let n = 2m, b2m+1 = a and f(t) = Trm1 (at2m+1) + Trn1 (bt3(2m−1)+1)
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1. Suppose m is odd. Let v = 1 and u ∈ F4 \ {0, 1} then,

G(z) = a
1
2 + Trnm(bu) + a

1
2 fs(z)

If b = 1, then

G(z) = z2 + z

(z2 + z + 1)2 + z1/2

is an o-polynomial (thus f(t) bent)

2. Suppose m ≡ 2 (mod 4). Let v = 1, u ∈ F16 \ F4 with u5 = 1 and u + u2m = w where
w2 + w + 1 = 0. Then

G(z) = a
1
2 + Trnm(b) + (1 + ws+ s

1
2 ) Trnm(b(u4 + 1))fs(z)

is an o-polynomial (thus f(t) bent) also for b not a 5-th power.

It is also proven that one of the earlier discovered sporadic Niho bent functions, up to
EA-equivalence, belongs to the known infinite class. Moreover, in 2004, using computer calcu-
lations, the following sporadic bent function of Niho type was found by Kholosha for m = 4:
f(t) = Trm1 (t2m+1) + Trn1

(
t5(2m−1)+1 + t7(2m−1)+1). The question open since then is whether this

function is a new one or if it is EA-equivalent to one of the known Niho bent functions. We resolve
this open question by showing that the above function is EA-equivalent to the first binomial Niho
bent function (that is, the function defined over F2n by f(t) = Trm1 (at2m+1) + Trn1 (bt3(2m−1)+1)).

Moreover, in the same paper with Helleseth and Kholosha, we have also studied the relation
between the second binomial Niho bent function discovered by Dobbertin et al. that is, the
function defined over F2n by f(t) = Trm1 (at2m+1) + Trn1 (bt 1

6 (2m−1)+1) and o-polynomials and show
that give rise to the Adelaide classes of hyperovals.

To conclude this section with Carlet, we introduced a new class H of bent functions which
is larger than that introduced by Dillon in 1974. The elements of the class H are in bivariate
representation and constitute the set of the bent functions whose restrictions to vector spaces
(the elements of a spread) {Ea = {(x, ax), x ∈ F2m}, a ∈ F2m} and E∞ = {(0, y), y ∈ F2m} are
linear. In univariate representation, the elements of the class H coincides with the set of the
Niho bent functions. This correspondence has allowed us to answer (first in a work with Carlet,
next with Budaghyan, Carlet, Helleseth and Kholosha) to several open questions concerning the
known classes of Niho bent functions. This link offers a new general framwork to study the bent
functions of Niho type.

Furthermore, we have established with Carlet a link between the elements of the class H (and
thus the set of the Niho bent functions) and o-polynomials which are polynomials associated to
particular geometric objects (in the field of Finite Projective Geometry). This link has enabled us
to exploit the works about those polynomials from the last 40 years and consequently to exhibit
several new families of bent functions in the class H and thus in the set of the Niho bent fucntions.

5- Bent vectorial functions
Substitution boxes (S-boxes) are fundamental parts of block ciphers. Being the only source of
nonlinearity in these ciphers, they play a central role in their robustness, by providing confusion.
Mathematically, S-boxes are vectorial (i.e. multi-output) Boolean functions, that is, functions from
the vector space Fn2 (of all binary vectors of length n) to the vector space Fr2, for given positive
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integers n and r. These functions are called (n, r)-functions and include the (single-output)
Boolean functions (which correspond to the case r = 1). When they are used as S-boxes in block
ciphers, their number r of output bits equals or approximately equals the number n of input
bits. They can also be used in stream ciphers, with r significantly smaller than n, in the place of
Boolean functions to speed up the ciphers.
An (n, r)-function F being given, the coordinate functions of F are the Boolean functions f1, · · · , fr
defined by F (x) = (f1(x), · · · , fr(x)) at every x ∈ Fn2 . The component functions of F are the
linear combinations of its coordinate functions, with non all-zero coefficients.
The nonlinearity of an S-Box is the minimum nonlinearity of its component functions (that
is, the minimum Hamming distance between them and all affine functions). It was introduced
and studied initially by Nyberg [212] and further studied by Chabaud and Vaudenay [53]. It
constitutes an important parameter in cryptography since it makes possible to quantify the
level of resistance of the S-boxes to the linear attack [181]. Bent functions (also called perfect
nonlinear functions) are maximally nonlinear multi-output Boolean functions that is, are those
functions whose nonlinearity achieves the covering radius bound 2n−1 − 2n/2−1 with equality.
Equivalently, their derivatives DaF (x) = F (x) + F (x + a), a 6= 0, have uniformly distributed
output. Bent (n, r)-functions exist only for even number n of input bits and for r ≤ n/2 [211].
This restriction makes bent functions often not directly usable as S-boxes in block ciphers, but
these functions have however great cryptographic interest because, contributing to an optimum
resistance (among all functions, whatever are the numbers of input and output bits) to the linear
and differential attacks of those cryptosystems in which they are involved, they can be used to
build (n, n)-functions which have, among (n, n)-functions, optimal resistance to these attacks (see
[32]).

The problem of constructing vectorial bent functions has received a lot of attention in the
literature. One distinguishes two kinds of constructions of bent functions (or more generally of
vectorial functions satisfying some criteria): primary constructions, which do not need to use
previously constructed functions for designing new functions, and secondary constructions (of
new functions from two or several already known ones, used as building blocks).

To classify vectorial Boolean functions that satisfy desirable nonlinearity conditions, or to
determine whether, once found, they are essentially new (that is, inequivalent in some sense to
any of the functions already found) we use some concepts of equivalence. For vectorial Boolean
functions, the most useful concepts of equivalence are the extended affine EA-equivalence and the
CCZ-equivalence. Two (n, r)-functions F and F ′ are called EA-equivalent if there exist affine
automorphisms L from Fn2 to Fn2 and L′ from Fr2 to Fr2 and an affine function L′′ from Fn2 to Fr2
such that F ′ = L′ ◦F ◦L+L′′. EA-equivalence is a particular case of CCZ-equivalence [33]. Two
(n, r)-functions F and F ′ are called CCZ-equivalent if their graphs GF := {(x, F (x)), x ∈ Fn2}
and G′F := {(x, F ′(x)), x ∈ Fn2} are affine equivalent, that is, if there exists an affine permutation
L of Fn2 × Fr2 such that L(GF ) = G′F . The nonlinearity is invariant under CCZ equivalence (and
hence under extended affine equivalence). Recently, Budaghyan and Carlet have proved in [12]
that for bent vectorial Boolean functions, CCZ-equivalence coincides with EA-equivalence and
that they coincide for Boolean function (any of them) as well [13].

The known primary constructions of bent vectorial functions come essentially from known
constructions of Boolean functions extended to the context of vectorial functions. As observed
firstly by Nyberg in [211], the two main classes of bent Boolean functions lead to two classes of
bent vectorial functions. The first one comes from the well known Maiorana-McFarland class of
bent Boolean functions and gives bent vectorial functions belonging to the class that we shall call
the strict Maiorana-McFarland of vectorial bent functions. Such construction can be generalized
to functions belonging to the general Maiorana-McFarland class of vectorial bent functions. In
fact, a third class can be identified, nested between these two classes (we shall call it the extended
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Maiorana-McFarland class). The second well-known class comes from the so-called Dillon Partial
Spread class PSap of bent Boolean functions. Its extension to the context of vectorial functions
gives bent functions whose component functions belong to this class.

We have studied more in details and generalized the known primary constructions of vectorial
bent functions. In particular, we have proposed another Partial Spread construction of bent
vectorial functions as well as other primary constructions of bent functions. Concerning the
secondary constructions of bent (n, r)-functions, the known ones are also mostly derived as
generalizations of the known secondary constructions of bent Boolean functions. Finding new
secondary constructions of bent vectorial functions is not a simple task. We have studied more in
details and generalized the known secondary constructions of bent vectorial functions, and we
have introduced new ones.

Very recently, we have proved that o-polynomials lead to primary constructions of optimal
bent vectorial functions that is, bent functions vectorial from F2m × F2m to F2m .

Theorem 0.4.6. Let G be an o-polynomial. Let F , F ′ be two vectorial functions from F2n ≈
F2m × F2m to F2m such that for (x, y) ∈ F2m × F2m ,

F (x, y) = xG(yx2m−2)

and
F ′(x, y) = xG−1(yx2m−2)

Then, the (n,m)- functions F and F ′ are bent.

0.4.2 Publications

The results presented in Chapter 4 have been the subject of the following publications:

• C. Carlet and S. Mesnager. On Dillon’s class H of bent functions, Niho bent functions
and o-polynomials. Journal of Combinatorial Theory-JCT-serie A 118, pages 2392–2410,
2011([44]).

• C. Carlet and S. Mesnager. On the construction of bent vectorial functions. Journal of
Information and Coding Theory: Algebraic and Combinatorial Coding Theory, volume 1,
No. 2, pages 133-148, 2010 ([16]).

• T. Helleseth, A. Kholosha and S. Mesnager. Niho Bent Functions and Subiaco/Adelaide
Hyperovals. Proceedings of the 10-th International Conference on Finite Fields and Their
Applications (Fq’10) Contemporary Math., AMS, 2012. Vol 579, pages 91-101, 2012. ([126]).

• C. Carlet, T. Helleseth, A. Kholosha and S. Mesnager. On the Dual of Bent Functions with
2r Niho Exponents. IEEE International Symposium on Information Theory, ISIT 2011,
pages 703-707, Saint-Petersturg, Russie, 2011([41]).

• L. Budaghyan, C. Carlet, T. Helleseth, A. Kholosha and S. Mesnager. Further results on
Niho bent functions. IEEE Transactions on Information Theory-IT. Vol. 58 no. 11, pages
6979–6985, 2012 ([14]).
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0.5 Chapter 5
Hyper-bent functions were introduced by Youssef and Gong [271] at Eurocrypt’ 01 in 2001 but
the first definition of hyperbent functions was based on a property of the so-called extended
Hadamard transform of f which was introduced in [115] by Golomb and Gong. Hyper-bent
functions are both of theoretical and practical interest. They were initially proposed by Golomb
and Gong as a component of S-boxes to ensure the security of symmetric cryptosystems. Such
functions are interesting from a combinatorial point of view: they indeed have stronger properties
than the well-known bent functions which were already studied by Dillon and Rothaus more
than three decades ago. Hyper-bent functions are indeed bent up to to a change a primitive root
in F2n . The idea behind the hyper-bent functions is to maximize the minimum distance to all
Boolean functions coming from bijective monomials on F2n (that is, bijective functions whose
expression is the absolute trace of a single power function), not just the affine functions (that
is, functions of the form Trn1 (ax) + ε; a ∈ F2n , ε ∈ F2). Bent are rare but hyper-bent functions
are still rarer. These functions are not classified. A complete classification of these functions is
elusive and looks hopeless. So, it is important to design constructions in order to know as many
(hyper)-bent functions as possible. And not only their characterization, but also their generation
are challenging problems.

0.5.1 Summary of the main contributions
Our first contribution is the construction of hyper-bent functions over F2n (n = 2m) having the
form f(x) = Tro(s1)

1 (axs1) + Tro(s2)
1 (bxs2) where o(si) denotes the cardinality of the cyclotomic

class of 2 modulo 2n − 1 which contains si and whose coefficients a and b are, respectively in
F2o(s1) and F2o(s2) . Few constructions of hyper-bent functions defined over the Galois field F2n

(n = 2m) are proposed in the literature. The known ones are mostly monomial functions.

As mentioned by Charpin and Gong in [54], it seems difficult to define an infinite class of
hyper-bent functions. In fact, since 2001 [271], very few infinite classes of hyper-bent Boolean
functions have been presented in the literature. The known hyper-bent Boolean functions are
mostly monomial functions of Dillon (that is of the form Trn1 (ax2m−1) generalized further by
Charpin and Gong into Trn1 (axr(2m−1)) (with r co-prime with 2m + 1). Dillon monomial (hyper-
)bent functions belong all to the PSap class and they are related to the zeros of some Kloosterman
sums (see [82],[54],[159]). In 2008, Charpin and Gong [55, 54] have provided new interesting
tools to describe hyper-bent Boolean functions with multiple trace terms ( which are the sum of
several Dillon monomial functions) by means of Dickson polynomials. They have studied precisely
Boolean functions defined on F2n whose expression is of the form

∑
r∈E Trn1 (βrxr(2

m−1)), where
E is a subset of the set of representatives of the cyclotomic cosets modulo 2m + 1 of maximal size
n = 2m, and the coefficients βr are in F2n . As a consequence of their new interesting approach, a
characterization of a class of binomial hyper-bent functions has been obtained. But the precise
characterization of such multinomial functions which are hyper-bent, by giving explicitly the
coefficients βr, is still an open problem (see [54]).

In 2009, we have proved firstly that the exponents s1 = 2n2 − 1 and s2 = 2n−1
3 , where a ∈ F2n

(a 6= 0) and b ∈ F4 , provide a construction of a first family (denoted by Fn) of binomial hyper-bent
functions over F2n (with optimum algebraic degree) defined by

fa,b(x) = Trn1 (ax2m−1) + Tr2
1(bx

2n−1
3 )

In the line of the results of Dillon [82] on monomials bent functions via Dillon exponents, we
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have showed that the bentness of a Boolean function fa,b of the family Fn can be characterized
by means of the Kloosterman sums involving only the coefficient a when m is odd. To this end,
we have showed first that Fn is a subclass of the well known Partial Spreads class for which
the bentness of its functions can be characterized by means of the Hamming weight of their
restrictions to a certain set. Next, we have investigated the conditions on the choice of a and
b for obtaining an explicit family of bent functions. Thanks to the recent works of Charpin,
Helleseth and Zinoviev on the Kloosterman sums and cubic sums, we have established an explicit
characterization of the bentness of functions belonging to Fn in terms of the Kloosterman sums
of the coefficient a when m is odd. Next, we have generalized the results for functions whose
exponent s1 is of the form r(2m − 1) where r is co-prime with 2m + 1. The corresponding bent
functions are also hyper-bent.

The following theorem summarizes the results of our study related to the bentness of the
functions of the family Fn.

Theorem 0.5.1. Let n = 2m with m odd (m > 3). Let a ∈ F?2m and b ∈ F?4 . Let f (r)
a,b be the

function defined on F2n by (5.10) f (r)
a,b (x) = Trn1 (axr(2m−1)) + Tr2

1(bx 2n−1
3 )

1. f (r)
a,b is bent if and only if Km(a) = 4 .

2. f (r)
a,b is hyper-bent if and only if f (r)

a,b is bent.

3. The bent functions f (r)
a,b are in the class PS−. Moreover, the bent functions f (r)

a,b are elements
of the Partial Spread class PSap (resp. PS#

ap) if b = 1 (resp. if b 6= 1).

4. If f (r)
a,b is bent then its dual function equals f (r)

a2m ,b2
.

When m is even, we have shown that the situation seems to be more complicated theoretically
than in the case where m is odd, and that the study of the bentness cannot be done as in the
odd case. However, in this case, we are nevertheless able to show that a Boolean function whose
expression is of the form Trn1 (ax2m−1) + Tr2

1(bx 2n−1
3 ), cannot be bent if the condition of bentness

in terms of Kloosterman sums that we got in the odd case is not satisfied. More precisely, we
have showed that the value 4 is still a necessary condition for bentness. In the continuation of this
work, we have studied more deeply theoretically the bentenss of functions in Fn in the case when
m is even and provide results from experimental investigations6. But it is an open problem to tell
whether this condition is sufficient for all m even or not. Therefore we conducted experiments to
find all the values 4 of binary Kloosterman sums and test the corresponding Boolean functions
for m even as big as possible. All the values we tested gave bent functions, pointing out that the
situation in the case m even should definitely be studied further.

Next, in late 2009, we have proved that the exponents s1 = 3(2m − 1) and s2 = 2n−1
3 , where

a ∈ F2n (a 6= 0) and b ∈ F4 provide a construction of another family Gn of hyper-bent functions
over F2n (and all the functions of Gn are of optimum algebraic degree). Functions of Gn are of
the form

ga,b(x) = Trn1
(
ax3(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
Since m being odd, 3 is a divisor of 2m + 1 so functions of Fn and Gn are not in the class

studied by Charpin and Gong [54] that we have mentioned above. We have studied functions
of Gn and obtained an explicit characterization of the bentness of these functions, in terms

6the implementation was made using Sage [241] and Cython [9], performing direct calls to Givaro [96], NTL [235]
and gf2x [10] libraries for efficient manipulation of finite field elements and construction of Boolean functions.



22 Overview

of the Kloosterman sums and the cubic sums involving only the coefficient a. The following
theorem recapitulates the results of our study in which we prove that class Gn contains hyper-bent
functions when m 6≡ 3 (mod 6) while there is no hyper-bent functions in this class when m ≡ 3
(mod 6); an important point is that this class does not contain other bent functions except those
which are hyper-bent.

Theorem 0.5.2. Let n = 2m. Suppose that m is odd. Let a ∈ F?2m . Let β be a primitive element
of F4 . Let ζ be a generator of the cyclic group U of (2m + 1)-th of unity. For (i, j) ∈ {0, 1, 2}2,
let gaζi,βj be a Boolean function on F2n of Gn

1. Assume m 6≡ 3 (mod 6). Then, we have:

• If Trm1 (a1/3) = 0 then, for every (i, j) ∈ {0, 1, 2}2, a function gaζi,βj is (hyper)-bent if
and only if Km(a) = 4.

• If Trm1 (a1/3) = 1 then:
(a) ga,βj is not bent for every j ∈ {0, 1, 2}.
(b) For every i ∈ {1, 2}, gaζi,βj is (hyper)-bent if and only if Km(a) + Cm(a, a) = 4.

2. Assume m ≡ 3 (mod 6). Then, for every i ∈ {0, 1, 2}, gaζi,b is not bent for every a ∈ F?2m
and b ∈ F?4 .

The dual function of a bent function ga,b of Gn is equal ga2m ,b2

To conclude, in these works, we contribute to the knowledge of the class of hyper-bent Boolean
functions by exhibiting two new infinite family of hyper-bent Boolean functions defined on F2n

when m = n/2 is odd (that does not belong to the class studied in [54]) in which the property
to be hyper-bent is strongly related to the Kloosterman sums. In particular, we extend the
known link between Dillon monomial hyper-bent functions and the zeros of Kloosterman sums
to others values and to other functions. In addition, it is important to point out that, unlike
the family of hyper-bent functions of Fn , the monomial functions of Gn are never bent (and
then are not hyper-bent) since the exponent does not satisfy the necessary condition for a bent
exponent. We have also studied the normality of functions in Fn and Gn and we have computed
their corresponding duals functions.

0.5.2 Publications
The results presented in Chapter 5 have been the subject of the following publications:

• S. Mesnager. A new family of hyper-bent Boolean functions in polynomial form. Proceedings
of Twelfth International Conference on Cryptography and Coding. Cirencester, United
Kingdom. M. G. Parker (Ed.) IMACC 2009, LNCS 5921, pages 402–417. Springer,
Heidelberg (2009) ([196]).

• S. Mesnager. A new class of Bent Boolean functions in polynomial forms. Proceedings of
international Workshop on Coding and Cryptography, WCC 2009, pages 5-18, Ullensvang,
Norway, pages 5–18, 2009([195]).

• S. Mesnager. A New Class of Bent and Hyper-Bent Boolean Functions in Polynomial Forms.
Journal Designs, Codes and Cryptography (DCC) volume 59, Numbers 1-3, pages 265-279,
2011([197]).
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0.6 Chapter 6

0.6.1 Summary of the main contributions
As mentioned above, Charpin and Gong [54] have studied the bentness of the class of Boolean
functions defined on F2n by ∑

r∈R
Trn1 (βrxr(2

m−1))

where n := 2m and R is a subset of a set of representatives of the cyclotomic cosets modulo
2m + 1 for which each coset has the full size n = 2m and βr ∈ F2n . When r is co-prime with
2m + 1, the functions f are the sums of several Dillon monomial functions. A new tool by means
of Dickson polynomials to describe hyper-bent functions f has been introduced in [54]. In fact,
Charpin and Gong have shown that the bentness of those functions is related to the Dickson
polynomials under some restriction on the coefficients βr (more precisely, βr ∈ F2m). In the line
of our results in the binomial case and of the results of Charpin and Gong, we have studied a
subclass Hn of the so-called class PS−. Functions of Fn are with multiple trace terms of the form∑

r∈R
Trn1 (arxr(2

m−1)) + Tr2
1(bx

2n−1
3 )

where R is a set of representatives of the cyclotomic cosets modulo 2n−1 of maximal size n := 2m,
{ar, r ∈ R} is a collection of elements of F2m and b is an element of F4 . The set of the functions
Hn includes the families Fn and Gn. We have studied the hyper-bentness property of functions in
Hn and showed that hyper-bent functions of Hn can be described by means of exponential sums
involving Dickson polynomials of degree r and 3. In particular, when b is a primitive element of
F4 , we provide a way to transfer the characterization of hyper-bentness of an element of Gn to
the evaluation of the Hamming weight of some Boolean functions.

The following theorem summarizes our study of the bentness of functions in Hn

Theorem 0.6.1. Let n = 2m with m odd. Let b ∈ F?4 and β be a primitive element of F4 . Let
far,b be a function of Hn defined on F2n by (6.2). Let gar be the related function defined on F2m

by gar (x) =
∑
r∈R Trm1 (arDr(x)), where Dr(x) is the Dickson polynomial of degree r.

1. far,b is hyper-bent if and only if far,b is bent.

2. The bent functions far,b are in the class PS−. Moreover, the bent functions far,b are
elements of the Partial Spread class PSap (resp. PS#

ap) if b = 1 (resp. if b 6= 1).

3. The three following assertions are equivalent:

(a) far,β is hyper-bent;

(b)
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
gar (D3(x))

)
= −2;

(c)
∑
x∈F2m

χ
(

Trm1 (x−1) + gar (D3(x))
)

= 2m − 2 wt(gar ◦D3) + 4.

4. far,1 is hyper-bent if and only if,
2
∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
gar (D3(x))

)
− 3

∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
gar (x)

)
= 2.
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Note that the previous theorem is valid when the coefficients ar are elements of F2m .

To illustrate our results, we have showed that our results presented for the families Fn and
Gn can be deduced. In particular, the link between the binomial hyper-bent functions of Fn
(resp. Gn) and the value 4 of some Kloosterman sums has been generalized to a link between
hyper-bent functions of Hn and some exponential sums where Dickson polynomials are involved.
Finally, we have provided possibly new infinite families of hyper-bent functions provided that
some set is not empty. Our study extends our works in the binomial case and is a complement of
the work of Charpin and Gong on this topic.

Adopting our approach presented above on the study of functions in Hn, Wang,Tang, Qi,
Yang and Xu [258] have studied in late 2011 the following family with an additional trace term
on F16 :

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Tr4
1

(
bx

2n−1
5

)
where the coefficients ar lie in F2m , the coefficient b is in F16 and m must verify m ≡ 2

(mod 4). The set R is defined as above (that is, a subset of representatives of the cyclotomic
cosets modulo 2m + 1 for which each coset has the maximal size n).

In a joint work with Flori, we have provided a finer study of the family of Wang et al. by
giving results including useful expressions for their extended Walsh-Hadamard transform, their
algebraic degrees and their duals.
Very recently, we have been interested to the generalization of all the hyper-bent functions with
multiple trace terms (including binomial functions) via Dillon-like exponents that is, exponents
of the generalized form s(2m − 1). More precisely, we have studied functions of the general form:

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Trt1
(
bxs(2

m−1)
)

where n = 2m is an even integer, R is a set of representatives of the cyclotomic classes modulo
2m + 1, the coefficients ar are in F2m , s divides 2m + 1, i.e. s(2m − 1) is a Dillon-like exponent,
t = o(s(2m − 1)), i.e. t is the size of the cyclotomic coset of s modulo 2m + 1, and the coefficient
b is in F2t .

We have showed how the approach that we have developed in 2009 extend the Charpin-Gong
family (2008) and subsequently slightly extended by Wang et al. ( 2011) using our approach fits in
a much more general setting and we have presented generalizations of the previous approaches in
different directions.To this end, firstly we have observed that the original restriction for Charpin–
Gong criterion can be weakened before generalizing our approach to arbitrary Dillon-like exponents.
Afterward, we have tackled the problem of devising infinite families of extension degrees for which
a given exponent is valid and apply these results not only to reprove straightforwardly our results
and those of Wang et al., but also to characterize the hyper-bentness of several potentially new
infinite classes of Boolean functions. We go into full details for a few of them, provide as well an
algorithm and the corresponding software to extend this approach to an infinity of other new
families.

0.6.2 Publications
The results presented in Chapter 6 have been the subject of the following publications:
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• S. Mesnager. Hyper-bent Boolean Functions with Multiple Trace Terms. Proceedings of
International Workshop on the Arithmetic of Finite Fields. WAIFI 2010, LNCS 6087, pages.
97–113. Springer, Heidelberg, 2010 ([192]).

• S. Mesnager Bent and Hyper-bent Functions in polynomial form and Their Link With Some
Exponential Sums and Dickson Polynomials. IEEE Transactions on Information Theory-IT,
Vol 57, No 9, pages 5996-6009, 2011 ([198]).

• S. Mesnager and J.P Flori. On hyper-bent functions via Dillon-like exponents. IEEE
International Symopsium on Infomation Theory ISIT 2012. IMT, Cambridge, MA, USA,
2012 ([202])

0.7 Chapter 7
The connection between exponential sums and algebraic varieties has been known for at least six
decades. Connecting exponential sums and numbers of points on algebraic varieties is classical
folklore. Such ideas go back, at least, to the work of Weil [264] where the Riemann hypothesis is
used to bound the values of Kloosterman sums. Leonard and Williams [161] then devised the
connection between Kloosterman sums and elliptic curves, and Lachaud and Wolfmann [157],
and Katz and Livné [146], exploited the theory of elliptic curves to study the distribution of
Kloosterman sums. Very recently, Lisoněk [170] followed this approach to reformulate the Charpin–
Gong characterization of a large class of hyper-bent functions in terms of numbers of points on
hyperelliptic curves. As a consequence, he obtained a polynomial time and space algorithm for
certain subclasses of functions in the Charpin–Gong family.

0.7.1 Summary of the main contributions
In Chapter 7, we settle a more general framework, together with detailed proofs, for such an
approach and present a more generic formulation of the connection between Boolean functions,
exponential sums and hyperelliptic curves. This leads us to easily deduce the previous results of
Lisoněk, as well as giving an efficient version of the more recent hyper-bentness criterion that we
have proposed. Doing so, a polynomial time and space test for the hyper-bentness of functions
in the family Hn is obtained as well. Nonetheless, a straightforward application of such results
does not provide a satisfactory criterion for explicit generation of functions in our family Hn. To
address this issue, we have showed how to obtain a more efficient test leading to a substantial
practical gain and subsequently propose a slightly different reformulation leading to practical
speed-ups. The algorithmic theory of such curves shows that this reformulation gives rise to a
test in both polynomial time and space when restricted to certain subclasses of functions.

Next, we have extended reformulations in terms of hyperelliptic curves of the aforementioned
hyper-bentness characterizations7, previously proposed by Lisoněk [170] and Flori and the author
to the characterization proposed by Wang et al. A fundamental object in these works are Dickson
polynomials. A good understanding of their properties, and in particular of those involving the
subsets of finite fields composed of elements whose inverses have a given trace, was therefore
crucial. We have used our study about the action of Dickson polynomials on subsets of finite fields
of even characteristic related to the trace of the inverse of an element and apply such properties

7In chronological order of our results, we have firstly adapted the approach of Linonek in the framework of
semi-bent functions
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to the study of the Wang et al.’s family and a characterization of their hyper-bentness in terms
of exponential sums. Moreover, we have provided numerical evidence that the characterizations
using hyperelliptic curves are more efficient than those involving exponential sums not only
asymptotically, but also for practical values of m.

Finally (following our works on hyper-bent functions), we have been interested to treat the
general case of hyper-bent functions with multiple trace terms via Dillon-like exponents and
provided both known and new applications of our developed theory. Moreover, we have showed
how to transform the obtained characterizations in terms of hyperelliptic curves, providing both an
analysis of the asymptotic complexity of the generation of hyper-bent functions and experimental
results for their practical generation.

In all these works, our reformulations of such characterizations in terms of cardinalities of
hyperelliptic curves are based on the classical connection between exponential sums and algebraic
varieties. We use these connections as well as properties of Dickson polynomials and the trace of
inverse to actually build hyper-bent functions in cases which could not be attained through naive
computations of exponential sums.

In the last part of Chapter 7, we recall classical results about divisibility of binary Kloosterman
sums8 and give alternate proofs of such results involving the theory of elliptic curves. We analyze
the different strategies used to find zeros of binary Kloosterman sums to develop and implement
an algorithm to find the value 4 of such sums. We present different algorithms to test and find
specific values of binary Kloosterman sums. Then, emphasizing the specificity of the zero case,
we study the use of elliptic curves involved in this case, explain which results can be extended to
the value 4, develop and implement an algorithm to find that value.

0.7.2 Publications
The results presented in Chapter 7 have been the subject of the following publications:

• J.P. Flori and S. Mesnager. Dickson polynomials, hyperelliptic curves and hyper-bent
functions. Proceedings of 7-th International conference SEquences and Their Applications,
SETA 2012, LNCS 7280, Springer, pages 40–52, 2012 [102].

• J.P. Flori, S. Mesnager and G. Cohen. Binary Kloosterman sums with value 4. Proceedings
of Thirteenth International Conference on Cryptography and Coding, IMACC 2011, LNCS
7089, pages 61-78, Springer, 2011[103].

0.8 Chapter 8
A number of research works in symmetric cryptography are devoted to problems of resistance of
various ciphering algorithms to the fast correlation attacks (on stream ciphers) and to the linear
cryptanalysis (on block ciphers). These works analyse various classes of approximating functions
and constructions of functions with the best resistance to such approximations. Some general
classes of Boolean functions play a central role with this respect: the class of bent functions [227],

8Kloosterman sums have recently become the focus of much research, most notably due to their applications
in cryptography and their relations to coding theory. In our very recent works we have showed that the value
4 of binary Kloosterman sums gives rise to several infinite classes of bent functions, hyper-bent functions and
semi-bent functions in even dimension.
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its subclasses of homogeneous bent functions [223] and hyper-bent functions [271], and the general-
izations of the notion: semi-bent functions [62], Z-bent functions [92], negabent functions [218], etc.

In this chapter we investigate constructions of semi-bent functions in even dimension. The
term of semi-bent function has been introduced by Chee, Lee and Kim at Asiacrypt’ 94 [62]. These
functions had been previously investigated under the name of 3-valued almost optimal Boolean
functions in [19]. Also, they are particular cases of the so-called plateaued functions [276, 275].
They are nice combinatorial objects, as are bent functions. They are studied in cryptography
because, besides having low Walsh Hadamard transform which provides protection against fast
correlation attacks [188] and linear cryptanalysis [182], they can possess desirable properties (in
addition to the propagation criterion of high order and to low additive autocorrelation), such as
balancedness, resiliency. They share with bent functions the cryptographic drawback of having
algebraic degree at most n/2. (as bent functions, they can be used in the constructions of Boolean
functions with good cryptographic properties [31]) Several general constructions of semi-bent
functions in even dimension exist: partially-bent functions [31] with linear kernels of dimension
2, restrictions of bent functions to vector subspaces {a, b}⊥ of co-dimension 2 such that the
second-order derivative DaDbf̃ of the dual f̃ of the bent function is null [19, 20]; In [59], Charpin
et al gave a necessary and sufficient condition for a class of quadratic functions in even number
of variables to be semi-bent; some more specific constructions are also known [62, 242]; but
the functions which can be constructed so far are most probably very rare among all semi-bent
functions. Semi-bent functions can be defined for n even and for n odd (n being the number of
the inputs). By Parseval’s relation, the maximum magnitude of the Walsh Hadamard transform
of n-variable Boolean functions is at least 2n2 . This lower bound is achieved with equality only
when n is even, by the so-called bent functions. It is well-known that the Walsh Hadamard
transform of a bent function only takes on the values ±2n2 . Bent functions are never balanced.
When n is even, the semi-bent functions are those Boolean functions whose Walsh Hadamard
transform takes values 0 and ±2n+2

2 . They are balanced (up to the addition of a linear function)
and have the maximal non-linearity that balanced plateaued functions can have. When n is odd,
the lower bound for the maximum magnitude of the Walsh Hadamard transform is not known in
general. However, this lower bound has been shown to be 2n+1

2 when the function is quadratic
[176] or for small values of n [209]. Functions which achieve this lower bound with equality are
the semi-bent functions, whose Walsh Hadamard transform only takes on the three values 0,
±2n+1

2 [63]. Some research has been devoted to finding new families of semi-bent functions and
semi-bent sequences. In fact, highly nonlinear functions (that is, functions having large Hamming
distances from the set of affine Boolean functions, or in other terms large non-linearity) correspond
in the theory of sequences, to sequences that have low cross-correlation with the m-sequences
(maximum-length linear feedback shift register sequences) represented by Trm1 (x) [127] [125].
The main contributions in this direction are due to Gold [112], Niho [210], Helleseth [124, 125],
Helleseth and Kumar [127]. However, almost all families of semi-bent functions have been derived
from power polynomials, that is, x 7→ Trn1

(
xd
)
for a suitably chosen d and when n is odd. Khoo,

Gong and Stinson [149] have exhibited a new family of semi-bent Gold-like sequences and have
characterized in [150] semi-bent quadratic functions with odd number of inputs; more precisely,
F2 -linear combinations of Gold functions. In [59], Charpin, Pasalic and Tavernier have expanded
the result of Khoo et al. [149] on quadratic functions in many directions. In particular, they
have generalized a result on quadratic semi-bent functions to the case n even, given some new
infinite classes of quadratic semi-bent functions for n odd and shown that some infinite classes
of quadratic semi-bent functions may be derived by composing a quadratic semi-bent function
with certain non-bijective linear polynomials. Moreover, they have shown how to generate a
cubic semi-bent function in n+ 1 variables by the concatenation of two suitably chosen quadratic
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bent or semi-bent functions in n variables. The treatment of n-variable semi-bent functions was
presented in a much wider framework in the case of n odd.

0.8.1 Summary of the main contributions
Our main contributions is to study the link between the semi-bentness property of certain classes
of Boolean functions and some classical (binary) exponential sums as well as the construction of
more semi-bent functions with an even number of variables. In a first work, we have extensively
investigated the link between the semi-bentness property of functions in univariate forms obtained
via Dillon and Niho functions and Kloosterman sums [201]. In particular, we have showed that
zeros and the value four of binary Kloosterman sums give rise to semi-bent functions in even
dimension with maximum degree. Moreover, we have studied the semi-bentness property of
functions in polynomial forms with multiple trace terms and exhibit criteria involving Dickson
polynomials. Next, we have reformulated the characterizations in terms of cardinalities of hyper-
elliptic curves in order to obtain efficient ones 9. Our study on the explicit constructions of
families of semi-bent functions allowed us to guess that the semi-bent functions whose restriction
to the spaces uF?2m where u ranges the cyclic group of 2m + 1-st of unity are essentially the
functions obtained by adding a bent function of Niho type and a function in the PS#

ap class.
Following this study, we have generalized in a joint work with Carlet the constructions of

semi-bent functions proposed in [199] and we have showed in [45] how to construct semi-bent
Boolean functions in even dimension from a PSap-like bent function g and a bent function h
whose restrictions to the elements of the spread used for defining g are all linear that is, an
element of class H. Given a spread (Ei)i=1,...,2m+1, we have characterized when a function whose
restriction to every E∗i is affine (i.e. a function equal to the sum of a function whose restriction
to every Ei is linear and of a function whose restriction to every E∗i is constant) is semi-bent:

Theorem 0.8.1. Let m ≥ 2 and n = 2m. Let {Ei, i = 1, . . . , 2m + 1} be a spread in F2n and h
a Boolean function whose restriction to every Ei is linear (possibly null). Let S be any subset
of {1, . . . , 2m + 1} and g =

∑
i∈S 1Ei (mod 2) where 1Ei is the indicator of Ei. Then g + h is

semi-bent if and only if g and h are bents. (We call g a PSap-like bent function)

From Theorem 0.8.1 and thanks to our results with Carlet on the class H (see Chapter 4),
we have deduced a large number of infinite classes of semi-bent functions in explicit bivariate
polynomial form. We have obtained, for every choice of a balanced function over F2n/2 , eight
new families in bivariate form using the infinite classes of bent functions in bivariate form from
Dillon’s class H( [44]), which have been recently found:

Let g be a function in the PSap class. Let h be one of the following functions ([44]) :

• h(x, y) = Trm1 (x−5y6), m odd;

• h(x, y) = Trm1 (x 5
6 y

1
6 ), m odd:

• h(x, y) = Trm1 (x−3·(2k+1)y3·2k+4), m = 2k − 1;

• h(x, y) = Trm1 (x−3·(2k−1−1)y3·2k−1−2), m = 2k − 1;

• h(x, y) = Trm1 (x1−2k−22k
y2k+22k), m = 4k − 1;

• h(x, y) = Trm1 (x23k−1−22k+2ky1−23k−1+22k−2k), m = 4k − 1;
9In fact, this was our first work done in the spirit of Lisonek’s approach.
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• h(x, y) = Trm1 (x1−22k+1−23k+1
y22k+1+23k+1), m = 4k + 1;

• h(x, y) = Trm1 (x23k+1−22k+1+2ky1−23k+1+22k+1−2k), m = 4k + 1;

• h(x, y) = Trm1 (x1−2ky2k + x−(2k+1)y2k+2 + x−3·(2k+1)y3·2k+4), m = 2k − 1;

• h(x, y) = Trm1 (y(y2k+1x−(2k+1) + y3x−3 + yx−1)2k−1−1), m = 2k − 1;

• h(x, y) = Trm1 (x 5
6 y

1
6 + x

1
2 y

1
2 + x

1
6 y

5
6 ), m odd;

• h(x, y) = Trm1 (x[D 1
5

(
y
x

)
]6), m odd, where D 1

5
is the Dickson polynomial of index 1

5 .

Then the function g + h is semi-bent.
Secondly, in the framework where the functions are considered in their univariate form, we

have applied Theorem 0.8.1 to the spread {uF2m ; u ∈ U} (where U is the multiplicative group
{u ∈ F2n ;u2m+1 = 1}). In this case, on one hand, nonlinear Boolean functions whose restriction
to any vector space uF2m are linear are sums of Niho power functions, that is (see [93]) of functions
of the form:

Tro((2
m−1)s+1)

1

(
asx

(2m−1)s+1
)

with 1 ≤ s ≤ 2m

On the other hand, some PSap functions can be obtained in the form∑
r∈R

Tro((2
m−1)r)

1

(
brx

(2m−1)r
)

where R ⊂ {1, · · · , 2m}.

Collecting results provided by Dobbertin et al. in [93] and by Charpin and Gong in [54], we
have obtained the following result:

Corollary 0.8.2. Let f be a Boolean function of the form:

f(x) = Trm1 (a0x
2m+1) +

L∑
i=1

Trn1 (aix(2m−1)si+1) +
∑
r∈R

Tro((2
m−1)r)

1 (brx(2m−1)r)

where L is some non-negative integer, 2 ≤ si ≤ 2m, si 6= 2m−1 + 1, 1 ≤ r ≤ 2m, a0 ∈ F2m ,
ai ∈ F2m and br ∈ F2o((2m−1)r) (with at least one coefficient ai 6= 0 and one coefficient br 6= 0).
Assume that:
1) the number of roots u in U := {x ∈ F2n ;x2m+1 = 1} of the equation Trnm(cu)+

∑L
i=1 Trnm(aiu2si−1)+

a
1
2
0 = 0 is either 0 or 2 for every c ∈ F2n ,

2) the sum
∑
u∈U χ(

∑
r∈R Tro((2

m−1)r)
1 (brur)) is equal to 1. Then, f is semi-bent.

Thanks to the previous result and our results on hyper-bent functions, we have therefore derived
at least thirty new infinite classes of semi-bent functions gi+hj (i ∈ {1, · · · , 6}, j ∈ {1, · · · , 5}) in
univariate form where gi belongs to the following list of infinite families containing bent functions
defined on F2n in the class PSap :

• g1(x) = Trn1 (axr(2m−1)); gcd(r, 2m + 1) = 1, a ∈ F?2m such that Km(a) = 0

• g2(x) = Trn1 (axr(2m−1)) + Tr2
1(bx 2n−1

3 ); gcd(r, 2m + 1) = 1, m > 3 odd, b ∈ F?4 , a ∈ F?2m
such that Km(a) = 4

• g3(x) = Trn1 (aζix3(2m−1)) + Tr2
1(βjx 2n−1

3 ); m odd and m 6≡ 3 (mod 6), β is a primitive
element of F4 , ζ is a generator of the cyclic group U of (2m+1)-th of unity, (i, j) ∈ {0, 1, 2}2,
a ∈ F?2m such that Km(a) = 4 and Trm1 (a1/3) = 0
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• g4(x) = Trn1 (aζix3(2m−1)) + Tr2
1(βjx 2n−1

3 ); m odd and m 6≡ 3 (mod 6), β is a primitive
element of F4 , ζ is a generator of the cyclic group U of (2m + 1)-th of unity, i ∈ {1, 2},
j ∈ {0, 1, 2}, a ∈ F?2m such that Km(a) + Cm(a, a) = 4 and Trm1 (a1/3) = 1 ,

• g5(x) =
∑2m−1−1
i=1 Trn1

(
βxi(2

m−1)); β ∈ F2m \ F2 ,

• g6(x) =
∑2m−2−1
i=1 Trn1

(
βxi(2

m−1)); m odd and β(2m−4)−1 ∈ {x ∈ F?2m ; Trm1 (x) = 0},

and hj belongs to the following list of known Niho bent functions:

• h1(x) = Trm1
(
a1x

2m+1); a1 ∈ F?2m

• h2(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1)3+1
)
;

a1 ∈ F?2n , a2m+1
2 = a1 + a2m

1 = β5 for some β ∈ F?2n

• h3(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1) 1
4 +1
)
;

a1 ∈ F?2n a
2m+1
2 = a1 + a2m

1 , m odd

• h4(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1) 1
6 +1
)
; a1 ∈ F?2n a

2m+1
2 = a1 + a2m

1 , m even

• h5(x) = Trn1
(
αx2m+1 +

∑2r−1−1
i=1 xsi

)
, r > 1 such that gcd(r,m) = 1, α ∈ F2n such that

α+ α2m = 1, si = (2m − 1) i
2r (mod 2m + 1) + 1 , i ∈ {1, · · · , 2r−1 − 1}

0.8.2 Publications
The results presented in this chapter have been the subject of the following publications:

• S. Mesnager. Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and
Dickson polynomials. IEEE Transactions on Information Theory-IT, Vol 57, No 11, pages
744–7458, 2011([199]).

• S. Mesnager. Semi-bent functions with multiple trace terms and hyperelliptic curves.
Proceeding of International Conference on Cryptology and Information Security in Latin
America (IACR), Latincrypt 2012, LNCS 7533, Springer, pages 18–36, 2012 ([200]).

• S. Mesnager and G. Cohen . On the link of some semi-bent functions with Kloosterman
sums. Proceeding of International Workshop on Coding and Cryptology (IWCC 2011),
LNCS 6639, pages 263–272, Springer, 2011([201]).

• C. Carlet and S. Mesnager. On Semi-bent Boolean Functions. IEEE Transactions on
Information Theory-IT, Vol 58, No 5, pages 3287-3292, 2012 ([45]).

0.9 Chapter 9
Reed-Muller codes, introduced by D. E. Muller and L. S. Reed in 1954, are one of the best
understood families of codes. Except for first-order Reed-Muller codes and for codes of small
lengths, their minimum distance is lower than that of BCH codes. But they have very efficient
decoding algorithms, they contain nonlinear sub-codes with optimal parameters together with
efficient decoding algorithms, and they give a useful framework for the study of Boolean functions
in cryptography. Despite the fact that they have been extensively studied for decades by



0.9. Chapter 9 31

coding theorists, their covering radius is unknown except for Reed-Muller codes of small lengths
and for the first-order Reed-Muller code of length 2n, for n even. The covering radius is
the smallest integer ρ such that the spheres of radius ρ centered at the codewords cover the
whole space, i.e. the maximum multiplicity of errors that have to be corrected when maximum
likelihood decoding is used on a binary symmetric channel. Lower and upper bounds have been
proved, but the gap between them is important, and better bounds have to be found. A good
reference on covering radius is [68] and a short non-exhaustive list of references on this subject is
[69, 130, 131, 186, 230, 239].

Reed-Muller codes can be defined in terms of Boolean functions. Precisely, the binary rth-order
Reed-Muller code RM(r, n) is the set of all binary vectors of length 2n associated with multivariate
binary polynomials f(x1, . . . , xn) of algebraic degree at most r. The covering radius10 of RM(r, n)
coincides with the maximal nonlinearity of order r of Boolean functions. The nonlinearity of
order r generalizes the standard nonlinearity and is thus an important parameter in cryptography,
which equals the maximum distance between any Boolean function f and RM(r, n) and measures
the capacity for resisting low-degree approximation attacks [152, 234]. In [152], the techniques
exposed pose a threat even when Matsui’s advanced linear cryptanalytic attacks are rendered
impractical. The nonlinearity of order r has also some relationship with algebraic attacks [73, 187],
as shown in [34], which rely on the existence of low-degree relations between the input and the
output to the involved function which rely on the existence of low-degree annihilators of the
function or its complement.

0.9.1 Summary of the main contributions
By deriving bounds on character sums of Boolean functions and by using the characterizations,
due to Kasami and Tokura, of those elements of the Reed-Muller codes whose Hamming weights
are smaller than twice and a half the minimum distance, we derive an improved upper bound on
the covering radius ρ(2, n) of the second-order Reed-Muller code RM(2, n).

The best upper bound on the covering radius ρ(2,m) is given by the following theorem[43].

Theorem 0.9.1. ( 9.1.1) For every positive integer n ≥ 17, the covering radius ρ(2, n) of the
second-order Reed-Muller code RM(2, n) is upper bounded by⌊

2n−1 −
√

15
2 · 2n2 ·

(
1− 122929

21 · 2n −
155582504573

4410 · 22n

)⌋
(7)

The best known asymptotic upper bound on the covering radius ρ(r,m) of the Reed-Muller
code of order r, r ≥ 2, is:

ρ(2, n) ≤ 2n−1 −
√

15 2n2−1 +O(1).

Consequently, by induction on r, we deduce improved upper bounds on the covering radii of
the Reed-Muller codes of higher orders.

Theorem 0.9.2. (9.1.2) Let r be a positive integer greater than or equal to 2. The covering
radius of the Reed-Muller code of order r satisfies asymptotically

ρ(r, n) ≤ 2n−1 −
√

15
2 · (1 +

√
2)r−2 · 2n/2 +O(nr−2) (8)

10Note that in the context of some stream ciphers, a notion of covering radius considering the distance between
resilient functions and binary Reed-Muller codes has also been proposed in [143, 7].
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Our results have improved the best known upper bounds dating 15 years. Up to now, our
bounds are the best bounds known in the literature.

In the following we give the outline of our method which allows as to improve the upper
bound ρ(2,m). The first idea was to introduce the following sums:

Sk(f) =
∑

g∈RM(2,n)

∑
x∈Fn2

(−1)f(x)+g(x)

2k

. (9)

Next, we have proved that the covering radius ρ(2,m) satisfies

∀k ≥ 1, ρ(2,m) ≤ 2m−1 − 1
2 min
f∈Bm

√
Sk+1(f)
Sk(f) (10)

Moreover, we have proved that for any Boolean function f ∈ Bm, we have

Sk(f) = #RM(2,m)Dk if k = 1, 2, 3

Sk(f)#RM(2,m)
(
Dk +N

(8)
k M

(8)
f

)
if k = 4, 5

Sk(f) = #RM(2,m)
(
Dk +N

(8)
k M

(8)
f +

k∑
w=6

2wkM (2w)
f

)
if k ≥ 6

with

• Dk be the number of ways of choosing a 2k-tuple (x1, · · · , x2k) such that
∑2k
i=1 1xi equals

the null codeword.

• N (w)
k = #Ng whenever wt(g) = w where Ng denotes the set of all the 2k-tuples (x1, . . . , x2k)

of vectors of Fm2 such that
∑2k
i=1 1xi = g.

• M (w)
f be the character sum of (−1)〈f,g〉 when g ranges over the subset of those codewords of

to the dual code RM(2,m)⊥ of the second-order Reed-Muller code, that is the Reed-Muller
code RM(m− 3,m) of order m− 3 of Hamming weight w.

The values of the numbers Dk and N (w)
k can be computed thanks to the following formulas

(given a mapping A from R to itself, we denote by
[
zk
]
A(z) the coefficient of z

k

k! in the Taylor
series expansion of A at z = 0):

Dk = [z2k] cosh2n(z)

N
(2w)
k = [z2k] tanh2w cosh2n(z)

Now, getting an upper bound on ρ(2,m) is equivalent to searching a lower bound of
minf∈Bm

√
Sk+1(f)
Sk(f) . To this end, we have used the characterizations of the elements of the

Reed-Muller code RM(m− 3,m).
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0.9.2 Publications
The first results of our method were published at the International conference ISIT. The completion
of this work has led to a publication at IEEE-IT:

• C. Carlet and S. Mesnager. "Improving the upper bounds on the covering radii of binary
Reed-Muller codes". IEEE Transactions on Information Theory, vol. 53, no. 1, pages,
162–173, 2007([43]).
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Generalities on Boolean functions
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1.1 Background on Boolean functions
In mathematics, a Boolean function f is a map from the vectorspace Fn2 of all binary vectors
of length n to the finite field with two elements F2 i.e: f : Fn2 → F2.The vectorspace Fn2 will
sometimes be also endowed with the structure of field – the field F2n (also denoted by F2n);
indeed, this field being an n-dimensional vectorspace over F2, each of its elements can be identified
with the binary vector of length n of its coordinates relative to a fixed basis. The set of all
Boolean functions f : Fn2 → F2 will be denoted by Bn. The Hamming weight wt(x) of a binary
vector x ∈ Fn2 being the number of its nonzero coordinates (i.e. the size of {i ∈ N/ xi 6= 0}
where N denotes the set {1, · · · , n}, called the support , the Hamming weight of a Boolean
function f on Fn2 is denoted by wt(f) is (also) the size of the support of the function , i.e. the
set {x ∈ Fn2/ f(x) 6= 0}. The Hamming distance dH(f, g) between two functions f and g is the
size of the set {x ∈ Fn2/ f(x) 6= g(x)}. Thus it equals wH(f ⊕ 1g).

Boolean functions play an important role in both cryptographic and error correcting coding
activities. Indeed, cryptographic transformations (pseudo-random generators in stream ciphers,
S-boxes in block ciphers) can be designed by appropriate composition of nonlinear Boolean
functions. Moreover, every code of length 2n, for some positive integer n, can be interpreted as

1 Some additions of bits will be considered in Z (in characteristic 0) and denoted then by +, and some will be
computed modulo 2 and denoted by ⊕ or by + if there is no ambiguity. These two different notations will be
necessary because some representations of Boolean functions will live in characteristic 2 and some representations
of the same functions will live in characteristic 0. But the additions of elements of the finite field F2n will be
denoted by +, as it is usual in mathematics. So, for simplicity (since Fn

2 will often be identified with F2n) and
because there will be no ambiguity, we shall also denote by + the addition of vectors of Fn

2 when n > 1.
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a set of Boolean functions, since every n-variable Boolean function can be represented by its
truth table (an ordering of the set of binary vectors of length n being first chosen) and thus
associated with a binary word of length 2n, and vice versa; important codes such as Reed-Muller
and Kerdock codes can be defined this way as sets of Boolean functions.

In both frameworks, n is rarely large, in practice. The error correcting codes derived from n-
variable Boolean functions have length 2n; so, taking n = 11 already gives codes of length 2048.
For reason of efficiency, the S-boxes used in most block ciphers are concatenations of sub S-boxes
on at most 8 variables. In the case of stream ciphers, n was in general at most equal to 11 until
recently. The cryptographic situation has changed a little in practice since the apparition of
the algebraic attacks but the number of variables is now most often limited to 20. An excellent
reference for Boolean functions is the Book’s chapter of Claude Carlet ([31], Chapter 8).

1.2 Boolean functions: representations
There exist several representations of a given Boolean function. We shall recall only the represen-
tations of Boolean functions that we need in this manuscript.

1.2.1 Algebraic normal Form
The algebraic normal Form (in brief the ANF) is the classical representation of Boolean functions.
It is the one which is the most usually used in cryptography and coding. The Algebraic Normal
Form of an Boolean function f on Fn2 is the n-variable polynomial representation over F2, of the
form

f(x) =
⊕

I∈P(N)

aI

(∏
i∈I

xi

)
=

⊕
I∈P(N)

aI x
I , (1.1)

where P(N) denotes the power set of N = {1, · · · , n}. Every coordinate xi appears in this
polynomial with exponents at most 1, because every bit in F2 equals its own square. This
representation belongs to F2[x1, · · · , xn]/(x2

1 ⊕ x1, · · · , x2
n ⊕ xn).

The algebraic degree of the function f (this makes sense thanks to the existence and uniqueness
of the ANF) denoted by deg(f) equals the maximum degree of those monomials whose coefficients
are nonzero in its algebraic normal form, that is, deg(f) = max{|I|/ aI 6= 0}, where |I| denotes
the size of I.

The algebraic degree is an affine invariant (it is invariant under the action of the general affine
group).

1.2.2 Numerical normal form
Any n-variable Boolean function can be viewed as an integer-valued mapping taking values in
the subset {0, 1} of Z. Now, any integer-valued mapping f can be uniquely represented as a
multivariate polynomial over Z :

∀x ∈ Fn2 , f(x) =
∑
I∈Pn

λI
∏
i∈I

xi (1.2)

where the λI ’s are in Z. This representation is unique and called the numerical normal form2.
The degree of the numerical normal form of an integer-valued map f is called its numerical

2This representation has been introduced by Carlet and Guillot in [38] in the framework of cryptography.
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degree. To ensure that f takes values in {0, 1}, that is, satisfies f2(x) = f(x) for every x ∈ Fn2 ,
the coefficients λI ’s have to satisfy

∀I ∈ Pn,
(∑
J⊂I

λJ

)2
−
∑
J⊂I

λJ = 0. (1.3)

where
∑
J⊂I denotes the summation over all the subsets J of {1, . . . , n} which are contained in

the subset I.
Note that the numerical normal form leads to a (simple) characterization of the bent func-

tions3[39].

1.2.3 Trace function and the polynomial form
Now, we consider a Boolean function f defined on F2n , that is, is an F2-valued function on the
Galois field F2n of order 2n. The weight of f , denoted by wt(f), is the Hamming weight of the
image vector of f , that is, the cardinality of its support {x ∈ F2n | f(x) = 1}.

For any positive integer k, and r dividing k, the trace function from F2k to F2r is denoted by
Trkr (·). It can be defined as

Trkr (x) =
k
r−1∑
i=0

x2ir = x+ x2r + x22r
+ · · ·+ x2k−r .

In particular, we denote the absolute trace over F2 of an element x ∈ F2n by Trn1 (x) =
∑n−1
i=0 x

2i .
Recall some basic properties of trace functions:

1. the trace function Trnk is surjective;

2. Trnk (ax+ by) = aTrnk (x) + bTrnk (y) for a, b ∈ F2k and x, y ∈ F2n ;

3. Trnk (x2k) = Trnk (x) for x ∈ F2n ;

4. when F2k ⊂ F2r ⊂ F2n , the trace function Trnk satisfies the transitivity property, that is,
Trnk = Trrk ◦Trnr .

There exist several kinds of possible trace (univariate) representations of Boolean functions
(see for instance, [31], page 266) which are not necessary unique and use the identification between
the vector-space Fn2 and the field F2n . In this manuscript, we will extensively study the so-called
Bent functions. Those functions are often better viewed in their bivariate representation and can
also be viewed in their univariate representation. The univariate representation of any Boolean
function is defined as follows: we identify Fn2 with F2n (which is an n-dimensional vector space
over F2) and we consider then the input to f as an element of F2n . An inner product in F2n is
x · y = Trn1 (xy) where Trn1 (x) =

∑n−1
i=0 x

2i is the trace function from F2n to F2. There exists a
unique univariate polynomial

∑2n−1
i=0 aix

i over F2n such that f is the polynomial function over
F2n associated to it (this is true for every function from F2n to F2n). Moreover, f being Boolean,
its univariate representation can be written as a unique trace expansion of the form

f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)

+ ε(1 + x2n−1), aj ∈ F2o(j) ,

valid for all x ∈ F2n and called its polynomial form. In the above expression:

3The definition of a bent function is given later in Chapter 4.
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1. Γn is the set of integers obtained by choosing one element in each cyclotomic coset modulo
2n − 1 (including the trivial coset containing 0 and only 0), the most usual choice being the
smallest element in each cyclotomic coset, called the coset leader,

2. o(j) is the size of the cyclotomic coset containing j (that is, o(j) is the smallest positive
integer such that j2o(j) ≡ j (mod 2n − 1)),

3. and ε = wt(f) (mod 2).

The algebraic degree of f is then equal to the maximum 2-weight of an exponent j for which
aj 6= 0 if ε = 0 and to n if ε = 1. Recall that the 2-weight w2(j) of an integer j is equal to the
number of 1’s in its binary expansion4.

Note that the above expression of f can also be written under a non-unique form Trn1 (P (x))
where P (x) is a polynomial over F2n .

Going from the non-unique trace representation to the unique one basically amounts to
take the traces of the coefficients from F2n to F2o(j) . Going the other way around relies on the
surjectivity of the trace map from F2n to F2o(j) .

1.2.4 The bivariate representation
The bivariate representation of Boolean functions is defined only when n = 2m is even as follows:
we identify Fn2 with F2m × F2m and we consider then the input to f as an ordered pair (x, y) of
elements of F2m . There exists a unique bivariate polynomial∑

0≤i,j≤2m−1
ai,jx

iyj

over F2m such that f is the bivariate polynomial function over F2m associated to it. Then the
algebraic degree of f equals

max
(i,j) | ai,j 6=0

(w2(i) + w2(j)).

And f being Boolean, its bivariate representation can be written in the form

f(x, y) = Trm1 (P (x, y))

where P (x, y) is some polynomial in two variables over F2m .

4More precisely, for j ∈ Z/(2k − 1)Z, w2(j) is the Hamming (or binary) weight of the unique representative of
j in

{
0, . . . , 2k − 2

}
.
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2.1 Walsh Hadamard transform
Let χ : F2 7→ Z denote the nontrivial additive character of F2 . The “sign” function of a Boolean
function f is the integer-valued function χf = χ (f) that is, χf = (−1)f .

Let f be a Boolean function defined on Fn2 . Then the Walsh Hadamard transform of f is the
discrete Fourier transform of χf , whose value at ω ∈ Fn2 is defined as follows:

∀ω ∈ Fn2 , χ̂f (ω) =
∑
x∈Fn2

(−1)f(x)+ω·x.

(that is, χ̂f (ω) =
∑
x∈Fn2

χ (f(x) + ω · x)) where "·" is the scalar product in Fn2 defined as
x · y =

∑n
i=1 xiyi.

The notion of Walsh transform refers to a scalar product1. When Fn2 is identified with the field
F2n by an isomorphism between these two n-dimensional vector spaces over F2 , it is convenient
to choose the isomorphism such that the canonical scalar product ” · ” in Fn2 coincides with the
canonical scalar product in F2n , which is the trace of the product : x ·y =

∑n
i=1 xiyi = Trn1 (xy) for

x, y ∈ F2n . Thus if f is a Boolean function defined on F2n then, the Walsh Hadamard transform
1Note that in the definition of the Walsh transform, we can take any inner product; the cryptographic properties

are not related to a particular choice of the inner product therefore, the issue of the choice of the isomorphism
does not arise.
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of f is the discrete Fourier transform of χf , whose value at ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωx).

(that is, χ̂f (ω) =
∑
x∈F2n

χ (f(x) + Trn1 (ωx))). .

The Walsh transform satisfies the well-known Parseval’s relation∑
ω∈F2n

χ̂f
2(ω) = 22n

and also the inverse Fourier formula∑
ω∈F2n

χ̂f (ω) = 2n(−1)f(0).

Note that not all values of the Walsh Hadamard transform can have the same sign, except when the
function is affine. This comes from the fact that we then have

(∑
ω∈F2n

χ̂f (ω)
)2

=
∑
ω∈F2n

χ̂f
2(ω)

which implies that all these values are null except one.

Now, let f be a Boolean function on F2n . Then the extended Walsh-Hadamard transform of f
is defined as.

χ̂f (ω, k) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωxk) ,

for ω ∈ F2n and k an integer co-prime with 2n − 1.

2.2 Some classical binary exponential sums

2.2.1 Binary Kloosterman sums
Binary Kloosterman sums are widely studied for a long time for their own sake as interesting
mathematical objects and have recently become the focus of much research, most notably due to
their applications in cryptography and for their connection to coding theory. The classical binary
Kloosterman sums on F2m (where m is an arbitrary positive integer) are defined as follows.

Definition 2.2.1. Let a ∈ F2m . The binary Kloosterman sums on F2m associated with a is

Km(a) :=
∑
x∈F2m

χ
(

Trm1 (ax+ 1
x

)
)
, a ∈ F2m

The Kloosterman sums are generally defined on the multiplicative group F?2m of F2m . In the docu-
ment we extend to 0 assuming that χ(Trm1 ( 1

x )) = 1 for x = 0 (in fact, Trm1 ( 1
x ) = Trm1 (x2m−1−1)).

In particular, such exponential sum can be seen as the Walsh–Hadamard transform of a simple
function. Indeed, the function a 7→ Kn(a) is the Walsh–Hadamard transform of the inverse
function (we define 1/0 = 0 or 1/x as x2n−2 for all x ∈ F2n).
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It is an elementary fact that Kn(a) = Kn(a2). Indeed,

Kn(a) = 1 +
∑
x∈F∗2n

(−1)Trn1 (ax+ 1
x ) = 1 +

∑
x∈F∗2n

(−1)Trn1 (a2x2+ 1
x2 )

= 1 +
∑
x∈F∗2n

(−1)Trn1 (a2x+ 1
x ) = Kn(a2) .

The following proposition is directly obtained from the result of Lachaud and Wolfmann in
[156] which is suitable for any arbitrary positive integer m.

Proposition 2.2.2. ([156]) Let m be a positive integer. The set {Km(a), a ∈ F2m} , is the set
of all the integers multiple of 4 in the range [−2(m+2)/2 + 1, 2(m+2)/2 + 1].

Divisibility properties of the Kloosterman sums have been studied in several recent papers.
Recall, in particular, the following result given by Charpin, Helleseth and Zinoviev in [61] on the
divisibility by 3 of Km(a)− 1.

Proposition 2.2.3. ([61]) Let m ≥ 3 be an odd integer, and let a ∈ F?2m . Then,

Km(a)− 1 ≡ 0 (mod 3)⇐⇒ Trm1 (a1/3) = 0

2.2.2 Binary cubic sums
The binary cubic sums on F2m (where m is an arbitrary positive integer) are defined as follows.

Definition 2.2.4. The cubic sums on F2m are:

Cm(a, b) :=
∑
x∈F2m

χ
(

Trm1 (ax3 + bx
)
), a ∈ F?2m , b ∈ F2m

Of course, such exponential sum can be seen as the Walsh–Hadamard transform of a simple
function. Indeed, the function b 7→ Cm(a, b) is the Walsh–Hadamard transform of the cube
function times a defined as x 7→ ax3.

The exact values of the cubic sums Cm(a, a) on F2m can be computed thanks to Carlitz’s result
[52] by means of the Jacobi symbol. Recall that the Jacobi symbol

( 2
m

)
is a generalization of the

Legendre symbol (which is defined when m is an odd prime). For m odd,
( 2
m

)
= (−1)

(m2−1)
8 .

Proposition 2.2.5. ([52]) Let m be an odd integer. Then we have:

1. Cm(1, 1) =
( 2
m

)
2(m+1)/2,

2. If Trm1 (c) = 0, then Cm(1, c) = 0,

3. If Trm1 (c) = 1 (with c 6= 1), then Cm(1, c) = χ(Trm1 (γ3+γ))
( 2
m

)
2(m+1)/2 where c = γ4+γ+1

for some γ ∈ F2m .

Remark 2.2.6. Note that when Trm1 (c) = 1 and c 6= 1, then the cubic sums Cm(1, c) can be
computed thanks to a recent result of Charpin et al. in [56]. More precisely, if Trm1 (c) = 1
(with c 6= 1), then Cm(1, c) = (−1)Trm1 (γ3+γ) ( 2

m

)
2(m+1)/2 where γ is the unique element of F2m

satisfying c = γ4 + γ + 1 and Trm1 (γ) = 0.



44 Chapter 2. Some mathematical tools

2.2.3 Partial exponential sums
Let f : F2m → F2 be a Boolean function. We denote the exponential sum associated with f by
Ξ(f), that is

Ξ(f) =
∑
x∈F2m

χf (x) .

With this notation, the classical binary Kloosterman sums associated with a on F2m are then
defined as

Km(a) = Ξ
(

Trm1
(
ax+ 1

x

))
.

The following partial exponential sums are a classical tool to study hyper-bentness. Beware
that the Boolean function is defined on F2n in the first definition and F2m in the second one.

Definition 2.2.7. Let f : F2n → F2 be a Boolean function and U be the set of (2m + 1)-th roots
of unity in F2n . We define Λ(f) as

Λ(f) =
∑
u∈U

χf (u) .

We define T0 and T1 as follows.

Definition 2.2.8. For i ∈ F2 , let Tidenote the set

Ti = {x ∈ F2m | Trm1 (1/x) = i} .

Now, we define the partial exponential sum on Ti associated with f as follows.

Definition 2.2.9. Let f : F2m → F2 be a Boolean function and, for i ∈ F2 , denote by Ti(f) the
partial exponential sum on Ti associated with f , that is

Ti(f) =
∑
x∈Ti

χf (x) .

The following lemma is easily deduced from the equality χ (Trm1 (x)) = 1− 2 Trm1 (x) where
the values of the trace are understood as the integers 0 and 1.

Lemma 2.2.10. Let f : F2m → F2 be a Boolean function. Then

Ti(f) = 1
2 (Ξ(f) + χ (i) Ξ (Trm1 (1/x) + f(x))) .

Finally, we have the following relation between Kloosterman sums and the above partial
exponential sums.

Corollary 2.2.11. Let a ∈ F∗2m . Then Km(a) = −2T1(Trm1 (ax)) = 2T0(Trm1 (ax)).

Proof. We have
T0(Trm1 (ax))− T1(Trm1 (ax)) = Km(a) .

Moreover,
T0(Trm1 (ax)) + T1(Trm1 (ax)) = Ξ (Trm1 (ax)) = 0 .
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2.3 Some results on the sum over the cyclic group U of
characters

From now, n = 2m is an (even) integer. Recall the well known polar decomposition. Let x be an
element of F2n . The conjugate of x over a subfield F2m of F2n will be denoted by x̄ = x2m and
the relative norm with respect to the quadratic field extension F2n/F2m by norm(x) = xx̄. Also,
we denote by U the set {u ∈ F2n | norm(u) = 1} = {u ∈ F2n | u2m+1 = 1} , which is the group
of (2m + 1)-st roots of unity. Since the multiplicative group of the field F2n is cyclic and 2m + 1
divides 2n − 1, the order of U is 2m + 1. Finally, the unit 1 is the single element in F2m of norm
one and every non-zero element x of F2n has a unique decomposition as: x = yu with y ∈ F?2m
and u ∈ U .

In this manuscript, U will always denote the cyclic group of (2m + 1)-st roots of unity that is
{u ∈ F2n | u2m+1 = 1}.

In the following we provide several technical results and some mathematical tools that we
need subsequently in Chapter 5 and Chapter 8. More precisely, we are interested to express
some particular exponential sums over the cyclic group U by means of Kloosterman sums and
cubic sums. Such expressions will be useful to exhibit conditions of bentness and semi-bentness
(of some Boolean functions in polynomial forms) involving Kloosterman sums and cubic sums.

First we state a well-known result. We give a proof because the result is important.

Proposition 2.3.1. ([156], [84], [159],[56]) Let n = 2m, r a positive integer such that gcd(r, 2m+
1) = 1 and a ∈ F2m . Then, ∑

u∈U
χ (Trn1 (aur)) = 1−Km(a)

Proof. Let a ∈ F?2m . We have

Km(a) =
∑

x∈F2m ,Trm1 (1/x)=0

χ(Trm1 (ax))−
∑

x∈F2m ,Trm1 (1/x)=1

χ(Trm1 (ax))

But

∑
x∈F2m ,Trm1 (1/x)=0

χ(Trm1 (ax)) +
∑

x∈F2m ,Trm1 (1/x)=1

χ(Trm1 (ax)) =
∑
x∈F2m

χ(Trm1 (ax)) = 0.

Hence

Km(a) = −2
∑

x∈F2m ,Trm1 (1/x)=1

χ(Trm1 (ax))

u 7→ u+ u−1 is onto and 2-to-1 from U \ {1} to {x ∈ F2m,Trm1 (1/x) = 1} :

Km(a) = −
∑

u∈U,u 6=1
χ(Trm1 (a(u+ u−1)))

But u+ u−1 = Trnm(u). Thus



46 Chapter 2. Some mathematical tools

Km(a) = −
∑

u∈U,u 6=1
χ(Trn1 (au) = −

∑
u∈U

χ(Trn1 (au) + 1

Now, it is clear that for r coprime with 2m + 1 we have,
∑
u∈U

χ (Trn1 (aur)) =
∑
u∈U

χ (Trn1 (au)).

The following result extends Proposition 2.3.1.

Proposition 2.3.2. ([199]) Let n = 2m with m odd. Let a ∈ F?2m , b ∈ F?4 and r a positive
integer such that gcd(r, 2m + 1) = 1. Then,

∑
u∈U

χ
(

Trn1 (aur) + Tr2
1(bu

2m+1
3 )

)
= Km(a)− 1 + λCm(a, a)

3

where λ = 4 if b = 1 and λ = −2 otherwise.

Proof. Set S(a, b) :=
∑
u∈U χ

(
Trn1 (aur) + Tr2

1(bu 2m+1
3 )

)
. The mapping u 7→ ur is a permutation

of U (we denote by x 7→ x
1
r its inverse map) since gcd(r, 2m + 1) = 1. Hence, S(a, b) =∑

u∈U χ
(

Trn1 (au) + Tr2
1(bu 1

r
2m+1

3 )
)
. Now, m being odd, we have the the following decomposition

of U :
U = V ∪ ζV ∪ ζ2V

where V := {u3 | u ∈ U} and ζ is a generator of the cyclic group U . Therefore,

S(a, b) =
2∑
j=0

∑
v∈V

χ
(

Trn1 (aζjv) + Tr2
1(bζ

j
r

2m+1
3 )

)

=
2∑
j=0

∑
v∈V

χ
(
Trn1 (aζjv)

)
χ
(

Tr2
1(bζ

j
r

2m+1
3 ))

)

=
2∑
j=0

χ
(

Tr2
1(bζ

j
r

2m+1
3 )

)∑
v∈V

χ
(
Trn1 (aζjv)

)
.

For j ∈ {0, 1, 2}, set
σj(a) :=

∑
v∈V

χ(Trn1 (aζjv)).

Then we have

S(a, b) =
2∑
j=0

χ(Tr2
1(bζ

j
r ·

2m+1
3 ))σj(a).

Remark that, for every a ∈ F2m , σ1(a) = σ2(a). Indeed, ζ2m−2 is an element of V because 3
divides (2m + 1) (since m is odd) and the mapping v 7→ ζ2m−2v2m is a permutation on V . Then,

σ1(a) =
∑
v∈V

χ(Trn1 (aζv)) =
∑
v∈V

χ(Trn1 (aζ2mv2m))

=
∑
v∈V

χ(Trn1 (aζ2(ζ2m−2v2m))) = σ2(a).



2.3. Some results on the sum over the cyclic group U of characters 47

Hence,

S(a, b) = χ(Tr2
1(b))σ0(a) +

(
χ(Tr2

1(bζ 1
r ·

2m+1
3 )) + χ(Tr2

1(bζ 2
r ·

2m+1
3 ))

)
σ1(a).

Now, note that since ζ is a generator element of U , Tr2
1(ζ 1

r ·
2m+1

3 ) = Tr2
1(ζ 2

r ·
2m+1

3 ) = 1.
Moreover, if b ∈ F?4 \ {1} then, χ(Tr2

1(bζ 1
r ·

2m+1
3 )) + χ(Tr2

1(bζ 2
r ·

2m+1
3 )) = 0.

Therefore,

S(a, b) =

 σ0(a)− 2σ1(a) if b = 1

−σ0(a) if b 6= 1

Now, one can express the sum σ1(a) by means of σ0(a). For that, we compute in two ways
the sum

∑
b∈F?4

S(a, b), for every a ∈ F?2m .

Firstly,

∑
b∈F?4

S(a, b) =
∑
b∈F?4

 2∑
j=0

χ
(

Tr2
1(bζ

j
r

2m+1
3 )

)
σj(a)


=

2∑
j=0

(∑
b∈F4

χ
(

Tr2
1(bζ

j
r

2m+1
3 )

)
− 1
)
σj(a).

We get (since σ2(a) = σ1(a))

∑
b∈F?4

S(a, b) = −
2∑
j=0

σj(a) = −σ0(a)− 2σ1(a).

Secondly, for a ∈ F?2m , we have∑
b∈F?4

S(a, b) =
∑
u∈U

χ(Trn1 (au))
∑
b∈F?4

χ(Tr2
1(bu 1

r
2m+1

3 ))

=
∑
u∈U

χ(Trn1 (au))
(∑
b∈F4

χ(Tr2
1(bu 1

r
2m+1

3 ))− 1
)
.

Hence, ∑
b∈F?4

S(a, b) = −
∑
u∈U

χ(Trn1 (au)).

Thanks to Proposition 2.3.1, we obtain∑
b∈F?4

S(a, b) = Km(a)− 1.

Collecting the two expressions of
∑
b∈F?4

S(a, b), we finally obtain:

σ0(a) + 2σ1(a) = 1−Km(a)
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That is, σ1(a) = (1−Km(a)− σ0(a)) /2.
Thus,

S(a, b) =

 2σ0(a) +Km(a)− 1 if b = 1

−σ0(a) if b 6= 1

To conclude, we have to express the sum σ0(a) by means of Kloosterman sums and cubic
sums. First, recall that, since n is even, the mapping x 7→ x3 is 3-to-1 from F2n to F2n . Moreover,
the mapping x 7→ x3 is also 3-to-1 from U to itself (since m is odd, 3 divides 2m + 1, the group
F?4 is then contained in U). That implies in particular that

σ0(a) :=
∑
v∈V

χ(Trn1 (av)) = 1
3
∑
u∈U

χ(Trn1 (au3)).

Thanks to the transitivity of trace function, we have Trn1 (au3) = Trm1 (Trnm(au3)) = Trm1 (au3 +
(au3)2m). Then

σ0(a) = 1
3
∑
u∈U

χ(Trm1 (a(u3 + u−3))).

Moreover, we make use of the fact, that every element 1/c where c ∈ F?2m with Trm1 (c) = 1 can be
uniquely represented as u+ u2m with u ∈ U . Note now that 1/c3 + 1/c = u3 + u−3. Therefore,
using the fact that the mapping c 7→ 1/c is a permutation on F2m , we obtain

σ0(a) = (1 +
∑

u∈U\{1}

χ(Trm1 (a(u3 + u−3))))/3

= (1 + 2
∑
c∈F2m

Trm1 (c)=1

χ(Trm1 (a/c3 + a/c)))/3

= (1 + 2
∑
c∈F2m

Trm1 (1/c)=1

χ(Trm1 (ac3 + ac)))/3

Now, Charpin et al. have proved in [57] that

2
∑

c∈F2m ,Trm1 (1/c)=1

χ(Trm1 (ac3 + ac)) = 2Cm(a, a)−Km(a)

from which we deduce that

σ0(a) = (2Cm(a, a) + 1−Km(a))/3.

and then

S(a, b) =

 (Km(a)− 1 + 4Cm(a, a))/3 if b = 1

(Km(a)− 1− 2Cm(a, a))/3 if b 6= 1
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In Chapter 5 and Chapter 8, we will need to produce necessary and suffisant conditions so
that the sum involved in the previous proposition takes the value 1. To this end, we need the
following statement.

Corollary 2.3.3. ([199]) Let n = 2m with m > 3 odd. Let a ∈ F2m , b ∈ F4 and r be a positive
integer such that gcd(r, 2m + 1) = 1. Then∑

u∈U
χ
(

Trn1 (aur) + Tr2
1(bu

2m+1
3 )

)
= 1 (2.1)

if and only if

• b = 0 and Km(a) = 0,

• or, b 6= 0 and Km(a) = 4.

Proof. Assume that (2.1) holds. Assume b = 0. According to Proposition 2.3.1, (2.1) is
equivalent to 1−Km(a) = 1, that is, Km(a) = 0.
Assume b 6= 0. If Trm1 (a1/3) = 0 then Cm(a, a) = 0 according to Proposition 2.2.5. Thus, accord-
ing to Proposition 2.3.2, (2.1) is reduced to Km(a)−1

3 = 1, that is, (2.1) is equivalent to Km(a) = 4.
If Trm1 (a1/3) = 1. According to Proposition 2.2.5, Cm(a, a) = Cm(1, a2/3) = εa

( 2
m

)
2(m+1)/2 with

εa = ±1. Thus, according to Proposition 2.3.2, (2.1) is equivalent to Km(a) = 4±
( 2
m

)
2(m+3)/2

if b 6= 1 or Km(a) = 4±
( 2
m

)
2(m+5)/2 if b = 1. Now, Proposition 2.2.2 says that the Kloosterman

sum Km(a) takes integer values in the range [−2(m+2)/2 + 1, 2(m+2)/2 + 1]. But, the values
4±

( 2
m

)
2(m+3)/2 and 4±

( 2
m

)
2(m+5)/2 do not belong to [−2(m+2)/2 + 1, 2(m+2)/2 + 1] for every

m > 3 proving that (2.1) is never satisfied if Trm1 (a1/3) = 1.
Conversely, assume that b = 0 andKm(a) = 0. According to Proposition 2.3.1,

∑
u∈U χ(Trn1 (au)) =

1−Km(a) = 1. Assume that b 6= 0 and Km(a) = 4. According to Proposition 2.2.3, Km(a) = 4
implies that Trm1 (a1/3) = 0 and thus that Cm(a, a) = 0, thanks to Proposition 2.2.5. Equality
(2.1) follows then from Proposition 2.3.2.

The following technical result will also be useful in Chapter 8.

Proposition 2.3.4. ([199]) Let n = 2m with m odd. Let b ∈ F?4 , a ∈ F?2m and ζ be a generator
of the cyclic group U . Let i ∈ {0, 1}. Then,

If m 6≡ 3 (mod 6), we have∑
u∈U

χ
(

Trn1 (aζiu3) + Tr2
1(bu

2m+1
3 )

)
= (Km(a)− 1 + µiCm(a, a))/3.

where µ0 = −2 and µ1 = 1.

Proof. Set
S′(a, b) :=

∑
u∈U

χ
(

Trn1 (au3) + Tr2
1(bu

2m+1
3 )

)
;

S′′(a, b) :=
∑
u∈U

χ
(

Trn1 (aζu3) + Tr2
1(bu

2m+1
3 )

)
.

Keeping the same notation as in the proof of Proposition 2.3.2:
for j ∈ {0, 1, 2}, we set

σj(a) :=
∑
v∈V

χ(Trn1 (aζjv)).
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Now, recall that m being odd, one can decompose U as follows

U = V ∪ ζV ∪ ζ2V

where V = {u3 | u ∈ U}. Thus, every element u ∈ U can be uniquely decomposed as u = ζjv
with j ∈ {0, 1, 2} and v ∈ V .

Thus (in the second equality, we use the fact that the v is a cube of an element of U which is
a cyclic group of order 2m + 1)

S′(a, b) =
2∑
j=0

∑
v∈V

χ(Trn1 (aζ3jv3) + Tr2
1(bζj

2m+1
3 v

2m+1
3 ))

=
2∑
j=0

∑
v∈V

χ(Trn1 (aζ3jv3) + Tr2
1(bζj

2m+1
3 )).

Similarly,

S′′(a, b) =
2∑
j=0

∑
v∈V

χ(Trn1 (aζ3j+1v3) + Tr2
1(bζj

2m+1
3 v

2m+1
3 ))

=
2∑
j=0

∑
v∈V

χ(Trn1 (aζ3j+1v3) + Tr2
1(bζj

2m+1
3 )).

Now, since m 6≡ 3 (mod 6) then, integers 3 and 2m+1
3 are co-prime. The mapping v 7→ v3 is

then a permutation of V and thus for (i, j) ∈ {0, 1, 2}2, we have (in the second equality, we use
the fact that the mapping v 7→ ζ3jv is a permutation of V )

S′(a, b) =
2∑
j=0

∑
v∈V

χ(Trn1 (aζ3jv) + Tr2
1(bζj

2m+1
3 ))

=
2∑
j=0

∑
v∈V

χ(Trn1 (av) + Tr2
1(bζj

2m+1
3 )).

Similarly,

S′′(a, b) =
2∑
j=0

∑
v∈V

χ(Trn1 (aζ3j+1v) + Tr2
1(bζj

2m+1
3 ))

=
2∑
j=0

∑
v∈V

χ(Trn1 (aζv) + Tr2
1(bζj

2m+1
3 )).

Now, the set {b, bζ 2m+1
3 , bζ2 2m+1

3 } is equal to F?4 (which contains two elements of absolute
trace 1 on F4 and one element of absolute trace 0 on F4). We thus deduce that
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S′(a, b) =
∑
v∈V

χ(Trn1 (av))
2∑
j=0

χ(Tr2
1(bζj

2m+1
3 ))

= −
∑
v∈V

χ(Trn1 (av)) = −σ0(a).

Similarly,

S′′(a, b) =
∑
v∈V

χ(Trn1 (aζv))
2∑
j=0

χ(Tr2
1(bζj

2m+1
3 ))

= −
∑
v∈V

χ(Trn1 (aζv)) = −σ1(a).

We thus conclude thanks to the relations between σ0(a), σ1(a), Km(a) and Cm(a, a) (obtained
in the proof of Proposition 2.3.2) that is,

σ0(a) = (2Cm(a, a) + 1−Km(a))/3

and
σ1(a) = (1−Km(a)− σ0(a))/2.

In Chapter 8, we will need to exhibit necessary and suffisant conditions so that the sum
involved in the previous proposition takes the value 1. To this end, we need the following
statement.

Corollary 2.3.5. ([199]) Let n = 2m with m odd. Let a ∈ F2m , b ∈ F?4 , ζ a generator of the
cyclic group U and i ∈ {0, 1}.

a) If m 6≡ 3 (mod 6) then,∑
u∈U

χ
(

Trn1 (aζiu3) + Tr2
1(bu

2m+1
3 )

)
= 1 (2.2)

if and only if

• i = 0 and Km(a) = 4,

• or, i = 1 and Km(a) + Cm(a, a) = 4.

b) If m ≡ 3 (mod 6) then∑
u∈U

χ
(

Trn1 (aζiu3) + Tr2
1(bu

2m+1
3 )

)
6= 1. (2.3)

Proof.
a) Assume m 6≡ 3 (mod 6). Assume that (2.2) holds. If i = 0, equation (2.2) is equivalent to

Km(a) = 4 + 2Cm(a, a) by Proposition 2.3.4. If Trm1 (a1/3) = 0 then, according to Proposition
2.2.5, Cm(a, a) = 0. Therefore, equation (2.2) is equivalent to Km(a) = 4. If Trm1 (a1/3) = 1 then,
according to Proposition 2.2.5, Cm(a, a) = Cm(1, a2/3) = εa

( 2
m

)
2(m+1)/2 with εa = ±1. But,
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4±
( 2
m

)
2(m+3)/2 6∈ [−2(m+2)/2 + 1, 2(m+2)/2 + 1].

Now, if i = 1, equation (2.2) is equivalent to Km(a) + Cm(a, a) = 4, by Proposition 2.3.4.
Conversely, let us prove (2.2). Assume i = 0 and Km(a) = 4. That implies that Trm1 (a1/3) = 0
(by Proposition 2.2.3) and thus that Cm(a, a) = 0 (by Proposition 2.2.5). Equation (2.2)
follows then from the first identity of Proposition 2.3.4. Likewise, in the case where i = 1 and
Km(a) + Cm(a, a) = 4, equation (2.2) is deduced from the second identity of Proposition 2.3.4.
b) Assume m ≡ 3 (mod 6). Then 2m + 1 is a multiple of 9. Therefore, the mapping u 7→ u3,
being 3-to-1 from U to itself, we have∑

u∈U
χ
(

Trn1 (aζiu3) + Tr2
1(bu

2m+1
3 )

)
= 3

∑
v∈V

χ
(

Trn1 (aζiv) + Tr2
1(bv

2m+1
9 )

)
where V = {u3, u ∈ U}, which implies (2.3).

Finally, we also have to express another type of exponential sums over U in terms of Kloosterman
sums and cubic sums. This result will be useful in Chapter 5.

Proposition 2.3.6. ([199]) Let m be an odd integer. Let a ∈ F?2m . U denotes the set of the
(2m + 1)-th roots of unity in F2n . Then, we have∑

u∈U
χ(Trn1 (au3)) = 1−Km(a) + 2Cm(a, a).

Proof. Using the transitivity rule of trace function, we have

Trn1 (au3)=Trm1 (Trnm(au3)) = Trm1 (au3 + (au3)2m).

Hence ∑
u∈U

χ(Trn1 (au3)) =
∑
u∈U

χ(Trm1 (a(u3 + u−3))).

Now, recall that every element 1/c where c ∈ F?2m with Trm1 (c) = 1 can be uniquely represented
as u+ u2m with u ∈ U . Therefore, since 1/c3 + 1/c = u3 + u−3 ( indeed, 1/c3 = (u+ u2m)3 =
(u+ u−1)3 = u3 + u−3 + uu−1(u+ u−1) = u3 + u−3 + 1/c) , we have∑

u∈U
χ(Trn1 (au3)) = 1 +

∑
u∈U\{1}

χ(Trm1 (a(u3 + u−3)))

= 1 + 2
∑
c∈F2m

Trm1 (c)=1

χ(Trm1 (a/c3 + a/c))

= 1 + 2
∑
c∈F2m

Trm1 (1/c)=1

χ(Trm1 (ac3 + ac))

In the last equality, we use the fact that the map c 7→ 1/c is a permutation on F2m . Now, Charpin,
Helleseth and Zinoviev have proved in [57] that when m is odd, we have

2
∑

c∈F2m ,Trm1 (1/c)=1

χ(Trm1 (ac3 + ac)) = 2Cm(a, a)−Km(a).

from which we deduce the result.
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2.4 Binary Dickson polynomial
The family of binary Dickson polynomials Dr(X) ∈ F2 [X] of degree r is defined by

Dr(X) =
b r2 c∑
i=0

r

r − i

(
r − i
i

)
Xr−2i, r = 2, 3, · · ·

Dickson polynomials can also be defined by the following recurrence relation:

Di+2(X) = XDi+1(X) +Di(X)

with initial values
D0(X) = 0, D1(X) = X.

For any non-zero positive integers r and p, Dickson polynomials satisfy:

1. deg(Dr(X)) = r,

2. Drp(X) = Dr(Dp(X)),

3. Dr(x+ x−1) = xr + x−r.

The reader can refer to [224] for many useful properties and applications of Dickson polynomials.
We give the list of the first eleven Dickson polynomials:
D0(X) = 0
D1(X) = X
D2(X) = X2

D3(X) = X +X3

D4(X) = X4

D5(X) = X +X3 +X5

D6(X) = X2 +X6

D7(X) = X +X5 +X7

D8(X) = X8

D9(X) = X +X5 +X7 +X9

D10(X) = X2 +X6 +X10

Dillon and Dobbertin [88, pp 355–356] remarked that a more careful analysis shows that
Dickson polynomials leave the sets of elements whose inverses have a given absolute trace fixed. 2

Lemma 2.4.1 ([88], [102, Lemma 1]). Let r ≥ 0 be an integer and x ∈ F2m . Then

Trm1
(

1
Dr(x)

)
= Trm1

(
1
x

)
.

This property was recently used and reproved in a elementary way by Charpin, Helleseth and
Zinoviev [61, Proof of Lemma 14] for D3, as well as Wang et al. [257, Proof of Proposition 5] for
the case D5, who remarked that

1
D3(x) = 1

x
+ 1
x+ 1 + 1

x2 + 1 ,
1

D5(x) = 1
x

+ x

x2 + x+ 1 + x

x4 + x2 + 1 .

A much more general fact is actually true as we now demonstrate in an alternative manner. To
this end auxiliary polynomials are needed.

2A weaker statement is also proved by Ranto [225, Lemma 4] who assumes that k = gcd(r, 2m − 1) = 1.
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Definition 2.4.2. Let r ≥ 0 be an integer. Define the polynomial fr(x) as

Dr(x) =
{
xfr(x)2 if r is odd ,
x2fr(x)2 if r is even .

The following relation between Dr and fr is then verified.

Lemma 2.4.3. ([102]) Let r ≥ 0 be an integer. Then

x+Dr(x) + x2fr(x)fr+1(x) +Dr+1(x) = 0 .

Proof. We equivalently show that

x2 +Dr(x)2 + x4fr(x)2fr+1(x)2 +Dr+1(x)2 = 0 ,

which can be rewritten as

x2 +Dr(x)2 + xDr(x)Dr+1(x) +Dr+1(x)2 = 0 .

For r = 0, this is trivially verified. For r ≥ 1, write down Dr+1(x) as Dr+1(x) = xDr(x) +
Dr−1(x) and the result follows by induction.

As a corollary we get a general expression for 1
Dr(x) involving fr(x).

Corollary 2.4.4. ([102]) Let r ≥ 1 be an integer. Then

1
Dr(x) = 1

x
+ fr−1(x)

fr(x) + fr−1(x)2

fr(x)2 ,

= 1
x

+ fr+1(x)
fr(x) + fr+1(x)2

fr(x)2 .

Proof. Since D2r(x) = Dr(x), we can assume that r is odd without loss of generality. Then

1
Dr(x) = 1

xfr(x)2 = x

x2fr(x)2

= Dr(x) + x2fr(x)fr+1(x) +Dr+1(x)
x2fr(x)2

= xfr(x)2 + x2fr(x)fr+1(x) + x2fr+1(x)2

x2fr(x)2

= 1
x

+ fr+1(x)
fr(x) + fr+1(x)2

fr(x)2 ;

the other equality being deduced in a similar way.

Lemma 2.4.1 directly follows from Corollary 2.4.4, thus yielding an alternative and more
concrete proof of it.

A well-known result by Chou, Gomez-Calderon and Mullen [66] describes the cardinality of
the preimage of an arbitrary element.

Theorem 2.4.5 ([66, Theorem 9], [167, Theorem 3.26]). Let F2m be the finite field with 2m
elements and 1 ≤ r ≤ 2n − 1 be an integer. Let

k = gcd(r, 2m − 1), l = gcd(r, 2m + 1) .
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Let x, y ∈ F2m be two elements such that Dr(x) = y. Then

#D−1
r (y) =


k+l

2 if y = 0 ,
k if y 6= 0 and Trm1 (1/x) = 0 ,
l if y 6= 0 and Trm1 (1/x) = 1 .

As a corollary, they obtain the cardinalities of the value sets of Dickson polynomials [66, Theo-
rems 10 and 10’], [167, Theorems 3.27 and 3.30], and in particular a proof of the characterizations
of Dickson polynomials as permutation polynomials [66, Corollary 11], [167, Corollary 3.28].

The proof heavily relies on the study of the map

F2n → F2m

x 7→ x+ x−1

and Waring’s formula [167, Theorem 1.1], [168, Theorem 1.76] which ensures that [167, Equa-
tion 2.2], [168, Equation 7.8]

Dr(x+ x−1) = xr + x−r .

The following property is then a corollary to the above results.
Corollary 2.4.6. ([102]) Let 1 ≤ r ≤ 2n − 1 be an integer. Then the map x 7→ Dr(x) induces a
permutation of
• T0 if and only if k = gcd(r, 2m − 1) = 1;

• T1 if and only if l = gcd(r, 2m + 1) = 1.
Proof. Lemma 2.4.1 shows that Dr maps Ti into Ti for i ∈ F2 . One then concludes using
Theorem 2.4.5 which gives the size of the preimage of x ∈ Ti.

We define the corresponding exponential sums as follows. Recall that for a Boolean function
f : F2m → F2 , its “sign” function is the integer-valued function χ (f) = χf = (−1)f , i.e. f
composed with the additive character of F2 .
Definition 2.4.7. Let f : F2m → F2 be a Boolean function. We denote by T ri (f) the exponential
sum on Ti for i ∈ F2 for f ◦Dr, that is

T ri (f) =
∑
x∈Ti

χf◦Dr (x) .

Moreover, let Ti(f) = T 1
i (f).

The following lemma is easily deduced from the equality (−1)Trm1 (x) = 1− 2 Trm1 (x) where
the values of the trace are understood as the integers 0 and 1.
Lemma 2.4.8. Let f : F2m → F2 be a Boolean function. Then

Ti(f) = 1
2

 ∑
x∈F2m

χf (x) + (−1)i
∑
x∈F2m

χ (Trm1 (1/x) + f(x))

 .

And we finally record the following corollary.
Corollary 2.4.9. Let 1 ≤ r ≤ 2n − 1 be an integer and f : F2m → F2 be a Boolean function.
Assume moreover that gcd(r, 2m − 1) = 1. Then

T r0 (f) = T0(f) ,

T r1 (f) =
∑
x∈F2m

χf◦Dr (x)− T0(f) .
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3.1 Cryptographic framework for Boolean functions
Stream ciphers are commonly used for encrypting and decrypting messages. Stream ciphers have
several advantages which make them suitable for some applications. Most notably, they are
usually faster and have a lower hardware complexity than block ciphers. They are for instance
appropriate when buffering is limited, since the binary digits are individually encrypted and
decrypted. In stream cipher the encryption and the decryption consists in adding bitwise the
input stream and a pseudo random sequence generated by a pseudo-random generator taking
as input a secret information, the secret key. Classical tools to produce such pseudo-random
sequences, that are called keystream, are Linear Feedback Registers (LFSR). Stream ciphers can
use several LFSR or a single LFSR. As indicated by its name, LFSR are linear and linear systems
are governed by linear relationships between their inputs and outputs. Since linear dependencies
can relatively easily be analyzed, stream ciphers designed only with LFSR would be highly insecure.

To produce more secure encryption scheme, Boolean functions are used to produce the
keystream from LSFR entries. Stream ciphers often use a single Boolean to have a good efficiency,
that is, to be extremely fast in hardware and software. The Boolean function allows to make the
relationship between the plaintext and the ciphertext as complex as possible. More precisely, a
bit of the ciphertext is obtained from a bit of the plaintext by adding bitwise a key digit (the
ouput of the Boolean function) whose dependance upon the LFSR entries (the secret information)
is nonlinear. Thus, the security of such cryptosystems deeply relies on the choice of the Boolean
function because the complexity of the relationship between the plaintext and the ciphertext
depends entirely on the Boolean function. Indeed, some properties of the Boolean function can
be exploited to gain access to the contents of encrypted messages, even if the key is unknown.
Therefore Boolean functions needs to have some important characteristics to resist to several
types of attacks that are called security criteria.

Classical models for such cryptosystems are stream ciphers: this design is loosely based on the
one-time pad [191, 6.1.1], or Vernam cipher, for which a random keystream is used to encrypt the
plaintext one bit at a time. Hence, to build a stream cipher, a suitable pseudorandom keystream
generator must be designed. A common construction is to use one or several linear feedback shift
registers [191, 6.2.1] (LFSR) filtered or combined by a Boolean function. The filtered model is
usually composed of one or several LFSR’s, and of a nonlinear combining or filtering function
f which produces the output, given the state of the linear part. In the combiner generator
model, the outputs to several Linear Feedback Shift Registers are combined by a Boolean function
giving, at each clock cycle, one bit of the pseudo-random sequence. Both models are depicted in
Figures 3.1 and 3.2.

3.2 Main cryptographic criteria for Boolean functions
The design of conventional cryptographic systems relies on two fundamental principles introduced
by Claude Shannon in his paper [233] Communication Theory of Secrecy Systems, published in
1949. : confusion and diffusion . In cryptography, confusion and diffusion are two properties of the
operation of a secure cipher. Confusion aims at concealing any algebraic structure in the system.
It is closely related to the complexity (that is, the cryptographic complexity, which is different
from circuit complexity, for instance.) of the involved Boolean functions. In Shannon’s original
definitions, confusion refers to making the relationship between the plaintext and the ciphertext
as complex and involved as possible; diffusion refers to the property that the redundancy in the
statistics of the plaintext is "dissipated" in the statistics of the ciphertext. In other words, the
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Figure 3.1 – The filter model

LFSR 1

LFSR 2
...

LFSR n

f

x
(t)
1

x
(t)
2

x
(t)
n

⊕k(t)

c(t)

m(t)

Figure 3.2 – The combiner model

non-uniformity in the distribution of the individual letters (and pairs of neighbouring letters) in
the plaintext should be redistributed into the non-uniformity in the distribution of much larger
structures of the ciphertext, which is much harder to detect. Diffusion means that the output bits
should depend on the input bits in a very complex way. In a cipher with good diffusion, if one bit
of the plaintext is changed, then the ciphertext should change completely, in an unpredictable
or pseudorandom manner. Diffusion consists then in spreading out the influence of any minor
modification of the input data or of the key over all outputs.

These two principles were stated more than half a century ago. Since then, many attacks have
been found against the diverse known cryptosystems, and the relevance of these two principles
has always been confirmed. The known attacks on each cryptosystem lead to criteria that
the implemented cryptographic functions must satisfy. More precisely, the resistance of the
cryptosystems to the known attacks can be quantified through some fundamental characteristics
(some, more related to confusion, and some, more related to diffusion) of the Boolean functions used
in them; and the design of these cryptographic functions needs to consider various characteristics
simultaneously.

3.2.1 The algebraic degree
The linear complexity of the pseudorandom generator depends on the algebraic degree of its
filtering or combining function, whence the importance for it to have a high algebraic degree
in order to avoid the Berlekamp–Massey attacks [180], [191, 6.2.3], [31, 4.1.1] and, for the filter
model, the more recent Rønjom–Helleseth attack [226]. It is obviously verified from the definition
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of the algebraic normal form that the algebraic degree of a Boolean function in n variables is at
most n.

3.2.2 Balancedness
To avoid statistical dependence between the input (the plaintext) and the output (the ciphertext.)
of the stream cipher and to prevent distinguishing attacks [31, 4.1.3], cryptographic functions
must be balanced functions. A balanced Boolean function is a function whose output yields as
many 0s as 1s over its input set. This means that for a uniformly random input string of bits,
the probalility of getting a 1 is 1

2 . Equivalently, a Boolean function in n variables is said to be
balanced if it has Hamming weight 2n−1. Note that the algebraic degree of an n-variable Boolean
function is at most n− 1.

3.2.3 The nonlinearity
The cryptographic criterion of interest in this manuscript (in particular in Chapter 4) is that of
nonlinearity and the related notion of bentness. Nonlinearity characterizes the distance between
a Boolean function and the set of affine functions (i.e. those of algebraic degree 0 or 1) and is
naturally defined using the Hamming distance. More precisely, the nonlinearity of f , denoted by
nl(f), is the minimum distance to affine functions (in terms of Reed-Muller codes, it is equal to
the minimum distance of the linear code Reed-Muller code RM(1, n) ∪ (f +RM(1, n)) where
RM(1, n) denote the Reed-Muller code of order 1 and length 2n). It can be shown that the
nonlinearity of a Boolean function in n variables is upper bounded by 2n−1 − 2n/2−1. In order
to provide confusion, cryptographic functions must lie at large Hamming distance (in the sens,
close to the maximum value 2n−1 − 2n/2−1) to all affine functions, equivalently must be of a large
nonlinearity (in the sens, close to the upper bound 2n−1 − 2n/2−1). Boolean functions achieving
maximal nonlinearity are called bent functions but such functions can not be directly used in the
filter and combiner models; in particular, they are not balanced.

Nonlinearity criteria for Boolean functions are classified in view of their suitability for
cryptographic design. The classification is set up in terms of the largest transformation group
leaving a criterion invariant. In this respect two criteria turn out to be of special interest,
the distance to linear structures and the distance to affine functions, which are shown to be
invariant under all affine transformations. A high nonlinearity is surely one of the most important
cryptographic criteria. In the case of stream ciphers, high nonlinearity is important to prevent fast
correlation attacks [190] and best affine approximation attacks [89]. The larger is the nonlinearity,
the less efficient are fast correlation attacks [22, 64, 107, 141, 140, 142, 188] and linear attack1.

3.2.4 Correlation immune and resiliency
To avoid a divide and conquer attack, called correlation attack (see e.g.[22, 251, 187, 237]) on the
combiner model, the combining function must avoid low order correlation . This is the reason why
such a combining function is often chosen with a rather high correlation immunity order. There
are two equivalent ways for characterising the correlation immunity: either by means of the Walsh
transform or by means of the sub-functions. Originally, an n-variable Boolean function f is said to
be correlation immune of order t (or t-th order correlation immune) if any sub-function deduced
from f by fixing at most t inputs has the same output distribution as f . On the other hand,

1We shall say that there is a correlation between a Boolean function f and a linear function ` if dH(f, `)
is different from 2n−1. Any Boolean function has correlation with some linear functions of its input. But
this correlation should be small: the existence of affine approximations of the Boolean functions involved in a
cryptosystem allows in various situations (block ciphers, stream ciphers) to build attacks on this system ([267, 182]).
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correlation immunity can be characterised by means of the Walsh transform of f . A Boolean
function f is said correlation immune of order t if and only if the Walsh transform of f vanishes
at all non zero vector of Hamming weight at most t ([266]). If f is moreover balanced, then f is
said to be t-resilient. This definition of resiliency was introduced by Siegenthaler in [236]. If f is
not m-resilient, then there exists a correlation between the output to the function and (at most)
m coordinates of its input; if m is small, the divide-and-conquer attack uses this weakness for
attacking a system using f as combining function. To conclude, briefly, a Boolean function used
in the combiner model should be resilient in order to resist correlation attacks [237]. This is not
mandatory for functions used in the filter model. In the latter model, 1-resiliency is commonly
considered to be sufficient and can be obtained by choosing another function in the same affine
equivalence class.

3.2.5 Algebraic immunity

Standard algebraic attacks were introduced in 2003 by Courtois and Meier [75]. Algebraic
attacks recover the secret key, or at least the initialization of the system, by solving a system of
multivariate algebraic equations. The idea that the key bits can be characterized as the solutions
of a system of multivariate equations comes from C. Shannon [233]. In practice, for cryptosystems
which are robust against the usual attacks such as the Berlekamp-Massey attack, this system
is too complex to be solved 2(its equations being highly nonlinear). However, in the case of
stream ciphers, we can get a very overdefined system (i.e. a system with a number of linearly
independent equations much greater than the number of unknowns). In view of these attacks, the
study of the set of annihilators of a Boolean function has become very important and a Boolean
function should have a high algebraic immunity. We define these notions below.

Definition 3.2.1 (Annihilator [189]). Let f be a Boolean function in n variables. A nonzero
Boolean function g is called an annihilator of f if fg = 0.

Definition 3.2.2 (Algebraic immunity [189]). The algebraic immunity of f , denoted by AI(f),
is the minimum value of d such that f or its complement 1 + f admits an annihilator of algebraic
degree d.

Clearly, the algebraic immunity of a Boolean function f is less than or equal to its algebraic
degree since 1 ⊕ f is an annihilator of f . As shown in [75], the algebraic immunity of any
n-variable function is bounded by dn/2e. Moreover, it was shown in [77] that the Hamming
weight of a Boolean function f with given algebraic immunity satisfies :

∑AI(f)−1
i=0

(
n
i

)
≤ wt(f) ≤∑n−AI(f)

i=0
(
n
i

)
. In particular, if n is odd and f has optimum algebraic immunity then f is balanced.

A high value of algebraic immunity is now an absolutely necessary cryptographic criterion for
a resistance to algebraic attacks but is not sufficient, because of a more general kind of attacks
was indeed introduced by Courtois [74] in 2003 as well, called fast algebraic attacks3 (which work
if one can find g of low degree and h 6= 0 of reasonable degree such that fg = h, see [74, 122]).

2The number of equations can then be much larger than the number of unknowns. This makes less complex the
resolution of the system by using Groebner basis (see [99]), and even allows linearizing the system (i.e. obtaining a
system of linear equations by replacing every monomial of degree greater than 1 by a new unknown); the resulting
linear system has however too many unkwnowns and cannot be solved.

3For these attacks, the product of f or its complement 1 + f with another function g of low degree should not
be zero, as for standard algebraic attacks, but of lower degree, hence generalizing the former attacks and making
the notion of algebraic immunity already insufficient.
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3.3 Trade-offs between the different criteria
Cryptographic functions having the maximum nonlinearity (that is, bent functions) are never
balanced. Moreover, Siegenthaler’s bound [236] states that the algebraic degree of an n-variable
t-th order correlation immune Boolean function is necessarily less than or equal to n− t [236].
On the other hand, the nonlinearity of a t-th order correlation immune Boolean function is
necessarily less than or equal to 2n−1− 2t if t > n

2 − 1 and 2n−1− 2n2−1− 2t otherwise [46]. When
the Boolean function is moreover balanced, the upper bounds on its algebraic degree and its
nonlinearity are lower. Indeed, the algebraic degree is less than or equal to n − t − 1 and the
nonlinearity is upper bounded by 2n−1 − 2t+1 if n2 − 1 < t < n − 1 and 2n−1 − 2n2−1 − 2t+1 if
t ≤ n

2 − 1. Therefore, the correlation immunity criterion is not compatible with a high algebraic
degree (necessary to withstand Berlekamp-Massey attack) and a high nonlinearity (necessary
for avoiding attacks using linear approximation of the function). Moreover, the recent algebraic
attacks, e.g [72, 73], highlighted the need for having a high algebraic degree as well as a high
algebraic immunity so that stream ciphers can resist to these attacks. Now, there seems to be
some kind of contradiction for Boolean functions between having high correlation immunity and
optimum or nearly optimum algebraic immunity; also, much attention having been given to
algebraic immunity recently, several examples of functions having optimum algebraic immunity
could be found but no example of correlation immune Boolean function with optimum algebraic
immunity.

As we have seen, there are numerous cryptographic requirements for Boolean functions (in
fact there exist other criteria such as Strict Avalanche criterion and propagation criterion (see
[31], Section 8.4.1, pages 303-305 and pages 308-311). Cryptographic function must necessarily
satisfy some of them bearing on balancedness, algebraic degree, nonlinearity, algebraic immunity
and must have a good resistance to fast algebraic attacks. Such properties allow the system
designer to quantify the level of resistance of the system to attacks. It is often impossible to satisfy
simultaneously several criteria at once, so that compromises have to be made, and trade-offs
need to be quantified . Indeed, the difficulty precisely lies in finding the best trade-offs between
all criteria and proposing concrete constructions of functions achieving them. An additional
important motive is the fact that the current situation of symmetric cryptography is rather
fragile because of recent progress in cryptanalysis. As explained Claude Carlet in his Book’s
Chapter dealing with Boolean functions ([31]), it is difficult but not impossible to find functions
satisfying good trade-offs between all these criteria. It is not clear whether it is possible to achieve
additionally resiliency of a sufficient order4, which is necessary for the combiner model. Hence,
the filter model may be more appropriate (future research will determine this).

3.4 Relaxing a cryptographic criterion: the concept of im-
munity profile

As observed in [155], strict correlation immunity is not absolutely required. The work factor to
reconstitute the sequences coming from several registers increases with the number of registers,
and a strict correlation immunity is necessary for small orders only. For higher orders, low
non-zero correlations are sufficient (the lower the order, the lower the allowed correlations). In
[155], the authors allow the restrictions to have output distributions slightly differing from the
distribution of the global function. We propose here an alternate way of relaxing the constraint
of correlation immunity. We allow the Walsh transform to take low values for low orders instead
of being null. We introduce the concept of immunity profile of a Boolean function.

4First-order resiliency is useful for resisting some distinguishing (less dreadful) attacks.
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3.4.1 ϕ-Correlation Immune Boolean functions
Definition 3.4.1. ([40]) Let n be any integer, n ≥ 2. Let ϕ be any integer valued mapping over
the set {0, . . . , n}. A Boolean function f over Fn2 is said to be ϕ-correlation immune if, for any
vector ω ∈ Fn2 ,

|χ̂f (ω)| ≤ ϕ(wt(ω))

where wt(ω) denotes the Hamming weight of vector ω. If f is moreover balanced then f is said to
be ϕ-resilient. The integer mapping ϕ is called the immunity profile of f .

This definition generalizes correlation immunity as t-th order correlation immune Boolean
functions are ϕ-correlation immune with ϕ(i) = 0 for 1 ≤ i ≤ t and ϕ(i) = 2n for i ≥ t + 1 or
i = 0. Every Boolean function is clearly ϕ-correlation immune for some ϕ. It is advisable to
carefully choose the integer mapping ϕ. It seems natural to consider increasing mappings ϕ,
which take low values for low orders.

Remark 3.4.2. Let f be a ϕ-correlation immune Boolean function for some integer valued
mapping ϕ over {0, . . . , n}. Because of Parseval’s identity that states that

∑
ω∈Fn2

χ̂f
2(ω) = 2n,

the immunity profile ϕ of f must satisfy
n∑
l=0

(
n

l

)
ϕ2(l) ≥ 22n . (3.1)

Remark 3.4.3. The constraint on the algebraic degree stated by Siegenthaler’s bound can be
avoided for ϕ-correlation immune Boolean function if ϕ is carefully chosen.

3.4.2 Which immunity profile ?
Fast correlation attacks

Consider a stream generator constituted of n LFSR’s. Each of them is of dimension about k and
they are combined by an n-variable Boolean function f .

The adversary observes a sample of N bits of the keystream and must recover the initial state
of each register. He may have several strategies. He can try to get initial state of a single LFSR,
of two at once, or more.

Fast correlation attacks model the nonlinear function (in all models) as a noise on a com-
munication channel with error probability p = 1

2 − ε, and the cryptanalysis as a decoding
problem of length N , the amount of available keystream, and of dimension at most k`, where
` denotes the number of registers the adversary decides to recover by this decoding process
[22, 251, 187, 203, 206]. More precisely, the nonlinear function is modelled by a Binary Symmetric
Channel with transition probability p given by

p = 1
2 − ε with ε = ϕ(`)

2n+1 and ϕ(`) = max
u,wt(u)=`

|χ̂f (u)| , (3.2)

that corresponds to the maximum correlation between the output to f and the combination
of ` LFSR states, by means of some `-variable Boolean function, that the adversary decides to
recover. When f is `-th order correlation immune (this corresponds to the case where p = 1

2 ), the
adversary has no chance to recover the internal state of ` registers while if f is not `-resilient
the cryptanalyst can theoretically recover the state of the registers. Obviously, from a practical
viewpoint, the success of the cryptanalyst will not be guaranteed either if he does not know
enough keystream bits or if the complexity of the decoding procedure is too high. We will consider
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separately each of the two situations. This will lead us to different immunity profiles for the
Boolean function combining the LFSR’s (indeed, the limitation factor can come from the data or
from the computation power).

From an information theory point of view, the data at the disposal of the adversary must be
sufficient to recover the initial state of the registers and the error vector, thus, the size N of the
sample must satisfy the following inequality (Shannon’s channel coding theorem, see e.g. [174]):

N ≥ k`

1− h2(p) , (3.3)

where h2 : p 7→ −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function. Whenever ε is
small, one has 1− h2(p) ≈ 2

ln(2)

(
p− 1

2

)2
. Thus, the condition (3.3) of success for the adversary

becomes k` ≤ 2N
ln(2)

ϕ(`)2

22n+2 . Consequently, if the resiliency profile ϕ satisfies at `

ϕ(`) ≤ 2n
√

2k ln(2)
N

·
√
` (3.4)

then, the adversary has no chance to decode if he has only N bits of the keystream. In conclusion,
get an `-resilient nonlinear function may not be the best choice as this implies, among other
drawbacks, that this function has higher correlations of order ≥ `+ 1. Such a function may allow
the adversary to apply with greater success a decoding strategy to `+ 1 LFSR at once. Choosing
a function with a resiliency profile that increases in proportion to the square root of the order
` makes the resistance to correlation attack more homogeneous. We stress that this immunity
profile is defined from the point of view of information theory independently from the complexity
of the decoding procedure. Because of (3.1), there could exist Boolean functions whose immunity
profile satisfies inequality (3.4) only if, for fixed N and k, n satisfies n2n ≥ N

k ln(2) .
An alternative approach is to define the immunity profile according to the complexity of the

decoding procedures. Mainly two different approaches have been proposed in the literature. The
first approach [251] consists in associating a smaller linear code of dimension αk` (with α < 1) to
the keystream on which a maximum-likelihood procedure is performed. The resulting complexity
of the decoding step is about O

(
ε−2t · 2αk` · kα`

)
(where t is some positive integer). The second

approach [22] uses the existence of low-density parity-check equations to perform an efficient
iterative decoding algorithm. When parity-check equations with weight w are used, the complexity
of their decoding procedure is about O

( ( 1
ε

) 2w(w−2)
w−1 2

k`
w−1

)
. Consequently, if the immunity profile

ϕ is such that ϕ(`) ≤ 2β` for ` > 0 then the complexity of the decoding procedure of the first
approach [251] would be greater than O

(
22t(n+1) · 2(αk−2tβ)` · αk`

)
while the complexity of the

second approach [22] would be greater than O
(

2
2w(w−2)
w−1 (n+1) · 2

k−2w(w−2)β
w−1 `

)
. Basically, decoding

the keystream of a combiner generator could be a very hard problem even if the LFSR registers
are combined through a Boolean function f with an exponential immunity profile, that is, of the
form ϕ(`) = λ2β`, ` 6= 0 (the lower the values of β and λ, the more secure the stream cipher).

Composition of Boolean functions

Let k be an integer greater than or equal to 2 and consider a Boolean function f over Fk2 .
For each i ∈ {1, . . . , k}, let ni be an integer greater than or equal to 2 and fi be a Boolean
function over Fni2 . The composition of f by the fi’s is by definition the Boolean function F over
Fn1

2 × · · · × Fnk2 defined by (x1, . . . , xk) 7→ f
(
f1(x1), . . . , fk(xk)

)
. Such a construction appears

in iterated ciphers where a high complexity ciphering function is required, for example in a self
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synchronizing stream cipher. In a block cipher, vector valued functions are used, but the analysis
principle is quite similar. In order to apply a linear cryptanalysis, a linear approximation of the
ciphering function is required and the best approximation is given by the analysis of the above
construction. On the other hand, the designer must take care at constructing highly nonlinear
ciphering function. By definition, the Walsh transform of the iterated function F is, for any
vector (u1, . . . , uk) ∈ Fn1

2 × · · · × Fnk2 ,

χ̂F (u1, . . . , uk) =
∑

(x1,...,xk)∈Fn1
2 ×···×F

nk
2

(−1)f
(
f1(x1),...,fk(xk)

)
+u1·x1+···+uk·xk

This expression can be expressed by means of the Walsh transform of f and of the fi’s. For this
purpose, the inverse Walsh transform formula is used.

χ̂F (u1, . . . , uk) =
∑

(x1,...,xk)

1
2k
∑
v∈Fk2

χ̂f (v)(−1)v1f1(x1)+u1·x1+···+vkfk(xk)+uk·xk

= 1
2k
∑
v∈Fk2

χ̂f (v)
∏
i|vi=0

(2niδ0(ui))
∏
i|vi=1

χ̂fi(ui)

where δ0 denotes the Boolean function that takes value 1 at the zero vector and 0 elsewhere.
Relation (3.5) shows that the major contribution to the Walsh transform of F is the 2ni factor that
appears if ui = 0, and this contribution grows exponentially with the number of zero components
ui. This implies that the best linear approximations of F are heuristically those of low weights.
In order to counterbalance this effect, the idea is to choose a function f with a Walsh transform
that grows exponentially with the weight of the variable. In this case, a very approximate bound
on the nonlinearity of F can even be obtained. Suppose that all ni’s equal n, that the Walsh
transform of each fi is bounded by M , that is, |χ̂fi(ui)| ≤M and that there exists a constant a
such that, for any vector v ∈ Fk2 , one has |χ̂f (v)| ≤ awt(v). For (u1, . . . , uk) ∈ Fn2 × · · · × Fn2 , let S
denote the set

{
i ∈ {1, . . . , k} | ui 6= 0

}
and s denote the cardinality of S. As the nonzero terms

of sum (3.5) are those for which vi = 0 implies ui = 0, the summation can be limited to vectors v
whose support supp(v) includes S. Thus,

|χ̂F (u1, . . . , uk)| ≤ 1
2k

∑
v|S⊂supp(v)

awt(v)Mwt(v)(2n)k−wt(v)

≤ 1
2k

k∑
t=s

(
k − s
t− s

)
(2n)k−tM tat = Msas

2k (2n + aM)k−s

In consequence, in some iterated cipher, a round ciphering function with an immunity profile
that grows exponentially may provide a better resistance to linear cryptanalysis.

3.4.3 Almost resilient Boolean functions and ϕ-correlation Immune
Boolean Functions

An alternative approach was proposed by Kurosawa [155] that relaxes the constraints of bal-
ancedness of the sub-functions and introduces the concept of almost resiliency. Each of the two
approaches relies on one of the characterizations of correlation immunity that are equivalent.
Consequently, it is advisable to wonder the possible connections between these two approaches.
We clarify these connections in this section. We first recall the definition of almost resilient
Boolean functions.
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Definition 3.4.4. [154] Let f a Boolean function defined on Fn2 . Let t be any positive integer less
than n. Let ε be any positive real less than 1. Then f is said to be ε-almost (n, 1, t)-resilient if∣∣∣Pr

(
f(X) = y | XI = σ

)
− 1

2

∣∣∣ ≤ ε for any subset I = {i1, . . . , it} of {1, . . . , n} whose cardinality
equals t, σ ∈ Ft2 and y ∈ F2. Here {XI = σ} denotes the event {Xi1 = σ1, . . . , Xit = σt}.

The restrictions of an ε-almost (n, 1, t)-resilient Boolean function f , obtained by fixing t input
bits, lie at distance at most ε2n−t from balanced functions. A sufficient condition for almost
resiliency involving the Walsh transform has been proposed in [147].

Proposition 3.4.5 ([147, Corollary 4.1]). Let f be an n-variable Boolean function, ε be a positive
real and t be a positive integer less than n. Suppose that f is balanced and that, for all ω ∈ Fn2
such that 1 ≤ wt(ω) ≤ t,

∣∣χ̂f (ω)
∣∣ ≤ 2n+1ε. Then f is ((2t − 1)ε)-almost (n, 1, t) resilient.

This result can be stated in a much more precise way for ϕ-correlation immune Boolean
functions. First, some notation is introduced. Let f be an n-variable Boolean function and
σ = (σ1, . . . , σr) ∈ Fr2. For any subset I = {i1, . . . , ir} of {1, . . . , n}, we denote by fσI the
sub-function on Fn−r2 obtained by setting the ijth input to σj for every j ∈ {1, . . . , r}. We finally
recall the Poisson summation formula [31, Corollary 1]. Let f be a Boolean function on Fn2 .
Then, for any vector space E of Fn2 , and any a, b ∈ Fn2 , we have∑

u∈a+E
(−1)b·uχ̂f (u) = #E (−1)a·b

∑
x∈b+E⊥

(−1)a·x+f(x) (3.5)

where E⊥ = {x ∈ Fn2 / ∀y ∈ E, x · y = 0} is the dual of E. We then prove

Proposition 3.4.6. ([40]) Let f be a Boolean function defined over Fn2 and let ϕ be any integer-
valued mapping over {0, . . . , n}. Assume that f is ϕ-correlation immune. Let r ∈ {1, . . . , n −
1}, σ ∈ Fr2 and {i1, . . . , ir} ⊂ {1, . . . , n}. Then fσI is ϕr-correlation immune with ϕr(k) =
1
2r
∑r
j=0

(
r
j

)
ϕ(k + j), k ∈ {0, . . . , n− r}.

Proof. In this proof, I = {i1, . . . , ir} is an arbitrary subset of {1, . . . , n} (r < n), σ is an
element of Fr2 and ω is an element of Fn−r2 . Let E be the vector space whose dual equals
E⊥ = {x ∈ Fn2 | xi1 = · · · = xir = 0}. Let b ∈ Fn2 be such that bij = σj for every j ∈ {1, . . . , r}
and 0 otherwise. Set {k1, . . . , kn−r} = {1, . . . , n} \ {i1, . . . , ir}. Assume that k1 < · · · < kn−r.
Let a ∈ Fn2 be such that akj = ωj for j ∈ {1, . . . , n− r} and 0 otherwise. With such notation, we
have

∑
x∈b+E⊥(−1)a·x+f(x) = χ̂fσ

I
(ω). Then, we deduce from the Poisson summation formula

(3.5) that
|χ̂fσ

I
(ω)| = 1

#E
∑

u∈a+E
(−1)b·uχ̂f (u) .

The Hamming weights of the elements of a+ E range from wt(ω) to wt(ω) + r. Therefore

|χ̂fσ
I

(ω)| ≤ 1
|E|
×

r∑
j=0

(
r

j

)
ϕ(wt(ω) + j) .

This proposition is a generalization of the well-known result : if a n-variable Boolean function
is correlation immune of order t then any sub-function obtained by fixing r inputs with r < t
is (t− r)-th order correlation immune. We then prove thanks to this Proposition the following
statement.
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Proposition 3.4.7. ([40]) Let n be any integer, n ≥ 2. Let ϕ be any integer-valued mapping
over the set {1, . . . , n}. Let f be a Boolean function over Fn2 . Assume that f is ϕ-correlation
immune. Then f is εϕ,t-almost (n, 1, t) resilient for any positive integer t less than n where
εϕ,t = 1

2n+1

∑t
j=1

(
t
j

)
ϕ(j).

Proof. Let I = {i1, . . . , it} be an arbitrary subset of {1, . . . , n} (t < n) and σ is an element

of Ft2. Note that Pr
(
f(X) = y | XI = σ

)
= 1

2 ±
χ̂fσ
I

(0)
2n−t+1 . According to Proposition 3.4.6, fσI is

ϕt-correlation immune with ϕt(k) = 1
2t
∑t
j=0

(
t
j

)
ϕ(k + j), k ∈ {0, . . . , n− t}. Therefore,

∣∣Pr
(
f(X) = y | XI = σ

)
− 1

2
∣∣ = 1

2n−t+1

∣∣χ̂fσ
I

(0)
∣∣ ≤ 1

2n+1

t∑
j=0

(
t

j

)
ϕ(j) .

Remark 3.4.8. We obtain a better result than the one directly deduced from Proposition 3.4.5
for ϕ-correlation immune Boolean functions. Indeed, Proposition 3.4.5 only allows to conclude
that f is ε′ϕ,t-almost (n, 1, t) resilient with ε′ϕ,t = 2t−1

2n+1 ·maxj∈{1,...,t} (ϕ(j)).

3.4.4 Primary constructions of ϕ-correlation immune Boolean func-
tions

Maiorana-McFarland’s construction

The Maiorana-McFarland’s class is the set of all n-variable Boolean functions which can be written
as follows (n being a positive integer) :

∀(x, y) ∈ Fr2 × Fs2, f(x, y) = π(y) · x⊕ g(y) , (3.6)

where r and s are two positive integers such that r + s = n, where π is a Boolean map from Fs2
to Fr2 and g is a s-variable Boolean function. The Walsh transform of such a Boolean function is

∀(a, b) ∈ Fr2 × Fs2, χ̂f (a, b) = 2r
∑

y∈π−1(a)

(−1)b·y+g(y) .

Resilient Boolean functions whose immunity profile increases in proportion to the square root of
the order can be designed from Maiorana-McFarland’s class. Indeed, suppose that we can find π
such that, for every a ∈ Fr2,

#π−1(a) = 0 if wt(a) ≤ t and #π−1(a) ≤ λb
√

wt(a)c otherwise (3.7)

for some positive integer t less than r and some positive integer λ. Then any Boolean function
f of the form (3.6) is ϕ-correlation immune with ϕ(`) = 0 if ` ∈ {0, . . . , t}, ϕ(`) = 2rλb

√
`c for

` ∈ {t+ 1, . . . , r} and ϕ(`) = 2rλ
√
r otherwise. The existence of such an application π requires

that r, s and t fulfil the following inequality deduced from
⋃
a∈Fr2,wt(a)≥t+1 π

−1(a) = Fs2:

λ

r∑
l=t+1

(
r

l

)
b
√
`c ≥ 2s . (3.8)

The nonlinearity of f is greater than or equal to 2n−1 − 2r−1b
√
rc and its algebraic degree equals

max(deg(π1)+1, . . . ,deg(πr)+1, s). More generally, one can design ψ-correlation immune Boolean
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function from the class of Maiorana-McFarland with ψ(i) = λ2rϕ(min(i, r)) for i ∈ {0, . . . , n}
provided that λ

∑r
l=0
(
r
l

)
ϕ(`) ≥ 2s under the assumption #π−1(a) ≤ λϕ(wt(a)) for every a ∈ Fr2.

Note that it is possible to design ϕ-correlation immune Boolean functions from the effective
partial spreads class [29] with the same nice properties. Because of length limits, we do not
develop this further in the present paper.

Symmetric Boolean functions with exponential correlation immunity profile

The condition of ϕ-correlation immunity only deals with the weight of the argument of the Walsh
transform. It is then natural to consider symmetric functions, that is, Boolean functions whose
output only depends on the weight of the input vector. If f is an n-variable symmetric Boolean
function (n is a positive integer), then there exists a function νf : {0, . . . , n} → F2 such that
f(x) = νf (wt(x)) for every x ∈ Fn2 . In the sequel, the function νf is called the simplified value
vector of the symmetric function f .

The Fourier transform of an n-variable symmetric Boolean function f is symmetric too and can
be expressed by means of Krawtchouk polynomials for all ω ∈ Fn2 by f̂(ω) =

∑n
k=0 νf (k)Kk(wt(ω), n)

where νf denotes the simplified value vector associated to f and whereKk(X,n) =
∑n
j=0(−1)j

(
X
j

)(
n−X
k−j

)
,

k = 0, 1, . . . n, are the so-called Krawtchouk polynomials{nomenclature[C]Kk(X,n)The so-called
Krawtchouk polynomials. For every k ∈ {0, 1, 2}, we denote by sk,3 the n-variable symmetric
Boolean function whose simplified vector value νsk,3 is defined by νsk,3(i) = 1 if i ≡ k (mod 3) and
0 otherwise. The values of the Fourier transform of such functions can easily be calculated. For
every u ∈ Fn2 , denoting ` = wt(u) and every k ∈ {0, 1, 2}, we have ŝk,3(u) =

∑
0≤j≤n

j≡k (mod 3)
Kj(`, n).

Let us denote by ω the primitive third root of unity ω = e2iπ/3. Since we have ω3 = 1, we deduce
that

∑2
k=0 ω

keŝk,2(u) =
∑

0≤j≤n ω
jeKj(`, n), for every e ∈ {0, 1, 2}. The generating function of

the Krawtchouk polynomials is
∑n
k=0Kk(w, n)zk = (1− z)w(1 + z)n−w, for w ∈ {0, . . . , n}, and

z ∈ C. This implies that
∑2
k=0 ω

keŝk,3(u) = (1 − ωe)`(1 + ωe)n−`. It is well-known that the
inverse of the 3× 3 matrix whose term at row k and column e equals ωke is the matrix whose
term at row k and column e equals 1

3ω
−ke. Thus, For every k ∈ {0, 1, 2} and every u ∈ Fn2 ,

denoting ` = wt(u), the value at u of the Fourier transform ŝk,3(u) of the function sk,3 equals
1
3
∑2
e=0(1− ωe)`(1 + ωe)n−`ω−ke. Hence ŝk,3(u) = 2

3<
(

(1− ω)` (1 + ω)n−` ω−k
)
(where <(z) is

the real part of z ∈ C) because ω2 is the complex conjugate of ω.
We deduce finally from 1 + ω + ω2 = 0 and (1 − ω)ω−2 = i ·

√
3 (where i is the primitive

square root of unity in C) that χ̂sk,3(u) = −2ŝk,3(u) = (−1)n+1−` · 4
3 · 3

`
2 · <

(
i`ω2n−k). Now,

<
(
i`ω2n−k) equals ±1 if ` is even and 2n − k ≡ 0 (mod 3), ± 1

2 if ` is even and 2n − k 6≡ 0
(mod 3), 0 if ` is odd and 2n− k ≡ 0 (mod 3), ±

√
3

2 if ` is odd and 2n− k 6≡ 0 (mod 3). Then
the n-variable symmetric Boolean functions sk,3, k ∈ {0, 1, 2}, are ϕ-correlation immune where ϕ
is the integer valued mapping over {0, . . . , n} defined by ϕ(i) = 4 · 3b

i−1
2 c for every i ∈ {1, . . . , n}

and ϕ(0) = 2n.

3.4.5 Secondary constructions of ϕ-correlation immune Boolean func-
tions

The generalized Tarannikov et al. construction

A series of secondary constructions of highly nonlinear resilient functions has been proposed in the
literature. This series has led to the very general following construction [? ] : Let r, s, t and m be
positive integers such that t < r and m < s. Let f1 and f2 be two r-variable t-resilient functions.
Let g1 and g2 be two s-variable m-resilient functions. Then the function h(x, y) = f1(x)⊕ g1(y)⊕
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(f1 ⊕ f2)(x) (g1 ⊕ g2)(y), x ∈ F r2 , y ∈ F s2 is an (r + s)-variable (t+m+ 1)-resilient function. The
Walsh transform of h takes value χ̂h(a, b) = 1

2 χ̂f1(a) [χ̂g1(b) + χ̂g2(b)] + 1
2 χ̂f2(a) [χ̂g1(b)− χ̂g2(b)] .

Assume then that f1 and f2 (resp. g1 and g2) are ϕ-correlation immune (resp. ϕ′-correlation
immune), where ϕ and ϕ′ are exponential, say ϕ(`) = λ2β` and ϕ′(`) = λ′2β′`. Then, since
wt(a, b) = wt(a) + wt(b), h is ϕ′′-correlation immune with ϕ′′(`) = 2λλ′2(β+β′)`. Note that if
f1 = f2 or g1 = g2, that is, in the case of a direct sum, we have ϕ′′(`) = λλ′2(β+β′)`.

A recent secondary construction without extension of the number of variables

Given three Boolean functions f1, f2 and f3, there is a nice relationship between their Walsh
transforms and the Walsh transforms of two of their elementary symmetric related functions [29]:
let us denote by σ1 the Boolean function equal to f1 ⊕ f2 ⊕ f3 and by σ2 the Boolean function
equal to f1f2 ⊕ f1f3 ⊕ f2f3; then we have f1 + f2 + f3 = σ1 + 2σ2 (where these additions are
calculated in the ring of integers, that is, not mod 2). This implies χ̂f1 + χ̂f2 + χ̂f3 = χ̂σ1 + 2χ̂σ2 .
If f1, f2 and f3 are k-th order correlation immune (resp. k-resilient), then σ1 is k-th order
correlation immune (resp. k-resilient) if and only if σ2 is k-th order correlation immune (resp.
k-resilient). Moreover, if f1, f2 and f3 are ϕ-correlation immune as well as σ1, then, σ2 is
2ϕ-correlation immune, whatever is ϕ. This construction of σ2 from f1, f2, f3 and σ1 has the
interest of increasing the algebraic complexity of the functions (e.g. their algebraic immunity)
without decreasing their nonlinearity (see [29]).

3.5 On the number of Boolean functions satisfying some
criteria: number of resilient functions

It is important to ensure that the selected criteria do not restrict the choice of fonction too
severely that is, the set of functions must be enumerated. Theoretical and pratical studies reveal
criteria that functions must satisfy. Given specific criteria it is important to know that there exist
suitable numbers of functions satisfying them. As a result the problem arises of enumerating
sets of functions satisfying various criteria or even (as a start point) satisfying one criterion. But
this enumeration is unknown for most criteria. In the following we discuss on the number of
resilient Boolean functions that is Boolean functions which are both balanced and m-correlation
immune. The problem of counting the number of m-resilient n-variable Boolean functions is
still challenging. Indeed, this number is only known for m = 1 up to 7 variables (the number of
1-resilient 7-variable Boolean function has been found in 2007 [3]) and for m ≥ n− 3 for every n
[17]. This problem seems to be untractable.

In fact, the problem of efficiently bounding from below and from above the number of m-
resilient n-variable Boolean functions remains also open for every positive integer m less than
n− 3. Schneider [231] obtained an upper bound which seems efficient for resilient functions of low
order. Some other results have been obtained in [117, 240, 274]. Their results are slightly better
than [231] but are more complex to compute. Schneider’s upper bound has been improved for high
order in [37, 42]. None of the upper bounds presented in [37, 42, 231] improves upon all the other
upper bounds in all situations. Few efficient lower bounds were found. Mostly, they are obtained
by building and counting restricted classes of resilient Boolean functions [177, 205, 240, 269].
Recently, further improvement has been done by Le Bars and Viola [3] who presented the best
lower bound and upper bound on the number of 1-resilient n-variable Boolean function. In this
section, we present an approach for the problem of counting the number m-resilient n-variable
Boolean functions.
In the following, {1, . . . , n} stands for the set of all integers ranging from 1 to n and Pn stands
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for the set of subsets of {1, . . . , n}. The cardinality of a subset I of {1, . . . , n} shall be denoted
by #I. We denote by Θm

n the subset of Pn of all subsets whose cardinality is at most n−m− 1.
We let Γmn be the subset of Pn formed with all subsets of {1, . . . , n} of cardinality at least n−m.
The set of all n-variable m-resilient Boolean functions shall be denoted by Resmn . It has been
shown that the higher the order of resiliency is, the lower the maximum degree is. More precisely,
it has been shown :

Proposition 3.5.1. ([236]) Suppose that 1 ≤ m < n − 1. Then, the algebraic degree of an
n-variable m-resilient Boolean function is at most n−m− 1.

Recall that any n-variable Boolean function can be viewed as an integer-valued mapping
taking values in the subset {0, 1} of Z and that any integer-valued mapping f can be uniquely
represented (the Numerical Normal form) as a multivariate polynomial over Z :

∀x ∈ Fn2 , f(x) =
∑
I∈Pn

λI
∏
i∈I

xi (3.9)

where the λI ’s are in Z. Recall that the degree of the numerical normal form of an integer-valued
map f is called its numerical degree. To ensure that f takes values in {0, 1}, that is, that satisfies
f2(x) = f(x) for every x ∈ Fn2 , the coefficients λI ’s has to satisfy

∀I ∈ Pn,
(∑
J⊂I

λJ

)2
−
∑
J⊂I

λJ = 0. (3.10)

where
∑
J⊂I denotes the summation over all the subsets J of {1, . . . , n} which are contained in

the subset I. Carlet and Guillot ([39]) have characterized resilient Boolean function by means of
the numerical normal form. We give below this characterization.

Theorem 3.5.2. ([39]) Let f be an n-variable Boolean function f . Let g be the n-variable
Boolean function defined as : ∀x ∈ Fn2 , g(x) = f(x)⊕

⊕n
i=1 xi. Then, f is m-resilient if and only

if the numerical degree of g is less than or equal to n−m− 1.

3.5.1 State of art on the number of resilient Boolean functions
In this subsection, we present a short and non exhaustive survey of the question of counting or
finding lower bound or upper bound for the number of m-resilient n-variable Boolean functions.
We omit to speak about the lower bounds. In fact, they are mostly obtained by building classes
of m-resilient n-variable Boolean function. For further details, we send the reader to [31] which
summarizes the previous known results related with the enumeration of resilient Boolean function.

The only n-variable Boolean functions which are (n− 1)-resilient are the two affine n-variable
Boolean functions :

⊕n
i=1 xi and its complement 1⊕

⊕n
i=1 xi. Thus, #Resn−1

n = 2. Siegenthaler’s
upper bound on the algebraic degree of a resilient Boolean function (Proposition 3.5.1) implies
that only affine n-variable affine Boolean functions can be (n− 2)-resilient. Now, a sub-function
obtained by fixing at most n− 2 input bits in an affine Boolean function stays balanced if and
only if this sub-function is not constant. That requires that the algebraic normal form of this
function contains at least n − 1 monomials xi. The number of such affine n-variable Boolean
functions equals 2

(
n
n−1
)

+ 2, that is, we have #Resn−2
n = 2(n+ 1). The first non trivial result

about the number of m-resilient Boolean functions has been obtained by Camion and al ([17]) :

#Resn−3
n = n(n− 1)(3n− 2)(n+ 1)

3
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Except those cases, the only other known values are the ones of #Res1
5, #Res1

6 (Harary and
Palmer, [120]) and #Res1

7 (Le Bars and Viola, [3]) :

#Res1
5 = 807980 #Res1

6 = 95259103924394
#Res1

7 = 23478015754788854439497622689296

For the other values of #Resmn , upper bounds have been shown. Before stating those uppers
bounds, let us make a simple remark : according to Proposition 3.5.1, the algebraic degree of an
n-variable m-resilient Boolean function cannot exceed n −m − 1; that implies a simple upper
bound of the number of n-variable m-resilient Boolean functions :

#Resmn ≤ 21+n+(n2)+···+( n
n−m−1) (3.11)

that we shall refer in the sequel as the naive bound on the number of n-variable m-resilient
Boolean function. The first general and efficiently computed upper bound was found by Schneider
([231]).

Proposition 3.5.3. ([231]). For every positive integers n and m such that 1 ≤ m ≤ n− 1, we
have :

#Resmn ≤
n−m∏
j=1

(
2j

2j−1

)(n−j−1
m−1 )

This bound is weak for high orders of resiliency. For instance, the exact number of (n− 3)-

resilient which equals n(n− 1)(3n− 2)(n+ 1)/3 is much less than
∏3
j=1

( 2j
2j−1

)(n−j−1
n−4 )

. This upper
bound has been partially improved for high orders, firstly, by Carlet and Klapper and, next, by
Carlet and Gouget.

Proposition 3.5.4. ([42]) For every positive integers n and m such that 1 ≤ m ≤ n − 1, we
have :

#Resmn ≤
2
∑n−m−1

i=0 (ni) − 2
∑n−m−2

i=0 (ni)

222m+1−1 + 2
∑n−m−2

i=0 (ni)

for 2 ≤ m < n
2 and

#Resnm ≤
2
∑n−m−1

j=0 (nj)(1 + ε)

2
∑n−m−1

j=0 (m−1
i )

+ 2
∑n−m−2

j=0 (nj) where ε = 1
2Ω((2n/n)1/2)

.

for n
2 ≤ m < n− 2.

Proposition 3.5.5. ([37]) For every positive integers n and m such that 1 ≤ m ≤ n − 1, we
have :

#Resnm ≤ 2
∑n−m−2

i=0 (ni) +
(

n
n−m−1

)
2( m+1
n−m−1)+1

n−m∏
i=1

(
2j

2j−1

)(n−j−1
m−1 )

3.5.2 Representation formulas for the number of resilient Boolean func-
tions

Throughout this section, we shall use the following notation in order to allow compact description
of our result. Let X be a set of numbers. We shall denote by X I , where I is a finite set, the
set {span xII | ∀I ∈ I, xI ∈ X}. Throughout this section, n denotes any positive integer greater
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than 4 and m is a positive integer such that m < n−3. We shall denote by
∮
the Cauchy integral,

that is, in the sequel, the expression
∮
F (z)dz, where F is a k-variables complex-valued mapping

and where we adopt the multivariate notation dz =
∏k
i=1 zi, has to be understood as a multiple

integral; each integral is over a circle of radius < 1 centered at 1; all appearing radii should be
different. We shall also use the following result that expresses terms of a multi-indexed integer
sequences by means of a residue formula

Proposition 3.5.6. Let K = (Kn1,...,nk)(n1,...,nk)∈Nk be a multi-indexed integer sequence. Let
GK be the associated multivariate generating function, that is, the multivariate mapping defined
as

GK(z) =
∑

(n1,...,nk)∈Nk
Kn1,...,nk

k∏
i=1

znii .

for z = (z1, . . . , zk) ∈ Ck. Then, for every n = (n1, . . . , nk) ∈ Nk, we have

Kn1,...,nk = 1
(2iπ)k

∮
GK(z)z−n dz

z

where we use the multivariate notation : z−n =
∏k
i=1 z

−ni
i and dz =

∏k
i=1 dzi.

A first representation formula

The problem of counting the number of m-resilient n-variable Boolean functions can be reworded
into the problem of counting the integer solutions of a system of linear inequalities. For that, we
use Theorem 3.5.2 that characterizes the n-variable Boolean function which are m-resilient by
using the numerical normal form (3.9).

Proposition 3.5.7. ([194]) Let Rm
n be the subset of RΘmn defined as

Rm
n =

{
(xJ)J∈Θmn ∈ RΘmn

∣∣∣∀I ∈ Pn, 0 ≤
∑
J∈Θmn
J⊂I

xJ ≤ 1
}
. (3.12)

Then,
#Resmn = #(ZΘmn ∩Rm

n ).

Proof. Take f ∈ Bn. Define g ∈ Bn as : ∀x ∈ Fn2 , g(x) = f(x) ⊕
⊕n

i=1 xi. By Theorem 3.5.2,
f is m-resilient if and only if the numerical degree of g is at most n −m − 1. Now, the map
from Bn to itself which maps f to g is one-to-one. That implies in particular that the number
of m-resilient n-variable Boolean function equals the number of integer-valued mappings taking
values in {0, 1} whose numerical normal forms is of numerical degree at most n−m− 1. Now,
because of the uniqueness of the numerical normal form and according to (3.10), #Resmn is equal
to the number of (λJ)J∈Θmn ∈ ZΘmn which satisfies : ∀I ∈ Pn,

∑
J∈Θmn
J⊂I

λJ ∈ {0, 1}.

We now state without proof and with our notation a classical result that is called the
Mobius-Rota inversion formula.

Lemma 3.5.8. ([194]) We have :(
∀I ∈ Θm

n , zI =
∑
J∈Θmn
J⊂I

xJ

)
⇐⇒

(
∀I ∈ Θm

n , xI =
∑
J∈Θmn
J⊂I

(−1)#I−#JzJ

)
. (3.13)
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We then derive from Lemma 3.5.8 that the elements of Rm
n belongs to a bounded domain of

RΘmn .

Lemma 3.5.9. ([194]) Let Rm
n be the subset of RΘmn defined in Proposition 3.5.7. Let (xJ )J∈Θmn ∈

Rm
n . Then x∅ ∈ [0, 1] and,

∀J ∈ Θm
n , −2#J−1 ≤ xJ ≤ 2#J−1.

Proof. Firstly, note that, if I = ∅, the summation
∑
J∈Θmn
J⊂I

xJ reduces to x∅ and thus the condition

0 ≤
∑
J∈Θmn
J⊂∅

xJ ≤ 1 simply says that x∅ ∈ [0, 1].

For the other cases, we use Lemma 3.5.8 in the particular case where (xJ)J∈Θmn belongs to
Rm
n , that is, in the case where zI =

∑
J∈Θmn
J⊂I

xJ ∈ {0, 1} for every I ∈ Pn. That gives, for every

I ∈ Θm
n ,

xI =
∑
J∈Θmn
J⊂I

(−1)#I−#JzJ ≤ #{J ∈ Θm
n | J ⊂ I, #I −#J is even} = 2#J−1

and
xI =

∑
J∈Θmn
J⊂I

(−1)#I−#JzJ ≥ −#{J ∈ Θm
n | J ⊂ I, #I −#J is odd} = −2#J−1.

Remark 3.5.10. One can recover the naive upper bound (3.11) by using Mobius-Rota inversion
formula (3.13). Indeed, introduce the linear mapping ϕ from RΘmn to itself which maps (xJ )J∈Θmn

to
(∑

J∈Θmn
J⊂I

xJ

)
J∈Θmn

. Lemma 3.5.8 implies that ϕ is one-to-one. Now, by definition, the subset

Rm
n is contained in the preimage of {0, 1}Θmn under ϕ. Now, the linear mapping ϕ being is

one-to-one, we have : #Rm
n ≤ #{0, 1}Θmn = 2#Θmn = 2

∑n−m−1
j=0 (ni).

We now use Lemma 3.5.9 to slightly reword the statement of Proposition 3.5.7. The idea is to
translate Rm

n by an integer vector so that its image under this translation lies in the non-negative
orthant RΘmn

+ . At this stage, an important point is to note that translating by an integer vector
does change the integer solution count.

Corollary 3.5.11. ([194]) Let Sm
n be the subset of RΘmn

+ defined as

Sm
n =

{
(yJ)J∈Θmn ∈ RΘmn

+

∣∣∣∀I ∈ Pn, bI ≤ ∑
J∈Θmn
J⊂I

yJ ≤ bI+1

}
(3.14)

where

bI =
min(#I,n−m−1)∑

j=1

(
#I
j

)
2j−1 if I ∈ Pn \ {∅} and b∅ = 0.

Then,
#Resmn = #(NΘmn ∩Sm

n ).
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Proof. Define (vJ )J∈Pn as : v∅ = 0 and, for every J ∈ Pn \ {∅}, vJ = 2#J−1. Set Sm
n = {(yJ ) ∈

RΘmn | ∃(xJ)J∈Θmn ∈ Rm
n , ∀J ∈ Pn, yJ = xJ + vJ}. Lemma 3.5.9 says that Sm

n ⊂ RΘmn
+ since

: ∀J ∈ Θm
n , xJ ≥ −2#J−1 = −vJ . Now, replacing xJ by yJ − vJ in all the linear inequalities

defining Rm
n yields to the new system of linear inequalities whose unknowns are the yJ ’s

∀I ∈ Pn,
∑
J∈Θmn
J⊂I

vJ ≤
∑
J∈Θmn
J⊂I

yJ ≤
∑
J∈Θmn
J⊂I

vJ + 1.

The result follows then from the identity
∑
J∈Θmn
J⊂I

vJ = b#I .

Let Sm
n be the subset of RΘmn

+ defined by Corollary 3.5.11. We then split Sm
n into disjoint

subsets. For that, we introduce a collection of subsets of RΘmn
+ indexed by NPn whose terms are

defined as

∀c = (cI)I∈Pn ∈ NPn , Tc,mn = {(yJ)J∈Θmn ∈ RΘmn
+ | ∀I ∈ Pn,

∑
J∈Θmn
J⊂I

yJ = cI}.

We then have
Sm
n =

⋃
ε∈{0,1}Pn

Tb+ε,mn . (3.15)

where the terms of b = (bI)I∈Pn are the bI ’s defined in Corollary 3.5.11. Next, let K = (Kc)c∈NPn
be the integer sequence index by Pn whose terms are : ∀c ∈ NPn , Kc = #(NΘmn ∩ Tc,mn ). But
above, we have

#Resmn = #(NΘmn ∩Sm
n ) =

∑
ε∈{0,1}Pn

#Tb+ε,mn ∩ NΘmn =
∑

ε∈{0,1}Pn
Kb+ε. (3.16)

A classical approach in enumerative combinatorics is to introduce the multivariate generating
function associated to K that we denote by GK and that is defined as :

z ∈ CPn , GK(z) =
∑

c∈NΘmn

Kcz
c (3.17)

where we use the multivariate notation zc =
∏
I∈Pn z

cI
I for z = (zI)I∈Pn and c = (cI)I∈Pn . We

then prove the following key result.

Proposition 3.5.12. ([194]) The power series (3.17) converges provided that, for every I ∈ Pn,
the modulus |zI | is small enough. Moreover, when the power series converges, we have

GK(z) =
∏
J∈Θmn

1
1−

∏
I∈Pn
J⊂I

zI
.

Proof. Firstly ∑
c∈NPn

Kcz
c =

∑
c∈NPn

∑
y∈NΘmn ∩Tc,mn

∏
I∈Pn

∏
J∈Θnn
J⊂I

zyJI

because

zc =
∏
I∈Pn

zcII =
∏
I∈Pn

z

∑
J∈Θmn
J⊂I

yJ

I =
∏
I∈Pn

∏
J∈Θmn
J⊂I

zyJI
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whenever y = (yI)I∈Pn ∈ Tc,mn . Thus

∑
c∈NPn

Kcz
c =

∑
y∈NΘmn

∏
J∈Θmn

∏
I∈Pn
J⊂I

zyJI =
∏
J∈Θmn

 +∞∑
yJ=0

∏
I∈Pn
J⊂I

zyJI


=
∏
J∈Θmn

1
1−

∏
I∈Pn
J⊂I

zI

provided that, for every I ∈ Pn,
∣∣∣∏I∈Pn

J⊂I
zI

∣∣∣ =
∏
I∈Pn
J⊂I

|zI | is small enough. A sufficient condition

is that, for every I ∈ Pn, |zI | is small enough.

We finally deduce from Proposition 3.5.6 a representation formula for #Resmn

Lemma 3.5.13. ([194]) we have

∀c ∈ NPn , Kc = 1
(2iπ)2n

∮
GK(z)z−c dz

z
.

where adopt the multivariate notation dz =
∏
I∈Pn dzI .

A straightforward consequence of the preceding Lemma is a representation formula for #Resnm.

Proposition 3.5.14. ([194]) We have

#Resmn = 1
(2iπ)2n

∮
G(z)dz

z
(3.18)

where G is defined for z = (zI)I∈Pn as

G(z) =
∏
I∈Pn

(1 + zI)z−bI−1
I ·

∏
J∈Θmn

1
1−

∏
I∈Pn
J⊂I

zI
.

Proof. Replacing each term Kb+ε by its expression given by Lemma 3.5.13 in (3.16) yields to

#NΘmn ∩Sm
n =

∑
ε∈{0,1}Pn

1
(2iπ)2n

∮
F (z)z−(b+ε) dz

z
.

Exchange the summation
∑

and the integration
∮

:

#NΘmn ∩Sm
n = 1

(2iπ)2n

∮
F (z)z−b

 ∑
ε∈{0,1}Pn

z−ε

 dz

z
.

We then get the result by noting that∑
ε∈{0,1}Pn

z−ε =
∏
I∈Pn

z−1
I

∑
ε∈{0,1}Pn

zε =
∏
I∈Pn

z−1
I ·

∏
I∈Pn

(1 + zI).
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A second representation formula for the number of resilient Boolean functions

In this subsection, we state an alternative representation formula for #Resnm. To this end, we
begin with noting that the set Rm

n of Proposition 3.5.7 can be written as

Rm
n = R1,m

n ∩R2,m
n (3.19)

where
R1,m
n =

{
(xJ)J∈Θmn ∈ RΘmn

∣∣∣ ∀I ∈ Θm
n , 0 ≤

∑
J∈Θmn
J⊂I

xJ ≤ 1
}

and
R2,m
n =

{
(xJ)J∈Θmn ∈ RΘmn

∣∣∣∀I ∈ Γmn , 0 ≤
∑
J∈Θmn
J⊂I

xJ ≤ 1
}
.

Thus,
Rm
n ∩ ZΘmn =

(
R1,m
n ∩ ZΘmn

)
∩R2,m

n (3.20)
Then, consider again the linear mapping ϕ introduced in Remark 3.5.10, that is, let ϕ be the

linear mapping from RΘmn to itself which maps (xJ)J∈Θmn to
(∑

J∈Θmn
J⊂I

xJ

)
J∈Θmn

. We then have

R1,m
n ∩ ZΘmn =

{
x = (xJ)J∈Θmn ∈ RΘmn

∣∣∣∀I ∈ Θm
n , ϕ(x) ∈ {0, 1}} = ϕ−1 ({0, 1}Θmn ). Now,

Mobius-Rota inversion formula recalled in Lemma 3.5.8 implies that ϕ is one-to-one. We thus
deduce firstly that the intersection (3.19) can be rewritten as

Rm
n ∩ ZΘmn = ϕ−1

(
{0, 1}Θ

m
n ∩ ϕ(R2,m

n )
)

(3.21)

but above we have

#Resmn = #Rm
n ∩ ZΘmn = #{0, 1}Θ

m
n ∩ ϕ(R2,m

n ). (3.22)

We now compute the image of R2,m
n under ϕ.

Lemma 3.5.15. ([194]) (yJ) ∈ ϕ(R2,m
n ) if and only if

∀I ∈ Γmn , 0 ≤
∑
J∈Θmn
J⊂I

(−1)n−m−#J−1
(

#I −#J − 1
n−m−#J − 1

)
yJ ≤ 1.

Proof. Take y = (yJ)J∈Θmn ∈ ϕ(R2,m
n ). By definition there exists x = (xJ)J∈Θmn such that

∀I ∈ Γmn , 0 ≤
∑
J∈Θmn
J⊂I

xJ ≤ 1 (3.23)

and such that
∀I ∈ Θm

n , yI =
∑
J∈Θmn
J⊂I

xJ .

Mobius-Rota inversion formula (Lemma 3.5.8) implies that

∀I ∈ Θm
n , xI =

∑
J∈Θmn
J⊂I

(−1)#I−#JyJ .
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Thus,

∀I ∈ Γmn ,
∑
J∈Θmn
J⊂I

xJ =
∑
J∈Θmn
J⊂I

∑
K∈Θmn
K⊂J

(−1)#J−#KyK

=
∑

K∈Θmn
K⊂I

yK
∑
J∈Θmn
K⊂J⊂I

(−1)#J−#K .
(3.24)

Now,

∑
K∈Θmn
K⊂J⊂I

(−1)#J−#K =
n−m−1∑
j=#K

(−1)j−#K
(

#I −#K
j −#K

)

The result follows then from the identity : for every positive integers 1 < p < n, we have
p∑
j=0

(−1)j
(
n

j

)
= (−1)p

(
n− 1
p

)
.

Indeed, if we use the Pascal identity, that is, the identity
(
n
j

)
=
(
n−1
j−1
)

+
(
n−1
j

)
then we get

p∑
j=0

(−1)j
(
n

j

)
=

p∑
j=0

(−1)j
(
n− 1
j

)
+
p−1∑
j=0

(−1)j+1
(
n− 1
j

)
Hence, all the terms at the right-hand side cancel out except the last one, that is, the term
(−1)p

(
n−1
p

)
.

Combining (3.22) and Lemma 3.5.15, we get

Proposition 3.5.16. ([194]) #Resmn equals the number of elements (yJ) in {0, 1}Θmn which
satisfy

∀I ∈ Γmn , 0 ≤
∑
J∈Θmn
J⊂I

(−1)n−m−#J−1
(

#I −#J − 1
n−m−#J − 1

)
yJ ≤ 1.

We slightly reword the preceding proposition

Corollary 3.5.17. ([194]) #Resmn equals the number of elements (zJ ) in {0, 1}Θmn which satisfy

∀I ∈ Γmn , bI ≤
∑
J∈Θmn
J⊂I

(
#I −#J − 1

n−m−#J − 1

)
zJ ≤ bI + 1

where

∀I ∈ Γmn , bI =
n−m−1∑
j=0

n−m−1−j is odd

(
#I
j

)(
#I − j − 1

n−m− 1− j

)
.

Proof. The proof follows from the change of variables : zJ = yJ if n−m−#J − 1 is even and
zJ = 1− yJ otherwise.
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We now deduce from Corollary 3.5.17 that #Resmn can be interpreted as a coefficient of a
multivariate polynomial.

Proposition 3.5.18. ([194])

#Resmn = 1
(2iπ)#Γmn

∮
P (z)

∏
I∈Γmn

z
−(bI+1)
I

dz

z

where P is the multivariate polynomial defined as

∀z ∈ C, P (z) =
∏
I∈Γmn

(1 + zI)
∏
J∈Θmn

1 +
∏
I∈Γmn
J⊂I

z
aI,J
I


with

∀(I, J) ∈ Γmn ×Θm
n , aI,J =

(
#I −#J − 1

n−m−#J − 1

)
.

Proof. Note that

∏
I∈Γmn

(1 + zI)
∏
J∈Θmn

1 +
∏
I∈Γmn
J⊂I

z
aI,J
I

 =
∏
I∈Γmn

( 1∑
εI=0

zεI

) ∏
J∈Θmn

( 1∑
ηJ=0

z
ηJaI,J
I

)

=
∑

(ε,η)∈{0,1}Γmn ×Θnm

∏
I∈Γmn

z

∑
I∈Γmn

εI+
∑
J∈Θmn
J⊂I

aI,JηJ

I

Now, the coefficient of the monomial
∏
I∈Γmn

zbI+1
I is∑

ε∈{0,1}Γmn

#{η = (ηJ)J∈Θn ∈ {0, 1}Θ
n

| ∀I ∈ Γmn ,
∑
J∈Θmn
J⊂I

aI,JηJ = bI + εI},

where aI,J =
( #I−#J−1
n−m−#J−1

)
, which is equal to #Resmn according to Corollary 3.5.17. The result

follows then from Proposition 3.5.6.

To conclude this section, adopting an approach of enumerative combinatorics we derived two
representation formulas for the number of m-resilient n-variable Boolean functions in terms of
the Cauchy integral. Nevertheless, the problem of counting the number of m-resilient n-variable
Boolean functions is still challenging. In 2010, Canfield et al.[18] have obtained an asymptotic
estimatimation of the number of n-variable m correlation immune Boolean functions. Their
asymptotic enumeration holds if m increases with n within generous limits and specialises to
functions with a given weight, including the resilient functions. In the case of m = 1, their
estimations are valid for all weights.

3.6 The higher order nonlinearity of Boolean functions
with prescribed algebraic immunity

In this section, we are interested in two cryptographic parameters. The first one is the algebraic
immunity of a Boolean function which quantifies the resistance to the standard algebraic attack
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of the pseudo-random generators using it as a nonlinear function. Recall that the algebraic
immunity of a Boolean function f is defined as follows.

Definition 3.6.1 (Algebraic immunity). Let f be an n-variable Boolean function. An n-variable
Boolean function g is said to be an annihilator of f if the product f · g is null (that is, the support
of g is included in the support of 1⊕ f). We denote by An(g) the vector space of all annihilators
of g. The algebraic immunity of f is the minimum algebraic degree of all the nonzero annihilators
of f or of f ⊕ 1. The algebraic immunity of f is denoted by AI(f).

The second parameter is the r th-order nonlinearity which generalizes the standard nonlinearity
and is thus an important parameter in cryptography, (which equals the minimum distance between
any Boolean function f and the set of all Boolean function in n variable of algebraic degree at
most r) and measures the capacity for resisting low-degree approximation attack [152, 234]. More
precisely, the rth order nonlinearity is defined as follows.

Definition 3.6.2 (rth-order nonlinearity). Let f be an n-variable Boolean function. Let r be
a positive integer such that r ≤ n. The r-th order nonlinearity of f is the minimum Hamming
distance between f and all n-variable Boolean functions from the set of all the n-variable Boolean
functions of algebraic degree at most r. We shall denote the r-th order nonlinearity of f by nlr(f).

Carlet introduced in [30] the term of nonlinearity profile of Boolean functions, which is the
sequence whose rth-order term equals the rth-order nonlinearity of the function that we denote
by nlr(f). This parameter extends the standard (first-order) nonlinearity nl(f) of a Boolean
function f . Several papers [72, 113, 137, 152, 204] have shown the role played by this parameter
in relation to some cryptanalyses (note that contrary to the (first-order) nonlinearity, it must have
low value for allowing the attacks to be realistic). Computing theoretically and algorithmically
the rth-order nonlinearity of an n-variable Boolean function is a hard task for r > 1. Therefore
the knowledge of upper and lowers bounds for the rth-order nonlinearity on a particular class of
Boolean functions is important.

Lobanov’s result 5 on the nonlinearity has been extended to the rth-order nonlinearity nlr(f)
of an n-variable Boolean function f in two different lower bounds [30, 34]. None of the two lower
bounds improves upon the other one in all situations. Indeed, the bound of [30] is better than
the bound of [34] for all values of AI(f) when the number of variables is smaller than or equal to
12, and for most values of AI(f) when the number of variables is smaller than or equal to 22.

These lower bounds say that the rth-order nonlinearity of an n-variable Boolean function
f of algebraic immunity k is greater than or equal to the maximum value between

∑k−r−1
i=0

(
n
i

)
and maxr′≤n(min(λr′ , µr′)) where λr′ = 2 max

(∑r′−1
i=0

(
n
i

)
,
∑k−r−1
i=0

(
n−r
i

))
if r′ ≤ k − r − 1 and

2
∑k−r−1
i=0

(
n
i

)
if r′ > k − r − 1, µr′ =

∑k−r−1
i=0

(
n−r
i

)
+
∑k−r′
i=0

(
n−r′+1

i

)
.

In this section, we show how we can improve further the lower bound of [34] for all orders
and the lower bound of [30] for low orders (which are the most important from a practical point
of view) : for every n-variable Boolean function f , we prove that the rth-order nonlinearity
nlr(f) of a n-variable Boolean function of algebraic immunity k is greater than or equal to∑k−r−1
i=0

(
n
i

)
+
∑k−r−1
i=k−2r

(
n−r
i

)
. This and, we begin by studying more deeply than [30] the structure

of vector spaces of annihilators with prescribed algebraic degrees for all Boolean functions.

5We mean, the lower bound of Lobanov:nl(f) ≥ 2n−1 −
(

n
bn2 c

)
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3.6.1 Some results on the dimension of the vector space of prescribed
degree annihilators of a Boolean function

An important parameter for evaluating the complexity of algebraic attacks on the systems using
a given Boolean function is the number of linearly independent low degree annihilators of this
Boolean function g and of the function g ⊕ 1. We shall see in the next Section that it plays also
an important role in relation to the r-th order nonlinearity.

Definition 3.6.3. Let g be a Boolean function and let k be a positive integer. We denote by
Ank(g) the vector space of those annihilators of degrees at most k of g and by dk,g the dimension
of Ank(g).

The dimension dk,g is an affine invariant, that is, we have dk,g = dk,g◦A for every affine
automorphism A of Fn2 (this comes from the affine invariance of the algebraic degree and the fact
that p is an annihilator of g if and only if p ◦A is an annihilator of g ◦A). Little is known on the
behavior of dk,g. Carlet [30] proved the following upper bound on dk,g.

Proposition 3.6.4. ([30]) For every n-variable Boolean function g of algebraic degree at most
r, we have dk,g ≤

∑k
i=0
(
n
i

)
−
∑k
i=0
(
n−r
i

)
. This upper bound is achieved with equality by the

indicators of an (n− r)-dimensional affine subspace of Fn2 for which the dimension dk,g is exactly
equal to

∑k
i=0
(
n
i

)
−
∑k
i=0
(
n−r
i

)
We can derive from this upper bound a lower bound on dk,g. Let us introduce some notation

before. For every n-variable Boolean function g and every positive integer k, we denote byMulk(g)
the vector space of all n-variable Boolean functions p that can be written as p = gh where h is of
algebraic degree at most k. There exists a simple relation between dk,g and dimMulk(g).

Lemma 3.6.5. ([193]) Let g be an n-variable Boolean function of algebraic degree r. Let k be
any positive integer less than n. Then dimMulk(g) =

∑k
i=0
(
n
i

)
− dk,g.

Proof. Let φg be the linear map from RM(k, n) to Mulk(g) which maps h to gh. This linear
map is onto and its kernel equals Ank(g). Thus, by applying the rank theorem to φg, one gets
that dimRM(k, n) =

∑k
i=0
(
n
i

)
= dim Im(φg) + dim ker(φg) = dimMulk(g) + dk,g.

The upper bound of [30] (that we have recalled in Proposition 3.6.4) and Lemma 3.6.5 lead us
to a lower bound on dk,g achieved by the complements of the indicators of affine subspaces of Fn2 .
More precisely,

Proposition 3.6.6. ([193]) Let g be an n-variable Boolean function of algebraic degree at most
r. Then, for every positive integer k, one has dk,g ≥

∑k−r
i=0

(
n−r
i

)
. If g is the complement of the

indicator of an (n− r)-dimensional affine subspace of Fn2 then dk,g =
∑k−r
i=0

(
n−r
i

)
.

Proof. Let g be an n-variable Boolean function of algebraic degree at most r. We can assume
that k ≥ r (otherwise the lower bound is trivial). Take h ∈ Anr(g). We have dk−r,h ≤∑k−r
i=0

(
n
i

)
−
∑k−r
i=0

(
n−r
i

)
by Proposition 3.6.4. Now, according to Lemma 3.6.5, dimMulk−r(h) =∑k−r

i=0
(
n
i

)
− dk−r,h. Thus dimMulk−r(h) ≥

∑k−r
i=0

(
n−r
i

)
. Moreover, we have the inclusion

Mulk−r(h) ⊆ Ank(g). Therefore, it holds that dk,g ≥ dimMulk−r(h) ≥
∑k−r
i=0

(
n−r
i

)
. This latter

inequality becomes an equality whenever g is the complement of an (n− r)-dimensional affine
subspaces of Fn2 because it has been shown in [30] that dk,g is equal to

∑k−r
i=0

(
n−r
i

)
for such

Boolean functions.
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We prove a result that we shall use to improve the lower bound of [30, 34]. To this aim,
we need to introduce some additional notation. Given an element u of Fn2 , we call the subset
{i ∈ {1, . . . , n} | ui = 1} the support of u, and we denote it by supp(u). The Hamming weight of
u, denoted by wt(u), is the cardinality of supp(u). We shall use the partial ordering � on Fn2
defined as follows :

u, v ∈ Fn2 , (u � v) ⇐⇒ (supp(u) ⊂ supp(v))

Moreover, for every pair (u, v) of elements of Fn2 , we denote by u∨ v the element of Fn2 defined as:
∀i = 1, . . . , n, (u ∨ v)i = max(ui, vi), that is, the element of Fn2 whose support is the union of the
two supports supp(u) and supp(v). We say that an element u of a subset Π of Fn2 is a maximal
element of Π with respect to the word partial ordering � if : v ∈ Π, u � v ⇒ v = u. For every
element u of Fn2 , we denote by ū the bitwise complement of u, that is, the element of Fn2 defined
by : ∀i ∈ {1, . . . , n}, ūi = 1⊕ ui. We begin with proving the following Lemma.

Lemma 3.6.7. ([193]) Let g be an n-variable Boolean function whose algebraic normal form is
: ∀x ∈ Fn2 , g(x) =

⊕
u∈Fn2

aux
u. Set Π = {u ∈ Fn2 | au = 1}. Let u be a maximal element of

Π with respect to the partial ordering �. Set Θ = {v ∈ Fn2 | v � ū}. Then {xv · g, v ∈ Θ} is a
linearly independent family of Bn.

Proof. Let (cv)v∈Θ be a collection of elements of F2 such that : ∀x ∈ Fn2 ,
⊕

v∈Θ cvx
vg(x) = 0.

Replacing g by its algebraic normal form yields to : ∀x ∈ Fn2 ,
⊕

(u,v)∈Π×Θ cvx
u∨v = 0. We now

prove that, for every v ∈ Θ, the monomial xu∨v appears only once in the sum
⊕

(u,v)∈Π×Θ cvx
u∨v.

To this end, let us fix v ∈ Θ and let us look forward v′ ∈ Θ and u ∈ Π such that u ∨ v′ = u ∨ v.
This requires that u � u ∨ v′. The support of u being disjoint from the support of v′, we must
have u � u which is possible only if u = u because u is a maximal element of Π with respect
to the word ordering �. The equality u ∨ v′ = u ∨ v becomes u ∨ v′ = u ∨ v from which we
deduce that v = v′ (since they are both disjoint from u). We hence prove that, for every v ∈ Θ,
the monomial xu∨v appears only once in the sum

⊕
(u,v)∈Π×Θ cvx

u∨v which vanishes for every
word x in Fn2 . That requires that x 7→ cvx

u∨v is null on Fn2 yielding to cv = 0. The element v
being arbitrary, that proves that the collection {xv · g, v ∈ Θ} is a linearly independent family of
Bn.

We then use Lemma 3.6.7 to show the following result.

Proposition 3.6.8. ([193]) Let g be an n-variable Boolean function of algebraic degree at
most r and g(x) =

⊕
u∈Fn2

aux
u be its ANF. Let k be a positive integer less than n. Set

Π = {u ∈ Fn2 | au = 1}. Let u be a maximal element of Π with respect to the partial ordering �.
Then

1. The vector space Ank(g ⊕ 1) is contained in Mulk(g).

2. dimMulk(g) ≥
∑k
i=k−wt(u)+1

(
n−wt(u)

i

)
+ dk,1⊕g.

Proof.

1. Every annihilator h of 1⊕ g satisfies gh = h and thus is an element of Mulk(g).

2. The algebraic normal form of g can be rewritten as g(x) =
⊕

u∈Π x
u.

Define Θ = {v ∈ Π | v � ū}. Let Σ be the subset of Θ defined by Σ = {v ∈ Θ |
k−wt(u) + 1 ≤ wt(v) ≤ k} (this subset is non empty because maxv∈Θ wt(v) = n−wt(u) ≥
n− r ≥ k − r + 1). Now, {xv · g, v ∈ Σ} is a subfamily of {xv · g, v ∈ Θ} which is a linearly
independent family of Bn according to Lemma 3.6.7. Thus, {xv · g, v ∈ Σ} is also a linearly
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independent family of Bn. Moreover, every element of this family belongs to Mulk(g) since,
for every v ∈ Σ, we have that wt(v) ≤ k.

Now, let V be the vector subspace spanned by all the Boolean functions xvg where v ranges
over Σ. The vector subspace V is by construction a vector subspace of Mulk(g) and its
dimension over F2 equals the cardinality of the family {xv · g, v ∈ Σ}, that is, its dimension
equals

∑k
i=k−wt(u)+1

(
n−wt(u)

i

)
.

We are now going to prove that the vector sum V +Ank(1⊕ g) is a direct sum of Mulk(g).
The ANF of an element of V is of the form

⊕
(u,v)∈Π×Σ cvx

u∨v. The algebraic degree of
such a Boolean function is at least k + 1. Indeed, for every v ∈ Σ, the monomial xu∨v

appears at most once in the sum
⊕

(u,v)∈Π×Σ cvx
u∨v (see proof of Lemma 3.6.7) and is of

algebraic degree wt(u)+wt(v) ≥ k+1. Hence, the intersection V ∩Ank(1⊕g) is reduced to
{0} because every non null element of V is of algebraic degree at least k+ 1 while every non
null element of Ank(1⊕ g) is of algebraic degree at most k. This proves that the vector sum
V +Ank(1⊕g) is a direct sum. This implies that dimMulk(g) ≥ dimV +dimAnk(1⊕g) =∑k
i=k−wt(u)+1

(
n−wt(u)

i

)
+ dk,1⊕g.

We can deduce from the Proposition 3.6.8 the following lower bound on the difference
dimMulk(g)− dk,1⊕g valid for every Boolean function of degree at most r.

Corollary 3.6.9. Let k be a positive integer. Then, for every n-variable Boolean function g of
algebraic degree at most r, we have

dimMulk(g)− dk,1⊕g ≥
k∑

i=k−r+1

(
n− r
i

)

Proof. Assume that the algebraic normal form of g is : ∀x ∈ Fn2 , g(x) =
⊕

u∈Fn2
aux

u. Set
Π = {u ∈ Fn2 | au = 1}. The algebraic degree of g equals r then there exists at least one maximal
element u of Π with respect to the word partial ordering � whose hamming weight equals r. We
then deduce the result from Proposition 3.6.8.

Remark 3.6.10. Proposition 3.6.8 says that, for every w ≤ r,

dimMulk(g)− dk,1⊕g ≥
k∑

i=k−w+1

(
n− w
i

)

if the algebraic normal form of g contains a monomial xω, with wt(ω) = w, which is not contained
in any another monomial of g. Now, we have

∑k
i=k−w+1

(
n−w
i

)
≥
∑k
i=k−r+1

(
n−r
i

)
. This follows

from the identity
(
n−w
i

)
=
∑i
p=i−r+w

(
n−r
p

)(
r−w
i−p
)
and the sequence of equalities
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k∑
i=k−w+1

(
n− w
i

)

=
k∑

i=k−w+1

i∑
p=i−r+w

(
n− r
p

)(
r − w
i− p

)

=
k∑

p=k−r+1

(
n− r
p

) min(p−w+r,k)∑
i=max(p,k−w+1)

(
r − w
i− p

)

≥
k∑

p=k−r+1

(
n− r
p

)
.

(3.26)

Therefore, the preceding lower bound on dimMulk(g)− dk,1⊕g is better than that of Corollary
3.6.9 if we take w < r. However, it requires more information on the n-variable Boolean function
g than that of Corollary 3.6.9 that simply depends on the algebraic degree of g. Now, we shall
need a lower bound that does not depend on the n-variable Boolean function g to get our result.
This is the reason why we shall restrict ourselves to use Corollary 3.6.9 rather than Proposition
3.6.8 in the sequel.

Remark 3.6.11. The lower bound of Corollary 3.6.9 is achieved by the complements of the
indicators of (n− r)-dimensional affine subspaces of Fn2 , that is, whenever g is the complement of
an (n− r)-dimensional affine subspace of Fn2 , it holds dimMulk(g)− dk,1⊕g =

∑k
i=k−r+1

(
n−r
i

)
.

Indeed, we have that dk,1⊕g =
∑k
i=0
(
n
i

)
−
∑k
i=0
(
n−r
i

)
(Proposition 3.6.4) and dk,g =

∑k−r
i=0

(
n−r
i

)
(Proposition 3.6.6). Therefore, according to Lemma 3.6.5, dimMulk(g) =

∑k
i=0
(
n
i

)
− dk,g =∑k

i=0
(
n
i

)
−
∑k−r
i=0

(
n−r
i

)
=
∑k
i=0
(
n
i

)
−
∑k
i=0
(
n−r
i

)
+
∑k
i=k−r+1

(
n−r
i

)
= dk,1⊕g +

∑k
i=k−r+1

(
n−r
i

)
.

However, we do not know whether there exists or not another Boolean functions that achieve
the equality dimMulk(g) − dk,1⊕g =

∑k
i=k−r+1

(
n−r
i

)
. The only fact that we are able to say is

deduced from the arguments exposed in Remark 3.6.10, that is, if an n-variable Boolean function g
achieves the equality, then all the maximal elements xw in the ANF of g are of algebraic degree r.

Lemma 3.6.12. ([193]) Let g be an n-variable Boolean function of algebraic degree r. Let k be a
positive integer strictly greater than r. Then the subspace Mulk−r(1⊕ g) is contained in Ank(g).

Proof. Let p be an element of Mulk−r(1⊕ g). Assume that p = (1⊕ g)q where q ∈ RM(k− r, n).
Now, deg(p) ≤ deg(1 ⊕ g) + deg(q) ≤ r + k − r = k. Moreover, one has p(x) = 0 for every
x ∈ supp(g), that is, p is an annihilator of g. Thus, Mulk−r(1⊕ g) ⊂ Ank(g).

Remark 3.6.13. In the particular case where the n-variable Boolean function g is the complement
of the indicator of an (n− r)-dimensional affine subspace of Fn2 , the subspaces Mulk−r(1⊕ g) and
Ank(g) coincide because their dimensions are equal.

Indeed, note first that dimMulk−r(1 ⊕ g) =
∑k−r
i=0

(
n
i

)
− dk−r,1⊕g =

∑k−r
i=0

(
n−r
i

)
(since

dk−r,1⊕g =
∑k−r
i=0

(
n
i

)
−
∑k−r
i=0

(
n−r
i

)
by virtue of Proposition 3.6.4). On the other hand, Proposition

3.6.6 says that dk,g =
∑k−r
i=0

(
n−r
i

)
. Thus, dimMulk−r(1⊕ g) =

∑k−r
i=0

(
n−r
i

)
= dk−r,g.
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3.6.2 A new lower bound on the r-th-order nonlinearity of n-variable
Boolean function with respect to their algebraic immunity (im-
provements in 2007)

In this subsection, we shall see that the dimension of the vector subspace of all annihilators with
prescribed algebraic degree of a Boolean function plays also an important role in relation to the
r-th order nonlinearity of this Boolean function.

Given an n-variable Boolean function f and a positive integer k, we denote by <f (k, n) the
restriction of the generator matrix of the kth-order Reed-Muller code of length 2n to the support
of f , that is, the columns of this matrix correspond to the evaluation of the monomials of algebraic
degree at most k on the support of f . This matrix has wt(f) rows and

∑k
i=0
(
n
i

)
columns. The

following result will be useful in the sequel.

Proposition 3.6.14. ([193]) An n-variable Boolean function f has no annihilator of algebraic
degree at most k if and only if all the matrices <f (r, n), r ≤ k − 1, are of full rank. Moreover,
one has, for every positive integer k ≤ n,

dk,f + rank (<f (k, n)) =
k∑
i=0

(
n

i

)
. (3.27)

Proof. We begin with proving the first assertion. We shall prove it by contraposition, that is, we
prove that an n-variable Boolean function f admits an annihilator of algebraic degree at most k
if and only if the matrix <f (k, n) is singular.

Suppose first that f admits an annihilator of algebraic degree at most k, that is, there exists
an n-variable Boolean function p ∈ RM(k, n) such that f(x)p(x) = 0 for every x ∈ Fn2 . This is
equivalent to say that p(x) = 0 for every x ∈ supp(f) or, in matrix form, that <f (k, n)Ap = 0
(where Ap is the column vector whose entries are the coefficients av of the ANF of p, that we
assume to be p(x) =

⊕
wt(v)≤k avx

v). Now, the latter equality is equivalent to say that the matrix
<f (k, n) is singular.

Conversely, suppose that the matrix <f (k, n) is singular. The columns vectors (Cv)wt(v)≤k of
<f (k, n) are then linearly dependent, that is, there exists a family {av, wt(v) ≤ k} of elements
of F2 such that

⊕
wt(v)≤k avCv = 0. Now, a column Cv is the truth table of the restriction of

the monomial xv to supp(f). Thus, we have
⊕

wt(v)≤k avx
v = 0 for every x ∈ supp(f). Let then

p ∈ RM(k, n) be the n-variable Boolean function whose ANF is p(x) =
⊕

wt(v)≤k avx
v. The

latter equality is hence equivalent to say that the n-variable Boolean function p is an annihilator
of f .

Identity (3.27) is obtained by noting that the dimension of the subspaceMulk(f) and the rank
of <f (k, n) are equal. The result follows then from the fact that dimMulk(f) =

∑k
i=0
(
n
i

)
− dk,f

(Lemma 3.6.5).

The rth-order nonlinearity of a Boolean function g is the minimum Hamming distance from f
to an n-variable Boolean function g of algebraic degree at most r. Our approach is to establish a
lower bound on dist(f, g) holding for every Boolean function g of algebraic degree r. To this end,
we first establish a lower bound on dist(f, g) involving the sum of the two dimensions dk−1,g and
dk−1,1⊕g. This is the key result that will enable to improve further the lower bound of [34, 30].

Lemma 3.6.15. ([193]) Let f be an n-variable Boolean function. Suppose that AI(f) = k. Let
r be a positive integer strictly less than k. Then, for every n-variable Boolean function g of
algebraic degree at most r, we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.



3.6. The higher order nonlinearity of Boolean functions with prescribed
algebraic immunity 85

Proof. Denote by d the number of bits to be modified in the truth table of f to obtain g. Denote
by di, i ∈ {0, 1}, the number of words of supp(i⊕ f) for which we modify the output value of
i⊕ f . Clearly, we have dist(f, g) = d = d0 + d1.

Now, for every positive integer `, The matrix <g(`, n) is deduced from the matrix <f (`, n)
by deleting d0 rows and adding d1 rows. The matrix <f (k − 1, n) being of full rank according
to proposition 3.6.14, we hence have that rank(<g(k − 1, n)) ≥

∑k−1
i=0

(
n
i

)
− d0 and thus that

d0 ≥
∑k−1
i=0

(
n
i

)
− rank(<g(k − 1, n)) = dk−1,g.

Similarly, the matrix <1⊕g(`, n) is deduced from the matrix <1⊕f (`, n) by deleting d1 rows
and adding d0 rows. The matrix <f (k − 1, n) being also of full rank, we hence deduce by similar
arguments as those exposed previously that d1 ≥ dk−1,1⊕g.

Remark 3.6.16. Collecting together Lemma 3.6.6 applied to affine Boolean functions and Lemma
3.6.15 leads to dist(f, l) ≥ dk−1,l + dk−1,1⊕l = 2

∑k−2
i=0

(
n−1
i

)
for every n-variable affine Boolean

functions, that is, we recover the lower bound of [171].
Similarly, applying Lemma 3.6.15 to n-variable Boolean functions of algebraic degree at most

r leads to dist(f, g) ≥ 2
∑k−r−1
i=0

(
n−r
i

)
, that is, we recover the first lower bound of [30, Theorem

1].

We then deduce from Lemma 3.6.8 and Lemma 3.6.15 our lower bound on the rth-order
linearity of an n-variable Boolean function with prescribed algebraic immunity. Our idea is to
get a lower bound on this sum rather than considering separately the two dimensions dk−1,g and
dk−1,1⊕g.

Theorem 3.6.17. ([193]) Let f be an n-variable Boolean function of algebraic immunity k and
let r be a positive integer strictly less than k. Then

nlr(f) ≥
k−r−1∑
i=0

(
n

i

)
+

k−r−1∑
i=k−2r

(
n− r
i

)

Proof. Let g be an arbitrary n-variable Boolean function of algebraic degree at most r. According
to Lemma 3.6.15, we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.

Now, according to Lemma 3.6.12, one has Ank−1(g ⊕ 1) ⊃ Mulk−r−1(g) and Ank−1(g) ⊃
Mulk−r−1(1⊕ g). Hence

dist(f, g) ≥ dk−1,g + dk−1,1⊕g ≥ dimMulk−r−1(g)
+ dimMulk−r−1(1⊕ g)

Next, thanks to Lemma 3.6.5, we get

dist(f, g) ≥ dimMulk−r−1(g) + dimMulk−r−1(1⊕ g)

=
k−r−1∑
i=0

(
n

i

)
+ dimMulk−r−1(g)− dk−r−1,1⊕g.

We finally conclude thanks to Corollary 3.6.9 that says that dimMulk−r−1(g)− dk−r−1,1⊕g ≥∑k−r−1
i=k−2r

(
n−r
i

)
.



86 Chapter 3. Boolean functions and cryptography

HH
HHHn

r 2 3 4 5 6 7

18 43556 17439 5518 1976 344 38
19 126008 57992 21592 6507 2320 382
20 188368 81404 28568 8826 2702 422
21 527900 257396 103784 34780 15094 3124
22 803860 369748 141064 44844 18218 3588
23 2195580 1123220 483680 176660 53954 21806
24 3396320 1645660 672784 233827 68071 25902
25 9080772 4838490 2202164 863975 289301 136812
26 14239032 7211198 3125248 1169920 374371 167364
27 37392864 20633040 9846132 4104275 1484042 458054
28 59333408 31214643 14221898 5670245 1963795 581338
29 153434536 87279291 43393566 19055725 7355234 2462995
30 246025562 133797407 63665462 26799567 9928262 3194667

Table 3.1 – Best lower bounds on nlr(f) for 18 ≤ n ≤ 30, AI(f) =
⌈

n
2

⌉
, r ≤ 7

Remark 3.6.18. In the particular case where r = 1, Theorem 3.6.17 says that nl(f) ≥
∑k−2
i=0

(
n
i

)
+(

n−1
k−2
)
. Now, note that, using the identity

(
n
i

)
=
(
n−1
i

)
+
(
n−1
i−1
)
, we have

∑k−2
i=0

(
n
i

)
= 1 +∑k−2

i=1
(
n−1
i

)
+
∑k−2
i=1

(
n−1
i−1
)

= 2
∑k−3
i=0

(
n−1
i

)
+
(
n−1
k−2
)
. Thus, we get nl(f) ≥ 2

∑k−2
i=0

(
n−1
i

)
which

is exactly the lower bound of [171].

Remark 3.6.19. Theorem 3.6.17 improves further the result of [34] for all orders. We present
in Table 9.4 the comparison between our lower bound and the lower bound of [34]. On the other
hand, it only improves partially the result of [30]. We present in table 3.2 the comparison between
the lower bound of Theorem 3.6.17 and the lower bound of [30]. Moreover, we give in table 3.1
the best lower bound between ours (that we write in bold text) and those of [30]. We have checked
by computer experiments that, for every n ≤ 60, our lower bound improves the lower bound of
[30] for 2 ≤ k ≤ dn2 e and 2 ≤ r ≤ bk−1

2 c while it does not improve the lower bound of [30] for
2 ≤ k ≤ dn2 e and b

k−1
2 c+ 3 ≤ r ≤ k. However, we do not know whether it holds for every positive

integer n or not. Concerning the cases where r ∈
{
bk−1

2 c+ 1, bk−1
2 c+ 2

}
, we have found by

computer experiments that our lower bound is better than the lower bound of [30] for some values
of (k, n) with n ≤ 60 and 2 ≤ k ≤ dn2 e.

3.7 Recent constructions of Boolean functions satisfying
the main cryptographic criteria

Building a Boolean function meeting as many criteria as possible is a difficult task. Trade-offs must
usually be made between them. Since the introduction of algebraic immunity, several constructions
of Boolean functions with high algebraic immunity have been suggested, but very few of them
are of optimal algebraic immunity. More importantly, those having other good cryptographic
properties, as balancedness or high nonlinearity for instance, are even rarer. Among those having
optimal algebraic immunity AI(f) = dn/2e, most have a poor nonlinearity [49, 78, 164, 165, 51],
close to the lower bound of Lobanov [172]:

nl(f) ≥ 2n−1 −
(
n

bn2 c

)
.
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H
HHHHn

r 2 3 4 5 6 7

18 1.46 1.76 1.88 0.69 0.73 0.82
19 1.53 1.95 2.18 1.01 0.66 0.71
20 1.49 1.87 2.07 0.92 0.67 0.72
21 1.55 2.04 2.38 2.30 0.63 0.65
22 1.52 1.96 2.26 2.38 0.64 0.66
23 1.58 2.13 2.57 2.83 1.33 0.62
24 1.55 2.05 2.44 2.67 1.21 0.62
25 1.60 2.20 2.74 3.13 2.11 0.59
26 1.57 2.12 2.60 2.95 2.24 0.60
27 1.61 2.27 2.90 3.42 3.74 1.77
28 1.59 2.19 2.76 3.22 3.50 1.60
29 1.63 2.33 3.05 3.69 4.17 2.12
30 1.60 2.26 2.90 3.48 3.90 2.08

Table 3.2 – The new lower bound over the lower bound of [30] for 18 ≤ n ≤ 30, AI(f) =
⌈

n
2

⌉
, r ≤ 7

H
HHHHn

r 2 3 4 5 6 7

18 1.40 1.38 1.36 1.38 1.46 1.63
19 1.34 1.32 1.30 1.29 1.33 1.41
20 1.37 1.35 1.32 1.31 1.35 1.44
21 1.31 1.30 1.26 1.25 1.26 1.30
22 1.34 1.32 1.28 1.27 1.28 1.32
23 1.29 1.27 1.24 1.21 1.21 1.23
24 1.32 1.29 1.25 1.23 1.23 1.25
25 1.28 1.26 1.22 1.19 1.18 1.18
26 1.30 1.27 1.23 1.20 1.19 1.20
27 1.26 1.24 1.20 1.17 1.15 1.15
28 1.28 1.26 1.22 1.18 1.17 1.16
29 1.25 1.23 1.19 1.16 1.14 1.13
30 1.27 1.24 1.20 1.17 1.15 1.14

Table 3.3 – The new lower bound over the lower bound of [34] for 18 ≤ n ≤ 30, AI(f) =
⌈

n
2

⌉
, r ≤ 7
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We now present different good families, i.e. meeting most of the criteria mentioned in Section 3.2
in a satisfactory way.

In 2008, Carlet and Feng [50] studied a family of Boolean functions introduced by Feng, Liao
and Yang [100] and devised the first infinite class of functions which seems able to satisfy all of
the main criteria for being used as a filtering function in a stream cipher.

Definition 3.7.1 (Construction of Carlet and Feng [50, Section 3]). Let n ≥ 2 be a positive
integer and α a primitive element of F2n . Let f be the Boolean function in n variables defined by

supp(f) =
{

0, 1, α, . . . , α2n−1−2
}

.

They proved that these functions are

1. balanced,

2. of optimal algebraic degree n− 1 for a balanced function,

3. of optimal algebraic immunity dn/2e,

4. with good immunity to fast algebraic attacks,

5. and with good nonlinearity

nl(f) ≥ 2n−1 + 2n/2+1

π
ln
(

π

2n − 1

)
− 1 ≈ 2n−1 − 2 ln 2

π
n2n/2 .

Moreover, it was checked for small values of n that the functions had far better nonlinearity than
the proved lower bound.

Afterwards, the same family was reintroduced in a different way by Wang et al. [260, 48] who
proved a better lower bound:

nl(f) ≥ max
(

6b2
n−1

2n c − 2, 2n−1 −
(

ln 2
3 (n− 1) + 3

2

)
2n/2

)
.

Finally, Tang, Carlet and Tang [245] proved in 2011 that the following better lower bound is
again valid:

nl(f) ≥ 2n−1 −
(
n ln 2

2π + 0.74
)

2n/2 − 1 .

In 2010, Tu and Deng [249] discovered that there may be Boolean functions of optimal
algebraic immunity in a classical class of Partial Spread functions due to Dillon [86] provided
that the following combinatorial conjecture is correct.

Conjecture 3.7.2 (Tu–Deng conjecture). For all k ≥ 2 and all t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 |a+ b = t and w2(a) + w2(b) ≤ k − 1
}
≤ 2k−1 .

Tu and Deng checked the validity of the conjecture for k ≤ 29. They also proved that, if the
conjecture is true, then one can get in even dimension balanced Boolean functions of optimal
algebraic immunity and of high nonlinearity (better than that of the functions described above
proposed by Carlet and Feng.

More explicitly, their idea was to apply the idea of Carlet and Feng to the classical construction
of Dillon ([82]); more precisely, functions form the so-called Partial Spread class PSap (see in
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Subsection 4.4.1) whose elements are defined in an explicit form: f(x, y) = g(xy ) (i.e. g(xy2k−2))
with x

y = 0 if y = 0 where f is a Boolean function defined on F2k × F2k and g be a balanced
Boolean function defined over F2k such that g(0) = 0. Functions in the class PSap are bent and
have algebraic degree n/2 = k ([227]).

Definition 3.7.3 (First construction of Tu and Deng [249]). Let n = 2k ≥ 4 be an even integer,
α a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 a Boolean function in

k variables defined by

supp(g) =
{
αs, αs+1, . . . , αs+2k−1−1

}
= αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) =
{

g
(
x
y

)
if x 6= 0 ,

0 otherwise .

They proved that these functions are

1. bent (because they belong to PSap),

2. of algebraic degree n/2 = k [228],

3. and of optimal algebraic immunity n/2 = k if Conjecture 3.7.2 is verified.

To prove the optimal algebraic immunity, Tu and Deng have adopted to their function the
approach of Carlet and Feng which consists to identify annihilators of the Boolean function with
codewords of BCH codes [175, 176, 252]. The role of the conjecture is then to deduce from the
BCH bound [175, 176, 252] that those codewords are equal to zero if the algebraic degrees of the
corresponding annihilators are less than n/2 = k.

These functions can then be modified to give rise to functions with different good cryptographic
properties as follows.

Definition 3.7.4 (Second construction of Tu and Deng [249]). Let n = 2k ≥ 4 be an even integer,
α a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 a Boolean function in

k variables defined by

supp(g) = αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) =


g
(
x
y

)
if xy 6= 0 ,

1 if x = 0 and y ∈ (αA)−1
,

0 otherwise .

Our definition slightly differs from the original one [249], but, in the end, it is equivalent
because

(αA)−1 =
{
α−1, . . . , α−(2k−1−1), α−2k−1

}
=
{
α2k−1−1, α2k−1

, . . . , α2k−2
}

.

The cryptographic parameters of the function f are as follows:
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1. f is balanced;

2. its algebraic degree is optimal for a balanced function, that is equal to n− 1;

3. up to Conjecture 3.7.2, f has optimal algebraic immunity that is, AI(f) = n;

4. its nonlinearity satisfies

nl(f) ≥ 2n−1 − 2n/2−1 − n

2 2n/4 ln 2− 1 .

Afterwards, Tu and Deng [248, 247] modified their original functions to obtain a class of
1-resilient functions with high nonlinearity and high algebraic immunity.

Definition 3.7.5 (Third construction of Tu and Deng [248, 247]). Let n = 2k ≥ 4 be an even
integer, α a primitive element of F2n , A =

{
α, α2, . . . , α2k−1−1

}
, 0 ≤ s ≤ 2k − 2 an integer and

B = {0, 1} ∪A−1. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

supp(f) =
⋃

{(x, y) | x/y ∈ αsA} ,
{(x, y) | y = α−sy, x ∈ B} ,
{(x, 0) | x ∈ F2k \B} ,
{(0, y) | y ∈ F2k \ α−sB} .

They proved that f satisfies the following properties:

1. f is 1-resilient;

2. f is of optimal algebraic degree deg(f) = n− 2;

3. up to Conjecture 3.7.2, f has algebraic immunity AI(f) ≥ n/2− 1;

4. f has nonlinearity
nl(f) ≥ 2n−1 − 2n/2−1 − 3

2n2n/4 ln 2− 7 .

It is in fact proved that f has optimal algebraic immunity depending only on Conjecture 3.7.2
when n/2 is odd and on an additional assumption when n/2 is even [247].

Finally, Tang et al. [246] applied a degree optimized version of an iterative construction
of balanced Boolean functions with very high nonlinearity by Dobbertin [94] to the functions
constructed by Tu and Deng [249, 248] and obtained functions with better nonlinearity. For
n = 2k = 2tm ≥ 4, m odd, their first family is

1. balanced,

2. of optimal algebraic degree n− 1,

3. of optimal algebraic immunity n/2 if Conjecture 3.7.2 is verified,

4. of nonlinearity at least

2n−1 −
t−1∑
i=0

2n/(2
i+1)−1 − 2(m−1)/2 ;

and their second family is

1. 1-resilient,
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2. of optimal algebraic degree n− 2,

3. of algebraic immunity at least n/2− 1 if Conjecture 3.7.2 is verified,

4. of nonlinearity at least{
2n−1 − 2n/2−1 − 3

(∑t−1
i=1 2n/(2i+1)−1 − 2(m−1)/2

)
if m = 1 ,

2n−1 − 2n/2−1 − 3
∑t−1
i=1 2n/(2i+1)−1 − 2(m+1)/2 − 6 if m ≥ 2 .

Unfortunately, Carlet [47] observed that the functions introduced by Tu and Deng are weak
against fast algebraic attacks and unsuccessfully tried to repair their weakness. It was subsequently
shown by Wang and Johansson [259] that this family can not be easily repaired.

Nonetheless, more recent developments have shown that the construction of Tu and Deng
and the associated conjecture are not of purely æsthetic interest, but are interesting tools in a
cryptographic context.

In 2011, inspired by the previous work of Tu and Deng [249], Tang, Carlet and Tang [245]
constructed an infinite family of Boolean functions with many good cryptographic properties.
The main idea of their construction is to change the division in the construction of Tu and Deng
by a multiplication. The associated combinatorial conjecture is then modified as follows.

Conjecture 3.7.6 (Tang–Carlet–Tang conjecture). For all k ≥ 2 and all t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | a− b = t;w2(a) + w2(b) ≤ k − 1
}
≤ 2k−1 .

They verified it experimentally for k ≤ 29, as well as the following generalized property for
k ≤ 15 where u ∈ Z/(2k − 1)Z is such that gcd(u, 2k − 1) = 1 and ε = ±1.

Conjecture 3.7.7 (Tang–Carlet–Tang conjecture). Let k ≥ 2 be an integer, t ∈
(
Z/(2k − 1)Z

)∗,
u ∈ Z/(2k − 1)Z such that gcd(u, 2k − 1) = 1 and ε ∈ {−1, 1}. Then

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ εb = t;w2(a) + w2(b) ≤ k − 1
}
≤ 2k−1 .

This generalized conjecture includes the original conjecture proposed by Tu and Deng (Con-
jecture 3.7.2) for u = 1 and ε = +1.

The construction of their functions is as follows.

Definition 3.7.8 (Construction of Tang, Carlet and Tang [245]). Let n = 2k ≥ 4 be an even
integer, α a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 the Boolean

function in k variables defined by

supp(g) = αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) = g (xy) .

They proved that such a function f is

1. of algebraic degree n− 2,

2. of optimal algebraic immunity n/2 if Conjecture 3.7.6 is true,
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3. of good immunity against fast algebraic attacks,

4. of nonlinearity at least

2n−1 −
(

ln 2
2π n+ 0.42

)
2n/2 − 1 .

The proof of the optimality of the algebraic immunity is similar to the proof of Tu and Deng [249].
These functions can then be modified using the same procedure as Tang et al. [246] to

obtain balanced functions with high algebraic degree and nonlinearity. They proved that, for
n = 2k = 2tm ≥ 4 and m odd, these modified functions are

1. balanced,

2. of optimal algebraic degree n− 1,

3. of optimal algebraic immunity n/2 if Conjecture 3.7.6 is true,

4. of good immunity against fast algebraic attacks,

5. of nonlinearity at least{
2n−1 −

( ln 2
2π n+ 0.42

)
2n/2 − 2

n/2−1
2 − 1 if t = 1 ,

2n−1 −
( ln 2

2π n+ 0.42
)

2n/2 −
∑t−1
i=1 2n/(2i+1)−1 − 2(m−1)/2 − 1 if t ≥ 2 .

It should finally be mentioned that Jin et al. [139] generalized the construction of Tang, Carlet
and Tang [245] in a way that included back the construction of Tu and Deng [249]. In their paper,
the main idea is to replace y by y2k−1−u in the construction of the function. Hence, the family of
Tu and Deng is included for u = 1, and the family of Tang et al. for u = 2k − 2. The associated
combinatorial conjecture is then modified as follows.

Conjecture 3.7.9 (Jin et al. conjecture). Let k ≥ 2 be an integer, t, u, v ∈
(
Z/(2k − 1)Z

)∗ such
that gcd(u, 2k − 1) = gcd(v, 2k − 1) = 1. Then

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t;w2(a) + w2(b) ≤ k − 1
}
≤ 2k−1 .

This generalized conjecture obviously includes all the previous ones.
The construction of their functions is as follows.

Definition 3.7.10 (Construction of Jin et al. [139]). Let n = 2k ≥ 4 be an even integer, α
a primitive element of F2n , A =

{
1, α, . . . , α2k−1−1

}
and g : F2k → F2 Boolean function in k

variables defined by

supp(g) = αsA ,

for any 0 ≤ s ≤ 2k − 2. Let f : F2k × F2k → F2 be the Boolean function in n variables defined by

f(x, y) = g
(
xy2k−1−u

)
.

They proved that such a function f is

1. of algebraic degree between n/2 and n− 2 depending on the value of u,

2. of optimal algebraic immunity n/2 if Conjecture 3.7.9 is true,
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3. of nonlinearity at least

2n−1 − 2
π

ln 4(2n/2 − 1)
π

2n/2 − 1 ≈ 2n−1 − ln 2
π
n2n/2 .

The proof of the optimality of the algebraic immunity is once again similar to the previous ones.
It should be noted that resistance to fast algebraic attacks is not studied by Jin et al. [139].

Modifying these functions as before, Jin et al. obtained balanced functions with high algebraic
degree and nonlinearity. They proved that for n = 2k ≥ 4, these modified functions are

1. balanced,

2. of optimal algebraic degree n− 1,

3. of optimal algebraic immunity n/2 if Conjecture 3.7.9 is true,

4. of nonlinearity at least

2n−1 − 2
π

ln 4(2n/2 − 1)
π

2n/2 − 2
π

ln 4(2n/2 − 1)
π

2n/4 − 2 ≈ 2n−1 − ln 2
π
n2n/2 − ln 2

π
n2n/4 .

Jin et al. [138] applied a similar generalization to the 1-resilient Boolean function of Tu and
Deng [247] and obtained a family functions which are

1. 1-resilient,

2. of optimal algebraic degree n− 2,

3. of optimal algebraic immunity n/2 up to Conjecture 3.7.9 and an additional assumption,

4. of nonlinearity at least

2n−1 − 2
π

ln 4(2n/2 − 1)
π

2n/2 − 2n/2−1 − 4
π

ln 4(2n/2 − 1)
π

2n/4 − 3

≈ 2n−1 − ln 2
π

(n+ 1)2n/2 − 2 ln 2
π

n2n/4 .

3.8 Some results on a conjecture about binary strings dis-
tribution

As was underlined in the previous section , the good cryptographic properties of the Boolean
functions of the Jin et al. family [138] and more precisely the optimality of their algebraic
immunity, depend on the validity of a combinatorial conjecture. The purpose of this section,
if not to prove that conjecture in its full generality, is at least to give a good insight into its
expected validity not only through a thorough theoretical study.

.
Unless stated otherwise, we use the following notation throughout this section:

• k ∈ N is the number of bits (or length of binary strings) we are currently working on;

• t ∈ Z/(2k − 1)Z is a fixed modular integer.
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We use the following function of natural (or modular) integers (or binary strings).
Let us denote by St,v,u,k the set of interest:

St,v,u,k =
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t;w2(a) + w2(b) ≤ k − 1
}

,

where k ≥ 2, t ∈
(
Z/(2k − 1)Z

)∗ and u, v ∈ (Z/(2k − 1)Z
)×, i.e. u and v are invertible modulo

2k − 1.
We now recall the different flavors of the conjecture already mentioned in the previous section.

Conjecture 3.7.2 (Tu–Deng conjecture). With the above notation,

#St,+1,1,k ≤ 2k−1 .

Conjecture 3.7.6 (Tang–Carlet–Tang conjecture). With the above notation,

#St,−1,1,k ≤ 2k−1 .

Conjecture 3.7.9 (Jin et al. conjecture). With the above notation,

#St,v,u,k ≤ 2k−1 .

In the following, we present first general basic properties of the set St,v,u,k obtained by
studying the behavior of the Hamming weight under various basic transformations: binary not
and rotation. In fact, in 2010, we have studied these properties in the particular case of St,+1,1,k
(that we denoted simply by St,k) since the other conjectures were formulated only in 2011. For
making the paper self-contained, we include the results formulated by Flori and Randriam [106]
in the general case.

Definition 3.8.1. We define ak as the modular integer whose binary expansion is the binary not
on k bits of the binary expansion of the representative of a in

{
0, . . . , 2k − 2

}
. We denote it by a

when there is no ambiguity about the value of k.

Lemma 3.8.2. [105] Let a ∈
(
Z/(2k − 1)Z

)∗ be a non-zero modular integer, then −a = a and
w2(−a) = k − w2(a).

Proof. Indeed a+ a =
∑k−1
i=0 2i = 2k − 1 = 0.

Lemma 3.8.3. [105] For all i ∈ Z and a ∈ Z/(2k − 1)Z, we have

w2(2ia) = w2(a) .

Proof. We are working in Z/(2k − 1)Z so that 2k = 1 and multiplying a modular integer in
Z/(2k − 1)Z by 2 is just rotating its representation as a binary string on k bits by one bit to the
left, whence the equality of the Hamming weights.

Therefore, we say that, for any i ∈ Z, 2ia and a are equivalent, or that they are in the same
cyclotomic class modulo 2k − 1, and we write a ' 2ia. Remark that, for a given a ∈ Z/(2k − 1)Z,
b must be equal to v−1(t− ua), whence the following lemma.

Lemma 3.8.4. [105] For k ≥ 2,

#St,v,u,k = #
{
a ∈ Z/(2k − 1)Z | w2(a) + w2(v−1(t− ua)) ≤ k − 1

}
.
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Using the previous lemmas, we can now show that is enough to study the conjecture for one t,
but also one u and one v, in each cyclotomic class.

Lemma 3.8.5. [105] For k ≥ 2,

#St,v,u,k = #S2t,v,u,k .

Proof. Indeed a 7→ 2a is a permutation of Z/(2k − 1)Z so that

#S2t,v,u,k = #
{
a ∈ Z/(2k − 1)Z | w2(a) + w2(v−1(2t− ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | w2(2a) + w2(2v−1(t− ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | w2(a) + w2(v−1(t− ua)) ≤ k − 1

}
= #St,v,u,k .

Lemma 3.8.6. [105] For k ≥ 2,

#St,v,u,k = #St,v,2u,k .

Proof. Using the previous lemma,

#St,v,2u,k = #S2t,v,2u,k

= #
{
a ∈ Z/(2k − 1)Z | w2(a) + w2(v−1(2t− 2ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | w2(a) + w2(v−1(t− ua)) ≤ k − 1

}
= #St,v,u,k .

Lemma 3.8.7. [105] For k ≥ 2,

#St,v,u,k = #St,2v,u,k .

Proof. Using the previous lemmas,

#St,2v,u,k = #S2t,2v,2u,k

= #
{
a ∈ Z/(2k − 1)Z | w2(a) + w2((2v)−1(2t− 2ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | w2(a) + w2(v−1(t− ua)) ≤ k − 1

}
= #St,v,u,k .

It was shown a more elaborate relation for different values of u, v and t.

Lemma 3.8.8. [105] For k ≥ 2,

#St,v,u,k = #S(uv)−1t,v−1,u−1,k .

Proof. We use the fact that a 7→ u−1(−va+ t) is a permutation of Z/(2k − 1)Z and deduce

#St,v,u,k = #
{
a ∈ Z/(2k − 1)Z | w2(a) + w2(v−1(t− ua)) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | w2(u−1(−va+ t)) + w2(a) ≤ k − 1

}
= #

{
a ∈ Z/(2k − 1)Z | w2(v((uv)−1t− u−1a)) + w2(a) ≤ k − 1

}
= #S(uv)−1t,v−1,u−1,k .
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Now, we state the following observation of Jin et al. [139].

Lemma 3.8.9. For k ≥ 2 and c ∈
(
Z/(2k − 1)Z

)×,
#St,v,u,k = #Sct,cv,cu,k .

Proof. Indeed, we have ua+ vb = t if and only if cua+ cvb = ct when c is invertible, whence a
bijection between the sets St,v,u,k and Sct,cv,cu,k.

Finally, as noted by Jin et al. [139], their generalized conjecture is then equivalent to the
generalized conjecture of Tang et al. [245].

Now, we concentrate our efforts on the original conjecture of Tu and Deng [249] which is a
natural candidate to extend the study of the other conjectures but also because we have interested
on this conjecture in 2010 while the other conjectures have been reformulated only in 2011.

In the following, we just give some results appeared in [104]6. Readers interested in the
development of this study will refer to the work of Flori and Randriam [106].

Our main approach used in this section is that of reformulating the conjecture in terms of
carries occurring in an addition modulo 2k − 1. Although such an approach may at first seem
quite naive to the reader, what makes the study of the conjecture seemingly so difficult is precisely
that a suitable algebraic structure to cast upon the problem has yet to be found, so that only a
purely combinatorial point of view is possible as of today.

Let us define the main tool we will use to study the conjecture of Tu and Deng (as well as the
other conjectures7).

Definition 3.8.10. For a ∈
(
Z/(2k − 1)Z

)∗, we set

r(a, t) = w2(a) + w2(t)− w2(a+ t) ,

i.e. r(a, t) is the number of carries occurring while performing the addition. By convention, we set

r(0, t) = k ,

i.e. 0 behaves like the 1...1︸ ︷︷ ︸
k

binary string. We also remark that r(−t, t) = k.

The following statement is fundamental. It brings to light the importance of the number of
carries occurring during the addition.

Proposition 3.8.11. [104] For k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗,
#St,k = # {a | r(a, t) > w2(t)} .

Now, we often compute Pt,k = 2−k#St,k rather than #St,k. Therefore we use the words
proportion or probability in place of cardinality. Moreover we often computed cardinalities
considering all the binary strings on k bits, i.e. including 1...1 and 0...0. The modular integer
0 is considered to act as the binary string 1...1 , but the binary string 0...0 should be discarded
when doing final computation of Pt,k. However it ensures that variables are truly independent.

The original conjecture proposed by Tu and Deng [249] can be reformulated as follows.
6 Note that the author had contributed in a smallest part of the joint work with Jean-Pierre Flori, Gérard

Cohen and Hugues Randriam. For more details, the reader may refer to [104]. Moreover, Jean-Pierre Flori had
continued to study more deeply this conjecture in his PhD thesis [105] and obtained different interesting results,
but unfortunately without reaching a complete proof of this conjecture.

7Note that Cohen and Flori [67] have used this tool to prove the Conjecture of Tang et al.
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Conjecture 3.7.2. For k ≥ 2 and t ∈ Z/(2k − 1)Z, let St,k be the following set8. :

St,k =
{
a ∈ Z/(2k − 1)Z | r(a, t) > w2(t)

}
,

and Pt,k the fraction9of modular integers in St,k:

Pt,k = #St,k/2k .

Then
Pt,k ≤

1
2 .

Tu and Deng verified computationally the validity of this assumption for k ≤ 29 in about
fifteen days on a quite recent computer [249]. We also implemented their algorithm and were
able to check the conjecture for k = 39 in about twelve hours and fifteen minutes on a pool of
about four hundred quite recent cores, and k = 40 on a subset of these computers. The algorithm
of Tu and Deng [249, Appendix] as well as the implementation have been described by Flori.

Note that conjecture is not only interesting in a cryptographic context, but also for purely
arithmetical reasons. For a fixed modular integer t ∈ Z/(2k − 1)Z, it is indeed natural to expect
the number of carries occurring when adding a random modular integer a ∈ Z/(2k − 1)Z to t to
be roughly the Hamming weight of t. Note that following this idea, Flori and Randriam [106]
have studied the distribution of the number of carries around this value and proved that quite
unexpectedly, the conjecture seems to indicate a kind of regularity.

Proposition 3.8.11 allows us to prove the conjecture in the specific case where t ' −t:

Theorem 3.8.12. ([104]) If t ' −t, then #St,k ≤ 2k−1.

Next, we split t(6= 0) (once correctly rotated, i.e. we multiply it by a correct power of 2 so
that its binary expansion on k bits begins with a 1 and ends with a 0) in blocks of the form
[1∗0∗] (i.e. as many 1s as possible followed by as many 0s as possible).

Definition 3.8.13. We denote the number of blocks by d and the numbers of 1s and 0s of the
ith block ti by αi and βi.

We have defined corresponding variables for a (a number to be added to t): γi the number of
0s in front of the end of the 1s subblock of ti, δi the number of 1s in front of the end of the 0s
subblock of ti.

Those definitions are depicted below:

t =
α1 {

1---1

β1 {

0---0...

αi {

1---1

βi {

0---0...

αd {

1---1

βd {

0---0 ,

a = ?10-0{

γ1

?01-1{

δ1

...?10-0{

γi

?01-1{

δi

...?10-0{

γd

?01-1{

δd

,

One should be aware that γis and δis depend on a and are considered as variables.

We first “approximate” the number of carries r(a, t) by
∑d
i=0 αi − γi + δi ignoring the two

following facts:
8 It is easy to see that this formulation is equivalent to the original one. A formal proof will be given in

Corollary 3.8.11
9 We are fully aware that there are only 2k − 1 elements in Z/(2k − 1)Z, but we will often use the abuse of

terminology we make here and speak of fraction, probability or proportion for Pt,k.
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• if a carry goes out of the i−1st block (we say that it overflows) and δi = βi, the 1s subblock
produces αi carries, whatever value γi takes,

• and if no carry goes out of the i − 1st block (we say that it is inert), the 0s subblock
produces no carry, whatever value βi takes.

Our first result is the exact formulas of #St,k for numbers made of only one block (i.e for
d = 1). More precisely, we have proved the following theorem.

Theorem 3.8.14. ([104])

Pt,k =
{

2−α−β 1−2−2α

3 if 1 ≤ α ≤ k−1
2

1+2−2β+1

3 if k−1
2 ≤ α ≤ k − 1

.

For α = 1, it reads S1,k = 2k−2 + 1 and for α = k − 1, it reads S−1,k = 2k−1.
Next, we introduce the following constraint which greatly simplifies calculations:

min
i

(αi) ≥
d∑
i=1

βi − 1 = k − w2(t)− 1 .

That condition tells us that, if a is in St,k, a carry has to go through each subblock of 1s Moreover,
it leads us to a proof that the conjecture is asymptotically (that is, when βi →∞) true. More
precisely, we have proved the following theorem.

Theorem 3.8.15. ([104]) Let d be a strictly positive integer. There exists a constant Kd such
that if t verifies the two following constraints:

∀i, βi ≥ Kd and min
i
αi ≥ k − w2(t)− 1 ,

then #St,k < 2k−1.

When the number of blocks, d, goes as well to infinity, we remark that Pt,k converges toward
1/2.

It is possible to compute the exact value of #St,k for a given d and a corresponding set of βis.
It is worth noting that the order of the βis does not matter because each subblock behaves the
same when a is in St,k, i.e. it overflows. We did the computation for d = 2 where the symmetry
of the problem leads to only one situation and gives a quite general result.

Definition 3.8.16.

f(x, y) =11
27 + 4−x

(
2
9x−

2
27

)
+ 4−y

(
2
9y −

2
27

)
+ 4−x−y

(
20
27 −

2
9(x+ y)

)
.

Proposition 3.8.17. ([104])
Pt,k = f(β1, β2) ≤ 1/2 .

Proof. An easy but quite lengthy and error-prone calculation, which can be checked with a
symbolic calculus software, leads to the desired expression. The graph of f , computed with
MapleTM [208], is given in Fig. 3.3.

We have proved:
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Figure 3.3 – Graph of f(x, y).

Theorem 3.8.18. ([104]) If t verifies the following constraints:

d = 2 and α1, α2 ≥ k − w2(t)− 1 ,

then #St,k ≤ 2k−1.

Finally, we have proved that a family of numbers reaches the bound (we believe they are the
only ones to do so): In fact, we have added another constraint: ∀i, βi = 1. The previous one
becomes: mini(αi) ≥ k − w2(t)− 1 = d− 1.

Theorem 3.8.19. [104] Let t verify the two following constraints:

∀i, βi = 1 and min
i

(αi) ≥ k − w2(t)− 1 = d− 1 ,

then #St,k = 2k−1.

Next we proved the conjecture in the following case:

Corollary 3.8.20. Let t verify the two following constraints:

∀i, αi = 1 and min
i

(βi) ≥ w2(t)− 1 = d− 1 ,

then #St,k ≤ 2k−1.

The theoretical study of the conjecture, together with experimental results obtained with
Sage [241] made by Jean-Pierre Flori, lead to conjecture that the converse of Theorem 3.8.19
is also true, i.e. the numbers of Theorem 3.8.19 are the only ones reaching the bound of the
Conjecture Tu-Deng, which is obviously stronger than the original conjecture.

Conjecture 3.8.21. Let k ≥ 2 and t ∈
(
Z/(2k − 1)Z

)∗. Then St,k = 2k−1 if and only if t
verifies the two following constraints:

• ∀i, βi = 1,

• mini(αi) ≥ B − 1 = d− 1.

As far we know, the conjectures presented in this section are still open. Only the variation
proposed by Tang, Carlet and Tang has been proved recently by Cohen and Flori [67].
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In Chapter 3 we emphasized the fact that a cryptographic Boolean function should verify
several (contradictory) criteria. Constructing satisfying functions is therefore a difficult task, and
trade-offs between the different criteria have to be made. In the present chapter, our approach
will be slightly different: we solely focus on one criterion — nonlinearity — and more precisely
on functions achieving maximum nonlinearity: bent functions. Recall that the significance of this
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aspect has again been demonstrated by the recent development of linear cryptanalysis initiated
by Matsui [184, 183]. It is therefore especially important when Boolean functions are used as
part of S-boxes in symmetric cryptosystems.

In the mathematical field of combinatorics, a bent function is a special type of Boolean
function. Defined and named in the 1960’s by Oscar Rothaus [227] in research not published
until 1976, bent functions are so called because they are as different as possible from all linear
and affine functions. The definition can be extended in several ways, leading to different classes
of generalized bent functions that share many of the useful properties of the original.

4.1 Definition and properties
Recall that the nonlinearity of a Boolean function f , denoted by nl(f), is the minimum Hamming
distance between f and all affine functions. In figure 4.1, we give the distribution of all 4-variable
Boolean functions with respect to its nonlinearity.
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Figure 4.1 – Distribution of all 4-variable to nonlinearity

A powerful mathematical tool to measure the nonlinearity of a Boolean function is the Walsh
transform. The nonlinearity of an n-variable Boolean function can be expressed by means of the
Walsh transform as follows:

nl(f) = 2n−1 − 1
2maxb∈F

n
2
|χ̂f (b)|.

Because of the well-known Parseval’s relation
∑
b∈Fn2

χ̂f (b)2 = 22n, nl(f) is upper bounded by
2n−1 − 2n/2−1. This bound is tight for n even.

Definition 4.1.1. Let n be an even integer. An n-variable Boolean function is called bent if the
upper bound 2n−1 − 2n/2−1 on its nonlinearity nl(f) is achieved with equality.

Consequently, we have the following main characterization (which is independent of the choice
of the inner product on Fn2 ) of the bentness for Boolean functions:

Proposition 4.1.2. Let n be an even integer. An n-variable Boolean function f is then bent if
and only if its Walsh transform satisfies χ̂f (a) = ±2n2 for all a ∈ Fn2 .

Hence, the Walsh–Hadamard transform provides a basic characterization of bentness. However,
it can definitely not be used in practice to test efficiently bentness of a given function, especially
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if all its values are computed naively one at a time as exponential sums. Nevertheless, it should
be noted that all the values of the Walsh–Hadamard transform can be computed at once using
the so-called fast Walsh–Hadamard transform, a kind of Fast Fourier Transform. The complexity
of the fast Walsh–Hadamard transform is O(2nn2) bit operations and O(2nn) memory [2] which
limits the calculations at the most to n = 40.

In the following, we present the main properties of bent functions:

• The algebraic degree of any bent Boolean function on F2n is at most m (in the case that
n = 2, the bent functions have degree 2).

•The set of n-variable bent Boolean functions is invariant under the action of the general
affine group of F2n and the addition of n-variable affine Boolean functions. In particular, if f and
f ′ are two n-variable Boolean functions such that f ′ is linearly equivalent to f (that is, there ex-
ists an F2 -linear automorphism L of F2n such that f ′ = f◦L) then, f is bent if and only if f ′ is bent.

• The automorphism group of the set of bent functions (i.e., the group of permutations π
on Fn2 or F2n such that f ◦ π is bent for every bent function f) is the general affine group, that
is, the group of linear automorphisms composed by translations [31]. The corresponding notion
of equivalence between functions is called affine equivalence. Also, if f is bent and ` is affine,
then f + ` is bent. A class of bent functions is called a complete class if it is globally invariant
under the action of the general affine group and under the addition of affine functions. The
corresponding notion of equivalence is called extended affine equivalence, in brief, EA-equivalence.

• Any function f is bent if and only if, for any nonzero vector a, the Boolean function, called
the derivative at a Daf(x) = f(x)+f(x+a) is balanced (i.e. has Hamming weight 2n−1). For this
reason, bent functions are also called perfect nonlinear functions. Equivalently, f is bent if and only
if the 2n × 2n matrix H = [(−1)f(x+y)]x,y∈Fn2 is a Hadamard matrix (i.e. satisfies H ×Ht = 2n I,
where I is the identity matrix), and if and only if the support of f is a difference set. Bent functions
have also the property that, for every even positive integer w, the sum

∑
a∈Fn2

χ̂f
w(a) is minimum.

• Bent Boolean functions always occur in pairs. In fact, given a bent function f on F2n , we
define the dual Boolean function f̃ of f by considering the signs of the values χ̂f (a), a ∈ F2n of
the Walsh transform of f as follows: χ̂f (x) = 2n2 (−1)f̃(x). Due to the involution law the Fourier
transform is self-inverse. Thus, the dual f̃ of a bent function f is again a bent function and its
own dual is f itself.

4.2 Bent functions: applications
Bent functions have been extensively studied for their applications in cryptography, but have also
been applied to spread spectrum1 (it was discovered in early 1982 that maximum length sequences
based on bent functions have cross-correlation and autocorrelation properties rivalling those of
the Gold codes and Kasami codes for use in CDMA; these sequences have several applications

1In telecommunications and radio communication, spread-spectrum techniques are methods by which a signal
(e.g. an electrical, electromagnetic, or acoustic signal) generated in a particular bandwidth is deliberately spread
in the frequency domain, resulting in a signal with a wider bandwidth. These techniques are used for a variety of
reasons, including the establishment of secure communications, increasing resistance to natural interference, noise
and jamming, to prevent detection, and to limit power flux density (e.g. in satellite downlinks).
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in spread spectrum techniques), coding theory, and combinatorial design2. The definition can
be extended in several ways, leading to different classes of generalized bent functions that share
many of the useful properties of the original. In the following, we precise only their uses in coding
theory and symmetric cryptography.

4.2.1 Bent functions in coding theory
For every 0 ≤ r ≤ n, the Reed-Muller code RM(r, n) of order r, is a linear code of length 2n,
dimension

∑r
i=0
(
n
i

)
and minimum distance 2n−r. The Reed-Muller code can be defined in terms

of Boolean functions or as extended cyclic code. In terms of Boolean functions, RM(r, n) is the
set of all n-variable Boolean functions of algebraic degrees at most r. More precisely, it is the linear
code of all binary words of length 2n corresponding to the last columns of the truth-tables of these
functions. The Reed-Muller codes are nested : RM(1, n) ⊂ RM(2, n) ⊂ · · · ⊂ RM(n− 1, n).
The Reed-Muller code RM(r, n) can be viewed as an extended cyclic codes for every r < n:
the zeroes of the corresponding cyclic code (RM?(r, n), the punctured Reed-Muller code of order
r) are the elements αj ( where α is a primitive element of F2n) such that 1 ≤ j ≤ 2n − 2 and
1 ≤ w2(j) ≤ n− r − 1, where w2(j) is the number of ones in the binary expansion of j. Recall
that given two Boolean functions f and g of Bn, the Hamming distance dH(f, g) between f and
g equals the size of the set {x ∈ Fn2 | f(x) 6= g(x)}. Moreover, recall that nlr(f) denote the
minimum Hamming distance between a given Boolean function f and all Boolean functions g of
degrees at most r (that is, g ∈ RM(r, n)). The covering radius of RM(r, n) denoted by ρ(r, n)
plays an important role in error correcting codes (see e.g. [68]). It is defined as the maximum
value of nlr(f) when f ranges over the set Bn of Boolean functions in n variables, that is,

ρ(r, n) = max
f∈Bn

min
g∈RM(r,n)

dH(f, g)

The covering radius ρ(1, n) of the first-order Reed-Muller codes RM(1, n) coincides with the
maximum nonlinearity nl1(f) (that we denoted simply by nl(f)) of n-variable Boolean functions
f , that is, the maximum distance from all affine functions. When n is even, it is known that
ρ(1, n) = 2n−1 − 2n2−1 and the associated n-variable Boolean functions are the bent functions.

4.2.2 Bent functions in cryptography
The properties of bent functions are naturally of interest in modern digital cryptography. By
1988 Forré recognized that the Walsh transform of a function can be used to show that it satisfies
the Strict Avalanche Criterion (SAC) and higher-order generalizations, and recommended this
tool to select candidates for good S-boxes achieving near-perfect diffusion. Indeed, the functions
satisfying the SAC to the highest possible order are always bent. Moreover, the bent functions
are as far as possible from having what are called linear structures, nonzero vectors a such that
f(x+ a) + f(x) is a constant. In the language of differential cryptanalysis (introduced after this
property was discovered) the derivative of a bent function f at every nonzero point a (that is,
Da(x) = f(x+ a) + f(x)) is a balanced Boolean function, taking on each value exactly half of the
time. This property is called perfect nonlinearity. Given such good diffusion properties, apparently
perfect resistance to differential cryptanalysis, and resistance by definition to linear cryptanalysis,
bent functions might at first seem the ideal choice for secure cryptographic functions such as
S-boxes. Their fatal flaw is that they fail to be balanced. In particular, an invertible S-box cannot
be constructed directly from bent functions. Instead, one might start with a bent function and

2Combinatorial design theory is the part of combinatorial mathematics that deals with the existence and
construction of systems of finite sets whose intersections have specified numerical properties.
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n 2 4 6 8
# of bent functions 8 = 23 896 = 29.8 5, 425, 430, 528

≈ 232.3 2106.3

Table 4.1 – Number of n-variable Bent functions for 2 ≤ n ≤ 8

randomly complement appropriate values until the result is balanced. The modified function still
has high nonlinearity, and as such functions are very rare the process should be much faster than
a brute-force search. But functions produced in this way may lose other desirable properties, even
failing to satisfy the SAC -so careful testing is necessary. A number of cryptographers have worked
on techniques for generating balanced functions that preserve as many of the good cryptographic
qualities of bent functions as possible. Some of this theoretical research has been incorporated
into real cryptographic algorithms. The CAST design procedure, used by Carlisle Adams and
Stafford Tavares to construct the S-boxes for the block ciphers CAST-128 and CAST-256, makes
use of bent functions. The cryptographic hash function HAVAL uses Boolean functions built from
representatives of all four of the equivalence classes of bent functions on six variables. The stream
cipher Grain uses an NLFSR whose nonlinear feedback polynomial is, by design, the sum of a
bent function and a linear function. Finally, it is important to note that a stream cipher using a
bent function is vulnerable to correlation attacks in the combiner model and is also vulnerable to
fast algebraic attacks and to Rønjom-Helleseth’s attack [226] for the two models (the filter model
and the combiner model).

4.3 Classification and enumeration of bent functions
The bent functions are a small set of Boolean functions and they are very valuable in particular
for cryptography. Bent functions are all known for n ≤ 8, only (their determination for 8 variables
has been achieved only recently by Langevin and Leander [215] 3 as well as their classification
under the action of the general affine group. We give in Table 4.1 the number of n-variable bent
functions for 2 ≤ n ≤ 8.

For n ≥ 10, only classes of bent functions are known, which do not cover a large part of them,
apparently. Determining all bent functions (or more practically, classifying them under the action
of the general affine group) seems elusive. As we will see below, some infinite classes of bent
functions have been obtained, thanks to the identification between the vectorspace Fn2 and the
Galois field F2n . Currently, the general structure of bent functions on F2n is not yet clear. In
particular a complete classification of bent functions looks hopeless. Bent functions which are
characterized as very rare, they are a vanishingly small fraction of the total number of functions
when the number of variables increases. It stated in the litterature that there is no formal method
of constructing all bent functions.

4.4 Construction of bent functions
4.4.1 Two main general constructions of bent functions
Several classes of bent functions have been introduced in [82, 227]. Some (like the PS class, recalled
below) need conditions whose realizations are difficult to achieve, and so are more principles of
constructions rather than explicit constructions. Others lead to explicit bent functions (given by

3the number of 8-variable bent functions equals 99270589265934370305785861242880
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their ANF or their polynomial representation, univariate or bivariate). The two main ones of this
last kind are the Maiorana-McFarland’s constructions and the Partial Spread class PSap.

• The Maiorana-McFarland’s constructions are the best known primary constructions of bent
functions is ([185, 82]). The Maiorana-McFarland class (denoted byM) is the set of all
the n-variable Boolean functions of the form:

f(x, y) = x · π(y) + g(y); x, y ∈ Fm2 (4.1)

where "·’" denotes an inner product in Fm2 , π is any permutation on Fm2 and g is any Boolean
function on Fm2 . Any such function is bent (the bijectivity of π is a necessary and sufficient
condition for f being bent). The dual function f̃(x, y) equals: y ·π−1(x) + g(π−1(x)), where
π−1 is the inverse of π. The completed class ofM (that is, the smallest possible complete
class includingM) contains all the quadratic bent functions (that is, the bent functions of
algebraic degree 2) which are simple and best understood.

Proposition 4.4.1. [82] A bent function f : F2n → F2 belongs to the completed class of
M if and only if there exists an n/2-dimensional vector subspace V in F2n such that the
second-order derivatives

Da,bf(t) = f(t+ a+ b) + f(t+ a) + f(t+ b) + f(t)

vanish for any a, b ∈ V .

• The Partial Spread class PS introduced in [82] by Dillon is the set of all the sums (modulo
2) of the indicators of 2m−1 or 2m−1 +1 pairwise supplementary m-dimensional subspaces of
F2n . All these functions are bent. Dillon denotes by PS− (resp. PS+) the class of those PS
functions for which the number of m-dimensional subspaces is 2m−1 (resp. 2m−1 + 1). We
recall in the following result du to Dillon ([82], pp 95-100) (see also, for instance, Theorem
1 in [54]).

Theorem 4.4.2. Let Ei, i = 1, 2, · · · , N , be N subspaces of F2n of dimension m satisfying
Ei ∩ Ej = {0} for all i, j ∈ {1, 2, · · · , N} with i 6= j. Let f be a Boolean function over F2n

(n = 2m). Assume that the support of f can be written as

supp(f) =
N⋃
i=1

E?i , where E?i := Ei \ {0}

Then, f is bent if and only if N = 2m−1. In this case f is said to be in the PS− class.

All the elements of PS− have algebraic degree m exactly, but not all those of PS+ (for
instance, if m is even, then all quadratic functions are in PS+).
J. Dillon exhibits in [82] a subclass of PS−, denoted by PSap whose elements are defined
in an explicit form:

Definition 4.4.3. Let n = 2m and let F2n be identified, as a vector space, with F2m × F2m

(thanks to the choice of a basis of the two-dimensional vector space F2n over F2m). The
Partial Spread class PSap consists of all the functions f defined as follows: let g be a
balanced Boolean function over F2m (ie. wt(g) = 2m−1) such that g(0) = 0 (but, in fact,
this last condition is not necessary for f to be bent). Then f is defined from F2m × F2m to
F2 as f(x, y) = g(xy ) ( i.e g(xy2m−2)) with x

y = 0 if y = 0.
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The complements g
(
x
y

)
+ 1 of these functions are the functions g(xy ) where g is balanced

and does not vanish at 0; they belong to the class PS+. In both cases, the dual of g(xy ) is
g( yx ). The functions from class PSap are the functions whose supports are the unions of
2m−1 multiplicative cosets of F?2m . These supports can be uniquely written as

⋃
u∈S uF?2m

where U is the set {u ∈ F2n ;u2m+1 = 1} and S is a subset of U of size 2m−1. We shall also
include in PSap the complements of these functions.

4.4.2 Primary constructions and characterization of bent functions in
polynomial forms

A number of researchers have been interested in providing construcions of bent functions in
polynomial form that is, functions f whose expression is of the form (see Subsection 1.2.3, Chapter
1):

f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)

+ ε(1 + x2n−1), aj ∈ F2o(j)

Since the algebraic degree of any bent function over F2n is at most n
2 , the Hamming weight of

f is then even, that is, ε equals 0. Consequently, the polynomial form of any bent function f is of
type:

f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)
, aj ∈ F2o(j)

The monomial functions and binomial functions are particular cases of functions in polynomial
form. Monomial functions are functions which are the traces of a single power function, that is,
functions f defined on F2n whose expression is of the form f(x) = Trn1 (axs) for given positive
integer s and for some a ∈ F2n . Binomial functions are functions f defined on F2n whose expression
is of the form f(x) = Trn1 (a1x

s1 + a2x
s2), (a1, a2) ∈ (F?2n)2 for a given positive integers s1 and

s2 and for some coefficients a1, a2 in F2n .

Monomial bent functions

As a first step towards a characterization of the trace forms of of bent functions, many authors
focus on monomial functions, that is, functions whose the expression is of the form Trn1 (axs) for
a given positive integer s and for some a ∈ F2n . A bent exponent (always understood modulo
2n− 1) is an integer s such that there exists a ∈ F?2n for which x 7→ Trn1 (axs) is bent. The current
list of known bent exponents is given in table I. We send the readers to [159] where known cases
of monomial bent functions are presented. Canteaut et. al [21] have carried out an exhaustive
search and shown that there is no other exponent s for n ≤ 20. The complete classification of
monomial bent functions is not yet achieved.

exponent condition Family References
2i + 1 n

gcd(n,i) even M [112]
a(2n2 − 1) gcd(a, 2n2 + 1) = 1 PSap [82, 156, 159, 54]

22i − 2i + 1 gcd(i, n) = 1 [84]
(2n4 + 1)2 n = 4r, r odd M [58, 159]

2n3 + 2n6 + 1 n ≡ 0 mod 6 M [21]

Table 4.2 – Bent Exponent
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Note that the cyclotomic cosets modulo 2n − 1 of all the bent exponents presented in table
4.2 are of maximal size n that is, o(s) = n. The corresponding monomial functions are then in
polynomial forms.
A monomial function f(x) = Trn1 (axs) cannot be bent for every non-zero a (see e.g. [159]).
Moreover, there are some necessary conditions for s to be a bent exponent (see for instance [159]):

• the 2-weight of a bent exponent s is at most n
2 .

• gcd(s, 2n − 1) > 1; moreover, gcd(s, 2n2 − 1) = 1 or gcd(s, 2n2 + 1) = 1.

Remark 4.4.4. Note that bent functions have been also obtained by Dillon and McGuire [85]
as the restrictions of functions on F2n+1 , with n + 1 odd, to a hyperplane of this field: these
functions are the Kasami functions Trn1 (x22k−2k+1) and the hyperplane has equation Trn1 (x) = 0.
The restriction is bent under the condition that n+ 1 = 3k ± 1.

We have looked for the exponents s such that o(s) < n for which there exists at least one
coefficient a ∈ F2o(s) such that, the Boolean function Tro(s)1 (axs) is bent. After an exhaustive
search up to n ≤ 14, we have found that, the only bent Boolean functions belonging the set
of monomial functions with exponent s such that o(s) < n are of the form Tr

n
2
1 (ax2

n
2 +1), for

some a ∈ F2n . Such functions have been given by Yu and Gong in [273]. Note that a class of
quadratic functions (i.e. of algebraic degree 2) defined on F2n whose expression has the form:
f(x) =

∑n
2−1
i=1 ai Trn1 (x1+2i) + an

2
Tr

n
2
1 (x2

n
2 +1) with ai ∈ F2 , for i ∈ {1, . . . , n2 }, was considered in

several papers, in which the authors investigate the conditions on the choice of the coefficients ai for
explicit definition of an infinite class of quadratic bent functions. A non-exhaustive list of references
which deals with the characterization of the bentness of this class is [144, 151, 173, 59, 273, 134].

Binomial bent functions with Niho exponents

Some constructions of binomial bent functions via Niho power functions have been given in
[93]. Recall that a positive integer s (always understood modulo 2n − 1) is said to be a Niho
exponent, and xs a Niho power function, if the restriction of xs to F2m is linear or in other words
s ≡ 2j (mod 2m − 1) for some j < n. As we consider Trn1 (xd), without loss of generality, we can
assume that s is in the normalized form, with j = 0, and then we have a unique representation
s = (2m − 1)d+ 1 with 2 ≤ d ≤ 2m. The name of Niho exponent comes from a theorem dealing
with power functions by Niho [220], which has been later extended to linear combinations of such
power functions in [93] (see also [160]), and which relates the value of the Walsh transform of
such sum to the number of solutions in U of some equation. According to Dobbertin et. al. [93],
three subfamilies containing bent functions can be identified in the set of binomial functions (the
fractions are interpreted modulo 2m + 1, for instance 1

2 = 2m−1 + 1):

• s1 = (2m − 1) 1
2 + 1 and s2 = (2m − 1)3 + 1;

• s1 = (2m − 1) 1
2 + 1 and s2 = (2m − 1) 1

4 + 1 (m odd);

• s1 = (2m − 1) 1
2 + 1 and s2 = (2m − 1) 1

6 + 1 (m even).

The following statement summarizes the results given in [93].

Theorem 4.4.5. ([93]) Let n = 2m. Let f be a function defined on F2n of the form f(x) =
Trn1

(
a1x

(2m−1) 1
2 +1 + a2x

s2
)
, where a1, a2 ∈ F?2n . Assume that a

2m+1
2

2 = a1 + a1
2m .

1. Let s2 = (2m − 1)3 + 1. If a2 = γ5 for some γ ∈ F?2n then, f is a bent function of degree m
(note that if m 6≡ 2 (mod 4) then, the map x 7→ x5 is a permutation of F2n).
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2. Suppose m is odd. Let s2 = (2m − 1) 1
4 + 1. Then f is a bent function of degree 3.

3. Suppose m is even. Let s2 = (2m − 1) 1
6 + 1. Then f is a bent function of degree m.

Note that as observed in [41], there is a mistake made in [93] (Theorem 3) while computing
the algebraic degree of the third Niho bent function. Indeed the degree calculated in [93] being
equal m2 + 1 is not correct. The correct degree is m and this comes from the following lemma.

Lemma 4.4.6. ([41]) Take even m > 2 and interpret 1
3 as an inverse of 3 modulo 2m + 1. Then

the exponent 2s2 = (2m − 1) 1
3 + 2 has the binary weight m.

Proof. First, note that 1/3 modulo 2m + 1 is equal to (2m + 2)/3. Then

2s2 = 2n − 1
3 + 2m − 1

3 + 2

=
m−1∑
i=0

22i +
m/2−1∑
i=0

22i + 2

=
m/2−1∑
i=0

22i+1 +
m−1∑
i=m/2

22i + 2

whose binary weight equals m if m > 2.

Remark 4.4.7. Note that o(s1) = o((2m − 1) 1
2 + 1) = n

2 and o(s2) = n for s2 ∈ {(2m − 1)3 +
1, (2m − 1) 1

4 + 1, (2m − 1) 1
6 + 1}. The polynomial forms of the three binomial functions given in

Theorem 4.4.5 are then in form

Trm1 (a1
′x2m+1) + Trn1 (a2x

s2), a1
′ ∈ F?2m and a2 ∈ F?2n

The problem of knowing whether the duals of the binomial functions given in [93] are affine
equivalent to these Niho bent functions was left open in [93]. Very recently, the bivariate
representation (obtained by identifying F2n with F2m × F2m and we consider then the input to
the Boolean function as an ordered pair (x; y) of elements of F2m) of the second Dobbertin-et-al’s
function and the bivariate expression of its dual have been computed in [44]. We also observed
in [44] that the dual is not a Niho bent function, which allows replying negatively to the open
question in [93]. We will discuss on the dual of those Niho bent functions in Subsection 4.8.1.

Binomial bent functions with Dillon (like) exponents

Chapter 5 is dealing with a more strong property than the bentness, more precisely, the hyper-
bentness (since hyper-bent functions are in particular bent). The known constructions of bent
functions via Dillon (like) exponents are also hyper-bent. So for the constructions of binomial
bent functions we refer the reader to Subsection 5.5.2 in Chapter 5 in which we will present the
known constructions of binomial hyper-bent functions.

Bent functions via several Niho exponents

The second class in [93] of binomial bent function (that is obtained with the exponent (2m−1) 3 +1)
has been extended by Leander and Kholosha [160] into the functions:

Trn1
(
at2

m+1 +
2r−1−1∑
i=1

tsi
)
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where r > 1 such that gcd(r,m) = 1, a ∈ F2n such that a + a2m = 1, si = (2m − 1) i
2r + 1

(mod 2m + 1), i ∈ {1, . . . , 2r−1 − 1}.

Bent functions with multiple trace terms via Dillon (like) exponents

The known bent functions whose expressions are multiple trace terms via Dillon (like) exponents
are also hyper-bent. So, we refer the reader to Chapter 6.

4.4.3 Secondary constructions of bent functions
In this subsection, we refer to Carlet’s chapter [31] (Subsection 6.4.2). There exist several
secondary constructions of bent functions but the best-known constructions are those of Rothaus
("direct sum") and of Carlet ("indirect sum"). Since the author did not contribute in the secondary
constructions of bent functions, we will not detail all the constructions but we will just mention
them briefly. We advise the reader who is interessed in this direction to referred to Carlet’s
chapter [31].
1. The first secondary construction was given by Dillon and Rothaus ([82, 227]). Such a
construction is called the direct sum and is defined as follows: let f be a bent function on Fn2 (n even)
and g a bent function on Fm2 (m even) then the function h defined on Fn+m

2 by h(x, y) = f(x)⊕g(y)
is bent. Unfortunately this construction has no great interest from a cryptographic point of view4

2. Dillon and Rothaus have proved the more interesting construction defined as follows: following:
if g, h, k and g ⊕ h ⊕ k are bent on Fn2 (n even), then the function defined at every element
(x1, x2, x) of Fn+2

2 (x1, x2 ∈ F2, x ∈ Fn2 ) by:

f(x1, x2, x) =

g(x)h(x)⊕ g(x)k(x)⊕ h(x)k(x)⊕ [g(x)⊕ h(x)]x1 ⊕ [g(x)⊕ k(x)]x2 ⊕ x1x2

is bent. Unfortunately no general class of bent functions has been deduced from this construction.

3. Carlet has proposed in [24] the two classes of bent functions which are derived from Maiorana-
McFarland’s class, by adding to some functions of this class the indicators of some vector subspaces.
The result of Carlet is the following.

Theorem 4.4.8. ([24]) Let b+ E be any flat in Fn2 (E being a linear subspace of Fn2 ). Let f be
any bent function on Fn2 . The function f? = f ⊕ 1b+E is bent if and only if one of the following
equivalent conditions is satisfied:

1. For any a in Fn2 \ E, the function Daf is balanced on b+ E;

2. The restriction of the function f̃(x)⊕ b · x to any coset of E⊥ is either constant or balanced.

If f and f? are bent, then E has dimension greater than or equal to n/2 and the algebraic degree
of the restriction of f to b+ E is at most dim(E)− n/2 + 1.
If f is bent, if E has dimension n/2, and if the restriction of f to b+ E has algebraic degree at
most dim(E)− n/2 + 1 = 1, i.e. is affine, then conversely f? is bent too.

4. Other classes of bent functions have been deduced from a construction given by Carlet in [26],
which generalizes the secondary constructions given in 1 and 2 above:

4in fact, this construction produces decomposable functions (a Boolean function is called decomposable if it is
equivalent to the sum of two functions that depend on two disjoint subsets of coordinates; such peculiarity is easy
to detect and can be used for designing divide-and-conquer attacks, as pointed out by J. Dillon in [82])
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Theorem 4.4.9. ([26]) Let n and m be two even positive integers. Let f be a Boolean function
on Fn+m

2 = Fn2 × Fm2 such that, for any element y of Fm2 , the function on Fn2 :

fy : x 7→ f(x, y)

is bent. Then f is bent if and only if, for any element s of Fn2 , the function

ϕs : y 7→ f̃y(s)

is bent on Fm2 . If this condition is satisfied, then the dual of f is the function f̃(s, t) = ϕ̃s(t)
(taking as inner product in Fn2 × Fm2 : (x, y) · (s, t) = x · s⊕ y · t).

The previous result give rise to a nice secondary construction due to Carlet ([28]) called the
indrect sum:

Corollary 4.4.10. [28]) Let f1 and f2 be two n-variable bent functions (n even) and let g1 and
g2 be two m-variable bent functions (m even). Define5

h(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕ f2)(x) (g1 ⊕ g2)(y); x ∈ Fn2 , y ∈ Fm2 .

Then h is bent and its dual is obtained from f̃1, f̃2, g̃1 and g̃2 by the same formula as h is obtained
from f1, f2, g1 and g2.

5. A very simple observation of X.-D. Hou and P. Langevin have made in [132] leads to potentially
new construction of bent functions (which does not increase the number of variables, contrary to
most other secondary constructions).
6. Another secondary construction without extension of the number of variables have been
introduced by Carlet in [29].

Theorem 4.4.11. ([29]) Let f1, f2 and f3 be three n-variable bent functions, n even. Denote
by s1 the function f1 ⊕ f2 ⊕ f3 and by s2 the function f1f2 ⊕ f1f3 ⊕ f2f3. Then:
- if s1 is bent and if s̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, then s2 is bent, and s̃2 = f̃1f̃2 ⊕ f̃1f̃3 ⊕ f̃2f̃3;
- if ŝ2χ(a) is divisible by 2n/2 for every a (e.g. if s2 is bent, or if it is quadratic, or more generally
if it is plateaued 6, then s1 is bent.

7. Using the notion of normal extension of bent function, Carlet et al. [15] have proposed another
secondary construction of bent functions.

4.5 Bent vectorial functions
Let n and r be two positive integers (n ≥ 1, r ≥ 1). An (n, r)-function F being given, the
component functions of F are the Boolean functions l ◦ F , where l ranges over the set of all
the nonzero linear forms over Fr2. Equivalently, they are the linear combinations of a non-null
number of their coordinate functions, that is, the functions of the form v · F, v ∈ Fr2 \ {0} ,
where "·" denotes the usual inner product in Fr2 (or any other inner product). The vector spaces
Fn2 and Fr2 can be identified, if necessary, with the Galois fields F2n and F2r of orders 2n and 2r
respectively. Hence, (n, r)-functions can be viewed as functions from Fn2 to Fr2 or as functions

5h is the concatenation of the four functions f1, f1 ⊕ 1, f2 and f2 ⊕ 1, in an order controled by g1(y) and g2(y).
This construction (f1, f2, g1, g2) 7→ h leads to construct resilient functions (see [31]).

6the functions satisfying nl(f) = 2n−1 − 2−n/2−1
√
V(f) (resp. V(f)×N

f̂χ
= 23n) are the functions whose

Walsh transforms take at most one nonzero magnitude. These functions are called plateaued functions.
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from F2n to F2r . In the latter case, the component functions are the functions Trr1(vF (x)). We
recall some basic facts that we need about vectorial functions. Any (n, r)-function F admits
a unique representation as a multivariate polynomial over Fr2, called its algebraic normal form
(ANF), of the form:

F (x1, · · · , xn) =
∑
u∈Fn2

c(u)
(

n∏
i=1

xuii

)
, c(u) ∈ Fr2.

The algebraic degree deg(F ) of any (n, r)-function F is by definition the global degree of
its ANF (ie. equals the maximum degree of those monomials whose coefficients are nonzero
in its algebraic normal form). It also equals the maximum algebraic degree of the coordinate
functions of F or of its component functions. Affine functions (resp. quadratic functions) are
functions whose algebraic degree is a most 1 (resp. equals 2). Vectorial cryptographic functions
must have high algebraic degree to withstand several kinds of attacks (mainly the higher order
differential attack in the case of block ciphers and the Berlekamp-Massey attack in the case of
stream ciphers).

If we identify Fn2 with the finite field F2n , then, any (n, n)-function F is uniquely expressed as
a univariate polynomial over F2n , of degree at most 2n − 1:

F (x) =
2n−1∑
j=0

cjx
j , cj ∈ F2n .

The algebraic degree of F is equal to maxj/ cj 6=0 w2(j) where w2(j) is the 2-weight of j, that
is, the number of nonzero coefficients js in the binary expansion

∑n−1
s=o js2s of j.

For every integer r dividing n, an (n, r)-function F can be viewed as a function from F2n

to itself and, therefore admits a unique univariate polynomial representation, which can be
represented in the form Trnr (

∑2n−1
j=0 cjx

j), where Trnr is the trace function from F2n to F2r (but
without uniqueness if we do not add restrictions on the polynomial inside the brackets).

The notion of balancedness and bentness plays an important role for vectorial Boolean
functions in cryptography.

Definition 4.5.1. An (n, r)-function F is called balanced if it takes every value of Fr2 the same
number 2n−r of times. Equivalently, F is balanced if for every b ∈ Fr2, the Boolean function φb
defined on Fn2 by φb(x) = 1 if F (x) = b and φb(x) = 0 otherwise, has Hamming weight 2n−r.

The balanced vectorial functions can be characterized by the balancedness of their component
(Boolean) functions as follows.

Proposition 4.5.2. An (n, r)-function F is balanced if and only if its component functions are
balanced, that is, if for every nonzero v ∈ Fr2, the Boolean function v · F on Fn2 is balanced (i.e
has Hamming weight 2n−1).

The notion of Walsh transform is defined for vectorial functions as well. More precisely, given
an (n, r)-function F , the Walsh transform of F is the function which maps any ordered pair
(a, v) ∈ Fn2 × Fr2 to the value at a of the Walsh transform of the component (Boolean) function
v · F (v 6= 0), that is: χ̂v·F (a) =

∑
x∈Fn2

(−1)v·F (x)+x·a, where the same symbol "·" is used to denote

inner products in Fr2 and in Fn2 .

Generalized to (n, r)-functions, the nonlinearity is defined as the minimum nonlinearity of all
their component functions v · F, v ∈ Fr2 \ {0} and we have:
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nl(F ) = 2n−1 − 1
2 max

v∈Fr2∗; u∈Fn2

∣∣∣∣∣∣
∑
x∈Fn2

(−1)v·F (x)+u·x

∣∣∣∣∣∣ .
The nonlinearity represents a measure for the resistance of S-Boxes against linear cryptanalysis

[181]. In the case of stream ciphers, another notion of nonlinearity must also be considered: the
minimum nonlinearity of all the Boolean functions of the form ϕ ◦ F where ϕ is any non-constant
r-variable Boolean function (indeed a fast correlation attack can be performed on the cipher
using any such ϕ ◦ F as Boolean filtering or combining function), but we shall not be interested
in this notion in the present paper. The upper bound 2n−1 − 2n/2−1 on the nonlinearity of any
n-variable Boolean function is obviously valid for (n, r)-functions.

Definition 4.5.3. Let n be an even integer and r be an integer. An (n, r)-function F is called
bent if the upper bound 2n−1 − 2n/2−1 on its nonlinearity nl(F ) is achieved with equality.

Bent (n, r)-functions exist then only if n is even. But according to Nyberg [211], this condition
is not sufficient for the existence of bent (n, r) functions. More precisely, bent (n, r)-functions
exist if and only if n is even and r ≤ n

2 . Obviously, the bentness of vectorial functions can be
characterized by the bentness of their component (Boolean) functions: an (n, r)-function F is
bent if and only if all of the component functions of F are bent, that is, if χ̂v·F (a) = ±2n2 for all
a ∈ Fn2 and for all v ∈ Fr2 \ {0}. This is equivalent to the fact that, for every v ∈ Fr2 \ {0} and
every a ∈ Fn2 \ {0}, the function v · (F (x) + F (x+ a)) is balanced, which is itself (according to
Characterization 1) equivalent to saying that the function F (x) + F (x+ a) is balanced. Hence,
bent functions contribute to an optimal resistance to the differential attack as well. The notion
of bent vectorial function is EA-invariant (recall that this means invariant under composition on
the left and on the right by affine automorphisms and under addition of affine functions). It is
well known that the algebraic degree of any bent (n, r)-function is at most n

2 .

From now on, we assume the hypothesis "n is even and r ≤ n
2 " are satisfied on the ordered

pair (n, r) when we consider bent (n, r)-functions.

4.5.1 Primary constructions of bent vectorial functions
Recall that constructions “from scratch” are called primary. On the contrary, secondary con-
structions will use already constructed functions to build new ones. There exist two general
classes of bent Boolean functions, the Maiorana-McFarland class and the PSap class, which
straightforwardly generalize to vectorial functions (this was first observed by Nyberg [211]).
1. Maiorana-McFarland’s constructions of vectorial functions:

An n-variable Boolean bent function f belongs to the Maiorana-McFarland class if, up to
EA-equivalence and writing its input in the form (x, y), with x, y in Fn/22 , the corresponding
output equals f(x, y) = x · π(y) + g(y) (where "·" is an inner product in Fn/22 ), where π is a
permutation of Fn/22 and g is a Boolean function on Fn/22 . The bijectivity of π is a necessary and
sufficient condition for the bentness of a Boolean function of the form x · π(y) + g(y). It it well
known that all the quadratic bent Boolean functions belong to the Maiorana-McFarland class of
Boolean (bent) functions. In the following, we shall see that three versions (of different levels of
generality) can be given for the extension of this construction to vectorial functions.

• The strict Maiorana-McFarland class: We endow Fn/22 with the structure of the field
F2n/2 . We identify Fn2 with F2n/2 × F2n/2 . Any function of the form F (x, y) = L(xπ(y)) +G(y),



114 Chapter 4. Bent functions

where the product xπ(y) is calculated in F2n/2 , where L is any linear or affine function from
F2n/2 onto Fr2, π is any permutation of F2n/2 and G is any (n/2, r)-function, is an (n, r) bent
function. We call strict Maiorana-McFarland’s class the set of functions which are EA-equivalent
to these functions.
An example is given in [244], whose i-th coordinate is defined as fi(x, y) = Tr

n
2
1 (xπi(y)) + gi(y),

x, y ∈ F2n/2 , where gi is any Boolean function on F2n/2 and where

πi(y) =
{

0 if y = 0
αdec(y)+i−1 otherwise ,

with α a primitive element of F2n/2 and dec(y) = 2n/2−1y1 + 2n/2−2y2 + · · ·+ yn/2. This func-
tion belongs to the strict Maiorana-McFarland class of bent functions because the function

y 7→
{

0 if y = 0
αdec(y) otherwise is a permutation from Fn/22 to F2n/2 , and the function L : x ∈ F2n/2 7→

(Tr
n
2
1 (x),Tr

n
2
1 (αx), · · · ,Tr

n
2
1 (αn/2−1x)) ∈ Fn/22 is an isomorphism.

• The extended Maiorana-McFarland class: Let F be any function of the form

F : (x, y) ∈ Fn/22 × Fn/22 7→ ψ(x, y) +G(y) ∈ Fm2 ,

where G is any function from Fn/22 to Fm2 and ψ : Fn/22 × Fn/22 7→ Fm2 is such that, for every
y ∈ Fn/22 , the function x 7→ ψ(x, y) is linear and, for every nonzero x ∈ Fn/22 , the function
y 7→ ψ(x, y) is balanced. Then F is bent. Indeed, for every nonzero v ∈ Fm2 and every y ∈ Fn/22 ,
there exists a unique vector vy such that v · ψ(x, y) = x · vy. The nonzero vector v being fixed,
the function y 7→ vy is bijective if and only if, for every x 6= 0, the function y 7→ x · vy is balanced
(indeed, a vectorial function is balanced if and only if all its component functions are balanced),
that is, the function y 7→ v · ψ(x, y) is balanced. This property is achieved for every nonzero
v ∈ Fm2 if and only if, for every nonzero x ∈ Fn/22 , the function y 7→ ψ(x, y) is balanced. Then,
for any u, u′ ∈ Fn/22 , the value at (u, u′) of the Walsh transform χ̂v·F of the component function
v · F of F is equal to∑

(x,y)∈Fn/22 ×Fn/2
2

(−1)v·ψ(x,y)+v·G(y)+u·x+u′·y = 2n/2
∑

y∈Fn/22 / vy=u

(−1)v·G(y)+u′·y

= ±2n/2.

We call extended Maiorana-McFarland’s class the set of functions which are EA-equivalent to
these functions. It includes the strict class.
An example of function ψ is ψ(x, y) = ϕ(x, π(y)), where π is a permutation of Fn/22 and ϕ is any
F2-bilinear (non-necessarily symmetric) function such that, for every nonzero x ∈ Fn/22 and every
nonzero y ∈ Fn/22 , we have ϕ(x, y) 6= 0. Indeed, this condition is necessary and sufficient for the
linear function y 7→ ϕ(x, y) to be balanced over F2n/2 for every nonzero x.
An example of such ϕ over the field F2n/2 and with m = n/2 is obviously ϕ(x, y) = x y but other
examples exist. For instance, ϕ(x, y) = x4y + wxy4, where w ∈ F2n/2 works, if w is not a cube
in F2n/2 (which obliges us to take n divisible by 4) since x4y + wxy4 = 0 with x, y 6= 0 implies
w = (x/y)3.
Characterizing all functions ψ(x, y) =

∑n/2−1
i=0 ψi(y)x2i such that the function y 7→ ψ(x, y) is

balanced for all nonzero x ∈ Fn/22 is an open problem, as far as we know.
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Remark 4.5.4. The (n, r)-functions above are given as defined over F2n/2 × F2n/2 (it is also the
case for other functions, in particular those in the PSap class, see Section 2). And, we know
that for r a divisor of n, any (n, r)-function can be viewed as a function from F2n to itself and,
therefore, can be uniquely expressed as a univariate polynomial over F2n . So, as mentioned in [23],
in the case when r = n/2 the univariate representation of such functions can be easily obtained:
- let w be any element in F2n \ F2n/2 , we can write X = x+ wy ∈ F2n = F2n/2 + wF2n/2 and we
have then y = X+X2n/2

w+w2n/2 and x = w2n/2
X+wX2n/2

w+w2n/2
;

- in particular if n/2 is odd, we can choose for w a primitive element of F4 and we have then:
x = w2X + wX2n/2 and y = X +X2n/2 .
For instance, the univariate representation of the simplest Maiorana-McFarland function, that is
the function (x, y) 7→ xy, is (w2X + wX2n/2)(X +X2n/2), that is, up to addition of linear terms:
X1+2n/2 if n/2 is odd and equals this functions multiplied by a nonzero term if n/2 is even.

• The general Maiorana-McFarland class is the set of (n, r)-functions such that, for every
v ∈ Fr2

∗, the component function v·F belongs, up to affine equivalence, to the Maiorana-McFarland
class of Boolean bent functions. It straightforwardly includes the extended class. The general
class contains all bent quadratic functions, since we know that, up to affine equivalence and addi-
tion of a constant, every quadratic n-variable bent Boolean function equals x1x2+· · ·+xn−1xn [98].

Modifications of the Maiorana-McFarland bent functions have been proposed in [213].

2. Partial Spread constructions of vectorial functions:

We endow Fn/22 with the structure of the field F2n/2 . We identify Fn2 with F2n/2×F2n/2 . Recall
that Boolean functions of the class PSap introduced by Dillon [83, 82] are bent. They are defined
in an explicit form f(x, y) = g(xy ) with (x, y) ∈ F2n/2 × F2n/2 and x

y = 0 if y = 0, where g is a
Balanced Boolean function on F2n/2 . The balancedness of g is in fact a necessary and sufficient
condition for f being bent. Moreover, the dual function f̃ of f is the Boolean function defined,
for every (a, b) ∈ (F2n)2, by f̃(a, b) = g( ba ), which belongs also to the class of PSap.

• The PSap class of vectorial functions: any function F over F2n/2 × F2n/2 defined by
F (x, y) := G(xy2n−2) = G

(
x
y

)
(with x

y = 0 if y = 0), x, y ∈ F2n/2 , where G is a balanced
(n/2, r)-function, is a bent (n, r)-function (since for every v 6= 0, the component function v · F
belongs to the class PSap of Dillon’s functions).

• A Partial Spread construction: Let us recall a construction of Boolean bent functions
proposed by Carlet:

Theorem 4.5.5. ([26]) Let n and m be two even integers. Let f be a Boolean function on
Fn2 × Fm2 such that, for any element y of Fm2 the Boolean function fy : x ∈ Fn2 7→ f(x, y) is
bent. Then, f is bent on Fn+m

2 if and only if, for any element s of Fn2 , the Boolean function φs:
y ∈ Fm2 7→ f̃y(s) is bent.

Recall that a way for constructing bent Boolean functions is, after identifying Fn2 and Fm2 with
the Galois fields F2n and F2m respectively, to use the following Proposition given by Carlet ([31],
section 6) and which is a consequence of Theorem 4.5.5. For completeness, we include the proof.
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Proposition 4.5.6. ([31]) Let n and m be two positive integers. Let k be a Boolean function on
F2n ×F2m . Define a Boolean function h on F2n ×F2n ×F2m ×F2m by setting, for every (x, y, z, t)
in F2n × F2n × F2m × F2m , h(x, y, z, t) = k(xy ,

z
t ).

Assume the following conditions (1) and (2) are satisfied.

1. For every x ∈ F2n , the Boolean function z ∈ F2m 7→ k(x, z) is balanced;

2. For every z ∈ F2m , the Boolean function x ∈ F2n 7→ k(x, z) is balanced.

Then, the Boolean function h is bent.

Proof. Thanks to hypotheses (1) and (2), for every (z, t) ∈ (F2m)2, the Boolean function gz,t :
(x, y) 7→ k(xy ,

z
t ) belongs then to PSap class and thus is bent. Moreover, its dual g̃z,t is defined by

g̃z,t(x, y) = k( yx ,
z
t ). Therefore, the Boolean function (z, t) ∈ (F2m)2 7→ g̃z,t(x, y) belongs also to

the PSap class for every (x, y) in (F2m)2. We then conclude thanks to Theorem 4.5.5.

The construction given by Proposition 4.5.6 can be straightforwardly extended to vectorial
Boolean functions as follows.

Proposition 4.5.7. ([16]) Let n, m , r be three positive integers such that r ≤ n and r ≤ m.
Let K be a function from F2n × F2m to F2r or to Fr2 such that

1. For every x ∈ F2n , the function y ∈ F2m 7→ K(x, y) is balanced,

2. For every y ∈ F2m , the function x ∈ F2n 7→ K(x, y) is balanced.

Define the function H from F2n × F2n × F2m × F2m to F2r by setting H(x, y, z, t) = K(xy ,
z
t ).

Then H is a bent (2n+ 2m, r)-function.

Proof. Apply Proposition 4.5.6 to each component function kλ (where λ ∈ F2r , λ 6= 0 or
λ ∈ Fr2 \ {0}) of the function K, that is the functions of the form kλ(x, y, z, t) = Trr1(λK(xy ,

z
t )) or

λ ·K(xy ,
z
t ) which is balanced (since a vectorial function is balanced if and only if all its component

functions are balanced).

Example 4.5.8. Let φ and φ′ be two balanced functions from F2m to F2n . Let F be a balanced
function from F2n to F2r . Then, the function K(x, y) := F (φ(x) + φ′(y)) satisfies the conditions
(1) and (2) of Proposition 4.5.7. Note that, in general, the corresponding bent function is not the
direct sum (see definition below) of functions in x and y.

3. Other primary constructions of bent vectorial functions:

The existence of a bent (n, r)-function is equivalent to the existence of an r-dimensional
vectorspace of n-variable Boolean functions whose nonzero elements (the component functions of
the vectorial function) are all bent. Let us give some examples of such construction:

• An example derived from the property of some codes: recall that, for given n and r ≤ n, the
binary Reed-Muller code RM(r, n) of order r and length 2n consists of all n-variable Boolean
functions of algebraic degree at most r and that the Kerdock code K(n) [98] of same length
consists of the binary Reed-Muller code RM(1, n) of order 1 and length 2n together with 2n−1−1
cosets of RM(1, n) in the binary Reed-Muller code RM(2, n) of order 2 and length 2n. The
Boolean functions associated with these cosets are quadratic bent functions, with the property
that the sum of any two of them is again a bent function. Consequently, any (n, 2)-function
whose coordinate functions belong to two distinct cosets, among these 2n−1 − 1 cosets, is a bent
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vectorial function.

• Given a function F from F2n to itself, a nonzero element a ∈ F2n and an integer r dividing n,
the (n, r)-function x ∈ F2n 7→ Trnr (aF (x)) is bent if and only if, for any nonzero v ∈ F2r , the
Boolean function x ∈ F2n 7→ Trn1 (avF (x)) is bent.
Examples of constructions of such bent (n, r)-functions are given in [12] (with r strictly smaller
than n/2). The authors obtain their results from some specific (n, n)-functions F (and under
some assumptions on the nonzero element a ∈ F2n given in [12]):
-F (x) = x2i+1 + (x2i + x+ 1) Trn1 (x2i+1), for n ≥ 6 an even integer;
- F (x) =

(
x+ Trn3 (x2(2i+1) + x4(2i+1)) + Trn1 (x) Trn3 (x2i+1 + x22i(2i+1))

)2i+1, for n divisible by 6;
where i is a positive integer not divisible by n/2 and such that n/ gcd(i, n) is even. The derived bent
(n, r)-functions are CCZ-inequivalent to the quadratic (n, r)-functions x ∈ F2n 7→ Trnr (vx2i+1),
v ∈ F2r , v 6= 0.

• An example of bent (n, n/2)-function has been found by the first author in common with
Leander. Such function is defined precisely, from F2n to Fn/22 , for n divisible by 2 but not by 4.
The output of the function is of the form (Trn1 (β1wX

d), · · · ,Trn1 (βn/2wXd)) ∈ Fn/22 , (X ∈ F2n);
where d is a so-called Gold exponent: d = 2i + 1 such that gcd(n, i) = 1, where w is some element
of F2n \ F2n/2 and where (β1, · · · , βn/2) is a basis of F2n/2 over F2. More details concerning this
construction can be found in [32].

4.5.2 Secondary constructions of bent vectorial functions
1. A Maiorana-McFarland-like construction:

In [27] is given the following secondary construction of bent Boolean functions: let r and
s be two positive integers with the same parity and such that r ≤ s, and let n = r + s; let φ
be a function from Fs2 to Fr2 and g a Boolean function on Fs2; let us assume that φ is balanced
and, for every a ∈ Fr2, the set φ−1(a) is an (s − r)-dimensional affine subspace of Fs2; let us
assume additionally if r < s that the restriction of g to φ−1(a) (viewed as a Boolean function
on Fn−2r

2 via an affine isomorphism between φ−1(a) and this vectorspace) is bent; then the
function fφ,g(x, y) = x · φ(y) + g(y), x ∈ Fr2, y ∈ Fs2, where “·" is an inner product in Fr2, is bent
on Fn2 . This generalizes directly to vectorial functions:

Proposition 4.5.9. ([16]) Let r and s be two positive integers with the same parity and such
that r ≤ s

3 . Let ψ be any (balanced) function from Fs2 to F2r such that, for every a ∈ F2r ,
the set ψ−1(a) is an (s − r)-dimensional affine subspace of Fs2. Let H be any (s, r)-function
whose restriction to ψ−1(a) (viewed as an (s− r, r)-function via an affine isomorphism between
ψ−1(a) and Fs−r2 ) is bent for every a ∈ F2r . Then, the function Fψ,H(x, y) = xψ(y) + H(y),
x ∈ F2r , y ∈ Fs2, is a bent function from Fr+s2 to F2r .

Proof. Taking x · y = Trr1(xy) for inner product in F2r , for every v ∈ F∗2r , the function
Trr1(v Fψ,H(x, y)) is bent, according to the result of [27] recalled above, with φ(y) = v ψ(y)
and g(y) = Trr1(v H(y)). The condition r ≤ s

3 , more restrictive than r ≤ s, is meant so that
r ≤ s−r

2 , which is necessary for allowing the restrictions of H to be bent. The condition on ψ
being easily satisfied (this does not make ψ necessarily affine). Note that it is a simple matter to
choose H.

The direct sum of bent functions
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It is well know that the direct sum (x, y) 7→ g(x) + h(y) of two bent Boolean functions f, g
gives a bent Boolean function. This simple secondary construction can be directly adapted to
vectorial functions. Indeed any bent (n, r)-function G and bent (m, r)-function H give a bent
(n+m, r)-function F by setting, for (x, y) ∈ Fn2 × Fm2 , F (x, y) := G(x) +H(y).
2. An “indirect sum” of bent function construction:

The direct sum of bent Boolean functions is a particular case of a much more general
construction introduced in [28], which involves 4 bent Boolean functions, and which has been
recently called the indirect sum. The indirect sum does not seem generalizable into a secondary
construction of bent vectorial functions involving 4 bent vectorial functions. But we show however
below that it can be adapted to vectorial functions into a rather general construction. Let us first
recall what is the indirect sum of bent Boolean functions. It is a particular case of the construction
given by Theorem 4.5.5, which has the interest of automatically generating bent functions from
bent functions, without that any extra condition be necessary (contrary to Theorem 4.5.5):

Proposition 4.5.10. ([28]) Let n and m be two even integers. Let f1 and f2, be two Boolean
functions defined on Fn2 , f ′1 and f ′2 be two Boolean functions defined on Fm2 . Define the Boolean
function h on Fn2 × Fm2 by setting, for every (x, y) ∈ Fn2 × Fm2 :

h(x, y) = f1(x) + f ′1(y) + (f1(x) + f2(x))(f ′1(y) + f ′2(y)).

If f1, f2, f ′1 and f ′2 are bent then, h is bent. Moreover, its dual h̃ is obtained from f̃1, f̃2, f̃ ′1 and
f̃ ′2 by the same formula as h is obtained from f1, f2, f ′1 and f ′2:

h̃(x, y) = f̃1(x) + f̃ ′1(y) + (f̃1(x) + f̃2(x))(f̃ ′1(y) + f̃ ′2(y)).

This construction can be extended to vectorial Boolean functions as follows.

Proposition 4.5.11. ([16]) Let n, m and r be three positive integers such that n and m are
even. Let F1 and F2 be two (n, r)-functions and G = (g1, . . . , gr+1) be an (m, r + 1)-function.
Define the function H from Fn2 × Fm2 to Fr2 by setting, for every (x, y) in Fn2 × Fm2 :

H(x, y) = F1(x) +G1(y) + g1(y)(F1(x) + F2(x))

where G1 is the (m, r)-function (g2, . . . , gr+1).
Assume that

1. F1 and F2 are bent (this requires r ≤ n
2 );

2. For every λ in Fr+1
2 different from (1, 0, . . . , 0), the component function λ ·G is bent.

Then H is a bent (n+m, r)-function.

Proof. Let δ ∈ Fr2 \ {0}. The component function δ · H of H, that we denote by hδ, has the
form : hδ(x, y) = δ · F1(x) + δ · G1(y) + g1(y)(δ · F1(x) + δ · F2(x)). This component function
falls then in the scope of Proposition 4.5.10 if we take f1 = δ · F1, f2 = δ · F2, f ′1 = δ ·G1 and
f ′2 = g1 + δ ·G1. The bentness of hδ is then a straightforward application of Proposition 4.5.10
since the assumptions (1) and (2) imply that f1, f2, f ′1 and f ′2 are bent.

Remark 4.5.12. The condition on G can be weakened. Indeed, let G = (g1, . . . , gr+1) be an
(m, r + 1)-function whose component functions λ · G are bent for every non zero λ 6= µ for
some µ ∈ Fr+1

2 \ {0}; let L be a linear automorphism of Fr+1
2 ; set G′ = L ◦ G then, for every

λ ∈ Fr+1
2 \ {0}, we have: λ ·G′ = L?(λ) ·G for every λ ∈ Fr+1

2 \ {0}, where L? denotes the adjoint
operator of L. Therefore, one can choose L so that L?(µ) = (1, 0, . . . , 0) and apply Proposition
4.5.11 to G′.
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Remark 4.5.13. Obviously, condition (2) of Proposition 4.5.11 is satisfied by any bent (m, r+1)-
function. The bentness of G is a strictly stronger hypothesis than hypothesis (2) in Proposition
4.5.11 (we shall see below an example of a non-bent function satisfying (2)) but it allows then to
build many more bent functions H, since any function G′ := (g′1, . . . , g′r+1) affinely equivalent to G
can be taken in Proposition 4.5.11 instead of G. The function g′1 can in particular be taken equal
to any of the 2r+1− 1 component functions of G. These component functions are all distinct since
G is bent. If g1 = g′1, the functions H corresponding to G and to G′ may be affinely equivalent,
but if g1 6= g′1, they are not, in general. Hence, when applied to a bent function G, Proposition
4.5.11 can lead to 2r+1 − 1 affinely inequivalent functions H, given F1, F2 and G.

Remark 4.5.14. If g1 is not constant, the algebraic degree of H is the maximum value between
deg(g1) + deg(F1 + F2) and deg(G1). In particular, H has algebraic degree n+m

2 (the optimum
degree for a bent (n+m, r)-function) if and only if deg(F1 + F2) = n

2 and deg(g1) = m
2 (which is

optimal, since g1 is the difference between two bent m-variable Boolean functions).

We shall now investigate some non-bent functions G whose component functions are all bent
except one and which will lead to corollaries of Proposition 4.5.11.

Example 4.5.15. Let G′ be any bent (m, r)-function. Let ` be an affine Boolean function on
Fm2 . Let G be the (m, r + 1)-function defined as G(y) = (`(y), G′(y)). Then, all the component
functions of G except its first coordinate function are bent.

Using the particular choice stated in Example 4.6.5, one deduces the following corollary.

Corollary 4.5.16. ([16]) Let n, m and r be three positive integers such that n and m are even,
r ≤ n

2 and r ≤ m
2 . Let F1 and F2 be two bent functions from Fn2 to Fr2, G1 a bent function from

Fm2 to Fr2 and ` be an affine Boolean function on Fm2 . Define the function H from Fn2 × Fm2 to Fr2
by setting, for every (x, y) ∈ Fn2 × Fm2 :

H(x, y) = F1(x) +G1(y) + `(y)(F1(x) + F2(x))

Then H is a bent (n+m, r)-function.

This construction does not allow obtaining bent functions of maximal degree n+m
2 unless m

equals 2. Let us give now another example of function G which has not this drawback.

Example 4.5.17. Set m = 2r and let us identify Fr2 with F2r and F2m with F2r × F2r . Let us
choose for G a function from F2r×F2r to F2×F2r of the form G(y, z) = (`(y)+g(z), yπ(z)+Γ(z))
where π is a permutation of F2r , Γ is any function from F2r to F2r , ` is affine Boolean on F2r

and g is any Boolean function on F2r . Let λ = (η, µ) ∈ F2 ×F2r . For every µ 6= 0 and η ∈ F2 , the
component function λ·G is by definition of the form λ·G(y, z) = Trr1(µyπ(z)+µΓ(z))+η`(y)+ηg(z),
for every (y, z) in (F2r)2. Hence it belongs to the Maiorana-McFarland class of Boolean bent
functions (see e.g. [31], Section 6).

Using the particular choice stated in Example 4.5.17, one deduces the following corollary
(where we identify Fs2 with the Galois Field F2s).

Corollary 4.5.18. ([16]) Let n and r be two positive integers such that n is even and r ≤ n
2 .

Let F1 and F2 be two bent functions from F2n to F2r , g a Boolean function over F2r , Γ a function
from F2r to itself, π a permutation of F2r and ` an affine Boolean function over F2r . Define the
function H from F2n × F2r × F2r to F2r by setting, for every (x, y, z) ∈ F2n × F2r × F2r :

H(x, y, z) = F1(x) + yπ(z) + Γ(z) + (`(y) + g(z))(F1(x) + F2(x))

Then H is a bent (n+ 2r, r)-function.
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3. Generalization of the indirect sum construction:

The indirect sum of Boolean functions was a consequence of Theorem 4.5.5. We shall see now
that Theorem 4.5.5 leads to a construction of bent vectorial functions which is more general than
that of Proposition 4.5.11. In this latter proposition, function H was equal to F1(x) + c1 ( where
c1 ∈ F2) for some values of y and F2(x) + c2 ( where c2 ∈ F2) for the other values of y. This
generalizes as follows.

Proposition 4.5.19. ([16]) Let n and m be two even integers and r, k two positive integers. Let
F1, · · · , Fk be (n, r)-functions and G an (m, r)-function. Let ϕ1, . . . , ϕk be Boolean functions on
Fm2 whose supports constitute a partition of Fm2 . Let us define the vectorial Boolean function H
from Fn2 × Fm2 to Fr2 by setting, for every (x, y) in Fn2 × Fm2 :

H(x, y) =
k∑
i=1

ϕi(y)Fi(x) +G(y).

Let us assume that the following conditions (1) and (2) are satisfied:

1. F1, · · · , Fk and G are bent (this requires r ≤ n
2 and r ≤ m

2 );

2. ∀λ ∈ Fr2 \ {0},∀ε = (ε1, · · · εk) ∈ Fk2 ,
the Boolean function y ∈ Fm2 7→

∑k
j=1 εjϕj(y) + λ ·G(y) is bent.

Then H is a bent (n+m, r)-function.

Proof. Let λ ∈ Fr2\{0}. The component function λ ·H of H equals :
∑k
i=1 ϕi(y) λ ·Fi(x)+λ ·G(y).

The function x 7→ λ ·H(x, y) is bent for every y in Fm2 and its dual equals
∑k
i=1 ϕi(y)λ̃ · Fi(x) +

λ ·G(y). Hence, applying condition (2) with εi = λ̃ · Fi(x) proves that H is bent, according to
Theorem 4.5.5.

Remark 4.5.20. Condition (2) of Proposition 4.5.19 implies in particular that for every j ∈
{1, · · · , k}, the Boolean function defined over Fm2 by hj := ϕj +λ ·G is bent. Then wt(hj) has the
form 2m−1 +γj2

m
2 −1 with γj = ±1. The function λ ·G is also bent then, wt(λ ·G) = 2m−1 +η2m2 −1

with η = ±1. On the other hand, we have wt(hj) = wt(ϕj) + wt(λ · G) − 2wt(ϕj(λ · G)).
Therefore, thanks to assumptions on ϕj, we have

∑k
j=1 wt(hj) = 2m + (k − 2)wt(λ ·G). Finally,∑k

j=1(2m−1 + γj2
m
2 −1) = 2m + (k − 2)(2m−1 + η2m2 −1) and then,

∑k
j=1 γj = η(k − 2).

The following statement is an example of application of Proposition 4.5.19:

Corollary 4.5.21. ([16]) Let k, n and r be three positive integers such that n is even and r ≤ n
2 .

Let F1, · · · , Fk be bent (n, r)-functions, π a permutation of Fr2 and Γ any (r, r)-function. Let ϕ1,
. . . , ϕk be any Boolean functions on Fr2 whose supports constitute a partition of Fr2. Define the
function H from Fn2 × Fr2 × Fr2 to Fr2 by setting, for every (x, y, z) ∈ Fn2 × Fr2 × Fr2:

H(x, y, z) =
k∑
i=1

ϕi(z)Fi(x) + y · π(z) + Γ(z)

Then H is a bent (n+ 2r, r)-function.

Remark 4.5.22. Corollary 4.5.21 can also be viewed as a generalization to vectorial functions
of a secondary construction given in [35] for Boolean functions under the name of “extension of
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Maiorana-McFarland type” and which can be stated as follows: let π be a permutation on Fn/22 , g
be a Boolean function on Fn/22 and fπ,g be a related Maiorana-McFarland’s bent function that is,
fπ,g(x, y) = xπ(y) + g(y), (x, y) ∈ Fn/22 × Fn/22 . Let (hy)y∈Fn/22

be a collection of bent functions

from Fm2 (for some even integer m) to Fn/22 . Then, the function (x, y, z) 7→ hy(z) + fπ,g(x, y)
defined from Fn/22 × Fn/22 × Fm2 to Fn/22 , is a bent (n+m,n/2)-function.
4. Further generalization of the indirect sum construction:
Still more generally, Theorem 4.5.5 leads to a construction of vectorial functions as follows:
Proposition 4.5.23. ([16]) Let r and s be two positive even integers and m a positive integer
such that m ≤ r/2. Let H be a function from Fn2 = Fr2×Fs2 to Fm2 . Assume that, for every y ∈ Fs2,
the function Hy : x ∈ Fr2 7→ H(x, y) is a bent (r,m)-function. For every nonzero v ∈ Fm2 and
every a ∈ Fr2 and y ∈ Fs2, let us denote by fa,v(y) the value at a of the dual of the Boolean function
v ·Hy, that is, the binary value such that

∑
x∈Fr2

(−1)v·H(x,y)+a·x = 2r/2(−1)fa,v(y). Then H is
bent if and only if, for every nonzero v ∈ Fm2 and every a ∈ Fr2, the Boolean function fa,v is bent.
Proof. For every nonzero v ∈ Fm2 and every a ∈ Fr2 and b ∈ Fs2 we have:∑

x∈Fr2
y∈Fs2

(−1)v·H(x,y)+a·x+b·y = 2r/2
∑
y∈Fs2

(−1)fa,v(y)+b·y.

Proposition 4.5.23 is very general and not very effective but an effective example can
be obtained by choosing every Hy in the Maiorana-McFarland class: Hy(x, x′) = xπy(x′) +
Gy(x′), x, x′ ∈ F2r/2 , where πy is bijective for every y ∈ Fs2. We have then f(a,a′),v(y) =
Tr

r
2
1
(
a′ π−1

y

(
a
v

)
+ v Gy

(
π−1
y

(
a
v

)))
. Then H is bent if and only if, for every v ∈ F∗2r/2 and every

a, a′ ∈ F2r/2 , the function y 7→ Tr
r
2
1
(
a′ π−1

y (a) + v Gy(π−1
y (a))

)
is bent on Fs2. A simple possibility

for achieving this is for s = r/2 to choose π−1
y such that, for every a, the function y 7→ π−1

y (a) is
an affine automorphism of F2r/2 (e.g. π−1

y (a) = πy(a) = a+ y) and to choose Gy such that, for
every a, the function y 7→ Gy(a) is bent.
Remark 4.5.24. The secondary constructions given in the present paper do not allow constructing
a bent function whose number of output bits is strictly larger than the numbers of output bits of
the functions used to build it. In particular, they do not allow constructing bent (n, n/2)-functions.
We leave as an open problem such construction. Note that, if F is a bent (n, r)-function, then an
affine subspace E of dimension strictly larger than n/2 of Fn2 cannot have an image by F included
in an affine hyperplane of Fr2 since we know that an n-variable bent Boolean function cannot be
constant on an affine subspace E of dimension strictly more than n/2 (see [24]) and if the image
of E by F is included in an affine hyperplane of Fr2, then there exists v 6= 0 in Fr2 such that v · F
is constant on E. This means that, in a secondary construction of a bent (n, n/2)-function F
from two bent functions in smaller numbers of input variables and smaller numbers of output bits,
at least one of the bent functions used to build F is inequivalent to any restriction of F (contrary
to the constructions of Propositions 4.5.9, 4.5.19 and 4.5.23).

4.6 Dillon’s class H, class H and Niho bent functions
4.6.1 Classes H and H in bivariate form
In his thesis [87], Dillon introduces a third family of bent functions whose expression is given
but whose bentness is achieved under some non-obvious condition (so the class is less explicit
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than classM or class PSap, but it happens to be more explicit than class PS, the condition for
H being easier to satisfy than for PS, as we shall see). He defines these functions in bivariate
form (but as we shall see, they can also be seen in univariate form). The functions of this family
are defined as f(x, y) = Trm1 (y + xG(yx2m−2)), with x, y ∈ F2m where G is a permutation of F2m

such that G(x) + x does not vanish and, for every β ∈ F?2m , the function G(x) + βx is two-to-one
(i.e. the pre-image by this function of any element of F2m is either a pair or the empty set). He
denotes this family of bent functions by H.
The condition that G(x) + x does not vanish is required only for H to be an extension of PS but
is not necessary for f to be bent. Similarly, the linear term Trm1 (y) can be taken off if we are only

interested in the bentness of the function. We have then f(x, y) =
{

Trm1
(
xG
(
y
x

))
if x 6= 0

0 if x = 0
.

Note that the restriction of f to the vectorspaces {(x, ax) ; x ∈ F2m} where a ∈ F2m are linear.
More generally, any function whose restrictions to these vectorspaces are linear has the form:

g(x, y) =
{

Trm1
(
xψ
(
y
x

))
if x 6= 0

Trm1 (µy) if x = 0
(4.2)

where µ ∈ F2m and ψ is a mapping from F2m to itself. In the following proposition, we check
(again, since this has been essentially done by Dillon) what is the necessary and sufficient condition
on ψ and µ such that g is bent.

Proposition 4.6.1. ([44]) Let g be a Boolean function over F2m × F2m defined by (4.2). Then g
is bent if and only if, denoting G(z) = ψ(z) + µz, we have:

G is a permutation on F2m (4.3)

For every β ∈ F?2m , the function z 7→ G(z) + βz is 2-to-1 on F2m . (4.4)

Proof. For every α, β ∈ F2m , we have:

χ̂g(α, β) =
∑

x,y∈F2m

(−1)g(x,y)+Trm1 (αx+βy)

=
∑

x∈F?2m ,z∈F2m

(−1)Trm1 (xψ(z)+αx+βxz) +
∑
y∈F2m

(−1)Trm1 ((β+µ)y)

=
∑

x∈F2m ,z∈F2m

(−1)Trm1 (xψ(z)+αx+βxz) − 2m + 2mδµ(β)

= 2m #{z ∈ F2m /ψ(z) + α+ βz = 0} − 2m + 2mδµ(β).

We denote by Nα,β the cardinality of the set {z ∈ F2m /ψ(z) + α+ βz = 0}.

Then we have χ̂g(α, β) =
{

2mNα,µ if β = µ

2mNα,β − 2m if β 6= µ
, and Conditions (4.3) and (4.4) are necessary

and sufficient for g being bent.

Definition 4.6.2. We call H the extended class of H equal to the set of functions g defined
by (4.2) and satisfying (4.3) and (4.4) (that is, satisfying (4.4), since we shall see below that
Condition (4.4) implies Condition (4.3)).
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Note that the function g defined by (4.2) satisfies g(x, y)+Trm1 (µy) =
{

Trm1
(
xG
(
y
x

))
if x 6= 0

0 if x = 0
and that changing G(x) into G(x) + ν changes g(x, y) into g(x, y) + Trm1 (νx). Hence, we can
assume without loss of generality (up to the addition of a linear function) that µ = 0 and G(0) = 0.

We consider now the duals of the functions in class H. Under the conditions of Proposition
4.6.1:
- if β = µ then we have χ̂g(α, β) = 2m and the equation ψ(z) + βz = G(z) = α has a solution;
- and if β 6= µ then we have χ̂g(α, β) = 2m if and only if the equation ψ(z)+βz = G(z)+(β+µ)z =
α has solutions.
We deduce:

Proposition 4.6.3. ([44]) Let g be a bent function of the form (4.2) Then the dual function of
g is defined on F2m × F2m as:

g̃(α, β) =
{

1 if the equation ψ(z) + βz = G(z) + (β + µ)z = α has no solution in F2m

0 otherwise

Remark 4.6.4. Since bent functions exist of the form (4.2), a natural question is: does there
exist also semi-bent functions (see Chapter 8) of the same form (4.2). Recall that a Boolean
function is called semi-bent if its Walsh transform takes only the values 0 and ±2m+1. Assume
without loss of generality that µ = 0 and that G(0) = 0. We remark that g is semi-bent if and
only if Nα,0 ∈ {0, 2} and Nα,β ∈ {1, 3} (β 6= 0). If Nα,0 ∈ {0, 2}, χ̂g(α, 0) ∈ {0, 2m+1} and if
Nα,β ∈ {1, 3}, χ̂g(α, β) ∈ {0, 2m+1}. This is impossible if n > 2 because of the Lemma 4.6.5
below. Therefore, there exists no semi-bent function of the form (4.2) for n > 2.

Lemma 4.6.5. Let g be a Boolean function. If the Walsh transform values of g are all non-
negative, then g is affine.

Proof. According to Parseval’s relation
∑
ω∈Fn2

χ̂g
2(ω) = 22n and inverse Fourier transform

formula
∑
ω∈Fn2

χ̂g(ω) = ±2n (see e.g. [31]), we have:
∑
ω∈Fn2

χ̂g
2(ω) = (

∑
ω∈Fn2

χ̂g(ω))2. This
implies

∑
ω 6=ω′∈Fn2

χ̂g(ω)χ̂g(ω′) = 0 (relation valid for every Boolean function) and therefore,
since the values of χ̂g are non-negative: χ̂g(ω) = 0 or χ̂g(ω′) = 0 for every ω 6= ω′. The Walsh
transform of g takes therefore non-zero value at exactly one point and it is well-known that g is
then affine (that is, has algebraic degree at most 1).

A first infinite class of functions in H

The Frobenius map z 7→ G(z) = z2 gives an example of functions G, which leads to a function in
the class H: g(x, y) = Trm1 (y2x2m−2). More generally, one can get functions in the class H by
considering the maps z 7→ G(z) = z2i where i is co-prime with m, since the equation z2i +βz = α

is equivalent, denoting γ = β
1

2i−1 , to
(
z
γ

)2i
+ z

γ = α

γ2i . As observed by Dillon, the related bent
functions are in the completed Maiorana-MacFarland class; indeed, denoting j = m− i, we have
then g(x, y) = Trm1 (x (yx2m−2)2i) = Trm1 (x2jyx2m−2) = Trm1 (yx2j−1).

Stability of functions G

In the following, we study the stability of functions G satisfying Conditions (4.3) and (4.4). Note
that Condition (4.4) is equivalent to saying that for every β ∈ F?2m , the function z 7→ βG(z) + z
is 2-to-1. Let G be a function satisfying Conditions (4.3) and (4.4). Then
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1. the function z 7→ G−1(z) satisfies Conditions (4.3) and (4.4), since denoting G−1(z) by z′,
the equation G−1(z) + βz = α is equivalent to G(z′) + 1

β z
′ = α

β .

2. the function z 7→ G′(z) := (L−1 ◦G ◦ L)(z) where L(z) = z2j is a field automorphism of
F2m , that is G′(z) = (G(z2j ))2m−j , satisfies Conditions (4.3) and (4.4).

3. the function z 7→ G′(z) := λG(z) + λ′ with λ 6= 0 satisfies Conditions (4.3) and (4.4).

4. the function z 7→ G′(z) := G(λz + λ′) with λ 6= 0 satisfies Conditions (4.3) and (4.4).

5. the function z 7→ G′(z) := zG(z2m−2) if G(0) = 0 and more generally the function
z 7→ G′(z) := zG(z2m−2) + zG(0) for any value of G(0) satisfies Conditions (4.3) and (4.4).
Indeed (restricting ourself without loss of generality to the case G(0) = 0 - by replacing G
by G+G(0) - and still assuming that β 6= 0), if α 6= 0 then zG(z2m−2) = α is equivalent to
G(z2m−2) = αz2m−2 which has one solution since G(z)+αz = 0 has two solutions and z = 0
is one of them, and the equation zG(z2m−2)+βz = α is equivalent to G(z2m−2)+αz2m−2 = β
and has therefore 0 or 2 solutions; and if α = 0 then zG(z2m−2) = α = 0 is equivalent to
z = 0 and the equation zG(z2m−2) + βz = α = 0 is equivalent to z = 0 or G(z2m−2) = β
which has one (nonzero) solution.

Note that transformations (2) to (5) translated in terms of the associated bent functions
g(x, y) = Trm1

(
xG
(
y
x

))
(with the convention 1

0 = 0) result in particular cases of EA-equivalence,
since transformation (2) corresponds to applying the same field automorphism to x and y; trans-
formations (3) and (4) correspond to multiplying x and/or y by constants in g(x, y) and to
adding linear functions to g; and transformation (5) corresponds when G(0) = 0 to swaping
x and y in g(x, y). On the contrary, the bent functions related by transformation (1) are not
EA-equivalent, in general. We shall say that two functions G are o-equivalent (the reason why we
choose such term will come below) if one can be obtained from the other by a sequence of the
transformations G 7→ G′ above. This gives a notion of equivalence of functions in class H which
is not a sub-equivalence of the EA-equivalence of bent functions and is not a super-equivalence
either.
Note that the general F2m -linear equivalence between the corresponding bent functions (when one
equals the other composed on the right by an F2m -linear automorphism over F2n) is included in
this notion of o-equivalence: applying to the function g(x, y) = Trm1

(
xG
(
y
x

))
the transformation

(x, y) 7→ (ax+ by, cx+ dy), where a, b, c, d ∈ F2m are such that ad 6= bc, gives the function g′(x, y)
equal, if x 6= 0, to Trm1

(
(ax+ by)G

(
cx+dy
ax+by

))
= Trm1

(
x(a+ bz)G

(
c+dz
a+bz

))
, where z = y

x (and
still assuming the convention 1

0 = 0) and if x = 0 to Trm1
(
byG

(
d
b

))
. This corresponds to the

transformation

G′(z) = (a+ bz)G
(
c+ dz

a+ bz

)
+ bz G

(
d

b

)
. (4.5)

If b = 0, this transformation reduces to G′(z) = aG
(
c+dz
a

)
(with a 6= 0 and d 6= 0 since ad 6= bc)

and can be obtained by applying transformations (3) and (4), and if b 6= 0, then it corresponds to
applying (3), (4) and (5).
Note that, conversely, we obtain transformation (3) with λ′ = 0 by choosing (a, b, c, d) = (λ, 0, 0, λ),
and transformations (4) and (5) by choosing (a, b, c, d) = (1, 0, λ′, λ) and (0, 1, 1, 0).
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4.6.2 Class H in univariate form: Niho bent functions
We identify now F2m × F2m with F2n by considering a basis (u, v) of the F2m-vector space F2n

and identifying (x, y) ∈ F2m × F2m with:

t = xu+ yv.

Then the vectorspaces {(x, ax) ; x ∈ F2m} where a ∈ F2m and {(0, y) ; y ∈ F2m} become the
2m + 1 multiplicative cosets of F?2m in F?2n , added with 0. These cosets can be written ωF?2m
where ω ranges over the multiplicative subgroup U of F?2n of order 2m + 1, if we want to have
a unique representation of each of them. And if we allow repetition, they are the cosets ωF?2m
where ω ∈ F?2n . The necessary and sufficient condition for a bent function to belong to class H is
then that its restriction to each vectorspace ωF2m , ω ∈ F?2n , is linear.

Lemma 4.6.6. ([44]) Let f be a Boolean function over F2n and f(t) =
∑2n−1
i=0 ait

i its univariate
representation. Then the restrictions of f to the vectorspaces ωF2m , ω ∈ F?2n , are all linear if and
only if the only exponents i such that ai 6= 0 are congruent with powers of 2 modulo 2m − 1.

Proof. The condition is clearly sufficient. Let us show that it is also necessary. Clearly, we
must have a0 = 0. Moreover, for every ω ∈ F?2n , the restriction of f to ωF2m being linear, there
exists λω ∈ F2m such that f(ωx) =

∑2n−1
i=1 aiω

ixi[mod 2m−1]) = Trm1 (λωx) for every x ∈ F?2m . By
uniqueness of the univariate representation of a Boolean function over F2m (here, a function
of x), we deduce that, for every k ∈ {0, . . . , 2m − 2} different from a power of 2, we have∑

1≤i≤2n−1
i≡k [mod 2m−1]

aiω
i = 0. This completes the proof, by uniqueness of the univariate representation

of a function from F2n to itself (here, a function of ω).

Note that this result extends to any function f from F2n to itself.
Recall that bent functions whose restrictions to the vectorspaces ωF2m are all linear have already
been investigated in [93] and [160]. Since the exponents congruent with powers of 2 modulo
2m − 1 are called Niho exponents, we shall call these functions Niho bent functions. We have seen
in Section 4.4.2 yet five examples of infinite classes of Niho bent functions are known up to affine
equivalence or more exactly, four examples since one of the classes is the generalization of one of
the others.

4.7 A natural extension of class H
Since class H is the set of bent functions whose restrictions to the ωF2m ’s are linear, a natural
extension to consider is the set of those bent functions whose restrictions to the ωF?2m ’s are affine.
Clearly, such functions are the sums of an element of class H and of a function which is constant
on each ωF?2m (note that, since bent functions have algebraic degree at most m, we can assume
this function has even Hamming weight, and therefore has the form

∑
ω∈S 1ωF2m , where 1ωF2m is

the indicator of ωF2m).

Proposition 4.7.1. ([44]) Let h be an element of H (that is, a Boolean function whose restriction
to every ωF2m , ω ∈ F?2m , is linear). Let S be any subset of U (the multiplicative subgroup of F?2n
of order 2m + 1) and let g =

∑
ω∈S 1ωF2m . Then g + h is bent if and only if g is constant and h

is bent, or g is bent and h is linear or S equals a singleton {ω0} or its complement and h is Niho
bent.
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Proof. We may without loss of generality assume that g(0) = 0, that is, S has even size (up to
replacing g by g + 1). As shown in [45], denoting then by gω the value of g on ωF?2m , we have:

∀c ∈ F2n , χ̂g+h(c) = 1−
∑
ω∈U

χ(gω) + 2m
∑
ω∈I(c)

χ(gω), (4.6)

where I(c) = {ω ∈ U | ∀t ∈ ωF2m , h(t) = Trn1 (ct)}

and χ̂h(c) = 2m(#I(c)− 1). (4.7)

According to (8.15), g+h can be bent only if 1−
∑
ω∈U χ(gω) ≡ 0 (mod 2m) that is,

∑
ω∈U χ(gω) =

1 + ε2m with ε ∈ {0,±1}.
If ε = 1, then g = 0.
If ε = 0, then g is bent (it belongs to the PSap class) and g + h is bent if and only if, for every c,
we have

∑
ω∈I(c) χ(gω) ∈ {−1, 1}. Necessarily #I(c) must then be odd, and according to (8.16),

χ̂h(c) is then non-negative. According to Lemma 4.6.5, h is then linear. Conversely, if g is bent
and h is linear then g + h is bent.
If ε = −1, then gω = 0 for a single ω, that is, g = 1ω0 F2m + 1. We know from [24] that if a bent
function f is affine on an m-dimensional affine space E then f + 1E is bent too. Then taking
E = ω0 F2m , we see that g + h is bent if and only if h is Niho bent (indeed, the restrictions of h
and g + h to ω0 F2m are affine).

Remark 4.7.2. We can see that the corresponding bent functions g + h are not really new: they
are equal to “known” bent functions added with affine functions.

4.8 On the duals of bent functions via Niho exponents
In the following, we are interested to compute the dual of bent functions in the classH.

4.8.1 On the duals of the known binomial bent functions via Niho
exponents

It was left open in [93] to determine if the duals of the functions introduced there are affinely
equivalent to these Niho bent functions. In the next proposition, we study how the mapping G
related to the functions in the second class satisfies Conditions (4.3) and (4.4). We subsequently
study the duals of these functions and give an answer to this question.

We first calculate the polynomial G(z) related to a generic Niho function f(t) = Trm1 (at2m+1)+∑
i∈I Trn1 (bit(2

m−1)si+1) where a ∈ F2m and bi ∈ F2n and where the si’s are elements of the
residue class ring Z/(2m + 1)Z. Note that some of the si’s can be taken equal to inverses in
(Z/(2m + 1)Z)? (this is the case in [93]), and that we can take them different from 1/2 since the
term corresponding to si = 1/2 appears as Trm1 (at2m+1). Decomposing t = ux+ vy where (u, v)
is a basis of F2n over F2m and denoting z = y/x, we have then:
- for x 6= 0, f(t) = Trm1

(
x
(
a

1
2 (u+ vz) 2m+1

2 +
∑
i∈I Trnm(bi(u+ vz)(2m−1)si+1)

))
;

- and for x = 0, f(t) = Trm1
(
y
(
a

1
2 v

2m+1
2 +

∑
i∈I Trnm(biv(2m−1)si+1)

))
.

Hence we have (see Section 4.6.1) ψ(z) = a
1
2 (u+ vz) 2m+1

2 +
∑
i∈I Trnm(bi(u+ vz)(2m−1)si+1) and
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µ = a
1
2 v

2m+1
2 +

∑
i∈I Trnm(biv(2m−1)si+1). Then we have:

G(z) = a
1
2

(
(u+ vz)

2m+1
2 + (vz)

2m+1
2

)
+
∑
i∈I

Trnm
(
bi

[
(u+ vz)(2m−1)si+1 + (vz)(2m−1)si+1

])
.

(4.8)

Proposition 4.8.1. ([44]) Let f be defined as

∀t ∈ F2n , f(t) = Trm1 (at2
m+1) + Trn1 (bt(2

m−1) 1
4 +1) (4.9)

with m odd, a ∈ F?2m and b ∈ F?2n . Let (u, v) be a basis of F2n as two dimensional vectorspace over
F2m . The restriction of f to vF2m equals Trm1 (µy) with µ = a1/2v(2m+1)/2 + Trnm(bv(2m−1) 1

4 +1).
The mapping G such that G(z) = ψ(z) + µz and

f(ux+ vy) =
{

Trm1
(
xψ
(
y
x

))
if x 6= 0

Trm1 (()µy) if x = 0

can be characterised by

G4(z) = a2u2(2m+1) + Trnm(b4u2m+3)

+ Trnm(uv2m)
(

Trnm(b4u2)z + [a2 Trnm(uv2m) + Trnm(b4uv)]z2 + Trnm(b4v2)z3
)

Proof. According to (4.8), we have:

G4(z) = a2(u+ vz)2(2m+1) + a2v2(2m+1)z4 + Trnm(b4(u+ vz)2m+3) + Trnm(b4v2m+3z4).

Note now that
(A+B)2m+1 = A2m+1 +B2m+1 + Trnm(AB2m) (4.10)

and

(A+B)2m+3 = (A+B)2m+1(A+B)2

=
(
A2m+1 +B2m+1 + Trnm(AB2m)

)
(A2 +B2)

= A2m+3 +B2m+3 +A2m+1B2 +B2m+1A2 + Trnm(AB2m)(A2 +B2)
= A2m+3 +B2m+3 +AB(A2mB +B2mA) + Trnm(AB2m)(A2 +B2)
= A2m+3 +B2m+3 + Trnm(AB2m)(A2 +B2 +AB).

Therefore,

G4(z) = a2u2(2m+1) + Trnm(b4u2m+3)

+ Trnm(uv2m)
(

Trnm(b4u2)z + [a2 Trnm(uv2m) + Trnm(b4uv)]z2 + Trnm(b4v2)z3
)
.

We are now going to exhibit under which conditions on a and b the function satisfies conditions
(4.3) and (4.4).

Note now that we can suppose without loss of generality that Trnm(uv2m) = 1. First of all,
one has that Trnm(uv2m) 6= 0. Otherwise u2m−1v1−2m = 1 yielding u/v ∈ F2m contradicting
the fact that (u, v) is a basis of F2n as two dimensional vectorspace over F2m . Denoting by G′
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the function obtained by replacing the basis (u, v) by (u′, v′) =
(

u

Trnm(uv2m )
1
2
, v

Trnm(uv2m )
1
2

)
, we

have the relation G′(z) = G(z)
Trnm(uv2m )

1
2
. Now, clearly, G satisfies conditions (4.3) and (4.4) if and

only if G′ satisfies conditions (4.3) and (4.4) and this allows us to restrict ourselves to the case
Trnm(uv2m) = 1.

Proposition 4.8.2. ([44]) Let (u, v) be a basis of F2n as two dimensional vector space over F2m

such that Trnm(uv2m) = 1. The corresponding function G of Proposition 4.8.1 is a permutation
if and only if b2m+1 = a. Furthermore, if b2m+1 = a, there exists (λ1, λ2, λ3) ∈ F2m such that
λ1 + λ2G(z + λ3) = z

1
4 for every z ∈ F2m or λ1 + λ2G(z + λ3) = z

3
4 for every z ∈ F2m .

Proof. The function G given by Proposition 4.8.1 is defined as

G(z) = A+Bz
1
4 + Cz

1
2 +Dz

3
4

with

A = a1/2u(2m+1)/2 + Trnm(bu(2m−1) 1
4 +1)

B = Trnm(bu 1
2 )

C = a1/2 + Trnm(bu 1
4 v

1
4 )

D = Trnm(bv 1
2 ).

For (λ1, λ2, λ3) ∈ F3
2m with λ2 6= 0,

λ1 + λ2G(z + λ3) = λ1 + λ2(A+Bλ
1/4
3 + Cλ

1/2
3 +Dλ

3/4
3 )

+ λ2((B +Dλ
1/2
3 )z 1

4 + (C +Dλ
1/4
3 )z 1

2 +Dz
3
4 ).

Now, note that given a function f ∈ F2n [x] , the normalized form of f is f ′ such that f ′(0) = 0,
the degree d of f ′ is not divisible by the characteristic of F2n that is, 2 and the coefficient of
xd−1 is 0. The only permutations of degree at most three and in normalized form are z 7→ zi

with i ∈ {1, 2, 3} (see [166], page 352). Therefore G is a permutation if and only if there exists
(λ1, λ2, λ3) ∈ F3

2m such that λ1 +λ2G(z+λ3) = z
i
4 with i ∈ {1, 2, 3}, that is, there exists λ3 ∈ F2m

such that:

• for i = 1: D = C = 0 and B 6= 0;

• for i = 2: D = B = 0 and C 6= 0;

• for i = 3: B +Dλ
1/2
3 = C +Dλ

1/4
3 = 0 and D 6= 0.

In the two first cases, we have D = 0, that is bv1/2 ∈ F2m . Then B cannot be equal to 0 otherwise
u/v ∈ F2m contradicting the fact that (u, v) is a basis of F2n as two dimensional vector space
over F2m . Hence i = 2 is impossible. We characterize now the case i = 1. we have:

C = 0 ⇐⇒ a1/2 = Trnm(bu 1
4 v

1
4 )

⇐⇒ a(2m+1)/2 = b2
m+1v(2m+1)/2

(
Trnm(u 1

4 v−
1
4 )
)2m+1

We have used the fact that z 7→ z2m+1 is a permutation of F2m since gcd(2m + 1, 2m − 1) = 1
and that bv1/2 ∈ F2m . Note then that

v(2m+1)/2
(

Trnm(u 1
4 v−

1
4 )
)2m+1

=
(
v2 Trnm(uv−1)

)(2m+1)/4
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Now,

v2 Trnm(uv−1) = v2(uv−1 + u2mv−2m)
= uv + u2mv2−2m

Using (4.10) with A = uv and B = u2mv2−2m and noting that

B2m+1 = u2m(2m+1)v(2−2m)(2m+1)

= u1+2mv1+2m = A2m+1

and

AB2m = uv ×
(
u2mv2−2m

)2m

= uv × uv2m+1−1

= u2v2m+1

=
(
uv2m

)2

We have: (
v2 Trnm(uv−1)

)(2m+1) = Trnm
((

uv2m
)2
)

= Trnm(uv2m)2

= 1.

Thus, since a ∈ F2m , a2m = a and therefore a(2m+1)/2 = a, we have that

D = C +Dλ
1/4
3 = 0 ⇐⇒ a = b2

m+1.

We study now the case i = 3. We have D 6= 0, that is, bv 1
2 6∈ F2m . Then,

∃λ3 ∈ F2m , B +Dλ
1/2
3 = C +Dλ

1/4
3 = 0 ⇐⇒ ∃λ3 ∈ F2m ,

B

D
= λ

1/2
3 and C

D
= λ

1/4
3

⇐⇒ B

D
= C2

D2

⇐⇒ BD = C2.

Now

BD = C2 ⇐⇒ Trnm(bu1/2) Trnm(bv1/2) = a+ Trnm(b2u 1
2 v

1
2 ).

Note now that

Trnm(X) Trnm(Y ) = (X +X2m)(Y + Y 2m)
= XY +X2mY 2m +X2mY +XY 2m

= Trnm(XY ) + Trnm(XY 2m).
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Applying the above equality with X = bu1/2 and Y = bv1/2, we get that

Trnm(bu1/2) Trnm(bv1/2) = Trnm
(

(bu1/2)(bv1/2)
)

+ Trnm
(

(bu1/2)(bv1/2)2m
)

= Trnm
(
b2u1/2v1/2

)
+ Trnm

(
b2
m+1

(
uv2m

)1/2
)

= Trnm
(
b2u1/2v1/2

)
+ b2

m+1 Trnm
(
uv2m

)1/2

= Trnm
(
b2u1/2v1/2

)
+ b2

m+1

since b2m+1 ∈ F2m and Trnm
(
uv2m) = 1. Therefore,

BD = C2 ⇐⇒ b2
m+1 = a.

that is,

∃λ3 ∈ F2m , B +Dλ
1/2
3 = C +Dλ

1/4
3 = 0 ⇐⇒ b2

m+1 = a.

Lemma 4.8.3. ([44]) Let m be a positive odd integer. The permutation φi : z 7→ z
i
4 satisfies

condition 4.4 for every i ∈ {1, 3}.

Proof. For every b ∈ F?2m , the kernel of the linear map z ∈ F2m 7→ φ1(z) + bz is of dimension 1
over F2 (indeed φ1(z) + bz = 0 if and only if z = 0 or z 3

4 = b−1). Thus φ1 satisfies condition
(4.4). Note now that φ3(z) = zφ1( 1

z ). Therefore, according to assertion (5) of subsection 4.6.1
and since φ1(0) = 0, φ3 satisfies condition (4.3) and (4.4).

Therefore, collecting together Proposition 4.8.1, Proposition 4.8.2 and Lemma 4.8.3, we get

Proposition 4.8.4. Let f be defined as

∀t ∈ F2n , f(t) = Trm1 (at2
m+1) + Trn1 (bt(2

m−1) 1
4 +1) (4.11)

with m odd, a ∈ F?2m and b ∈ F?2n . Then, f is bent if and only if b2m+1 = a.

Remark 4.8.5. Dobbertin et al. showed that if b2m+1 = a then function f is bent. We have
shown here that the converse is true.

Remark 4.8.6. We can see that the function f belongs, up to affine equivalence, to the sub-class
of H described in 4.6.1 (with i = m − 2). In particular, it belongs to the completed Maiorana-
McFarland class (see e.g. [31])

Let us now compute the dual function of f . Since we have, in parallel, bivariate and univariate
representations for the same functions, we first need to clarify how the duals are related in such
general context. Given a basis (u, v) of the 2-dimensional vector space F2n over F2m , let g(x, y) =
f(ux+ vy), x, y ∈ F2m . For every w ∈ F2n we have χ̂f (w) =

∑
x,y∈F2m

(−1)g(x,y)+Trn1 (w(ux+vy)) =∑
x,y∈F2m

(−1)g(x,y)+Trm1 (xTrnm(wu)+yTrnm(wv)). Hence the value of χ̂f (w) is related in a natural
way to the decomposition of w over a dual basis of (u, v), that is, a basis (u′, v′) such that
Trnm(uu′) = Trnm(vv′) = 1 and Trnm(uv′) = Trnm(u′v) = 0, the decomposition of w over this
basis being then w = Trnm(uw)u′ + Trnm(vw)v′. In such context we have χ̂f (au′ + bv′) =∑
x,y∈F2m

(−1)g(x,y)+Trm1 (ax+by) = χ̂g(a, b). Since there is no reason why g and its dual should be
calculated with respect to different bases, we are then drawn to choose the basis (u, v) autodual.
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Lemma 4.8.7. Let (u, v) be an autodual basis of the 2-dimensional vector space F2n over F2m .
Let f be any bent function over F2n and g(x, y) = f(ux+ vy), x, y ∈ F2m , its bivariate expression
with respect to the basis (u, v). Then we have χ̂f (au+ bv) = χ̂g(a, b) where χ̂f is calculated with
respect to the inner product w · t = Trn1 (wt) in F2n and χ̂g is calculated with respect to the inner
product (a, b) · (x, y) = Trm1 (ax+ by) in F2

2m .

We need then to make a choice of an autodual basis of F2n over F2m . This will be simplified if
we assume that b4 6= a2. Then there exists v ∈ F2n such that Trnm(v) = 1 and b4 = a2v2m−1. Such
an element v is unique. Then we can take u = v2m (indeed, v and v2m are linearly independent:
suppose that there exists z ∈ F?2m such that v2m = zv; then v2m−1 = z, that is, (v2m−1)2m−1 =
v2(1−2m) = 1, a contradiction with b4 = a2v2m−1 and b4 6= a2) and the basis (u, v) is then clearly
autodual. We define then g : F2m × F2m → F2n as: ∀(x, y) ∈ (F2m)2, g(x, y) = f(v2mx + vy),
where b4 = a2v2m−1. According to Proposition 4.6.3, the dual function f̃ of f satisfies f̃(w) = 1
if and only if the equation ψ(z) + Trnm(vw)z + Trnm(v2mw) = 0 has no solution in F2m where
ψ(z) = G(z) + µz is given by:

ψ4(z) = a2u2(2m+1) + Trnm(b4u2m+3) + Trnm(v2mu) Trnm(b4u2)z + (a2v2(2m+1) + Trnm(b4v2m+3))z4.

Let us simplify a little the above expression by noting that, for u = v2m and b4 = a2v2m−1:

Trnm(b4u2m+3) = a2 Trnm(v2m−1+1+3·2m) = a2 Trnm(v2m+2
) = a2 Trnm(v)2m+2

= a2

Trnm(v2mu) = Trnm(v2m+1
) = Trnm(v)2m+1

= 1
Trnm(b4v2m+3) = a2 Trnm(v2(2m+1)) = a2v2(2m+1) Trnm(1) = 0.

Furthermore, note that Trnm(v) = 1 = v + v2m and then that v−1 = 1 + v2m−1 that is,
v2m−1 = 1 + v−1. Therefore,

Trnm(b4u2) = a2 Trnm(v2m−1v2m+1
) = a2(Trnm(v2m+1

) + Trnm(v2mv2m−1)
)

= a2(1 + Trnm(v2m−1) + Trnm(v2m)
)

= a2 Trnm(v2m−1)
= a2(Trnm(1 + v−1)) = a2 Trnm(v−1).

We have also µ = a1/2v(2m+1)/2 + Trnm(bv(2m−1) 1
4 +1) = a1/2(v(2m+1)/2 + Trnm(v(2m+1)/2)) =

a1/2v(2m+1)/2 (since v(2m+1)/2 ∈ F2m and therefore Trnm(v(2m+1)/2)) = 0).
We thus obtain that ψ4(z) = a2(v2(2m+1) + 1) + a2 Trnm(v−1)z + a2v2(2m+1)z4, that is:

ψ4(z) = a2(v2(2m+1) + 1 + Trnm(v−1)z + v2(2m+1)z4).
The support of the dual function of f is thus defined as:

f̃(a 1
2w) = 1 if and only if the equation v

2m+1
2 + 1 + Trnm(v2mw) + Trnm(v− 1

4 )z 1
4 + (v 2m+1

2 +
Trnm(vw))z = 0 has no solution in F2m . Note that 2m+1

2 = (2m − 1) 1
2 + 1.

Now, we have the following Lemma

Lemma 4.8.8. ([44]) Let σ, ρ, τ be three elements of F2m . Assume that σ 6= 0. Let N = #{z ∈

F2m | σz + ρz
1
4 = τ}. Then, N =

{
2 if Trm1 (() τσ ·

1
λ ) = 0 where λ = ( ρ

4

σ4 ) 1
3

0 otherwise.

Proof. Rewrite the equation σz+ρz 1
4 = τ as λ

(
( zλ )+ ρ

σ
1
λ

3
4

( zλ ) 1
4
)

= τ
σ . Choose λ such that λ 3

4 = ρ
σ

( m being odd, the mapping λ 7→ λ3 is a permutation of F2m and therefore the mapping λ 7→ λ3/4

as well).
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Then, N = #{t ∈ F2m | t+ t
1
4 = τ

σ ·
1
λ}.

The map t ∈ F2m 7→ t+ t
1
4 is linear; its kernel is equal to F2 (since t+ t

1
4 = 0 ⇐⇒ t = 0 or t 3

4 =
1 ⇐⇒ t = 0 or t = 1), hence its image E has dimension m − 1 and equals then {δ ∈ F2m |
Trm1 (δ) = 0} (indeed, for every element δ = t+ t

1
4 of E, one has Trm1 (δ) = Trm1 (t) + Trm1 (t) 1

4 = 0).
This implies that N equals 2 if Trm1 ( τσ ·

1
λ ) = 0 and is null otherwise, proving the result.

We deduce:

Theorem 4.8.9. ([44]) Let n = 2m with m odd and f be defined as

∀t ∈ F2n , f(t) = Trm1 (at2
m+1) + Trn1 (bt(2

m−1) 1
4 +1)

where a ∈ F?2m and b ∈ F?2n are such that b2m+1 = a and b4 6= a2. Let v be such that Trnm(v) = 1
and b4 = a2v2m−1. Then the dual of f is such that

f̃(a 1
2w) = Trm1

(v 2m+1
2 + 1 + Trnm(v2mw)

)(Trnm(vw) + v
2m+1

2

Trnm(v−1)

) 1
3
 .

It has algebraic degree m+3
2 . Hence, for m > 3, f̃ is EA-inequivalent to the functions introduced

in [93].

Proof. Applying Lemma 4.8.8 with σ = Trnm(vw) + v
2m+1

2 , ρ = Trnm(v− 1
4 ) and τ = v

2m+1
2 + 1 +

Trnm(v2mw), we deduce that f̃(a 1
2w) = 1 if and only if

Trm1

v 2m+1
2 + 1 + Trnm(v2mw)
Trnm(vw) + v

2m+1
2

(
Trnm(vw) + v

2m+1
2

Trnm(v−1/4)

) 4
3
 = 1

that is

f̃(a 1
2w) = Trm1

(v 2m+1
2 + 1 + Trnm(v2mw)

)(Trnm(vw) + v
2m+1

2

Trnm(v−1)

) 1
3
 .

For every element z of F2m we have z1/3 = z1+4+42+43+···+4
m−1

2 . Hence, the vectorial function(
Trnm(vw)+v

2m+1
2

Trnm(v−1)

) 1
3

has algebraic degree m+1
2 . Since the functions v 2m+1

2 + 1 + Trnm(v2mw) and

Trnm(vw) + v
2m+1

2 are affinely independent over F2m , we deduce that the degree of the dual is
m+3

2 . Since the algebraic degree is affinely invariant, and since for m > 3, m+3
2 is different from 3

and m, this proves that f̃ is inequivalent to the functions introduced in [93].

This gives an answer to the open question evoked in [93]: at least one of the duals of the
functions introduced in this paper is affinely inequivalent to them.

Remark 4.8.10. Function f̃ in Theorem 4.8.9 is affinely equivalent to the bivariate function
g(x, y) = xy1/3. The function y ∈ F2m 7→ y1/3 ∈ F2m is a permutation and f̃ belongs then to the
completed Maiorana-McFarland class (but we knew this already thanks to Remark 4.8.6, since the
dual of a function in the completed Maiorana-McFarland class belongs to this same class (see e.g.
[31])).
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4.8.2 On the duals of the known bent functions with 2r Niho exponents
We have seen in Subsection 4.4.2 that an extension of the second class of Niho bent from [93] has
the form:

Trn1
(
at2

m+1 +
2r−1−1∑
i=1

t(2
m−1) i

2r +1
)

with r > 1 satisfying gcd(r,m) = 1 and a ∈ F2n is such that a+ a2m = 1.
Recall that the class H introduced in the previous section is defined as the set of (bent)

functions g satisfying

g(x, y) =
{

Trm1
(
xH

(
y
x

))
, if x 6= 0

Trm1 (µy), if x = 0 ,
(4.12)

where µ ∈ F2m and H is a mapping from F2m to itself satisfying the following necessary and
sufficient conditions

G : z 7→ H(z) + µz is a permutation on F2m (4.13)
z 7→ G(z) + βz is 2-to-1 on F2m

for any β ∈ F∗2m . (4.14)

As proved in [44], condition (4.14) implies condition (4.13) and, thus, is necessary and sufficient
for g being bent.

In the following proposition, we show that the bent function given above has the form of
(4.12) and calculate the corresponding function G. By showing that G satisfies conditions (4.13)
and (4.14), we give an alternative proof of the bentness.

Proposition 4.8.11. ([41],[14]) Let r > 1 be a positive integer with gcd(r,m) = 1, a ∈ F2n with
a+ a2m = 1 and Boolean function f over F2n be defined as

f(t) = Trn1
(
at2

m+1 +
2r−1−1∑
i=1

t(2
m−1) i

2r +1
)
.

Take any u ∈ F2n \ F2m and v ∈ F∗2m . Then for any x, y ∈ F2m ,

f(ux+ vy) =
{

Trm1 (xH(y/x)), if x 6= 0
Trm1 (vy), if x = 0

and mapping G such that G(z) = H(z) + vz can be expressed by

G2r (z) = (u+ u2m)2r−1vz + u2m+2r + u2m+r+1

u+ u2m

and satisfies conditions (4.13) and (4.14).

Proof. By the selection criteria, the pair (u, v) makes up a basis of F2n as a two-dimensional
vector space over F2m . Then every element t ∈ F2n can be uniquely written as ux + vy with
(x, y) ∈ F2m × F2m .
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Now

f(ux+ vy) = Trm1
(
t2
m+1)+ Trn1

( 2r−1−1∑
i=1

t(2
m−1) i

2r +1
)

= Trm1
(
(ux+ vy)2m+1)

+ Trn1
( 2r−1−1∑

i=1
(ux+ vy)(2m−1) i

2r +1
)

and for x = 0, since v ∈ F∗2m ,

f(vy) = Trm1
(
(vy)2m+1)+ Trn1

( 2r−1−1∑
i=1

(vy)(2m−1) i
2r +1

)
= Trm1

(
vy
)
.

For x 6= 0,

f(ux+ vy) = Trm1
(

(u+ vy/x)2m+1x2

+
2r−1−1∑
i=1

Trnm
(

(u+ vy/x)(2m−1) i
2r +1

)
x
)

= Trm1 (xH(y/x))

with

H(z) = (u+ vz)(2m+1)/2

+
2r−1−1∑
i=1

Trnm
(

(u+ vz)(2m−1) i
2r +1

)
and z ∈ F2m . Taking the latter identity to the power of 2r we obtain

H2r (z) = (u+ vz)(2m+1)2r−1

+
2r−1−1∑
i=1

Trnm
(

(u+ vz)(2m−1)i+2r
)

= (u+ vz)(2m+1)2r−1

+ Trnm
( (u+ vz)(2m+1)2r−1 + (u+ vz)2m+2r−1

(u+ vz)2m−1 + 1
)

= (u+ vz)(2m+1)2r−1

+ (u+ vz)(2m+1)2r−1 + (u+ vz)2m+2r−1

(u+ vz)2m−1 + 1

+ (u+ vz)(2m+1)2r−1 + (u+ vz)2m+r−2m+1

(u+ vz)1−2m + 1

= (u+ vz)2m+2r + (u+ vz)2m+r+1

(u+ vz)2m + u+ vz
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= u2m+2r + u2m(vz)2r + u2rvz

u+ u2m

+ u2m+r+1 + u2m+r
vz + u(vz)2r

u+ u2m

since (u+vz)2m−1 6= 1 (otherwise, u2m+vz = u+vz meaning that u ∈ F2m that is a contradiction)
and u+ vz 6= 0. Therefore,

G2r (z) = H2r (z) + (vz)2r

= u2m+2r + u2rvz + u2m+r+1 + u2m+r
vz

u+ u2m

= (u+ u2m)2r−1vz + u2m+2r + u2m+r+1

u+ u2m .

Since (u + u2m)v 6= 0, G(z) is a permutation. Moreover, Condition (4.14) is equivalent to
saying that for every ρ 6= 0, the linear function L(z) = z+ ρz2r is 2-to-1 on F2m . The latter holds
since

L(z) = 0 ⇐⇒ z = 0 or z = ρ1/(1−2r)

using that gcd(2r − 1, 2m − 1) = gcd(r,m) = 1.

Note that taking r = 2, we immediately obtain the result of [44, Proposition 5] taking there
a = b = 1. We can also conclude that function f(t) belongs, up to affine equivalence, to the
subclass of H built using Frobenius mappings z 7→ z2m−r with gcd(r,m) = 1. As observed by
Dillon, such bent functions belong to the completed class ofM (see also [31]).

Also note that we can select u and v with u+ u2m = v = 1. Then u2m = u+ 1 and
G2r (z) = z + u2m+2r + u2m+r+1 = z + u2r + u . (4.15)

Choosing different basis results in equivalent polynomials G(z). In the following lemma, we show
how the Walsh transforms of a function in its univariate and bivariate representation, when
choosing a specific basis, are related.
Lemma 4.8.12. ([41], [14]) Take any u ∈ F2n with u+ u2m = 1. Then the pair (u, 1) makes up
a basis of F2n as a two-dimensional vector space over F2m and for any w ∈ F2n ,

χ̂f (w) = χ̂g
(

Trnm(uw),Trnm(w)
)
,

where g(x, y) = f(ux+ y) for any x, y ∈ F2m .
Proof. Any w, t ∈ F2n can be decomposed as w = uα + β and t = ux + y with the uniquely
defined α, β, x, y ∈ F2m . Then

Trnm(wt) = αxTrnm(u2) + αyTrnm(u) + βxTrnm(u)
= (α+ β)x+ αy = Trnm(uw)x+ Trnm(w)y .

Therefore, the Walsh transform of a Boolean function f over F2n can be expressed in a point
w as

χ̂f (w) =
∑
t∈F2n

(−1)f(t)+Trn1 (wt)

=
∑

x,y∈F2m

(−1)g(x,y)+Trm1
(

Trnm(uw)x+Trnm(w)y
)

= χ̂g
(

Trnm(uw),Trnm(w)
)
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as claimed.

Now we can compute the univariate representation of the dual function of f(t). Assuming
conditions of Lemma 4.8.12 and using Proposition 4.6.3, the dual of f(t) satisfies f̃(w) = 1 if and
only if the equation H(z) + Trnm(w)z + Trnm(uw) = 0 has no solutions in F2m . Using (4.15), the
latter equation is equivalent to

(1 + w + w2m)2rz2r + z + u2r + u+
(
uw + (uw)2m)2r = 0 .

If 1+w+w2m = 0 then, obviously, the equation has a unique solution and f̃(w) = 0. Assuming
1 + w + w2m 6= 0, with a substitution z = (1 + w + w2m)−2r/(2r−1)s we obtain

s2r + s =
(
u2r + u+

(
uw + (uw)2m)2r)(1 + w + w2m)2r/(2r−1)

that has no solutions in F2m if and only if

Trm1
((
u2r + u+

(
uw + (uw)2m)2r)(1 + w + w2m)

2r
2r−1

)
= 1

since the linear mapping s 7→ s2r + s on F2m has the kernel of dimension one when gcd(r,m) = 1.
Using u2m = u+ 1, the latter trace condition can be rewritten as

Trm1
((
u(1 + w + w2m) + u2n−r + w2m)× (1 + w + w2m)1/(2r−1)

)
= 1 .

We deduce

Theorem 4.8.13. ([41], [14]) Let n = 2m, r > 1 be a positive integer with gcd(r,m) = 1 and
bent Boolean function f over F2n be defined as

f(t) = Trn1
(
at2

m+1 +
2r−1−1∑
i=1

t(2
m−1) i

2r +1
)
,

where a ∈ F2n with a+ a2m = 1. Take any u ∈ F2n with u+ u2m = 1. Then the dual of f(t) is
equal to

f̃(w) = Trm1
((
u(1 + w + w2m) + u2n−r + w2m)

× (1 + w + w2m)1/(2r−1)
)
.

Moreover, if d < m is a positive integer defined uniquely by dr ≡ 1 (mod m) then the algebraic
degree of f̃(w) is equal to d+ 1.

Proof. It remains to check the algebraic degree of f̃(w). Since gcd(r,m) = 1, positive integer d
with the above prescribed properties exists and is defined uniquely. Then

1
2r − 1 ≡

2(2dr−1 − 1) + 1
2r − 1

= 2dr − 1
2r − 1 = 1 + 2r + · · ·+ 2(d−1)r (mod 2m − 1)

is an integer having the binary weight d (also, if we reduce it modulo 2m−1). Therefore, vectorial
function (1+w+w2m)1/(2r−1) has algebraic degree d. Finally, functions u(1+w+w2m)+u2n−r+w2m

and (1 + w + w2m)1/(2r−1) are affinely independent over F2m and this leads us to the claimed
result.
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Note that f̃(w) belongs to the completed class ofM since this is a dual of a bent function
f(t) also belonging to this class (see, e.g., [31]). Moreover, f̃(w) does not belong to class H since
its restriction to any multiplicative coset of F2m (except when taking F2m itself) is not linear. In
other words, f̃(w) is not a Niho bent function. Also note that the dual of f(t) does not depend
on the chosen value of u ∈ F2n as long as u+ u2m = 1. Indeed, all such values have the form of
u+ c for every c ∈ F2m . Inserting u+ c instead of u in the expression for f̃(w) we obtain

f̃(w) + Trm1
((
c(1 + w + w2m) + c2

n−r)
(1 + w + w2m)1/(2r−1)

)
= f̃(w) + Trm1

(
c(1 + w + w2m)2r/(2r−1) + c2

n−r
(1 + w + w2m)1/(2r−1)

)
= f̃(w) + Trm1

(
c2
n−r

(1 + w + w2m)1/(2r−1) + c2
n−r

(1 + w + w2m)1/(2r−1)
)

= f̃(w) .

4.9 Functions in class H and o-polynomials
Since the function studied above in Theorem 4.8.9 belongs to the completed Maiorana-McFarland
class and since we do not know whether the other known Niho bent functions are in this same
class, we are brought back to the question of knowing whether functions can be exhibited in class
H which are not in the completed Maiorana-McFarland class. We observe now that Condition
(4.4) implies Condition (4.3) and is equivalent to the fact that G is an o-polynomial.7

Definition 4.9.1. Let m be any positive integer. A permutation polynomial G over F2m is called
an o-polynomial (an oval polynomial) if, for every γ ∈ F2m , the function

z ∈ F2m 7→

{
G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation of F2m .

Note that some authors like Dobbertin in [91] add the condition “G(0) = 0, G(1) = 1” to the
definition of o-polynomials; we do not include it since if it is not satisfied by an o-polynomial G,
we can replace G by the o-polynomial G(z)+G(0)

G(1)+G(0) , which satisfies it.

Lemma 4.9.2. ([44]) Any function G from F2m to F2m satisfies Condition (4.4) if and only if
it is an o-polynomial.

Proof. For every β, γ ∈ F2m , the equation G(z) + βz = G(γ) + βγ is satisfied by γ. Thus, if
Condition (4.4) is satisfied, then for every β ∈ F2m

? and every γ ∈ F2m , there exists exactly one
z ∈ F?2m such that G(z + γ) + β(z + γ) = G(γ) + βγ, that is, G(z+γ)+G(γ)

z = β. Then, for every
γ ∈ F2m , the function z ∈ F?2m 7→

G(z+γ)+G(γ)
z ∈ F?2m is bijective, that is, G and the function

7The notion of o-polynomial comes from Finite Projective Geometry. First of all, a projective space of dimension
n over a finite field Fq is the set of any non-zero subspaces of Fq

n+1 with respect to inclusion. This space is
denoted by PGn(q). Let consider the case of projective space of dimension 2 (finite projective plane) over F2n
i.e. PG2(2n). A k-arc in PG2(2n) is the set of k points no three collinear (i.e. there exists no line that contains
any three points). The maximum cardinality of an arc in PG2(2n) is 2n + 2. An oval of PG2(2n) is an arc of
cardinality 2n + 1 (i.e. a set of 2n + 1 points no three collinear). A hyperoval of PG2(2n) is an arc of maximum
cardinality (i.e. a set of 2n + 2 points no three collinear). Now certain type of polynomial give rise to hyperovals
in PG2(2n). More precisely, a polynomial f such that D(f) = {(1, t, f(t)), t ∈ F2n} ∪ {(0, 1, 0), (0, 0, 1)} is a
hyperoval is called an o-polynomial. A hyperoval of PG2(2n) can then be represented by D(f) where f is an
o-polynomial. There is thus a close connection between "hyperovals" and "o-polynomials".
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z ∈ F2m 7→

{
G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

are permutations. Hence, G is an o-polynomial. Conversely,

if G is an o-polynomial, then for every γ ∈ F2m , we have G(z+γ)+G(γ)
z 6= 0 for every z 6= 0 and for

every β 6= 0 there exists exactly one nonzero z such that G(z + γ) +G(γ) = βz. Then for every
c ∈ F2m , either the equation G(z) + βz = c has no solution, or it has at least a solution γ and
then exactly one second solution z + γ (z 6= 0). This completes the proof.

A similar property was observed by Maschietti in [178] (as recalled by Dobbertin in [91]) for
power functions. Maschietti was interested in cyclic difference sets while we are interested here in
difference sets in elementary Abelian 2-groups (it is interesting to see that o-polynomials play a
role in both frameworks). The fact that the result of Lemma 4.9.2 is true for general polynomials
will have important consequences below.
Note that, according to the proof of Lemma 4.9.2, the property that for every γ ∈ F2m , the function

z ∈ F2m 7→

{
G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation of F2m implies that G is a permutation of

F2m .
The simplest example of an o-polynomial is the already seen Frobenius automorphism G(z) = z2i

where i is coprime with n. Other known examples are the following:

1. G(z) = z6 where m is odd [219];

2. G(z) = z3·2k+4, where m = 2k − 1 [111];

3. G(z) = z2k+22k , where m = 4k − 1 [111];

4. G(z) = z22k+1+23k+1 , where m = 4k + 1 [111];

5. G(z) = z2k + z2k+2 + z3·2k+4, where m = 2k − 1 [133];

6. G(z) = z
1
6 + z

1
2 + z

5
6 where m is odd [221]; note that G(z) = D5

(
z

1
6

)
, where D5 is the

Dickson polynomial of index 5 [224];

7. G(z) = δ2(z4+z)+δ2(1+δ+δ2)(z3+z2)
z4+δ2z2+1 + z1/2, where Trm1 (1/δ) = 1 and, if m ≡ 2 [mod 4], then

δ 6∈ F4 [262];

8. G(z) = 1
Trnm(v)

[
Trnm(vr)(z + 1) + Trnm

[
(vz + v2m)r

] (
z + Trnm(v)z1/2 + 1

)1−r]+z1/2, where
m is even, r = ± 2m−1

3 , v ∈ F22m , v2m+1 = 1 and v 6= 1 [263].

Remark 4.9.3. To each o-polynomial G above correspond, according to Lemma 4.9.2 and to the
observations made in 4.6.1, two Niho bent functions up to EA-equivalence: the one corresponding
to G and the one corresponding to G−1. We shall detail these bent functions below. Conversely,
to every Niho bent function corresponds an o-polynomial. The question arises then of determining
whether the o-polynomials we can deduce from the already known Niho bent functions are new up
to o-equivalence (recall that the o-equivalence of polynomials has been defined in 4.6.1). We have
seen above that the o-polynomial related to the Niho bent function of [93, Theorem 2] is a field
automorphism (up to o-equivalence) and so is not new. The o-polynomial related to the function
in [160] is also a Frobenius automorphism up to o-equivalence, as shown in the paper [41] (which
extends the calculation of the dual to the generalization of the class given by Leander and Kholosha).
The two other functions f(t) = Trm1 (at2m+1) + Trn1 (bt(2m−1)s+1) of [93, Theorems 1 and 3] (with
a = b2

m+1) lead to o-polynomials given by Relation (4.8). Different choices of the basis (u, v)



4.9. Functions in class H and o-polynomials 139

give o-equivalent o-polynomials (since a change of basis is an F2m-linear mapping). Different
values of b give also o-equivalent o-polynomials because (as observed in [93]) the hypothesis
on b allows writing that b = λ(2m−1)s+1 for some λ ∈ F2n , and then a = b2

m+1 = λ2m+1 so
that by multiplication of the variable t by 1

λ we can take a = b = 1 (the scalar multiplication
is indeed an F2m-linear mapping). For s = 3, taking b = u = 1 and v ∈ F2n \ F2m , we get
G(z) =

(
1 + (v + v2m)z

) 1
2 + Trnm

((
(1 + vz)3·2m−2 + (vz)3·2m−2)). Choosing v in U \ {1}, that

is, v 6= 1 such that v2m = 1
v , then δ = v + v2m is any element of F2m such that Trm1 (1/δ) =

1 and we obtain G(z) + 1 = (δz) 1
2 + 1+v−1z+v−2z2+v−3z3

1+v2z2 + 1+vz+v2z2+v3z3

1+v−2z2 +
(
v−5 + v5) z =

(δz) 1
2 + (v−1+v+v−5+v5)z+(v−7+v7+v−3+v3)z3+(v−4+v4)z4

1+(v−2+v2)z2+z4 = (δz) 1
2 + (δ5+δ3)z+(δ5+δ3+δ)z3+δ4z4

1+δ2z2+z4 . We
conjecture that this polynomial is o-equivalent to the o-polynomial numbered (7) above. For
s = 1

6 (m even), denoting r = 2m−1
3 and taking again u = 1 and v in U \ {1}, we get G(z) =(

1 + (v + v2m)z
) 1

2 + Trnm
(
(1 + vz) r2 +1 + (vz) r2 +1) =

(
1 + (v + v2m)z

) 1
2 + (1 + v

1
2 z

1
2 )r(1 + vz) +

(1 + v
−1
2 z

1
2 )r(1 + v−1z) + (vz) r2 +1 + (v−1z) r2 +1. We conjecture that this polynomial is o-equivalent

to the o-polynomial numbered (8) above.

For each of the six first o-polynomials G of the list above, we have two potentially new
n-variable bent functions: Trm1

(
xG
(
y
x

))
and Trm1

(
xG−1 ( y

x

))
. For each of the two last ones, we

have one potentially new bent function. We indicate now the bent functions we can obtain with
the 6 first o-polynomials (we do not do the same for the two last o-polynomials since the situation
with them needs to be clarified and since the expression of these bent functions would be complex
- they are probably simpler in univariate form):

1. for m odd and x, y ∈ F2m :

• f(x, y) = Trm1 (x−5y6);
• f(x, y) = Trm1 (x 5

6 y
1
6 ).

The first function has algebraic degree m − w2(5) + w2(6) = m. Since in Z/(2m − 1)Z
we have 1

3 = 2m+1−1
3 = 1 + 22 + 24 + · · · + 2m−1 and therefore w2

( 1
6
)

= w2
( 1

3
)

= m+1
2

and w2
( 5

6
)

= w2
( 5

3
)

= w2
(
1 + 2

3
)

= w2
(
4 + 23 + 25 + · · ·+ 2m−2) = m−1

2 , the second
function has degree m as well, which does not allow proving these two functions are
EA-inequivalent; we leave open this question.

2. for m = 2k − 1 and x, y ∈ F2m :

• f(x, y) = Trm1 (x−3·(2k+1)y3·2k+4);

• f(x, y) = Trm1 (x−3·(2k−1−1)y3·2k−1−2) (since the inverse of 3 ·2k+4 [mod 2m−1] equals
3 · 2k−1 − 2; indeed, (3 · 2k + 4)(3 · 2k−1 − 2) = 9− 8 = 1 [mod 2m − 1]).

The first function has degree m− w2(3 · (2k + 1)) + w2(3 · 2k + 4) = m− 4 + 3 = m− 1 (if
k > 2) and the second has degree k+ (k− 1) = 2k− 1 = m (if k > 2) since −3 · (2k−1− 1) =
2m − 3 · 2k−1 + 2 = 2k−1(2k − 1− 2) + 2 [mod 2m − 1] and 3 · 2k−1 − 2 = 2k + 2 · (2k−2 − 1);
hence the two functions are EA-inequivalent.

3. for m = 4k − 1 and x, y ∈ F2m :

• f(x, y) = Trm1 (x1−2k−22k
y2k+22k);

• f(x, y) = Trm1 (x23k−1−22k+2ky1−23k−1+22k−2k) (since the inverse of 2k+22k [mod 2m−1]
equals 1− 23k−1 + 22k − 2k; indeed, (2k + 22k)(1− 23k−1 + 22k − 2k) = 2m+1 − 1).
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The first function has degree (3k − 2) + 2 = 3k since 2m − 2k − 22k = 2k(23k−1 − 1− 2k)
and the second has degree k + 2k = 3k, which does not allow proving these two functions
are EA-inequivalent; we leave open this question.

4. for m = 4k + 1 and x, y ∈ F2m :

• f(x, y) = Trm1 (x1−22k+1−23k+1
y22k+1+23k+1);

• f(x, y) = Trm1 (x23k+1−22k+1+2ky1−23k+1+22k+1−2k) (since the inverse of 22k+1 + 23k+1

[mod 2m − 1] equals 2m − 23k+1 + 22k+1 − 2k).

The first function has degree (2k−1)+2 = 2k+1 and the second has degree (k+1)+(2k+1) =
3k + 2; hence the two functions are EA-inequivalent.

5. for m = 2k − 1 and x, y ∈ F2m :

• f(x, y) = Trm1 (x1−2ky2k + x−(2k+1)y2k+2 + x−3·(2k+1)y3·2k+4);

• f(x, y) = Trm1
(
y
(
y2k+1x−(2k+1) + y3x−3 + yx−1

)2k−1−1
)
, since we have G−1(z) =

z
(
z2k+1 + z3 + z

)2k−1−1
(see Lemma 4.9.4 below).

The first function has degree max((k − 1) + 1, (2k − 3) + 2, (2k − 5) + 3) = 2k − 1 = m
(if k > 2). The second has also (optimal) algebraic degree m since its expansion contains
the term Trm1

(
y1+3·(2k−1−1)x3·(1−2k−1)

)
= Trm1

(
y2k+2k−1−2x2+(22k−1−2k−1)−2k

)
. This does

not allow proving these two functions are EA-inequivalent; we leave open this question.

6. for m odd and x, y ∈ F2m :

• f(x, y) = Trm1 (x 5
6 y

1
6 + x

1
2 y

1
2 + x

1
6 y

5
6 );

• f(x, y) = Trm1
(
x
[
D 1

5

(
y
x

)]6)
where D 1

5
is the Dickson polynomial of index 1

5 , the

inverse of 5 modulo 22m − 1 (see [224] or Remark 4.9.6 below); note that 1
5 =

22m − 22m−1 + 22m−3 − 22m−5 + ...+ 27 − 25 + 23 − 2 [mod 22m − 1].

The first function has degree max(m, 2,m) = m, since we already saw that w2
( 1

6
)

= m+1
2

and w2
( 5

6
)

= m−1
2 . We leave open the question of an explicit expression of the second and

of the determination of its algebraic degree.

Lemma 4.9.4. ([44])
Let k be any positive integer and m = 2k − 1. The inverse of function z ∈ F2m 7→ z2k +

22k+2 + z3·2k+4 ∈ F2m equals: z
(
z2k+1 + z3 + z

)2k−1−1
.

Proof. Let z′ = z2k and t ∈ F2m . The equation z2k + 22k+2 + z3·2k+4 = t is equivalent to
z′+z2z′+z4z′3 = t. Denoting t′ = t2

k−1 , the 2k−1-th power of this equation is z+z′z+z′2z3 = t′.
Replacing z′2z3 by z+z′z+t′ in t+z′+z2z′+z4z′3 = 0, we get t+z′(1+zt′)+z2z′2 = 0. Multiplying
by z and replacing again gives t′+ (t+ 1)z+ t′z2z′ = 0. For t 6= 0 (and therefore z 6= 0) we deduce
z′ = t′+(t+1)z

t′z2 and replacing z′ by this value in equation t+z′(1+zt′)+z2z′2 = 0 allows eliminating
z′ and gives the equation t + t′+(t+1)z

t′z2 (1 + zt′) + t′2+(t2+1)z2

t′2z2 = 0; multiplying by t′2z2 gives
tt′2z2+(t′2+(t+1)t′z)(1+zt′)+t′2+(t2+1)z2 = 0 that is (t+1+t′2)t′z+(tt′2+(t+1)t′2+t2+1)z2 = 0



4.10. Niho Bent Functions and Subiaco/Adelaide hyperovals 141

and then we have z = (t+1+t′2)t′
t′2+t2+1 ; hence G−1(z) = (z+1+z2k )z2k−1

z2k+z2+1
. Indeed, z2k + z2 + 1 never

vanishes (raising the equality z2k + z2 + 1 = 0 to the 2k−1-th power gives z2k + z + 1 = 0
and implies z2 + z = 0, and z = 0, 1 are not solutions of z2k + z2 + 1 = 0) and the equality
G−1(z) = (z+1+z2k )z2k−1

z2k+z2+1
is true for z = 0 as well. Since (z2k + z2 + 1)2k−1 = z + 1 + z2k , we

deduce G−1(z) =
(
z2k + z2 + 1

)2k−1−1
z2k−1 .

Remark 4.9.5. Another way for eliminating z′ between the two equations z2k+22k+2+z3·2k+4 = t
and z+z′z+z′2z3 = t′ is to use the resultant of the two polynomials in z′ equal to z′+z2z′+z4z′3+t
et z + z′z + z′2z3 + t′ where z is considered as a parameter. But this leads to a more complex
equation z3tt′ + z2t(t+ 1)t′ + z(tt′ + (t+ 1)2(t′ + 1)) + (t+ 1)t′2 = 0.

Remark 4.9.6. Let us recall why the inverse of Dα equals Dβ with βα ≡ 1 (mod 2n−1) for every
α co-prime with 2n− 1. Recall that Dα(Dβ(y+ 1

y )) = yαβ + ( 1
y )αβ for every y ∈ F?2n . Since every

element x ∈ F?2m can be written as x = c+ 1
c with c ∈ F2n , we have Dα(Dβ(x)) = Dα(Dβ(c+ 1

c )) =
cαβ + ( 1

c )αβ = c+ 1
c = x, proving that Dβ = D−1

α (note that Dα(0) = Dβ(0) = 0).

4.10 Niho Bent Functions and Subiaco/Adelaide hyper-
ovals

The following section is from a joint work with Helleseth and Kholosha [126]. Recall that the
first class of binomial bent function (via Niho exponent) of degree m given by Dobbertin at al.
[93] has the following form:

f(t) = Trn1 (α1t
d1 + α2t

d2)

where 2d1 = 2m + 1 ∈ Z/(2n − 1)Z and α1, α2 ∈ F∗2n are such that (α1 + α2m
1 )2 = α2m+1

2 .
Equivalently, denoting a = (α1 + α2m

1 )2 and b = α2 we have a = b2
m+1 ∈ F∗2m and

f(t) = Trm1 (at2
m+1) + Trn1 (btd2)

(note that if b = 0 and a 6= 0 then f is also bent but becomes quadratic equals Trm1 (at2m+1) with
a ∈ F∗2m) and d2 = (2m − 1)3 + 1 (with the condition that, if m ≡ 2 (mod 4) then b is the fifth
power of an element in F2n ; otherwise, b can be any nonzero element),

As was noted in [93], all cases except for d2 = (2m − 1)3 + 1 with m ≡ 2 (mod 4) give
gcd(d2, 2n−1) = 1 and in the remaining case, gcd(d2, 2n−1) = 5. Therefore, having the condition
on b, it can be assumed, without loss of generality, that b = 1 (this is achieved by substituting t
with b−1/d2t). However, in Subsection 4.10.2, we show that even in the case when m ≡ 2 (mod 4)
the value of b can be taken arbitrary under the condition that a = b2

m+1.
Since the restriction to uF2m of these bent functions is linear, they all belong to the class H.

The question left open in [93] was finding the dual and checking if that was of the Niho type
(possibly up to affine equivalence). In this section, we find o-polynomials that arise from the first
class of binomial Niho bent functions. However, it still remains to determine the dual. The third
class is completely open.

4.10.1 Subiaco Hyperovals
Here we define o-polynomials that give rise to the Subiaco family of hyperovals.
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Theorem 4.10.1 (Theorems 3-5 [65]). Take polynomials f(x) and g(x) and for any s ∈ F2m

define

fs(x) = f(x) + esg(x) + s1/2x1/2

1 + es+ s1/2 , (4.16)

where e ∈ F2m with Trm1 (e) = 1 is defined further. Then in the following cases, g(x) and fs(x)
are o-polynomials:

(i) if m is odd then take e = 1 and

f(x) = x2 + x

(x2 + x+ 1)2 + x
1
2 and g(x) = x4 + x3

(x2 + x+ 1)2 + x
1
2 ;

(ii) if m ≡ 2 (mod 4) then take e = w ∈ F2m with w2 + w + 1 = 0 and

f(x) = x2(x2 + wx+ w)
(x2 + wx+ 1)2 + w2x

1
2 and g(x) = wx(x2 + x+ w2)

(x2 + wx+ 1)2 + w2x
1
2 ;

(iii) for any m, take e = w2+w5+w1/2

w(1+w+w2) where w ∈ F2m with w2 + w + 1 6= 0 and Trm1 (1/w) = 1,
and

f(x) = w2(x4 + x) + w2(1 + w + w2)(x3 + x2)
(x2 + wx+ 1)2 + x

1
2 and

g(x) = w4x4 + w3(1 + w2 + w4)x3 + w3(1 + w2)x
(w2 + w5 + w1/2)(x2 + wx+ 1)2 + w1/2

w2 + w5 + w1/2x
1
2 .

It is useful to have the following explicit expressions for fs(x) in each of the cases considered.
Denote 1 + es+ s

1
2 = A, then fs(x) is equal to

s(x4 + x3) + x2 + x

A(x2 + x+ 1)2 + x
1
2 , m odd (4.17)

A−1
(
x4 + w(sw + 1)(x3 + x2) + swx

(x2 + wx+ 1)2 + (w2 + s+ s
1
2 )x 1

2

)
, m/2 odd (4.18)(

w2 (1 + sw + w2)x4 + (1 + w + w2)2(sx3 + x2) + (s+ w + sw2)x
(1 + w + w2)(x2 + wx+ 1)2 (4.19)

+
(
s

1
2 + s+ 1

w1/2(1 + w + w2)

)
x

1
2

)
(e+ es+ s

1
2 )−1 , m arbitrary ,

where in (4.19), we changed s+ 1 for s in the original definition of fs(x). Note that for m odd,
taking w = 1 in (4.19) results in (4.17).

In each of the cases listed above, the set (f(x), g(x), a) defines a q-clan. On the other hand,
by [65, Theorem 1], the existence of the q-clan is equivalent to the property that g(x) is an
o-polynomial and fs(x) is an o-polynomial for any s ∈ F2m . In [222], it was shown that the
Subiaco construction provides two inequivalent hyperovals if m ≡ 2 (mod 4) and one hyperoval
otherwise.



4.10. Niho Bent Functions and Subiaco/Adelaide hyperovals 143

4.10.2 Bent Functions from Subiaco Hyperovals
First recall that in Section 4.6 we have extended the Class H of Dillon into a Class that we
have denoted by H. Such a class was defined as the set of (bent) functions g satisfying (4.12):
g(x, y) = Trm1

(
xH

(
y
x

))
if x 6= 0 and g(x, y) Trm1 (µy) otherwise. where µ ∈ F2m and H is a

mapping from F2m to itself satisfying the following necessary and sufficient condition (4.13) (that
is, G : z 7→ H(z) + µz is a permutation on F2m and condition (4.14) that is, z 7→ G(z) + βz is
2-to-1 on F2m for any β ∈ F∗2m .

Moreover, recall that we have seen that condition (4.14) implies condition (4.13) and, thus, is
necessary and sufficient for g being bent. It also follows that polynomials G(z) satisfying (4.14)
are so-called o-polynomials (oval polynomials) over F2m (the additional properties of G(0) = 0
and G(1) = 1 can be achieved by taking G(z)+G(0)

G(1)+G(0) instead of G(z)). o-polynomials arise from
hyperovals and define them. Note that class H contains all bent functions with the property that
their restriction to the multiplicative cosets of F2m is linear.

Now, take the following function over F2n

f(t) = Trm1 (at2
m+1) + Trn1 (bt3(2m−1)+1) ,

where a ∈ F∗2m and b ∈ F∗2n are such that b2m+1 = a. Let (u, v) be a basis of F2n as a two-
dimensional vector space over F2m . Then for any x, y ∈ F2m , we obtain f(ux+ vy) having the
form of (4.12) with

H(z) = a
1
2 (u+ vz)

2m+1
2 + Trnm

(
b(u+ vz)3(2m−1)+1)

µ = a
1
2 v

2m+1
2 + Trnm(bv3(2m−1)+1) .

Here we keep all the notation as above. Therefore, with z ∈ F2m ,

G(z) = a
1
2 v

2m+1
2 z + a

1
2 (u+ vz)

2m+1
2 + Trnm

(
b(v3(2m−1)+1z + (u+ vz)3(2m−1)+1)

)
.

Further, we have that

(u+ vz)
2m+1

2 = u
2m+1

2 +
(

Trnm(u2mv)
) 1

2 z
1
2 + (vz)

2m+1
2

and since z ∈ F2m ,

a
1
2 v

2m+1
2 z + a

1
2 (u+ vz)

2m+1
2 = a

1
2u

2m+1
2 + a

1
2
(

Trnm(u2mv)
) 1

2 z
1
2 . (4.20)

Now expand the term (u+vz)3(2m−1)+1. To this end, note that 3(2m−1)+1 = 2m+1−1+2m−1.
Then

(u+ vz)3(2m−1)+1 = (u+ vz)2m+1−1(u+ vz)2m−1

=
2m+1−1∑
j=0

u2m+1−1−j(vz)j
2m−1∑
j=0

u2m−1−j(vz)j

=
3·2m−2∑
i=0

(Ni mod 2)u3·2m−2−i(vz)i ,

where Ni = |Ei| and

Ei = {(j1, j2) | j1 + j2 = i, 0 ≤ j1 ≤ 2m+1 − 1, 0 ≤ j2 ≤ 2m − 1} .

We compute Ni by enumerating the elements of Ei as follows:
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• for 0 ≤ i ≤ 2m − 1, we have Ei = {(i− j, j) | 0 ≤ j ≤ i} and Ni = i+ 1;

• for 2m ≤ i ≤ 2m+1 − 1, we have Ei = {(i− j, j) | 0 ≤ j ≤ 2m − 1} and Ni = 2m;

• for 2m+1 ≤ i ≤ 3 · 2m − 2, we have Ei = {(i − j, j) | i − 2m+1 + 1 ≤ j ≤ 2m − 1} and
Ni = 3 · 2m − 1 − i (indeed, j1 + j2 = i implies that j2 = i − j1 ≥ i − 2m+1 + 1 since
j1 ≤ 2m+1 − 1).

Therefore Ni mod 2 = 1 if and only if i = 2l with 0 ≤ l ≤ 2m−1 − 1 or i = 2m+1 + 2l with
0 ≤ l ≤ 2m−1 − 1 and

(u+ vz)3(2m−1)+1 =
2m−1−1∑
l=0

u3·2m−2−2l(vz)2l +
2m−1−1∑
l=0

u3·2m−2−2m+1−2l(vz)2m+1+2l

(∗)=
2m−1−1∑
l=0

u3·2m−2(l+1)(vz)2l +
2m−1−1∑
l=0

u2m−2(l+1)v2m+1−2(vz)2(l+1)

=
2m−1−1∑
l=0

u3·2m−2(l+1)(vz)2l +
2m−1∑
l=1

u2m−2lv2m+1−2(vz)2l

= u3·2m−2 + (u3·2m−2 + u2mv2m+1−2)
2m−1−1∑
l=1

(
u−1vz

)2l + v3·2m−2z

= u3·2m−2 + u2m(u2(2m−1) + v2(2m−1))
(

1 + 1 + (u−1vz)2m

1 + u−2v2z2

)
+ v3·2m−2z

= u2mv2(2m−1) + u2m(u2(2m−1) + v2(2m−1))(1 + u−1vz)2m−2 + v3·2m−2z

= u2mv2(2m−1) + u2(u2(2m−1) + v2(2m−1))(u+ vz)2m−2 + v3·2m−2z .

In the second sum after (∗), we used that z2m+1+2l = (z2m)2z2l = z2z2l = z2(l+1). Finally,
denoting

c = a
1
2u

2m+1
2 + Trnm(bu2mv2(2m−1))

and using (4.20), we obtain that

G(z) = c+ a
1
2
(

Trnm(u2mv)
) 1

2 z
1
2 + Trnm

(
bu2(u2(2m−1) + v2(2m−1))(u+ vz)2m−2) . (4.21)

Now assume v = 1 and take u ∈ F2n \ {1} with u2m+1 = 1 that means u ∈ F2n \ F2m . Also
denote u+u2m = w ∈ F∗2m and observe that Trm1 (1/w) = 1 (since this is equivalent to u2 +wu+ 1
being irreducible over F2m). Moreover, all w ∈ F2m with such a trace property are obtained in
this way from u. Then u2m−1 = w/u+ 1 and

Trnm(u2mv) = w

u2(v2(2m−1) + u2(2m−1)) = w2 .
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Under these conditions, c = a
1
2 + Trnm(bu2m) and

G(z) = c+ (awz) 1
2 + bw2(u2m + z)

(u+ z)2 + b2
m

w2(u+ z)
(u2m + z)2 (4.22)

= c+ (awz) 1
2 + w2 b(u+ w + z)3 + b2

m(u+ z)3

(u+ z)2(u+ w + z)2

= c+ (awz) 1
2 + w2 (b+ b2

m)(u+ z)3 + bw(z2 + wz + u2m+1 + w2)
(z2 + wz + u2m+1)2

(4.23)= c+ (awz) 1
2

+ w2(b+ b2
m)(z3 + uz2 + u2z) + bw3(z2 + wz) + Trnm(b2m(u5 + u))

(z2 + wz + 1)2

= a
1
2 + Trnm(b2

m

u5) + (awz) 1
2

+ w2(b+ b2
m)(z3 + uz2 + u2z) + bw3(z2 + wz) + Trnm(b2m(u5 + u))(z2 + wz)2

(z2 + wz + 1)2

(4.24,4.25)= a
1
2 + Trnm(b2

m

u5) + (awz) 1
2

+ Trnm(b2m(u5 + u))z4 + Trnm(b)w2z3 + Trnm(b2mu5)w2z2 + Trnm(b2m(u4 + 1))z
(z2 + wz + 1)2 .

Here we used the following identities

w2(b+ b2
m

)u3 + bw3(1 + w2) = Trnm(b2
m

(u5 + u)) ; (4.23)
u(b+ b2

m

) + bw + Trnm(b2
m

(u5 + u)) = Trnm(b2
m

u5) ; (4.24)
w2(b+ b2

m

)u2 + bw4 = Trnm(b2
m

(u4 + 1)) . (4.25)

Further, we consider three separate cases defined by the value of m.

The case m odd

In this case, take u ∈ F4 \ {0, 1}. Note that u ∈ F2n \ F2m and w = u+ u2m = u+ u2 = 1. Then,
by (4.22),

G(z) = a
1
2 + Trnm(bu) + (az) 1

2 + Trnm(b)(z4 + z3) + Trnm(bu)(z2 + z)
(z2 + z + 1)2

= a
1
2 + Trnm(bu) + (az) 1

2 + a
1
2

(B +B−1)(z4 + z3) + (B−1u2 +Bu)(z2 + z)
(z2 + z + 1)2

= a
1
2 + Trnm(bu) + a

1
2 fs(z) ,

where B = ba−
1
2 with B−1 = b2

m

a−
1
2 = B2m since a = b2

m+1. Polynomial fs(z) with s =
1+B2

u2+B2u ∈ F2m is an o-polynomial (4.17) (assuming u2 +B2u 6= 0). In the case when u2 = B2u

(or, equivalently, b2m−1 = u2) we obtain

G(z) = bu+ buz
1
2 + bu

z4 + z3

(z2 + z + 1)2 = bu(1 + g(z)) ,

since a 1
2 = (b2m+1) 1

2 = bu = b+b2m and where o-polynomial g(z) comes from Theorem 4.10.1 Item (i).
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Assuming b2m−1 6= u2, note that equation s = b2
m−1+1

b2m−1u2+u can be solved for the unknown
b ∈ F∗2n for any s ∈ F2m since s 6= u. We conclude that the set of bent functions with b ∈ F∗2n
corresponds exactly to all o-polynomials described in Theorem 4.10.1 Item (i). This means that
the existence of this set of bent functions is equivalent to the existence of the corresponding
q-clan.

The case m ≡ 2 (mod 4)

In this case, take u ∈ F16 \ F4 with u5 = 1. Note that u ∈ F2n \ F2m and u2m+1 = u5 = 1. Then
u + u2m = u + u4 = w ∈ F4 ⊂ F2m . Obviously, w 6= 0. It can be checked directly that u with
the prescribed properties also satisfies w 6= 1 and, thus, w2 + w = 1. There are four options for
choosing u with these properties and both w ∈ F4 \ {0, 1} can be obtained. Then, by (4.22),

G(z) = a
1
2 + Trnm(b) + (awz) 1

2

+ Trnm(b(u4 + 1))z4 + Trnm(b)w2(z3 + z2) + Trnm(b(u+ 1))z
(z2 + wz + 1)2

= a
1
2 + Trnm(b) + (awz) 1

2 + Trnm(b(u4 + 1))z
4 + w(sw + 1)(z3 + z2) + swz

(z2 + wz + 1)2

(∗)= a
1
2 + Trnm(b) + (1 + ws+ s

1
2 ) Trnm(b(u4 + 1))fs(z) ,

where polynomial fs(z) with s = w2 Trnm(b(u+1))
Trnm(b(u4+1)) is an o-polynomial (4.18) (assuming Trnm(b(u4 +

1)) 6= 0). In the case when Trnm(b(u4 + 1)) = 0 (or, equivalently, b2m−1 = (u+ 1)3 = u4) we obtain

G(z) = a
1
2 + Trnm(b) + (awz) 1

2 + Trnm(b)w2(z3 + z2) + Trnm(b(u+ 1))z
(z2 + wz + 1)2

= a
1
2 + Trnm(b) + bu2w2z

1
2 + bu2wz(z2 + z + w2)

(z2 + wz + 1)2

= a
1
2 + Trnm(b) + bu2g(z) ,

since a = b2
m+1 = b2u4 and Trnm(b)w = b(1 + u4)(u + u4) = bu2 and where o-polynomial g(z)

comes from Theorem 4.10.1 Item (ii). On the other hand, if b2m−1 = u4 then it suffices just to
take another u with the above defined properties (recall that four options exist). To obtain (∗)
we used the following identities

(w + s2 + s) Trnm(b(u4 + 1))2

= wTrnm(b(u4 + 1))2 + wTrnm(b(u+ 1))2 + w2 Trnm(b(u+ 1)) Trnm(b(u4 + 1))
= w2(Trnm(bu) Trnm(bu4) + Trnm(b) Trnm(b(u4 + u)) + Trnm(b)2)+ wTrnm(b(u4 + u))2

= w2(bu+ b2
m

u4)(bu4 + b2
m

u) + w2 Trnm(b)2 = aw .

It is important to observe that there are no restrictions on the value of b here. It means that
this technique allows to enlarge the original class of Niho bent functions proved in [93].

Assuming b2m−1 6= u4, note that equation s = w2 Trnm(b(u+1))
Trnm(b(u4+1)) can be solved for the unknown

b ∈ F∗2n for any s ∈ F2m . Indeed, this equation can be rewritten as

b(u4s+ s+ uw2 + w2) = b2
m

(us+ s+ u4w2 + w2) or
b(u4s+ s+ u4 + u2) = b2

m

(us+ s+ u3 + u) .
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Since s ∈ F2m , it is easy to see that this equation has nonzero sides and its right-hand side is
a 2mth power of the left-hand side. We conclude that the set of bent functions with b ∈ F∗2n
corresponds exactly to all o-polynomials described in Theorem 4.10.1 Item (ii). This means that
the existence of this set of bent functions is equivalent to the existence of the corresponding
q-clan.

The case m ≡ 0 (mod 4)

In this case, w2 +w+ 1 6= 0 since the opposite is equivalent to u4 + u3 + u2 + u+ 1 = 0 that gives
u ∈ F24 which is a contradiction because F24 ⊂ F2m . As was noted in Subsection ??, without loss
of generality, we can assume b = a = 1. Then, by (4.22),

G(z) = 1 + Trnm(u5) + (wz) 1
2 + Trnm(u5 + u)z4 + Trnm(u5)w2z2 + Trnm(u4)z

(z2 + wz + 1)2

(∗)= 1 + Trnm(u5) + (wz) 1
2 + (w5 + w3)z4 + w3(1 + w + w2)2z2 + w4z

(z2 + wz + 1)2

= 1 + Trnm(u5) + (w2 + w5 + w
1
2 )f0(z) ,

where (∗) follows by w(1 + w + w2)2 = Trnm(u5) and f0(z) is an o-polynomial from (4.19).

Remark 4.10.2. In 2004, using computer calculations, the following sporadic bent function of
Niho type was found by Kholosha. For m = 4,

f(t) = Trm1 (t2
m+1) + Trn1

(
t5(2m−1)+1 + t7(2m−1)+1) . (4.26)

The question open since then is whether this function is a new one or if it is EA-equivalent to
one of the known Niho bent functions. Here we resolve this open problem.

Take basis elements v = 1 and u with u+ u2m = 1. Since

x16 + x+ 1 = (1 + x+ x3 + x4 + x5 + x6 + x8)(1 + x3 + x5 + x6 + x8) ,

we get that either

1 + u+ u3 + u4 + u5 + u6 + u8 = 0 or 1 + u3 + u5 + u6 + u8 = 0 . (4.27)

By direct calculations, we obtain that µ = 1 and

G1(z) = z + (u+ z)
2m+1

2 + Trnm
(
(u+ z)76 + (u+ z)106)

= 1 + u+ u4 + u6 + u8 + u10 + u12

+ (u4 + u8)z2 + (1 + u2 + u8)z4 + z6 + (1 + u2 + u4)z8 + z10 + z12 ,

since z2 + (u+ z)2m+1 = u2m+1 + Trnm(u)z = u2m+1 + z. As observed in [44, Sec. 3.1.2], adding
a constant to G1(z) results into EA-equivalent bent functions, thus, the constant term in G1(z)
can be ignored. Define β = 1 + u+ u4 ∈ F2m and note that β4 = β + 1 and β is primitive in F2m

(this is checked easily). Then, depending on (4.27), G1(z) without a constant term is respectively
equal to either

β9z2 + β2z4 + z6 + β11z8 + z10 + z12 or
β7z2 + β2z4 + z6 + β12z8 + z10 + z12 .
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Both polynomials belong to the list of 2040 o-polynomials representing the Lunelli-Sce hyperoval
(numbers 119 and 120 in the list [214]). By [11, Theorem 26], the Lunelli-Sce hyperoval is a
member of the Subiaco family of hyperovals. Thus, it is natural to expect that function (4.26) is
EA-equivalent to the following Niho bent function from Subsection 4.4.2

f(t) = Trm1 (t2
m+1) + Trn1 (t3(2m−1)+1) (4.28)

with m = 4. However, this does not come automatically since equivalent hyperovals do not
necessarily correspond to EA-equivalent bent functions (see [44, Sec. 3.1.2]).

Now, take basis elements v = 1 and w = u2 (where u is the second element in the basis chosen
for analyzing function (4.26)) and recall that different choices of basis lead to EA-equivalent
functions. Then w+w2m = 1 and using (4.21), we obtain that function (4.28) corresponds to the
following polynomial

G2(z) = w8(2m+1) + 1 + z8 + Trnm
(
(w + z)14)

= 1 + w + w2 + w4 + w6 + w10 + w12

+ (1 + w4 + w8)z2 + (1 + w2 + w8)z4 + z6 + (w2 + w4)z8 + z10 + z12

= 1 + u+ u5 + u9 + u12

+ (u+ u8)z2 + (u+ u4)z4 + z6 + (u4 + u8)z8 + z10 + z12 .

Similarly, if η = 1 + w + w4 = β2 ∈ F2m (obviously, η is also primitive in F2m and η4 = η + 1)
then, depending on (4.27) (where u is replaced by w), G2(z) without a constant term is respectively
equal to either

η7z2 + η2z4 + z6 + η12z8 + z10 + z12 or
η9z2 + η2z4 + z6 + η11z8 + z10 + z12

using the fact that the sum of all coefficients in the latter polynomials has to be equal to one.
These are the same Lunelli-Sce o-polynomials as obtained before but in the reverse order.

Now observe that

G2(z + u4 + u8) = cu + (u4 + u8)z2 + (1 + u2 + u8)z4 + z6 + (1 + u2 + u4)z8 + z10 + z12,

where cu is a constant depending on u. Finally, note that the latter polynomial without the
constant term cu is exactly G1(u) without the constant term. Since adding a constant term to the
argument of an o-polynomial is one of the transformations that preserves EA-equivalence of the
corresponding bent functions (see [44, Sec. 3.1.2]), we conclude that bent functions (4.26) and
(4.28) are EA-equivalent.

4.10.3 Bent Functions from Adelaide Hyperovals
Here we define o-polynomials that give rise to the Adelaide family of hyperovals.

Theorem 4.10.3 (Theorem 3.1 [265]). Assume m is even, n = 2m and denote l = 2m−1
3 . Take

any β ∈ F2n \ {1} with β2m+1 = 1 and define the following functions over F2m

f(x) = Trnm(βl)(x+ 1)
Trnm(β) +

Trnm
(
(βx+ β−1)l

)
Trnm(β)(x+ Trnm(β)x1/2 + 1)l−1 + x

1
2 and

eg(x) = Trnm(βl)
Trnm(β) x+

Trnm
(
(β2x+ 1)l

)
Trnm(β) Trnm(βl)(x+ Trnm(β)x1/2 + 1)l−1 + 1

Trnm(βl)x
1
2 ,
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where e = Trnm(βl)
Trnm(β) + 1

Trnm(βl) + 1. Then g(x) and fs(x) (defined in (4.16)) are o-polynomials for
any s ∈ F2m .

In particular, using that β2m = β−1 we obtain that

eTrnm(β) Trnm(βl)f1(x) = Trnm(β2l) +
Trnm

(
(x+ β2)l

)
(x+ Trnm(β)x1/2 + 1)l−1 + Trnm(β)x 1

2 .

For even m, take the following Niho bent function over F2n

f(t) = Trm1 (at2
m+1) + Trn1 (bt(2

m−1) 1
6 +1) ,

where 1
6 = 2m−1+1

3 is an inverse of 6 modulo 2m+1, a ∈ F∗2m and b ∈ F∗2n are such that b2m+1 = a.
As noted above, without loss of generality, it can be assumed that a = b = 1.

Assume v = 1 and take u ∈ F2n \ {1} with u2m+1 = 1 that means u ∈ F2n \ F2m . Then (u, 1)
is a basis of F2n as a two-dimensional vector space over F2m . Then for any x, y ∈ F2m , we obtain
f(ux+ vy) having the form of (4.6.1) with

H(z) = (z + u)
2m+1

2 + Trnm
(
(z + u)(2m−1) 1

6 +1)
µ = 1 .

Denote d = (2m − 1) 1
6 + 1 = (2m−1 + 1)l + 1, where l = 2m−1

3 . Then

2m+1d (mod 2n − 1) = (2m+1 + 1)l + 2m+1 = (2m + 1)(2l + 1) + 2l

and

Trnm
(
(z + u)2d) = Trnm

(
(z + u)2m+1d

)
= (z + u)(2m+1)(2l+1) Trnm

(
(z + u)2l)

= (z2 + Trnm(u)z + 1)2l+1 Trnm
(
(z + u)2l)

=
Trnm

(
(z + u)2l)

(z2 + Trnm(u)z + 1)l−1

since 3l = 2m − 1 and z2 + Trnm(u)z + 1 ∈ F2m .
Therefore, with z ∈ F2m and assuming u = β2,

G(z) = 1 + Trnm(β)z 1
2 +

Trnm
(
(z + β2)l

)
(z + Trnm(β)z1/2 + 1)l−1

= 1 + Trnm(β2l) + eTrnm(β) Trnm(βl)f1(z) .

Note that currently the associate o-polynomials of all the known Niho bent functions have
been identified.
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5.1 Definitions and properties

In [272], A. Youssef and G. Gong study the Boolean functions f on the field F2n (n even) such that
f(xk) is bent for every k co-prime with 2n − 1. These functions are called hyper-bent functions.
Obviously, hyper-bent functions are in particular bent. Therefore they exist only when n is even
and, that their Hamming weight is even. Consequently, their polynomial form is

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tro(j)1 (ajxj) (5.1)

where Γn, o(j) are defined as above and aj ∈ F2o(j) .
The condition of hyper-bentness seems difficult to satisfy. However, A. Youssef and G. Gong

show in [272] that hyper-bent functions exist. Their result is equivalent to the following (the
definition of elements of the class PS#

ap is defined in included in Proposition 5.4.1)

Proposition 5.1.1. ([36]) All the functions of class PS#
ap are hyper-bent.
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5.2 Hyper-bent Boolean functions in symmetric cryptog-
raphy

Hyper-bent functions are both of theoretical and practical interest. In fact, they were initially
proposed by Golomb and Gong [116] as a component of S-boxes to ensure the security of symmetric
cryptosystems. These functions are currently used in the Data Encryption Standard (DES).
The idea behind the hyper-bent functions is to maximize the minimum distance to all Boolean
functions coming from bijective monomials on F2n (that is, bijective functions whose expression
is the absolute trace of a single power function), not just the affine monomial functions (that is,
functions of the form Trn1 (ax)+ε; a ∈ F2n , ε ∈ F2). The first definition of hyper-bent functions was
based on a property of the extended Walsh–Hadamard transform of Boolean functions (introduced
by Golomb and Gong [116]).

Definition 5.2.1.

∀ω ∈ F2n , χ̂f (ω, k) =
∑
x∈F2n

(−1)f(x)+Trn1 (ω·xk),with gcd(k, 2n − 1) = 1.

where "·" is an inner product in F2n

We have the following characterization of the hyper-bent functions in terms of the extended
Walsh transform:

Proposition 5.2.2. f is hyper-bent on F2n if and only if its extended Hadamard transform takes
only the values ±2n2 .

Carlet and Gaborit [36] have proved that the algebraic degree of any hyper-bent function
defined onr F2n is exactly n

2 .

5.3 Hyper-bent Boolean functions in coding theory
5.3.1 Background on binary cyclic codes
In all this subsection, we refer to [98] and [68]. Let N be a positive integer relatively prime to
2. Let t be the order of 2 modulo N that is, the smallest positive integer a such that 2a ≡ 1
(mod N). Let α be a primitive Nth root of unity in F2t . Let C be a binary cyclic code of length
N with generator polynomial g(X) in the ring RN := F2 [X]/(XN − 1), consisting of the residue
classes of F2 [X] modulo XN − 1. The polynomial g(X) is the unique monic polynomial of
minimum degree in C and g(X) =

∏
s

∏
i∈Cs(X − α

i), where s runs through some subset of the
2-cyclotomic cosets Cs modulo N . Let T =

⋃
s Cs be the union of these 2-cyclotomic cosets. The

roots of the unity Z = {αi | i ∈ T} are called the zeroes of the code C and {αi | i 6∈ T} are the
non-zeroes of C. The set T is called the defining set of C. Every vector f = (f0, f1, · · · , fN−1),
identified with the polynomial f(X) = f0 ⊕+f1X ⊕+ · · · ⊕ fN−1X

N−1 belongs to C if and only
if f(αi) = 0 for each i ∈ T . The defining set T of C, and hence either the set of zeroes or the set
of non-zeroes, completely determines g(X). The dimension of C is N − deg(g(X)) = N −#T .
Now, if we consider binary cyclic codes in the primitive case, more precisely, we assume that
N = 2n − 1 for n a positive integer, the order of 2 modulo N equals n. If α is a primitive element
of F2n . then, the vector f = (f0, f1, · · · , fN−1) can be identified with the restriction of a Boolean
function f to the set F?2n , defined by f(αi) = fi, for every integer i ∈ {0, · · · , 2n − 2}.
Given a cyclic code C of length N and dimension k, we can define the extended cyclic code Ĉ of
C as the set of vectors (f0 ⊕ · · · ⊕ fN−1, f0, · · · , fN−1). The obtained code Ĉ is a linear code of
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length N + 1 and dimension k. The vector (f0 ⊕ · · · ⊕ fN−1, f0, · · · , fN−1) can be identified with
a Boolean function f on F2n whose algebraic degree is smaller than n.

5.3.2 Extended cyclic codes and hyper-bent functions
There exists a relationship between cyclic codes and hyper-bent functions (see [36]). Recall that
by definition, a Boolean function on F2n is hyper-bent if the function x 7→ f(xi) is bent, for
every integer i co-prime with 2n − 1. This implies that every hyper-bent function belongs to the
intersection of all the images of the Reed-Muller codes of order n

2 by the mappings f 7→ f(xi),
where i is co-prime with 2n − 1. Consequently, all the hyper-bent functions on F2n belong to the
extended cyclic code Hn whose zeroes are all the elements of the form αij , where i is co-prime
with 2n − 1 and 1 ≤ j ≤ 2n − 2 with 1 ≤ w2(j) ≤ n

2 − 1. The non-zeroes of Hn are the αj ’s such
that j is zero or j satisfies w2(ij) = n

2 for any i co-prime with 2n − 1. Carlet and Gaborit deduce
that all hyper-bent functions on F2n have algebraic degree n

2 . Hence hyper-bent functions belong
to RM(n2 , n) \ RM(n2 − 1, n) (while bent functions belong to the Reed-Muller codes RM(n2 , n)
of order n

2 ).
It has been proved in [36], that functions of the PSap (these functions are in fact hyper-bent see
e.g. [36]) are some codewords of weight 2n−1 − 2n2−1 of a subcode of Hn. The authors deduce
that for some n, depending on the factorization of 2n − 1, the only hyper-bent functions on n
variables are the elements of the class PS#

ap (see Proposition 5.4.1). Now, let An be the extended
cyclic code whose non-zeroes are the power of α whose exponents are all the multiples of 2n2 − 1.
Let Bn be the cyclic code with non-zeroes αi for i element of the ring of integer modulo 2n − 1
which is symmetric (i is said to be symmetric if i and −i belong to the same 2-cyclotomic coset
modulo 2n − 1). We denote by Sn the set of vectors of length 2n and of weights 2n−1 ± 2n2−1.
Then we have the following inclusions (A ⊂ B means that A is a subcode of B):

PS#
ap = An ∩ Sn ⊂ An ⊂ Bn ⊂ Hn

5.4 A characterization of hyper-bentness
Recall that Dillon has exhibited a subclass of PS−, denoted by PSap, whose elements are defined
in an explicit form (see Subsection 4.4.1, Chapter 4). Furthermore, it is well-known (see e.g.
[36]) that all the functions of PSap are hyper-bent.

Youssef and Gong [272] showed that hyper-bent functions actually exist. The following
proposition, due to Carlet and Gaborit [36], is an easy translation of this result, which was
originally given in terms of sequences, stated using only the terminology of Boolean functions.

Proposition 5.4.1 (PS#
ap class [272, Theorem 1], [36, Proposition 3]). Let α be a primitive

element of F2n . Let f be a Boolean function defined on F2n such that f(α2m+1x) = f(x) for every
x ∈ F2n and f(0) = 0. Then f is a hyper-bent function if and only if the weight of the vector
(f(1), f(α), f(α2), · · · , f(α2m)) equals 2m−1. In this case f is said to belong to the PS#

ap class.

Charpin and Gong [54] have derived a slightly different version of the preceding proposition.

Proposition 5.4.2 ([54, Theorem 2]). Let α be a primitive element of F2n . Let f be a Boolean
function defined on F2n such that f(α2m+1x) = f(x) for every x ∈ F2n and f(0) = 0. Denote
by U the cyclic subgroup of F∗2n of order 2m + 1. Let ζ = α2m−1 be a generator of U . Then f is
a hyper-bent function if and only if the cardinality of the set

{
i | f(ζi) = 1, 0 ≤ i ≤ 2m

}
equals

2m−1.
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Remark 5.4.3. It is important to point out that bent functions f defined on F2n such that
f(α2m+1x) = f(x) for every x ∈ F2n and f(0) = 0 are always hyper-bent. A proof of this
claim can be found in a paper of Charpin and Gong [54, Proof of Theorem 2] or it can be
directly observed that the support supp(f) of such a Boolean function f can be decomposed as
supp(f) =

⋃
i∈S α

iF∗2m , where S =
{
i | f(αi) = 1

}
, that is, thanks to Theorem 4.4.2, f is bent

if and only if #S = 2m−1, proving that such bent functions are actually hyper-bent functions
according to Proposition 5.4.1.

Finally, Carlet and Gaborit have proved the following more precise statement about the
functions considered in Proposition 5.4.1.

Proposition 5.4.4 ([36, Proposition 4]). Hyper-bent functions as in Proposition 5.4.1 such that
f(1) = 0 are the elements of the PSap class. Those such that f(1) = 1 are elements of PS#

ap and
they are the functions of the form f(x) = g(δx) for some g ∈ PSap and δ ∈ F2n \ {1} such that
g(δ) = 1.

5.5 Primary constructions and characterization of hyper-
bent functions in polynomial forms

5.5.1 Monomial hyper-bent functions via Dillon expnents
Among all the known monomial bent, only the Dillon’s function is also hyper-bent. Recall that
the monomial Dillon function is the function whose expression is defined with Dillon exponent
(that is the exponent given in the second row of Table 4.2) as:

∀x ∈ F2n , f (r)
a (x) = Trn1 (axr(2

m−1)), a ∈ F?2n

where m = n
2 and r is an integer such that gcd(r, 2m + 1) = 1. The characterization of the

bentness of the monomial functions f (r)
a has been studied by Dillon [82] in the case r = 1 and,

next by Leander [159] (who refined the result of Dillon using a different point of view) and by
Charpin and Gong [54] (who extended the family of Dillon, implying in particular that the original
functions were actually hyper-bent) for any integer r co-prime with 2m + 1. Thanks to these
works, the bent and hyper-bent functions f (r)

a have been completely identified. Furthermore, it
has been proved that, up to affine equivalence, we can restrict the study of the bentness of f (r)

a

to the case where a ∈ F?2m (see e.g. [159]). The following theorem summarizes the results related
to the bentness of the function f (r)

a .

Theorem 5.5.1. ([82, 54]) Let n = 2m, a ∈ F?2m and f (r)
a be the boolean function defined on

F2n as follows

∀x ∈ F2n , f (r)
a (x) = Trn1 (axr(2

m−1)), gcd(r, 2m + 1) = 1.

1. f (r)
a is bent if and only if f (1)

a is bent.

2. f (1)
a is bent if and only if Km(a) = 0.

3. If f (r)
a is bent then its dual function is f (r)

a itself.

4. f (r)
a is hyper-bent if and only if f (r)

a is bent.

5. The bent functions f (r)
a are in the Partial Spread class PSap.
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Remark 5.5.2. Note that an alternative direct proof of Dillon’s result (point 2. of Theorem
5.5.1) has been proposed recently by Leander in [159] (see also [54]). Leander’s proof gives also
more information on the spectrum of monomial functions fa,0. A small mistake in his proof was
rectified in [54]). Note also that the existence of some a in F2m which are zeros of Kloosterman
sum on F2m had been conjectured by Dillon. It has been proved by Lachaud and Wolfmann in
[156] that the values of such Kloosterman sums are all the numbers divisible by 4 in the range
[−2(m+2)/2 + 1, 2(m+2)/2 + 1] (which implies in particular that the family defined by Dillon is
never empty).

5.5.2 Binomial hyper-bent functions via Dillon (like) exponents
In the following, we are interested in the problem which consists in finding two exponents s1 and
s2 with o(s2) < n and the corresponding coefficients a ∈ F?2o(s1) and b ∈ F?2o(s2) defining bent or
hyper-bent functions defined on F2n whose expression is of the form

Tro(s1)
1 (axs1) + Tro(s2)

1 (bxs2 ) (5.2)

A first family of binomial hyper-bent functions Fn

By computer experiments, for small values of n (n ≤ 16; because of the complexity of the problem),
we have found that the set of all functions of type (5.2) with the exponents s1 = 3(2m − 1) and
s2 = 2n−1

3 contains bent functions when m is odd. Note that o(s1) = n and o(s2) = 2. The
polynomial form of a function of type (5.2), denoted by fa,b, is then of the form:

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
(5.3)

where, a ∈ F?2o(s1) = F?2n and b ∈ F?2o(s2) = F?4 .
Note that when b = 0, the corresponding function fa,0 is a monomial bent function if and only
if a is a zero of Kloosterman sums on F2n . Denote by Fn the set of the Boolean functions fa,b
defined on F2n whose polynomial form is given by the above expression (5.3). This infinite class
is not contained in the class studied by Charpin and Gong [54] that we have mentioned above. In
the following, we present the study of bentness of elements of Fn. To this end, we investigate a
precise characterization of such functions of Fn which are hyper-bent, by giving explicit conditions
on the coefficients a and b. To this end, we show first that Fn is a subclass of the well known
Partial Spreads class for which the bentness of its functions can be characterized by means of the
Hamming weight of their restrictions to a certain set. Next, we investigate the conditions on the
choice of a and b for obtaining an explicit family of bent functions. Thanks to the recent works
of Charpin, Helleseth and Zinoviev on the Kloosterman sums and cubic sums, we establish an
explicit characterization of the bentness of functions belonging to Fn in terms of the Kloosterman
sums of the coefficient a when m is odd.

The study of the bentness of the binomial family Fn

• First of all, let us notice that all the functions are of algebraic degree m which is the optimum
algebraic degree for a bent function on F2n (recall that the algebraic degree of any bent Boolean
function on F2n is at most m).

Proposition 5.5.3. ([195]) The algebraic degree of any function fa,b of Fn is equal to m.

Proof. The two exponents 2m−1 and 2n−1
3 are of 2-weight m since 2m−1 = 1+2+22 + · · ·+2m−1

and 2n−1
3 = 1 + 4 + · · · + 4m−1. Therefore, the two Boolean functions x 7→ Trn1 (ax2m−1) and
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x 7→ Tr2
1(bx 2n−1

3 ) are of algebraic degree equal to m. Since Trn1 (ax2m−1) and Tr2
1(bx 2n−1

3 ) are two
separate parts in the trace representation of fa,b, the algebraic degree of fa,b is equal to m.

• Let us note now that all the Boolean functions of the family Fn have the following property

∀a ∈ F?2n , ∀b ∈ F4 , ∀c ∈ F?2m , ∀x ∈ F2n , fa,b(c3x) = fa,b(x). (5.4)

That implies in particular that a Boolean function fa,b of Fn is constant on each coset of
C = {x3 | x ∈ F?2m}. Denote by H a set of representatives for the equivalence relation ∼ defined
on F?2n by x ∼ y if and only if y = xv for some v ∈ C. Then, we have

supp(fa,b) =
⋃

x∈Sa,b

xC where Sa,b := {x ∈ H | fa,b(x) = 1} (5.5)

When m is odd, every element of F?2m is a cube and thus we have C = F?2m (indeed, the map
x ∈ F?2m 7→ x3 is a permutation for m odd). On the other hand, recall that every element x of
F?2n has a unique decomposition as: x = yu, with y ∈ F?2m and u ∈ U := {u ∈ F2n | u2m+1 = 1}.
Therefore, one can take H = U in this case leading to

supp(fa,b) =
⋃

u∈Sa,b

uF?2m , with Sa,b = {u ∈ U | fa,b(u) = 1} (5.6)

This implies in particular that bent functions belonging to Fn are in the Partial Spreads class
PS introduced by Dillon [82]. Therefore, thanks to Theorem 4.4.2, for m odd, the question of
deciding whether an element fa,b of Fn is bent or not can be reduced to compute the Hamming
weight of its restriction to U , that is, we have

Proposition 5.5.4. ([195]) For m odd, the Boolean function fa,b of Fn is bent if and only if
wt(fa,b|U ) = 2m−1.

Based on this result, we shall characterize the elements a of F2n and b ∈ F4 for which fa,b is
bent in terms of Kloosterman sum.

• Restriction to the case where a ∈ F?2m : we are going to show that we can restrict ourselves to
study the bentness of fa,b with a ∈ F?2m without loss of generality. Let a ∈ F?2n , b ∈ F4 , a′ ∈ F?2m
and b′ ∈ F4 . Note that, if a = a′λ2m−1 and b = b′λ

2n−1
3 for some λ ∈ F?2n , the functions fa′,b′ and

fa,b are linearly equivalent. Indeed, one has, for every x in F?2n , fa,b(x) = fa′,b′(λx). It follows
thus that for our considerations we can always replace a ∈ F?2n by the unique element a′ ∈ F?2m
defined by a = a′u where u ∈ U = {λ2m−1 | λ ∈ F?2n}. In other words, we have

Proposition 5.5.5. ([195, 197]) Let fa,b be a Boolean function whose expression is of the form
(5.3). Then,

{(a, b) | a ∈ F?2n , b ∈ F4 , fa,b is bent}

= {(a′λ2m−1, b′λ
2n−1

3 ) | a′ ∈ F?2m , b′ ∈ F4 , λ ∈ F?2n , fa′,b′ is bent}.

Thanks to the previous proposition, one can restrict oneself to the case a ∈ F?2m without loss
of generality. Proposition 5.5.4 says that for m odd, it suffices to compute the Hamming weight
of the restriction to U of fa,b, (a, b) ∈ F?2m × F?4 , to decide whether fa,b is bent or not. Our aim
in this section is to give a necessary and sufficient condition for the bentness of fa,b in terms of
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the Kloosterman sum Km(a). We begin for that by rewording Proposition 5.5.4. To this end, we
introduce the following sum

∀(a, b) ∈ F?2m × F?4 , Λ(a, b) :=
∑
u∈U

χ(fa,b(u)). (5.7)

Then, by noting that
∑
u∈U χ(fa,b(u)) = #U − 2 wt(fa,b|U ) = 2m + 1− 2 wt(fa,b|U ), we have, for

every a ∈ F?2m and b ∈ F?4 ,

fa,b is bent if and only if Λ(a, b) = 1. (5.8)

• The key result, that is, that the sum Λ(a, b) can be expressed by means of Kloosterman
sums and the cubic sums on F2m thanks to Proposition 2.3.2

Proposition 5.5.6. ([195, 197]) Let β a primitive element of F4 . Let a ∈ F?2m . Then we have

Λ(a, β) = Λ(a, β2) = Km(a)− 2Cm(a, a)− 1
3 ,

Λ(a, 1) = Km(a) + 4Cm(a, a)− 1
3 .

Now, thanks to (5.8), Proposition 5.5.6 , Proposition 2.2.5 and Corollary 2.3.3, we are able to
identify the values of a for which the Boolean functions fa,1, fa,β or fa,β2 is bent.

Theorem 5.5.7. ([195, 197]) Let n = 2m be an even integer. Suppose that m is odd, m > 3.
Let a ∈ F?2m . Let β be a primitive element of F4 . Let fa,1, fa,β and fa,β2 be the Boolean functions
on F2n whose expression is of the form (5.3). If Km(a) = 4 (in this case Trm1 (a1/3) = 0),then
fa,1, fa,β and fa,β2 are bent while, if Km(a) 6= 4, then fa,1, fa,β and fa,β2 are not bent.

Remark 5.5.8. For m = 3, we have made an exhaustive search of all a ∈ F2m and b ∈ F?4 such
that fa,b is bent. We have found that the bent Boolean functions of F6 are f1,β, f1,β2 and every
Boolean function fau,b with b ∈ F?4 , u ∈ U = {x ∈ F?26 | x9 = 1} and a ∈ F?23 such that K3(a) = 4.

• Now, recall that if a Boolean function f defined on F2n is bent then its dual function f̃ is
the Boolean function defined on F2n by: χ̂f (x) = 2n2 χ(f̃(x)). Moreover, it is well-known that if
f is bent then, its dual f̃ is also bent and that its own dual is f itself.

Proposition 5.5.9. ([197])
Let n = 2m be an even integer. Suppose that m is odd. Let fa,b (a ∈ F?2m and b ∈ F?4) be a

bent Boolean functions on F2n whose expression is of the form (5.3). Then, the dual function of
fa,b is equal to fa2m ,b2 , that is, we have

∀ω ∈ F2n , χ̂fa,b(ω) = 2mχ(fa2m ,b2(ω)).

Proof. Let w be an element of F2n . Since every element x of F?2n has a unique decomposition as :
x = yu, with y ∈ F?2m and u ∈ U we have

χ̂f a,b(w) :=
∑
x∈F2n

χ(fa,b(x) + Trn1 (wx)) = 1 +
∑
u∈U

∑
y∈F?2m

χ(fa,b(yu)) + Trn1 (wyu))
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One has, for m odd, fa,b(yu) = fa,b(u) for every u ∈ U and y ∈ F?2m . Thus,

χ̂f a,b(w) = 1−
∑
u∈U

χ(fa,b(u)) +
∑
u∈U

χ(fa,b(u))
∑
y∈F2m

χ(Trn1 (wyu))

= 1−
∑
u∈U

χ(fa,b(u)) +
∑
u∈U

χ(fa,b(u))
∑
y∈F2m

χ(Trm1 (yTrnm(wu)))

= 1−
∑
u∈U

χ(fa,b(u)) + 2m
∑
u∈U

Trnm(wu)=0

χ(fa,b(u)).

Note first that χ̂fa,b (0) = 1−
∑
u∈U χ(fa,b(u)) + 2m

∑
u∈U χ(fa,b(u)).

Now, if w is an element of F?2n , then, we have Trnm(wu) = 0 if and only if uw+ u2mw2m = 0, that
is, u2m−1 = w1−2m . Then, using the fact that fa,b(u) = fa,b(w−1), we obtain

χ̂f a,b(w) = 1−
∑
u∈U

χ(fa,b(u)) + 2mχ(fa,b(w−1)).

Moreover, one has fa,b(w−1) = Trn1 (aω1−2m)+Tr2
1(bw 1−2n

3 ) = Trn1 (a2mω2m−1)+Tr2
1(b(w 2n−1

3 )2) =
Trn1 (a2mω2m−1) + Tr2

1(b2w 2n−1
3 ) = fa2m ,b2(ω). Hence,

χ̂f a,b(w) = 1−
∑
u∈U

χ(fa,b(u)) + 2mχ(fa2m ,b2(ω)) (5.9)

Now, recall that according to (5.8), fa,b is bent if and only if
∑
u∈U χ(fa,b(u)) = 1. Thus, the

result follows.

Remark 5.5.10. Note that one can get criterion (5.8) of bentness in terms of Λ(a, b) from
formula (8.4) that is, without using Dillon’s results (Theorem 4.4.2).

The following theorem summarizes the results presented above related to the bentness of the
functions of the family Fn.

Theorem 5.5.11. ([198]) Let n = 2m with m odd (m > 3). Let a ∈ F?2m and b ∈ F?4 . Let fa,b be
the function defined on F2n by

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
1. The algebraic degree of fa,b equals m (hence any bent function fa,b has a maximal algebraic

degree).

2. fa,b is hyper-bent if and only if fa,b is bent.

3. fa,b is bent if and only if Km(a) = 4.

4. The bent functions fa,b are in the class PS− and in the Partial Spread class PSap if b = 1.

5. If fa,b is bent then its dual function equals fa2m ,b2 .

Remark 5.5.12. Note that according to [57], the condition Km(a) = 4 (m odd) implies that
a = c

(1+c)4 for some c in F?2m .
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Example 5.5.13. Let n = 10. Let us describe the set of bent functions fa,b defined on F210 of
the form Tr10

1 (ax31) + Tr2
1(bx341) where a ∈ F?210 and b ∈ F?4 . Let α be a primitive element of

F32 = F2(α) with α5 + α2 + 1 = 0. According to table 4 in [56], E0 := {a ∈ F?25 ,Tr5
1(a1/3) =

0} = {α3, α21, α14} , {a ∈ F?25 ,K5(a) = 4} = {α3, α21} and E1 := {a ∈ F?25 ,Tr5
1(a1/3) = 1} =

{1, α2, α9, α15} ( recall that, Tr5
1(a1/3) = 1 implies that K5(a) 6= 4). Then according to Theorem

5.5.11, the functions fα3,1, fα3,β, fα3,β2 , fα21,1, fα21,β and fα21,β2 are bent while fα14,1, fα14,β,
f

(1)
α14,β2 , fa,1, fa,β and fa,β2 are not bent if a ∈ {1, α2, α9, α15}. Now, the set {(a, b) | a ∈ F?2n , b ∈
F4 , fa,b is bent} is equal to the set {(a′λ2m−1, b′λ

2n−1
3 ) | a′ ∈ F?2m , b′ ∈ F4 , λ ∈ F?2n , fa′,b′ is bent}.

Therefore, we conclude that there exist 198 bent Boolean functions defined over F210 of the form
Tr10

1 (ax31) + Tr2
1(bx341) (with b 6= 0). Such functions are fα3u,1, fα3u,β, fα3u,β2 , fα21u,1, fα21u,β

and fα21u,β2 where u is an element of the group of 33-rd roots of unity of F210 and β denotes a
primitive element of F4 .

Example 5.5.14. Let n = 14. According to Theorem 5.5.11 and to table 4 in [56], we find that
there exist 1161 bent Boolean functions fa,b (with b 6= 0) defined over the field F16384 of the form
Tr14

1 (cvx127) + Tr2
1(bx5461) where c ∈ {α14, α15, α62}, α is a primitive element of F128 satisfying

α7 + α3 + 1 = 0, v runs through the set of 129-st roots of unity of F214 and b ∈ {1, β, β2} were β
is a primitive element of F4 .

A first family of binomial hyper-bent functions Fn: a generalization

In the following we show that the characterization of the bentness that we obtained in Subsection
5.5.2 is also valid for functions of more general form f

(r)
a,b that is of the form

f
(r)
a,b (x) = Trn1 (axr(2

m−1)) + Tr2
1(bx

2n−1
3 ) (5.10)

where r is co-prime with 2m + 1 and with m odd. In fact, Theorem 5.5.11 can be generalized
to any r co-prime with 2m + 1. and one can show that the bent Boolean function f (r)

a,b are also
hyper-bent and belong to the Partial Spread class PSap under some condition on the coefficients
a and b. As in the case r = 1, one can show that, up to affine equivalence, we can restrict the
study of the bentness of f (r)

a,b to the case where a ∈ F?2m .

Theorem 5.5.15. ([198]) Let n = 2m with m odd (m > 3). Let a ∈ F?2m and b ∈ F?4 . Let f (r)
a,b

be the function defined on F2n by (5.10) f (r)
a,b (x) = Trn1 (axr(2m−1)) + Tr2

1(bx 2n−1
3 )

1. f (r)
a,b is bent if and only if Km(a) = 4 .

2. f (r)
a,b is hyper-bent if and only if f (r)

a,b is bent.

3. The bent functions f (r)
a,b are in the class PS−. Moreover, the bent functions f (r)

a,b are elements
of the Partial Spread class PSap (resp. PS#

ap) if b = 1 (resp. if b 6= 1).

4. If f (r)
a,b is bent then its dual function equals f (r)

a2m ,b2
.

Proof. Most of the arguments are similar to those used to prove Theorem 5.5.11. Note that f (r)
a,b

have the following property:

∀c ∈ F?2m , ∀x ∈ F2n , f
(r)
a,b (c3x) = f

(r)
a,b (x).
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Indeed (note that c2m−1 = 1 since c ∈ F?2m),

f
(r)
a,b (c3x) = Trn1

(
a(c3x)r(2

m−1)
)

+ Tr2
1

(
b(c3x)

2n−1
3

)
= Trn1

(
a(c2

m−1)3rxr(2
m−1)

)
+ Tr2

1

(
b(c2

m−1)2m+1x
2n−1

3

)
= f

(r)
a,b (x)

That implies in particular that the function f (r)
a,b is constant on each coset of C = {x3 | x ∈ F?2m}.

Denote by H a set of representatives for the equivalence relation ∼ defined on F?2n by x ∼ y if and
only if y = xv for some v ∈ C. Then, we have supp(f (r)

a,b ) =
⋃
x∈Sa,b xC where, Sa,b := {x ∈ H |

f
(r)
a,b (x) = 1}. When m is odd, every element of F?2m is a cube and thus we have C = F?2m (indeed,
the map x ∈ F?2m 7→ x3 is a permutation for m odd). On the other hand, recall that every element
x of F?2n has a unique decomposition as: x = yu, with y ∈ F?2m and u ∈ U . Therefore, one can take
H = U in this case leading to supp(f (r)

a,b ) =
⋃
u∈Sa,b uF

?
2m , with Sa,b = {u ∈ U | f (r)

a,b (u) = 1}.
This implies, according to Theorem 4.4.2, that f (r)

a,b is bent if and only if, wt(f (r)
a,b |U ) = 2m−1

and that bent functions f (r)
a,b are in the well known Partial Spread class PS− (which proves

the first part of assertion 3)) and that f (r)
a,b is bent if and only if

∑
u∈U χ(f (r)

a,b (u)) = 1 (since∑
u∈U χ(f (r)

a,b (u)) = #U − 2 wt(f (r)
a,b |U ) = 2m + 1 − 2#Sa,b). The assertion 1) is then a direct

consequence of Proposition 2.3.2 and Corollary 2.3.3. Now, if α is a primitive element of F2n then,
f

(r)
a,b (α2m+1x) = f

(r)
a,b (x) for every x ∈ F2n (since 3 divides 2m + 1 when m is odd) and 0 is not in

the support of f (r)
a,b . The conditions of the bentness given by Proposition 5.4.1 are then satisfied.

Therefore, f (r)
a,b is hyper-bent if and only if

∑
u∈U χ(f (r)

a,b (u)) = 1 which proves the assertion 2).
The second part of the assertion 3) is a direct application of Proposition 5.4.4. Finally, to compute
the dual of a bent function f (r)

a,b it suffices to compute the Walsh transform χ̂f
(r)
a,b(w) of f (r)

a,b (w) for
every w ∈ F2n . The calculation of χ̂f (r)

a,b(w) is analogous to the one of χ̂f (1)
a,b(w). We include the

proof for completeness. Let w be an element of F2n . Since every element x of F?2n has a unique
decomposition as : x = yu, with y ∈ F?2m and u ∈ U we have

χ̂f
(r)
a,b(w) :=

∑
x∈F2n

χ(f (r)
a,b (x) + Trn1 (wx)) = 1 +

∑
u∈U

∑
y∈F?2m

χ(f (r)
a,b (yu)) + Trn1 (wyu)).

One has, for m odd, f (r)
a,b (yu) = f

(r)
a,b (u) for every u ∈ U and y ∈ F?2m . Thus,

χ̂f
(r)
a,b(w) = 1−

∑
u∈U

χ(f (r)
a,b (u)) +

∑
u∈U

χ(f (r)
a,b (u))

∑
y∈F2m

χ(Trn1 (wyu))

= 1−
∑
u∈U

χ(f (r)
a,b (u)) +

∑
u∈U

χ(f (r)
a,b (u))

∑
y∈F2m

χ(Trm1 (yTrnm(wu)))

= 1−
∑
u∈U

χ(f (r)
a,b (u)) + 2m

∑
u∈U

Trnm(wu)=0

χ(f (r)
a,b (u)).

Note first that χ̂
f

(r)
a,b

(0) = 1−
∑
u∈U χ(f (r)

a,b (u)) + 2m
∑
u∈U χ(f (r)

a,b (u)).

Now, if w is an element of F?2n , then, we have Trnm(wu) = 0 if and only if uw+ u2mw2m = 0, that
is, u2m−1 = w1−2m . Then, using the fact that f (r)

a,b (u) = f
(r)
a,b (w−1), we obtain

χ̂f
(r)
a,b(w) = 1−

∑
u∈U

χ(f (r)
a,b (u)) + 2mχ(f (r)

a,b (w−1)).
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Moreover, one has

f
(r)
a,b (w−1) = Trn1 (aωr(1−2m)) + Tr2

1(bw
1−2n

3 )

= Trn1 (a2mωr(2
m−1)) + Tr2

1(b(w
2n−1

3 )2)

= Trn1 (a2mωr(2
m−1)) + Tr2

1(b2w
2n−1

3 )

= f
(r)
a2m ,b2

(ω).

Hence, χ̂f (r)
a,b(w) = 1−

∑
u∈U χ(f (r)

a,b (u)) + 2mχ(f (r)
a2m ,b2

(ω)). Now, recall that we have seen that
f

(r)
a,b is bent if and only if

∑
u∈U χ(f (r)

a,b (u)) = 1. Thus, the assertion 4) follows.

A first family of binomial hyper-bent functions Fn: a special case

In this subsection, we focus on the functions fa,b of the family Fn or more generally on functions
of the form f

(r)
a,b (x) = Trn1 (axr(2m−1)) + Tr2

1(bx 2n−1
3 ) in the case where m is even. (in this case, 3

divides 2m − 1). By exhaustive search, we find that the family Fn contains bent functions for
larger values of m ≥ 2. We shall discus the computational point of view in Section 5.5.2. From
now on we therefore assume that m ≥ 2. In the following we are interested to treat the even case
in theoretical point of view.
We have seen in Subsection 5.5.2 that all the Boolean functions of the family Fn of the form :
have the following property

∀a ∈ F?2n , ∀b ∈ F4 , ∀c ∈ F?2m , ∀x ∈ F2n , fa,b(c3x) = fa,b(x). (5.11)

That implies in particular that a Boolean function fa,b of Fn is constant on each coset of
C = {x3 | x ∈ F?2m}. Denote by H a set of representatives for the equivalence relation ∼ defined
on F?2n by x ∼ y if and only if y = xv for some v ∈ C. Then, we have

supp(fa,b) =
⋃

x∈Sa,b

xC where Sa,b := {x ∈ H | fa,b(x) = 1} (5.12)

We have seen that when m is odd, C = F?2m and one can take H = U . Let us now consider
the case where m is even. In this case, one has C 6= F?2m . Now, unlike in the odd case, a Boolean
function fa,b is not constant on any coset uF?2m , u ∈ U , of F?2m . Indeed, for every y ∈ F?2m , we
have

fa,b(uy) = Trn1 (au2m−1) + Tr2
1(by

2n−1
3 ) (5.13)

because 2n−1
3 is a multiple of 2m + 1 for m even. The algebraic degree of the restriction of fa,b to

uF?2m is hence equal to the 2-weight of 2n−1
3 , that is, equal to m. The situation seems then to

be more complicated that in the odd case since the support of fa,b is not of the form (5.6), that
is, the study of the bentness of fa,b cannot be done as in the Subsection 5.5.2. In particular, it
is difficult to answer the question of knowing if a function fa,b is or not in the Partial Spreads
class. But nevertheless, in this case, we succeed in establishing in the Theorem 5.5.16 a necessary
condition expressed in terms of Kloosterman sum that an element a has to satisfy so that the
function fa,b is bent.

Theorem 5.5.16. ([197]) Let fa,b ∈ Fn , with a ∈ F?2m , m ≥ 2 even and b ∈ F?4 . Then, a
function fa,b is bent only if Km(a) = 4.

In fact the result given in Theorem 5.5.16 can be extended for functions f (r)
a,b of the form (5.10)

(for any integer r co-prime with 2m + 1) as follows.
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Theorem 5.5.17. ([198]) Let n = 2m with m even (m ≥ 2). Let a ∈ F?2m and b ∈ F?4 . Let f
(r)
a,b

be the function defined on F2n by f (r)
a,b (x) = Trn1 (axr(2m−1)) + Tr2

1(bx 2n−1
3 ). If f (r)

a,b is bent then,
Km(a) = 4.

Proof. Recall that f (r)
a,b is bent if and only if χ̂

f
(r)
a,b

(w) = ±2m for every w ∈ F2n . In particular, if

f
(r)
a,b is bent then, we should have χ̂

f
(r)
a,b

(0) = ±2m. Recall that every non-zero element x of F2n

has a unique decomposition as: x = yu with y ∈ F?2m and u ∈ U . Then, the Walsh transform of
f

(r)
a,b at 0 is given by (we use the fact that y2m−1 = 1 and u 2n−1

3 = 1, since 3 divides 2m − 1 when
m is even):

χ̂
f

(r)
a,b

(0) =
∑
x∈F2n

χ(f (r)
a,b (x)) = 1 +

∑
x∈F?2n

χ(f (r)
a,b (x))

= 1 +
∑
u∈U

χ(Trn1 (aur(2
m−1)))

∑
y∈F?2m

χ(Tr2
1(by

2n−1
3 )).

Split F?2m as F?2m = C ′ ∪ βC ′ ∪ β2C ′ where C ′ the set of the cubic elements of F?2m and β is
an element of F2m \ C ′. We thus get

χ̂
f

(r)
a,b

(0) =1 +
∑
u∈U

χ(Trn1 (aur(2
m−1)))

2∑
i=0

∑
z∈C′

χ(Tr2
1(b(zβi)

2n−1
3 )).

Since z is a cube of an element of F?2m we have,

2∑
i=0

∑
z∈C′

χ(Tr2
1(b(zβi)

2n−1
3 )) =

2∑
i=0

∑
z∈C′

χ(Tr2
1(bβi

2n−1
3 ))

=
∑
z∈C′

∑
τ∈F?4

χ(Tr2
1(τ)) =

∑
z∈C′

( ∑
τ∈F4

χ(Tr2
1(τ))− 1

)
= −#C ′ = −2m − 1

3 .

On the other hand, the map u 7→ ur is a permutation of U (since gcd(r, 2m + 1) = 1) and
the map u 7→ u2m−1 is also a permutation of U . Hence, using the well known result, that
is
∑
u∈U χ(Trn1 (au)) = 1 −Km(a), we obtain,

∑
u∈U χ(Trn1 (aur(2m−1))) =

∑
u∈U χ(Trn1 (au)) =

1−Km(a). We thus deduce

χ̂
f

(r)
a,b

(0) = 1 + 2m − 1
3 (Km(a)− 1).

Now, if f (r)
a,b is bent, then one has necessarily 1 + 2m−1

3 (Km(a)− 1) = ±2m, that is, Km(a) = 4
or (2m − 1)(Km(a)− 1) = −3(2m + 1). The second equality being impossible since 2m − 1 and
2m + 1 are co-prime, this proves the result.

Note that according to [57], the condition Km(a) = 4 (m even) implies that a = c3 for some c
such that Trm2 (c) 6= 0. The previous Theorem enable one to exhibit an infinite family of functions
of type (5.10) which are not bent. Moreover, one can prove that the study of the bentness of f (r)

a,b

can be reduced to the case where b = 1.
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Proposition 5.5.18. ([198]) Let n = 2m with m even (m ≥ 2). Let a ∈ F?2m and b ∈ F?4 . Let
f

(r)
a,b be the function defined on F2n by (5.10). Then, f (r)

a,b is bent if and only if, f (r)
a,1 is bent.

Proof. Since m is even, F?4 ⊂ F?2m . In particular, for every b ∈ F?4 , there exists α ∈ F?2m such that
α

2n−1
3 = b. For x ∈ F2n , we have

f
(r)
a,b (x) := Trn1 (axr(2

m−1)) + Tr2
1(bx

2n−1
3 )

= Trn1 (a(α2m−1)rxr(2
m−1)) + Tr2

1(α
2n−1

3 x
2n−1

3 )

= Trn1 (a(αx)r(2
m−1)) + Tr2

1((αx)
2n−1

3 )
= f

(r)
a,1(αx).

Hence, for every ω ∈ F?2n , we have

χ̂
f

(r)
a,b

(ω) =
∑
x∈F2n

χ(f (r)
a,b (x) + Trn1 (ωx))

=
∑
x∈F2n

χ(f (r)
a,1(αx) + Trn1 (ωx))

= χ̂
f

(r)
a,1

(ωα−1)

The exact value of the Walsh transform χ̂
f

(r)
a,1

(ω) of f (r)
a,1 seems difficult to compute. Neverthe-

less, we give in the following an expression of χ̂
f

(r)
a,1

(ω) for every element ω of F?2n .

Proposition 5.5.19. ([198]) Let n = 2m with m even. Let a ∈ F?2m such that Km(a) = 4. Then
for every ω ∈ F?2n , we have
χ̂
f

(r)
a,1

(ω) = 2
3
∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2m−1)) + Trn1 (ωuy3))− 2mχ(Trn1 (aωr(1−2m))).

Proof. Recall that every non-zero element x of F2n has a unique decomposition as: x = yu with
y ∈ F?2m and u ∈ U . Since y2m−1 = 1 and u 2n−1

3 = 1 (because 3 divides 2m − 1 when m is even),
we have for every ω ∈ F2n

χ̂
f

(r)
a,1

(ω) =
∑
x∈F2n

χ(Trn1 (axr(2
m−1)) + Tr2

1(x
2n−1

3 ) + Trn1 (wx))

= 1 +
∑
u∈U

∑
y∈F?2m

χ(Trn1 (aur(2
m−1)) + Tr2

1(y
2n−1

3 ) + Trn1 (wuy)).
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Now, Tr2
1(y 2n−1

3 ) = 0 if and only if y ∈ C ′ := {y3, y ∈ F?2m}. Then, χ̂f(r)
a,1

(ω)

= 1 +
∑
u∈U

∑
y∈C′

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

−
∑
u∈U

∑
y 6∈C′

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

= 1 + 2
∑
u∈U

∑
y∈C′

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

−
∑
u∈U

∑
y∈F?2m

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

= 1 + 2
∑
u∈U

∑
y∈C′

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

+
∑
u∈U

χ(Trn1 (aur(2
m−1)))

−
∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

Firstly, the maps x 7→ x2m−1 and x 7→ xr being permutations of U (since gcd(r, 2m + 1) = 1)
hence,

∑
u∈U χ(Trn1 (aur(2m−1))) =

∑
u∈U χ(Trn1 (au)) = 1−Km(a). Secondly,

∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

=
∑
u∈U

χ(Trn1 (aur(2
m−1))

∑
y∈F2m

χ(Trn1 (wuy))).

Using the transitivity rule of trace function, we obtain

∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2
m−1)) + Trn1 (wuy))

=
∑
u∈U

χ(Trn1 (aur(2
m−1))

∑
y∈F2m

χ(Trm1 (Trnm(ωu)y)).

But
∑
y∈F2m

χ(Trm1 (Trnm(ωu)y))

=
{

2m if Trnm(ωu) = 0, that is, if u2m−1 = ω1−2m

0 otherwise

Hence,
∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2m−1)) + Trn1 (wuy)) = 2mχ(Trn1 (aωr(1−2m))).
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Moreover,
∑
u∈U

∑
y∈C′ χ(Trn1 (aur(2m−1)) + Trn1 (wuy))

= 1
3
∑
u∈U

∑
y∈F?2m

χ(Trn1 (aur(2
m−1))

+ Trn1 (ωuy3))

= 1
3
∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2
m−1))

+ Trn1 (ωuy3))− 1
3
∑
u∈U

χ(Trn1 (aur(2
m−1)))

= 1
3
∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2
m−1)) + Trn1 (ωuy3))

+1
3Km(a)− 1

3 .

Collecting the previous calculations, we obtain χ̂
f

(r)
a,1

(ω)

= 1
3(4−Km(a)) + 2

3
∑
u∈U

∑
y∈F2m

χ(Trn1 (aur(2
m−1))

+ Trn1 (ωuy3))− 2mχ(Trn1 (aωr(1−2m))).

The result follows if Km(a) equals 4.

Remark 5.5.20. Let n = 2m with m even. Let a ∈ F?2m . For every ω ∈ F?2n , we have∑
b∈F?4

χ̂
f

(1)
a,b

(ω) = 4−Km(a)− 2mχ(Trn1 (aω2m−1))

In particular,
∑
b∈F4

χ̂
f

(1)
a,b

(ω) = 4. Indeed, every element x of F?2n has a unique decomposition as:
x = yu, with y ∈ F?2m and u ∈ U . Hence, for every ω ∈ F?2n we have

∑
b∈F?4

χ̂
f

(1)
a,b

(ω)

=
∑
x∈F2n

χ(Trn1 (ax2m−1 + ωx))
∑
b∈F?4

χ(Tr2
1(bx

2n−1
3 ))

= 3−
∑
x∈F?2n

χ(Trn1 (ax2m−1 + ωx))

= 3−
∑
u∈U

χ(Trn1 (au2m−1))
∑
y∈F?2m

χ(Trm1 (Trnm(ωu)y))

= 4−Km(a)−∑
u∈U

χ(Trn1 (au2m−1))
∑
y∈F2m

χ(Trm1 (Trnm(ωu)y))

The previous equality follows from the well known result, that is
∑
u∈U χ(Trn1 (au)) = 1−Km(a).

Now,
∑
y∈F2m

χ(Trm1 (Trnm(ωu)y))

=
{

2m if Trnm(ωu) = 0, that is, if u2m−1 = ω1−2m

0 otherwise
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Thus,
∑
b∈F?4

χ̂
f

(1)
a,b

(ω) = 4−Km(a)− 2mχ(Trn1 (aω1−2m)).
Now, according to [159],

∀ω ∈ F2n , χ̂f(1)
a,0

(ω) = 2mχ(Trn1 (aω2m−1)) +Km(a).

Hence,
∑
b∈F4

χ̂
f

(1)
a,b

(ω) = 4.

• Experimental results for m even:
The functions that we have introduced in [197] are defined for a ∈ F∗2m and b ∈ F∗4 as the

Boolean functions fa,b with n = 2m inputs given by

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
. (5.14)

When m is even, we have shown that the situation seems to be more complicated theoretically
than in the case where m is odd, and that the study of the bentness cannot be done as in the odd
case. Here, we only have a necessary condition to build bent functions from the value 4 of binary
Kloosterman sum when m is even. To get a better understanding of the situation we conducted
some experimental investigations to check whether the Boolean functions constructed with the
formula (5.14) were bent or not for all the a’s in F2m giving a Kloosterman sum with value 4.

First, we show that it is enough to study the bentness of a subset of these functions to get
results about all of them.

First of all, the next proposition proves that the study of the bentness of fa,b can be reduced
to the case where b = 1.

Proposition 5.5.21. Let n = 2m with m ≥ 2 even. Let a ∈ F∗2m and b ∈ F∗4 . Let fa,b be the
function defined on F2n by Equation (5.14). Then fa,b is bent if and only if fa,1 is bent.

Proof. Since m is even, we have the inclusion of fields F∗4 ⊂ F∗2m . In particular, for every b ∈ F∗4 ,
there exists α ∈ F∗2m such that α 2n−1

3 = b. For x ∈ F2n , we have

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
= Trn1

(
aα2m−1x2m−1

)
+ Tr2

1

(
α

2n−1
3 x

2n−1
3

)
= Trn1

(
a(αx)2m−1)

)
+ Tr2

1

(
(αx)

2n−1
3

)
= fa,1(αx) .

Hence, for every ω ∈ F∗2n , we have

χ̂fa,b(ω) =
∑
x∈F2n

(−1)fa,b(x)+Trn1 (ωx)

=
∑
x∈F2n

(−1)fa,1(αx)+Trn1 (ωx)

= χ̂fa,1(ωα−1) .

Second, we know that Km(a) = Km(a2), so the a’s in F2m giving binary Kloosterman sums
with value 4 come in cyclotomic classes. Fortunately, it is enough to check one a per class. Indeed,
fa,b is bent if and only if fa2,b2 is, as proved in the following proposition.
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Proposition 5.5.22. Let n = 2m with m ≥ 2 even. Let a ∈ F∗2m and b ∈ F∗4 . Let fa,b be the
function defined on F2n by Equation (5.14). Then fa,b is bent if and only if fa2,b2 is bent.

Proof.

χ̂fa,b(ω) =
∑
x∈F2n

(−1)fa,b(x)+Trn1 (ωx)

=
∑
x∈F2n

(−1)
Trn1 (ax2m−1)+Tr2

1

(
bx

2n−1
3

)
+Trn1 (ωx)

=
∑
x∈F2n

(−1)
Trn1
(
a2x22m−1

)
+Tr2

1

(
b2x2 2n−1

3

)
+Trn1 (ω2x2)

=
∑
x∈F2n

(−1)
Trn1 (a2x2m−1)+Tr2

1

(
b2x

2n−1
3

)
+Trn1 (ω2x)

=
∑
x∈F2n

(−1)fa2,b2 (x)+Trn1 (ω2x)

= χ̂fa2,b2
(ω2) .

In the specific case b = 1 that we are interested in, it gives that fa,1 is bent if and only if fa2,1
is, which proves that checking one element of each cyclotomic class is enough.

Finally, as mentioned in Section 7.4.2, finding all the a’s in F2m giving a specific value is
a different problem from finding one such a ∈ F2m . One can compute the Walsh–Hadamard
transform of the trace of the inverse function using a fast Walsh–Hadamard transform. As long
as the basis of F2m considered as a vector space over F2 is correctly chosen so that the trace
corresponds to the scalar product, the implementation is straightforward.

The algorithm that we implemented is described in Algorithm 5.1.

Algorithm 5.1: Testing bentness for m even
Input: An even integer m ≥ 2
Output: A list of couples made of one representative for each cyclotomic class of elements

a ∈ F2m such that Km(a) = 4 together with 1 if the corresponding Boolean
functions fa,b are bent, 0 otherwise

1 Build the Boolean function f : x ∈ F2n 7→ Trn1 (1/x) ∈ F2
2 Compute the Walsh–Hadamard transform of f
3 Build a list A made of one a ∈ F2m for each cyclotomic class such that Km(a) = 4
4 Initialize an empty list R
5 foreach a ∈ A do
6 Build the Boolean function fa,1
7 Compute the Walsh–Hadamard transform of fa,1
8 if fa,1 is bent then
9 Append (a, 1) to R

10 else
11 Append (a, 0) to R

12 return R
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The implementation was made using Sage [241] and Cython [9], performing direct calls to
Givaro [96], NTL [235] and gf2x [10] libraries for efficient manipulation of finite field elements
and construction of Boolean functions.

In Table 5.1 we give the results of the computations we conducted along with different pieces
of information about them. One should remark that all the Boolean functions which could be
tested are bent.

Table 5.1 – Test of bentness for m even

m Nb. of cyclotomic classes Time All bent?
4 1 <1s yes
6 1 <1s yes
8 2 <1s yes
10 3 4s yes
12 6 130s yes
14 8 3000s yes
16 14 82000s yes
18 20 - -
20 76 - -
22 87 - -
24 128 - -
26 210 - -
28 810 - -
30 923 - -
32 2646 - -

Evidence that our computations were correct is given by the fact that the number of cyclotomic
classes we found is so. This can be checked using the formula of Proposition 7.1.4. We are looking
for elliptic curves with trace t of the Frobenius endomorphism equal to t = 1 −Km(a) = −3.
Hence, the number of cycloctomic classes is H(∆)/m where H(∆) is the Kronecker class number
and ∆ = 9− 4 · 2m. Moreover, for the values we tested, except m = 12, 30, 32, this discriminant
is fundamental, so that the order Z[α] is maximal and H(∆) = h(∆) the classical class number, a
quantity even easier to compute.

Unfortunately, we were not able to check bentness of functions for m > 16 due to lack of
memory. Constructing the Boolean functions in n = 2m variables is the most time consuming
part of the test, but the real bottleneck is the amount of memory needed to compute their
Walsh–Hadamard transforms. One must indeed perform these computations using integers of
size at least 2m + 1 bits, so, with our implementation, integers of 64 bits as soon as m ≥ 16.
The amount of memory needed is then 64 · 22m · 2−30 = 22m−24 GB. For m = 16 this represents
already 32GB of memory; for m = 18 it would be 512GB of memory. Therefore, we give in
Table 5.2 the fourteen values of a found for m = 16, the highest value that we could test. In this
table the finite field F216 is represented as F2 [x]/(x16 + x5 + x3 + x2 + 1). The corresponding
Boolean functions in n = 32 variables are all bent as we already pointed out.

Finally, we give some open questions: :

Question 5.5.23.

Assume m even. Does a bent function f
(r)
a,b of the form 5.10 belong to the Partial spread class

PS− ?
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Table 5.2 – The fourteen cyclotomic classes such that K16(a) = 4 as elements of F2 [x]/(x16 +x5 +
x3 + x2 + 1)

x14 + x11 + x8 + x6 + x3 + x
x15 + x13 + x10 + x8 + x7 + x6 + x5 + x4 + x3 + 1
x14 + x13 + x12 + x10 + x8 + x2 + x
x14 + x12 + x11 + x9 + x6 + x
x15 + x11 + x9 + x7 + x6 + x3 + x2 + 1
x13 + x6 + x4 + x2 + x+ 1
x12 + x11 + x10 + x9 + x5 + x3 + x2 + x
x15 + x11 + x7 + x6 + x5 + x4 + x3 + x2

x15 + x13 + x9 + x8 + x5 + x4 + x3 + x
x15 + x11 + x10 + x3

x13 + x10 + x9 + x7 + x6 + x5 + x3 + x2 + x
x13 + x10 + x9 + x7 + x6 + x5 + x4 + x3 + x2 + x
x15 + x13 + x10 + x9 + x8 + x7 + x5 + x
x15 + x11 + x10 + x3 + x+ 1

Question 5.5.24.

Assume m even. Are the bent functions f (r)
a,b of the from 5.10 also hyper-bent ?

If the answer to Question 5.5.23 is "no" and the one to Question 5.5.24 is "yes" then, we will
obtain for the first time a family of hyper-bent functions which are not in the class PS−. Such
functions do not exist in the literature.

A second family of binomial hyper-bent functions Gn

By computer experiments, for small values of n (n ≤ 14; because of the complexity of the problem),
we have found that the set of all functions of type (5.2) with the exponents s1 = 3(2m − 1) and
s2 = 2n−1

3 contains bent functions. Note that o(s1) = n and o(s2) = 2. The polynomial form of a
function of type (5.2), denoted by ga,b, is then of the form:

ga,b(x) = Trn1
(
ax3(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
(5.15)

where, a ∈ F?2o(s1) = F?2n and b ∈ F?2o(s2) = F?4 .
Note that when b = 0, the function ga,0 is never bent. Moreover, we only treat the case where m
is odd since when m is even, s1 is a Dillon exponent (since gcd(3, 2m + 1) = 1 if m is even), that
is, a case studied previously. In addition, by computer experiments, we have found that there
exist no bent functions for n less than 16 with m even. Therefore, in the following, we assume in
this subsection m iodd.

Denote by Gn the set of the Boolean functions ga,b defined on F2n whose polynomial form is
given by the above expression (5.15). This infinite class is not contained in the class of functions
Fn studied in Subsection 5.5.2 (since 3 is a divisor of 2m + 1 (m being odd)) nor in the class
studied by Charpin and Gong [54] that we have mentioned above. In the following, we present
the study of bentness of elements of Gn. To this end, we investigate a precise characterization of
such functions of Gn which are hyper-bent, by giving explicit conditions on the coefficients a and
b. We firstly show that one can restrict oneself to study the bentness for some particular forms of
functions belonging to Gn (Lemma 8.1.10). Afterwards, we show that Gn is a subclass of the
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well known Partial Spreads class for which the bentness of its functions can be characterized by
means of the Hamming weight of their restrictions to a certain set (Lemma 5.5.28). We show in
Proposition 5.5.29 that bent functions of the class Gn are also hyper-bent and more precisely, are
(up to a linear transformation) elements of the PSap class. We prove in Proposition 5.5.31 and
Proposition 5.5.32 that, deciding whether an element of Gn is bent or not, depends strongly on
the Kloosterman sums and also (in some cases) on the cubic sums involving only the coefficient
a. Theorem 5.5.35 recapitulates the results of our study in which we prove that the class Gn
contains hyper-bent functions when m 6≡ 3 (mod 6) while, there is no hyper-bent functions in
this class when m ≡ 3 (mod 6); an important point is that this class does not contains other bent
functions except those which are hyper-bent. Finally, we show that a bent function of the class
Gn is normal and we compute its dual function.

The study of the bentness of the binomial family Gn

• First let compute the algebraic degree of functions in Gn.
Proposition 5.5.25. ([196]) The elements ga,b of Gn are all of algebraic degree m.
Proof. Note that the 2-weights of 3(2m − 1) and 2n−1

3 are both equal to m (since 3(2m − 1) =
1 + 22 + 23 + · · ·+ 2m−1 + 2m+1 and 2n−1

3 = 1 + 4 + · · ·+ 4m−1). Thus, the two Boolean functions
x 7→ Trn1 (ax3(2m−1)) and x 7→ Tr2

1(bx 2n−1
3 ) are of algebraic degree equal to m. The trace functions

Trn1
(
ax3(2m−1)) and Tr2

1(bx 2n−1
3 ) are two separate parts in the trace representation of ga,b, the

algebraic degree of ga,b is then equal to m.

Recall that the algebraic degree of any bent Boolean function on F2n is at most m (in the
case that n = 2, the bent functions have degree 2). Bent functions of Gn are then of maximum
algebraic degree.
Remark 5.5.26. Recall that an integer d is called a bent exponent if there exists a ∈ F?2n for
which the function x 7→ Trn1 (axd) is bent. Now, recall that if an integer d is a bent exponent
then, either gcd(d, 2m − 1) = 1 or gcd(d, 2m + 1) = 1 , where m = n/2 ( see for instance [159]).
Consequently, unlike the functions Fn presented above ([195, 197]), the monomial functions of
the class Gn (case b = 0) are never bent since the exponent d = 3(2m − 1) is not co-prime with
2m − 1 nor with 2m + 1 (because when m is odd then 3 divides 2m + 1).
• Now, recall (see Section 4.1, Chapter 4) that if f and f ′ are two n-variable Boolean functions

such that f ′ is linearly equivalent to f (that is, there exists an F2 -linear automorphism L of F2n

such that f ′ = f ◦ L) then, f is bent if and only if f ′ is bent.
Let a ∈ F?2m , λ ∈ F?2n and b ∈ F?4 . Set a′ = aλ3(2m−1) and b′ = bλ

2n−1
3 . Then we remark that,

for every x ∈ F2n , we have:

ga′,b′(x) = Trn1 (a(λx)3(2m−1)) + Tr2
1(b(λx)

2n−1
3 ) = ga,b(λx) (5.16)

This means that ga′,b′ is linearly equivalent to ga,b. Consequently, we are not obliged to consider
all the possible values of a ∈ F2n in our study of the bentness of an element of Gn. Indeed, recall
that every element of x in F?2n admits a unique polar decomposition x = uy where y ∈ F?2m and
u ∈ U := {u ∈ F?2n | u2m+1 = 1}. Now, m being odd, one can decompose U as follows

U = V ∪ ζV ∪ ζ2V (5.17)

where V = {u3 | u ∈ U} and ζ = ξ2m−1 where ξ denotes a primitive element of the field F2n .
Thus, every element u ∈ U can be uniquely decomposed as u = ζiv with i ∈ {0, 1, 2} and v ∈ V .
Therefore, one deduces straightforwardly from (5.16) the following Lemma.
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Lemma 5.5.27. ([196]) Let n = 2m with m odd. Let a′ ∈ F?2n and b′ ∈ F?4 . Suppose that a′ =
aζiv with a ∈ F?2m i ∈ {0, 1, 2}, ζ be a generator of the cyclic group U := {u ∈ F?2n | u2m+1 = 1}
and, v ∈ V := {u3 | u ∈ U}. Then, there exists b ∈ F?4 such that ga′,b′ is linearly equivalent to
gaζi,b.

Every element a′ ∈ F?2n can be ( uniquely) decomposed as a′ = aζiv with a ∈ F?2m , i ∈ {0, 1, 2},
ζ be a generator of the cyclic group U := {u ∈ F?2n | u2m+1 = 1} and, v ∈ V := {u3 | u ∈ U}.
Therefore, according to the preceding Lemma, one can restrict oneself to study the bentness of
gaζi,b with a ∈ F?2m b ∈ F?4 .

• Now collect the material that we have obtained to study the (hyper)-bentness of functions
in Gn.

Lemma 5.5.28. ( [196]) Let a ∈ F?2n and b ∈ F?4 . Suppose that m is odd. Then, a function ga,b
of the family Gn is bent if and only if Γ(a, b) :=

∑
u∈U χ(ga,b(u)) = 1. Moreover, bent functions

ga,b of the family Gn belong to the Partial Spreads class PS−.

Proof. Recall that every element x of F?2n has a unique decomposition as: x = yu, with y ∈ F?2m
and u ∈ U := {u ∈ F?2n | u2m+1 = 1}. Then, since 3 divides 2m + 1 when m is odd, for every
x ∈ F?2n , we have

ga,b(x) = ga,b(uy) = Trn1
(
au3(2m−1)

)
+ Tr2

1

(
bu

2n−1
3

)
= ga,b(u) (5.18)

The function ga,b is then constant on the cosets uF?2m , u ∈ U . Therefore, the support of ga,b can
be decomposed into the disjoint union sets ( with the null vector, these sets are vector subspaces
of dimension 2m) as follows

supp(ga,b) =
⋃

u∈Sa,b

uF?2m where Sa,b := {u ∈ U | ga,b(u) = 1}. (5.19)

According to Theorem 4.4.2, this implies that the bentness of ga,b is equivalent to the fact that the
Hamming weight of the restriction of ga,b to U is equal to 2m−1 and that bent functions ga,b of the
class Gn are in the class PS−. To conclude, it suffices to note that Γ(a, b) = #U − 2 wt(ga,b|U )
(#U = 2m + 1).

We have seen that, when m is odd, bent functions ga,b, with a ∈ F?2n and b ∈ F?4 are in the
class PS− class. In the following, we will give a more precise statement of Lemma 5.5.28 , in
particular, we will see that when m is odd then, bent Boolean functions of Gn are in the class of
hyper-bent Boolean functions.
Thus, according to Proposition 5.4.2, Proposition 5.4.4 and Lemma 5.5.28, one can straightfor-
wardly deduce a more precise statement of Lemma 5.5.28.

Proposition 5.5.29. ([196]) Let a ∈ F?2n and b ∈ F?4 . Let ga,b be a Boolean function be-
longing to the family Gn,(n = 2m, m odd). Then ga,b is hyper-bent if and only if Γ(a, b) :=∑

u∈U χ(ga,b(u)) = 1 ( where U denotes the set of the (2m+1)-th roots of unity in F2n). Moreover,
ga,b is in the class PSap if and only if Trn1 (a) + Tr2

1(b) = 0.

Proof. If α is a primitive element of F2n then, ga,b(α2m+1x) = ga,b(x) for every x ∈ F2n (since 3
divides 2m + 1 when m is odd ) and 0 is not in the support of ga,b. The conditions of the bentness
given by Proposition 5.4.2 are then satisfied thanks to Lemma 5.5.28. The second part of the
Proposition is a direct application of Proposition 5.4.4.
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According to Lemma 8.1.10 and Proposition 5.5.29, the question of deciding whether an
element ga,b of Gn is hyper-bent or not can be reduced to computing the sum Γ(aζi, βj) for
(i, j) ∈ {0, 1, 2}2. For that, we shall use Proposition 2.3.6 in Section 2.3 (Chapter ??).

Now, recall that V := {u3 | u ∈ U}. Let ζ be a generator of the cyclic group U . We introduce
the sums

∀a ∈ F?2m , ∀i ∈ {0, 1, 2}, Si(a) =
∑
v∈V

χ(Trn1 (aζiv). (5.20)

The sums Si(a) can be expressed in terms of Kloosterman sums and cubic sums. These expressions
can be obtained from Proposition 9 in [195]. For completeness, we include the proof.

Lemma 5.5.30. ([196]) For every a ∈ F?2m , we have:

S0(a) = 1−Km(a) + 2Cm(a, a)
3 , S2(a) = S1(a) = 1−Km(a)− Cm(a, a)

3

Proof. Note firstly that the mapping x 7→ x3 being 3-to-1 on U , then, thanks to Lemma 2.3.6,
one has ∑

v∈V
χ(Trn1 (av) = 1

3
∑
u∈U

χ(Trn1 (au3)) = 1
3
(
1−Km(a) + 2Cm(a, a)

)
Now, since ζ2m−2 is an element of V (because 3 divides (2m+1)) and the mapping v 7→ ζ2m−2v2m

is a permutation on V , then, we have:

S1(a) =
∑
v∈V

χ(Trn1 (aζv)) =
∑
v∈V

χ(Trn1 (aζ2mv2m))

=
∑
v∈V

χ(Trn1 (aζ2(ζ2m−2v2m))) = S2(a)

Next, using the fact that
∑
u∈G χ(Trn1 (au)) = 1 − Km(a), where G is a cyclic group of order

2m + 1, we obtain :

S0(a) + S1(a) + S2(a) =
∑
u∈U

χ(Trn1 (au)) = 1−Km(a)

Therefore, S1(a) = 1−Km(a)−S0(a)
2 . To conclude, it suffices to note that, the mapping x 7→ x3

being 3-to-1 from U to itself, one has
∑
u∈U χ(Trn1 (au3)) = 3S0(a) and that

∑
u∈U χ(Trn1 (au3)) =

1−Km(a) + 2Cm(a, a) according to Lemma 2.3.6.

• At this stage, we have the material to study of the (hyper)-bentness of Boolean functions
belonging to the family Gn.

Proposition 5.5.31. ([196]) Let n = 2m be an even integer with m odd. Let a ∈ F?2m , β be
a primitive element of F4 and ζ be a generator of the cyclic group U of (2m + 1)-th of unity.
Suppose that Trm1 (a1/3) = 0. For (i, j) ∈ {0, 1, 2}2, let gaζi,βj be a Boolean function defined on
F2n whose expression is of the form (5.15). Suppose that m 6≡ 3 (mod 6). Then, gaζi,βj is bent
if and only if Km(a) = 4.

Proof. Recall that, Γ(a, b) denotes the sum
∑
u∈U χ(ga,b(u)).

For (i, j) ∈ {0, 1, 2}2 , we have (using the fact that the mapping u 7→ u2m−1 is a permutation of
U)
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Γ(aζi, βj) :=
∑
u∈U

χ
(
gaζi,βj (u)

)
=
∑
u∈U

χ
(

Trn1 (aζiu3(2m−1)) + Tr2
1(βju

2n−1
3 )

)
=
∑
u∈U

χ
(

Trn1 (aζiu3) + Tr2
1(βju

2m+1
3 )

)
Now, thanks to (5.17), we have seen that every element u ∈ U can be uniquely decomposed as
u = ζlv with l ∈ {0, 1, 2} and v ∈ V := {u3 | u ∈ U}. Hence, for (i, j) ∈ {0, 1, 2}2, we have ( in
the last equality, we use the fact that v is a cube of an element of U which is a group of order
2m + 1)

Γ(aζi, βj) =
2∑
l=0

∑
v∈V

χ
(

Trn1 (aζ3l+iv3) + Tr2
1(βjζl

2m+1
3 v

2m+1
3 )

)
=

2∑
l=0

∑
v∈V

χ
(

Trn1 (aζ3l+iv3) + Tr2
1(βjζl

2m+1
3 )

)
Next, m 6≡ 3 (mod 6) then, integers 3 and 2m+1

3 are co-prime. The mapping x 7→ x3 is then a
permutation of V and thus for (i, j) ∈ {0, 1, 2}2, we have (in the last equality, we use the fact
that the mapping v 7→ ζ3lv is a permutation of V )

Γ(aζi, βj) =
2∑
l=0

∑
v∈V

χ(Trn1 (aζ3l+iv) + Tr2
1(βjζl

2m+1
3 ))

=
2∑
l=0

∑
v∈V

χ(Trn1 (aζiv) + Tr2
1(βjζl

2m+1
3 ))

But, for every j ∈ {0, 1, 2}, the set {βj , βjζ 2m+1
3 βjζ2 2m+1

3 } is equal to F?4 (which contains two
elements of absolute trace 1 on F4 and one element of absolute trace 0 on F4). We thus conclude
that

Γ(aζi, βj) = −
∑
v∈V

χ(Trn1 (aζiv)) =: −Si(a). (5.21)

Next, since m is odd, the mapping x 7→ x3 is permutation on F2m . Hence, every element a ∈ F2m

can be (uniquely) written as a = c3 with c ∈ F2m . One has

Cm(a, a) :=
∑
x∈F2m

χ(Trm1 (ax3 + ax)) =
∑
x∈F2m

χ(Trm1 ((cx)3 + ax))

=
∑
x∈F2m

χ(Trm1 ((cx)3 + a2/3(cx))) =
∑
x∈F2m

χ(Trm1 (x3 + a2/3x)) = Cm(1, a2/3).

Now, since Trm1 (a2/3) = Trm1 (a1/3) and Trm1 (a1/3) = 0 (by hypothesis), one has Cm(a, a) = 0,
according to Proposition 2.2.5. Therefore, thanks to Lemma 5.5.30, we obtain

Γ(aζi, βj) = Km(a)− 1
3 .

We conclude thanks to Lemma 5.5.28.
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Proposition 5.5.32. ([196]) Let n = 2m be an even integer with m odd. Let a ∈ F?2m , β be
a primitive element of F4 and, ζ be a generator of the cyclic group U of (2m + 1)-th of unity.
Suppose that Trm1 (a1/3) = 1. For (i, j) ∈ {0, 1, 2}2, let gaζi,βj be a Boolean function on F2n whose
expression is of the form (5.15). Assume that m 6≡ 3 (mod 6). Then

1. The function ga,βj is not bent for every j ∈ {0, 1, 2}.

2. For every i ∈ {1, 2} and j ∈ {0, 1, 2}, the function gaζi,βj is bent if and only if Km(a) +
Cm(a, a) = 4.

Proof. We have seen in the proof of Proposition 5.5.31, that Cm(a, a) = Cm(1, a2/3). Then,
according to Proposition 2.2.5, one has Cm(a, a) = εa

( 2
m

)
2(m+1)/2 with εa = ±1 (since

Trm1 (a2/3) = Trm1 (a1/3) and Trm1 (a1/3) = 1, by hypothesis).

1. Let j ∈ {0, 1, 2}. According to (5.21), valid only if m 6≡ 3 (mod 6), and thanks to Lemma
5.5.30, we have that Γ(a, βj) = Km(a)−1−εa( 2

m )2(m+3)/2

3 . Then, according to Lemma 5.5.28,
the Boolean function ga,βj is therefore bent if and only if Km(a) = 4±

( 2
m

)
2(m+3)/2, which

is impossible for m > 3, since the Kloosterman sums Km(a) take values in the range
[−2(m+2)/2 + 1, 2(m+2)/2 + 1], according to Proposition 2.2.2.

2. According to (5.21) and Lemma 5.5.30, for every i ∈ {1, 2} and j ∈ {0, 1, 2}, we have
Γ(aζi, βj) = Km(a)+Cm(a,a)−1

3 . The Boolean function gaζi,βj is therefore bent if and only if
Km(a) + Cm(a, a) = 4, according to Lemma 5.5.28.

Remark 5.5.33. Since the cubic sums Cm(a, a) equal εa
( 2
m

)
2(m+1)/2 with εa = ±1 (when

Trm1 (a1/3) = 1, m odd) and the Jacobi symbol
( 2
m

)
equals (−1)

(m2−1)
8 (when m is odd) then, the

condition Km(a) + Cm(a, a) = 4 on a ∈ F?2m says that the Kloosterman sums Km(a) take the
values 4± 2(m+1)/2.

Proposition 5.5.34. ([196]) Let n = 2m. Suppose that m is odd such that m ≡ 3 (mod 6).
Let a ∈ F?2m , b ∈ F4 and, ζ be a generator of the cyclic group U of (2m + 1)-th of unity. For
i ∈ {0, 1, 2}, let gaζi,b be a Boolean function on F2n whose expression is of the form (5.15). Then,
gaζi,b is not bent.

Proof. According to Lemma 8.1.10 and Lemma 5.5.28, it suffices to compute the value
∑
u∈U χ(gaζi,b(u))

to decide whether gaζi,b is bent or not. Note now that (recall that 9 divides 2m + 1 if m ≡ 3
(mod 6)) ∑

u∈U
χ(gaζi,b(u)) =

∑
u∈U

χ(Trn1 (aζiu3(2m−1)) + Tr2
1(bu3(2m−1)· 2

m+1
9 ))

The mapping x 7→ x3(2m−1) is 3-to-1 from U to itself. Thus, we get that∑
u∈U

χ(gaζi,b(u)) = 3
∑
v∈V

χ(Trn1 (aζiv) + Tr2
1(bv

2m+1
9 ))

where V = {u3 | u ∈ U}. The sum
∑
u∈U χ(gaζi,b(u)) is therefore a multiple of 3 and cannot be

equal to 1 implying that gaζi,b cannot be bent.

Collecting the results obtained in Proposition 5.5.31, Proposition 5.5.32 and Proposition 5.5.34
we obtain the following characterization of the bentness for Boolean function of the form (5.15).
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Theorem 5.5.35. ([196]) Let n = 2m. Suppose that m is odd. Let a ∈ F?2m . Let β be a
primitive element of F4 . Let ζ be a generator of the cyclic group U of (2m + 1)-th of unity. For
(i, j) ∈ {0, 1, 2}2, let gaζi,βj be a Boolean function on F2n whose expression is of the form (5.15).

1. Assume m 6≡ 3 (mod 6). Then, we have:

• If Trm1 (a1/3) = 0 then, for every (i, j) ∈ {0, 1, 2}2, a function gaζi,βj is (hyper)-bent if
and only if Km(a) = 4.

• If Trm1 (a1/3) = 1 then:
(a) ga,βj is not bent for every j ∈ {0, 1, 2}.
(b) For every i ∈ {1, 2}, gaζi,βj is (hyper)-bent if and only if Km(a) + Cm(a, a) = 4.

2. Assume m ≡ 3 (mod 6). Then, for every i ∈ {0, 1, 2}, gaζi,b is not bent for every a ∈ F?2m
and b ∈ F?4 .

Example 5.5.36. Let us describe for example the set of bent Boolean functions ga,b belonging
to the class G10 (with b 6= 0), that is, of the form Tr10

1 (ax93) + Tr2
1(bx341) where a ∈ F?210 and

b ∈ F?4 .
Let α be a primitive element of F32 = F2(α) with α5 + α2 + 1 = 0. Let ξ be a primitive element
of F210 . According to table 4 in [56], the set {a ∈ F?25 ,Tr5

1(a1/3) = 0} is equal to {α3, α21, α14}
and, the set {a ∈ F?25 ,Tr5

1(a1/3) = 1} is equal to {1, α2, α9, α15}. The elements a of F?25 whose
the Kloosterman sums K5(a) on F25 equals 4 (those elements a satisfy necessary Tr5

1(a1/3) = 0)
are α3 and α21 while, those such that K5(a) +C5(a, a) = 4 are 1 and α9 (more precisely, we have
K5(1) = 12 and K5(α9) = −4).
According to Theorem 5.5.35 and Lemma 8.1.10 we conclude that there exist 330 hyper-bent
Boolean functions defined on the field F210 belonging to the class G10 (with b 6= 0). Such functions
are gα3v,b, gα21v,b, gξ31v,b, gα3ξ31v,b, gα9ξ31v,b, gα21ξ31v,b, gξ62v,b, gα3ξ62v,b, gα9ξ62v,b, gα21ξ62v,b,
with b ∈ F?4 and v runs through the set {u3 | u ∈ U} where U is the cyclic group of 33-rd root of
unity of F210 .

Example 5.5.37. Let n = 14 then, according to table 4 in [56], we find that there exist 1935
hyper-bent Boolean functions ga,b (with b 6= 0) defined on the field F16384 belonging to the class
G14. Such functions are of the form

• Tr14
1 (cvx381) + Tr2

1(bx5461), c ∈ {α14, α15, α62},

• Tr14
1 (c′ξ127ivx381) + Tr2

1(bx5461), i ∈ {1, 2}, c′ ∈ {1, α14, α15, α21, α62, α93},

where α is a primitive element of F128 satisfying α7 + α3 + 1 = 0, ξ is a primitive element of
F214 , v runs through the set {u3 | u ∈ U} where U is the cyclic group of 129-th root of unity of
F214 and b ∈ {1, β, β2} where β is a primitive element of F4 .

Example 5.5.38. Let n = 18 then, according to Theorem 5.5.35, there exist no bent Boolean
functions in the class G18.

Now, the dual functions of elements of Gn can be explicitly computed as follows.

Proposition 5.5.39. ( [196]) Let n = 2m with m odd. Let (a, b) ∈ F?2n × F?4 . The dual function
of a bent function ga,b of Gn is equal ga2m ,b2 , that is, we have

∀ω ∈ F2n , χ̂ga,b(ω) = 2mχ(ga2m ,b2(ω)).
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Proof. The arguments are for the most part the same as those used in [197]. Nevertheless, for the
sake of completeness, we present below a little shorter proof. Recall that, since the function ga,b
is assumed to be bent then, according to Lemma 5.5.28,

∑
u∈U χ(ga,b(u)) = 1. Given, ω ∈ F2n ,

since every element x of F?2n has a unique decomposition as : x = yu, with y ∈ F?2m and u ∈ U ,
one has (in the last equality, we use (5.18))

χ̂ga,b(w) :=
∑
x∈F2n

χ(ga,b(x) + Trn1 (wx))

= 1 +
∑
u∈U

∑
y∈F?2m

χ(ga,b(yu) + Trn1 (wyu))

= 1 +
∑
u∈U

∑
y∈F?2m

χ(ga,b(u) + Trn1 (wyu))

Note first that χ̂ga,b (0) = 2m. Now, if w is an element of F?2n , we have Trnm(wu) = 0 if and only
if uw + u2mw2m = 0, that is, u2m−1 = w1−2m . Classical results about character sums says that∑

y∈F2m

χ(Trn1 (ωuy)) =
∑
y∈F2m

χ(Trm1 (Trnm(ωu)y)) = 2m

if Trnm(ωu) = 0, that is, if u2m−1 = ω1−2m and, is equal to 0 otherwise. Hence, using properties
of trace functions, we have

χ̂ga,b(w) = 1 +
∑
u∈U

χ(ga,b(u)

 ∑
y∈F2m

χ(Trn1 (wyu))− 1


= 1−

∑
u∈U

χ(ga,b(u)) + 2m
∑
u∈U

Trnm(wu)=0

χ(ga,b(u))

= 2mχ(Trn1 (aw3(1−2m)) + Tr2
1(bw

1−2n
3 ))

= 2mχ(Trn1 (a2mw3(2m−1)) + Tr2
1(b2

m

w
2n−1

3 ))

= 2mχ(Trn1 (a2mw3(2m−1)) + Tr2
1(b2w

2n−1
3 )) = 2mχ(ga2m ,b2(ω))

( b2m−2 = 1 because m is being odd then, 3 divides (2m + 1) and then divides (2m − 2)).

Now, recall that a bent function defined on F2n is said to be normal if it is constant on an
n
2 -dimensional flat b+ E where E is a subspace of F2

n
2 .

Proposition 5.5.40. ([196]) The bent functions ga,b of Gn (where n = 2m with m odd) are
normal.

Proof. Recall that ga,b is constant on each set uF?2m , u ∈ U = {x ∈ F?2n | x2m+1 = 1}. Choose
then u such that ga,b(u) = 0. Then ga,b is constant of the vector space uF2m (of dimension m)
proving that ga,b is normal.

Remark 5.5.41. By computer experiments, for small values of n (n ≤ 14, because of the
complexity of the problem) we have found that, the family Gn does not contain bent functions
when m = n

2 is even.
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The following theorem summarizes the results presented above related to the bentness of the
functions ga,b of the family Gn .

Theorem 5.5.42. ([196]) Let n = 2m with m odd. Let a ∈ F?2m and b ∈ F?4 . Let β be a primitive
element of F4 and ζ be a generator of the cyclic group U of (2m + 1)-th of unity. Let ga,b be the
function defined on F2n by (5.15).

1. The algebraic degree of ga,b equals m (bent functions ga,b are then of maximal algebraic
degree).

2. ga,b is hyper-bent if and only if ga,b is bent.

3. If ga,b is bent then its dual function equals ga2m ,b2 .

4. The bent functions ga,b are in the class PS−. Moreover, the bent functions ga,b are elements
of the Partial Spread class PSap (resp. PS#

ap) if b = 1 (resp. if b 6= 1).

Moreover,
*) Assume m 6≡ 3 (mod 6).
-If Trm1 (a1/3) = 0 then, for every (i, j) ∈ {0, 1, 2}2, gaζi,βj is bent if and only if Km(a) = 4.
-If Trm1 (a1/3) = 1 then
a) ga,βj is not bent for every j ∈ {0, 1, 2}.
b) for every i ∈ {1, 2}, j ∈ {0, 1, 2}, gaζi,βj is bent if and only if Km(a) + Cm(a, a) = 4.
**) Assume m ≡ 3 (mod 6). Then, for every i ∈ {0, 1, 2}, gaζi,b is not bent.

The third family of binomial hyper-bent functions

Adopting our approach [197], [196] (developed in the previous sections) Wang et al. studied in
late 2011 the hyper-bentess of the following binomial family [257, 256] with an additional trace
term on F16 :

fa,b(x) = Trn1
(
axr(2

m−1)
)

+ Tr4
1

(
bx

2n−1
5

)
where the coefficients a are in F2m (m = n

2 ), the coefficient b is in F16 and m must verify m ≡ 2
(mod 4). They characterize the hyper-bentness where r ≡ 0 (mod 5) and in the case where r 6≡ 0
(mod 5) and (b+ 1)(b4 + b+ 1) = 0 in terms of Kloosterman sums and using the factorization of
x5 + x+ a−1. We summarize their result in the following theorem

Theorem 5.5.43. ([257, 256]) Let n = 2m and m = 2m1 with m1 ≡ 2 (mod 4). and m1 ≥ 3.
Let a ∈ F?2m and b ∈ F?16 . Let f (r)

a,b be the function defined on F2n by

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr4

1

(
bx

2n−1
5

)
1. If b = 1 then fa,1 is hyper-bent iff p(X) = X5 +X + a−1 is irreducible over F2m and the

quadratic form q(x) = Trm1 (x(ax4 + ax2 + a2x)) over F2m is even and Km(a) = 4
3 (2− 2m1).

2. if b is a primitive element of F?16 such that Tr4
1(b) = 0 then fa,b is hyper-bent iff p(X) =

X5 +X + a−1 is irreducible over F2m , the quadratic form q(x) = Trm1 (x(ax4 + ax2 + a2x))
over F2m is even and Km(a) = 2 · 2m1 − 4.

Moreover, they give all the hyper-bent functions in the case where a ∈ F2
m
2 . The reader can

refer to the following references of the authors [257, 256].
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6.1 Hyper-bent functions with multiple trace terms via
Dillon (like) expnents: the Charpin and Gong family

Let E′ be a set of representatives of the cyclotomic cosets modulo 2m + 1 for which each coset
has the maximal size n. Let far be the function defined on F2n by

far (x) =
∑
r∈R

Trn1 (arxr(2
m−1)) (6.1)

where ar ∈ F2n and R ⊆ E′. Charpin and Gong [54] have studied the bentness of the class
of Boolean functions far defined on F2n by (6.1) and denoted by Fn in the case when all the
coefficients ar are in F2m .

They introduced a new tool by means of Dickson polynomials to describe hyper-bent functions
far . In particular, when r is co-prime with 2m + 1, the functions far are the sum of several Dillon
monomial functions; the link between the Dillon monomial hyper-bent functions and the zeros
of some Kloosterman sums has been generalized to a link between hyper-bent functions far of
this class and some exponential sums where Dickson polynomials are involved. More precisely,
Charpin and Gong have proved the following result.

Theorem 6.1.1. ([54]) Let far be the function defined on F2n by (6.1) where ar ∈ F2m . Let gar
be the related Boolean function defined on F2m by gar (x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is

the Dickson polynomial of degree r. Then far is hyper-bent if and only if
∑
x∈F2m

χ(Trm1 (x−1) +
gar (x)) = 2m − 2 wt(gar ).

By Theorem 6.1.1, Charpin and Gong have characterized the class of binomial hyperbent
functions whose expression is of the form Trn1

(
a
(
x(2r−1)(2m−1) + x(2r+1)(2m−1))), where a ∈ F?2m

and r is an integer such that 0 < r < m and {2r − 1, 2r + 1} ⊂ E′ (note that the functions of
type (5.10) do not belong to this class). Continuing their interesting approach, Gologlu [114] has
identified some trace representation of some hyper-bent functions and proved that the following
functions defined on F2n , are hyper-bent:

• x 7→
∑2m−1−1
i=1 Trn1

(
βxi(2

m−1)), β ∈ F2m \ F2 .

• x 7→
∑2m−2−1
i=1 Trn1

(
βxi(2

m−1)) where, m odd and β(2m−4)−1 ∈ {x ∈ F∗2m | Trm1 (x) = 0}.

6.2 Hyper-bent functions with multiple trace terms via
Dillon (like) expnents: the family Hn

In the sequel, n is an even positive integer, m = n
2 is an odd integer and E is a set of representatives

of the cyclotomic classes modulo 2n − 1 for which each class has the full size n. We denote by Hn
the set of Boolean functions far,b defined on F2n whose polynomial forms are:

far,b(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr2

1(bx
2n−1

3 ). (6.2)

where R ⊆ E, all the coefficients ar are in F2m and b ∈ F?4 .
Recall that the size of the cyclotomic coset of 2 modulo 2n − 1 containing 2n−1

3 is equal to 2 (i.e.
o( 2n−1

3 ) = 2) and that, the function far,b does not belong to the class considered by Charpin and
Gong ([54]) in Subsection 6.1.
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In the following, we show that hyper-bent functions of Hn can be described by means of
exponential sums involving Dickson polynomials (Theorem 6.2.10 and Theorem 6.2.8). In partic-
ular, when b is a primitive element of F4 , we provide a way to transfer the characterization of
hyper-bentness of an element of Hn to the evaluation of the Hamming weight of some Boolean
functions. To illustrate our results, we show that the results presented in the binomial case ([197],
[196]) can be deduced. Finally, in the end of the subsection we provide a possibly new infinite
family of hyper-bent functions provided that some sets are not empty (Conjecture 6.2.15 and
Conjecture 6.2.17).

Study of the bentness of the family with multiple trace terms Hn

For m odd, 2m + 1 is a multiple of 3 and thus all exponents for x in (6.2) are multiples of
2m − 1. Therefore, every Boolean function far,b in Hn satisfies

∀x ∈ F2n , far,b(α2m+1x) = far,b(x).

where α denotes any primitive element of F2n . Furthermore, since every Boolean far,b of Hn
vanishes at 0, one can then apply Proposition 5.4.2 to get the following characterization of
hyper-bentness for an element of Hn.

Proposition 6.2.1. Let far,b ∈ Fn. Set Λ(far,b) :=
∑
u∈U χ(far,b(u)) where U is the group of

(2m + 1)-st roots of unity, that is, U = {x ∈ F2n | x2m+1 = 1}. Then, far,b is hyper-bent if and
only if Λ(far,b) = 1. Moreover, a hyper-bent function far,b is in the Partial Spreads class PSap if
and only if b ∈ F2 .

Proof. The Boolean function far,b satisfies the assumptions of Proposition 5.4.2. Therefore
far,b is hyper-bent if and only if its restriction to U has Hamming weight 2m−1 according to
Proposition 5.4.2. Now, one has Λ(far,b) = 2m + 1 − 2|{u ∈ U | far,b(u) = 1}|. Therefore, the
Hamming weight of the restriction of far,b to U equals 2m−1 if and only if Λ(far,b) = 1. The
second part of the proposition is a direct application of Proposition 5.4.4. Indeed, note that
far,b(1) =

∑
r∈R Trn1 (ar) + Tr2

1(b) = Tr2
1(b) (since Trn1 (ar) = 0 for every r ∈ R because ar ∈ F2m)

and it is clear that the elements b of F4 whose trace over F4 equals 0, are the elements of F2 .

We are interested in characterizing the hyper-bentness of the Boolean function of the form
(6.2). To this end, we begin by introducing some additional notation while underlining some facts.

Let β be a primitive element of F4 . Suppose that β = α
2n−1

3 for some primitive element α
of F2n . Set ξ := α2m−1 so that ξ is a generator of the cyclic group U := {u ∈ F2n | u2m+1 = 1}.
Note that U can be decomposed as : U =

⋃2
i=0 ξ

iV where V := {u3, u ∈ U}. Next, let introduce
the sums

Si :=
∑
v∈V

χ(far,0(ξiv)), ∀i ∈ {0, 1, 2} (6.3)

First of all, note that
S0 + S1 + S2 =

∑
u∈U

χ(far,0(u)). (6.4)

Next, one has

Lemma 6.2.2. ([192]) S1 = S2.
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Proof. Since the trace map is invariant under the Frobenius automorphism x 7→ x2, we get
applying m times the Frobenius automorphism : ∀x ∈ F2n ,

far,0(x) =
∑
r∈R

Trn1
(
a2m
r x2mr(2m−1)

)
=
∑
r∈R

Trn1
(
arx

2mr(2m−1)
)

= far,0(x2m)

because all the coefficients ar are in F2m . Hence,

S1 =
∑
v∈V

χ(far,0(ξ2mv2m)) =
∑
v∈V

χ(f0(ξ2(ξ2m−2v2m))).

Now, since m is odd, 3 divides 2m+1 and then divides 2m−2. Hence, ξ2m−2 is a cube of U and the
mapping v 7→ ξ(2m−2)v2m is a permutation of V . Consequently, S1 =

∑
v∈V χ(f0(ξ2v)) = S2.

Now, for b ∈ F?4 , we establish expressions for Λ(far,b) :=
∑
u∈U χ(far,b(u)) (where U is the

group of (2m + 1)-st roots of unity) involving the sums Si.

Proposition 6.2.3. ([192]) Λ(far,β) = Λ(far,β2) = −S0 and Λ(far,1) = S0 − 2S1.

Proof. Introduce for every element c of F4 T (c) :=
∑
b∈F4

Λ(far,b)χ(Tr2
1(bc)). Recall that one has

Λ(fb) = 1
4
∑
c∈F4

T (c)χ(Tr2
1(bc)). (6.5)

Indeed ∑
c∈F4

T (c)χ(Tr2
1(bc))

=
∑
c∈F4

∑
d∈F4

Λ(fd)χ(Tr2
1(dc))χ(Tr2

1(bc))

=
∑
d∈F4

Λ(fd)
∑
c∈F4

χ(Tr2
1(c(d+ b)))

But
∑
c∈F4

χ(Tr2
1(c(d+ b))) = 4 if d = b (i.e b+ d = 0) and 0 otherwise. Then, one gets∑

c∈F4

T (c)χ(Tr2
1(bc)) = 4Λ(fb).

Now, note that T (c) =
∑
u∈U χ(f0(u))

∑
b∈F4

χ

(
Tr2

1

(
b
(
c+ u

2n−1
3
)))

. Furthermore, one has

∑
b∈F4

χ

(
Tr2

1

(
b
(
c+ u

2n−1
3
)))

= 0 if u 2n−1
3 6= c and 4 otherwise.

Since, u 2n−1
3 6= 0 for every u ∈ U , T (0) = 0. Since β is a primitive element of F4 , let suppose

from now that c = βi, i ∈ {0, 1, 2}. Recall that β = α
2n−1

3 and ξ = α2m−1 for some primitive
element α of F2n . Then βi = ξi

2m+1
3 . Hence, T (βi) = 4

∑
u∈U, u

2n−1
3 =βi=ξi

2m+1
3

χ(f0(u)). Now,

u
2n−1

3 = ξi
2m+1

3 ⇐⇒
(
u−2ξ−i

) 2m+1
3 = 1 ⇐⇒ u−2 ∈ ξiV.
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That follows from the fact that the only elements x of U such that x 2m+1
3 = 1 are the elements

of V . Next, noting that the map x 7→ x2m−1 is one-to-one from ξiV to ξiV (because ξi(2m−1−1) is
a cube since 2m−1 − 1 ≡ 0 (mod 3) for m odd), one gets that u 2n−1

3 = ξi
2m+1

3 ⇐⇒ u ∈ ξiV.

Therefore
T (βi) = 4

∑
v∈V

χ(f0(ξiv)) = 4Si.

Finally, by the inversion formula (8.9), one gets Λ(far,b) = 1
4
∑
c∈F4

T (c)χ(Tr2
1(bc)) that is,

Λ(far,1) = S0χ(Tr2
1(1)) + S1χ(Tr2

1(β)) + S2χ(Tr2
1(β2)),

Λ(fβ) = S0χ(Tr2
1(β)) + S1χ(Tr2

1(β2)) + S2χ(Tr2
1(1)),

Λ(far,β2) = S0χ(Tr2
1(β2)) + S1χ(Tr2

1(1)) + S2χ(Tr2
1(β)).

The result follows then from Lemma 6.2.2 and from the fact that Tr2
1(1) = 0 and Tr2

1(β) =
Tr2

1(β2) = 1.

From Proposition 6.2.1, Proposition 6.2.3, Lemma 6.2.2 and (6.4), one straight-forwardly
deduces the following statement.

Lemma 6.2.4. ([192]) Let n = 2m be an even integer with m odd. For b ∈ F4 , let far,b be
a function defined by (6.2). Let β be a primitive element of F4 . Let U be the cyclic group of
(2m + 1)-st roots of unity and V be the set of the cube of U . Then,

1. far,β is hyper-bent if and only if
∑
v∈V χ(f0(v)) = −1.

2. far,β is hyper-bent if and only if far,β2 is hyper-bent.

3. far,1 is hyperbent if and only if 2
∑
v∈V χ(far,0(v))−

∑
u∈U χ(far,0(u)) = 1.

Now we shall separate the case where b = 1 and the case where b is a primitive element of F4 .

• The case where b is a primitive element of F4

According to Assertion (b) of Lemma 6.2.4, we can suppose that b = β without loss of
generality. As in the case where b = 0 (Theorem 6.1.1), one can establish a characterization of
the hyper-bentness of fβ involving the Dickson polynomials. To this end, we begin with proving
the following important technical result.

Lemma 6.2.5. ([192]) Let f0 be the function defined on F2n by f0(x) :=
∑
r∈R Trn1 (arxr(2

m−1)).
Let g be the related function defined on F2m by g(x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is the

Dickson polynomial of degree r. Let U be the cyclic group of (2m + 1)-st roots of unity. Then, for
any positive integer p, we have∑

u∈U
χ
(
f0(up)

)
= 1 + 2

∑
c∈F?2m ,Trm1 (c−1)=1

χ
(
g(Dp(c))

)
.

Proof. Using the transitivity rule Trn1 = Trm1 ◦Trnm, the fact that the coefficients ar are in the
subfield F2m of F2n and the fact that the mapping u 7→ u2m−1 is a permutation of U , one has∑

u∈U
χ
(
f0(up)

)
=
∑
u∈U

χ
(∑
r∈R

Trm1
(
ar(u(2m−1)rp + u2m(2m−1)rp)

))
=
∑
u∈U

χ
(∑
r∈R

Trm1
(
ar(urp + u−rp)

))
=
∑
u∈U

χ
(∑
r∈R

Trm1
(
arDrp(u+ u−1)

))
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since up +u−p = Dp(u+u−1). Recall now that every element 1/c where c ∈ F?2m with Trm1 (c) = 1
can be uniquely represented as u+ u2m = u+ u−1 with u ∈ U . Thus∑

u∈U
χ
(
f0(up)

)
= 1 +

∑
u∈U\{1}

χ
(∑
r∈R

Trm1
(
arDrp(u+ u−1)

))
= 1 + 2

∑
c∈F?2m ,Trm1 (c)=1

χ
(∑
r∈R

Trm1
(
arDrp(1/c)

))
= 1 + 2

∑
c∈F?2m ,Trm1 (c−1)=1

χ
(∑
r∈R

Trm1
(
arDrp(c)

))
.

In the last equality, we use the fact that the map c 7→ 1/c is a permutation on F2m . Now,
since Drp = Dr ◦Dp, one gets∑

u∈U
χ
(
f0(up)

)
= 1 + 2

∑
c∈F?2m ,Trm1 (c−1)=1

χ
(
g(Dp(c))

)
.

From Lemma 6.2.4 and Lemma 6.2.5, one deduce the following statement.

Theorem 6.2.6. ([192]) Let n = 2m be an even integer with m odd. Let β be a primitive element
of F4 . Let far,β be the function defined on F2n by (6.2). Let g be the related function defined on
F2m by g(x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is the Dickson polynomial of degree r. Then,

the three assertions are equivalent

1. far,β is hyper-bent.

2.
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
g(D3(x))

)
= −2.

3.
∑
x∈F?2m

χ
(

Trm1 (x−1) + g(D3(x))
)

= 2m − 2 wt(g ◦D3) + 4.

Proof. According to Lemma 6.2.5, we have

S0 =
∑
v∈V

χ
(
f0(v)

)
= 1

3
∑
u∈U

χ
(
f0(u3)

)
= 1

3

1 + 2
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
g(D3(x))

) .

The equivalence between assertions (a) and (b) in Theorem 6.2.10 follows then from assertion (1)
of Lemma 6.2.4.

Now, note that the indicator of the set {x ∈ F?2m | Trm1 (x−1) = 1} can be written as
1
2
(
1− χ(Trm1 (x−1))

)
. Therefore,∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
g(D3(x))

)

= 1
2

 ∑
x∈F?2m

χ
(
g(D3(x))

)
−
∑
x∈F?2m

χ
(

Trm1 (x−1 + g(D3(x)))
)

= 1
2

 ∑
x∈F2m

χ
(
g(D3(x))

)
−
∑
x∈F2m

χ
(

Trm1 (x−1 + g(D3(x)))
) .
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Now, far,β is hyper-bent if and only if
∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
g(D3(x))

)
= −2. Therefore, using

the fact that, for a Boolean function h defined on F2n ,
∑
x∈F2n

χ(h(x)) = 2n − 2 wt(h), we get
that fβ is hyper-bent if and only if∑

x∈F2m

χ
(

Trm1 (x−1) + g(D3(x))
)

= 4 + 2m − 2 wt(g ◦D3).

One also has

Proposition 6.2.7. ([192]) Let n = 2m be an even integer with m odd. Let d be a positive
integer. Suppose that d and 2m+1

3 are co-prime. Let β be a primitive element of F4 . Let far,β be
the function defined by (6.2) and har,β be the function whose expression is∑

r∈R
Trn1 (arxdr(2

m−1)) + Tr2
1(βx

2n−1
3 )

where ar ∈ F2m . Then, far,β is hyper-bent if and only if har,β is hyper-bent.

Proof. According to assertion (a) of Lemma 6.2.4, har,β is hyper-bent if and only if
∑
v∈V χ(h0(v)) =

−1. Now,
∑
v∈V χ(h0(v)) =

∑
v∈V χ(f0(vd)) =

∑
v∈V χ(f0(v)) since the mapping v 7→ vd is then

a permutation of V if 2m+1
3 and d are co-prime. The result follows again from assertion (a) of

Lemma 6.2.4.

• The case where b = 1:
we are interested in characterizing the hyper-bentness of the Boolean function far,1 whose
polynomial form is far,1(x) =

∑
r∈R Trn1 (arxr(2

m−1)) + Tr2
1(x 2n−1

3 ). In this case one can give a
characterization of the bentness, analogous to the assertion (b) of Theorem 6.2.10.

Theorem 6.2.8. ([192]) Let n = 2m be an even integer with m odd. Let far,1 be the Boolean
function defined on F2n by

far,1(x) =
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr2

1(x
2n−1

3 ).

Let g be the related function defined on F2m by g(x) =
∑
r∈R Trm1 (arDr(x)), where Dr(x) is the

Dickson polynomial of degree r.
Then, f1 is hyper-bent if and only if,

2
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
g(D3(x))

)
− 3

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
g(x)

)
= 2.

Proof. Note that

2
∑
v∈V

χ(f0(v))−
∑
u∈U

χ(f0(u)) = 2
3
∑
u∈U

χ(f0(u3))−
∑
u∈U

χ(f0(u))

= −1
3 + 4

3
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
g(D3(x))

)
− 2

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
g(x)

)
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according to Lemma 8.1.16. One then concludes using Lemma 6.2.4 that states that f1 is
hyper-bent if and only if

2
∑
v∈V

χ(f0(v))−
∑
u∈U

χ(f0(u)) = 1.

One can also prove the similar result to Proposition 6.2.7.

Proposition 6.2.9. ([192]) Let n = 2m be an even integer with m odd. Suppose that m 6≡ 3
(mod 6). Let d be a positive integer such that gcd(d, 2m + 1) = 3. Let β be a primitive element of
F4 . Let far,β be the function defined by (6.2) and har,1 be the function whose expression is∑

r∈R
Trn1 (arxdr(2

m−1)) + Tr2
1(x

2n−1
3 )

If far,β is hyper-bent then, har,1 is hyper-bent.

Proof. Set h0(x) :=
∑
r∈R Trn1 (arxdr(2

m−1)). One has (since gcd(d, 2m + 1) = 3)∑
v∈V

χ(h0(v)) =
∑
v∈V

χ(f0(vd)) =
∑
v∈V

χ(f0(v3)) =
∑
v∈V

χ(f0(v))

since the mapping v 7→ v3 is a permutation when m 6≡ 3 (mod 6). On the other hand, note that
(since gcd(d, 2m + 1) = 3)∑

u∈U
χ(h0(u)) =

∑
u∈U

χ(f0(ud)) =
∑
u∈U

χ(f0(u3)) = 3
∑
v∈V

χ(f0(v)).

Now,
∑
v∈V χ(f0(v)) = −1 according to Lemma 6.2.4, since far,β is hyper-bent. Hence,

2
∑
v∈V χ(h0(v))−

∑
u∈U χ(h0(u)) = −2− (−3) = 1, proving that har,1 is hyper-bent (according

to Lemma 6.2.4).

The following theorem summarizes the study of the bentness of functions in Hn

Theorem 6.2.10. ([192]) Let n = 2m with m odd. Let b ∈ F?4 and β be a primitive element of
F4 . Let far,b be a function of Hn defined on F2n by (6.2). Let gar be the related function defined
on F2m by gar (x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is the Dickson polynomial of degree r.

1. far,b is hyper-bent if and only if far,b is bent.

2. The bent functions far,b are in the class PS−. Moreover, the bent functions far,b are
elements of the Partial Spread class PSap (resp. PS#

ap) if b = 1 (resp. if b 6= 1).

3. The three following assertions are equivalent:

(a) far,β is hyper-bent;

(b)
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
gar (D3(x))

)
= −2;

(c)
∑
x∈F?2m

χ
(

Trm1 (x−1) + gar (D3(x))
)

= 2m − 2 wt(gar ◦D3) + 4.
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4. far,1 is hyper-bent if and only if,
2
∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
gar (D3(x))

)
− 3

∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
gar (x)

)
= 2.

Note that the previous theorem is valid when the coefficients ar are elements of F2m .

Problem 6.2.11. Give an analogous characterization of functions of type (6.2) which are hyper-
bent, in the case where some of the coefficients are in F2n , but not in F2m .

Corollary 6.2.12 and Corollary 6.2.13 show that we can recover the results given in [195] and
[196] using directly the characterizations given by Theorem 6.2.10.

Corollary 6.2.12. ([198]) Let n = 2m with m odd ( m > 3). Take in Theorem 6.2.10, #R = 1
and r = 1. For simplicity, denote by a the coefficient a1. Let fa,βi be the corresponding function
(where β be a primitive element of F4 , i ∈ {0, 1, 2}) defined on F2n by (6.2). Then, the function
fa,1 is not bent and, the function fa,β (resp. fa,β2) is hyper-bent whenever Km(a) = 4 while,
when Km(a) 6= 4, fa,β (resp. fa,β2) is not hyper-bent.

Proof. According to Lemma 11 in [192], fa,β is hyper-bent if and only if fa,β2 is hyper-bent.
Moreover, according to Theorem 6.2.10, the function fa,β is hyper-bent if and only if∑

x∈F?2m ,Trm1 (1/x)=1

χ(ga(D3(x))) = −2

where ga is the the related function (defined in Theorem 6.2.10) which is equal to Trm1 (ax) (since
the Dickson polynomial of degree 1 is equals X). The Dickson polynomial of degree 3 equals
X3 +X thus, ∑

x∈F?2m ,Trm1 (1/x)=1

χ(g(D3(x))) =
∑
x∈F?2m

χ(Trm1 (a(x3 + x)))

−
∑

x∈F?2m ,Trm1 (1/x)=0

χ(Trm1 (a(x3 + x)))

= Cm(a, a)− 1−
∑

x∈F?2m ,Trm1 (1/x)=0

χ(Trm1 (a(x3 + x)))

= Cm(a, a)− 1−
∑

x∈F?2m ,Trm1 (1/x)=0

χ(Trm1 (ax)).

In the last equality, we use the fact that the mapping x 7→ D3(x) := x3 + x is a permutation on
the set of F?2m such that Trm1 (1/x) = 0 (see e.g. [57, Lemma 7]).
Now, according to Charpin et al. [57],∑

x∈F?2m ,Trm1 (1/x)=0

χ(Trm1 (ax)) = Km(a)
2 − 1.

Hence, we get that ∑
x∈F?2m ,Trm1 (1/x)=1

χ(g(D3(x))) = Cm(a, a)− Km(a)
2 .

Therefore, fa,β (resp. fa,β2) is hyper-bent if and only if Km(a)− 2Cm(a, a) = 4. The mapping
x 7→ x3 is a permutation on F2m for m odd, every element a ∈ F2m can be (uniquely) written as
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a = a′
3 with a′ ∈ F2m . One has Cm(a, a) =

∑
x∈F2m

χ(Trm1 ((a′x)3 + ax) = Cm(1, a2/3).
Hence, according to Proposition 2.2.5 (note that Trm1 (a2/3) = Trm1 (a1/3)), the function fa,β (resp.
fa,β2) is hyper-bent if and only if,

Km(a) =
{

4 if Trm1 (a1/3) = 0
4±

( 2
m

)
2(m+3)/2 if Trm1 (a1/3) = 1

However, using Proposition 2.2.2, the value 4±
( 2
m

)
2(m+3)/2 does not belong to [−2(m+2)/2 +

1, 2(m+2)/2 + 1] for every m > 3. This proves that if Trm1 (a1/3) = 0, then the function fa,β
(resp. fa,β2) is hyper-bent whenever Km(a) = 4 while, when Km(a) 6= 4, fβ (resp. fa,β2) is not
hyper-bent. Otherwise, if Trm1 (a1/3) = 1 (which implies that Km(a) 6= 4), then the function fa,β
(resp. fa,β2) cannot be hyper-bent when m > 3. On the other hand, according to Theorem 6.2.10,
fa,1 is hyper-bent if and only if,

2
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
ga(D3(x))

)
− 3

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
ga(x)

)
= 2.

We have seen that ∑
x∈F?2m ,Trm1 (1/x)=1

χ(ga(D3(x))) = Cm(a, a)− Km(a)
2 .

Furthermore, according to [57],∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
ga(x)

)
=

∑
x∈F?2m ,Trm1 (1/x)=1

χ(Trm1 (ax)) = −Km(a)
2 .

Therefore, fa,1 is hyper-bent if and only if,

Km(a) + 4Cm(a, a) = 4.

Recalling that Cm(a, a) = Cm(1, a2/3) and Proposition 2.2.5, we get that fa,1 is hyper-bent if
and only if,

Km(a) =
{

4 if Trm1 (a1/3) = 0
4±

( 2
m

)
2(m+5)/2 if Trm1 (a1/3) = 1

However, again by Proposition 2.2.2, the value 4±
( 2
m

)
2(m+5)/2 does not belong to [−2(m+2)/2 +

1, 2(m+2)/2 + 1] for every m > 3. This proves that if Trm1 (a1/3) = 0, then the function fa,1 is
hyper-bent whenever Km(a) = 4 while, when Km(a) 6= 4, fa,1 is not hyper-bent. Otherwise, if
Trm1 (a1/3) = 1 (which implies that Km(a) 6= 4), then the function fa,1 cannot be hyper-bent
when m > 3.

Corollary 6.2.13. ([198]) Let n = 2m with m odd such that m 6≡ 3 (mod 6). Take in Theorem
6.2.10, #R = 1 and r = 3. For simplicity, denote by a the coefficient a1. Let fa,β be the
corresponding function (where β be a primitive element of F4) defined on F2n by (6.2). If
Trm1 (a1/3) = 0 then, the function fa,β is hyper-bent whenever Km(a) = 4 and if Trm1 (a1/3) = 1
then, the function fa,β is not hyper-bent.

Proof. Sincem 6≡ 3 (mod 6), the integers 2m+1
3 and 3 are co-prime. Applying Proposition 6.2.9 for

d = 3 we obtain, fa,β is hyper-bent if and only if, the function x 7→ Trn1 (ax(2m−1)) + Tr2
1(βx 2n−1

3 )
is hyper-bent. Now according to Corollary 6.2.12, we deduce that fa,β is hyper-bent whenever
Km(a) = 4 while, when Km(a) 6= 4, fβ is not hyper-bent. Otherwise, if Trm1 (a1/3) = 1 (which
implies that Km(a) 6= 4) then, the function fa,β cannot be hyper-bent when m > 3.
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The extended Walsh-Hadamar transform of fa,b1 can be expressed as follows.

Proposition 6.2.14. The notation is as in Theorem 6.2.10 except that we allow b to be equal to
zero. In that specific case, we do not suppose m to be odd. Then

χ̂fa,b(0, k) = 1 + Λ(fa,b) (−1 + 2m) ,

and, for ω ∈ F∗2n non-zero,

χ̂fa,b(ω, k) = 1− Λ(fa,b) + 2m(−1)fa,b(ω
(2m−1)/(2k)) .

Proof. We denote by U the set of (2m + 1)-th roots of unity in F2n . It is a well-known fact that
every non-zero element x ∈ F∗2n has a unique polar decomposition as a product x = yu where y
lies in the subfield F2m and u ∈ U .

The extended Walsh–Hadamard transform of fa,b at (ω, k) can consequently be expressed as

χ̂fa,b(ω, k) =
∑
x∈F2n

χ
(
fa,b(x) + Trn1

(
ωxk

))
= 1 +

∑
x∈F∗2n

χ
(
fa,b(x) + Trn1

(
ωxk

))
= 1 +

∑
u∈U

∑
y∈F∗2m

χ
(
fa,b(yu) + Trn1

(
ωykuk

))
.

But

fa,b(yu) =
∑
r∈R

Trn1
(
ar(yu)r(2

m−1)
)

+ Tr2
1

(
b(yu)

2n−1
3

)
=
∑
r∈R

Trn1
(
ary

r(2m−1)ur(2
m−1)

)
+ Tr2

1

(
by(2m−1) 2m+1

3 u
2n−1

3

)
=
∑
r∈R

Trn1
(
aru

r(2m−1)
)

+ Tr2
1

(
bu

2n−1
3

)
= fa,b(u) ,

so that

χ̂fa,b(ω, k) = 1 +
∑
u∈U

∑
y∈F∗2m

χ
(
fa,b(u) + Trn1

(
ωykuk

))
= 1 +

∑
u∈U

(−1)fa,b(u)
∑
y∈F∗2m

χ
(
Trn1

(
ωykuk

))

= 1 +
∑
u∈U

(−1)fa,b(u)

−1 +
∑
y∈F2m

χ
(
Trn1

(
ωykuk

)) .

If ω = 0, then χ̂f (ω, k) = 1 + Λ(fa,b) (−1 + 2m) as desired. If ω 6= 0, then one uses the

1For simplicity, we shall write from now fa,b instead of far,b
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i=1 j= 0, 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 17, 20, 22, 24, 26, 27, 29
i=2 j= 0, 2, 3, 4, 6, 9, 10, 13, 14, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28
i=4 j= 0, 1, 3, 4, 5, 6, 8, 11, 12, 13, 15, 17, 18, 20, 21, 23, 25, 26, 28
i=7 j= 0, 3, 4, 5, 7, 8, 10, 11, 12, 14, 16, 18, 19, 23, 26, 27, 28, 29, 30
i=8 j= 0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 15 16, 19, 21, 22, 24, 25, 26, 30,
i=14 j= 0, 1, 5, 6, 7, 8, 10, 14, 15, 16, 20, 21, 22, 23, 24, 25, 27, 28, 29
i=16 j= 0, 1, 4, 6, 7, 10, 11 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 29, 30
i=19 j= 0, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17, 18, 19, 21, 25, 27, 29, 2, 30
i=25 j= 0, 1, 2, 3, 4, 7, 9, 15, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30
i=28 j= 0, 1, 2, 9, 10, 11, 12, 13, 14, 15 16, 17, 19, 20, 23, 25, 27, 28, 30

Table 6.1 – Exponents i and j such that (αi, αj) satisfy Conjecture 6.2.15 for n = 10

transitivity of the trace: Trn1 (x) = Trm1 (Trnm (x)) = Trm1
(
x+ x2m), which yields

Trn1
(
ωykuk

)
= Trm1

(
Trnm

(
ωykuk

))
= Trm1

(
ωykuk +

(
ωykuk

)2m)
= Trm1

(
ωykuk + ω2myku−k

)
= Trm1

(
yk
(
ωuk + ω2mu−k

))
.

As k is co-prime with 2m − 1, the map y 7→ yk is a permutation of F2m and the sum over F2m is
non-zero if and only if u2k = ω2m−1. As k is co-prime with 2m + 1, this only occurs for a value of
u and we get the final equality

χ̂fa,b(ω, k) = 1− Λ(fa,b) + 2m(−1)fa,b(ω
(2m−1)/(2k)) .

6.2.1 Some conjectures: towards new hyper-bent functions
In the following, we make some conjectures that lead to construct new hyper-bent functions. To
this end, we need to introduce some notation. Let I := {x ∈ F?2m | x = c3 + c,Trm1 (c−1) = 1} and
set, for a, a′ ∈ F2m ,

S(a, a′) :=
∑
x∈I

(−1)Trm1 (a(x+x3)+a′x5).

Conjecture 6.2.15. For every a ∈ F?2m , the set Γa := {a′ ∈ F?2m | S(a, a′) = −1} is non empty.

By a computer program, we have checked that Conjecture 6.2.15 holds for all n = 2m up
to n = 26 and for every a ∈ F?2m such that Km(a) = 4. Moreover, we have made an exhaustive
search by a computer program for n ∈ {10, 14, 18, 22} of all sets Γa for each value a such that
Km(a) = 4. Let ζ be a primitive element of F210 (whose minimal polynomial is x10 + x7 + 1) and
set α = ζ33 (so that α is a primitive element of F25). We list in Table 6.1 all the pairs of indices
(i, j) such that K5(αi) = 4 and αj ∈ Γαi . We have also found all pairs (i, j) for n ∈ {14, 18, 22}.
Due to their number, we do not list them like for n = 10 but we only give in Table III the numbers
of pairs that we found (including the case where Km(a) = 4 and S(a, 0) = −1).

Proposition 6.2.16. ([198]) Let n = 2m with m odd. Suppose that Conjecture 6.2.15 holds. Let
a ∈ F?2m , a′ ∈ Γa (6= ∅) and β is a primitive element of F4 . Then, the function f the function
defined on F2n by
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n 14 18 22
Number of pairs 882 3978 13948

Table 6.2 – Number of exponents such that (αi, αj) satisfy Conjecture 6.2.15 for n ∈ {14, 18, 22}

f(x) = Trn1 ((a+ a′)x3(2m−1)) + Trn1 (a′x5(2m−1)) + Tr2
1(βx

2n−1
3 )

is hyper-bent.

Proof. We denote by g be the function defined on F2m as

g(x) = Trm1 ((a+ a′)D3(x)) + Trm1 (a′D5(x)).

Recall that D3(x) = x+ x3 and, D5(x) = x+ x3 + x5. So g(x) = Trm1
(
a(x+ x3) + a′x5). Now,

according to Theorem 6.2.10, f is hyper-bent if and only if,
∑
x∈F?2m ,Trm1 (x−1)=1 χ(g(D3(x))) =

−2. Now, according to Charpin et al. [57] (Lemma 6), the mapping x 7→ D3(x) is 3-to-1 from
{x ∈ F2m \ F2 | Trm1 (x−1) = 1} to I := {x ∈ F?2m | x = c3 + c,Trm1 (c−1) = 1}. Thus, the above
condition of hyper-bentness can be reworded as

1 + 3
∑
x∈I

χ(g(x)) = −2 , that is,
∑
x∈I

χ(g(x)) = −1.

The result follows.

More Generally, let set, for (a, a′) ∈ F?2m and a′′ ∈ F2m ,

S ′(a, a′, a′′) :=
∑
x∈I

(−1)Trm1 (ax+a′x3+a′′x5)

Conjecture 6.2.17. The set Γ′ := {(a, a′, a′′) ∈ F?2m × F?2m × F2m | S ′(a, a′, a′′) = −1} is not
empty.

By a computer search, we have found that for n = 10, there exist 1524 3-tuples (a, a′, a”) such
that S ′(a, a′, a′′) = −1, for n = 14, there exist 58790 such 3-tuples (a, a′, a”) and, for n = 18,
there exist 1904870 such 3-tuples (a, a′, a”).

Proposition 6.2.18. ([198]) Let n = 2m with m odd. Suppose that Conjecture 6.2.17 holds. Let
(a, a′, a′′) ∈ Γ′ (6= ∅) and β is a primitive element of F4 . Then, the function f defined on F2n by

f(x) = Trn1 ((a+ a′)x2m−1) + Trn1 ((a′ + a′′)x3(2m−1)) + Trn1 (a′′x5(2m−1)) + Tr2
1(βx

2n−1
3 )

is hyper-bent.

Proof. We denote g be function defined on F2m by

g(x) : = Trm1 ((a+ a′)D1(x)) + Trm1 ((a′ + a′′)D3(x)) + Trm1 (a′′D5(x)).

According to the values of Dickson polynomial,
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g(x) = Trm1
(
(a+ a′)x

)
+ Trm1

(
(a′ + a′′)(x+ x3)

)
+ Trm1

(
a′′(x+ x3 + x5)

)
= Trm1

(
ax+ a′x3 + a′′x5).

The mapping x 7→ D3(x) is 3-to-1 from {x ∈ F2m \ F2 | Trm1 (x−1) = 1} to I := {x ∈ F?2m |
x = c3 + c,Trm1 (c−1) = 1}, therefore, the condition of hyper-bentness given by Theorem 6.2.10
can be reworded as

1 + 3
∑
x∈I

χ(g(x)) = −2, that is,
∑
x∈I

χ(g(x)) = −1.

Equivalently,
S ′(a, a′, a′′) :=

∑
x∈I

(−1)Trm1 (ax+a′x3+a′′x5) = −1.

The result follows.

6.3 Hyper-bent functions with multiple trace terms via
Dillon (like) expnents: the Wang et al. family

Adopting our approach presented in the previous section, Wang,Tang, Qi, Yang and Xu [258]
have studied in late 2011 the following family with an additional trace term on F16 :

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Tr4
1

(
bx

2n−1
5

)
(6.6)

where the coefficients ar lie in F2m , the coefficient b is in F16 and m must verify m ≡ 2
(mod 4) (the set R is defined as above ,that is, a subset of representatives of the cyclotomic
cosets modulo 2m + 1 for which each coset has the maximal size n). We denote by Wn the set of
Boolean functions fa,b defined on F2n by (6.6).

We have provide a finer study of this family by giving results including useful expressions for
their extended Walsh -Hadamard transform, their algebraic degrees and their duals.

The divisibility condition on m essentially entails that 2m ≡ −1 (mod 5). A first consequence
of this equality is that all functions in this family have the same algebraic degree, even the ones
which are not hyper-bent.

Proposition 6.3.1. ([102]) Let fa,b be a function of Wn. The algebraic degree of the function
fa,b is equal to m.

Proof. The exponent 2m − 1 has 2-weight m since 2m − 1 = 1 + 2 + 22 + · · ·+ 2m−1. Moreover,
m ≡ 2 (mod 4) so that n = 2m can be expressed as n = 8l + 4. Then

2n − 1
5 = 162l+1 − 1

5 = 3× 162l+1 − 1
15

= 3×
2m∑
i=0

16i =
2l∑
i=0

24i +
2l∑
i=0

24i+1 .

Therefore, the 2-weight of 2n−1
5 is 4l + 2 = n

2 = m as well.
Both Boolean functions x 7→

∑
r∈R Trn1

(
arx

r(2m−1)) and x 7→ Tr4
1

(
bx

2n−1
5

)
are thus of

algebraic degree m. Since they are separate parts in the trace representation of fa,b, the algebraic
degree of fa,b is equal to m as well.
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The divisibility condition onm also implies that fa,b(xy) = fa,b(y) for any x in the subfield F2m .
The extended Walsh–Hadamard spectrum of fa,b can then be expressed with Λ(fa,b) in a classical
manner [170, Theorem 3], [101], thus extending the result of Wang et al. [258, Proposition 3.1]
which gives a characterization of the hyper-bentness of fa,b using Λ(fa,b) but does not provide an
explicit expression for its extended Walsh–Hadamard spectrum.

Proposition 6.3.2. ([102]) Let fa,b be a function of Wn. Then

χ̂fa,b(0, k) = 1 + Λ(fa,b) (−1 + 2m) ,

and, for ω ∈ F∗2n non-zero,

χ̂fa,b(ω, k) = 1− Λ(fa,b) + 2m(−1)fa,b(ω
(2m−1)/(2k)) .

In particular, fa,b is hyper-bent if and only if Λ(fa,b) = 1.

The dual of fa,b can then be explicitly computed when fa,b is hyper-bent.

Proposition 6.3.3. ([102]) If fa,b is hyper-bent, then its dual is fa,b4 , i.e. we have

∀ω ∈ F2n , χ̂fa,b(ω) = 2mχfa,b4 (ω).

Proof. Let u ∈ U be the unique element such that u1−2m = u2 = ω2m−1, that is u = ω(2m−1)/2.
Then fa,b(u) = fa,b(ω−1).

Moreover, since m ≡ 2 (mod 4), 15 divides 2m − 4. Hence, b2m = b4 and it follows that
fa,b(ω−1) = fa,b4(ω).

Extending our approach [197, 192], Wang et al. [258] derived the following characterization
of the hyper-bentness property of such functions in two cases

• b = 1 and b4 + b+ 1 = 0

• ar ∈ F2
m
2

They showed that hyper-bentness of these functions for the two cases are related to some
character sums involving Dickson polynomials of degree r and 5. The following theorem summarizes
their results.

Theorem 6.3.4. ([258]) Suppose m := n
2 ≡ 2 (mod 4). Let R ⊆ E where E is a set of

representatives of the cyclotomic classes modulo 2n−1 for which each class has the full size n. For
b ∈ F?16 and ar ∈ F?2m , we denote by g̃ar,b the function defined on F2n by

∑
r∈R Trn1 (arxr(2

m−1)) +
Tr4

1(b′x 2n−1
5 ), and by har the function defined on F2m by

∑
r∈R Trm1 (arDr(x)), where Dr(x) is

the Dickson polynomial of degree r. Then,

1. If b a primitive element of F16 such that Tr4
1(b) = 0 then,

∑
u∈U χ

(
g̃ar,b(u)

)
= 1 if and

only if, ∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
har (D5(x))

)
= 2

2. If b = 1 then,
∑
u∈U χ

(
g̃ar,1(u)

)
= 1 if and only if

2
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
har (D5(x))

)
− 5

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
har (x)

)
= 4.
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3. Assume ar ∈ F2
m
2 . If b ∈ {β, β2, β3, β4} where β is a primitive 5-th root of unity in F16

then,
∑
u∈U χ

(
g̃ar,b(u)

)
= 1 if and only if,

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
har (D5(x))

)
+ 5

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
har (x)

)
= −8.

4. Assume ar ∈ F2
m
2 . If b is a primitive element of F16 such that Tr4

1(b) = 1 then,∑
u∈U χ

(
g̃ar,b(u)

)
= 1 if and only if,

3
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
har (D5(x))

)
− 5

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
har (x)

)
= −4.

5. Assume ar ∈ F2
m
2 . If b ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3} where β is a

primitive 5-th root of unity in F16 then,
∑
u∈U χ

(
g̃ar,b(u)

)
= 1 if and only if,

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
har (D5(x))

)
= 2.

We deduced the following expressions for Λ(fa,b).

Theorem 6.3.5. Suppose m := n
2 ≡ 2 (mod 4). Let R ⊆ E where E is a set of representatives

of the cyclotomic classes modulo 2n − 1 for which each class has the full size n. For b ∈ F?16 and
ar ∈ F?2m , we denote by g̃ar,b the function defined on F2n by

∑
r∈R Trn1 (arxr(2

m−1))+Tr4
1(b′x 2n−1

5 ),
and by ga the function defined on F2m by

∑
r∈R Trm1 (arDr(x)), where Dr(x) is the Dickson

polynomial of degree r. Then,

1. If b = 1, then 5Λ(fa,1) = 4T 5
1 (ga)− 10T1(ga)− 3.

2. If b is a primitive element of F16 such that Tr4
1 (b) = 0, then 5Λ(fa,b) = 2T 5

1 (ga) + 1.

3. If moreover ar ∈ F2
m
2 , then

(a) if b is a primitive element of F16 such that Tr4
1 (b) = 1, then 5Λ(fa,b) = −3T 5

1 (ga) +
5T1(ga) + 1;

(b) if b is a primitive 5-th root of unity, then 5Λ(fa,b) = −T 5
1 (ga)− 5T1(ga)− 3;

(c) if b is a primitive 3-rd root of unity, then 5Λ(fa,b) = 2T1(ga) + 1.

Recall that fa,b is hyper-bent if and only if Λ(fa,b) = 1. Therefore, the above theorem gives a
characterization of the hyper-bentness of fa,b using T 5

1 (ga) and T1(ga). These exponential sums
can then be reformulated in terms of the Hamming weight of ga and related functions using
Lemma 2.4.8.

6.4 Hyper-bent functions via Dillon-like exponents: the
general study

In this section, we shall use the notation Subsection 2.2.3 dealing with partial exponential sums.
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6.4.1 Extending the Charpin–Gong criterion
The family of Boolean functions Fn consists of the functions fa given in trace representation by
Dillon-like only exponents, that is

fa(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

(6.7)

where R is a set of representatives of the cyclotomic classes modulo 2m + 1 (hence the elements
r(2m − 1) yield a set of representatives of the cyclotomic classes modulo 2n − 1 of the form
[i(2m − 1)]) and the coefficients ar live in the field F2n . Departing from the approach of Charpin
and Gong, we do not require that the cyclotomic cosets are of maximal size n = 2m.
Lemma 6.4.1. Let fa be a Boolean function in Fn. Then fa(α2m+1x) = fa(x).
Proof. We indeed have

fa(α2m+1x) =
∑
r∈R

Trn1
(
ar(α2m+1x)r(2

m−1)
)

=
∑
r∈R

Trn1
(
arα

r(2n−1)xr(2
m−1)

)
= fa(x) .

Proposition 5.4.2 can therefore be directly applied to characterize the hyper-bentness of fa
with the partial exponential sum Λ(a) = Λ(fa).
Proposition 6.4.2. Let fa be a Boolean function in Fn. The function fa is hyper-bent if and
only if Λ(a) = 1.
Proof. According to Proposition 5.4.2, fa is hyper-bent if and only if its restriction to U has
Hamming weight 2m−1. Moreover, we have Λ(a) = #U − 2 wt(fa|U ) = 2m + 1− 2 wt(fa|U ). Thus,
fa is hyper-bent if and only if Λ(a) = 1.

Remark 6.4.3. A hyper-bent function fa ∈ Fn is in PSap if and only if
∑
r∈R Trn1 (ar) = 1.

In fact, the complete extended Walsh–Hadamard spectrum of fa can be expressed with Λ(a).
Proposition 6.4.4. Let fa be a Boolean function in Fn and k an integer co-prime with 2n − 1.
For ω = 0,

χ̂fa(0, k) = 1 + Λ(a) (−1 + 2m) ,

and, for ω ∈ F∗2n non-zero,

χ̂fa(ω, k) = 1− Λ(a) + 2mχfa
(
ω(2m−1)/(2k)

)
.

Proof. It is a well-known fact that every non-zero element x ∈ F∗2n has a unique polar decomposi-
tion as a product x = yu where y lies in the subfield F2m and u ∈ U .

The extended Walsh–Hadamard transform of fa at (ω, k) can consequently be expressed as

χ̂fa(ω, k) =
∑
x∈F2n

χ
(
fa(x) + Trn1

(
ωxk

))
= 1 +

∑
x∈F∗2n

χ
(
fa(x) + Trn1

(
ωxk

))
= 1 +

∑
u∈U

∑
y∈F∗2m

χ
(
fa(yu) + Trn1

(
ωykuk

))
.
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But

fa(yu) =
∑
r∈R

Trn1
(
ar(yu)r(2

m−1)
)

=
∑
r∈R

Trn1
(
ary

r(2m−1)ur(2
m−1)

)
=
∑
r∈R

Trn1
(
aru

r(2m−1)
)

= fa(u) ,

so that

χ̂fa(ω, k) = 1 +
∑
u∈U

∑
y∈F∗2m

χ
(
fa(u) + Trn1

(
ωykuk

))
= 1 +

∑
u∈U

χfa(u)
∑
y∈F∗2m

χ
(
Trn1

(
ωykuk

))

= 1 +
∑
u∈U

χfa(u)

−1 +
∑
y∈F2m

χ
(
Trn1

(
ωykuk

))
= 1− Λ(a) +

∑
u∈U

χfa(u)
∑
y∈F2m

χ
(
Trn1

(
ωykuk

))
.

If ω = 0, then χ̂f (ω, k) = 1 + Λ(a) (−1 + 2m) as desired.
If ω 6= 0, then the transitivity of the trace yields

Trn1
(
ωykuk

)
= Trm1

(
Trnm

(
ωykuk

))
= Trm1

(
ωykuk +

(
ωykuk

)2m)
= Trm1

(
ωykuk + ω2myku−k

)
= Trm1

(
yk
(
ωuk + ω2mu−k

))
.

As a consequence of this equality and of the fact that k is co-prime with 2m − 1, the sum over
F2m is non-zero if and only if u2k = ω2m−1. As k is co-prime with 2m + 1, this only occurs for a
value of u. Therefore

χ̂fa(ω, k) = 1− Λ(a) + 2mχfa
(
ω(2m−1)/(2k)

)
.

In particular, Proposition 6.4.2 is a direct corollary to the above proposition.

Remark 6.4.5. Set
fa(x) =

∑
r∈R

Trn1 (arxr) ,

and let Λ(a) = Λ(fa). The integers 2m − 1 and 2m + 1 are co-prime and so the (2m − 1)-power
map induces a permutation of U . In particular, one has Λ(a) = Λ(a).

We now restrict to the family Gn of Boolean functions defined as above, but where the
coefficients ar are restricted to the subfield F2m . The following remark shows that it is enough to
restrict to Dillon-like exponents whose cyclotomic coset sizes do not divide m.
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Remark 6.4.6. If t = o(r(2m − 1)), then

Trn1
(
arx

r(2m−1)
)

= Trt1
(

Trnt (ar)xr(2
m−1)

)
.

Suppose now that ar ∈ F2m , e.g. fa ∈ Gn. If t divides m, then Trnt (ar) = Trmt
(
ar + a2m

r

)
= 0

and
Trn1

(
arx

r(2m−1)
)

= 0 .

Otherwise, if k = gcd(t,m), then Trnt (ar) ∈ F2k .

Furthermore, Proposition 6.4.4 can be used to compute the dual of fa in the case where fa is
hyper-bent.

Proposition 6.4.7. Suppose that fa ∈ Gn is hyper-bent. Then it is its own dual, i.e. we have

χ̂fa(ω) = 2mχfa(ω) .

Proof. If fa is hyper-bent, then Λ(a) = 1 and one has

χ̂fa(ω) = 2mχfa(u) ,

where u1−2m = ω2m−1. In particular, one has fa(u) = fa(ω−1). One then concludes that
fa(ω−1) = fa(ω) using the facts that a2m

r = ar and that 2m(1− 2m) ≡ 2m − 1 (mod 2n − 1).

For functions fa in Gn, Remark 6.4.5 combined with the transitivity of the trace yields a
useful expression of Λ(a) using the partial exponential sum T1 whose proof we recall here.

Lemma 6.4.8 ([192, Lemma 12]). Let fa be a Boolean function in Gn and l be any positive
integer. Let ga be the Boolean function defined on F2m as ga(x) =

∑
r∈R Trm1 (arDr(x)). Then

Λ(fa(xl)) = 1 + 2T1(ga ◦Dl).

Proof. Using the facts that the (2m − 1)-power map induces a permutation of U , that a2m
r = ar

and that Dr(x+ x−1) = xr + x−r for any x ∈ F2n , one gets

Λ(fa(xl)) =
∑
u∈U

χ

(∑
r∈R

Trn1
(
ar

(
u2m−1

)lr))

=
∑
u∈U

χ

(∑
r∈R

Trn1
(
aru

lr
))

=
∑
u∈U

χ

(∑
r∈R

Trm1
((
aru

lr
)

+
(
aru

lr
)2m))

=
∑
u∈U

χ

(∑
r∈R

Trm1
(
ar
(
ulr + u−lr

)))

=
∑
u∈U

χ

(∑
r∈R

Trm1
(
arDr(Dl(u+ u−1))

))
.

To conclude, recall that the map x 7→ x+ x−1 is 2-to-1 from U \ {1} to T1 to obtain

Λ(fa(xl)) = 1 + 2
∑
t∈T1

ga(Dl(t))

= 1 + 2T1(ga ◦Dl) .
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The following extension of the Charpin–Gong criterion ([54], Theorem 7) is then straightfor-
ward.

Theorem 6.4.9. Let fa be a Boolean function in Gn. Let ga be the Boolean function defined on
F2m as ga(x) =

∑
r∈R Trm1 (arDr(x)). Then fa is hyper-bent if and only if T1(ga) = 0. Moreover,

if fa is hyper-bent, then it is in the PSap class.

Proof. This is a direct consequence of Proposition 6.4.2 and Lemma 6.4.8.

6.4.2 Hyper-bentness criterion for functions in Hn

The above approach yields criteria for hyper-bentness of Boolean functions fa in the families Fn,
respectively Gn, involving only one exponential sum over U ⊂ F2n , respectively T1 ⊂ F2m .

In particular, applying Lemma 2.4.8 to Theorem 6.4.9, one gets a characterization for the
hyper-bentness of fa ∈ Gn involving only complete exponential sums over F2m , or equivalently
the Hamming weights of ga and the related function x 7→ Trm1 (1/x) + ga(x) defined over F2m .

Nonetheless, the restriction that lies on the coefficients ar in the latter case is not satisfying,
namely they should live in the field F2n rather than in F2m . In this subsection, we extend our
approach to partially address this issue, that is allow an additional trace term without any
restriction on its coefficient.

We therefore consider a different family of Boolean functions defined as follows. The family of
Boolean functions Hn consists of the functions fa,b defined as

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Trt1
(
bxs(2

m−1)
)

(6.8)

where R is a set of representatives of the cyclotomic classes modulo 2m + 1, the coefficients ar are
in F2m , s divides 2m + 1, i.e. s(2m− 1) is a Dillon-like exponent, t = o(s(2m− 1)), i.e. t is the size
of the cyclotomic coset of s modulo 2m+ 1, and the coefficient b is in F2t . Moreover, let τ = 2m+1

s .
Remark that fa,0 = fa where fa ∈ Gn is the function defined in the previous subsection. Set

fa,b(x) =
∑
r∈R

Trn1 (arxr) + Trt1 (bxs) .

Remark 6.4.10. According to Remark 6.4.6, the family Hn is always strictly larger than the
family Gn.

Let U =
{
u ∈ F∗2n | u2m+1 = 1

}
be the subgroup of F∗2n of order 2m+1, V = {v ∈ F∗2n | vs = 1}

its subgroup of order s and W = {w ∈ F∗2n | wτ = 1} its subgroup of order τ . Denote by α a
primitive element of F2n . Then ζ = α2m−1 is a generator of U , ρ = ζτ is a generator of V and
ξ = ζs is a generator of W .

Remark 6.4.11. Note that F∗2t ⊃W . Indeed, by definition s(2m−1) ≡ 2ts(2m−1) (mod 2n−1).
Thus, (2t− 1)s ≡ 0 (mod 2m + 1), which implies that 2t− 1 ≡ 0 (mod τ), that is τ divides 2t− 1.

Remark 6.4.12. Let us consider the τ -power homomorphism φ : x ∈ F∗2n 7→ xτ ∈ F∗2n . Its
kernel is W and so it is τ -to-1.

Furthermore, V and W are subsets of U , so that the restriction of φ to U maps U onto V
and is again τ -to-1.

A similar statement is clearly true for s, exchanging the sets V and W .
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Remark 6.4.13. The set U can be decomposed as

U =
τ−1⋃
i=0

ζiV =
s−1⋃
i=0

ζiW .

Definition 6.4.14. For i ∈ Z, define Si(a) and Si(a) to be the partial exponential sums

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
,

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
.

Moreover, define Λ(a, b) = Λ(fa,b) and Λ(a, b) = Λ(fa,b).

Remark 6.4.15. The Boolean function fa,b is hyper-bent if and only if Λ(a, b) = 1. Moreover, Re-
mark 6.4.5 can be extended to fa,b and fa,b and yields Λ(a, b) = Λ(a, b). Finally, Proposition 6.4.7
can be extended to show that, if fa,b is hyper-bent, then its dual is fa,b2m .

Remark 6.4.16. Remark that ζ is of order τ so that Si(a) and Si(a) only depend on the value
of i modulo τ .

Remark 6.4.17. One obviously has

τ−1∑
i=0

Si(a) = Λ(a, 0) = Λ(a) .

In particular, Lemma 6.4.8 yields

τ−1∑
i=0

Si(a) = 1 + 2T1(ga) .

In the particular case where fa is a monomial function with a Dillon exponent, i.e. fa(x) =
Trn1

(
axr(2

m−1)) where r is co-prime with 2m + 1, Remark 6.4.17 can be further refined.

Lemma 6.4.18. Suppose that r is co-prime with 2m + 1. One has

τ−1∑
i=0

Si(a) = 1−Km(a) .

Proof. The function u 7→ u+ u−1 being onto and 2-to-1 from U \ {1} to T1, one gets

Km(a) = −2T1(Trm1 (ax))

= −
∑

u∈U, u 6=1
χ
(
Trm1

(
a
(
u+ u−1)))

= −
∑

u∈U, u 6=1
χ (Trn1 (au))

= 1−
∑
u∈U

χ (Trn1 (au)) .
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Furthermore, the r-power map induces a permutation of U and thus∑
u∈U

χ (Trn1 (au)) =
∑
u∈U

χ (Trn1 (aur))

= Λ(a)
= Λ(a) .

The two partial exponential sums Si and Si defined above are closely related.
Lemma 6.4.19. For 0 ≤ i ≤ τ − 1, one has

Si(a) = S−2i(a) .

Proof. First, one has

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
=
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar
(
ζiv
)r(2m−1)))

=
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar

(
ζi(2

m−1)v2m−1
)r))

.

But 2m − 1 is co-prime with s, so that the (2m − 1)-power map induces a permutation of V , as
does multiplication by ζτ . Moreover, 2m + 1 ≡ 0 (mod τ) implies that 2m − 1 ≡ −2 (mod τ).
Hence,

Si(a) =
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar
(
ζ−2iv

)r))
.

Remark 6.4.17 can then be extended to express Λ(a, b) as a linear combination of the sums Si.
Proposition 6.4.20. One has

Λ(a, b) =
τ−1∑
i=0

χ
(
Trt1

(
bξi
))
Si(a) .

Proof. Indeed,

Λ(a, b) = Λ(a, b)

=
∑
u∈U

χ
(
fa(u) + Trt1 (bus)

)
=
∑
u∈U

χ
(
fa(u)

)
χ
(
Trt1 (bus)

)
=
τ−1∑
i=0

∑
v∈V

χ
(
fa(ζiv)

)
χ
(

Trt1
(
b
(
ζiv
)s))

=
τ−1∑
i=0

χ
(
Trt1

(
bξi
))∑

v∈V
χ
(
fa(ζiv)

)
=
τ−1∑
i=0

χ
(
Trt1

(
bξi
))
Si(a) .
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We now devise an additional relation between the partial exponential sums Si and the partial
exponential sum T1. In particular, we express the partial exponential sum S0 using T1.

Lemma 6.4.21. Let l be a divisor of τ and let k be the integer k = τ/l. Then

k−1∑
i=0

Sil(a) =
k−1∑
i=0

Sil(a) = 1
l

(1 + 2T1(ga ◦Dl)) .

For l = 1, it reads
τ−1∑
i=0

Si(a) =
τ−1∑
i=0

Si(a) = (1 + 2T1(ga)) ,

which is nothing but Remark 6.4.17. For l = τ , it reads

S0(a) = S0(a) = 1
τ

(1 + 2T1(ga ◦Dτ )) .

Proof. According to a straightforward extension of Remark 6.4.11, the l-power map is l-to-1 from
U onto

⋃k−1
i=0 ζ

ilV . Therefore,

k−1∑
i=0

Sil(a) =
k−1∑
i=0

∑
v∈V

χ
(
fa(ζilv)

)
= 1
l

∑
u∈U

χ
(
fa(ul)

)
.

One then concludes with Lemma 6.4.8.
The results for Si readily follows from the fact multiplication by −2 induces a permutation of

{il}k−1
i=0 and Lemma 6.4.19.

Remark 6.4.22. Recall that τ divides 2m + 1, and so does l. Therefore, τ and l are co-prime
with 2m − 1. According to Corollary 2.4.6, Dl induces a permutation of T0, whence the validity of
the equality

k−1∑
i=0

Sil(a) =
k−1∑
i=0

Sil(a) = 1
l

(1 + 2Ξ (ga ◦Dl)− 2T0(ga)) .

In the case where l = τ , it reads

S0(a) = S0(a) = 1
τ

(1 + 2Ξ (ga ◦Dτ )− 2T0(ga)) .

To conclude this section, we show how further identities involving the partial exponential
sums Si can be obtained by restricting the field of definition of the coefficients ar to a strict
subfield of F2m .

Lemma 6.4.23. Let l be a divisor of m and k = m/l. Suppose that the coefficients ar lie in F2l
and that 2l ≡ j (mod τ), where j is a k-th root of −1 modulo τ . Then

Si(a) = Sij(a) .
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Proof. Recall that 2m ≡ −1 (mod τ). Hence, if 2l ≡ j (mod τ), then j is a k-th root of −1
modulo τ .

Since ar ∈ F2l , one has a2l
r = ar. Recall that Trn1

(
x2) = Trn1 (x), so that

Si(a) =
∑
v∈V

χ
(
fa(ζiv)

)
=
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar(ζiv)r

))

=
∑
v∈V

χ

(∑
r∈R

Trn1
(
a2l
r (ζ2liv2l)r

))

=
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar(ζijζi(2

l−j)v2l)r
))

.

But the (2l)-power map and multiplication by ζi(2l−j) induce permutations of V and therefore

Si(a) =
∑
v∈V

χ

(∑
r∈R

Trn1
(
ar(ζijv)r

))
= Sij(a) .

Remark 6.4.24. In the particular case where l = m, note that 2m ≡ −1 (mod τ). Therefore,
one has

Si(a) = S−i(a) .

One then deduces from Proposition 6.4.20 that

Λ(a, b) = χ
(
Trt1 (b)

)
S0(a) +

τ−1
2∑
i=1

(
χ
(
Trt1

(
bξi
))

+ χ
(
Trt1

(
bξ−i

)))
Si(a) .

Remark 6.4.25. It is a difficult problem to deduce a completely general characterization of
hyper-bentness in terms of complete exponential sums from the results of the current section, that
is a characterization valid for any m, s and b. Nevertheless, several powerful applications of these
results, valid for infinite families of Boolean functions, will be described in Section 6.6.

6.4.3 An alternate proof
To provide an alternate proof of Proposition 6.4.20, we introduce different exponential sums.

Proposition 6.4.26. For c ∈ F2t , let Λ̃(a, c) be the exponential sum

Λ̃(a, c) =
∑
b∈F2t

χ
(
Trt1 (bc)

)
Λ(a, b) .

1. For all c ∈ F2t , one has
Λ̃(a, c) = 2t

∑
u∈U, us=c

χ
(
fa(u)

)
.

2. If c ∈ F2t \W , then Λ̃(a, c) = 0. If c ∈W , that is if c = ξi for some i, then

Λ̃(a, ξi) = 2tSi(a) .
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Proof. 1. Exchanging the summation orders on U and F2t yields

Λ̃(a, c) =
∑
b∈F2t

χ
(
Trt1 (bc)

)∑
u∈U

χ (fa,b(u))

=
∑
b∈F2t

χ
(
Trt1 (bc)

)∑
u∈U

χ (fa(u))χ
(

Trt1
(
bus(2

m−1)
))

=
∑
u∈U

χ (fa(u))
∑
b∈F2t

χ
(

Trt1
(
b
(
c+ us(2

m−1)
)))

.

The sum over F2t is non-zero if and only if c = us(2
m−1) so that

Λ̃(a, c) = 2t
∑

u∈U, us(2m−1)=c

χ (fa(u))

= 2t
∑

u∈U, us=c
χ
(
fa(u)

)
.

2. According to Remark 6.4.11, if c ∈ F2t \W , then the equation us = c has no solutions in U .
Therefore, we have Λ̃(a, c) = 0.

Suppose now that c ∈W and that c = ξi = ζis for some i. The kernel of the s-power map
is V so that us = ζis if and only if u ∈ ζiV . Thus, we have

Λ̃(a, c) = 2t
∑
v∈V

χ
(
fa(ζiv)

)
.

The partial exponential sum Λ(a, b) can now be expressed with Λ̃(a, c).

Lemma 6.4.27. One has

Λ(a, b) = 1
2t
∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c) .

Proof. Going back to the definition of Λ̃(a, c), one has∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c) =

∑
c∈F2t

χ
(
Trt1 (bc)

) ∑
d∈F2t

χ
(
Trt1 (dc)

)
Λ(a, d)

=
∑
d∈F2t

Λ(a, d)
∑
c∈F2t

χ
(
Trt1 (bc)

)
χ
(
Trt1 (dc)

)
=
∑
d∈F2t

Λ(a, d)
∑
c∈F2t

χ
(
Trt1 ((b+ d) c)

)
.

But
∑
c∈F2t

χ
(
Trt1 ((b+ d) c)

)
= 0 if b 6= d and 2t otherwise. Therefore

∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c) = 2tΛ(a, b) .
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Remark 6.4.28. Proposition 6.4.26 and Lemma 6.4.27 provide an alternate proof of Proposi-
tion 6.4.20:

Λ(a, b) = 1
2t
∑
c∈F2t

χ
(
Trt1 (bc)

)
Λ̃(a, c)

= 1
2t

 ∑
c∈F2t\W

χ
(
Trt1 (bc)

)
Λ̃(a, c) +

∑
c∈W

χ
(
Trt1 (bc)

)
Λ̃(a, c)


= 1

2t
∑
c∈W

χ
(
Trt1 (bc)

)
Λ̃(a, c)

= 1
2t

τ−1∑
i=0

χ
(
Trt1

(
bξi
))

Λ̃(a, ξi)

= 1
2t

τ−1∑
i=0

χ
(
Trt1

(
bξi
))

2tSi(a)

=
τ−1∑
i=0

χ
(
Trt1

(
bξi
))
Si(a) .

6.5 Building infinite families of extension degrees
In the previous section, we set an extension degree m and studied the corresponding exponents s
dividing 2m + 1. It is however customary to go the other way around, i.e. set an exponent s, or a
given form of exponents, which is valid for an infinite family of extension degrees m and devise
characterizations valid for this infinity of extension degrees. In this section, we provide the link
between these two approaches.

More precisely, we supposed above that the additional trace term had a Dillon-like exponent,
i.e. that is was of the form s(2m− 1) where s divides 2m + 1 and τ = 2m+1

s . Hence, the Dillon-like
exponent could be written as 2n−1

τ = 2m+1
τ (2m − 1) and the above construction then relied on

the fact that τ divided 2m + 1, that is that 2m ≡ −1 (mod τ) or equivalently that −1 was in the
cyclotomic coset of 1 modulo 2m + 1.

The problem we tackle in this section is the following: fix a value for τ and devise the extension
degrees m for which τ divides 2m + 1. In fact, there are only two possibilities for a given τ : either
there is an infinity of such extension degrees, or there is no extension degree at all. Therefore, we
focus on the construction and characterization of values of τ for which an infinite number of such
extension degrees m exists, starting with prime numbers and then extending our approach to
prime powers and finally to odd composite numbers. The number 2m + 1 is obviously odd so that
an even τ can not divide 2m + 1 and this last case covers all possibilities for τ .

6.5.1 Prime case
Let p be an odd prime number and set τ = p. The set of modular integers Z/pZ is a field and
there exists i such that 2i ≡ −1 (mod p) if and only if the multiplicative order of 2 modulo p is
even. In this case, 2m ≡ −1 (mod p) if and only if m ≡ o (mod 2o), where 2o is the multiplicative
order of 2 modulo p. In particular, the family of such extension degrees m is infinite. The size
t = o(s) of the cyclotomic coset of s = (2m + 1)/p modulo 2m + 1 is then

t = 2o .
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Furthermore, one has
2m ≡ 2o (mod 2t − 1) ,

so that if fa,b ∈ Hn is hyper-bent, then its dual is fa,b2o .
To actually devise such prime numbers, we now focus on the specific case where the multi-

plicative order of 2 modulo p is maximal, that is where 2 is a primitive root modulo p. In this
situation, the above condition becomes

2
p−1

2 ≡ −1 (mod p) .

This implies that the Legendre symbol
(

2
p

)
of 2 modulo p is −1 and that 2 is a quadratic

nonresidue modulo p. It is well-known that the Legendre symbol of 2 modulo an odd prime p is(
2
p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 (mod 8) ,
−1 if p ≡ ±3 (mod 8) .

Therefore, if 2 is a primitive root modulo p, then one must have p ≡ ±3 (mod 8). This gives
a practical criterion to discard prime numbers such that 2 is not a primitive element. Further
characterizations of primes p such that 2 is a primitive root modulo p can be found in a paper of
Park, Park and Kim [217].

For such a prime number p, 2m ≡ −1 (mod p) if and only if m ≡ p−1
2 (mod p− 1). The size

t = o(s) of the cyclotomic coset of s = (2m + 1)/p modulo 2m + 1 is then

t = p− 1 .

Finding an infinite number of odd prime numbers for which 2 is a primitive element would
thus give an elegant solution to our problem, i.e. finding an infinite family of denominators τ = p
associated with infinite families of extension degrees m. This question is however difficult; it is a
special case of Artin’s conjecture on primitive roots.

Conjecture 6.5.1 (Artin’s conjecture on primitive roots). Let a be an integer which is neither a
perfect square nor −1. Then the number of primes numbers p such that a is a primitive element
modulo p is infinite.

It should be noted that Artin’s conjecture has been proved by Hooley [129] under the
Generalized Riemann Hypothesis. Heath-Brown [123] has proved unconditionally that there
exist at most two exceptional primes for which Artin’s conjecture fails; nonetheless, this proof is
non-constructive.

From a more computational perspective, the first elements of the sequence of primes such
that 2 is a primitive element is sequence A001122 in OEIS [136] and begins with

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83 .

As mentioned in the beginning of this section, it is not necessary that 2 is a primitive root
modulo 2 for 1 and −1 to lie in the same cyclotomic coset modulo p. The list of odd primes p
smaller than 100 such that the multiplicative order of 2 modulo p is even and a strict divisor of
p− 1, together with half the order o of 2, i.e. the smallest integer o such that 2o ≡ −1 (mod p), is

(17, 4), (41, 10), (43, 7), (97, 24) .

Finally, there exist as well odd primes for which 1 and −1 are not in the same cyclotomic
coset modulo p. The list of such primes smaller than 100 is

7, 23, 31, 47, 71, 73, 79, 89 .
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6.5.2 Prime power case
Let p be an odd prime number and k ≥ 2 a positive integer. Set τ = pk. The multiplicative group
of units modulo pk is once again cyclic and isomorphic to(

Z/pkZ
)× ' (Z/(p− 1)Z)× (Z/pZ)k−1

.

The condition for the prime case is thus still valid; there exists i such that 2i ≡ −1 (mod pk) if
and only if the multiplicative order of 2 modulo pk is even. In this case, 2m ≡ −1 (mod pk) if
and only if m ≡ o (mod 2o), where 2o is the multiplicative order of 2 modulo pk. In particular,
the family of such extension degrees is also infinite. The size t = o(s) of the cyclotomic coset of
s = (2m + 1)/pk modulo 2m + 1, is then

t = 2o .

If fa,b ∈ Hn is hyper-bent, then its dual is fa,b2o .
It is a classical result [70, Lemma 1.4.5 and following remarks], that if an integer a is a

primitive root modulo p, then a or a+ p is a primitive root modulo p2. Furthermore, if a is a
primitive root modulo p2, then it is modulo pk for any k ≥ 2 [70, Lemma 1.4.5 and following
remarks]. Conversely, if a is not a primitive root modulo pi, then it is not a primitive root modulo
pk for any k ≥ i. The approach of the previous subsection can therefore be extended to any prime
power pk with k ≥ 2 by just checking that 2 is a primitive root modulo p2. If it is, then

2
φ(pk)

2 ≡ −1 (mod φ(pk))

for any k ≥ 2, where φ denotes Euler’s totient function. In particular, we have φ(pk) = (p−1)pk−1.
In this case, one would choose m ≡ φ(pk)

2 (mod φ(pk)). The size t = o(s) of the cyclotomic coset
of s = (2m + 1)/pk modulo 2m + 1, is then

t = φ(pk) .

The primes smaller than 100 such that 2 is a primitive root modulo p2 are

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83 .

From a computational perspective, more can be said. Indeed, if 2 is a primitive root modulo p,
but is not modulo p2, a simple calculation shows that 2p−1 ≡ 1 (mod p2), that is p is a Wieferich
prime. The sequence of such primes is sequence A001220 in the OEIS [136]. Only two of them are
currently known: 1093 and 3511; and 2 is not a primitive root for both of these primes. Checking
that 2 is a primitive root modulo p is therefore enough to ensure that it is modulo any power of p
as long as p is not too large, less than fifteen decimal digits according to Dorais and Klyve [95].

The list of odd primes p smaller than 100 such that the multiplicative order of 2 modulo p2 is
even and a strict divisor of φ(p2), together with half the order o of 2, i.e. the smallest integer o
such that 2o ≡ −1 (mod p2), is

(17, 68), (41, 410), (43, 301), (97, 2328) .

Finally, the list of odd primes p smaller than 100 such that 1 and −1 do not lie in the same
cyclotomic coset modulo p2 is

7, 23, 31, 47, 71, 73, 79, 89 .
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6.5.3 Composite case
We now consider the general case of an odd composite number. Suppose that τ = pk1

1 · · · pkrr is a
product of r ≥ 2 distinct prime powers.

The multiplicative group of units modulo τ is not cyclic anymore and is isomorphic to the
product of the cyclic groups corresponding to each prime power:

(Z/τZ)× '
(
Z/pk1

1 Z
)×
× · · · ×

(
Z/pkrr Z

)×
.

The multiplicative order of 2 modulo τ is the least common multiple of its multiplicative orders
modulo the prime powers dividing τ . There exists an integer i such that 2i ≡ −1 (mod τ) if and
only if there exists such integers for each prime power dividing τ , that is if the multiplicative
order of 2 modulo pkjj is even for 1 ≤ j ≤ r, and if moreover their least common multiple is
an odd multiple of each of them, that is if they all have the same 2-adic valuation. In such a
situation, 2m ≡ −1 (mod τ) if and only if m ≡ o (mod 2o), where 2o is the multiplicative order
of 2 modulo τ . In particular, the family of such extension degrees is still infinite. Recall that
the corresponding denominator is τ . The size t = o(s) of the cyclotomic coset of s = (2m + 1)/τ
modulo 2m + 1, is then

t = 2o .

If fa,b ∈ Hn is hyper-bent, then its dual is fa,b2o .
In particular, if 2 is a primitive root modulo each prime power dividing τ , then the multiplicative

order of 2 modulo τ is
2o = lcm(φ(pk1

1 ), . . . , φ(pkrr )) ,

and 2o ≡ −1 (mod τ) if and only if ν2(p1 − 1) = · · · = ν2(pr − 1), where ν2 denotes the 2-adic
valuation. Conditioned by the fact that there exists an infinite number of primes p such that 2 is
a primitive root modulo p or modulo p2 and such that p− 1 has a given 2-adic valuation, we can
construct an infinite number of composite odd numbers addressing our original problem.

The list of suitable odd composite numbers τ smaller than 100, together with half the
multiplicative order o of 2 modulo τ , that is the smallest integer such that 2o ≡ −1 (mod τ), is

(33, 5), (57, 9), (65, 6), (99, 15) .

6.6 Applications
In this section, we show how the results of Section 6.4 can be applied to several infinite families
of Boolean functions in order to obtain characterizations of their hyper-bentness in terms
of exponential sums over T1 ⊂ F2m . Such characterizations can easily be transformed into
characterizations involving complete exponential sums over F2m using Lemma 2.4.8, or the
Hamming weights of ga and the related function x 7→ Trm1 (1/x) + ga(x) defined over F2m . Much
of these applications can be straightforwardly extended to additional cases.

6.6.1 The case b = 1
We first apply results of Subsections 6.4.1 and 6.4.2 to fa,1 defined as in Equation (6.8) in the
specific case where b = 1.

Since 1 lies in F2 , there exists β ∈ F2m ⊂ F2n such that Trnt (β) = 1. In particular, fa,1
belongs to both families Gn and Hn. In fact, the discussion in Section 6.5, shows that m ≡ o
(mod 2o) and that t = o(s) = 2o where 2o is the multiplicative order of 2 modulo τ = 2m+1

s .
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Hence, n/t = m/l is odd and β can be chosen to be 1. Applying Theorem 6.4.9 shows that fa,1 is
hyper-bent if and only if

∑
t∈T1

χ

(∑
r∈R

Trm1 (arDr(t)) + Trm1 (Ds(t))
)

= 0 .

Applying Lemma 2.4.8, this condition is straightforwardly expressed in terms of complete ex-
ponential sums over F2m , or of the Hamming weights of g′a : x 7→ ga(x) + Trm1 (Ds(t)) and the
related function x 7→ Trm1 (1/x) + g′a(x) defined over F2m . To summarize, we have the following
characterization for the value of Λ(a, 1) and so for the hyper-bentness for fa,1.

Proposition 6.6.1. Let g′a be the Boolean function defined on F2m as g′a(x) = ga(x)+Trm1 (Ds(x)).
Then

Λ(a, 1) = 2T1(g′a) + 1 .

In particular, fa,1 is hyper-bent if and only if

T1(g′a) = 0 .

We now show how the results of Subsection 6.4.2 can be applied to obtain a different
characterization of the hyper-bentness of fa,1. According to Proposition 6.4.2, fa,1 is hyper-bent
if and only if

Λ(a, 1) = 1 .

Let ξ be a primitive τ -th root of unity. First, recall that ξ lies in F2t , that Trt1
(
ξ2) = Trt1 (ξ) and

that
τ−1∑
i=0

ξi = 0 .

Second, remark that the results of Section 6.5 imply that t is even, so that Trt1 (1) = 0. Moreover,
ξ is a (2t/2 + 1)-th root of unity so that ξ + ξ−1 ∈ F2t/2 which implies that

Trt1
(
ξi
)

= Trt1
(
ξ−i
)
.

Finally, Proposition 6.4.20 reads

Λ(a, 1) = S0(a) + 2
τ−1

2∑
i=1

χ
(
Trt1

(
ξi
))
Si(a) .

Nonetheless, the trace of ξi for i 6= 0 depends on the exact value of τ . In the sequel, we deal with
some specific cases.

Prime case

For simplicity, we first suppose that τ = p is a prime and that 2 is a primitive root modulo p. In
this case, we have t = p− 1 and i is co-prime with p, so that

Trp−1
1

(
ξi
)

=
p−2∑
j=0

ξi2
j

=
p−1∑
j=1

ξij =
p−1∑
j=1

ξj = 1 .
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Therefore

Λ(a, 1) = 2S0(a)−
p−1∑
i=0

Si(a) .

Applying Lemma 6.4.21 with l = 1 and l = p yields

Λ(a, 1) = 2
p

(1 + 2T1(ga ◦Dp))− (1 + 2T1(ga)) .

Consequently, we get the following characterization.

Proposition 6.6.2. Suppose that τ = p is a prime and that 2 is a primitive root modulo p. Then

pΛ(a, 1) = 4T1(ga ◦Dp)− 2pT1(ga)− p+ 2 .

In particular, fa,1 is hyper-bent if and only if

2T1(ga ◦Dp)− pT1(ga) = p− 1 .

Prime power case

We now treat the case where τ = pk is a prime power and that 2 is a primitive root modulo
pk, including the prime case where k = 1. Then t = φ(pk) = (p− 1)pk−1. Remark that in this

situation, for every positive integers i ≥ 0 and j > 0 such that i+j = k, one has
(
ξp
i
)pj

= ξp
k = 1,

so that
pj−1∑
l=0

ξlp
i

= 0 . (6.9)

Then

Trφ(pk)
1

(
ξi
)

=
φ(pk)−1∑
j=0

ξi2
j

=
∑

1≤j≤pk−1, p-j

ξij .

If pe || i with 0 ≤ e ≤ k − 1, then i = lpe with l co-prime with p− 1 and

Trφ(pk)
1

(
ξi
)

=
∑

1≤j≤pk−1, p-j

ξjlp
e

=
∑

1≤j≤pk−1, p-j

ξjp
e

=
pk−1∑
j=0

ξjp
e

+
pk−1−1∑
j=0

ξjp
e+1

=
pk−1∑
j=0

ξjp
e

+
pk−1∑
j=0

ξjp
e+1

+
pk−1∑
j=pk−1

ξjp
e+1

.

Equation (6.9) shows that the first two sums of the right hand side of the last equality can be
split into a multiple of sums equal to zero. If 0 ≤ e ≤ k− 2, then the third sum is zero as well, so
that

Trφ(pk)
1

(
ξi
)

= 0 .
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If e = k − 1, then the third sum reads

pk−1∑
j=pk−1

ξjp
k

=
pk−1∑
j=pk−1

ξj = 1 .

Therefore

Trφ(pk)
1

(
ξi
)

= 1 .

Summing up the above observations yields

Λ(a, 1) =
pk−1∑
i=0

Si(a)− 2
p−1∑
i=1

Sipk−1(a)

= 2S0(a) +
pk−1∑
i=0

Si(a)− 2
p−1∑
i=0

Sipk−1(a) .

Applying Lemma 6.4.21 with l = 1, l = pk−1 and l = pk then gives

Λ(a, 1) = 2
pk

(1 + 2T1(ga ◦Dpk))− 2
pk−1 (1 + 2T1(ga ◦Dpk−1)) + (1 + 2T1(ga)) .

Consequently, we get the following characterization.

Proposition 6.6.3. Suppose that τ = pk is a prime power and that 2 is a primitive root modulo
pk. Then

pkΛ(a, 1) = 4T1(ga ◦Dpk)− 4pT1(ga ◦Dpk−1) + 2pkT1(ga) + pk − 2p+ 2 .

In particular, fa,1 is hyper-bent if and only if

2T1(ga ◦Dpk)− 2pT1(ga ◦Dpk−1) + pkT1(ga) = p− 1 .

6.6.2 Explicit values for τ
The previous subsection dealt with a fixed value of b ∈ F∗2t casting as few restrictions as possible
on τ . In this subsection we go the other way around and treat the first few possible values of
τ for all values of b with as few restrictions as possible on the corresponding infinite family of
Boolean functions. Hence, we consider functions fa,b ∈ Hn of the form

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Trt1
(
bx

2m+1
τ (2m−1)

)
for a fixed value of τ as in Equation (6.8). Recall that such functions are hyper-bent if and only
if the associated exponential sum Λ(a, b) = Λ(fa,b) is equal to 1. Thus, the explicit expressions
for Λ(a, b) that we give in this subsection trivially turn into characterizations for hyper-bentness
of fa,b.

A large part of the data presented in this subsection has been checked or generated with
the mathematical software Sage [241]. In addition to the functionality provided by Sage itself,
the computations involved used, for the most, the underlying libraries Givaro [96] for finite field
arithmetic, and Pynac [250] for symbolic manipulations. For small values of τ , that is τ = 3, 5 and
9, we provide all details and corresponding data. For higher values of τ , only the characterizations
we obtain are given. The basic algorithm used is an explicit version of the approach taken in the
previous subsection. To find characterizations valid for
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• an integer τ such that 1 and −1 lie in the same cyclotomic class modulo τ ,

• a coefficient b ∈ F∗22o where 2o is the multiplicative order of 2 modulo τ ,

• a divisor l of o,

• an l-th root r of −1 modulo τ and corresponding extension degrees m,

• and coefficients ar ∈ F2
m
l
,

we proceed as described in Algorithm 6.1.

Algorithm 6.1: Expression for Λ(a, b) in terms of the sums T1(ga ◦Dk)
Input: An integer τ and associated data.
Output: Expression for Λ(a, b) in terms of the sums T1(ga ◦Dk)

1 Compute the traces Tr2o
1
(
bξi
)
, where ξ is a primitive element of F22o

2 Deduce an expression of Λ(a, b) in terms of the sums Si using Proposition 6.4.20
3 Compute the orbits of invertible integers modulo τ under the action of multiplication by r
4 Devise relations between the sums Si using Lemma 6.4.23
5 Express the sums Si in terms of the sums T1(ga ◦Dk), where k divides τ , using
Lemma 6.4.21

6 If possible, deduce an expression of Λ(a, b) in terms of the sums T1(ga ◦Dk)

The case τ = 3

The smallest possible value for τ is τ = 3. This case was originally addressed by the author in
2009 for the binomial case [197] and further in 2010 for the general case [192]. We now show how
the characterizations for the general case can be directly deduced from the results of Section 6.4.

In this case, we have t = 2 and m ≡ 1 (mod 2). Furthermore, if fa,b is hyper-bent, then its
dual is fa,b2 .

According to Remark 6.4.24, we have

Λ(a, b) = χ
(
Tr2

1 (b)
)
S0(a) +

(
χ
(
Tr2

1 (bξ)
)

+ χ
(
Tr2

1
(
bξ−1)))S1(a) .

Note that ξ is a primitive 3-rd root of unity and that ξ + ξ−1 = 1, so that

Λ(a, b) = χ
(
Tr2

1 (b)
)
S0(a) + χ

(
Tr2

1 (bξ)
) (

1 + χ
(
Tr2

1 (b)
))
S1(a) .

Moreover, we have F∗4 = 〈ξ〉. Thus, if b = 1, then Λ(a, 1) = S0(a) − 2S1(a), and if b = ξ or
b = ξ−1, that is if b is a primitive 3-rd root of unity or equivalently a primitive element of F4 ,
then Λ(a, b) = −S0(a). Applying Lemma 6.4.21 with l = 1 and l = 3 then gives the following
theorem and the corresponding characterizations for hyper-bentness.

Theorem 6.6.4 ([192]). Let τ = 3 and m ≡ 1 (mod 2). Then

1. If b = 1, then 3Λ(a, 1) = 4T1(ga ◦D3)− 6T1(ga)− 1.

2. If b is a primitive element of F4 , then 3Λ(a, b) = −2T1(ga ◦D3)− 1.
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Table 6.3 – Traces Tr4
1
(
βjξi

)
for τ = 5

j\i 0 1 2 3 4
0 0 1 1 1 1
1 0 0 1 0 1
2 0 0 0 1 1
3 1 1 1 1 0
4 0 1 0 1 0
5 0 0 1 1 0
6 1 1 1 0 1
7 1 0 1 0 0

j\i 0 1 2 3 4
8 0 1 1 0 0
9 1 1 0 1 1
10 0 1 0 0 1
11 1 1 0 0 0
12 1 0 1 1 1
13 1 0 0 1 0
14 1 0 0 0 1

The case τ = 5

The next possible value for τ is τ = 5. This case was originally addressed by Wang et al. in
late 2011 for the general case [258], but they also gave specific treatments for the binomial
case [257, 256]. We now show how their characterizations for the general case can be directly
deduced from the results of Section 6.4.

In this case, we have t = 4 and m ≡ 2 (mod 4). Furthermore, if fa,b is hyper-bent, then its
dual is fa,b4 .

According to Remark 6.4.24, we have

Λ(a, b) = χ
(
Tr4

1 (b)
)
S0(a)

+
(
χ
(
Tr4

1 (bξ)
)

+ χ
(
Tr4

1
(
bξ−1)))S1(a)

+
(
χ
(
Tr4

1
(
bξ2))+ χ

(
Tr4

1
(
bξ−2)))S2(a) .

Introduce γ = ξ + ξ−1 ∈ F4 . Then

Λ(a, b) = χ
(
Tr4

1 (b)
)
S0(a)

+ χ
(
Tr4

1 (bξ)
) (

1 + χ
(
Tr4

1 (bγ)
))
S1(a)

+ χ
(
Tr4

1
(
bξ2)) (1 + χ

(
Tr4

1
(
bγ2)))S2(a) .

Next, recall that ξ is a 5-th root of unity, so that
∑4
i=0 ξ

i = 0. In particular, we have γ + γ2 = 1
and

Tr4
1 (bγ) + Tr4

1
(
bγ2) = Tr4

1 (b) ,

what can be used to refine the above expression.
Here, we rather explicitly compute all the traces Tr4

1
(
bξi
)
. The finite field F16 is represented

as F2 [x]/(C4(x)) where C4(x) = x4 + x+ 1 is the 4-th Conway polynomial. We denote the class
of x modulo C4(x) by β; this is a primitive element of F16 . Let ξ = β3 be a 5-th root of unity.
The traces Tr4

1
(
βjξi

)
are given in Table 6.3. The expression of Λ(a, βj) as a sum of the partial

exponential sums Si, together with the minimal polynomial mj of βj , are given in Table 6.4.
Moreover, if the coefficients ar lie in F2l , where l = m/2, then l ≡ 1 (mod 2) and 2l ≡ ±2

(mod 5). Lemma 6.4.23 tells that either S1(a) = S2(a) or S1(a) = S3(a). But S2(a) = S3(a), so
that one always has

S1(a) = S2(a) .

Finally applying Lemma 6.4.21 for l = 1 and l = 5 gives the following theorem which
summarizes the above discussion.
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Table 6.4 – Λ(a, βj) for τ = 5

j Λ(a, βj) mj

0 S0 − 2S1 − 2S2 x+ 1
1 S0 x4 + x+ 1
2 S0 x4 + x+ 1
3 −S0 − 2S2 x4 + x3 + x2 + x+ 1
4 S0 x4 + x+ 1
5 S0 + 2S1 − 2S2 x2 + x+ 1
6 −S0 − 2S1 x4 + x3 + x2 + x+ 1
7 −S0 + 2S1 x4 + x3 + 1

j Λ(a, βj) mj

8 S0 x4 + x+ 1
9 −S0 − 2S1 x4 + x3 + x2 + x+ 1
10 S0 − 2S1 + 2S2 x2 + x+ 1
11 −S0 + 2S2 x4 + x3 + 1
12 −S0 − 2S2 x4 + x3 + x2 + x+ 1
13 −S0 + 2S1 x4 + x3 + 1
14 −S0 + 2S2 x4 + x3 + 1

Theorem 6.6.5 ([258]). Let τ = 5 and m ≡ 2 (mod 4).

1. If b = 1, then 5Λ(a, b) = 4T1(ga ◦D5)− 10T1(ga)− 3.

2. If b is a primitive element of F16 such that Tr4
1 (b) = 0, i.e. with minimal polynomial

x4 + x+ 1, then 5Λ(a, b) = 2T1(ga ◦D5) + 1.

3. Suppose moreover that ar ∈ F2
m
2 .

(a) If b is a primitive 3-rd root of unity, i.e. with minimal polynomial x2 + x + 1, then
5Λ(a, b) = 2T1(ga ◦D5) + 1.

(b) If b is a primitive 5-th root of unity, i.e. with minimal polynomial x4 + x3 + x2 + x+ 1,
then 5Λ(a, b) = −T1(ga ◦D5)− 5T1(ga)− 3.

(c) If b is a primitive element of F16 such that Tr4
1 (b) = 1, i.e. with minimal polynomial

x4 + x3 + 1, then 5Λ(a, b) = −3T1(ga ◦D5) + 5T1(ga) + 1.

The case τ = 7

For τ = 7, 1 and −1 do not lie in the same cyclotomic coset modulo 7, hence the next suitable
value for τ is τ = 9.

The case τ = 9

In the case τ = 9, we have t = 6 and m ≡ 3 (mod 6). Furthermore, if fa,b is hyper-bent, then its
dual is fa,b8 .

According to Remark 6.4.24, we have

Λ(a, b) = χ
(
Tr6

1 (b)
)
S0(a)

+
(
χ
(
Tr6

1 (bξ)
)

+ χ
(
Tr6

1
(
bξ8)))S1(a) +

(
χ
(
Tr6

1
(
bξ2))+ χ

(
Tr6

1
(
bξ7)))S2(a)

+
(
χ
(
Tr6

1
(
bξ3))+ χ

(
Tr6

1
(
bξ6)))S3(a) +

(
χ
(
Tr6

1
(
bξ4))+ χ

(
Tr6

1
(
bξ5)))S4(a) .
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Introduce γ = ξ8 + ξ ∈ F8 . Note that we have

γ2 = ξ2 + ξ7 ,

γ3 = ξ + ξ3 + ξ6 + ξ8 ,

γ4 = ξ4 + ξ5 ,

γ5 = ξ3 + ξ4 + ξ5 + ξ6 ,

γ6 = ξ2 + ξ3 + ξ6 + ξ7 .

Thus, we have

Λ(a, b) = χ
(
Tr6

1 (b)
)
S0(a)

+ χ
(
Tr6

1 (bξ)
) (

1 + χ
(
Tr6

1 (bγ)
))
S1(a)

+ χ
(
Tr6

1
(
bξ2)) (1 + χ

(
Tr6

1
(
bγ2)))S2(a)

+ χ
(
Tr6

1
(
bξ3)) (1 + χ

(
Tr6

1
(
b(γ3 + γ)

)))
S3(a)

+ χ
(
Tr6

1
(
bξ4)) (1 + χ

(
Tr6

1
(
bγ4)))S4(a) .

Next, recall that
∑8
i=0 ξ

i = 0. Hence, we have γ2 + γ3 + γ4 = 1 and

Tr6
1 (bγ) + Tr6

1
(
bγ2)+ Tr6

1
(
b(γ + γ3)

)
+ Tr6

1
(
bγ4) = Tr6

1 (b) ,

what can be used to refine the above expression for Λ(a, b).
Here, we rather explicitly compute all the traces Tr6

1
(
bξi
)
. The finite field F64 is represented

as F2 [x]/(C6(x)) where C6(x) = x6 + x4 + x3 + x+ 1 is the 6-th Conway polynomial. We denote
the class of x modulo C6(x) by β; this is a primitive element of F64 . Let ξ = β7 be a 9-th root
of unity. The traces Tr6

1
(
βjξi

)
are given in Table 6.5. The expression of Λ(a, βj) as a sum of

the partial exponential sums Si, together with the minimal polynomial mj of βj , are given in
Tables 6.6 and 6.7.

Moreover, if the coefficients ar lie in F2l , where l = m/3, then 2l is −1, 2 or −4 modulo 9
when l is respectively 0, 1 and 2 modulo 3. In the last two cases, Lemma 6.4.23 tells that

S1(a) = S2(a) = S4(a) .

The corresponding expressions for Λ(a, b), obtained after applying Lemma 6.4.21 for l = 1, l = 3
and l = 9, are given in Table 6.8, where mb is the minimal polynomial of b.

Finally, the following theorem summarizes the above discussion.

Theorem 6.6.6. Let τ = 9 and m ≡ 3 (mod 6).

1. If b = 1, then

9Λ(a, b) = 4T1(ga ◦D9)− 12T1(ga ◦D3) + 18T1(ga) + 5 .

2. If b is a primitive 3-rd root of unity, then

9Λ(a, b) = −2T1(ga ◦D9)− 6T1(ga ◦D3) + 18T1(ga) + 5 .

3. Suppose moreover that ar ∈ F2
m
3 and m

3 6≡ 0 (mod 3).
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Table 6.5 – Traces Tr6
1
(
βjξi

)
for τ = 9

j\i 0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 1 0 0
1 0 0 0 1 1 0 1 1 0
2 0 0 0 1 0 1 1 0 1
3 1 0 0 1 1 1 0 1 1
4 0 1 0 1 0 0 1 1 0
5 0 1 1 1 1 0 1 0 1
6 1 1 0 0 0 1 1 1 1
7 0 0 1 0 0 1 0 0 0
8 0 0 1 1 0 1 1 0 0
9 0 0 1 0 1 1 0 1 0
10 0 0 1 1 1 0 1 1 1
11 1 0 1 0 0 1 1 0 0
12 1 1 1 1 0 1 0 1 0
13 1 0 0 0 1 1 1 1 1
14 0 1 0 0 1 0 0 0 0
15 0 1 1 0 1 1 0 0 0
16 0 1 0 1 1 0 1 0 0
17 0 1 1 1 0 1 1 1 0
18 0 1 0 0 1 1 0 0 1
19 1 1 1 0 1 0 1 0 1
20 0 0 0 1 1 1 1 1 1
21 1 0 0 1 0 0 0 0 0
22 1 1 0 1 1 0 0 0 0
23 1 0 1 1 0 1 0 0 0
24 1 1 1 0 1 1 1 0 0
25 1 0 0 1 1 0 0 1 0
26 1 1 0 1 0 1 0 1 1
27 0 0 1 1 1 1 1 1 0
28 0 0 1 0 0 0 0 0 1
29 1 0 1 1 0 0 0 0 1
30 0 1 1 0 1 0 0 0 1
31 1 1 0 1 1 1 0 0 1

j\i 0 1 2 3 4 5 6 7 8
32 0 0 1 1 0 0 1 0 1
33 1 0 1 0 1 0 1 1 1
34 0 1 1 1 1 1 1 0 0
35 0 1 0 0 0 0 0 1 0
36 0 1 1 0 0 0 0 1 1
37 1 1 0 1 0 0 0 1 0
38 1 0 1 1 1 0 0 1 1
39 0 1 1 0 0 1 0 1 0
40 0 1 0 1 0 1 1 1 1
41 1 1 1 1 1 1 0 0 0
42 1 0 0 0 0 0 1 0 0
43 1 1 0 0 0 0 1 1 0
44 1 0 1 0 0 0 1 0 1
45 0 1 1 1 0 0 1 1 1
46 1 1 0 0 1 0 1 0 0
47 1 0 1 0 1 1 1 1 0
48 1 1 1 1 1 0 0 0 1
49 0 0 0 0 0 1 0 0 1
50 1 0 0 0 0 1 1 0 1
51 0 1 0 0 0 1 0 1 1
52 1 1 1 0 0 1 1 1 0
53 1 0 0 1 0 1 0 0 1
54 0 1 0 1 1 1 1 0 1
55 1 1 1 1 0 0 0 1 1
56 0 0 0 0 1 0 0 1 0
57 0 0 0 0 1 1 0 1 1
58 1 0 0 0 1 0 1 1 0
59 1 1 0 0 1 1 1 0 1
60 0 0 1 0 1 0 0 1 1
61 1 0 1 1 1 1 0 1 0
62 1 1 1 0 0 0 1 1 1
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Table 6.6 – Λ(a, βj) for τ = 9 — Part I

j Λ(a, βj) mj

0 S0 + 2S1 + 2S2 − 2S3 + 2S4 x+ 1
1 S0 + 2S1 − 2S3 x6 + x4 + x3 + x+ 1
2 S0 + 2S2 − 2S3 x6 + x4 + x3 + x+ 1
3 −S0 − 2S4 x6 + x5 + x4 + x2 + 1
4 S0 − 2S3 + 2S4 x6 + x4 + x3 + x+ 1
5 S0 − 2S1 − 2S3 x6 + x+ 1
6 −S0 − 2S1 x6 + x5 + x4 + x2 + 1
7 S0 + 2S1 + 2S3 x6 + x3 + 1
8 S0 + 2S1 − 2S3 x6 + x4 + x3 + x+ 1
9 S0 + 2S1 − 2S2 + 2S3 − 2S4 x3 + x+ 1
10 S0 − 2S2 − 2S3 x6 + x+ 1
11 −S0 + 2S1 x6 + x5 + x2 + x+ 1
12 −S0 − 2S2 x6 + x5 + x4 + x2 + 1
13 −S0 − 2S4 x6 + x5 + x4 + x+ 1
14 S0 + 2S2 + 2S3 x6 + x3 + 1
15 S0 + 2S3 − 2S4 x6 + x4 + x2 + x+ 1
16 S0 + 2S2 − 2S3 x6 + x4 + x3 + x+ 1
17 S0 − 2S2 − 2S3 x6 + x+ 1
18 S0 − 2S1 + 2S2 + 2S3 − 2S4 x3 + x+ 1
19 −S0 − 2S1 x6 + x5 + x4 + x+ 1
20 S0 − 2S3 − 2S4 x6 + x+ 1
21 −S0 + 2S1 + 2S2 + 2S4 x2 + x+ 1
22 −S0 + 2S2 x6 + x5 + x2 + x+ 1
23 −S0 + 2S1 x6 + x5 + 1
24 −S0 − 2S4 x6 + x5 + x4 + x2 + 1
25 −S0 + 2S1 x6 + x5 + x2 + x+ 1
26 −S0 − 2S1 x6 + x5 + x4 + x+ 1
27 S0 + 2S1 − 2S2 − 2S3 − 2S4 x3 + x2 + 1
28 S0 + 2S3 + 2S4 x6 + x3 + 1
29 −S0 + 2S4 x6 + x5 + 1
30 S0 − 2S1 + 2S3 x6 + x4 + x2 + x+ 1
31 −S0 − 2S1 + 2S2 − 2S4 x6 + x5 + x3 + x2 + 1
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Table 6.7 – Λ(a, βj) for τ = 9 — Part II

j Λ(a, βj) mj

32 S0 − 2S3 + 2S4 x6 + x4 + x3 + x+ 1
33 −S0 − 2S2 x6 + x5 + x4 + x2 + 1
34 S0 − 2S3 − 2S4 x6 + x+ 1
35 S0 + 2S3 + 2S4 x6 + x3 + 1
36 S0 − 2S1 − 2S2 + 2S3 + 2S4 x3 + x+ 1
37 −S0 + 2S4 x6 + x5 + x2 + x+ 1
38 −S0 − 2S2 x6 + x5 + x4 + x+ 1
39 S0 − 2S2 + 2S3 x6 + x4 + x2 + x+ 1
40 S0 − 2S1 − 2S3 x6 + x+ 1
41 −S0 − 2S4 x6 + x5 + x4 + x+ 1
42 −S0 + 2S1 + 2S2 + 2S4 x2 + x+ 1
43 −S0 + 2S4 x6 + x5 + 1
44 −S0 + 2S4 x6 + x5 + x2 + x+ 1
45 S0 − 2S1 − 2S2 − 2S3 + 2S4 x3 + x2 + 1
46 −S0 + 2S2 x6 + x5 + 1
47 −S0 + 2S1 − 2S2 − 2S4 x6 + x5 + x3 + x2 + 1
48 −S0 − 2S1 x6 + x5 + x4 + x2 + 1
49 S0 + 2S2 + 2S3 x6 + x3 + 1
50 −S0 + 2S2 x6 + x5 + x2 + x+ 1
51 S0 − 2S1 + 2S3 x6 + x4 + x2 + x+ 1
52 −S0 − 2S2 x6 + x5 + x4 + x+ 1
53 −S0 + 2S2 x6 + x5 + 1
54 S0 − 2S1 + 2S2 − 2S3 − 2S4 x3 + x2 + 1
55 −S0 − 2S1 − 2S2 + 2S4 x6 + x5 + x3 + x2 + 1
56 S0 + 2S1 + 2S3 x6 + x3 + 1
57 S0 + 2S3 − 2S4 x6 + x4 + x2 + x+ 1
58 −S0 + 2S1 x6 + x5 + 1
59 −S0 − 2S1 + 2S2 − 2S4 x6 + x5 + x3 + x2 + 1
60 S0 − 2S2 + 2S3 x6 + x4 + x2 + x+ 1
61 −S0 + 2S1 − 2S2 − 2S4 x6 + x5 + x3 + x2 + 1
62 −S0 − 2S1 − 2S2 + 2S4 x6 + x5 + x3 + x2 + 1
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Table 6.8 – Λ(a, b) for τ = 9 — Subfield case

mb 9Λ(a, b) o(b)
x+ 1 4T1(ga ◦D9)− 12T1(ga ◦D3) + 18T1(ga) + 5 1
x2 + x+ 1 −2T1(ga ◦D9)− 6T1(ga ◦D3) + 18T1(ga) + 5 3
x3 + x+ 1 8T1(ga ◦D3)− 6T1(ga) + 1 7
x3 + x2 + 1 4T1(ga ◦D9)− 4T1(ga ◦D3)− 6T1(ga)− 3 7
x6 + x3 + 1 4T1(ga ◦D3) + 6T1(ga) + 5 9
x6 + x4 + x2 + x+ 1 8T1(ga ◦D3)− 6T1(ga) + 1 21
x6 + x5 + x4 + x2 + 1 −2T1(ga ◦D9) + 2T1(ga ◦D3)− 6T1(ga)− 3 21
x6 + x+ 1 4T1(ga ◦D9)− 4T1(ga ◦D3)− 6T1(ga)− 3 63
x6 + x4 + x3 + x+ 1 4T1(ga ◦D9)− 8T1(ga ◦D3) + 6T1(ga) + 1 63
x6 + x5 + 1 −2T1(ga ◦D9)− 2T1(ga ◦D3) + 6T1(ga) + 1 63
x6 + x5 + x2 + x+ 1 −2T1(ga ◦D9)− 2T1(ga ◦D3) + 6T1(ga) + 1 63
x6 + x5 + x3 + x2 + 1 −2T1(ga ◦D9) + 2T1(ga ◦D3)− 6T1(ga)− 3 63
x6 + x5 + x4 + x+ 1 −2T1(ga ◦D9) + 2T1(ga ◦D3)− 6T1(ga)− 3 63

(a) If b is a primitive 7-th root of unity with minimal polynomial x3 + x+ 1 or a primitive
element with minimal polynomial x6 + x+ 1, then

9Λ(a, b) = 8T1(ga ◦D3)− 6T1(ga) + 1 .

(b) If b is a primitive 7-th root of unity with minimal polynomial x3 + x2 + 1 or a 21-st
root of unity with minimal polynomial x6 + x4 + x2 + x+ 1, then

9Λ(a, b) = 4T1(ga ◦D9)− 4T1(ga ◦D3)− 6T1(ga)− 3 .

(c) If b is a primitive 9-th root of unity with minimal polynomial x6 + x3 + 1, then

9Λ(a, b) = 4T1(ga ◦D3) + 6T1(ga) + 5 .

(d) If b is a primitive 21-st root of unity with minimal polynomial x6 +x5 +x4 +x2 +1, or a
primitive element with minimal polynomial x6 +x5 +x3 +x2 +1 or x6 +x5 +x4 +x+1,
then

9Λ(a, b) = −2T1(ga ◦D9) + 2T1(ga ◦D3)− 6T1(ga)− 3 .

(e) If b is a primitive element with minimal polynomial x6 + x4 + x3 + x+ 1, then

9Λ(a, b) = 4T1(ga ◦D9)− 8T1(ga ◦D3) + 6T1(ga) + 1 .

(f) If b is a primitive element with minimal polynomial x6 +x5 + 1 or x6 +x5 +x2 +x+ 1,
then

9Λ(a, b) = −2T1(ga ◦D9)− 2T1(ga ◦D3) + 6T1(ga) + 1 .

The case τ = 11

We now give a few results for τ = 11, the next suitable value for τ . In this case, we have t = 10
and m ≡ 5 (mod 10). Furthermore, if fa,b is hyper-bent, then its dual is fa,b32 . Listing all
possible characterizations would not be of high interest, hence we chose to only present results
valid when the coefficients ar are not restricted to a strict subfield of F2m .

The characterizations valid for ar ∈ F2m , that is without further restrictions on the field the
coefficients ar lie in, are summarized in the following theorem.
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Theorem 6.6.7. Let τ = 11 and m ≡ 5 (mod 10).
1. If b = 1, then

11Λ(a, b) = 4T1(ga ◦D11)− 22T1(ga)− 9 .

2. If b is a primitive 3-rd root of unity, a primitive 341-st root of unity with minimal polynomial
x10 + x9 + x8 + x3 + x2 + x+ 1, or a primitive element with minimal polynomial x10 + x9 +
x8 + x4 + x3 + x2 + 1 or x10 + x9 + x8 + x6 + x5 + x+ 1, then

11Λ(a, b) = −2T1(ga ◦D11)− 1 .

The case τ = 13

We now give a few results for τ = 13, the next suitable value for τ . In this case, we have t = 12
and m ≡ 6 (mod 12). Furthermore, if fa,b is hyper-bent, then its dual is fa,b64 . As for τ = 11 we
only present results valid when the coefficients ar are not restricted to a strict subfield of F2m .

The characterizations valid for ar ∈ F2m , that is without further restrictions on the field the
coefficients ar lie in, are summarized in the following theorem.
Theorem 6.6.8. Let τ = 13 and m ≡ 6 (mod 12).

1. If b = 1, then
13Λ(a, b) = 4T1(ga ◦D13)− 26T1(ga)− 11 .

2. If b is a primitive 15-th root of unity with minimal polynomial x4 + x + 1, a primitive
819-th root of unity with minimal polynomial x12 + x9 + x8 + x5 + x4 + x+ 1, a primitive
1365-th root of unity with minimal polynomial x12 +x9 +x5 +x2 + 1, or a primitive element
with minimal polynomial x12 + x9 + x5 + x4 + x2 + x + 1, x12 + x9 + x8 + x5 + 1 or
x12 + x9 + x8 + x6 + x3 + x2 + 1, then

13Λ(a, b) = 2T1(ga ◦D13) + 1 .

The case τ = 17

In this subsubsection we treat the case τ = 17, the next suitable value for τ . In this case, we have
t = 8 and m ≡ 4 (mod 8). Furthermore, if fa,b is hyper-bent, then its dual is fa,b16 . Contrary
to the cases τ = 11 and τ = 13, 2 is not a primitive root modulo 17, so that t is quite small.
Therefore, we provide a complete analysis of this case.

The following theorem summarizes the characterizations valid for ar ∈ F2m , ar ∈ F2
m
2 and

ar ∈ F2
m
4 . In particular, there is none valid when ar ∈ F2m , nor for b = 1.

Theorem 6.6.9. Let τ = 17 and m ≡ 4 (mod 8). Suppose moreover that ar ∈ F2
m
2 .

1. If b is a primitive element with minimal polynomial x8+x6+x5+x+1 or x8+x6+x5+x2+1,
then

17Λ(a, b) = 2T1(ga ◦D17) + 1 .

2. Suppose moreover that ar ∈ F2
m
4 .

(a) If b is a primitive 15-th root of unity with minimal polynomial x4 + x+ 1, a primitive
17-th root of unity with minimal polynomial x8 + x5 + x4 + x3 + 1, or a primitive
element with minimal polynomial x8 + x5 + x3 + x2 + 1, then

17Λ(a, b) = 2T1(ga ◦D17) + 1 .

(b) If b is a 51-st root of unity with minimal polynomial x8 + x4 + x3 + x+ 1, then

17Λ(a, b) = 3T1(ga ◦D17)− 17T1(ga)− 7 .
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The case τ = 33

To conclude this subsection we treat the case of the composite integer τ = 33, the first suitable
value for a composite value of τ . In this case, we have t = 10 and m ≡ 5 (mod 10). Furthermore,
if fa,b is hyper-bent, then its dual is fa,b32 .

The following theorem summarizes the characterizations valid for ar ∈ F2m , and ar ∈ F2
m
5 .

In particular, there is none valid when ar ∈ F2m without further restrictions, nor for b = 1.

Theorem 6.6.10. Let τ = 33 and m ≡ 5 (mod 10). Suppose moreover that ar ∈ F2
m
5 and

m
5 6≡ 0 (mod 5).

1. If b is a primitive 31-st root of unity with minimal polynomial x5 + x2 + 1, or a primitive
341-st root of unity with minimal polynomial x10 + x8 + x4 + x3 + x2 + x+ 1, then

165Λ(a, b) = 8T1(ga ◦D33) + 24T1(ga ◦D11)− 88T1(ga ◦D3) + 66T1(ga) + 5 .

2. If b is a primitive 31-st root of unity with minimal polynomial x5 + x3 + 1, then

165Λ(a, b) = −8T1(ga ◦D33) + 48T1(ga ◦D11) + 88T1(ga ◦D3)− 198T1(ga)− 35 .

3. If b is a primitive 31-st root of unity with minimal polynomial x5 +x3 +x2 +x+1, a primitive
93-rd root of unity with minimal polynomial x10 +x8 +x3 +x+ 1, a primitive 341-st root of
unity with minimal polynomial x10 + x8 + x7 + x5 + x3 + x+ 1, or a primitive element with
minimal polynomial x10 + x7 + 1, x10 + x7 + x6 + x4 + x2 + x+ 1 or x10 + x8 + x7 + x5 + 1,
then

165Λ(a, b) = 24T1(ga ◦D11) + 66T1(ga) + 45 .

4. If b is a primitive 93-rd root of unity with minimal polynomial x10 + x5 + x4 + x2 + 1,
or a primitive element with minimal polynomial x10 + x6 + x5 + x3 + x2 + x + 1 or
x10 + x8 + x5 + x4 + x3 + x2 + 1, then

165Λ(a, b) = −4T1(ga ◦D33) + 36T1(ga ◦D11) + 44T1(ga ◦D3)− 66T1(ga) + 5 .

5. If b is a primitive 93-rd root of unity with minimal polynomial x10 + x8 + x6 + x5 + 1, then

165Λ(a, b) = 4T1(ga ◦D33) + 36T1(ga ◦D11)− 44T1(ga ◦D3)− 66T1(ga)− 35 .

6. If b is a primitive 341-st root of unity with minimal polynomial x10 + x3 + x2 + x+ 1 or
x10 + x7 + x4 + x3 + 1, then

165Λ(a, b) = −8T1(ga ◦D33) + 36T1(ga ◦D11) + 88T1(ga ◦D3)− 66T1(ga) + 25 .

7. If b is a primitive 341-st root of unity with minimal polynomial x10 + x6 + x2 + x+ 1, or a
primitive element with minimal polynomial x10 + x7 + x3 + x+ 1, then

165Λ(a, b) = 36T1(ga ◦D11)− 66T1(ga)− 15 .

8. If b is a primitive element with minimal polynomial x10 + x7 + x6 + x5 + x4 + x + 1 or
x10 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1, then

165Λ(a, b) = 4T1(ga ◦D33) + 24T1(ga ◦D11)− 44T1(ga ◦D3) + 66T1(ga) + 25 .
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7.1 Elliptic curves and hyperelliptic curves

7.1.1 Elliptic curves over finite fields
In this subsection, we present some classical results about elliptic curves over finite fields, as well
as their connections with binary Kloosterman sums.

Let m be a positive integer, Fq the finite field of characteristic p with q = pm and [q] its
algebraic closure. Let E be an elliptic curve defined over Fq . It can be given by a Weierstrass
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equation [238, Chapter III] describing its affine part as follows:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

Over an algebraically closed field, elliptic curves are classified up to isomorphism by the so-called
j-invariant [238, Proposition III.1.4].

There exists an addition on the set of rational points of the curve (i.e. points with coordinates
in Fq ), giving it a group structure. We denote by OE the unique point at infinity of E, which is
also the neutral point for the addition law, by [n] the multiplication by an integer n on E and by
End(E) = End[q](E) the ring of endomorphisms of E over the algebraic closure [q].

The group of rational points of E over an extension Fqk of Fq is denoted by E(Fqk); the
number of points of this group by #E(Fqk). When the context is clear, we denote #E(Fq )
simply by #E. It is a classical result that #E = q + 1− t where t is the trace of the Frobenius
automorphism of E over Fq [238, Remark V.2.6] and the following theorem has been shown by
Hasse.

Theorem 7.1.1 ([238, Theorem V.2.3.1]). Let t be the trace of the Frobenius automorphism of
an elliptic curve over Fq , then

|t| ≤ 2√q .

For an integer n, we denote by E[n] the n-torsion subgroup of the points of E over [q], i.e.

E[n] = {P ∈ E([q]) | [n]P = OE} .

The subgroup of rational points of n-torsion is denoted by E[n](Fq ) = E[n]∩E(Fq ). The following
classical result gives the structure of the groups of torsion points.

Proposition 7.1.2 ([238, Corollary III.6.4]). Let n be a positive integer.

• If p - n, then E[n] ' Z/nZ× Z/nZ.

• One of the following is true: E[pe] ' {0} for all e ≥ 1 or E[pe] ' Z/peZ for all e ≥ 1.

It can also be shown that a point of E is of n-torsion if and only if its coordinates are roots of
a bivariate polynomial called the n-division polynomial of E [6, Section III.4]. In fact one can
even choose a univariate polynomial in the x-coordinate that we denote by fn.

Here we will be interested in ordinary elliptic curves which can be defined as follows.

Definition 7.1.3 ([238, Theorem V.3.1]). Let E be an elliptic curve defined over Fq and t the
trace of the Frobenius automorphism of E. E is said to be ordinary if it verifies one of the
following equivalent properties:

• p - t;

• E[p] ' Z/pZ;

• End(E) is an order 1 in an imaginary quadratic extension of Q.
1An order O in a number field K is a subring of the ring of integers OK which generates the number field over

Q. In an imaginary quadratic field, it can be uniquely written as O = Z + fOK where f ∈ N∗ is a positive integer
and is called the conductor of O. Reciprocally, each possible conductor gives an order in an imaginary quadratic
field.
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If E is not ordinary, it is said to be supersingular.
Finally, using classical results of Deuring [81] and Waterhouse [261], the number of ordinary

elliptic curves (up to isomorphism) with a given trace t of the Frobenius automorphism (or
equivalently a number of points q + 1 − t), verifying |t| ≤ 2√q and p - t, can be computed as
follows. This property indeed implies that End(E) must be an order O in K = Q[α] and contains
the order Z[α] of discriminant ∆ where α = t+

√
∆

2 and ∆ = t2 − 4q. We denote by H(∆) the
Kronecker class number [232, 76]

H(∆) =
∑

Z[α]⊂O⊂K

h(O) ,

where the sum is taken over all the orders O in K containing Z[α] and h(O) is the classical class
number.

Proposition 7.1.4 ([232, 146, 76]). Let t be an integer such that |t| ≤ 2√q and p - t. The
number N(t) of elliptic curves over Fq with q + 1− t rational points is given by

N(t) = H(∆) ,

where ∆ = t2 − 4q.

It should be noted that H(∆) can be computed from the value of the classical class number
of (the ring of integers of) K using the following proposition.

Proposition 7.1.5 ([158, 76, 146, 70]). Let O be the order of conductor f in K, an imaginary
quadratic extension of Q, , OK the ring of integers of K and ∆K the discriminant of (the ring of
integers of) K. Then

h(O) = fh(OK)
[O∗K : O∗]

∏
p|f

(
1−

(
∆K

p

)
1
p

)
,

where
(
·
p

)
is the Kronecker symbol.

Denoting the conductor of Z[α] by f , H(∆) can then be written as

H(∆) = h(OK)
∑
d|f

d

[O∗K : O]
∏
p|d

(
1−

(
∆K

p

)
1
p

)
.

We now give specific results to even characteristic. First, E is supersingular if and only if its
j-invariant is 0. Second, if E is ordinary, then its Weierstrass equation can be chosen to be of the
form

E : y2 + xy = x3 + bx2 + a ,

where a ∈ F∗q and b ∈ Fq , its j-invariant is then 1/a; moreover its first division polynomials are
given by [153, 6]

f1(x) = 1, f2(x) = x, f3(x) = x4 + x3 + a, f4(x) = x6 + ax2 .

The quadratic twist of E is an elliptic curve with the same j-invariant as E, so isomorphic over
the algebraic closure [q], but not over Fq (in fact it becomes so over Fq2). It is unique up to
isomorphism and we denote it by Ẽ. It is given by the Weierstrass equation

Ẽ : y2 + xy = x3 + b̃x2 + a ,
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where b̃ is any element of Fq such that Trm1
(
b̃
)

= 1− Trm1 (b) [97]. The trace of its Frobenius
automorphism is given by the opposite of the trace of the Frobenius automorphism of E, so that
their number of rational points are closely related [97, 6]:

#E + #Ẽ = 2q + 2 .

7.1.2 Hyperelliptic curves et point counting
In this section we give basic definitions and results for hyperelliptic curves with a special emphasis
on point counting on such curves over finite fields of even characteristic. For a general overview
of the theory of such curves, with a cryptographic point of view, the reader is referred to the
textbooks of Cohen et al. [71] or that of Galbraith [109].

For our purposes, it is enough to consider imaginary hyperelliptic curves. Imaginary hyperel-
liptic curves are smooth projective curves whose affine part can be described by an equation of
the form

H : y2 + h(x)y = f(x) ,

where h(x) is a polynomial of degree ≤ g, the genus of the curve, and f(x) is a monic polynomial
of degree 2g + 1. They have exactly one point at infinity. Curves for which h(x) = xk, where
0 ≤ k ≤ g, are called Artin–Schreier curves. The case g = 1 corresponds to elliptic curves.

The number of points on a hyperelliptic curve H over the finite field F2m is understood as
its numbers of points with coordinates in the finite field F2m , which are also called F2m-rational
points. It is denoted by #H(F2m). The reference to the finite field is usually omitted when the
context makes it clear.

A very important result is that there exist algorithms to compute this number of points in
polynomial time and space in m. Such a result has been given by Denef and Vercauteren who
extended a previous result of Kedlaya [148] in odd characteristic.

Theorem 7.1.6 ([253, Theorem 4.4.1], [80]). Let H be an imaginary hyperelliptic curve of genus
g defined over F2m . There exists an algorithm to compute the number of points on H in

O(g5+εm3+ε)

bit operations and O(g4m3) memory, where ε ∈ <∗+ is any strictly positive real number.

A slightly stronger result is true for Artin–Schreier curves.

Theorem 7.1.7 ([253, Theorem 4.3.1],[79]). Let H be an Artin–Schreier curve of genus g defined
over F2m . There exists an algorithm to compute the number of points on H in

O(g5+εm3+ε)

bit operations and O(g3m3) memory, where ε ∈ <∗+ is any strictly positive real number.

Better complexities were recently obtained through the use of complex methods involving
deformation theory. For example, Hubrechts obtained the following result.

Theorem 7.1.8 ([135, Theorem 2]). Let H be an hyperelliptic curve of genus g defined over F2m .
There exists an algorithm to compute the number of points on H in

O(g7.376m2 + g3.376m2.667)

bit operations and O(g5m2 + g3m2.5) memory.
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In fact such algorithms are even more interesting when one wants to compute the number of
points on several curves within the same family.

To conclude, let us mention the existence of a quasi-quadratic algorithm described by Lercier
and Lubicz [162].

Theorem 7.1.9. Let H be a hyperelliptic curve of genus g defined over F2m . There exists an
algorithm to compute the cardinality of H in

O(24g+o(1)g3m2+o(1))

bit operations and O(23g+o(1)m2) memory.

Nevertheless, it should be remarked that the time and space complexities of this last algorithm
are exponential in the genus of the curve and so it is of practical interest for curves of relatively
genera only.

7.2 Exponential sums and algebraic varieties
7.2.1 Kloosterman sums and elliptic curves
The idea to connect Kloosterman sums and elliptic curves goes back to the works of Lachaud and
Wolfmann [157], and Katz and Livné [146]. We recall a simple proof of their main result in a
simpler and less general formulation here. Indeed, its generalizations which will be covered in the
next subsection can be proved in a very similar manner.

Theorem 7.2.1 ([157, 146]). Let m ≥ 3 be any positive integer, a ∈ F∗2m and Ea the projective
elliptic curve defined over F2m whose affine part is given by the equation

Ea : y2 + xy = x3 + a .

Then
#Ea = 2m +Km(a) .

Proof. Indeed
Km(a) = 1 +

∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
,

and ∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
=
∑
x∈F∗2m

(
1− 2 Trm1

(
x−1 + ax

))
= 2m − 1− 2#

{
x ∈ F∗2m | Trm1

(
x−1 + ax

)
= 1
}

= −2m + 1 + 2#
{
x ∈ F∗2m | Trm1

(
x−1 + ax

)
= 0
}
.

Using the additive version of Hilbert’s Theorem 90, we get∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + t = x−1 + ax
}
,

and applying the substitution t = t/x we get∑
x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , (t/x)2 + (t/x) = x−1 + ax

}
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + xt = x+ ax3} .
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We recognize the number of points of Ea minus the only point with x-coordinate x = 0 and the
only point at infinity. ∑

x∈F∗2m

χ
(
Trm1

(
x−1 + ax

))
= −2m + 1 + #Ea − 2

= −2m − 1 + #Ea .

Hence, the necessary and sufficient condition for hyper-bentness of the monomial functions
with the Dillon exponent can be reformulated as follows.

Proposition 7.2.2 (Reformulation of the Dillon criterion). The notation is as in Theorem 7.2.1.
Moreover, let r be an integer such that gcd(r, 2m + 1) = 1 and fa be the Boolean function with n
inputs defined as fa(x) = Trn1

(
axr(2

m−1)). Then fa is hyper-bent if and only if

#Ea = 2m .

7.2.2 Exponential sums and hyperelliptic curves
In the two following propositions we link exponential sums with cardinalities of hyperelliptic
curve, which will be of interest later on.

Proposition 7.2.3. Let f : F2m → F2m be a function such that f(0) = 0, g = Trm1 (f), and Gf
be the (affine) curve defined over F2m by

Gf : y2 + y = f(x) .

Then ∑
x∈F∗2m

χ (g(x)) = −2m − 1 + #Gf .

Proof. The first step of the proof is to express χ (g(x)) as 1− 2g(x) where g(x) is now understood
to be integer-valued: ∑

x∈F∗2m

χ (g(x)) =
∑
x∈F∗2m

(1− 2g(x)) .

The sum can then be split according to the value of g(x) yielding the equality∑
x∈F∗2m

χ (g(x)) = 2m − 1− 2# {x ∈ F∗2m | g(x) = 1} .

We supposed that g(0) = 0, so we can include zero in the summation set in the right hand side of
the previous equality and deduce∑

x∈F∗2m

χ (g(x)) = 2m − 1− 2# {x ∈ F2m | g(x) = 1}

= 2m − 1− 2 (2m −# {x ∈ F2m | g(x) = 0})
= −2m − 1 + 2# {x ∈ F2m | g(x) = 0} .
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The additive version of Hilbert’s Theorem 90 characterizes elements of trace zero as those which
can be written as t+ t2 so that we get the equivalent formulation∑

x∈F∗2m

χ (g(x)) = −2m − 1 + 2#
{
x ∈ F2m | ∃t ∈ F2m , t

2 + t = f(x)
}
.

The last term of the right hand side of the above equality is nothing but the number of F2m -rational
(affine) points of Gf , whence ∑

x∈F∗2m

χ (g(x)) = −2m − 1 + #Gf ,

which concludes the proof of the proposition.

Proposition 7.2.4. Let f : F2m → F2m be a function, g = Trm1 (f), and Hf be the (affine) curve
defined over F2m by

Hf : y2 + xy = x+ x2f(x) ,

Then ∑
x∈F∗2m

χ (Trm1 (1/x) + g(x)) = −2m + #Hf .

Proof. The proof is quite similar as that of Proposition 11.0.1. It begins with the same sequence
of equalities:∑

x∈F∗2m

χ (Trm1 (1/x) + g(x)) =
∑
x∈F∗2m

(1− 2(Trm1 (1/x) + g(x)))

= 2m − 1− 2# {x ∈ F∗2m | Trm1 (1/x) + g(x) = 1}
= −2m + 1 + 2# {x ∈ F∗2m | Trm1 (1/x) + g(x) = 0}
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + t = 1/x+ f(x)
}
.

The additional step is then to substitute t by t/x before clearing denominators, which is legal
since x is non-zero, before finishing the proof using the same arguments.∑
x∈F∗2m

χ (Trm1 (1/x) + g(x)) = −2m + 1 + 2#
{
x ∈ F∗2m | ∃t ∈ F2m , (t/x)2 + (t/x) = 1/x+ f(x)

}
= −2m + 1 + 2#

{
x ∈ F∗2m | ∃t ∈ F2m , t

2 + xt = x+ x2f(x)
}

= −2m + 1 + #Hf −# {P ∈ Hf | x = 0}
= −2m + #Hf .

Proposition 11.0.1 and Proposition 11.0.2 give the following reformulation of Lemma 2.4.8 in
terms of curves.

Corollary 7.2.5. The notation is as in Proposition 7.3.8. Then

Ti(g) = 1
2
(
(#Gf − 2m) + (−1)i(#Hf − 2m + 1)

)
.

When applied to Corollary 2.4.9, we get the following interesting result about curves.

Corollary 7.2.6. The notation is as in Proposition 7.3.8. Let moreover 1 ≤ r ≤ 2n − 1 be an
integer such that gcd(r, 2m − 1) = 1. Then

#Hr
f + #Grf = #Hf + #Gf .
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7.3 Efficient characterizations of hyper-bentness: reformu-
lation in terms of cardinalities of curves

7.3.1 Efficient characterizations of hyper-bentness: the Charpin and
Gong criterion

Thanks to Proposition 11.0.1 and Proposition 11.0.2 we can now easily deduce the reformulation
of the Charpin–Gong criterion given by Lisoněk.

Theorem 7.3.1 (Reformulation of the Charpin–Gong criterion [170]). Let E′ be a set of repre-
sentatives of the cyclotomic cosets modulo 2m + 1 for which each coset has the maximal size n.
Let far be the function of Fn defined on F2n by fa(x) =

∑
r∈R Trn1 (arxr(2

m−1)) where ar ∈ F2n

and R ⊆ E′. Moreover, let Ha and Ga be the (affine) curves defined over F2m by

Ga : y2 + y =
∑
r∈R

arDr(x) ,

Ha : y2 + xy = x+ x2
∑
r∈R

arDr(x) .

Then fa is hyper-bent if and only if

#Ha −#Ga = −1 .

Proof. According to Proposition 11.0.2, the left hand side of the Charpin–Gong criterion satisfies∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(x)

)
= −2m + #Ha ;

and, according to Proposition 11.0.1, the right hand side of the Charpin–Gong criterion satisfies∑
x∈F∗2m

χ (ga(x)) = −2m − 1 + #Ga .

As a consequence of this corollary, Lisoněk obtained a polynomial time and space test for
hyper-bentness of Boolean functions in the Charpin–Gong family. Let rmax the maximal index in
R, which can be supposed to be odd, and will be for two reasons:

1. it ensures that the curves Ha and Ga are imaginary hyperelliptic curves;

2. as will be discussed below, rmax should be as small as possible for efficiency reasons, so the
natural choice for the indices in a cyclotomic coset will be the coset leaders which are odd
integers.

In fact, the curves Ga and Ha are even Artin–Schreier curves. Theorems 7.1.7 and 7.1.8 state
that there exist efficient algorithms to compute the cardinality of such curves as long as rmax is
supposed to be relatively small. The polynomial defining Ha (respectively Ga) is indeed of degree
rmax+2 (respectively rmax), so the curve is of genus (rmax+1)/2 (respectively (rmax−1)/2). The
complexity for testing the hyper-bentness of a Boolean function in this family is then dominated by
the computation of the cardinality of a curve of genus (rmax+1)/2. Then, applying Theorem 7.1.8
gives the following time and space complexities in m and rmax.



7.3. Efficient characterizations of hyper-bentness: reformulation in terms of
cardinalities of curves 229

Theorem 7.3.2. Let fa be a function in the family Fn defined as above. Let moreover rmax be
the maximal index in R. Then the hyper-bentness of fa can be checked in

O(r7.376
max m

2 + r3.376
max m

2.667)

bit operations and O(r5
maxm

2 + r3
maxm

2.5) memory.

Therefore, if R is supposed to be fixed, then so are rmax and the genera of the curves
Ga and Ha, and the complexities of Theorem 7.3.21 are indeed polynomial in m as stated by
Lisoněk [170, Theorem 5]. Asymptotically, this is much better than a straightforward application
of Theorem 6.1.1 where the exponential sums on F2m are naively computed one term at a time.
Indeed, for each of the 2m−1 terms of the partial exponential sums over T1, one has to compute the
function ga(x) =

∑
r∈R Trm1 (arDr(x)). The time complexity of this computation is dominated by

the cost of a constant number of multiplications in F2m . Therefore, the total time complexity is
O(2mm1+ε) and the space complexity is O(m), where ε ∈ <∗+ is any strictly positive real number.
Testing hyper-bentness through a naive computation of Λ(fa) yields similar complexity, although
the arithmetic takes place in F2n rather than F2m .

It should be remarked that if no restriction is cast upon R, then the maximal index rmax
will obviously depend on m and will in fact grow, at least, as 2m/m. It is indeed sufficient to
note that this is true when m is prime. Then, each non-trivial cyclotomic coset has indeed size
dividing n = 2m. It has size 2 if and only if 3r ≡ 0 (mod 2m + 1) for 0 ≤ r ≤ 2m, i.e. 3r = 2m + 1
or 3r = 2(2m + 1). Hence, there are exactly one such class when 3 | 2m + 1, that is when m is
odd, and no such class otherwise. The size of the other cosets is then 2m, so that the largest
coset leader, which is odd, is at least (2m − 2)/m.

Consequently, the time and space complexities of Theorem 7.3.21 will become exponential,
whereas the time complexities of the naive approaches will become O(2mm2+ε) (now dominated
by the computation of an exponentation with an arbitrary large exponent), where ε ∈ <∗+ is any
strictly positive real number, and their space complexities will not change.

Nonetheless, fixing a set R, i.e. only looking for Boolean functions with a given polynomial
form within a large family, is customary in cryptographic applications. Moreover, experimental
data provided by Lisoněk [170, Table 1] and in Subsection 7.3.4 show that such reformulations
also have a practical impact, so that the above approach seem meaningful.

7.3.2 Efficient characterizations of hyper-bentness: our criterion

We now show that a similar reformulation can be applied to the different versions of our criterion
for Boolean functions with multiple trace terms.

Theorem 7.3.3 (Reformulation of the hyper-bentess criterion for functions in Hn ). Let fa,b be
a function of Hn defined by fa,b(x) :=

∑
r∈R Trn1 (arxr(2

m−1)) + Tr2
1(bx 2n−1

3 ). Moreover, let Ha

and Ga be the (affine) curves defined over F2m by

Ga : y2 + y =
∑
r∈R

arDr(x) ,

Ha : y2 + xy = x+ x2
∑
r∈R

arDr(x) ;
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and let H3
a and G3

a be the (affine) curves defined over F2m by

G3
a : y2 + y =

∑
r∈R

arDr(D3(x)) ,

H3
a : y2 + xy = x+ x2

∑
r∈R

arDr(D3(x)) .

If b is a primitive element of F4 , then fa,b is hyper-bent if and only if

#H3
a −#G3

a = 3 .

If b = 1, then fa,1 is hyper-bent if and only if(
#G3

a −#H3
a

)
− 3

2 (#Ga −#Ha) = 3
2 .

Proof. If b is a primitive element of F4 , according to Proposition 11.0.2 the left hand side of
Condition (c)-(iii) of Theorem 6.2.10 satisfies∑

x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(D3(x))

)
= −2m + #H3

a ,

and according to Proposition 11.0.1 the right hand side of Condition (c)-(iii) of Theorem 6.2.10
satisfies

2m − 2 wH(ga ◦D3) + 3 = −2m + 3 + #G3
a ,

so that the criterion is equivalent to

#H3
a −#G3

a = 3 .

We could also have used Condition (c)-(ii) of Theorem 6.2.10 and that its left hand side
satisfies

∑
x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) = 1
2

 ∑
x∈F∗2m

χ (ga ◦D3(x))−
∑

x∈F∗2m

χ
(
Trm

1
(
x−1)+ ga ◦D3(x)

)
= 1

2
((
−2m − 1 + #G3

a

)
−
(
−2m + #H3

a

))
= 1

2
(
#G3

a −#H3
a − 1

)
;

and decuce the same reformulation.
If b = 1, using the previous calculations, the first term in Condition (d) of Theorem 6.2.10

satisfies

2
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) = #G3
a −#H3

a − 1 ;

and the second term satisfies

3
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga(x)) = 3
2 (#Ga −#Ha − 1) ;

whence the reformulation.
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Here all the curves are also Artin–Schreier curves. So, for a fixed subset of indices R, we also
get a test in polynomial time and space in m. However, the complexity of the point counting
algorithms also depends on the genera of the curves, and so on the degrees of the polynomials
defining them. Denoting by rmax the maximal index as above, the genus of H3

a (respectively
G3
a) is (3rmax + 1)/2 (respectively (3rmax − 1)/2), so approximately three times that of Ha

(respectively Ga). Therefore, the associated test will be much slower than for Boolean functions
of the family of Charpin and Gong for a given subset R: we have to compute the cardinalities of
two curves of genera (3rmax + 1)/2 and (3rmax − 1)/2 if b is primitive, or four curves of genera
(3rmax + 1)/2, (3rmax − 1)/2, (rmax + 1)/2 and (rmax − 1)/2 if b = 1, instead of two curves of
genera (rmax + 1)/2 and (rmax − 1)/2. Hence, we propose another reformulation of our criterion
involving slightly less computations.

Theorem 7.3.4 (Second reformulation of the hyper-bentness criterion for functions in Hn). Let
fa,b be a function of the family Hn defined as above. If b is a primitive element of F4 , then fa,b
is hyper-bent if and only if

#G3
a −

1
2 (#Ga + #Ha) = −3

2 .

If b = 1, then fa,1 is hyper-bent if and only if

2#G3
a −

5
2#Ga + 1

2#Ha = 3
2 .

Proof. We use the fact that m is odd, so that the function x 7→ D3(x) = x3 + x is a permutation
of the set

{
x ∈ F∗2m | Trm1

(
x−1) = 0

}
(see the papers of Berlekamp, Rumsey and Solomon [5,

Theorem 2] and Charpin, Helleseth and Zinoviev [60] for the case of D3, or more generally the
article of Dillon and Dobbertin [88]), and similar arguments as previously.

If b is a primitive element of F4 , then the left hand side in Condition (c)-(ii) of Theorem 6.2.10
satisfies∑
x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) =
∑
x∈F∗2m

χ (ga ◦D3(x))−
∑

x∈F∗2m ,Trm1 (x−1)=0

χ (ga ◦D3(x))

=
∑
x∈F∗2m

χ (ga ◦D3(x))−
∑

x∈F∗2m ,Trm1 (x−1)=0

χ (ga(x))

=
∑
x∈F∗2m

χ (ga ◦D3(x))

− 1
2

 ∑
x∈F∗2m

χ (ga(x)) +
∑
x∈F∗2m

χ
(
Trm1

(
x−1)+ ga(x)

)
=
(
−2m − 1 + #G3

a

)
− 1

2 ((−2m − 1 + #Ga) + (−2m + #Ha))

= −1
2 + #G3

a −
1
2 (#Ga + #Ha) .

If b = 1, then the first term in Condition (d) of Theorem 6.2.10 satisfies

2
∑

x∈F∗2m ,Trm1 (x−1)=1

χ (ga ◦D3(x)) = −1 + 2#G3
a − (#Ga + #Ha) .

Here we discarded the computation of the cardinality of the curve of genus (3rmax + 1)/2 and
we have to compute the cardinalities of three curves of genera (3rmax − 1)/2, (rmax + 1)/2 and
(rmax − 1)/2.
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Table 7.1 – Meantimes needed to compute the number of points on Ga, Ha, G3
a and H3

a

m #Ga #Ha #G3
a #H3

a m #Ga #Ha #G3
a #H3

a

21 0.017 0.488 6.857 13.894 41 0.018 1.868 40.877 108.704
23 0.016 0.576 8.736 16.021 43 0.018 2.575 47.010 128.340
25 0.017 0.653 10.587 20.287 45 0.019 4.986 62.107 176.841
27 0.016 0.912 13.684 25.704 47 0.019 5.663 84.905 210.458
29 0.017 0.869 14.843 27.667 49 0.019 6.532 94.532 234.329
31 0.016 1.026 17.766 34.532 51 0.019 7.982 125.468 242.358
33 0.017 1.166 31.258 59.000 53 0.019 7.676 133.737 249.522
35 0.018 1.317 26.809 57.998 55 0.019 8.437 116.552 275.870
37 0.018 1.562 33.321 79.949 57 0.020 9.504 127.507 305.787
39 0.019 1.893 46.768 99.544 59 0.020 9.881 162.632 360.508

we have shown how our criterion can be reformulated in terms of cardinalities of hyperelliptic
curves; we now study the practical impact of such reformulations.

To begin with, even though the overall complexity is not changed between the two reformula-
tions we presented, the practical difference is non-negligible. To illustrate this fact, we performed
several simulations with Magma v2.17-13 [8]. The computations were performed on an Intel
Core2 Quad CPU Q6600 cadenced at 2.40 GHz. The set R of indices used was R = {1, 3} and
one hundred of couples of coefficients (a1, a3) were randomly generated in F∗2m . The meantimes
(in seconds) needed to compute the number of points on the curves Ga, Ha, G3

a and H3
a for

odd integers m between 21 and 59 are presented in Table 7.3. These data show that using the
second reformulation is roughly twice as fast as using the first one. It also confirms that testing a
function in our family using such a reformulation is much slower than testing a function in the
Charpin–Gong family.

Table 7.2 shows how the second reformulation compares with a straightforward application of
more classical characterizations involving exponential sums where the given sums are computed
one term at a time. The column Λ indicates the meantimes (in seconds) needed to check the
hyper-bentness of a function fa,b in our family by computing naively the exponential sum Λ(fa,1)
, the column Ti by computing naively the exponential sums on Ti of Theorem 6.2.10, and the
column #H by using the second reformulation of the previous section, for b = 1 and ten random
pairs (a1, a3) of coefficients in F2m for m from 1 to 29, and only one couple (a1, a3) for m from 31
to 59. Two remarks should be made about the data exposed in Table 7.2. First, it should be noted
that Magma actually uses a naive point counting based on exponential sums for m up to 20 where
it switches to the Denef–Vercauteren algorithm mentioned in Theorem 7.1.6. Nonetheless, the fact
that a naive point counting algorithm has an exponential time complexity and the experimental
data provided in Table 7.2 show that using such an algorithm for m greater than 20 would not
be beneficial. Second, it is clear that the reformulations in terms of hyperelliptic curves are of
practical interest, for relatively small values of m, and for values of m of cryptographic interest.

As a final piece of experimental evidence, the second reformulation made it possible to find
hyper-bent functions of cryptographic size in our family, even though the tests are much slower
than the corresponding ones for functions in the Charpin–Gong family. A random search on
pairs (a1, a3) as above indeed showed that the Boolean functions associated with the following
coefficients2 are hyper-bent (the finite field F2m is represented as F2 [x] quotiented by the ideal
generated by the m-th binary Conway polynomial):

2Recall that the coefficient a1 and a3 are defined over F2m , but that the corresponding Boolean functions have
n = 2m inputs.
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Table 7.2 – Meantimes needed to test the hyper-bentness of fa,1

m Λ Ti #H m Λ Ti #H
1 0.000 0.000 0.000 31 23213.840 29521.440 18.460
3 0.000 0.000 0.000 33 109889.470 119733.320 29.030
5 0.000 0.000 0.000 35 445344.020 490439.190 25.750
7 0.001 0.001 0.000 37 −− −− 33.631
9 0.003 0.003 0.002 39 −− −− 46.898
11 0.019 0.011 0.004 41 −− −− 40.585
13 0.073 0.042 0.018 43 −− −− 46.713
15 0.301 0.166 0.076 45 −− −− 63.693
17 1.165 0.658 0.300 47 −− −− 86.434
19 4.571 2.693 1.277 49 −− −− 95.525
21 20.863 24.376 6.893 51 −− −− 127.055
23 76.744 99.918 8.769 53 −− −− 133.471
25 330.874 410.432 10.642 55 −− −− 116.726
27 1371.403 1716.147 13.914 57 −− −− 127.596
29 5472.347 6794.873 14.799 59 −− −− 161.185

• for b = 0, the pair

a1 = x34 + x31 + x29 + x27 + x26 + x24 + x23 + x21 + x20 + x18 + x17 + x16

+ x15 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x4 + x3 + x2 + x+ 1 ,

a3 = x32 + x29 + x27 + x25 + x24 + x23 + x21 + x20 + x18 + x16 + x12 + x8

+ x4 + x ,

in F235 represented as F2 [x]/
(
x35 + x11 + x10 + x7 + x5 + x2 + 1

)
;

• for b = 1, the pair

a1 = x27 + x26 + x25 + x24 + x22 + x21 + x20 + x19 + x18 + x17 + x16 + x15

+ x14 + x13 + x11 + x7 + x5 + x4 + x2 + 1 ,

a3 = x30 + x29 + x27 + x26 + x22 + x20 + x17 + x16 + x15 + x12 + x10 + x4

+ x3 + x2 ,

in F233 represented as F2 [x]/
(
x33 + x13 + x12 + x11 + x10 + x8 + x6 + x3 + 1

)
;

• for b = β a primitive element of F4 , the pair

a1 = x32 + x31 + x29 + x27 + x25 + x24 + x23 + x22 + x21 + x18 + x17 + x15

+ x11 + x10 + x9 + x3 + x2 + x ,

a2 = x32 + x29 + x28 + x27 + x26 + x24 + x22 + x18 + x17 + x13 + x10 + x8

+ x7 + x6 + x5 + x4 ,

in F233 represented as F2 [x]/
(
x33 + x13 + x12 + x11 + x10 + x8 + x6 + x3 + 1

)
.
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7.3.3 Efficient characterizations of hyper-bentness: the Wang et al.
criterion

Finally, we extend the previous works to reformulate the characterizations given by Wang et
al. in terms of the number of points on hyperelliptic curves and present some numerical results
leading to an interesting problem.

Applying Corollary 7.3.9 to Theorem 6.6.5 leads to the following reformulation.

Theorem 7.3.5. The notation is as in Theorem 6.6.5, Proposition 11.0.1 and Proposition 11.0.2

1. If b = 1, then 5Λ(fa,1) = 2(#G5
a −#H5

a)− 5(#Ga −#Ha).

2. If b is a primitive element of F16 such that Tr4
1 (b) = 0, then 5Λ(fa,b) = #G5

a −#H5
a .

3. If moreover ar ∈ F2
m
2 , then

(a) if b is a primitive element of F16 such that Tr4
1 (b) = 1, then 10Λ(fa,b) = −3(#G5

a −
#H5

a) + 5(#Ga −#Ha);
(b) if b is a primitive 5-th root of unity, then 10Λ(fa,b) = −(#G5

a−#H5
a)−5(#Ga−#Ha);

(c) if b is a primitive 3-rd root of unity, then 5Λ(fa,b) = #G5
a −#H5

a .

Applying Corollary 7.3.10 then yields a more practical reformulation for explicit generation of
hyper-bent functions.

Theorem 7.3.6. The notation is as in Theorem 7.3.5.

1. If b = 1, then 5Λ(fa,1) = 4#G5
a − 7#Ga + 3#Ha.

2. If b is a primitive element of F16 such that Tr4
1 (b) = 0, then 5Λ(fa,b) = 2#G5

a−#Ga−#Ha.

3. If moreover ar ∈ F2
m
2 , then

(a) if b is a primitive element of F16 such that Tr4
1 (b) = 1, then 5Λ(fa,b) = −3#G5

a +
4#Ga −#Ha;

(b) if b is a primitive 5-th root of unity, then 5Λ(fa,b) = −#G5
a − 2#Ga + 3#Ha;

(c) if b is a primitive 3-rd root of unity, then 5Λ(fa,b) = 2#G5
a −#Ga −#Ha.

Now recall that the zeta function of a (smooth projective) curve C defined over Fq is

Z(C/Fq ; t) = exp
( ∞∑
i=1

#C(Fqi)
i

ti

)
.

Weil proved that, for a curve of genus g, the zeta function Z(C/Fq ; t) can be written as a rational
function

Z(C/Fq ; t) = t2gχ(1/t)
(1− t)(1− qt) ,

where χ(t) is the characteristic polynomial of the Frobenius endomorphism of the Jacobian of C
and that

χ(t) = agt
g +

g−1∑
i=0

ai(t2g−i + qg−iti) .
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Table 7.3 – Meantimes needed to compute the number of points on Ga, Ha, G5
a and H5

a

m #Ga #Ha #G5
a #H5

a m #Ga #Ha #G5
a #H5

a

6 0.000 0.001 0.000 0.000 30 0.024 1.165 132.982 197.473
10 0.001 0.001 0.000 0.000 34 0.035 1.376 338.97 570.014
14 0.010 0.012 0.020 0.019 38 0.080 1.520 394.670 627.62
18 0.244 0.217 0.309 0.318 42 0.050 2.390 491.030 958.810
22 0.019 0.634 52.533 81.334 46 0.037 5.069 742.901 1111.722
26 0.021 0.850 82.884 143.275 50 0.042 7.814 1022.621 1428.279

In particular, the knowledge of χ(t) and its factorization over the complex numbers entails that
of #C(Fqi) for all i ≥ 1. In particular, one has

#C(Fq ) = q + 1 + a1 .

Furthermore, the curves we defined are in fact Artin–Schreier curves, which are a special kind
of imaginary hyperelliptic curves in even characteristic, and Denef and Vercauteren [79, 253] have
shown that it is possible to efficiently compute their zeta functions.

Theorem 7.3.7 ([253, Theorem 4.3.1]). Let C be an Artin–Schreier curve of genus g defined
over F2m . There exists an algorithm to compute the zeta function of C in

O(g3m3(g2 + log2m log logm) log gm log log gm)

bit operations and O(g3m3) memory.

We can therefore compute the number of points of such curves in polynomial time and space
in the size of the base field. It should also be remarked that the time and space complexities of
the above algorithm are also polynomial in the genus of the curve.

If we fix a set R ⊂ E of indices and suppose that the maximum index rmax ∈ R is odd,
then the genera of the curves H5

a , G5
a, Ha and Ga are respectively 5rmax+1

2 , 5rmax−1
2 , rmax+1

2
and rmax−1

2 . Therefore, even though the overall time and space complexities in m of the point
counting algorithm will not change, discarding the computation of the zeta function of the curve
H5
a by using the reformulation of Theorem 7.3.6, rather than that of Theorem 7.3.5, will have a

practical impact.
To illustrate this fact, we performed several simulations with Magma v2.18-2 [8]. The

computations were performed on an Intel Core2 Quad CPU Q6600 cadenced at 2.40 GHz. The set
R of indices used was R = {1, 3} and ten couples of coefficients (a1, a3) were randomly generated
in F∗2m . The meantimes needed to compute the number of points on the curves Ga, Ha, G5

a and
H3
a for integers m ≡ 2 (mod 4) between 6 and 50 are presented in Table 7.3. It should be noted

that Magma [8] actually uses a naive point counting algorithm for m ≤ 20 and switches to the
Vercauteren–Kedlaya algorithm for higher values. Nonetheless, the time needed for the naive
method growing exponentially, it quickly becomes far less efficient than the Vercauteren–Kedlaya
one, even for curves of high genera such as G5

a and H5
a .

We now provide numerical evidence that the characterizations using hyperelliptic curves
are more efficient than those involving exponential sums not only asymptotically, but also for
practical values of m. Table 7.4 gives the meantimes needed to test the hyper-bentness of ten
randomly chosen functions fa,b with R = {1, 3} and b = 1 using Magma [8] implementations of
Proposition 6.3.2 (denoted by Λ), Theorem 6.6.5 (denoted by T1) and Theorem 7.3.6 (denoted by
#G) on the same hardware as above (for m = 34, only one couple was tested). Finally, a random
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Table 7.4 – Meantimes needed to test the hyper-bentness of fa,1

m Λ T1 #G m Λ T1 #G
6 0.000 0.000 0.001 22 38.709 56.547 53.490
10 0.012 0.005 0.003 26 660.433 941.750 83.137
14 0.150 0.092 0.041 30 11271.549 16141.993 131.745
18 2.462 1.449 0.666 34 212549.620 277847.460 328.580

search on such functions using the latter test showed that the following couple (a1, a3):

a1 = x29 + x28 + x27 + x26 + x25 + x24 + x23 + x21 + x18+
x16 + x15 + x14 + x12 + x6 + x5 + x3 + x2 + x ,

a3 = x29 + x28 + x25 + x24 + x23 + x20 + x16 + x15 + x14+
x13 + x12 + x11 + x10 + x9 + x8 + x6 + x4 + x3 ,

where F230 is represented as F2 [x]/(C30) with C30 the 30-th Conway polynomial, gives rise to a
hyper-bent function fa,1 in n = 60 inputs. Finding such a couple would have been quite difficult
with a naive approach using exponential sums.

To conclude this section, we investigate the case where R = {1, 3} and a1 = a3 = a and b is a
primitive element of F4 of trace zero. In this case, the functions of the Wang et al. family are of
the form

fa,b = Trn1
(
a
(
x3(2m−1) + x(2m−1)

))
+ Tr4

1

(
bx

2n−1
5

)
,

and the associated condition for hyper-bentness is

T 5
1 (ga) = 2 ,

or equivalently
2#G5

a −#Ga −#Ha = 5 .

For small values of m, numerical investigation pointed out that the associated value νa defined as

νa = T 5
1 (ga)− 2

10 + (−1)
m−2

4 = 2#G5
a −#Ga −#Ha − 5

20 + (−1)
m−2

4

takes even integer values with absolute value bounded by a given constant. For m ∈ {6, 10, 14, 18},
the constants were respectively 2, 12, 80 and 314. In particular, it is never equal to (−1)m−2

4 and
the associated family of Boolean functions contains no hyper-bent functions. Proving the above
fact is therefore both of practical and theoretical interest.

7.3.4 Algorithmic generation of hyper-bent functions in the family Hn

and hyperelliptic curves
Recall the fundamental connection between Boolean functions, exponential sums and hyperelliptic
curves.

Proposition 7.3.8 ([101, Propositions 3.3 and 3.4]). Let g̃ : F2m → F2m be a function such that
g̃(0) = 0 and g be the corresponding Boolean function g = Trm1 (g̃). Let Gg be the (affine) curve
defined over F2m by

Gg : y2 + y = g̃(x) ,
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and Hg be the (affine) curve defined over F2m by

Hg : y2 + xy = x+ x2g̃(x) .

Then

Ξ(g) = #Gg − 2m ,

Ξ(Trm1 (1/x) + g(x)) = #Hg − 2m + 1 .

We superscript the curves Gg and Hg by r to mean that the corresponding functions g̃ and g
are composed with Dr, i.e. Grg = Gg◦Dr and Hr

g = Hg◦Dr .
Proposition 7.3.8 gives the following reformulation of Lemma 2.4.8 in terms of curves.

Corollary 7.3.9. The notation is as in Proposition 7.3.8. Then

Ti(g) = 1
2 ((#Gg − 2m) + χ (i) (#Hg − 2m + 1)) .

When applied to Corollary 2.4.6, we get the following interesting result about curves.

Corollary 7.3.10. The notation is as in Proposition 7.3.8. Let moreover 1 ≤ r ≤ 2n − 1 be an
integer such that k = gcd(r, 2m − 1) = 1. Then

#Grg + #Hr
g = #Gg + #Hg .

In this subsection, we are interested in the algorithmic generation of hyper-bent functions in
the family Hn. Recall that a function fa,b ∈ Hn is of the form

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Trt1
(
bx

2m+1
τ (2m−1)

)
,

and that it is hyper-bent if and only if the corresponding value Λ(a, b) = Λ(fa,b) = 1.
We show how the results of Section 6.6 can be reformulated in terms of hyperelliptic curves.

This was done for the Charpin–Gong family [170] (i.e. for the family Fn), in the cases τ = 3 [101]
(i.e. for the family Hn) and τ = 5 [102] (i.e. for the family of Wang et al.), leading in these three
cases to both theoretical and practical improvements. In particular, hyper-bent functions were
devised which could not have been generated by naive computation of exponential sums.

Here, we generalize these approaches, apply them to the families described in Section 6.6 and
provide a complexity analysis of the corresponding tests for hyper-bentness. Furthermore, we
study how the different available tests behave as τ grows and which one is the fastest for explicit
generation of hyper-bent functions, that is for moderate values of m where the tests actually
permit to generate hyper-bent functions through a random search on the coefficients ar.

Before taking this quite algorithmic and practical point of view, let us mention that reformu-
lating the previous characterizations in terms of number of points on hyperelliptic curves is also
of high theoretical interest. The theory of algebraic curves is rich and can be applied to the study
of hyper-bent function through such reformulations. For example, Lachaud and Wolfmann [156,
Theorem 3.4] used the theory of elliptic curves to prove that Kloosterman sums take every value
divisible by 4 within a given interval and in particular the value zero. A consequence of this result
is the existence of hyper-bent monomial functions with the Dillon exponent for every extension
degree m, a question which was left as an open problem by Dillon.
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Characterizations in terms of hyperelliptic curves

1. The family Gn
To begin with, it should be remarked that Lisoněk criterion for the Charpin–Gong fam-
ily Fn [170, Theorem 2] readily extends to the family Gn. Applying Corollary 7.3.9 to
Theorem 6.4.9 indeed yields a similar reformulation.

Proposition 7.3.11. The notation is as in Theorem 6.4.9. Then

Λ(a) = #Gga −#Hga .

2. The case b = 1
In the case b = 1, we have different characterizations for the hyper-bentness of fa,1. Indeed,
fa,1 lies not only in Hn, but also in Gn ( Hn.
In the formalism of Subsection 6.6.1, applying Corollary 7.3.9 to Proposition 6.6.1 yields
the following reformulation which is nothing but a variation of Proposition 7.3.11.

Proposition 7.3.12. Let g′a be the Boolean function defined on F2m as g′a(x) = ga(x) +
Trm1 (Ds(x)). Then

Λ(a, 1) = #Gg′a −#Hg′a
.

Recall now that the additional trace term of fa,1 involves the Dillon-like exponent s(2m− 1)
and that the extension degree m verifies m ≡ o (mod 2o) where 2o is the multiplicative
order of 2 modulo τ = 2m+1

s . In particular, τ divides 2m + 1 and is co-prime with 2m− 1, so
that not only Corollary 7.3.9, but also Corollary 7.3.10, can be applied to Proposition 6.6.3.
Doing so, we obtain two different reformulations.

Proposition 7.3.13. Suppose that τ = pk is a prime power and that 2 is a primitive root
modulo pk. Then

pkΛ(a, 1) = 2
(

#Gp
k

ga −#Hpk

ga

)
− 2p

(
#Gp

k−1

ga −#Hpk−1

ga

)
+ pk (#Gga −#Hga) ,

= 4#Gp
k

ga − 4p#Gp
k−1

ga + (pk + 2p− 2)#Gga − (pk − 2p+ 2)#Hga .

3. The case τ = 3
For the record, we recall how Corollaries 7.3.9 and 7.3.10 apply to Theorem 6.6.4 in the
case τ = 3.

Proposition 7.3.14. Let τ = 3 and m ≡ 1 (mod 2). Then

(a) If b = 1, then

3Λ(a, b) = 2
(
#G3

ga −#H3
ga

)
− 3 (#Gga −#Hga) ,

= 4#G3
ga − 5#Gga + #Hga .

(b) If b is a primitive element of F4 , then

3Λ(a, b) = −
(
#G3

ga −#H3
ga

)
,

= −2#G3
ga + #Gga + #Hga .
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4. The case τ = 5
For the record, we recall how Corollaries 7.3.9 and 7.3.10 apply to Theorem 6.6.5 in the
case τ = 5.

Proposition 7.3.15. Let τ = 5 and m ≡ 2 (mod 4).

(a) If b = 1, then

5Λ(a, b) = 2
(
#G5

ga −#H5
ga

)
− 5 (#Gga −#Hga) ,

= 4#G5
ga − 7#Gga + 3#Hga .

(b) If b is a primitive element of F16 such that Tr4
1 (b) = 0, i.e. with minimal polynomial

x4 + x+ 1, then

5Λ(a, b) = #G5
ga −#H5

ga ,

= 2#G5
ga −#Gga −#Hga .

(c) Suppose moreover that ar ∈ F2
m
2 .

i. If b is a primitive 3-rd root of unity, i.e. with minimal polynomial x2 + x+ 1, then

5Λ(a, b) = #G5
ga −#H5

ga ,

= 2#G5
ga −#Gga −#Hga .

ii. If b is a primitive 5-th root of unity, i.e. with minimal polynomial x4+x3+x2+x+1,
then

10Λ(a, b) = −
(
#G5

ga −#H5
ga

)
− (#Gga −#Hga) ,

= −2#G5
ga − 4#Gga + 6#Hga .

iii. If b is a primitive element of F16 such that Tr4
1 (b) = 1, i.e. with minimal polynomial

x4 + x3 + 1, then

10Λ(a, b) = −3
(
#G5

ga −#H5
ga

)
+ 5 (#Gga −#Hga) ,

= −6#G5
ga + 8#Gga − 2#Hga .

5. The case τ = 9
Applying Corollaries 7.3.9 and 7.3.10 to Theorem 6.6.6 gives the following reformulations
for τ = 9.

Proposition 7.3.16. Let τ = 9 and m ≡ 3 (mod 6).

(a) If b = 1, then

9Λ(a, b) = 2
(
#G9

ga −#H9
ga

)
− 6

(
#G3

ga −#H3
ga

)
+ 9 (#Gga −#Hga) ,

= 4#G9
ga − 12#G3

ga + 13#Gga − 5#Hga .

(b) If b is a primitive 3-rd root of unity, then

9Λ(a, b) = −
(
#G9

ga −#H9
ga

)
− 3

(
#G3

ga −#H3
ga

)
+ 9 (#Gga −#Hga) ,

= −2#G9
ga − 6#G3

ga + 13#Gga − 5#Hga .
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(c) Suppose moreover that ar ∈ F2
m
3 and m

3 6≡ 0 (mod 3).
i. If b is a primitive 7-th root of unity with minimal polynomial x3 + x + 1 or a

primitive element with minimal polynomial x6 + x+ 1, then

9Λ(a, b) = 4
(
#G3

ga −#H3
ga

)
− 3 (#Gga −#Hga) ,

= 8#G3
ga − 7#Gga −#Hga .

ii. If b is a primitive 7-th root of unity with minimal polynomial x3 + x2 + 1 or a
21-st root of unity with minimal polynomial x6 + x4 + x2 + x+ 1, then

9Λ(a, b) = 2
(
#G9

ga −#H9
ga

)
− 2

(
#G3

ga −#H3
ga

)
− 3 (#Gga −#Hga) ,

= 4#G9
ga − 4#G3

ga − 3#Gga + 3#Hga .

iii. If b is a primitive 9-th root of unity with minimal polynomial x6 + x3 + 1, then

9Λ(a, b) = 2
(
#G3

ga −#H3
ga

)
+ 3 (#Gga −#Hga) ,

= 4#G3
ga + #Gga − 5#Hga .

iv. If b is a primitive 21-st root of unity with minimal polynomial x6 + x5 + x4 +
x2 + 1, or a primitive element with minimal polynomial x6 + x5 + x3 + x2 + 1 or
x6 + x5 + x4 + x+ 1, then

9Λ(a, b) = −
(
#G9

ga −#H9
ga

)
+
(
#G3

ga −#H3
ga

)
− 3 (#Gga −#Hga) ,

= −2#G9
ga + 2#G3

ga − 3#Gga + 3#Hga .

v. If b is a primitive element with minimal polynomial x6 + x4 + x3 + x+ 1, then

9Λ(a, b) = 2
(
#G9

ga −#H9
ga

)
− 4

(
#G3

ga −#H3
ga

)
+ 3 (#Gga −#Hga) ,

= 4#G9
ga − 8#G3

ga + 5#Gga −#Hga .

vi. If b is a primitive element with minimal polynomial x6+x5+1 or x6+x5+x2+x+1,
then

9Λ(a, b) = −
(
#G9

ga −#H9
ga

)
−
(
#G3

ga −#H3
ga

)
+ 3 (#Gga −#Hga) ,

= −2#G9
ga − 2#G3

ga + 5#Gga −#Hga .

6. The case τ = 11
Applying Corollaries 7.3.9 and 7.3.10 to Theorem 6.6.7 gives the following reformulations
for τ = 11.

Proposition 7.3.17. Let τ = 11 and m ≡ 5 (mod 10).

(a) If b = 1, then

11Λ(a, b) = 2
(
#G11

ga −#H11
ga

)
− 11 (#Gga −#Hga) ,

= 4#G11
ga − 13#Gga + 9#Hga .

(b) If b is a primitive 3-rd root of unity, a 341-st root of unity with minimal polynomial
x10 + x9 + x8 + x3 + x2 + x + 1, or a primitive element with minimal polynomial
x10 + x9 + x8 + x4 + x3 + x2 + 1 or x10 + x9 + x8 + x6 + x5 + x+ 1, then

11Λ(a, b) = −
(
#G11

ga −#H11
ga

)
,

= −2#G11
ga + #Gga + #Hga .
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7. The case τ = 13
Applying Corollaries 7.3.9 and 7.3.10 to Theorem 6.6.8 gives the following reformulations
for τ = 13.

Proposition 7.3.18. Let τ = 13 and m ≡ 6 (mod 12).

(a) If b = 1, then

13Λ(a, b) = 2
(
#G13

ga −#H13
ga

)
− 13 (#Gga −#Hga) ,

= 4#G13
ga − 15#Gga + 11#Hga .

(b) If b is a primitive 15-th root of unity with minimal polynomial x4 + x+ 1, a primitive
819-th root of unity with minimal polynomial x12 +x9 +x8 +x5 +x4 +x+1, a primitive
1365-th root of unity with minimal polynomial x12 + x9 + x5 + x2 + 1, or a primitive
element with minimal polynomial x12 +x9 +x5 +x4 +x2 +x+ 1, x12 +x9 +x8 +x5 + 1
or x12 + x9 + x8 + x6 + x3 + x2 + 1, then

13Λ(a, b) = #G13
ga −#H13

ga ,

= 2#G13
ga −#Gga −#Hga .

8. The case τ = 17
Applying Corollaries 7.3.9 and 7.3.10 to Theorem 6.6.9 gives the following reformulations
for τ = 17.

Proposition 7.3.19. Let τ = 17 and m ≡ 4 (mod 8). Suppose moreover that ar ∈ F2
m
2 .

(a) If b is a primitive element with minimal polynomial x8 + x6 + x5 + x+ 1 or x8 + x6 +
x5 + x2 + 1, then

17Λ(a, b) = #G17
ga −#H17

ga ,

= 2#G17
ga −#Gga −#Hga .

(b) Suppose moreover that ar ∈ F2
m
4 .

i. If b is a primitive 15-th root of unity with minimal polynomial x4 + x + 1, a
primitive 17-th root of unity with minimal polynomial x8 + x5 + x4 + x3 + 1, or a
primitive element with minimal polynomial x8 + x5 + x3 + x2 + 1, then

17Λ(a, b) = #G17
ga −#H17

ga ,

= 2#G17
ga −#Gga −#Hga .

ii. If b is a 51-st root of unity with minimal polynomial x8 + x4 + x3 + x+ 1, then

34Λ(a, b) = 3
(
#G17

ga −#H17
ga

)
− 17 (#Gga −#Hga) ,

= 6#G17
ga − 20#Gga + 14#Hga .

9. The case τ = 33
Applying Corollaries 7.3.9 and 7.3.10 to Theorem 6.6.10 gives the following reformulations
for τ = 33.
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Proposition 7.3.20. Let τ = 33 and m ≡ 5 (mod 10). Suppose moreover that ar ∈ F2
m
5

and m
5 6≡ 0 (mod 5).

(a) If b is a primitive 31-st root of unity with minimal polynomial x5 +x2 +1, or a primitive
341-st root of unity with minimal polynomial x10 + x8 + x4 + x3 + x2 + x+ 1, then

165Λ(a, b) = 4
(
#G33

ga −#H33
ga

)
+ 12

(
#G11

ga −#H11
ga

)
− 44

(
#G3

ga −#H3
ga

)
+ 33 (#Gga −#Hga) ,

= 8#G33
ga + 24#G11

ga − 88#G3
ga + 61#Gga − 5#Hga .

(b) If b is a primitive 31-st root of unity with minimal polynomial x5 + x3 + 1, then

165Λ(a, b) = −4
(
#G33

ga −#H33
ga

)
+ 24

(
#G11

ga −#H11
ga

)
+ 44

(
#G3

ga −#H3
ga

)
− 99 (#Gga −#Hga) ,

= −8#G33
ga + 48#G11

ga + 88#G3
ga − 163#Gga + 35#Hga .

(c) If b is a primitive 31-st root of unity with minimal polynomial x5 + x3 + x2 + x+ 1, a
primitive 93-rd root of unity with minimal polynomial x10 +x8 +x3 +x+ 1, a primitive
341-st root of unity with minimal polynomial x10 + x8 + x7 + x5 + x3 + x + 1, or a
primitive element with minimal polynomial x10 +x7 + 1, x10 +x7 +x6 +x4 +x2 +x+ 1
or x10 + x8 + x7 + x5 + 1, then

165Λ(a, b) = 12
(
#G11

ga −#H11
ga

)
+ 33 (#Gga −#Hga) ,

= 24#G11
ga + 21#Gga − 45#Hga .

(d) If b is a primitive 93-rd root of unity with minimal polynomial x10 + x5 + x4 + x2 + 1,
or a primitive element with minimal polynomial x10 + x6 + x5 + x3 + x2 + x+ 1 or
x10 + x8 + x5 + x4 + x3 + x2 + 1, then

165Λ(a, b) = −2
(
#G33

ga −#H33
ga

)
+ 18

(
#G11

ga −#H11
ga

)
+ 22

(
#G3

ga −#H3
ga

)
− 33 (#Gga −#Hga) ,

= −4#G33
ga + 36#G11

ga + 44#G3
ga − 71#Gga − 5#Hga .

(e) If b is a primitive 93-rd root of unity with minimal polynomial x10 + x8 + x6 + x5 + 1,
then

165Λ(a, b) = 2
(
#G33

ga −#H33
ga

)
+ 18

(
#G11

ga −#H11
ga

)
− 22

(
#G3

ga −#H3
ga

)
− 33 (#Gga −#Hga) ,

= 4#G33
ga + 36#G11

ga − 44#G3
ga − 31#Gga + 35#Hga .

(f) If b is a primitive 341-st root of unity with minimal polynomial x10 + x3 + x2 + x+ 1
or x10 + x7 + x4 + x3 + 1, then

165Λ(a, b) = −4
(
#G33

ga −#H33
ga

)
+ 18

(
#G11

ga −#H11
ga

)
+ 44

(
#G3

ga −#H3
ga

)
− 33 (#Gga −#Hga) ,

= −8#G33
ga + 36#G11

ga + 88#G3
ga − 91#Gga − 25#Hga .
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(g) If b is a primitive 341-st root of unity with minimal polynomial x10 + x6 + x2 + x+ 1,
or a primitive element with minimal polynomial x10 + x7 + x3 + x+ 1, then

165Λ(a, b) = 18
(
#G11

ga −#H11
ga

)
− 33 (#Gga −#Hga) ,

= 36#G11
ga − 51#Gga + 15#Hga .

(h) If b is a primitive element with minimal polynomial x10 + x7 + x6 + x5 + x4 + x+ 1 or
x10 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1, then

165Λ(a, b) = 2
(
#G33

ga −#H33
ga

)
+ 12

(
#G11

ga −#H11
ga

)
− 22

(
#G3

ga −#H3
ga

)
+ 33 (#Gga −#Hga) ,

= 4#G33
ga + 24#G11

ga − 44#G3
ga + 41#Gga − 25#Hga .

Asymptotic complexities

Asymptotically, to test the hyper-bentness of any function in the family Hn through a naive
computation of Λ(fa,b), that is a partial exponential sum over U ⊂ F2n , one has to compute
#U = 2m + 1 summands. For each summand, the computation is dominated by the cost of an
exponentiation with an arbitrary large exponent because rmax, the maximal index in R, grows
exponentially with m. Therefore, the total computation has a time complexity of O(2mm2+ε)
and a space complexity of O(m). Using the characterizations given in Section 6.6 yields similar
complexities, the only notable difference being that the finite field arithmetic occurs in F2m rather
than F2n .

As far as the characterizations of the previous subsection are concerned, the situation is not
better if one wants to test any function in the family Hn. Indeed, the time and space complexities
of the point counting algorithms described in Theorems 7.1.7 and 7.1.8 are polynomial in the
genus of the curve, and so are in the maximal index rmax ∈ R.

More precisely, we can suppose that rmax is odd, so that it is as small as possible and the
curves involved in the characterizations are Artin–Schreier curves. Then, for any odd integer
l ≥ 1, the curves Glga and H l

ga are of genera respectively lrmax−1
2 and lrmax+1

2 . Therefore, for a
fixed τ and a family Tn of Boolean functions among the ones studied in the previous subsection
(e.g. the family Tn = {fa,b ∈ Hn | τ = 9 and b is a 3-rd root of unity}), one gets the following
theorem.

Theorem 7.3.21. For a fixed τ , the hyper-bentness of fa,b ∈ Tn defined over F2n , where Tn is a
family defined as above, can be checked in

O(r7.376
max m

2 + r3.376
max m

2.667)

bit operations and O(r5
maxm

2 + r3
maxm

2.5) memory.

As the maximal index rmax grows exponentially withm, these complexities are still exponential
in the extension degree m. Nonetheless, it is customary in cryptography to restrict to functions
of a given form, that is to fix the set R. In this case, rmax does not grow with m. On the one
hand, the time complexities of the two naive approaches fall to O(2mm1+ε), the computation of
one term being dominated by the cost of a multiplication, and so are still exponential. On the
other hand, the time and space complexities of the tests involving hyperelliptic curves become
polynomial in m, except for Proposition 7.3.13.

Theorem 7.3.22. For a fixed τ and a fixed R, the hyper-bentness of fa,b ∈ Tn defined over F2n

can be checked in polynomial time and space.
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To conclude, it should be remarked that, except for a few exceptions, all the characterizations
devised above include a curve of genus τrmax−1

2 . Therefore, the time and space complexities of
the tests involving hyperelliptic curves will be polynomial in τ . For example, Proposition 7.3.13,
where b = 1 and τ = pk is a prime power for which 2 is primitive root, yields infinite families of τ
for which the corresponding characterization involves a curve of genus exactly τrmax−1

2 as follows:
choose p such that 2 is a primitive root modulo p2, e.g. p = 3, and consider the family

{
pk
}+∞
k=2.

Experimental results

Although it has been demonstrated that characterizations involving hyperelliptic curves not only
yield asymptotically faster algorithms, but also more practical ones for moderate values of m
especially interesting in cryptography ([170] for the family Fn, [101] for τ = 3 and [102, Table 2]
for τ = 5) it is not clear that this remains true as τ grows.

• Naive computations:

Let us first compare the two characterizations of hyper-bentness involving exponential sums
that we described in the previous sections, namely the characterization of Proposition 6.4.2
involving Λ(a, b) and the characterizations of Section 6.6 involving T1(ga ◦Dr). Although the
arithmetic takes place in F2n for the former one, whereas it takes place in F2m for the latter ones,
this is quite negligible for the small values of m which can be attained in practice. Moreover,
the first criterion involves the computation of only one exponential sums over the set U of size
#U = 2m + 1, whereas the second ones involve the computations of several exponential over the
set T1 of size #T1 = 2m−1. For example, the characterization of Proposition 6.6.3, involves three
different exponential sums, and the characterizations of Theorem 6.6.10 up to four different ones.
Plus, the computation of ga and its compositions with Dickson polynomials can be more complex
than that of fa,b.

To confirm these facts and compare the time needed by a direct computation of Λ(a, b) as
suggested by Proposition 6.4.2 and by a computation based on Proposition 6.6.3 and exponential
sums over T1, we performed different experiments with version 2.18-5 of the Magma software [8]
running on an Intel(R) Xeon(R) X5650 CPU cadenced at 2.67GHz for R = {1}, a1 randomly
chosen in F2m , b = 1, and different values of τ and m. Given a value of τ , some restrictions lie
on the extension degree m for the expression of fa,b, i.e. m should divide 2m + 1. Therefore, for
unsuitable values of m, the time needed for a direct computation of Λ(a, b) were extrapolated.
Nevertheless, the expression of Λ(a, b) in Proposition 6.6.3 involving exponential sums on T1
can always be computed, even though Λ(a, b) itself is not well defined in this case. Thus, for
Proposition 6.6.3 the computations were performed for every extension degree. The results of
these experiments are summarized in Figures 7.1 and 7.2 where the time needed to compute Λ(a, b)
directly or through Proposition 6.6.3 for m between 20 and 30 and τ = 3 and 5 are depicted.
Similar results can be observed for higher values of τ , e.g. 9, 11 and so on; that is, computing
directly Λ(a, b) is faster than computing it through the expression given in Proposition 6.6.3.

Finally, it should be noted that the characterization of Proposition 6.4.2, not only covers the
family Hn, but the complete family Fn, that is all Boolean functions with Dillon-like exponents
without any restriction on the coefficients ar ∈ F2m , nor on the sizes of the cyclotomic cosets of
the exponents r.
• Using hyperelliptic curves
Now, the time needed by the two above methods grows exponentially with m, whereas the

time needed by methods involving hyperelliptic curves will only grow polynomially for a fixed
set R. Nonetheless, the constants involved are much larger for the latter methods than for the
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Figure 7.1 – Computation of Λ(a, b) by summation over U and T1 for τ = 3
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Figure 7.2 – Computation of Λ(a, b) by summation over U and T1 for τ = 5
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Figure 7.3 – Computation of Λ(a, b) by summation over U and using hyperelliptic curves for
R = {1}

former. Therefore, from a practical point of view, such methods are useless if they become more
efficient for too large values of m.

Using the same setup as above, we compared the time needed to compute Λ(a, b) directly and
through the expression given in Proposition 7.3.13. Note that the Magma software uses a naive
method to compute the number of points on a hyperelliptic curves of genus g ≥ 2 for m < 20
and the Denef–Vercauteren algorithm from m = 20 onward. It also implements specialized
point counting algorithms for elliptic curves and hyperelliptic curves of genus 2. As above, the
definition of fa,b only makes sense for some extension degrees m, whereas the expression given by
Proposition 7.3.13 always does. Therefore, timings using hyperelliptic curves where generated for
every extension degrees between 20 and 30, even though the correspondence with Λ(a, b) is not
always valid. Moreover, the aforementioned computations for different values of τ showed that
the time needed for a direct computation of Λ(a, b) depends on τ in a negligible way. Hence, we
only include timings of such a computation for a given value of τ chosen to be τ = 3. Figure 7.3
gives timings for R = 1, that is for binomial functions, for different values of τ , whereas Figure 7.4
gives similar timings for R = 1, 3, that is for trinomial functions.

For τ = 3 and 5, as was already shown in previous works [170, 101? ], reformulations in terms
of hyperelliptic curves yield non-negligible improvements, even for moderate values of m, when
R = {1} and R = {1, 3} are considered. Indeed, such reformulations allow to generate hyper-bent
functions which could not have been generated using more naive methods. For R = {1}, that is
for the simplest binomial functions, Figure 7.3 suggests that this remains true for a few additional
values of τ . This fact is confirmed by examples of hyper-bent functions given in Subsection 7.3.4.

On the contrary, Figure 7.4 shows that for trinomial functions with R = {1, 3} and τ greater
than 5, the crossover happens at extension degrees m for which testing hyper-bentness with a
naive method, and using hyperelliptic curves, takes several hundreds of seconds. In particular, it
seems hopeless to generate additional hyper-bent trinomials using tests based on hyperelliptic
curves.

Nonetheless, the current Magma implementation of point counting over finite fields of even
characteristic for hyperelliptic curves is limited to the Denef–Vercauteren algorithm. Algorithms
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Figure 7.4 – Computation of Λ(a, b) by summation over U and using hyperelliptic curves for
R = {1, 3}

based on deformation theory are limited to odd characteristic. An efficient implementation of
such algorithms in even characteristic should provide practical improvements, especially together
with the possibility to count points on m different curves at a time with no runtime overhead
by implementing multipoint evaluation as described by Hubrechts [135]. Furthermore, all the
algorithms mentioned previously were designed not only to compute the number of rational points
of a curve over its base field, but its complete zeta function, which is loosely equivalent to the
knowledge of the number of points of the curve over the first g extension of the base field if the
curve has genus g. Specializing these algorithms by lowering the needed precision during the
computations to only compute the number of points of the curve over the base field, that is the
trace term of the zeta function, should provide both better asymptotic complexities and practical
improvements to the runtime.
• Examples of hyper-bent functions
To conclude this subsection, we provide some tuples of coefficients (ar)r∈R corresponding to

hyper-bent functions for different values of τ and b. They were generated through a random
search, using the different characterizations proposed in this note. To describe the coefficients
ar, the finite field F2m is always represented as F2 [x]/(Cm(x)) where Cm(x) is the m-th Conway
polynomial. Furthermore, recall that, although the coefficients ar live in F2m , the corresponding
Boolean function fa,b is defined over F2n where n = 2m.

For example, when b = 1, we found that the function fa,1 is hyper-bent if:

1. τ = 3, m = 33, a1 = x32 +x28 +x27 +x25 +x24 +x20 +x19 +x14 +x13 +x9 +x5 +x4 +x2 +1;

2. τ = 5, m = 34, a1 = x33 + x30 + x29 + x28 + x27 + x26 + x23 + x22 + x20 + x18 + x17 + x16 +
x15 + x14 + x11 + x9 + x2 + 1;

3. τ = 5,m = 34, a1 = x33+x32+x28+x27+x26+x25+x24+x22+x20+x19+x18+x17+x11+x9+
x6+x3+x2, a3 = x33+x31+x29+x28+x25+x23+x22+x18+x17+x16+x14+x8+x5+x4+x2;

4. τ = 9, m = 21, a1 = x20 + x17 + x15 + x14 + x10 + x9 + x6 + x4 + x2 + x;
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5. τ = 9,m = 21, a1 = x18+x17+x12+x11+x5+x3+x+1, a3 = x19+x18+x14+x8+x7+x4+1;

6. τ = 9, m = 27, a1 = x26 + x25 + x23 + x22 + x20 + x16 + x9 + x6;

7. τ = 11, m = 15, a1 = x15338;

8. τ = 11, m = 15, a1 = x1066, a3 = x19316;

9. τ = 11, m = 25, a1 = x24 + x22 + x17 + x13 + x11 + x7 + x5;

10. τ = 13, m = 18, a1 = x253630;

11. τ = 13, m = 18, a1 = x247490, a3 = x216257;

12. τ = 13, m = 30, a1 = x29 + x28 + x24 + x22 + x18 + x17 + x15 + x6 + x5 + x3.

For b 6= 1, here follow some examples of hyper-bent functions fa,b:

1. τ = 3, m = 29, a1 = x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x17 + x16 + x10 +
x8 + x7 + x6 + x5 + x4 + x3, b a primitive element of F4 ;

2. τ = 3, m = 33, a1 = x29 + x26 + x24 + x23 + x20 + x18 + x17 + x16 + x15 + x9 + x8 + x7 + x6,
b a primitive element of F4 ;

3. τ = 5, m = 30, a1 = x29 + x27 + x26 + x25 + x22 + x21 + x19 + x18 + x17 + x16 + x15 + x14 +
x11 + x10 + x9 + x6 + x5 + x3 + x+ 1, b a primitive element of F16 with trace 0;

4. τ = 5, m = 34, a1 = x33 + x29 + x25 + x23 + x22 + x21 + x20 + x16 + x15 + x14 + x11 + x8 +
x6 + x5 + x4 + x3, b a primitive element of F16 with trace 0;

5. τ = 9, m = 21, a1 = x20 + x19 + x17 + x15 + x14 + x13 + x9 + x8 + x7 + x4 + x2 + 1, b a
primitive 3-rd root of unity;

6. τ = 9, m = 27, a1 = x25 + x23 + x22 + x20 + x19 + x18 + x17 + x15 + x10 + x9 + x7 + x6 + x3,
b a primitive 3-rd root of unity;

7. τ = 11, m = 25, a1 = x24 + x22 + x21 + x17 + x16 + x14 + x13 + x11 + x10 + x6 + x3 + x2, b
a primitive 3-rd root of unity;

8. τ = 13, m = 18, a1 = x166827, b a primitive 15-th root of unity with minimal polynomial
x4 + x+ 1;

9. τ = 13, m = 30, a1 = x26 + x23 + x22 + x21 + x20 + x17 + x16 + x15 + x14 + x9 + x6 + x, b a
primitive 15-th root of unity with minimal polynomial x4 + x+ 1.

Not only show the above examples the usefulness of our approach for explicit generation of
hyper-bent functions, but also that the families of Boolean functions we consider actually contain
hyper-bent functions.
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7.4 Values of binary Kloosterman sums: some methods
7.4.1 Divisibility of binary Kloosterman sums
Classical results

Because of their cryptographic interest, divisibility properties of Kloosterman sums have been
studied in several recent papers. A nice overview of such results can be found in the Ph.D. thesis
of Moloney [207]. Here we cite a few of them which we will explicitly use in search algorithms for
binary Kloosterman sums with specific values, especially the values 0 and 4.

Recall that Proposition 2.2.2 states in particular that binary Kloosterman sums are always
divisible by 4. Afterwards, several papers studied divisibility properties of binary Kloosterman
sums by multiples of 4 and other integers.

The following result was first proved by Helleseth and Zinoviev [128] and classifies the values
of Km(a) modulo 8 according to the value of the absolute trace of a.

Proposition 7.4.1 ([128]). Let m ≥ 3 be any positive integer and a ∈ F2m . Then Km(a) ≡ 0
(mod 8) if and only if Trm1 (a) = 0.

In the same article, they gave the following sufficient conditions to get certain values of Km(a)
modulo 3.

Proposition 7.4.2 ([128]). Let m ≥ 3 be any positive integer and a ∈ F∗2m . Suppose that there
exists t ∈ F∗2m such that a = t4 + t3.

• If m is odd, then Km(a) ≡ 1 (mod 3).

• If m is even, then Km(a) ≡ 0 (mod 3) if Trm1 (t) = 0 and Km(a) ≡ −1 (mod 3) if
Trm1 (t) = 1.

Furthermore, Charpin, Helleseth and Zinoviev [61] gave additional results about values of
Km(a) modulo 3.

Proposition 7.4.3 ([61]). Let m ≥ 3 be any positive integer and a ∈ F∗2m . Then we have:

• If m is odd, then Km(a) ≡ 1 (mod 3) if and only if Trm1
(
a1/3) = 0. This is equivalent to

a = b
(1+b)4 for some b ∈ F∗2m .

• If m is even, then Km(a) ≡ 1 (mod 3) if and only if a = b3 for some b such that Trm2 (b) 6= 0.

Further divisibility results exist and could be used to further refine the tests proposed in
this chapter. For example, results up to 64 can be found in a paper of Göloğlu, McGuire and
Moloney [119], and results up to 256 in an even more recent paper of Göloğlu, Lisoněk, McGuire
and Moloney [118].

Most of these results about divisibility were first proved studying the link between exponential
sums and coset weight distribution [128, 61]. However some of them can be proved in a completely
different manner as we show in the next subsection.

Using torsion of elliptic curves

Theorem 7.2.1 giving the value of Km(a) as the cardinality of an elliptic curve can indeed be used
to deduce divisibility properties of Kloosterman sums from the rich theory of elliptic curves. We
recall that the quadratic twist of the ordinary elliptic curve Ea that we denote by Ẽa is given by
the Weierstraß equation

Ẽa : y2 + xy = x3 + bx2 + a ,
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where b ∈ F2m has absolute trace 1; it has cardinality:

#Ẽa = 2m + 2−Km(a) .

First of all, we recall a proof of the divisibility by 4 stated in Proposition ?? as it can be found
for example in the preprint of Ahmadi and Granger [1]. For m ≥ 3, Km(a) ≡ #Ea (mod 4),
so Km(a) ≡ 0 (mod 4) if and only if #Ea ≡ 0 (mod 4). This is equivalent to Ea having a
non-trivial rational point of 4-torsion. This can also be formulated as both the equation of Ea
and its 4-division polynomial f4(x) = x6 + ax2 having a rational solution. It is easily seen that
P = (a1/4, a1/2) is always a non-trivial solution to this problem.

Lisoněk [169] used similar techniques to give a different proof of Proposition 7.4.1. Indeed, for
m ≥ 3, Km(a) is divisible by 8 if and only if Ea has a non-trivial rational point of 8-torsion. This
is easily shown to be equivalent to Trm1

(
a1/4) = Trm1 (a) = 0.

Finally, it is possible to prove directly that the condition given in Proposition 7.4.2 is not only
sufficient, but also necessary, using torsion of elliptic curves3.

We use this property in Subsection 7.4.2.

Proposition 7.4.4. Let a ∈ F∗2m .

• If m is odd, then Km(a) ≡ 1 (mod 3) if and only if there exists t ∈ F2m such that a = t4 +t3.

• If m is even, then:

– Km(a) ≡ 0 (mod 3) if and only if there exists t ∈ F2m such that a = t4 + t3 and
Trm1 (t) = 0;

– Km(a) ≡ −1 (mod 3) if and only if there exists t ∈ F2m such that a = t4 + t3 and
Trm1 (t) = 1.

Proof. According to Proposition 7.4.2 we only have to show that, if a verifies the given congruence,
it can be written as a = t4 + t3.

• We begin with the case m odd, so that 2m ≡ −1 (mod 3). Then Km(a) ≡ 1 (mod 3) if and
only if #Ea ≡ 0 (mod 3), i.e. if Ea has a non-trivial rational point of 3-torsion. It implies
that the 3-division polynomial of Ea given by f3(x) = x4 + x3 + a has a rational solution,
so that there exists t ∈ F2m such that a = t4 + t3.

• Suppose now that m is even, so that 2m ≡ 1 (mod 3).

– If Km(a) ≡ −1 (mod 3), then #Ea ≡ 0 (mod 3), and as in the previous case we can
find t ∈ F2m such that a = t4 + t3.

– If Km(a) ≡ 0 (mod 3), then #Ea ≡ 1 (mod 3), but #Ẽa ≡ 0 (mod 3). The 3-division
polynomial of Ẽa is also given by f3(x) = x4 + x3 + a, so that there exists t ∈ F2m

such that a = t4 + t3.

3 We were recently made aware that such a result was also proved in a different way also involving elliptic
curves by Garashuck and Lisoněk [110] in the case where m is odd
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7.4.2 Finding specific values of binary Kloosterman sums
Generic strategy

In this subsection we present the most generic method to find specific values of binary Kloosterman
sums. To this end, one picks random elements of F2m and computes the corresponding values until
a correct one is found. Before performing any complicated computations, divisibility conditions as
those stated in the previous section can be used to restrict the pool of elements to those satisfying
certain conditions (but without missing any element giving the value searched for) or to filter out
elements which will give inadequate values.

Then, the most naive method to check the value of a binary Kloosterman sum is to compute
it as a sum. However, one test would need O(2mm log2m log logm) bit operations and this is
obviously highly inefficient. Theorem 7.2.1 tells that this costly computation can be replaced by
the computation of the cardinality of an elliptic curve over a finite field of even characteristic.
Using p-adic methods à la Satoh [229], also known as canonical lift methods, this can be done
quite efficiently in O(m2 log2m log logm) bit operations and O(m2) memory [121, 255, 254, 163].
Working with elliptic curves also has the advantage that one can check that the current curve is
a good candidate before computing its cardinality as follows: one picks a random point on the
curve and multiplies it by the targeted order; if it does not give the point at infinity, the curve
does not have the targeted cardinality.

Finally, it should be noted that, if ones looks for all the elements giving a specific value,
a different strategy can be adopted as noted in the paper of Ahmadi and Granger [1]. Recall
that a binary Kloosterman sum can be seen as the Walsh–Hadamard transform of the Boolean
function Trm1 (1/x). Therefore, we can construct the Boolean function corresponding to the
function Trm1 (1/x) and then use a fast Walsh–Hadamard transform to compute the values
of all binary Kloosterman sums. Building the Boolean function costs one multiplication per
element, so O(2mm logm log logm) bit operations and O(2m) memory. The complexity of the
fast Walsh–Hadamard transform is O(2mm2) bit operations and O(2mm) memory [2].

Zeros of binary Kloosterman sums

When looking for zeros of binary Kloosterman sums, which is of high cryptographic interest as
Chapter 5 4emphasizes, one benefits from even more properties of elliptic curves over finite fields.
Indeed, when Km(a) = 0, we get that #Ea = 2m. Hence all rational points of Ea are of order
some power of 2.

In fact, we know even more. As Ea is defined over a field of even characteristic, its complete
2e-torsion (where e is any strictly positive integer) is of rank 1, whereas the complete le-torsion, for
a prime l different from 2, is of rank 2, as stated in Proposition 7.1.2. Therefore the rational Sylow
2-subgroup is cyclic, isomorphic to Z/2eZ for some positive integer e. In the case whereKm(a) = 0,
we even get that the whole group of rational points is isomorphic to Z/2mZ. Furthermore, basic
group theory tells that Ea will then have 2m−1 points of order 2m.

Finally, it should be noted that, if 2m | #Ea, then #Ea must be equal to 2m. This is a simple
consequence of Hasse theorem (Theorem 7.1.1) giving bounds on the number of rational points of
an elliptic curve over a finite field.

These facts have first been used by Lisoněk [169] to develop a probabilistic method to test
whether a given a gives a binary Kloosterman zero or not: one takes a random point on Ea and
tests whether its order is 2m or not. This test involves at most m duplications on the curve,
hence is quite efficient. Moreover, as soon as #Ea = 2m, half of its points are generators, so that

4We will see also in Chapter 8 that the value 0 of Kloosterman sums give rise to semi-bent functions in even
dimension (see for instance Table 8.1).
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testing one point on a correct curve gives a probability of success of 1/2. This led Lisoněk to find
zeros of binary Kloosterman sums for m up to 64 in a matter of days.

Afterwards, Ahmadi and Granger [1] proposed a deterministic algorithm to test whether an
element a ∈ F2m gives a binary Kloosterman zero or not. From the above discussion, it is indeed
enough to compute the size of the Sylow 2-subgroup of Ea to answer that question. This can be
efficiently implemented by point halving, starting from a non-trivial point of 4-torsion (remember
that such a point always exists on Ea). The complexity of each iteration of their algorithm is
dominated by two multiplications in F2m . So testing a curve with a Sylow 2-subgroup of size
2e is of complexity O(e ·m logm log logm). Furthermore, they showed that the average size of
the Sylow 2-subgroup of the curves of the form Ea is 23 when m goes to infinity, so that their
algorithm has an asymptotic average bit complexity of O(m logm log logm).

Implementation for the value 4

We have seen5 in Chapter 5 a necessary and sufficient condition to build bent functions from the
value 4 of binary Kloosterman sums when m is odd and a necessary only condition when m is
even. Unfortunately, the situation is more complicated than in the case of binary Kloosterman
zeros.

We are indeed looking for an element a ∈ F2m such that Km(a) = 4. The cardinality of Ea
should then be #Ea = 2m +Km(a) = 4(2m−2 + 1) which does not ensure to have a completely
fixed group structure as was the case when #Ea = 2m. Moreover, in general, the number 2m−2 +1
does not verify many divisibility properties leading to an efficient test for the value 4. The
cardinality of the twist Ẽa is given by #Ẽa = 2m + 2 −Km(a) = 2(2m−1 − 1) which does not
provide more useful information.

What we can however deduce from these equalities is that, if Km(a) = 4, then:

• Km(a) ≡ 4 (mod 8), so that Trm1 (a) = 1;

• Km(a) ≡ 1 (mod 3), so that:

– if m is odd, then a can be written as t4 + t3;
– if m is even, then a can be written as t3 with Trm2 (t) 6= 0.

We can use both these conditions to filter out a to be tested as described in Algorithm 7.1 (for m
odd).

We implemented this algorithm in Sage [241]. It was necessary to implement a relatively
efficient version of point counting in even characteristic, none of them being available. The first
implemented algorithm was an extension to even characteristic of Satoh’s original algorithm by
Fouquet, Gaudry and Harley [108]. The complexity of this algorithm is O(m3+ε) bit operations
(or O(m5) with naive multiplication) and O(m3) memory, but it is quite simple and there was
already an existing implementation in GP/Pari by Yeoh [270] to use as a starting point. The
computations in Z2m , the unique unramified extension of degree m of the 2-adic integers Z2, were
done through the direct library interface to Pari [216] provided in Sage. We also implemented
Harley’s algorithm [121] as described in Vercauteren’s thesis [255] using similar implementation
details. . .

.
As a result of our experiments, we found that the following value of a for m = 55 gives a value

4 of binary Kloosterman sum. The finite field F255 is represented as F2 [x]/(x55 + x11 + x10 + x9 +
5We will see also in Chapter 8 that the value 4 of Kloosterman sums give rise to semi-bent functions in even

dimension (see for instance Table 8.2).
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Algorithm 7.1: Finding the value 4 of binary Kloosterman sums for m odd
Input: A positive odd integer m ≥ 3
Output: An element a ∈ F2m such that Km(a) = 4

1 a←R F2m

2 a← a3(a+ 1)
3 if Trm1 (a) = 0 then
4 Go to step 7.1
5 P ←R Ea
6 if [2m + 4]P 6= 0 then
7 Go to step 7.1
8 if #Ea 6= 2m + 4 then
9 Go to step 7.1

10 return a

x7 + x4 + 1); a is then given as

a = x53 + x52 + x51 + x50 + x47 + x43 + x41 + x38 + x37 + x35

+ x33 + x32 + x30 + x29 + x28 + x27 + x26 + x25 + x24

+ x22 + x20 + x19 + x17 + x16 + x15 + x13 + x12 + x5 .
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In 1994, the notion of semi-bent function has been introduced by Chee, Lee and Kim [62] at
Asiacrypt’ 94. In fact, these functions had been previously investigated under the name of
three-valued almost optimal Boolean functions in [19]. Moreover, they are particular cases
of the so-called plateaued functions [276, 275]. Like bent functions, semi-bent functions are
also widely studied in cryptography because, besides having low Hadamard transform which
provides protection against fast correlation attacks [188] and linear cryptanalysis [182], they can
possess desirable properties such as low autocorrelation, propagation criteria, resiliency and high
algebraic degree. Semi-bent functions exist for even or odd number of variables. When n is even,
the semi-bent functions are those Boolean functions whose Hadamard transform takes values
0 and ±2n+2

2 . They are balanced (up to the addition of a linear function) and have maximal
non-linearity among balanced plateaued functions. The maximum-length sequences, also called
m-sequences (maximum-length linear feedback shift -register sequences), have received a lot
of attention since the late sixties. In terms of linear-feedback shift register (LFSR) synthesis
they are usually generated by certain power polynomials over a finite field and in addition are
characterized by a low cross correlation and high nonlinearity. Such a sequence is said to be
generated by a semi-bent function [59]. Families of maximum-length sequences having three-valued
cross-correlation have a wide range of applications in cryptography and code division multiple
access (CDMA) communication systems for sequence design [112], [210], [124], [125], [127], [149],
[150] etc. However, almost all families of semi-bent functions have been derived from power
polynomials Trn1

(
xd
)
for a suitably chosen d (see [59] and [242] for the construction of quadratic

semi-bent functions in even dimension).
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Semi-bent functions exist for even or odd number of inputs.

Definition 8.0.1. For even n, a Boolean function f : F2n → F2 is said to be semi-bent if
χ̂f (ω) ∈ {0,±2n+2

2 }, for all ω ∈ F2n . For odd n, a Boolean function f : F2n → F2 is said to be
semi-bent if χ̂f (ω) ∈ {0,±2n+1

2 }, for all ω ∈ F2n .

It is well known (see for instance [31]) that the algebraic degree of a bent or a semi-bent Boolean
function defined on F2n is at most n

2 .

In this manuscript, we will only be interested in even number of inputs where they can be
defined as follows.

8.1 Explcit constructions of semi-bent functions in even
dimension

In this section, we consider several Boolean functions in univariate representation (expressed
by means of the trace function) with even number of variables. Our main intention is to study
the relationship between the semi-bentness property of functions obtained with Dillon and Niho
exponents . Recall that a Dillon exponent is of the form r(2m−1) where r is co-prime with 2m+1.
Moreover, a positive integer d (always understood modulo 2n − 1) is said to be a Niho exponent,
and xd is a Niho power function, if the restriction of xd to F2m is linear or in other words d ≡ 2j
(mod 2m − 1) for some j < n) and some exponential sums (namely, Kloosterman sums.

8.1.1 Explcit constructions of semi-bent functions in univariate repre-
sentation and their links with Kloosterman sums

The goal of this subsection is to investigate the link between the semi-bentness property of some
infinite classes of Boolean functions in univariate representation and some exponential sums
(Kloosterman sums and cubic sums) ([201], [199]). We shall use the technical results of section
2.3 in Chapter ??.

We consider infinite families of Boolean functions in univariate representation with even
number of variables whose expression is given by (8.1). By computer experiments, for small
values of n, we have found that the set of functions of the form (8.1) contains semi-bent functions.
We investigate criteria involving Kloosterman sums to determine whether a function of the form
(8.1) is semi-bent or not:

Trn1
(
axr(2

m−1)
)

+ Tr2
1

(
bx

2n−1
3

)
+ Trn1

(
cx(2m−1) 1

2 +1
)

+ Trn1
(
dx(2m−1)s+1

)
(8.1)

where r is a positive integer, s ∈ {0, 1/4, 1/6, 3}, a ∈ F?2n , b ∈ F4 , c ∈ F2n and d ∈ F2 . If b 6= 0, we
consider the functions g(r,s)

a,b,c,d of the form (8.1) only when m is odd. Note that o(r(2m − 1)) = n,
o( 2n−1

3 ) = 2, o((2m− 1) 1
2 + 1) = m and o((2m− 1)s+ 1) = n for s ∈ {1/4, 1/6, 3} (recall that o(j)

denotes the size of the cyclotomic coset of 2 modulo 2n − 1 containing j). Moreover, using the
transitivity property of the trace function, we have Trn1 (cx(2m−1) 1

2 +1) = Trm1 (Trnm(c2)x2m+1) =
Trm1 (c′x2m+1) where c′ ∈ F?2m . Hence, the polynomial form of g(r,s)

a,b,c,d is:

Trn1
(
axr(2

m−1)
)

+ Tr2
1

(
bx

2n−1
3

)
+ Trm1 (c′x2m+1) + Trn1

(
dx(2m−1)s+1

)
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So in the sequel, it suffices to use the previous identity to get the polynomial form of all the
presented functions.
Now, we introduce the following decomposition

F?2n =
⋃
u∈U

uF?2m .

Let g(r,s)
a,b,c,d be any Boolean function of the form (8.1); note that the restriction of g(r,s)

a,b,c,d to
any coset uF?2m (u ∈ U), is affine. More precisely,

• Assume b 6= 0. Thanks to the transitivity of the trace function, we have:

∀y ∈ F?2m , g
(r,s)
a,b,c,d(uy) = Trm1 (αuy) + βu (8.2)

with

αu = Trnm
(
du(2m−1)s+1 + cu(2m−1) 1

2 +1
)

= Trnm
(
du(2m−1)s+1 + c

)
,

βu = Trn1
(
aur(2

m−1)
)

+ Tr2
1

(
bu

2n−1
3

)
.

• Otherwise (that is, if b = 0), thanks to the transitivity of the trace function, we have

∀y ∈ F?2m , g
(r,s)
a,0,c,d(uy) = Trm1 (αuy) + βu (8.3)

with

αu = Trnm
(
du(2m−1)s+1 + c

)
,

βu = Trn1
(
aur(2

m−1)
)
.

Therefore, the Walsh transform of a generic element of the form (8.1) can be computed as
follows.

Lemma 8.1.1. ([199]) Using the same notation as in (8.2) or (8.3), for every ω ∈ F2n , the
Walsh transform of a generic element of the form (8.1) is

χ̂
g

(r,s)
a,b,c,d

(ω) = 1−
∑
u∈U

χ(βu) + 2m
∑
u∈U

δ0(αu + Trnm(ωu))χ(βu) (8.4)

where δ0 is the indicator of the singleton {0}, that is,

δ0(z) =

 1 if z = 0

0 otherwise

Proof. Suppose m odd and b 6= 0. Let ω ∈ F2n . The Walsh transform of g(r,s)
a,b,c,d is defined as

χ̂
g

(r,s)
a,b,c,d

(ω) =
∑
x∈F2n

χ(g(r,s)
a,b,c,d(x) + Trn1 (wx)).
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Any element x ∈ F?2n having a unique polar decomposition x = uy with u ∈ U and y ∈ F?2m , we
have :

χ̂
g

(r,s)
a,b,c,d

(ω) = 1 +
∑
u∈U

∑
y∈F?2m

χ(g(r,s)
a,b,c,d(uy) + Trn1 (wuy))

=1 +
∑
u∈U

∑
y∈F?2m

χ (Trm1 ((αu + Trnm(wu))y) + βu)

=1−
∑
u∈U

χ(βu) + 2m
∑
u∈U

δ0(αu + Trnm(ωu))χ(βu)

Likewise, one can establish (8.4) by similar calculations when b = 0 (for any positive integer
m).

We are now going to investigate several subfamilies of (8.1). We begin with a preliminary
technical statement.

Lemma 8.1.2. Let w ∈ F?2n and c ∈ F?2n \F2m . The number of u ∈ U such that Trnm(wu+ c) = 0
equals 0 or 2.

Proof. One has

Trnm(wu+ c) = 0 ⇐⇒ wu+ w2mu2m + Trnm(c) = 0
⇐⇒ u2 + w−1 Trnm(c)u+ w2m−1 = 0.

Now recall that the quadratic equation X2 + αX + β = 0, α 6= 0, admits 0 or 2 solutions.

The following result is shown in [93].

Lemma 8.1.3. [93] For every w ∈ F2n ,

• the equation Trnm(wu+ u
1
2 ) = 1 admits 0 or 2 solutions in U , if m is odd.

• the equation Trnm(wu+ u5) = 1 admits 0 or 2 solutions in U .

• the equation Trnm(wu3 + u2) + 1 = 0 admits 0 or 2 solutions in U , if m is even.

Finally, the next result is shown in [160].

Lemma 8.1.4. [160]. Let r > 1 be a positive integer with gcd(r,m) = 1. Then, the equation
Trnm(wu) +

∑2r−1−1
i=1 Trnm(u(2m−1) i

2r +1) = 1 has 0 or 2 solutions in U for every w ∈ F2n .

In the following we characterize by means of Kloosterman sums the semi-bentness property
of functions of the form (8.1) obtained via a Dillon monomial function (that is, a function of
the form Trn1 (axr(2m−1)) where gcd(r, 2m + 1) = 1) and Niho functions. We are going to restrict
ourselves the study of the semi-bentness property of g(r,s)

a,b,c,d to the case where the coefficient a is
in F?2m .

Theorem 8.1.5. ([199]) Let r be a positive integer such that gcd(r, 2m + 1) = 1. Let a ∈ F?2m
and c ∈ F?2n \ F2m . Then the function g(r,0)

a,0,c,0 is semi-bent if and only if Km(a) = 0. Moreover,
suppose that Trnm(c) = 1 then, each function g

(r, 14 )
a,0,c,1 (with m odd), g(r,3)

a,0,c,1 and g(r, 16 )
a,0,c,1 (with m

even) is semi-bent if and only if Km(a) = 0.
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Proof. • Let us study the semi-bentness property of the function g(r,0)
a,0,c,0. Using the notation of

(8.3), one has

αu = Trnm(c), βu = Trn1 (aur(2
m−1)).

According to Lemma 8.1.1,

χ̂
g

(r,0)
a,0,c,0

(ω) = 1−
∑
u∈U

χ(βu) + 2m
∑
u∈U

δ0(αu + Trnm(ωu))χ(βu)

= 1−
∑
u∈U

χ(Trn1 (aur(2
m−1))) + 2m

∑
u∈U

δ0(Trnm(ωu+ c))χ(Trn1 (aur(2
m−1)))

By Lemma 8.1.2, the equation Trnm(wu+ c) = 0 admits 0 or 2 solutions in U for every w ∈ F?2n .
Therefore∑

u∈U δ0(Trnm(ωu+ c))χ(Trn1 (aur(2m−1))) ∈ {0,±2} for every w ∈ F?2n . In the case where w = 0,
since Trnm(c) 6= 0 (because c ∈ F?2n\F2m), δ0(Trnm(c)) = 0 one gets,

∑
u∈U δ0(Trnm(c))χ(Trn1 (aur(2m−1))) =

0. Basically, for every w ∈ F2n , χ̂g(r,0)
a,0,c,0

(w) ≡ 1−
∑
u∈U χ(Trn1 (aur(2m−1))) (mod 2m+1). Recall

that the function g(r,0)
a,0,c,0 is semi-bent if and only if χ̂

g
(r,0)
a,0,c,0

(w) ∈ {0,±2m+1} for every w ∈ F2n .
Now, since

−2m+1 < −2m ≤ 1−
∑
u∈U

χ(Trn1 (aur(2
m−1)))

and

1−
∑
u∈U

χ(Trn1 (aur(2
m−1))) ≤ 2m + 2 < 2m+1

then, g(r,0)
a,0,c,0 is semi-bent if and only∑

u∈U
χ(Trn1 (aur(2

m−1))) = 1.

Now, since gcd(2m − 1, 2m + 1) = 1, the mapping u 7→ u2m−1 is a permutation of U . The
latter condition became ∑

u∈U
χ(Trn1 (aur)) = 1.

We then conclude thanks to Proposition 2.3.1.
• Let us study the semi-bentness property of the function g(r, 14 )

a,0,c,1. Using the notation of (8.3),
one has

αu = Trmn (c) + Trnm(u(2m−1) 1
4 +1) = 1 + Trnm(u 1

2 );
βu = Trn1 (aur(2

m−1)).

According to Lemma 8.1.1, the Walsh transform of g(r, 14 )
a,0,c,1 is given by

χ̂
g

(r, 14 )
a,0,c,1

(ω) = 1−
∑
u∈U

χ(Trn1 (aur(2
m−1))) + 2m

∑
u∈U

δ0(1 + Trnm(u 1
2 + ωu))χ(Trn1 (aur(2

m−1)))

Thanks to Lemma 8.1.3 (since m is odd), the equation Trnm(u 1
2 + ωu) = 1 has 0 or 2 solutions in

U for every w ∈ F2n . Therefore
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∑
u∈U δ0(1 + Trnm(u 1

2 + ωu))χ(Trn1 (aur(2m−1))) ∈ {0,±2} for every w ∈ F2n . Basically, for every
w ∈ F2n , χ̂

g
(r, 14 )
a,0,c,1

(w) ≡ 1 −
∑
u∈U χ(Trn1 (aur(2m−1))) (mod 2m+1). Same arguments used as

previously lead to g(r, 14 )
a,0,c,1 being semi-bent if and only if

∑
u∈U χ(Trn1 (aur(2m−1))) = 1. Using the

fact that u 7→ u2m−1 is a permutation of U , we conclude by Proposition 2.3.1.
• Let us study the semi-bentness property of the function g(r,3)

a,0,c,1. Using the notation of (8.3),
one has

αu = Trmn (u(2m−1)3+1 + cu(2m−1) 1
2 +1);

βu = Trn1 (aur(2
m−1)).

Note that Trmn (u(2m−1)3+1) = Trmn (u−5) and Trmn (cu(2m−1) 1
2 +1) = Trmn (c) = 1. Hence, αu =

Trmn (u−5) + 1. According to Lemma 8.1.1, the Walsh transform of g(r,3)
a,0,c,1 is given by

χ̂
g

(r,3)
a,0,c,1

(ω) = 1−
∑
u∈U

χ(Trn1 (aur(2
m−1))) + 2m

∑
u∈U

δ0(Trmn (u−5 + ωu) + 1)×

χ(Trn1 (aur(2
m−1)))

Thanks to Lemma 8.1.3 , the Trmn (u−5 + ωu) = 1 admits 0 or 2 solutions in U for every
w ∈ F2n . Same arguments used as previously lead to g(r,3)

a,0,c,1 being semi-bent if and only if∑
u∈U χ(Trn1 (aur(2m−1))) = 1. Using the fact that u 7→ u2m−1 is a permutation of U , we conclude

by Proposition 2.3.1.
• Let us study the semi-bentness property of the function g(r, 16 )

a,0,c,1. Using the notation of (8.3),
one has

αu = Trmn (cu(2m−1) 1
2 +1) + Trnm(u(2m−1) 1

6 +1)
= 1 + Trnm(u(2m−1) 1

6 +1);
βu = Trn1 (aur(2

m−1)).

Note that u(2m−1) 1
6 +1 = u

2
3

According to Lemma 8.1.1, the Walsh transform of g(r, 16 )
a,0,c,1 is given by

χ̂
g

(r, 16 )
a,0,c,1

(ω) = 1−
∑
u∈U

χ(Trn1 (aur(2
m−1))) + 2m

∑
u∈U

δ0(1 + Trnm(u 2
3 + ωu))χ(Trn1 (aur(2

m−1))).

Thanks to Lemma 8.1.3 (since m is even), the equation Trnm(u2 + ωu3) + 1 = 0 admits 0 or
2 solutions in U for every w ∈ F2n . But the equation Trnm(u 2

3 + ωu) = 1 has 0 or 2 solutions
in U if and only if the equation Trnm(u2 + ωu3) + 1 = 0 admits 0 or 2 solutions in U , for every
w ∈ F2n . Same arguments used as previously lead to g(r, 16 )

a,0,c,1 being semi-bent if and only if∑
u∈U χ(Trn1 (aur(2m−1))) = 1. We conclude by Proposition 2.3.1.

Remark 8.1.6. The function g(r,0)
a,0,c,0 has algebraic degree m, maximal possibly for a semi-bent.

Indeed, the exponent r(2m − 1) is of 2-weight m while the exponent (2m − 1)1/2 + 1 is of 2-
weight 2. Moreover, Trn1

(
axr(2

m−1)) and Trn1
(
cx(2m−1) 1

2 +1
)
are two separate parts in the trace

representation of g(r,0)
a,0,c,0. Likewise, the functions g(r, 14 )

a,0,c,1, g
(r,3)
a,0,c,1 and g(r, 16 )

a,0,c,1 have algebraic degree
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equal to m (the exponents r(2m − 1), (2m − 1)3 + 1 and (2m − 1)1/6 + 1 are of 2-weight m while
the exponents (2m − 1)1/2 + 1 and (2m − 1)1/4 + 1 are of respectively algebraic degrees 2 and 3
(as observed in [93]).

Theorem 8.1.7. ([199]) Let n = 2m with m > 3 odd. Let r be a positive integer such that
gcd(r, 2m+1) = 1. Let a ∈ F?2m , b ∈ F?4 and c ∈ F?2n \F2m . Then, the function g(r,0)

a,b,c,0 is semi-bent
if and only if Km(a) = 4. Moreover, suppose that Trnm(c) = 1 then, each function g

(r, 14 )
a,b,c,1 and

g
(r,3)
a,b,c,1 is semi-bent if and only if Km(a) = 4.

Proof. • Let us study the semi-bentness property of the function g(r,0)
a,b,c,0. Using the notation of

(8.2), one has
αu = Trnm(c), βu = Trn1 (aur(2

m−1)) + Tr2
1(bu

2n−1
3 ).

Since αu is the same as the one associated to g(r,0)
a,0,c,0 in the proof of Theorem 8.1.5 then, using

the same arguments as those exposed in the beginning of the proof of Theorem 8.1.5, we get that
g

(r,0)
a,b,c,0 is semi-bent if and only if∑

u∈U
χ(Trn1 (aur(2

m−1)) + Tr2
1(bu

2n−1
3 )) = 1.

We finally conclude thanks to Corollary 2.3.3.

• Let us study the semi-bentness property of the function g(r, 14 )
a,b,c,1. Using the notation of (8.2),

one has

αu = Trmn (c) + Trnm(u(2m−1) 1
4 +1);

βu = Trn1 (aur(2
m−1)) + Tr2

1(bu
2n−1

3 ).

Note that, Trnm(u(2m−1) 1
4 +1) = Trnm(u 1

2 ). Then, (since Trnm(c) = 1, by hypothesis) αu =
1 + Trnm(u 1

2 ).
According to Lemma 8.1.1, the Walsh transform of g(r, 14 )

a,b,c,1 is given by

χ̂
g

(r, 14 )
a,b,c,1

(ω) = 1−
∑
u∈U

χ(Trn1 (aur(2
m−1)) + Tr2

1(bu
2n−1

3 ))

+ 2m
∑
u∈U

δ0(1 + Trnm(u 1
2 + ωu))χ(Trn1 (aur(2

m−1)) + Tr2
1(bu

2n−1
3 )).

Thanks to Lemma 8.1.3 (since m is odd), the equation Trnm(u 1
2 + ωu) = 1 has 0 or 2 solutions

in U for every w ∈ F2n . Same arguments being used in the proof of Theorem 8.1.5 lead to
g

(r, 14 )
a,b,c,1 semi-bent if and only if

∑
u∈U χ(Trn1 (aur(2m−1))) + Tr2

1(bu 2n−1
3 ) = 1. Using the fact that

u 7→ u2m−1 is a permutation of U , we conclude thanks to Corollary 2.3.3.

• Let us study the semi-bentness property of the function g(r,3)
a,b,c,1. Using the notation of (8.2),

one has

αu = Trmn (u(2m−1)3+1) + cu(2m−1) 1
2 +1);

βu = Trn1 (aur(2
m−1)) + Tr2

1(bu
2n−1

3 ).
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Same arguments used as previously lead to g(r,3)
a,b,c,1 being semi-bent if and only if∑

u∈U
χ(Trn1 (aur(2

m−1))) + Tr2
1(bu

2n−1
3 ) = 1.

We conclude thanks to Corollary 2.3.3.

Remark 8.1.8. The function g
(r,0)
a,b,c,0 has algebraic degree m, maximal algebraic degree for a

semi-bent. Indeed, the two exponents r(2m − 1) and 2n−1
3 are of 2-weight m (since 2n−1

3 =
1 + 4 + · · ·+ 4m−1). Hence, the two Boolean functions x 7→ Trn1

(
axr(2

m−1)) and x 7→ Tr2
1(bx 2n−1

3 )
are of algebraic degree equal to m, while the function x 7→ Trn1

(
cx(2m−1) 1

2 +1
)
is of algebraic degree

equals 2. Moreover, Trn1
(
axr(2

m−1)), Tr2
1

(
bx

2n−1
3

)
and Trn1

(
cx(2m−1) 1

2 +1
)
are three separate

parts in the trace representation of g(r,0)
a,b,c,0. Likewise, the functions g(r, 14 )

a,0,c,1 and g
(r,3)
a,b,c,1 have

algebraic degree equal to m.

Example 8.1.9. Let us describe for instance, the set of semi-bent Boolean functions g(1,0)
a,b,c,0

defined on F210 of the form Tr10
1 (ax31) + Tr2

1(bx341) + Tr10
1 (cx528) where a ∈ F?25 , b ∈ F?4 ,

c ∈ F?210 \ F25 . Let β be a primitive element of F4 and α be a primitive element of F32 = F2(α)
with α5 + α2 + 1 = 0. Recall that according to Proposition 2, K5(a) ≡ 1 (mod 3) if and only if
Tr5

1(a1/3) = 0. Now, according to table 4 in [56], E0 := {a ∈ F?25 ,Tr5
1(a1/3) = 0} = {α3, α21, α14}

, {a ∈ F?25 ,K5(a) = 4} = {α3, α21} and E1 := {a ∈ F?25 ,Tr5
1(a1/3) = 1} = {1, α2, α9, α15}.

Then, according to Theorem 8.1.7, the functions g(1,0)
α3,1,c,0, g

(1,0)
α3,β,c,0, g

(1,0)
α3,β2,c,0, g

(1,0)
α21,1,c,0, g

(1,0)
α21,β,c,0,

g
(1,0)
α21,β2,c,0 are semi-bent while g

(1,0)
α14,1,c,0, g

(1,0)
α14,β,c,0, g

(1,0)
α14,β2,c,0, g

(1,0)
a,1,c,0, g

(1,0)
a,β,c,0,g

(1,0)
a,β2,c,0 are not

semi-bent if a ∈ {1, α2, α9, α15}.

Now, we are interested in studying the semi-bentness property of functions of the form g
(3,0)
a,b,c,0

with m odd, a ∈ F?2n , b ∈ F?4 and c ∈ F?2n (note that the function x 7→ Trn1 (ax3(2m−1)) is not a
Dillon monomial function since 3 is not co-prime with 2m + 1 when m is odd). To this end, we
show that we can identify all the semi-bent functions in the form g

(3,0)
a,b,c,0 by studying only the

semi-bentness of g(3,0)
aζi,b,c,0 where a ∈ F?2m , b ∈ F?4 , c ∈ F?2n , ζ is a generator of the cyclic group U

and i ∈ {0, 1}. Let a ∈ F?2m , λ ∈ F?2n , b ∈ F?4 and c ∈ F?2n . Set a′ = aλ3(2m−1), b′ = bλ
2n−1

3 and
c′ = cλ(2m−1) 1

2 +1. Then remark that, for every x ∈ F2n , we have:

g
(3,0)
a′,b′,c′,0(x) = Trn1 (a(λx)3(2m−1)) + Tr2

1(b(λx)
2n−1

3 )

+ Trn1 (cλ(2m−1) 1
2 +1x(2m−1) 1

2 +1)

= g
(3,0)
a,b,c,0(λx)

This means that g(3,0)
a′,b′,c′,0 is linearly equivalent to g(3,0)

a,b,c,0. Therefore, we don’t have to consider all
the possible values of a ∈ F?2n in our study. Indeed, recall that every element of x in F?2n admits
a unique polar decomposition x = uy with y ∈ F?2m and u ∈ U . Now, m being odd, every element
u ∈ U can be uniquely decomposed as u = ζiv with i ∈ {0, 1, 2} and v ∈ V = {u3 | u ∈ U}. One
deduces
Lemma 8.1.10. ([199]) Let n = 2m with m odd. Let a′ ∈ F?2n , b′ ∈ F?4 , c′ ∈ F?2n . Suppose that
a′ = aζiv with a ∈ F?2m i ∈ {0, 1, 2}, ζ a generator of the cyclic group U and, v ∈ V = {u3 | u ∈ U}.
Then, there exist b ∈ F?4 and c ∈ F?2n such that g(3,0)

a′,b′,c′,0 is linearly equivalent to g(3,0)
aζi,b,c,0.
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Every element a′ ∈ F?2n can be (uniquely) decomposed as a′ = aζiv with a, ζ and v as in the
preceding lemma. The property of semi-bentness being affine invariant, one can restrict oneself
to study the semi-bentness of g(3,0)

aζi,b,c,0 with a ∈ F?2m , b ∈ F?4 , c ∈ F?2n and i ∈ {0, 1}.

Theorem 8.1.11. ([199]) Let n = 2m with m odd, a ∈ F?2m , b ∈ F?4 , c ∈ F?2n \ F2m and ζ be a
generator of U .

1. Assume m ≡ 3 (mod 6). Then the functions g(3,0)
a,b,c,0 and g(3,0)

aζ,b,c,0 are not semi-bent.

2. Assume m 6≡ 3 (mod 6). Then, g(3,0)
aζi,b,c,0 is semi-bent if and only if

• i = 0 and Km(a) = 4,
• or, i = 1 and Km(a) + Cm(a, a) = 4.

Proof. Let i ∈ {0, 1}. Using the notation of (8.2), one has

βu = Trn1 (aζiu3(2m−1)) + Tr2
1(bu

2n−1
3 ), αu = Trnm(c).

Same arguments as in the beginning of the proof of Theorem 8.1.5 lead to g(3,0)
aζi,b,c,0 being semi-bent

if and only if ∑
u∈U

χ
(

Trn1 (aζiu3(2m−1)
)

+ Tr2
1(bu

2n−1
3 )) = 1

equivalently (since the mapping u 7→ u2m−1 is a permutation on U)∑
u∈U

χ
(

Trn1 (aζiu3) + Tr2
1(bu

2m+1
3 )

)
= 1.

Assertions (1) and (2) then follow from Corollary 2.3.5.

Remark 8.1.12. The function g(3,0)
aζi,b,c,0 has algebraic degree m, maximal algebraic degree for a

semi-bent. Indeed, the exponents 3(2m − 1) and (2n − 1)/3 are of 2-weight m (since 3(2m − 1) =
1 + 22 + 23 + · · ·+ 2m−1 + 2m+1) while the exponent (2m − 1) 1

2 + 1 is of 2-weight 2. Moreover,
Trn1

(
aζix3(2m−1)), Tr2

1

(
bx

2n−1
3

)
and Trn1

(
cx(2m−1) 1

2 +1
)
are three separate parts in the trace

representation of g(3,0)
aζi,b,c,0.

In the following we characterize by means of Kloosterman sums the semi-bentness property of
functions obtained via a Dillon monomial function and 2r Niho power functions.

Theorem 8.1.13. ([199]) Let n = 2m, r be a positive integer such that gcd(r, 2m + 1) = 1, ν > 1
be a positive integer with gcd(ν,m) = 1, α ∈ F2n such that Trnm(α) = 1, a ∈ F?2m and b ∈ F?4 .

Let f be the Boolean function defined over F2n whose expression is given by

Trn1
(
axr(2

m−1)
)

+ Trn1

αx2m+1 +
2ν−1−1∑
i=1

x(2m−1) i
2ν +1


Let g be the Boolean function defined over F2n (m odd) whose expression is given by g(x) =
f(x) + Tr2

1

(
bx

2n−1
3

)
. Then, the function f (Resp. g) is semi-bent if and only if, Km(a) = 0

(Resp. Km(a) = 4).
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Proof. • Let us study the semi-bentness property of the function f . Using the notation of (8.3),
one has

αu = Trmn (α 1
2 +

2ν−1−1∑
i=1

u(2m−1) i
2ν +1);

βu = Trn1 (aur(2
m−1)).

According to Lemma 8.1.1, the Walsh transform of f is given by

χ̂f (ω) = 1−
∑
u∈U

χ(Trn1 (aur(2
m−1)))

+ 2m
∑
u∈U

δ0(Trmn (α 1
2 +

2ν−1−1∑
i=1

u(2m−1) i
2ν +1) + ωu))×

χ(Trn1 (aur(2
m−1))).

Thanks to Lemma 8.1.4, the equation Trnm(wu)+
∑2µ−1−1
i=1 Trnm(u(2m−1) i

2µ+1) = 1 admits 0 or 2
solutions in U for every w ∈ F2n . Since Trnm(α) = 1 (by hypothesis) and Trnm((α 1

2 )2) = Trnm(α 1
2 ),

the equation Trmn (
∑2ν−1−1
i=1 u(2m−1) i

2ν +1) + ωu) = 1 admits 0 or 2 solutions in U for every
w ∈ F2n . Same arguments used in the proof of Theorem 8.1.5 lead to f being semi-bent if and
only

∑
u∈U χ(Trn1 (aur(2m−1))) = 1. We conclude by Proposition 2.3.1.

• Let study us the semi-bentness property of the function g. Using the notation of (8.2), one has

αu = Trmn (α 1
2 +

2ν−1−1∑
i=1

u(2m−1) i
2ν +1);

βu = Trn1 (aur(2
m−1)) + Tr2

1(bu
2n−1

3 ).

Same arguments used as previously lead to g being semi-bent if and only
∑
u∈U χ(Trn1 (aur(2m−1)))+

Tr2
1(bu 2n−1

3 ) = 1. We conclude thanks to Corollary 2.3.3.

8.1.2 Semi-bent functions in polynomial forms with multiple trace
terms and their link with Dikson polynomial

In this subsection, we study the relationship between the semi-bentness property of functions in
polynomial forms with multiple trace terms and Dickson polynomials.

In the following, we are interested in semi-bent functions whose expression contains multiple
trace terms. Let E be a set of representatives of the cyclotomic classes modulo 2n − 1 for which
each class has full size n. Let far,b,c be the function defined on F2n whose polynomial form is
given by ∑

r∈R
Trn1 (arxr(2

m−1)) + Tr2
1(bx

2n−1
3 ) + Trm1 (cx2m+1) (8.5)

where R ⊆ E, ar ∈ F?2m , b ∈ F?4 and c ∈ F?2m . In the following, we will show that semi-bent
functions far,b,c of the form (8.5) can be described by means of exponential sums involving the
Dickson polynomials. In particular, one can provide a way to transfer the characterization of
semi-bentness of a function of the form (8.5) to the evaluation of the Hamming weight of some
Boolean functions.
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To prove the result of this subsection, we need the following statements (Proposition 8.1.14)
and Corollary 8.1.15).

Proposition 8.1.14. ([199]) For b ∈ F?4 and ar ∈ F?2m , we denote by gar,b the function∑
r∈R Trn1 (arxr(2

m−1)) + Tr2
1(bx 2n−1

3 ) and by gar,0 the function
∑
r∈R Trn1 (arxr(2

m−1)). Let V be
the set of the elements of the cubes of U and ζ be a generator of U . Then, we have the following
relations: ∑

u∈U
χ
(
gar,β(u)

)
=
∑
u∈U

χ
(
gar,β2(u)

)
= −

∑
v∈V

χ
(
gar,0(v)

)
(8.6)

and ∑
u∈U

χ
(
gar,1(u)

)
=
∑
v∈V

χ
(
gar,0(v)

)
− 2

∑
v∈V

χ
(
gar,0(ζv)

)
(8.7)

Proof. Introduce for every element b′ of F4 , the sum

Λ(b′) :=
∑
b∈F4

∑
u∈U

χ
(
gar,b(u)

)
χ
(

Tr2
1(bb′)

)
.

Note that
Λ(b′) =

∑
u∈U

χ
(
gar,0(u)

) ∑
b∈F4

χ
(

Tr2
1

(
b
(
b′ + u

2n−1
3

)))
.

Furthermore, one has

∑
b∈F4

χ
(

Tr2
1

(
b
(
b′ + u

2n−1
3

)))
=
{

0 if u 2n−1
3 6= b′

4 otherwise

Since, u 2n−1
3 6= 0 for every u ∈ U , Λ(0) = 0. Since β is a primitive element of F4 , suppose

that b′ = βi for i ∈ {0, 1, 2}. Then, for a generator ζ of U , we have, βi = ζi
2m+1

3 . Hence,

Λ(βi) = 4
∑

u∈U, u
2n−1

3 =ζi
2m+1

3

χ
(
gar,0(u)

)
= 4

∑
u∈U, (u−2ζ−i)

2m+1
3 =1

χ
(
gar,0(u)

)
= 4

∑
u∈U, u−2∈ζiV

χ
(
gar,0(u)

)
.

That follows from the fact that the only elements x of U such that x 2m+1
3 = 1 are the elements

of V . Next, note that the map x 7→ x2m−1 is one-to-one from ζiV to ζiV (since ζi(2m−1−1) is a
cube because 2m−1 − 1 ≡ 0 (mod 3) for m odd), one gets that u 2n−1

3 = ζi
2m+1

3 if and only if
u ∈ ζiV.

Therefore,
Λ(βi) = 4

∑
v∈V

χ
(
gar,0(ζiv)

)
. (8.8)
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Now, establish an expression of
∑
b′∈F4

Λ(b′)χ
(

Tr2
1(bb′)

)
involving

∑
u∈U χ

(
gar,b(u)

)
.∑

b′∈F4

Λ(b′)χ
(

Tr2
1(bb′)

)
=
∑
b′∈F4

∑
b′′∈F4

∑
u∈U

χ
(
gar,b′′(u)

)
χ
(

Tr2
1(b′′b′)

)
χ
(

Tr2
1(bb′)

)
=
∑
b′′∈F4

∑
u∈U

χ
(
gar,b′′(u)

) ∑
b′∈F4

χ
(

Tr2
1(b′(b′′ + b))

)
.

Since, ∑
b′∈F4

χ
(

Tr2
1(b′(b′′ + b))

)
=
{

4 if b′′ = b
0 otherwise

then, one gets ∑
b′∈F4

Λ(b′)χ
(

Tr2
1(bb′)

)
= 4

∑
u∈U

χ
(
gar,b(u)

)

that is, ∑
u∈U

χ
(
gar,b(u)

)
= 1

4
∑
b′∈F4

Λ(b′)χ
(

Tr2
1(bb′)

)
. (8.9)

Finally, by formula (8.8), one gets (since χ(Tr2
1(1)) = 1 and χ(Tr2

1(β)) = χ(Tr2
1(β2)) = −1)∑

u∈U
χ
(
gar,1(u)

)
=
∑
v∈V

χ
(
gar,0(v)

)
−
∑
v∈V

χ
(
gar,0(ζv)

)
−
∑
v∈V

χ
(
gar,0(ζ2v)

)
.

∑
u∈U

χ
(
gar,β(u)

)
= −

∑
v∈V

χ
(
gar,0(v)

)
−
∑
v∈V

χ
(
gar,0(ζv)

)
+
∑
v∈V

χ
(
gar,0(ζ2v)

)
.

∑
u∈U

χ
(
gar,β2(u)) = −

∑
v∈V

χ
(
gar,0(v))

+
∑
v∈V

χ
(
gar,0(ζv)

)
−
∑
v∈V

χ
(
gar,0(ζ2v)

)
.

To conclude, note that one has∑
v∈V

χ
(
gar,0(ζv)

)
=
∑
v∈V

χ
(
gar,0(ζ2v)

)
(8.10)

Indeed, since the trace function is invariant under the Frobenius automorphism x 7→ x2, we
get, applying m times, the Frobenius automorphism : ∀x ∈ F2n ,

gar,0(x) =
∑
r∈R

Trn1
(
a2m
r x2mr(2m−1)

)
=
∑
r∈R

Trn1
(
arx

2mr(2m−1)
)

= gar,0(x2m)
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because the ar’s are in F?2m . Hence,∑
v∈V

χ
(
gar,0(ζv)

)
=
∑
v∈V

χ
(
gar,0(ζ2mv2m)

)
=
∑
v∈V

χ
(
gar,0(ζ2(ζ2m−2v2m))

)
.

Now, since m is odd, 3 divides 2m + 1 and thus divides 2m − 2. Hence, ζ2m−2 is a cube of U
and the mapping v 7→ ζ(2m−2)v2m is a permutation of V . The relation (8.10) follows.

Corollary 8.1.15. ([199]) For b ∈ F?4 and ar ∈ F?2m , we denote by gar,b the function defined
on F2n by

∑
r∈R Trn1 (arxr(2

m−1)) + Tr2
1(bx 2n−1

3 ), and by har the function defined on F2m by
har (x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is the Dickson polynomial of degree r. Then,

1.
∑
u∈U χ

(
gar,β(u)

)
= 1 if and only if

∑
u∈U χ

(
gar,β2(u)

)
= 1 if and only if,

∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

= 2m − 2 wt(har ◦D3) + 4.

2.
∑
u∈U χ

(
gar,1(u)

)
= 1 if and only if

3
∑
x∈F2m

χ
(

Trm1 (x−1) + har (x)
)

− 2
∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

= 4 + 2m + 4 wt(har ◦D3)− 6 wt(har ).

To prove the corollary, we need the following useful lemma.

Lemma 8.1.16. ([199]) Keeping the same notations as in Corollary 8.1.15, for any positive
integer p, we have∑

u∈U
χ
(
gar,0(up)

)
= 1 +

∑
x∈F2m

χ
(
har (Dp(x))

)
−
∑
x∈F2m

χ
(

Trm1 (x−1) + har (Dp(x))
)
.

Proof. Thanks to Lemma ??, one gets∑
u∈U

χ
(
gar,0(up)

)
= 1 + 2

∑
x∈F?2m ,Trm1 (x−1)=1

χ
(
har (Dp(x))

)
.

Now, note that the indicator of the set {x ∈ F?2m | Trm1 (x−1) = 1} can be written as
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1
2
(
1− χ(Trm1 (x−1))

)
. Hence,

∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
har (Dp(x))

)
= 1

2
∑
x∈F?2m

χ
(
har (Dp(x))

)
− 1

2
∑
x∈F?2m

χ
(

Trm1 (x−1) + har (Dp(x))
)

= 1
2
∑
x∈F2m

χ
(
har (Dp(x))

)
− 1

2
∑
x∈F2m

χ
(

Trm1 (x−1) + har (Dp(x))
)
.

Therefore,

∑
u∈U

χ
(
gar,0(up)

)
= 1 +

∑
x∈F2m

χ
(
har (Dp(x))

)
−
∑
x∈F2m

χ
(

Trm1 (x−1) + har (Dp(x))
)
.

Now, we prove Corollary 8.1.15.

Proof. 1. According to Proposition 8.1.14,
∑
u∈U χ

(
gar,β(u)

)
= 1 if and only if,

∑
u∈U

χ
(
gar,β2(u)

)
= 1

if and only if, ∑
v∈V

χ
(
gar,0(v)

)
= −1.

We have ∑
v∈V

χ
(
gar,0(v)

)
= 1

3
∑
u∈U

χ
(
gar,0(u3)

)
Now, take p = 3 in Lemma 8.1.16:∑

u∈U
χ
(
gar,0(u3)

)
= 1 +

∑
x∈F2m

χ
(
har (D3(x))

)
−
∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)
.

Hence
∑
u∈U χ

(
gar,β(u)

)
= 1 if and only if,

∑
u∈U χ

(
gar,β2(u)

)
= 1) if and only if,

∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

= 4 +
∑
x∈F2m

χ
(
har (D3(x))

)
.
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Now, using the fact that, for a Boolean function f defined on F2n ,
∑
x∈F2n

χ
(
f(x)

)
= 2n −

2 wt(f), we finally get that
∑
u∈U χ

(
gar,β(u)

)
= 1 if and only if,

∑
u∈U χ

(
gar,β2(u)

)
= 1

if and only if, ∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

= 4 + 2m − 2 wt(har ◦D3).

The assertion 1) follows.

2. By Proposition 8.1.14,
∑
u∈U χ

(
gar,1(u)

)
= 1 if and only if,

∑
v∈V

χ
(
gar,0(v)

)
− 2

∑
v∈V

χ
(
gar,0(ζv)

)
= 1.

Note that we have∑
u∈U

χ
(
gar,0(u)

)
=
∑
v∈V

χ
(
gar,0(v)

)
+
∑
v∈V

χ
(
gar,0(ζv)

)
+
∑
v∈V

χ
(
gar,0(ζ2v)

)

Using relation (8.10) and the fact that
∑
v∈V χ(gar,0(v)) = 1

3
∑
u∈U χ(gar,0(u3)), one gets∑

u∈U χ
(
gar,1(u)

)
= 1 if and only if, 2

3
∑
u∈U χ(gar,0(u3))−

∑
u∈U χ(gar,0(u)) = 1.

Now, apply Lemma 8.1.16 for p = 3 and p = 1:∑
u∈U

χ
(
gar,0(u3)

)
= 1 +

∑
x∈F2m

χ
(
har (D3(x))

)
−
∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

and (since D1(x) = x)

∑
u∈U

χ
(
gar,0(u)

)
= 1 +

∑
x∈F2m

χ
(
har (x)

)
−
∑
x∈F2m

χ
(

Trm1 (x−1) + har (x)
)
.

The condition
2
3
∑
u∈U

χ(gar,0(u3))−
∑
u∈U

χ(gar,0(u)) = 1

is then equivalent to

2/3 + 2/3
∑
x∈F2m

χ
(
har (D3(x))

)
− 2/3

∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

− 1−
∑
x∈F2m

χ
(
har (x)

)
+
∑
x∈F2m

χ
(

Trm1 (x−1) + har (x)
)

= 1.

Now, ∑
x∈F2m

χ
(
har (D3(x))

)
= 2m − 2 wt(har ◦D3)
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and ∑
x∈F2m

χ
(
har (x)

)
= 2m − 2 wt(har ).

The latter condition is equivalent to

2/3 + 2/3(2m − 2 wt(har ◦D3))− 2/3
∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

− 1− (2m − 2 wt(har )) +
∑
x∈F2m

χ
(

Trm1 (x−1) + har (x)
)

= 1.

that is,

3
∑
x∈F2m

χ
(

Trm1 (x−1) + har (x)
)
− 2

∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

= 4 + 2m + 4 wt(har ◦D3)− 6 wt(har ).

Using the previous results, we prove the following characterization of semi-bentness for
functions in the form (8.5).

Theorem 8.1.17. ([199]) Let n = 2m with m odd. Let b ∈ F?4 , β be a primitive element of F4
and c ∈ F?2m . Let far,b,c be the function defined on F2n whose expression is of the form (8.5). Let
har be the related function defined on F2m by har (x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is the

Dickson polynomial of degree r. Then

1. far,β,c is semi-bent if and only if, far,β2,c is semi-bent, if and only if,

∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

= 2m − 2 wt(har ◦D3) + 4.

2. far,1,c is semi-bent if and only if,

3
∑
x∈F2m

χ
(

Trm1 (x−1) + har (x)
)
− 2

∑
x∈F2m

χ
(

Trm1 (x−1) + har (D3(x))
)

= 4 + 2m + 4 wt(har ◦D3)− 6 wt(har ).

Proof. For b ∈ F?4 , ar ∈ F?2m , denote by gar,b the function
∑
r∈R Trn1 (arxr(2

m−1)) + Tr2
1(bx 2n−1

3 )
and by gar,0 the function

∑
r∈R Trn1 (arxr(2

m−1)). Since m is odd, the function gar,b is constant
on each (multiplicative) coset uF?2m (u ∈ U) that is, we have:

∀u ∈ U,∀y ∈ F?2m , gar,b(uy) = gar,b(u).

Using the polar decomposition, the Walsh transform of far,b,c at every ω ∈ F2n is given by
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χ̂far,b,c(ω) =
∑
x∈F2n

χ
(
far,b,c(x) + Trn1 (xw)

)
= 1 +

∑
x∈F?2n

χ
(
far,b,c(x) + Trn1 (xw)

)
= 1 +

∑
u∈U

χ
(
gar,b(u)

)∑
y∈F?2m

χ
(

Trm1 (cy2m+1 + Trnm(wu)y)
)

= 1 +
∑
u∈U

χ
(
gar,b(u)

) ∑
y∈F?2m

χ
(

Trm1 (c 1
2 y + Trnm(wu)y)

)
= 1−

∑
u∈U

χ
(
gar,b(u)

)
+
∑
u∈U

χ
(
gar,b(u)

) ∑
y∈F2m

χ
(

Trm1 ((c 1
2 + Trnm(wu))y)

)
= 1−

∑
u∈U

χ
(
gar,b(u)

)
+ 2m

∑
u∈U |c

1
2 +Trnm(wu)=0

χ
(
gar,b(u)

)
.

Thanks to Lemma 8.1.2, we obtain

χ̂far,b,c(ω) ≡ 1−
∑
u∈U

χ
(
gar,b(u)

)
(mod 2m+1).

But
−2m+1 < −2m ≤ 1−

∑
u∈U

χ
(
gar,b(u)

)
≤ 2m + 2 < 2m+1

therefore, far,b,c is semi-bent if and only if,
∑
u∈U χ

(
gar,b(u)

)
= 1. We conclude thanks to

Corollary 8.1.15.

Proposition 8.1.18. ([199]) Let n = 2m with m odd. For r ∈ R, ar ∈ F?2m , β a primitive
element of F4 and c ∈ F?2m , let far,β,c a function of the form (8.5).

1. Let d be a positive integer such that gcd(d, 2m+1
3 ) = 1. Let har,β,c be the function

har,β,c(x) =
∑
r∈R

Trn1 (arxdr(2
m−1)) Tr2

1(βx
2n−1

3 ) + Trm1 (cx2m+1).

Then, har,β,c is semi-bent if and only if, far,β,c is semi-bent.

2. Suppose m 6≡ 3 (mod 6). Let d be a positive integer such that gcd(d, 2m + 1) = 3. Let har,1,c
be the function

har,1,c(x) =
∑
r∈R

Trn1 (arxdr(2
m−1)) + Tr2

1(x
2n−1

3 ) + Trm1 (cx2m+1).

If far,β,c is semi-bent, then har,1,c is semi-bent.
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Proof. For two integers r and d, set

gar,0(x) =
∑
r∈R

Trn1 (arxr(2
m−1));

har,0(x) =
∑
r∈R

Trn1 (arxdr(2
m−1)).

Proof of 1): according to the proof of Theorem 8.1.17 and relation (8.6), har,β,c (Resp. far,β,c)
is semi-bent if and only if

∑
v∈V χ

(
har,0(v)

)
= −1 (Resp.

∑
v∈V χ

(
gar,0(v)

)
= −1). Now,

the integers 2m+1
3 and d are co-prime thus, the mapping v 7→ vd is then a permutation of V .

Therefore, ∑
v∈V

χ
(
har,0(v)

)
=
∑
v∈V

χ
(
gar,0(vd)

)
=
∑
v∈V

χ
(
gar,0(v)

)
.

The result follows.

Proof of 2): the function far,β,c is semi-bent thus, according to the proof of Theorem 8.1.17
and relation (8.6),

∑
v∈V χ

(
gar,0(v)

)
= −1. We have to prove that har,1,c is semi-bent, that is,∑

v∈V χ
(
har,0(v)

)
− 2

∑
v∈V χ

(
har,0(ζv)

)
= 1, according to the proof of Theorem 8.1.17 and

relation (8.7). But

∑
v∈V

χ
(
har,0(v)

)
+
∑
v∈V

χ
(
har,0(ζv)

)
+
∑
v∈V

χ
(
har,0(ζ2v)

)
=
∑
u∈U

χ
(
har,0(u)

)
and according to relation (8.10) we have,∑

v∈V
χ
(
har,0(ζv)

)
=
∑
v∈V

χ
(
har,0(ζ2v)

)
.

Therefore, the condition ∑
v∈V

χ
(
har,0(v)

)
− 2

∑
v∈V

χ
(
har,0(ζv)

)
= 1

is equivalent to
2
∑
v∈V

χ
(
har,0(v)

)
−
∑
u∈U

χ
(
har,0(u)

)
= 1.

Now, since gcd(d, 2m + 1) = 3 and the mapping v 7→ v3 is a permutation when m 6≡ 3 (mod 6),
one has

∑
v∈V

χ
(
har,0(v)

)
=
∑
v∈V

χ
(
gar,0(vd)

)
=
∑
v∈V

χ
(
gar,0(v3)

)
=
∑
v∈V

χ
(
gar,0(v)

)
.

On the other hand, note that (since gcd(d, 2m + 1) = 3)∑
u∈U

χ
(
har,0(u)

)
=
∑
u∈U

χ
(
gar,0(ud)

)
=
∑
u∈U

χ
(
gar,0(u3)

)
= 3

∑
v∈V

χ
(
gar,0(v)

)
.

Hence, 2
∑
v∈V χ

(
har,0(v)

)
−
∑
u∈U χ

(
har,0(u)

)
= −2− (−3) = 1, proving that har,1,c is semi-

bent.
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To conclude this section, some functions in polynomial form in even dimension are considered
in this section. We contribute to the knowledge of the class of semi-bent Boolean functions by
deriving explicit criteria by means of Kloosterman sums and exponential sums involving Dickson
polynomial for determining whether a function expressed as a sum of trace functions is semi-bent
or not. Kloosterman sums are used as a very convenient tool to study the semi-bentness property
of several functions. In particular, we have showed that the values 0 and 4 of Kloosterman sums
defined on F2m give rise to semi-bent functions on F2n . Table 8.2 and Table 8.1 summarize these
results.

Table 8.1 – Families of semi-bent functions on F2n for Km(a) = 0

Class of functions Property Conditions References

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

semi-bent Km(a) = 0 [199]

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1

(
x(2m−1) 1

4 +1
)
;

Trn
m (c) = 1, m odd

semi-bent Km(a) = 0 [199]

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1
(
x(2m−1)3+1

)
;

Trn
m (c) = 1

semi-bent Km(a) = 0 [199]

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1

(
x(2m−1) 1

6 +1
)
;

Trn
m (c) = 1, m even

semi-bent Km(a) = 0 [199]

Trn
1
(
axr(2m−1)

)
+ Trn

1
(
αx2m+1

)
+ Trn

1

(∑2ν−1−1
i=1 x(2m−1) i

2ν +1
)
;

gcd(ν,m) = 1, α ∈ F2n , Trn
m (α) = 1

semi-bent Km(a) = 0 [199]

Table 8.2 – Families of semi-bent functions on F2n for Km(a) = 4

Class of functions Property Conditions References

Trn
1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)
;

m odd
semi-bent Km(a) = 4 [199]

Trn
1
(
ax3(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Tr2
1

(
bx

2n−1
3

)
;

m odd and m 6≡ 3 (mod 6)

semi-bent Km(a) = 4 [199]

Trn
1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1

(
x(2m−1) 1

4 +1
)
;

m odd

semi-bent Km(a) = 4 [199]

Trn
1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1
(
x3(2m−1)+1

)
;

Trn
m (c) = 1, m odd

semi-bent Km(a) = 4 [199]

Trn
1
(
axr(2m−1)

)
+ Trn

1
(
αx2m+1

)
+ Trn

1

(∑2ν−1−1
i=1 x(2m−1) i

2ν +1
)

+ Tr2
1

(
bx

2n−1
3

)
;

gcd(ν,m) = 1, α ∈ F2n , Trn
m (α) = 1, m odd

semi-bent Km(a) = 4 [199]
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8.2 Semi-bent functions with multiple trace terms and hy-
perelliptic curves

In chronological order, the results of this section were established before those in Chapter 7. More
precisely, in the line of the work of Lisonek [170], we have first established the results of this
section in the framework of semi-bent functions before extending them for hyper-bent functions.

This section is in the same spirit as Chapter 7 in which we provide efficient characterizations
of the semi-bentness property of several families of Boolean functions in univariate representation
with multiple trace terms expressed by means of trace functions via Dillon-like exponents and Niho
exponents with even number of variables. To this end, we have precised firstly the connection
between the semi-bentness property of such functions and some exponential sums involving
Dickson polynomials. Next, we gave a link between the property of semi-bentness and the
number of rational points on certain hyperelliptic curves. We exploits the connections between
semi-bentness property and binary hyperelliptic curves to produce a polynomial complexity test
which is of use in constructing semi-bent functions with multiple trace terms. In the following,
we present briefly some results of our study but we do not provide proofs since we have already
formulated precisely in this manuscript the connection between exponential sums and cardinalities
of hyperelliptic curve in Chapter 7 (see Proposition 11.0.1 and Proposition 11.0.2).

In the following, we consider four infinite classes of functions with multiple trace terms defined
on F2n . We denote by E the set of representatives of the cyclotomic classes modulo 2n − 1 for
which each class has full size n. Let far,b,c f ′ar,b, f̃ar,b′,c and f̃

′
ar,b′ be the functions defined on

F2n whose polynomial form is given by (8.11), (8.12), (8.13) and (8.14), respectively.

far,b,c(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr2

1(bx
2n−1

3 ) + Trm1 (cx2m+1) (8.11)

f ′ar,b(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr2

1(bx
2n−1

3 ) + Trm1 (x2m+1) + Trn1
(
x(2m−1)s+1

)
(8.12)

f̃ar,b′,c(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr4

1(b′x
2n−1

5 ) + Trm1 (cx2m+1) (8.13)

f̃
′
ar,b′(x) :=

∑
r∈R

Trn1 (arxr(2
m−1)) + Tr4

1(b′x
2n−1

5 ) + Trm1 (x2m+1) + Trn1
(
x(2m−1)s′+1

)
(8.14)

where R ⊆ E, ar ∈ F?2m , b ∈ F?4 , b′ ∈ F?16 , c ∈ F?2m , s ∈ {1/4, 3} and s′ ∈ {1/6, 3}(the fractions
1/4 and 1/6 are understood modulo 2m + 1).

The following statement provides a characterization of the property of semi-bentness for
functions of the form (8.11) and (8.12) in terms of cardinalities of hyperelliptic curves.

Theorem 8.2.1. ([200]) Let n = 2m with m odd. Let b ∈ F?4 , β be a primitive element of
F4 and c ∈ F?2m . Let far,b,c (resp. f ′ar,b) be the function defined on F2n whose expression
is of the form (8.11) (resp. form (8.12)). Let har be the related function defined on F2m by
har (x) =

∑
r∈R Trm1 (arDr(x)), where Dr(x) is the Dickson polynomial of degree r. Moreover, let
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H
(1)
ar , H

(2)
ar and H(3)

ar be the (affine) curves defined over F2m by

H(1)
ar : y2 + y =

∑
r∈R

arDr(x),

H(2)
ar : y2 + y =

∑
r∈R

arDr(x+ x3).

H(3)
ar : y2 + xy = x+ x2

∑
r∈R

arDr(x),

a) If β is a primitive element of F4 , then far,β,c (resp. f ′ar,β) is semi-bent if and only if

2#H(2)
ar −

(
#H(1)

ar + #H(3)
ar

)
= −3.

b) If b = 1, then far,1,c (resp. f ′ar,1) is semi-bent if and only if

4#H(2)
ar − 5#H(1)

ar + #H(3)
ar = 3.

The following statement provides a characterization of the property of semi-bentness for
functions of the form (8.13) and form (8.14) in terms of cardinalities of hyperelliptic curves.
Theorem 8.2.2. ([200])

Assume m := n
2 ≡ 2 (mod 4). Let R ⊆ E where E is a set of representatives of the cyclotomic

classes modulo 2n − 1 for which each class has the full size n. Let b′ ∈ F?16 and ar ∈ F?2m . Let
f̃ar,b′,c (resp. f̃ ′ar,b′) be the function defined on F2n whose expression is of the form (8.13) (resp.
form (8.14)). Let har be the related function defined on F2m by har(x) =

∑
r∈R Trm1 (arDr(x)),

where Dr(x) is the Dickson polynomial of degree r. Moreover, let H(1)
ar , H

(3)
ar , H̃ar

(2) and H̃ar

(3)

be the (affine) curves defined over F2m by

H(1)
ar : y2 + y =

∑
r∈R

arDr(x),

H(3)
ar : y2 + xy = x+ x2

∑
r∈R

arDr(x),

H̃ar

(2) : y2 + y =
∑
r∈R

arDr(x+ x3 + x5),

H̃ar

(3) : y2 + xy = x+ x2
∑
r∈R

arDr(x+ x3 + x5).

1. If Let b′ a primitive element of F16 such that Tr4
1(b′) = 0, then f̃ar,b′,c (resp. f̃ ′ar,b′) is

semi-bent if and only if,
#H̃ar

(2) −#H̃ar

(3) = 5.

2. If b′ = 1, then f̃ar,b′,c (resp. f̃
′
ar,b′) is semi-bent if and only if

2(#H̃ar

(2) −#H̃ar

(3))− 5(#H(1)
ar −#H(3)

ar ) = 5.

3. Assume ar ∈ F2
m
2 . If b′ ∈ {β, β2, β3β4} where β is a primitive 5-th root of unity in F16 ,

then f̃ar,b′,c (resp. f̃
′
ar,b′) is semi-bent if and only if,

#H̃ar

(2) −#H̃ar

(3) + 5(#H(1)
ar −#H(3)

ar ) = −10.
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4. Assume ar ∈ F2
m
2 . If b′ is a primitive element of F16 such that Tr4

1(b′) = 1, then f̃ar,b′,c
(resp. f̃ ′ar,b′) if and only if,

3
(

#H̃ar

(2) −#H̃ar

(3))+ 5
(

#H(3)
ar −#H(1)

ar

)
= −10.

5. Assume ar ∈ F2
m
2 . If b′ ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3} where β is a

primitive 5-th root of unity in F16 , then f̃ar,b′,c (resp. f̃
′
ar,b′) is semi-bent if and only if,

#H̃ar

(2) −#H̃ar

(3) = 5.

We will not give more details in this section since we have explained in details in Chapter7
the uses of the hyperelliptic curve formalism to reduce computational complexity.

8.3 General constructions of semi-bent functions
In the following, we generalize the constructions given in Section 8.1. More precisely, we prove a
key result (Theorem 8.3.1,[45]) which gives rise to the construction of several classes of semi-bent
functions in even dimension. First, let recall [82] that a collection {Ei, i = 1, . . . , 2m + 1} of
vector spaces of dimension m = n/2 such that:

1. Ei ∩ Ej = {0} for every i and j,

2.
⋃2m+1
i=1 Ei = F2n ,

is called a spread. The classical example of spread is {uF2m ; u ∈ U} where U is the multiplicative
group {u ∈ F2n ;u2m+1 = 1}.

8.3.1 Characterizations of semi-bent functions
In the next theorem, given a spread (Ei)i=1,...,2m+1, we characterize when a function whose
restriction to every E∗i is affine (i.e. a function equal to the sum of a function whose restriction
to every Ei is linear and of a function whose restriction to every E∗i is constant) is semi-bent:

Theorem 8.3.1. ([45]) Let m ≥ 2 and n = 2m. Let {Ei, i = 1, . . . , 2m + 1} be a spread in F2n

and h a Boolean function whose restriction to every Ei is linear (possibly null). Let S be any
subset of {1, . . . , 2m + 1} and g =

∑
i∈S 1Ei (mod 2) where 1Ei is the indicator of Ei. Then g+h

is semi-bent if and only if g and h are bents.

We call g a PSap-like bent function.

Proof. We may without loss of generality assume that g(0) = 0, that is, S has even size (otherwise,
we replace g by g + 1). Let us then compute the Walsh Hadamard transform of g + h. We have
for all c ∈ F2n :

χ̂g+h(c) =
∑
x∈F2n

χ((g + h)(x) + Trn1 (cx))

= 1 +
2m+1∑
i=1

∑
e∈E?

i

χ(g(e) + h(e) + Trn1 (ce))
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since
⋃2m+1
i=1 E?i = F?2n and E?i ∩ E?j = ∅. Let us denote by gi the value of g on E?i , by hi the

restriction of h to Ei and by I(c) the set {i ∈ [1, . . . , 2m + 1];∀e ∈ Ei, h(e) = Trn1 (ce)}. We have,
for every c ∈ F2n :

χ̂g+h(c) = 1 +
2m+1∑
i=1

χ(gi)
∑
e∈E?

i

χ(hi(e) + Trn1 (ce))

= 1−
2m+1∑
i=1

χ(gi)

+
2m+1∑
i=1

χ(gi)
∑
e∈Ei

χ(hi(e) + Trn1 (ce)).

Since hi is linear on Ei, one has
∑
e∈Ei χ(hi(e) + Trn1 (ce)) = 2m if i ∈ I(c) and 0 otherwise.

Therefore:

∀c ∈ F2n , χ̂g+h(c) = 1−
2m+1∑
i=1

χ(gi) + 2m
∑
i∈I(c)

χ(gi). (8.15)

On the other hand, the Walsh Hadamard transform of h is (take g = 0 in the preceding calculation)
:

χ̂h(c) = 2m(#I(c)− 1). (8.16)

If g is bent then we know that
∑2m+1
i=1 χ(gi) = 1. If h is bent then, according to (8.16), #I(c) ∈

{0, 2}. Hence, if g and h are bent then, ∀c ∈ F2n , χ̂g+h(c) = 2m
∑
i∈I(c) χ(gi) ∈ {0,±2m+1},

proving that g + h is semi-bent.
Conversely, let us assume that g+h is semi-bent and let us show that, necessarily, g and h are bent.
According to (8.15), we have

∑2m+1
i=1 χ(gi) ≡ 1 (mod 2m). In other words,

∑2m+1
i=1 χ(gi) = 1+ε2m

with ε ∈ {0,±1}. Suppose that ε ∈ {−1, 1}, then, for every c, I(c) is non-empty, since if I(c) = ∅,
χ̂g+h(c) = −ε2m 6∈ {0,±2m+1}; this implies that the Walsh Hadamard transform of h is non-
negative and we have seen in Section 2.1 (Chapter 2) that h is then linear, say h(x) = Trn1 (ax).
We have then, according to (8.16): #I(c) = 1 for c 6= a and #I(c) = 2m + 1 for c = a; thus,

χ̂g+h(a) = −ε2m + 2m
2m+1∑
i=1

χ(gi)

= −ε2m + 2m + ε2n

= (1− ε)2m + ε2n ∈ {2n, 2m+1 − 2n}

a contradiction with the fact that g + h is semi-bent. Therefore, we have ε = 0,
∑2m+1
i=1 χ(gi) = 1,

which implies that g is bent. Let us now prove that h is bent. One has necessarily
∑
i∈I(c) χ(gi) ∈

{−2, 0, 2}. Thus, I(c) is of even size for every c, which implies that χ̂h(c) is congruent to 2m
modulo 2m+1, which according to Lemma 1 in [25] implies that h is bent (that is, #I(c) ∈ {0, 2}
for every c).

Remark 8.3.2. As far as we know, the spread {uF2m ; u ∈ U} is the only known spread in F2n ,
up to linear equivalence.
There exists an example due for m even to Dillon [82] of a partial spread in F2n ≈ F2m×F2m which
is not included in a spread: E∞ = {0} × {0} × F2m−1 × F2 and Ea = {(x, ε, a2x+ aTrm−1

1 (ax) +
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aε,Trm−1
1 (ax)); (x, ε) ∈ F2m−1×F2} for a ∈ F2m−1 (the corresponding function g is quadratic bent).

We can modify the hypothesis of Theorem 8.3.1 by assuming that we have only a partial spread.
We need then to add a condition on the Ei’s, and we have only a sufficient condition for g + h
being semi-bent:
Let g be a bent function in the PS class, equal to the sum modulo 2 of the indicators of
l := 2m−1 or 2m−1 + 1 pairwise “disjoint” vector spaces Ei having dimension m, and h a bent
function which is linear on each Ei. Assume additionally that for every c ∈ F2n there exist
at most 2 indices i such that ∀e ∈ Ei, h(e) = Trn1 (ce). Then g + h is semi-bent. Indeed, we
have χ̂g+h(c) = χ̂h(c)− 2

∑
x∈F2n/g(x)=1

(−1)h(x)+Trn1 (cx) and therefore, since either l = 2m−1 and

g(0) = 0 or l = 2m−1 + 1 and g(0) = 1:

χ̂g+h(c) = χ̂h(c)− 2
l∑
i=1

∑
e∈Ei

(−1)h(e)+Trn1 (ce) + 2m

= −2m+1#{i = 1, · · · l ;∀e ∈ Ei, h(e) = Trn1 (ce)}
+ χ̂h(c) + 2m

As shown in [24], we have “∀e ∈ Ei;h(e) = Trn1 (ce)” for some i if and only if χ̂h(u) = 2m for
every u ∈ c+ E⊥i which implies in particular that χ̂h(c) = 2m. Thus we have:
- either {i = 1, · · · l ;∀e ∈ Ei, h(e) = Trn1 (ce)} = ∅ and χ̂g+h(c) = χ̂h(c) + 2m ∈ {0, 2m+1};
- or #{i = 1, · · · l ;∀e ∈ Ei, h(e) = Trn1 (ce)} ∈ {1, 2} and χ̂g+h(c) ∈ {0,−2m+1}. Hence, g + h is
semi-bent.

8.3.2 Constructions of semi-bent functions
Constructions in bivariate form

We identify F2m × F2m with F2n by considering an orthonormal basis of the F2m-vector space
F2n . We consider the vector spaces Ea = {(x, ax); x ∈ F2m} where a ∈ F2m and E∞ =
{(0, y); y ∈ F2m} = {0} × F2m . The bivariate version of the spread {uF2m ; u ∈ U} is the spread
{Ea ; a ∈ F2m} ∪ {E∞}. It can be directly checked that the Ea’s and E∞ are vector spaces
of dimension m and that we have Ea ∩ Eb = {0} for every pair (a, b) such that a 6= b and
E∞ ∩ Ea = {0} for every a ∈ F2m . Note that any function g in the PSap class can be viewed
as the indicator of 2m−1 or 2m−1 + 1 of these vector spaces. Moreover, function h having linear
restrictions to the Ea’s is necessarily defined as, x, y ∈ F2m , h(x, y) = Trm1

(
xH

(
y
x

))
if x 6= 0

and h(0, y) = Trm1 (µy) for some mapping H over F2m and some µ ∈ F2m . A linear function has
bivariate form `(x, y) = Trm1 (cx + c′y), where x, y, c, c′ ∈ F2m and the set denoted by I(c) in
Section 8.3.1 has to be denoted by I(c, c′) here. Then for every (c, c′) ∈ F2m × F2m the set I(c, c′)
equals {a ∈ F2m ;∀x ∈ F2m , Trm1 (xH(a)) = Trm1 (cx+ c′ax)} = {a ∈ F2m ;H(a) = c+ c′a} if c′ 6= µ
and {a ∈ F2m ;H(a) = c+ c′a} ∪ {∞} if c′ = µ. Hence, the sets I(c, c′) depend on the pre-image
of c by the mapping H + c′Id (where Id denotes the identity map). According to (8.16), the
necessary and sufficient condition for h being bent is that, denoting G(x) = H(x) + µx, then G is
a permutation and for every c′ 6= 0 the function G(x) + c′x is 2-to-1. Such bent functions have
been first introduced by Dillon in [82]. He could exhibit in the class of such functions only the
example of the function h in Corollary 8.3.3 below. But other examples have been found recently
in [44] and lead to Corollary 8.3.5.
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Corollary 8.3.3. ([45]) Let g be a function in the PSap class (see definition in 4.4.1 (Chapter 4)).
Let i be any integer co-prime with m and h(x, y) = Trm1 (xy2i−1). Then the function g + h is
semi-bent.

Remark 8.3.4. According to [4, Theorem 6], the permutations y2i−1 are the only permutations
π such that xπ(x) is linear.

Corollary 8.3.5. ([45]) Let g be a function in the PSap class. Let h be one of the following
functions [44] :

• h(x, y) = Trm1 (x−5y6), m odd;

• h(x, y) = Trm1 (x 5
6 y

1
6 ), m odd:

• h(x, y) = Trm1 (x−3·(2k+1)y3·2k+4), m = 2k − 1;

• h(x, y) = Trm1 (x−3·(2k−1−1)y3·2k−1−2), m = 2k − 1;

• h(x, y) = Trm1 (x1−2k−22k
y2k+22k), m = 4k − 1;

• h(x, y) = Trm1 (x23k−1−22k+2ky1−23k−1+22k−2k), m = 4k − 1;

• h(x, y) = Trm1 (x1−22k+1−23k+1
y22k+1+23k+1), m = 4k + 1;

• h(x, y) = Trm1 (x23k+1−22k+1+2ky1−23k+1+22k+1−2k), m = 4k + 1;

• h(x, y) = Trm1 (x1−2ky2k + x−(2k+1)y2k+2 + x−3·(2k+1)y3·2k+4), m = 2k − 1;

• h(x, y) = Trm1 (y(y2k+1x−(2k+1) + y3x−3 + yx−1)2k−1−1), m = 2k − 1;

• h(x, y) = Trm1 (x 5
6 y

1
6 + x

1
2 y

1
2 + x

1
6 y

5
6 ), m odd;

• h(x, y) = Trm1 (x[D 1
5

(
y
x

)
]6), m odd, where D 1

5
is the Dickson polynomial of index 1

5 .

Then the function g + h is semi-bent.

Remark 8.3.6. There are more bent functions in bivariate form in [44] whose expression are
more complex.

Constructions in univariate form

We apply now Theorem 8.3.1 to the spread {uF2m ; u ∈ U} where U is the multiplicative group
{u ∈ F2n ;u2m+1 = 1}. In this framework, the functions have to be considered in their univariate
form.
- Nonlinear Boolean functions whose restriction to any vector space uF2m are linear are sums of
Niho power functions, that is (see [93]) of functions of the form:

Tro((2
m−1)s+1)

1

(
asx

(2m−1)s+1
)

with 1 ≤ s ≤ 2m

We can determine the value of o((2m − 1)s+ 1) precisely:

Lemma 8.3.7. ([45]) We have o((2m − 1)s+ 1) = m if s = 2m−1 + 1 (i.e. if (2m − 1)s+ 1 and
2m + 1 are conjugate) and o((2m − 1)s+ 1) = n otherwise.
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Proof. 2i((2m− 1)s+ 1) ≡ (2m− 1)s+ 1 (mod 2n− 1) is equivalent to (2i− 1)((2m− 1)s+ 1) ≡ 0
(mod 2n − 1) and implies (2i − 1)((2m − 1)s+ 1) ≡ 0 (mod 2m − 1). The integers 2m − 1 and
(2m − 1)s+ 1 being co-prime then, 2m − 1 divides 2i − 1 and then, m divides i. Now, we have
2m((2m − 1)s+ 1) ≡ (1− 2m)s+ 2m (mod 2n − 1) is congruent to (2m − 1)s+ 1 modulo 2n − 1
if and only if (2m − 1)(2s− 1) ≡ 0 (mod 2n − 1), that is, s ≡ 2m−1 + 1 (mod 2m + 1). Therefore,
o((2m − 1)s+ 1) = m if s = 2m−1 + 1 and n otherwise.

- Some PSap functions can be obtained in the form∑
r∈R

Tro((2
m−1)r)

1

(
brx

(2m−1)r
)

where R ⊂ {1, · · · , 2m}.

Collecting results provided in [93] and [54], we get a direct consequence of Theorem 8.3.1:

Corollary 8.3.8. Let f be a Boolean function of the form:

f(x) = Trm1 (a0x
2m+1) +

L∑
i=1

Trn1 (aix(2m−1)si+1)

+
∑
r∈R

Tro((2
m−1)r)

1 (brx(2m−1)r)

where L is some non-negative integer, 2 ≤ si ≤ 2m, si 6= 2m−1 + 1, 1 ≤ r ≤ 2m, a0 ∈ F2m ,
ai ∈ F2m and br ∈ F2o((2m−1)r) (with at least one coefficient ai 6= 0 and one coefficient br 6= 0).
Assume that:
1) the number of roots u in U := {x ∈ F2n ;x2m+1 = 1} of the equation Trnm(cu)+

∑L
i=1 Trnm(aiu2si−1)+

a
1
2
0 = 0 is either 0 or 2 for every c ∈ F2n ,

2) the sum
∑
u∈U χ(

∑
r∈R Tro((2

m−1)r)
1 (brur)) is equal to 1. Then, f is semi-bent.

Proof. Condition 1 is necessary and sufficient to ensure that the Niho part h(x) := Trm1 (a0x
2m+1)+∑L

i=1 Trn1 (aix(2m−1)si+1) is bent [93], while condition 2 ensures that the "Dillon" part g(x) :=∑
r∈R Tro((2

m−1)r
1 (brx(2m−1)r) is hyper-bent [54].

Remark 8.3.9. Condition 2 in Corollary 8.3.8 can be reworded by means of Kloosterman sums
in particular cases [82], [159], [195], [196], [197] and [198].

Let us specify some infinite families of semi-bent functions in univariate form. Firstly, we
give a list of infinite families containing bent functions defined on F2n belonging to the class
PSap; here, Km(a) :=

∑
x∈F2m

χ
(

Trm1 (ax+ 1
x )
)
denotes the binary Kloosterman sums on F2m

and Cm(a, a) :=
∑
x∈F2m

χ
(

Trm1 (ax3 + ax
)
) denotes the cubic sums on F2m :

• g1(x) = Trn1 (axr(2m−1)); gcd(r, 2m + 1) = 1, a ∈ F?2m such that Km(a) = 0 ([54]).

• g2(x) = Trn1 (axr(2m−1)) + Tr2
1(bx 2n−1

3 ); gcd(r, 2m + 1) = 1, m > 3 odd, b ∈ F?4 , a ∈ F?2m
such that Km(a) = 4 ([197]).

• g3(x) = Trn1 (aζix3(2m−1)) + Tr2
1(βjx 2n−1

3 ); m odd and m 6≡ 3 (mod 6), β is a primitive
element of F4 , ζ is a generator of the cyclic group U of (2m+1)-th of unity, (i, j) ∈ {0, 1, 2}2,
a ∈ F?2m such that Km(a) = 4 and Trm1 (a1/3) = 0 ([196]).

• g4(x) = Trn1 (aζix3(2m−1)) + Tr2
1(βjx 2n−1

3 ); m odd and m 6≡ 3 (mod 6), β is a primitive
element of F4 , ζ is a generator of the cyclic group U of (2m + 1)-th of unity, i ∈ {1, 2},
j ∈ {0, 1, 2}, a ∈ F?2m such that Km(a) + Cm(a, a) = 4 and Trm1 (a1/3) = 1 ([196]).
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• g5(x) =
∑2m−1−1
i=1 Trn1

(
βxi(2

m−1)); β ∈ F2m \ F2 ([114]).

• g6(x) =
∑2m−2−1
i=1 Trn1

(
βxi(2

m−1)); m odd and β(2m−4)−1 ∈ {x ∈ F?2m ; Trm1 (x) = 0} ([114]).

Secondly, we give a list of known Niho bent functions

• h1(x) = Trm1
(
a1x

2m+1); a1 ∈ F?2m

• h2(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1)3+1
)
;

a1 ∈ F?2n , a2m+1
2 = a1 + a2m

1 = β5 for some β ∈ F?2n([93])

• h3(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1) 1
4 +1
)
;

a1 ∈ F?2n a
2m+1
2 = a1 + a2m

1 , m odd [93]

• h4(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1) 1
6 +1
)
; a1 ∈ F?2n a

2m+1
2 = a1 + a2m

1 , m even ([93])

• h5(x) = Trn1
(
αx2m+1 +

∑2r−1−1
i=1 xsi

)
, r > 1 such that gcd(r,m) = 1, α ∈ F2n such that

α+ α2m = 1, si = (2m − 1) i
2r (mod 2m + 1) + 1 , i ∈ {1, · · · , 2r−1 − 1} ([160])

We obtain new families in univariate form containing semi-bent functions. Each of them are of
algebraic degree m (that is, the maximum degree for a semi-bent function).

Remark 8.3.10. The question arises of determining whether all these semi-bent functions
are extendable to (n + 2)-variable bent functions. We checked that all the known secondary
constructions of bent functions which increase the number of variables by 2 fail to generate such
bent functions from g and h. On the other hand, it is difficult to show that a given semi-bent
function is the restriction of any bent function (the algebraic degrees of the semi-bent function and
of the indicator of its Walsh Hadamard support, for instance, do not help since in both cases they
are bounded above by a number which is not smaller for the restriction of a bent function than for
a semi-bent function). It is a simple matter to show that a given semi-bent function in n variables,
for n even (respectively, for n odd), is the restriction of a semi-bent function (respectively of a
bent function) in n+ 1 variables if and only if there exists a semi-bent function f ′ in n variables
whose Walsh Hadamard support Sf ′ := {a ∈ F2n / χ̂f ′(a) 6= 0} is disjoint from Sf , the Walsh
Hadamard support of f (note that in the case where n is odd, {Sf , Sf ′} is a partition of F2n).
And a semi-bent function in n variables, for n even, is the restriction of a bent function in n+ 2
variables if and only if it is the restriction of a semi-bent function in n+ 1 variables which is the
restriction of a bent function in n+ 2 variables. It is probable that there exist semi-bent functions
constructed from Theorem 1 which are the restriction of no bent function in n+ 2 variables, but
we were not able to prove it.

Finally, we give some open problems (Problem 1 has been proposed by Matthew Geoffrey
Parker)

Problem 8.3.11. Show that some semi-bent functions obtained in the previous section are not
extendable to (n+ 2)-variable bent functions (or deduce new bent functions from them).

Problem 8.3.12. Determine whether there exist spreads which are not linearly equivalent to the
spaces uF2m and if they exist, deduce related semi-bent functions.

Problem 8.3.13. Find semi-bent functions obtained by applying the result of Remark 8.3.2.
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To conclude this section, we show that any Boolean function, in even dimension, equal to the
sum of a Boolean function g which is constant on each element of a spread and of a Boolean
function h whose restrictions to these elements are all linear, is semi-bent if and only if g and h
are both bent. We deduce a large number of infinite classes of semi-bent functions in explicit
bivariate (resp. univariate) polynomial form.
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Reed-Muller codes, introduced by D. E. Muller and L. S. Reed in 1954, are one of the
best understood families of codes. Except for first-order Reed-Muller codes and for codes of
small lengths, their minimum distance is lower than that of BCH codes. But they have very
efficient decoding algorithms, they contain nonlinear sub-codes with optimal parameters together
with efficient decoding algorithms, and they give a useful framework for the study of Boolean
functions in cryptography. Despite the fact that they have been extensively studied for decades
by coding theorists, their covering radius is unknown except for Reed-Muller codes of small
lengths and for the first-order Reed-Muller code of length 2n, for n even. The covering radius
is the smallest integer ρ such that the spheres of radius ρ centered at the codewords cover the
whole space, i.e. the maximum multiplicity of errors that have to be corrected when maximum
likelihood decoding is used on a binary symmetric channel. Lower and upper bounds have been
proved, but the gap between them is important, and better bounds have to be found. A good
reference on covering radius is [68] and a short non-exhaustive list of references on this subject is
[69, 130, 131, 186, 230, 239].

Reed-Muller codes can be defined in terms of Boolean functions. Precisely, the binary rth-
order Reed-Muller code RM(r, n) is the set of all binary vectors of length 2n associated with
multivariate binary polynomials f(x1, . . . , xn) of algebraic degree at most r (see e.g. [175]).
(more precisely, it is the linear code of all binary words of length 2n corresponding to the last
columns of the truth-tables of these functions, see [175]). The Reed-Muller codes are nested
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: RM(1, n) ⊂ RM(2, n) ⊂ · · · ⊂ RM(n− 1, n). For every 0 ≤ r ≤ n − 2, the dual code of
RM(r, n), denoted by RM(r, n)⊥, is the (n− r − 1)th-order Reed-Muller code with length 2n.

Recall that nlr(f) denotes the minimum Hamming distance between a given Boolean function
f and all Boolean functions g of degrees at most r. We have:

nlr(f) = 2n−1 − 1
2 max
g∈RM(r,n)

∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)+g(x)

∣∣∣∣∣∣ (9.1)

The covering radius of RM(r, n) which plays an important role in error correcting codes, which
we denote by ρ(r, n), is defined as the maximum value of nlr(f) when f ranges the set of Boolean
functions in n variables that is

ρ(r, n) = max
f∈Bn

min
g∈RM(r,n)

dist(f, g) (9.2)

The covering radii of Reed-Muller codes satisfy the inequality (see [68, 69]):

ρ(r, n) ≤ ρ(r − 1, n− 1) + ρ(r, n− 1) (9.3)

The values of the covering radii of Reed-Muller codes remain unknown except for small lengths
and for small or high orders. We recall briefly the only known results about their values. For
every positive integer n, ρ(n, n) = 0, ρ(n− 1, n) = 1, ρ(n− 2, n) = 2 and ρ(n− 3, n) = n+ 2 if n
is even and ρ(n− 3, n) = n+ 1 if n is odd. The covering radius of the first-order Reed-Muller
codes is known only for n even and equals in this case 2n−1 − 2n/2−1 while, for n odd, ρ(1, n)
is upper bounded by 2n−1 − 2n/2−1 and lower bounded by 2n−1 − 2(n−1)/2 (this value has been
slightly improved for n ≥ 15). Concerning the other values of covering radii of Reed-Muller codes,
that is, of Reed-Muller codes of small lengths, we summarize in the Table 9.1 the known values
and value brackets for small values of n. We indicate as superscripts the references where these
values were obtained.

r\n 1 2 3 4 5 6 7 8 9
1 0 1 2 6 12 28 56 120 240-244
2 0 1 2 6 181 40-442 84-100 171-220
3 0 1 2 8 20-232 43-67 111-167
4 0 1 2 8 22-31 58-98
5 0 1 2 10 23-41
6 0 1 2 10
7 0 1 2
8 0 1
9 0

Table 9.1 – Bounds on the covering radii of Reed-Muller codes

Finally, the best known asymptotic upper bound on the covering radius ρ(r, n) of the Reed-
Muller code of order r (r ≥ 2) until 2005, was obtained by Cohen et al. ([68, 69]) :

ρ(r, n) ≤ 2n−1 − 1
2(
√

2 + 1)r−1 · 2n/2 +O(nr−2) (9.4)
1J. Schatz, 1981 [230]
2X. D. Hou, 1993 [130]
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9.1 New bounds on the covering radii of Reed-Muller codes
We expose briefly in this section our result on the Reed-Muller code of order 2 from which we
deduce an upper bound on the covering radii of the Reed-Muller codes of higher orders. The
proof of Theorem 9.1.1 is lengthy and will be exposed in Section 9.2
Theorem 9.1.1. ([43]) For every positive integer n ≥ 17, the covering radius ρ(2, n) of the
second-order Reed-Muller code RM(2, n) is upper bounded by⌊

2n−1 −
√

15
2 · 2n2 ·

(
1− 122929

21 · 2n −
155582504573

4410 · 22n

)⌋
(9.5)

Concerning the small values of n, we present our upper bound on the covering radius of the
second-order Reed-Muller code in the table below, for n = 10, . . . , 16. The first row in this table
indicates our upper bound while the second row indicates the upper bound deduced from table
9.1 and inequality (9.3) which we call recursive bound :

n 10 11 12 13
Our bound 464 956 1946 3949
Recursive bound 464 960 1961 3977

n 14 15 16
Our bound 7981 16071 32316
Recursive bound 8027 16155 32448

Table 9.2 – Bounds on the covering radii of RM(2, n) for 10 ≤ n ≤ 16

Our upper bound is thus better than the recursive bound whenever n ≥ 10. A consequence of
Theorem 9.1.1 is the following theorem that improves upon the asymptotic bound (9.4) for r ≥ 3.
Theorem 9.1.2. ([43]) Let r be a positive integer greater than or equal to 2. The covering radius
of the Reed-Muller code of order r satisfies asymptotically

ρ(r, n) ≤ 2n−1 −
√

15
2 · (1 +

√
2)r−2 · 2n/2 +O(nr−2) (9.6)

Proof. The Theorem is proved by induction on r. Theorem 9.1.1 implies that ρ(2, n) ≤ 2n−1 −√
15 · 2n2−1 +O(1). Let (11.12) be valid for r − 1. Now, inequality (9.3) yields to

ρ(r, n) ≤
n−1∑
j=r

ρ(r − 1, j)

≤
n−1∑
j=r

(
2j−1 −

√
15 · (1 +

√
2)r−3 · 2

j
2−1 + uj

)
with uj = O(jr−3). Now

n−1∑
j=r

(
2j−1 −

√
15 · (1 +

√
2)r−3 · 2

j
2−1
)

= 2n−1 − 2r−1

2− 1 −
√

15
2 (1 +

√
2)r−3 · 2n2 − 2 r2√

2− 1

= 2n−1 −
√

15
2 (1 +

√
2)r−2 2n2 +O(1)
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On the other hand, since there exists a positive real constant K such that for every positive
integer j, |uj | ≤ Kjr−3, we have

∣∣∣∑n−1
j=r uj

∣∣∣ ≤ K∑n−1
j=r j

r−3 = O(nr−2).

9.2 A new upper bound on the covering radii on second-
order Reed-Muller codes

Throughout this section, we suppose that n is a positive integer. Let (f, g) ∈ B2
n. According to

Relation (9.1), we have:

ρ(2, n) = 2n−1 − 1
2 min
f∈Bn

max
g∈RM(2,n)

∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)+g(x)

∣∣∣∣∣∣ (9.7)

For every integer k ≥ 1 and every f ∈ Bn, let us set :

Sk(f) :=
∑

g∈RM(2,n)

∑
x∈Fn2

(−1)f(x)+g(x)

2k

(9.8)

For every k ≥ 1, g ∈ RM(2, n) and f ∈ Bn, we have :∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)+g(x)

∣∣∣∣∣∣
2k+2

≤

 max
g∈RM(2,n)

∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)+g(x)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

∑
x∈Fn2

(−1)f(x)+g(x)

∣∣∣∣∣∣
2k

This implies that, for every integer k ≥ 1 and every f ∈ Bn,

A2(f) := max
g∈RM(2,n)

∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)+g(x)

∣∣∣∣∣∣ ≥
√
Sk+1(f)
Sk(f) (9.9)

We thus get the following upper bound on the covering radius on the second-order Reed-Muller
code :

∀k ≥, ρ(2, n) ≤ 2n−1 − 1
2 min
f∈Bn

√
Sk+1(f)
Sk(f) (9.10)

The covering radius ρ(2, n) being an integer, we thus have, for every integer k ≥ 1,

ρ(2, n) ≤ ρk(2, n) =
⌊

2n−1 − 1
2 min
f∈Bn

√
Sk+1(f)
Sk(f)

⌋
(9.11)

Lemma 9.2.1 below shows that the sequence (ρk(2, n))k≥1 admits ρ(2, n) as a limit.

Lemma 9.2.1. ([43]) The integer sequence (ρk(2, n))k≥1 is decreasing. Moreover there exists a
positive integer k such that ρk(2, n) = ρ(2, n).

Proof.

1. Cauchy-Schwartz’s inequality yields to

∀f ∈ Bn, ∀k ≥ 1, S2
k+1(f) ≤ Sk(f)Sk+2(f)
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This implies that the sequence
(
Sk+1(f)
Sk(f)

)
k≥1

is increasing for every Boolean function f ∈ Bn

and therefore the sequence
(

minf∈Bn
Sk+1(f)
Sk(f)

)
k≥1

is increasing too. This proves that the
sequence (ρk(2, n))k≥1 is decreasing.

2. Given a sequence of non-negative integers λi, the ratio
∑

i
λk+1
i∑

i
λk
i

tends to maxi λi when k

tends to infinity. Indeed,
∑
i λ

p
i is equivalent to N

(
maxi λi

)p
as p tends to infinity where

N is the cardinality of {j | λj = maxi λi}. Therefore 1
2

√
Sk+1(f)
Sk(f) converges to 1

2A2(f) as k
tends to infinity. Now, according to (9.9), we have

1
2

√
Sk+1(f)
Sk(f) ≤

⌈
1
2

√
Sk+1(f)
Sk(f)

⌉
≤ 1

2A2(f)

We have used the fact that 1
2A2(f) is an integer. This implies that, for every Boolean function

f ∈ Bn, there exists a positive integer kf such that,
⌈

1
2

√
Sk+1(f)
Sk(f)

⌉
= 1

2A2(f) provided

that k ≥ kf . Therefore, whenever k ≥ maxf∈Bn kf , we have minf∈Bn
⌈

1
2

√
Sk+1(f)
Sk(f)

⌉
=

1
2 minf∈Bn A2(f). This implies that ρk(2, n) = 2n−1 − minf∈Bn

⌈
1
2

√
Sk+1(f)
Sk(f)

⌉
= 2n−1 −

1
2 minf∈Bn A2(f) = ρ(2, n) whenever k ≥ maxf∈Bn kf .

Lemma 9.2.1 shows that, the greater we take the value of k, the better the lower bound
obtained with (9.9) should be. Unfortunately, we will be brought to restrict the choice of k and
and we shall get only a bound.

According to (9.11), the problem of getting an upper bound on ρ(2, n) is equivalent to searching
a lower bound on minf∈Bn

√
Sk+1(f)
Sk(f) . The remaining of the section is entirely devoted to establish

such a lower bound. The proof being rather lengthy, we structure its presentation by splitting it
in independent subsections.

9.2.1 A decomposition of the power sums Sk(f) in character sums
This subsection is entirely devoted to stating a decomposition of the power sums Sk(f) into
character sums involving characters of Bn. To this aim, we start by rewriting the power sums
Sk(f). We first introduce a notation that we shall use in this lemma and in the sequel : given
two n-variable Boolean functions f and g, we denote by 〈f, g〉 the sum

∑
x∈Fn2

f(x)g(x).

Lemma 9.2.2. ([43]) Let f be any n-variable Boolean function. Then, for every positive integer
k, we have

Sk(f) = #RM(2, n)
∑

(x1,··· ,x2k)∈Uk

(−1)〈f,
∑2k
i=1 1xi 〉

where Uk denotes the subset of (Fn2 )2k formed with all the 2k-tuples (x1, · · · , x2k) such that the
Boolean function

∑2k
i=1 1xi belongs to RM(n− 3, n) (here, 1x denotes the Boolean functions in n

variables whose support is the singleton {x}, x ∈ Fn2 )
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Proof. Expanding the power terms
(∑

x∈Fn2
(−1)f(x)+g(x)

)2k
in (9.8) yields to :

Sk(f) =
∑

x1,...,x2k∈Fn2

(−1)
∑2k

i=1
f(xi)

 ∑
g∈RM(2,n)

(−1)
∑2k

i=1
g(xi)


The mapping g 7→ g(x1) + · · ·+ g(x2k) = 〈g, 1x1 + · · ·+ 1x2k〉 being linear over the Reed-Muller
code of order 2 and this code being linear, the sum of (−1)g(x1)+···+g(x2k) when g ranges over the
Reed-Muller code of order 2 either is null or equals #RM(2, n). More precisely, this sum equals
to #RM(2, n) if the Boolean function 1x1 + · · · + 1x2k belongs to the dual code RM(2, n)⊥
of the second-order Reed-Muller code, that is the Reed-Muller code of order n− 3, and is null
otherwise.

The next step is to use Lemma 9.2.2 to get a decomposition in character sums of the power
sums Sk(f) for all positive integers k and all Boolean functions f ∈ Bn. For that,we introduce
additional notation for convenience.

Definition 9.2.3. Let k be a positive integer. We let Dk be the number of ways of choosing
a 2k-tuple (x1, · · · , x2k) such that

∑2k
i=1 1xi equals the null codeword. More generally, given

a positive integer w, we let N (w)
k be the number of ways of choosing a 2k-tuple (x1, · · · , x2k)

constituting (taking into account the order) an arbitrary function of Hamming weight w. Finally,
we let M (w)

f be the character sum of (−1)〈f,g〉 when g ranges over the subset of those codewords
of RM(n− 3, n) of Hamming weight w .

Remark 9.2.4. We adopt the convention M (w)
f = 0 if there is no codeword of Hamming weight

w in RM(n− 3, n)

We then prove

Proposition 9.2.5. ([43]) Let f be an arbitrary Boolean function of Bn. Then

Sk(f) = #RM(2, n)Dk if k = 1, 2, 3

Sk(f) = #RM(2, n)
(
Dk +N

(8)
k M

(8)
f

)
if k = 4, 5

Sk(f) =

#RM(2, n)
(
Dk +N

(8)
k M

(8)
f +

k∑
w=6

N
(2w)
k M

(2w)
f

)
,

if k ≥ 6

(9.12)

Proof. Let f ∈ Bn. According to Lemma 9.2.2, we have, for all positive integer k,

Sk(f) = #RM(2, n)
∑

(x1,··· ,x2k)∈Uk

(−1)〈f,
∑2k
i=1 1xi 〉

= #RM(2, n)

Dk +
∑

g∈RM(n−3,n)\{0}

#Ng (−1)〈f,g〉


where Ng denotes the set of all the 2k-tuples (x1, . . . , x2k) of vectors of Fn2 such that
∑2k
i=1 1xi = g.

Let σ be a permutation of Fn2 . Now, clearly, the map from (Fn2 )2k to itself which maps (x1, . . . , x2k)
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to (σ(x1), . . . , σ(x2k)) is one-to-one and maps Ng to Nh where h is the Boolean function defined
as h(x) = g(σ−1(x). This implies that #Ng = #Nh = N

(w)
k whenever wt(g) = wt(h) = w.

Therefore

Sk(f) = #RM(2, n)

Dk +
2k∑
w=1

N
(w)
k

 ∑
g∈RM(n−3,n)

wt(g)=w

(−1)〈f,g〉




The proof is complete by recalling that

1. The Hamming weight of any codeword of RM(n− 3, n) is even

2. The Reed-Muller code of order n− 3 has minimum distance 8 and there is no element of
Hamming weight 10 [145].

Proposition 9.2.5 states that, for any Boolean function f ∈ Bn,

S2(f)
S1(f) = D2

D1

S3(f)
S2(f) = D3

D2

S4(f)
S3(f) =

D4 +N
(8)
4 M

(8)
f

D3

S5(f)
S4(f) =

D5 +N
(8)
5 M

(8)
f

D4 +N
(8)
4 M

(8)
f

S6(f)
S5(f) =

D6 +N
(8)
6 M

(8)
f +N

(12)
6 M

(12)
f

D5 +N
(8)
5 M

(8)
f

Sk+1(f)
Sk(f) =

Dk+1 + N
(8)
k+1M

(8)
f +

∑k+1
w=6N

(2w)
k+1 M

(2w)
f

Dk + N
(8)
k M

(8)
f +

∑k
w=6N

(2w)
k M

(2w)
f

for k ≥ 6

Remark 9.2.6. According to (9.11), we have, for every positive integer k, ρ(2, n) ≤
⌊
2n−1 − 1

2 minf∈Bn
√
Sk+1(f)
Sk(f)

⌋
.

Since D1 = 2n, D2 = 3 · 22n − 2 · 2n and D3 = 15 · 23n − 30 · 22n + 16 · 2n, we deduce two
upper bounds by setting k = 1 and k = 2 : ρ(2, n) ≤

⌊
2n−1 − 1

2
√

3 · 2n − 2
⌋
and ρ(2, n) ≤⌊

2n−1 − 1
2

√
15·22n−30·2n+16

3·2n−2

⌋
. The first upper bound does not improve upon the upper bound on

the covering radius of RM(2, n) presented in [68] while the second one does.

9.2.2 The values of N (2w)
k

In the decomposition of Sk(f), the numbers Dk and N
(2w)
k can be computed for all positive

integers k and w. We introduce some notation to state their expressions. Given a mapping A
from R to itself, we denote by

[
zk
]
A(z) the coefficient of z

k

k! in the Taylor series expansion of A
at z = 0.



292 Chapter 9. Covering radii of binary Reed-Muller codes

Lemma 9.2.7. ([43]) For every positive integer k and every positive integer w, we have

Dk = [z2k] cosh2n(z)

N
(2w)
k = [z2k] tanh2w cosh2n(z)

Proof.

1. By definition, Dk equals the number of ways of choosing a 2k-tuple (x1, . . . , x2k) of vectors
of Fn2 such that

∑2k
i=1 1xi equals the null codeword. Clearly, this holds if and only if we can

constitute k pairs of identical elements with x1, . . . , x2k. These pairs are not necessarily
pairwise distinct. More precisely, these vectors x1, . . . , x2k constitute a multiset (i.e. a
set-like object for which repeated elements are considered but in which the order is ignored;
the number of times that each element appears is called the multiplicity). Assume that
this multiset is constituted with s pairwise distinct elements with multiplicities q1, . . . , qs
(1 ≤ s ≤ 2n). These multiplicities qi are necessarily even in order to be able to constitute
pairs of identical elements and form a composition of 2k, i.e. an ordered tuple of positive
integers with total sum 2k. Set pi = qi

2 for every i ∈ {1, . . . , s}. Thus

Dk =
min(k,2n)∑

s=1

(
2n

s

) ∑
p1+···+ps=k

(2k)!∏s
i=1(2pi)!

where the
∑
p1+···+ps=k denotes the sum over all the compositions of k of length s. Let us

now compute the generating series of the integer sequence (Dk)k∈N

+∞∑
k=1

Dk
z2k

2k! =
+∞∑
k=1

min(k,2n)∑
s=1

(
2n

s

) ∑
p1+···+ps=k

s∏
i=1

z2pi

(2pi)!

=
2n∑
s=1

(
2n

s

)+∞∑
k=s

∑
p1+···+ps=k

s∏
i=1

z2pi

(2pi)!


=

2n∑
s=1

(
2n

s

)(+∞∑
p=1

z2p

(2p)!

)s

=
2n∑
s=1

(
2n

s

)
(cosh(z)− 1)s

=cosh2n(z)− 1

2. By definition, N (2w)
k equals the number of ways of choosing a 2k-tuple (x1, · · · , x2k) con-

stituting an arbitrary function g (of RM(n − 3, n)) of Hamming weight 2w. Clearly, in
the particular case where w = k, one has N (2k)

k = (2k)! (the number of permutations of
supp(g)). On the other hand, when w < k, a 2k-tuple (x1, . . . , x2k) such that

∑2k
i=1 1xi = g

must be constituted of k − w pairs of identical elements and the 2w other elements are
the elements of supp(g). Moreover, the elements of such 2k-tuples constitute a multiset of
length 2k formed with all the elements of supp(g) and some other pairwise distinct elements
of Fn2 \ supp(g) (if necessary). The multiplicity of an element of supp(g) is necessarily odd
while the multiplicity of the other elements of the multiset is necessarily even. Moreover, in
order to be able to constitute k − w pairs of identical elements, these multiplicities must
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constitute a composition of 2k. Hence,
- denoting by r the number of those elements of supp(g) whose multiplicities are greater
than 1 and denoting by 2q1 + 1, . . . , 2qr + 1 these multiplicities,
- denoting by s the number of those elements chosen outside supp(g) and denoting by
2p1, . . . , 2ps their multiplicities, N (2w)

k equals:∑
1≤r+s≤k−w

0≤r≤2w
0≤s≤2n−2w

(
2w
r

)(
2n − 2w

s

)
×

∑
w+p1+···+ps+q1+···+qr=k

(2k)!∏r
i=1(2qi + 1)!

∏s
i=1(2pi)!

.

where the sum
∑
w+p1+···+ps+q1+···+qr=k denotes the sum over the set

⋃
0≤u≤k−w Eu and

where Eu is the set formed with all the (r + s)th-tuples {(p1, . . . , ps, q1, . . . , qr) ∈ (N?)s+r
such that (p1, . . . , ps) is a composition of u and (q1, . . . , qr) is a composition of k − w − u.
Let us now compute the generating series of the integer sequence (N (2w)

k )k∈N :
+∞∑
k=w

2wk z2k

(2k)!

= z2w

1 +
∑

0≤r≤2w
0≤s≤2n−2w

r+s≥1

(
2w
r

)(
2n − 2w

s

)

×
+∞∑

k=r+s+w

∑
pi,qi≥1∑s

i=1
pi+
∑r

i=1
qi=k−w

s∏
i=1

z2pi

(2pi)!

×
r∏
i=1

z2qi

(2qi + 1)!

]

= z2w +
∑

0≤r≤2w
0≤s≤2n−2w

r+s≥1

z2w−r

(+∞∑
p=1

z2p

(2p)!

)s

×

(+∞∑
q=1

z2q+1

(2q + 1)!

)r

= z2w +
∑

0≤r≤2w
0≤s≤2n−2w

r+s≥1

(
2w
r

)(
2n − 2w

s

)
z2w−r

× (cosh(z)− 1)s (sinh(z)− z)r

=
2w∑
r=0

2n−2w∑
s=0

(
2w
r

)(
2n − 2w

s

)
z2w−r

× (cosh(z)− 1)s (sinh(z)− z)r

= (cosh(z))2n−2w (sinh(z))2w
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Corollary 9.2.8. ([43]) We have :
D4 = 588 · 22n − 272 · 2n − 420 · 23n + 105 · 24n

D5 = 7936 · 2n − 18960 · 22n + 16380 · 23n − 6300 · 24n + 945 · 25n

D6 = 911328 · 22n − 353792 · 2n − 893640 · 23n + 429660 · 24n − 103950 · 25n + 10395 · 26n

D7 = 22368256 · 2n − 61152000 · 22n + 65825760 · 23n − 36636600 · 24n + 11351340 · 25n − 1891890 ·
26n + 135135 · 27n

D8 = 5464904448 · 22n − 1903757312 · 2n − 6327135360 · 23n + 3918554640 · 24n − 1427025600 ·
25n + 310269960 · 26n − 37837800 · 27n + 2027025 · 28n

N
(8)
4 = 8!, N (8)

5 = 8! (45 · 2n − 240)

N
(8)
6 = 8!

(
1485 · 22n − 16830 · 2n + 49632

)
, N (12)

6 = 12!

N
(8)
7 = 8!

(
5045040 2n − 810810 · 22n + 45045 · 23n − 10799360

)
N

(12)
7 = 12! (91 · 2n − 728), N (14)

7 = 14!

N
(8)
8 = 8!

(
336215880 · 22n − 1510835040 · 2n − 34234200 · 23n + 1351350 · 24n + 2611834368

)
N

(12)
8 = 12!

(
5460 · 22n − 91000 · 2n + 390208

)
N

(14)
8 = 14! (120 · 2n − 1120), N (16)

8 = 16!

9.2.3 Lower bounds on M
(2w)
f

Throughout this subsection, A` denotes the set of all `-dimensional flats in Fn2 while E` denotes
the set of all `-dimensional spaces in Fn2 .

We recall that we are searching to establish a lower bound on minf∈Bn
√
Sk+1(f)
Sk(f) . Remark 9.2.6

leads us to consider Sk+1(f)
Sk(f) for k ≥ 3 and to search to establish a lower bound on minf∈Bn

Sk+1(f)
Sk(f) .

We need to determine a lower bound on minf∈BnM
(2w)
f . We for that use the characterizations,

due to Kasami and al [145, 243], of the elements of Reed-Muller codes. Indeed, the codewords of
RM(r, n), 0 ≤ r ≤ n− 1, have been characterized and enumerated by Kasami and al up (strictly)
to 2, 5 · dmin (where dmin = 2n−r denotes the minimal distance of RM(r, n)). This corresponds
in our case to the codewords of RM(n− 3, n) whose Hamming weight ranges from 8 to 18. Thus,
we are restricted to consider the cases where k ≤ 9 in our calculations. Unfortunately, we have to
restrict more the values of k because we were not able to deduce any significant lower bounds
from the results of Kasami and al when k = 9. We therefore restrict k to be less than or equal
to 8 from now on. We now briefly recall the characterizations and the numbers of codewords
of RM(n− 3, n) whose Hamming weight ranges from 8 to 16. Below,

[
n
p

]
denotes the gaussian

coefficient
∏p−1

i=0 (2n−2i)∏p−1
i=0

(2p−2i)
.

1. The elements of Hamming weight 8 are the indicators of 3-dimensional flats (i.e. affine
subspaces) of Fn2 . The number of these codewords equals hence 2n−3[n

3
]
.
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2. [145, Theorem 1, (2)] The codewords of weight 12 are the indicators of those sets of the
form (A1 ∪A2) \ (A1 ∩A2) where A1 and A2 are two 3-dimensional flats whose intersection

has dimension 1. The number of these codewords is 2n+2 ·
∏n−2

i=0
(2n−i−1)∏n−6

i=0
(2n−5−i−1)·

∏1
i=0

(4i+1−1)
, see

|Q(2)
n,n−5,2| in [145, p. 759]. From this, we can deduce that the codewords of Hamming weight

12 have a unique representation as the indicators of sets (A1 ∪A2) \ (A1 ∩A2). This can be
proved in a simple original way, that we give for self-completeness. Suppose that A1, A2, B1
and B2 are four 3-dimensional flats such that (A1 ∪A2) \ (A1 ∩A2) = (B1 ∪B2) \ (B1 ∩B2)
and dim(A1 ∩ A2) = dim(B1 ∩ B2) = 1. Write these flats as A1 = u + U + E1, A2 =
u + U + E2, B1 = v + V + F1 and B2 = v + V + F2, with (u, v) ∈ Fn2 × Fn2 , (U, V ) ∈ E2

1 ,
and (E1, E2, F1, F2) ∈ E4

2 such that E1 ∩ E2 = {0} and F1 ∩ F2 = {0}. The Fourier
transform at any point a of the indicator of (A1 ∪A2) \ (A1 ∩A2), that is, of the function
1A1 + 1A2 − 2 · 1A1∩A2 , equals (−1)u·a[8 · 1(U+E1)⊥(a) + 8 · 1(U+E2)⊥(a)− 4 · 1U⊥(a)]. This
Fourier transform does not vanish on U⊥ and is null otherwise. Similarly, we get that this
Fourier transform does not vanish on V ⊥ and is null otherwise. Whence U⊥ = V ⊥ and
thus U = V . We also deduce that, for every a ∈ U⊥, we have u · a = v · a, that is, u+ v ∈ U .
We finally have to check that if E1 ∪ E2 = F1 ∪ F2 then we have E1 = F1 and E2 = F2 or
E1 = F2 and E2 = F1. We deduce from E1 ∪E2 = F1 ∪F2 that E1 = (F1 ∩E1)∪ (F2 ∩E1).
Now the union (F1 ∩ E1) ∪ (F2 ∩ E1) can be a vector space if and only if two cases hold :
firstly, F1 ∩ E1 = {0} or F2 ∩ E1 = {0}; suppose F1 ∩ E1 = {0}; the equality E1 = F2 ∩ E1
implies that F2 = E1 from which we deduce that F1 = E2; likewise, we deduce from the
condition F2 ∩ E1 = {0} that F1 = E1 and F2 = E2; secondly, F1 ∩ E1 ⊂ F2 ∩ E1 or
F2 ∩ E1 ⊂ F1 ∩ E1 contradicting F1 ∩ F2 = {0}.

3. [145, Theorem 1, (1)] The codewords of Hamming weight 14 are the indicators of those sets of
the form (A1∪A2)\(A1∩A2) where A1 and A2 are two 3-dimensional flats whose intersection

is a singleton. The number of these codewords equals 2n+8 ·
∏n−1

i=0
(2n−i−1)∏n−7

i=0
(2n−6−i−1)·

∏2
i=0

(23−i−1)2
,

see |Q(1)
n,n−6,3| in [145, p. 759]. These codewords have a unique representation too. Indeed,

suppose that (A1 ∪ A2) \ (A1 ∩ A2) = (B1 ∪ B2) \ (B1 ∩ B2) with A1 ∩ A2 = {u} and
B1 ∩ B2 = {v}. Writing A1 = u + E1, A2 = u + E2, B1 = v + F1 and B2 = v + F2, we
must have that u+ (E1 ∪ E2) = v + (F1 ∪ F2). The same arguments as above show that
u = v and that E1 ∪E2 = F1 ∪ F2 is possible only if E1 = F1 and E2 = F2 or E1 = F2 and
E2 = F1.

4. [243, Table I, (11)] The codewords of Hamming weight 16 are the indicators of those sets of
the form A1 ∪ A2 where A1 and A2 are two disjoint 3-dimensional flats. The number of
these codewords equals

[
n
4
]

2n−4 + 18228
[
n
5
]

2n−4 + 888615
[
n
6
]

2n+2 + 17964531
[
n
7
]

2n+7 +(∑n−3
k=5

βk+3 [ n
k +3] 2n−k+k2−4

β2
k−1

)
where βm =

∏m−1
i=0 (2m−i − 1), see Nm,r,2m−r+1 in [243, p.392

(a)]

Remark 9.2.9. Although the number of codewords of Hamming weight 2w is known for w ≤ 8,
the lower bound on the character sums M (2w)

f this permits to derive gives no real information
because this number is too large.

Using the characterizations above, we prove
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Proposition 9.2.10. ([43]) For every Boolean function f in n variables, we have

1. M
(8)
f ≥ −2n(2n − 1)(2n − 2)

336

2. M (12)
f ≥ −2n(2n − 1)(2n − 2)(2n − 4)(3 · 2n − 20)

384

3. M (14)
f ≥ −2n (2n − 1) (2n − 2) (2n − 4)

8064
×
(
7 · 22n − 126 · 2n + 584

)
4. M (16)

f ≥ −2n (2n − 1) (2n − 2) (2n − 4)
4515840

×
(
24836 · 2n − 2275 · 22n + 80 · 23n − 92368

)
Proof. 1. The codewords of RM(n− 3, n) of Hamming weight 8 correspond to 3-dimensional

flats of Fn2 that is
M

(8)
f =

∑
A∈A3

(−1)
∑

x∈A
f(x)

Every 3-dimensional flat is, in 2(23−1) ways, the union of two distinct parallel 2-dimensional
flats. Indeed, we know that there are 2(23 − 1) affine hyperplanes in any 3-dimensional flat.
Hence ∑

A∈A3

(−1)
∑

x∈A
f(x) = 1

2(23 − 1)

×

 ∑
(A,A′)∈A2×A2

A‖A′

(−1)
∑

x∈A
f(x)+

∑
x∈A′

f(x) −#A2


where A ‖ A′ means that A and A′ have the same direction and are not necessarily distinct.
Every A ∈ A2 can be written in 22 ways in the form a+ E, where a ∈ Fn2 and E ∈ E2. We
deduce that the sum

∑
A∈A3

(−1)
∑

x∈A
f(x) times 2(23 − 1) equals

1
24

∑
E∈E2

∑
a,a′∈Fn2

(−1)
∑

x∈a+E
f(x)+

∑
x∈a′+E

f(x) −#A2

= 1
24

∑
E∈E2

∑
a∈Fn2

(−1)
∑

x∈a+E
f(x)

2

−#A2

from which we deduce that
∑
A∈A3

(−1)
∑

x∈A
f(x) ≥ − #A2

2(23−1) which proves the result since
the size of A2 is equal to 2n−2∏1

i=0
2n−2i
22−2i .

2. According to the uniqueness of the representation of those codewords of weight 12 in the
Reed-Muller codeRM(n−3, n) as the indicators of those sets of the form (A1∪A2)\(A1∩A2),
the character sum M

(12)
f can be written as

M
(12)
f = 1

2
∑

A1,A2∈A3
dim(A1∩A2)=1

(−1)
∑

x∈A1
f(x)+

∑
x∈A2

f(x)
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Therefore, denoting by E ′2 the set of those 2-dimensional vector subspaces of an (n − 1)-
dimensional space over F2, M

(12)
f can be rewritten as

1
2
∑
A∈A1

∑
(E,E′)∈E′2×E

′
2

E∩E′={0}

(−1)
∑

x∈A+E
f(x)+

∑
x∈A+E′

f(x)

We make here an abuse of notation: E and E′ should be two vector subspaces of a given
(n − 1)-dimensional space in a direct sum with the direction of A. We then deduce that
M

(12)
f is greater than or equal to

≥ 1
2
∑
A∈A1

( ∑
(E,E′)∈E′2×E′2

(−1)
∑

x∈A+E
f(x)+

∑
x∈A+E′

f(x)

−#E ′2 − (2n−1 − 1)(2n−2 − 1)(2n−2 − 2)
)
.

The term “−#E ′2" above corresponds to the number of cases where E = E′ while the term
“−(2n−1 − 1)(2n−2 − 1)(2n−2 − 2)” is derived from the inequality

(−1)
∑

x∈A+E
f(x)+

∑
x∈A+E′

f(x) ≤ 1

when E ∩ E′ is a 1-dimensional space. Noting that∑
A∈A1

∑
(E,E′)∈E′2×E′2

(−1)
∑

x∈A+E
f(x)+

∑
x∈A+E′

f(x)

=
∑
A∈A1

∑
E∈E′2

(−1)
∑

x∈A+E
f(x)

2

and recalling that #E ′2 = (2n−1−1)(2n−1−2)
(22−1)(22−2) leads to the result.

3. According to the uniqueness of the representation of those codewords of Hamming weight
14, we have M (14)

f = 1
2
∑
u∈Fn2

∑
(E1,E2)∈E3×E3
E1∩E2={0}

(−1)
∑

x∈u+E1
f(x)+

∑
x∈u+E2

f(x) and therefore

M
(14)
f ≥ 1

2
∑
u∈Fn2

(( ∑
E∈E3

(−1)
∑

x∈u+E
f(x)

)2

− (2n − 1)(2n − 2)(2n − 4)
(23 − 1)(23 − 2)(23 − 4)

− (2n − 1)(2n − 2)
(22 − 1)(22 − 2) (2n−2 − 1)(2n−2 − 2)

− (2n − 1) · (2n−1 − 1)(2n−1 − 2)
(22 − 1)(22 − 2)

· (2n−1 − 4)(2n−1 − 8)
(22 − 1)(22 − 2)

)
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The term “− (2n−1)(2n−2)(2n−4)
(23−1)(23−2)(23−4) ” corresponds to the case where the vector subspaces E1

and E2 are equal. The others term “− (2n−1)(2n−2)
(22−1)(22−2) (2n−2 − 1)(2n−2 − 2)” and “−(2n − 1) ·

(2n−1−1)(2n−1−2)
(22−1)(22−2) · (2n−1−4)(2n−1−8)

(22−1)(22−2) ” are derived from the inequality

(−1)
∑

x∈u+E1
f(x)+

∑
x∈u+E2

f(x) ≤ 1

when E1 ∩ E2 is, respectively, a 2-dimensional space and a 1-dimensional space.

4. The codewords of weight 16 are the sums of two codewords of minimal weight and having
non-intersecting supports, i.e. are the indicators of those sets of the form U = A1 ∪ A2
where A1 and A2 are two non-intersecting 3-dimensional flats. Some of them have more
than one representation as sum of two codewords of minimal weight. According to [268],
those codewords of Hamming weight 16 in the Reed-Muller code RM(n− 3, n), which have
more than one representation enter in two cases only:

a. U is a 4-dimensional flat. The number of such codewords is obviously equal to
(2n−1)(2n−2)(2n−4)(2n−8)
(24−1)(24−2)(24−4)(24−8) . And U is, in 2(24 − 1) ways, the union of an ordered pair of
non-intersecting 3-dimensional parallel flats.

b. U is the union of four distinct cosets of a 2-dimensional vector subspace, but is
not a 4-dimensional flat. In this case, it is, in 3 ways, the union of two non-
intersecting 3-dimensional flats. The number of such codewords equals (2n−1)(2n−2)

(22−1)(22−2) ·((2n−2

4
)
− 1

4
(2n−2

3
))

= (2n−1)(2n−2)
(22−1)(22−2) ·

2n−2−4
4 ·

(2n−2

3
)
.

Therefore

∑
(A1,A2)∈A2

3
A1∩A2=∅

(−1)
∑

x∈A1
f(x)+

∑
x∈A2

f(x)

= 2 · (24 − 1) ·
∑

g∈RM(n−3,n)
wt(g)=16

g is of type a

(−1)〈f,g〉

+2 · 3 ·
∑

g∈RM(n−3,n)
wt(g)=16

g is of type b

(−1)〈f,g〉

+2 ·
∑

g∈RM(n−3,n)
wt(g)=16

g is neither of type a nor of type b

(−1)〈f,g〉

= 2 ·M (16)
f

+2 · ((24 − 1)− 1) ·
∑

g∈RM(n−3,n)
wt(g)=16

g is of type a

(−1)〈f,g〉

+2 · (3− 1) ·
∑

g∈RM(n−3,n)
wt(g)=16

g is of type b

(−1)〈f,g〉
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Thus

M
(16)
f ≥ 1

2
∑

(A1,A2)∈A2
3

A1∩A2=∅

(−1)
∑

x∈A1
f(x)+

∑
x∈A2

f(x)

−(24 − 2) · 2n−4
3∏
j=0

2n − 2j

24 − 2j

−(3− 1) · (2n−4 − 1) ·
(

2n−2

3

)
· (2

n − 1)(2n − 2)
(22 − 1)(22 − 2)

≥ 1
2

( ∑
A∈A3

(−1)
∑

x∈A
f(x)

)2

−1
2

∑
(A1,A2)∈A2

3

A1∩A2 6=∅

(−1)
∑

x∈A1∪A2
f(x)

−14 · 2n−4
3∏
j=0

2n − 2j

24 − 2j

−2 · (2n−4 − 1) ·
(

2n−2

3

)
· (2

n − 1)(2n − 2)
(22 − 1)(22 − 2)

We need now to evaluate the sum
∑

{A1,A2}∈A3 |A1∩A2 6=∅

(−1)
∑

x∈A1∪A2
f(x). Two 3-dimensional

flats A1 and A2 which are not disjoint are necessarily of the form A1 = u+E1 and A2 = u+E2
where u ∈ Fn2 and where E1 and E2 are two 3-dimensional spaces of Fn2 . There are 2p ways
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of choosing u if dim(E1 ∩ E2) = p.

M
(16)
f ≥ −1

2

(
2n−2 × (2n − 1)(2n − 2)

(22 − 1)(22 − 2)

×(2n−2 − 1)(2n−2 − 2) + 2n−1 · (2n − 1)

× (2n−1 − 1)(2n−1 − 2)
(22 − 1)(22 − 2)

× (2n−1 − 4)(2n−1 − 8)
(22 − 1)(22 − 2)

+2n × (2n − 1)(2n − 2)(2n − 4)
(23 − 1)(23 − 2)(23 − 4)

× (2n − 8)(2n − 16)(2n − 32)
(23 − 1)(23 − 2)(23 − 4) + 2n−3

× (2n − 1)(2n − 2)(2n − 4)
(23 − 1)(23 − 2)(23 − 4)

)

−14 · 2n−4
3∏
j=0

2n − 2j

24 − 2j

−2 · (2n−4 − 1) ·
(

2n−2

3

)
· (2n − 1)(2n − 2)

(22 − 1)(22 − 2)

The term “ (2n−1)(2n−2)
(22−1)(22−2) · (2

n−2− 1)(2n−2− 2)” corresponds to the case where E1 ∩E2 is a 2-

dimensional space, the term “(2n−1) · (2
n−1−1)(2n−1−2)
(22−1)(22−2) · (2

n−1−4)(2n−1−8)
(22−1)(22−2) ” to the case where

E1 ∩E2 is a 1-dimensional space and the term “ (2n−1)(2n−2)(2n−4)
(23−1)(23−2)(23−4) ·

(2n−8)(2n−16)(2n−32)
(23−1)(23−2)(23−4) ” to

the case where the intersection E1 ∩ E2 is trivial while the term "2n−3 · (2n−1)(2n−2)(2n−4)
(23−1)(23−2)(23−4) ”

is the cardinality of A3.

9.2.4 Upper bounds on ρ(2, n)
We first state a technical result which shall help us in establishing our upper bounds on the
covering radius

Lemma 9.2.11. ([43]) Let A and B be two affine maps from Rn to R. Let F be the multivariate
fraction defined as F (x) = A(x)

B(x) . Let y ∈ Rn and set Dy = {x ∈ Rn | xi ≥ yi, 1 ≤ i ≤ n}.
Assume that B(x) > 0 for all x ∈ Dy and that, for all 1 ≤ i ≤ n, ∂F

∂xi
(y) ≥ 0. Then, ∀x ∈ Dy,

F (x) ≥ F (y).

Proof. Assume that the expressions of A and B are : A(x) = a0 +
∑n
i=1 aixi and B(x) =

b0 +
∑n
i=1 bixi. Straightforward calculations show that

F (x)− F (y) =
∑n
i=1 (aiB(y)− biA(y)) (xi − yi)

B(x)B(y)

Now ∂F
∂xi

(y) = aiB(y)−biA(y)
B2(y) . The hypothesis on ∂F

∂xi
(y) implies that aiB(y) − biA(y) ≥ 0 for

1 ≤ i ≤ n. Moreover, for all x ∈ Dy, B(x) > 0. Hence F (x)− F (y) ≥ 0 whenever x ∈ Dy.
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We shall use Lemma 9.2.11 to establish our upper bounds on ρ(2, n). Our approach is
to consider the quotient Sk+1(f)

Sk(f) as a multivariate fraction in M
(8)
f , M (12)

f , M (14)
f and M

(16)
f .

Proposition 9.2.10 provides lower bounds on the character sums M (2w)
f for 2w = 8, 12, 14

and 16 which we denote by M (2w)
min from now on. Set D = {(X8, X12, X14, X16) ∈ R4 | X2w ≥

M
(2w)
min , 2w = 8, 12, 14, 16} and

F3(X8, X12, X14, X16) = D4 +N
(8)
4 X8

D3

F4(X8, X12, X14, X16) = D5 +N
(8)
5 X8

D4 +N
(8)
4 X8

F5(X8, X12, X14, X16) = D6 +N
(8)
6 X8 +N

(12)
6 X12

D5 +N
(8)
5 X8

F6(X8, X12, X14, X16)

= D7 +N
(8)
7 X8 +N

(12)
7 X12 +N

(14)
7 X14

D6 +N
(8)
6 X8 +N

(12)
6 X12

F7(X8, X12, X14, X16)

= D8 +N
(8)
8 X8 +N

(12)
8 X12 +N

(14)
8 X14 +N

(16)
8 X16

D7 +N
(8)
7 X8 +N

(12)
7 X12 +N

(14)
7 X14

so that Sk+1(f)
Sk(f) = Fk(M (8)

f ,M
(12)
f ,M

(14)
f ,M

(16)
f ), k ∈ {3, 4, 5, 6, 7}. Moreover, we denote by Bk+1

(resp. Bk) the numerator (resp. the denominator) of Fk : Fk = Bk+1
Bk

. In order to apply Lemma
9.2.11, we first have to check that Bk, 3 ≤ k ≤ 7, is non-negative on D which is equivalent to
check that Bk(M (8)

min,M
(12)
min ,M

(14)
min ,M

(16)
min) is non-negative; using Lemma 9.2.7 and Proposition

9.2.10, we compute the expressions of Bk(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) :

B3(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) = 16 · 2n − 30 · 22n + 15 · 23n

B4(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) = 948 · 22n − 512 · 2n − 540 · 23n + 105 · 24n

B5(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) = 65536 ·2n−116160 ·22n+61380 ·23n−11700 ·24n+ 945 ·25n

B6(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) = 402027648·22n−211849472·2n−240291480·23n+54127260·

24n − 4024350 · 25n + 10395 · 26n

B7(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) = 198419424256 · 2n − 398672851200 · 22n + 267026348160 ·

23n − 75744669000 · 24n + 9395125740 · 25n − 423513090 · 26n + 135135 · 27n

B8(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) = 291614802947328·22n−138500717330432·2n−213269835467520·

23n + 70986429811440 · 24n − 11750204466000 · 25n + 949606617960 · 26n − 30084139800 · 27n +
2027025 · 28n

All of these expressions are polynomials in 2n and can be negative for small values of n.
Now, given a polynomial p(x) =

∑d
i=0 aix

i whose leading coefficient ad is positive, one can show
that p(x) is positive whenever x is an integer greater than

∑d−1
i=0

|ai|
ad

. In the particular case
where x = 2n, that corresponds to say that p(2n) is positive as soon as n ≥

⌈
log2

(∑d−1
i=0

|ai|
ad

)⌉
.

For the other values of n, we can check by computer calculations whether p(2n) is positive or
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k 3 4 5 6 7 8
Nk 1 1 1 9 12 14

Table 9.3 – Values of Nk for k ≤ 8

k 3 4 5 6 7
N ′k 1 3 1 4 11

Table 9.4 – Values of Nk for k ≤ 7

not. For each value of k in {3, 4, 5, 6, 7, 8}, we compute with this method the smallest positive
integer Nk such that Bk(M (8)

min,M
(12)
min ,M

(14)
min ,M

(16)
min) is non-negative for all n ≥ Nk (Table 9.3).

Next, we have to check that all the derivatives of each multivariate fraction Fk evaluated at
(M (8)

min,M
(12)
min ,M

(14)
min ,M

(16)
min) are non-negative. We only have to check that the numerator Rk,2w

of ∂Fk
∂X2w

(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min) is non-negative. We present below all these derivatives :

R3,8 = 40320, R3,12 = R3,14 = R3,16 = 0

R4,8 = 2312110080 · 2n − 5419008000 · 22n + 4470681600 · 23n − 1524096000 · 24n + 152409600 ·
25n, R4,12 = R4,14 = R4,16 = 0

R5,8 = 3997794034483200·22n−1918876802088960·2n−2849111735500800·23n+887743245312000·
24n−123645641011200·25n+6060567744000·26n+37721376000·27n, R5,12 = 479001600, R5,14 =
R5,16 = 0

R6,8 = 714305067842528870400 · 22n − 304823802557670359040 · 2n − 623442323326323916800 ·
23n + 270672649382777241600 · 24n − 64840249978798694400 · 25n + 8729057509549977600 · 26n −
618210641983334400 · 27n + 17800717334400000 · 28n + 10788313536000 · 29n

R6,12 = 41538262649890406400 · 22n− 21168521847373824000 · 2n− 26589203861623603200 · 23n +
6932829197758464000·24n−737575419829248000·25n+23820596287488000·26n+388379287296000·
27n, R6,14 = 87178291200, R6,16 = 0

R7,8 = 101080160463045576779366400·22n−39412011145610093490339840·2n−101615051652862810167705600·
23n+54155713559386060932710400·24n−17273494380961564294348800·25n+3477651223865798717337600·
26n−447050169370774800230400·27n+35660939985536785920000·28n−1610284370368722048000·
29n + 31443268011835680000 · 210n + 3681511994160000 · 211n

R7,12 = 24562070787228570589593600·22n−11210398018269596142796800·2n−19274531256693766442188800·
23n+7210578102603024973824000·24n−1435631023114947090432000·25n+156538534010848045056000·
26n − 8825914643250152448000 · 27n + 198523956494223360000 · 28n + 265068863579520000 · 29n

R7,14 = 15579555817431944488550400·22n−7299354442387733191065600·2n−11650543155811069526016000·
23n+4000678147446896627712000·24n−685369279252080783360000·25n+56852723834191853568000·
26n − 1821048337444976640000 · 27n + 1236988030037760000 · 28n

R7,16 = 20922789888000

All these expressions are polynomials in 2n and can be negative for small values of n.
Therefore, for each value of k in {3, 4, 5, 6, 7}, we compute the smallest positive integer N ′k such
that min(Rk,8, Rk,12, Rk,14, Rk,16) is non-negative for all n ≥ N ′k (Table 9.4). The method used
is the same one as that used for Table 9.3. Given k ∈ {3, 4, 5, 6, 7}, the mapping Fk satisfies all
the conditions of Lemma 9.2.11 provided that n is greater than or equal to max(Nk, N ′k). Hence,
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we have, for every k ∈ {3, 4, 5, 6, 7},

min
f∈Bn

Sk+1(f)
Sk(f) ≥

Bk+1(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min)

Bk(M (8)
min,M

(12)
min ,M

(14)
min ,M

(16)
min)

(9.13)

We now present the upper bounds on ρ(2, n) which we deduce from (9.13) and the restrictions on
the values of k.

1. For n ∈ {3, 4, 5, 6, 7, 8} : One can only consider the values of k ≤ 4 in (9.13), since according
to the first tabular, we must have k+ 1 ≤ 5. This gives, for instance, ρ(2, 3) ≤ 1, ρ(2, 4) ≤ 3,
ρ(2, 5) ≤ 8, ρ(2, 6) ≤ 20, ρ(2, 7) ≤ 47 and ρ(2, 8) ≤ 104. None of these values improves
upon the known bounds on ρ(2, n) for n = 6, 7, 8 which are presented in table 9.1.

2. For n ∈ {9, 10, 11} : We can consider k = 5 in addition to k ≤ 4 for n ∈ {9, 10, 11}. This
gives ρ(2, 9) ≤ 222, ρ(2, 10) ≤ 464, ρ(2, 11) ≤ 956. The upper bound on ρ(2, 9) is still worse
than the one presented in table 9.1. Our bound begins to improve upon the known bounds
for n ≥ 10 (i.e. the results that we can deduce from the upper bound on ρ(1, n) and from
the recursive inequality (9.3)).

3. For n ∈ {12, 13} : considering k = 6, we get ρ(2, 12) ≤ 1946 and ρ(2, 13) ≤ 3949, which are
better than the known results.

4. For n ≥ 14 : All the values of k can be taken in (9.13). We have checked that the best
upper bound is given by taking k = 7 only if n ≥ 17 while for n = 14, 15, 16, the best
upper bounds are obtained with smaller values of k : ρ(2, 14) ≤ 7981, ρ(2, 15) ≤ 16071 and
ρ(2, 16) ≤ 32316. For n ≥ 17, we obtain the following upper bound :

ρ(2, n) ≤
⌊

2n−1 − 1
2

√
An
Bn

⌋
with

An = 291614802947328 · 22n − 138500717330432 · 2n

− 213269835467520 · 23n + 70986429811440 · 24n

− 11750204466000 · 25n + 949606617960 · 26n

− 30084139800 · 27n + 2027025 · 28n

Bn = 198419424256 · 2n − 398672851200 · 22n

+ 267026348160 · 23n − 75744669000 · 24n

+ 9395125740 · 25n − 423513090 · 26n

+ 135135 · 27n

In order to simplify our upper bound on ρ(2, n), we compute a series expansion of
√

An
Bn

as
n tends to infinity, √

An
Bn

=
√

15
(

2n2 − 122929
21 · 2−n2

− 155582504573
4410 · 2− 3n

2 +O
(

2− 5n
2

))
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By controlling the remainder more precisely, we can proved that, for every n ≥ 17, the
integer part of the two sides of the latter equation are equal (the proof is tedious and
omitted) ⌊

2n−1 − 1
2

√
An
Bn

⌋

=
⌊
2n−1 −

√
15
2 2n2

(
1− 122929

21 · 2n −
155582504573

4410 · 22n

)⌋

9.3 Final remarks
1. maxg∈RM(2,n)

(∑
x∈Fn2

(−1)f(x)+g(x)
)2

can then be lower bounded in several other ways,

with the same principle by considering quotients like Sk+p(f)
Sk(f) where p is a positive integer

greater than 1. But computer calculations revealed that the best lower bound is actually
obtained by letting p = 1.

2. As shown in [243, Table I, (5), (6) and p. 392, (c) Nm,r,2m−r+1+2m−r−2 ], the codewords
of Hamming weight 18 in RM(n − 3, n) are either of the form X1X2X3 + X4(X2X5 +
X3X6 +X7X8 +X9X10 +X11X12) or of the form X1X2X3 +X4(X3X5 +X6X7 +X8X9 +
X10X11 +X12X13 (where X1, X2, ... are mutually independent polynomials). The number
of these codewords is equal to 104811

[
n
6
]

2n+8 + 26043255
[
n
7
]

2n+12 + 77302995
[
n
8
]

2n+20 +[
n
5
]

2n−5N5,2,18 where N5,2,18 denotes the number of cubic Boolean functions of RM(2, 5)
of Hamming weight 18. Although the codewords of Hamming weight 18 as well as their
number are known, we were not able to get any significant lower bounds on the character
sums M (18)

f .

3. The same method as in Theorem 9.1.1 could be applied to the Reed-Muller code of order r.
Inequality (9.9) would conduce to an upper bound of the form 2n−1 −

√
2k + 1 · 2n2−1 +

O(nr−2). Therefore, such an upper bound would improve upon Theorem 9.1.2 only if√
2k + 1 ≥

√
15 (1 +

√
2)r−2 which requires 2k ≥ 15

(√
2 + 1

)2 r−4 − 1. The dual code of
RM(r, n) is RM(n − r − 1, n) whose minimum distance is dmin = 2r+1. Kasami and al
[145, 243] only pushed their characterizations to 2.5 times the minimum distance of the
Reed-Muller codes that is 5 · 2r. It can be easily checked that 15

(√
2 + 1

)2 r−4 − 1 > 5 · 2r
for every r ≥ 3 which means that the knowledge of the codewords of RM(n− r − 1, n) has
not yet been pushed far enough to be able to use the method described in this subsection
for r ≥ 3.

9.4 Conclusion
We were able to improve upon the best known upper bounds on the covering radii of Reed-Muller
codes thanks to the characterization, due to Kasami and Tokura, of those elements of the Reed-
Muller codes whose Hamming weights are smaller than twice and a half the minimum distance.
It seems that knowing more about the elements of small weights in the Reed-Muller codes would
not permit to improve further our bounds. New ideas seem necessary for that.
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Résumé des chapitres

Chapitres 1 et 2
Dans le chapitre 1, nous effectuons un certain nombre de rappels sur les fonctions booléennes,
en rappelant notamment leurs différentes représentations, et fixons les principales notations que
nous utilisons dans les chapitres suivants.

Dans le chapitre 2, nous introduisons la transformée de Walsh des fonctions booléennes en
rappelant certaines de ses propriétés. Nous y rappelons aussi un certain nombre de résultats sur
les sommes de Kloosterman et cubiques.

Nous fournissons plusieurs résultats techniques sur certaines sommes exponentielles et des
outils mathématiques dont nous avons besoin par la suite dans le Chapitre 5, Chapitre 7 et
Chapitre 8. Plus précisément, d’une part, nous sommes intéressés à exprimer certaines sommes
exponentielles particulières sur le cercle unité de F2n (c’est -à- dire le groupe cyclique des racines
2m + 1-èmes de l’unité de F2n) en termes de sommes de Kloosterman et des sommes cubiques.
De telles expressions seront utilisées pour exhiber des conditions du caractère hyper-courbe et
semi-courbe de certaines fonctions booléennes dans en formes polynomiales faisant intervenir des
sommes de Kloosterman et sommes cubiques. Enfin nous étudions l’action des polynômes de
Dickson sur des sous-ensembles de corps finis liée à la trace de l’inverse d’un élément et nous
fournissons une autre preuve d’un résultat qui n’est pas si bien connu. Ces résultats sont ensuite
appliqués à l’étude des familles de fonctions booléennes et aux caractérisations de leur caractère
hyper-courbe en termes de sommes exponentielles.

Publications

Certains des résultats présentés dans le chapitre 2 sont tirés des publications suivantes :

• S. Mesnager. A new family of hyper-bent Boolean functions in polynomial form. Proceedings
of Twelfth International Conference on Cryptography and Coding. Cirencester, United
Kingdom. M. G. Parker (Ed.) IMACC 2009, LNCS 5921, pages 402–417. Springer,
Heidelberg (2009) ([196]).

• S. Mesnager. Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and
Dickson polynomials. IEEE Transactions on Information Theory-IT, Vol 57, No 11, pages
744–7458, 2011([199]).

• J-P Flori and S. Mesnager. Dickson polynomials, hyperelliptic curves and hyper-bent
functions, Proceedings of the 7th International conference SEquences and Their Applications,
SETA 2012, LNCS 7280, Springer, pages 40–52, 2012 ([102]).
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Chapitre 3
Les fonctions booléennes sont utilisées dans de nombreux sytèmes de codage (leurs propriétés ont
été étudiées en liaison avec la théorie des codes car elles sont étroitement liées aux propriétés des
codes cycliques) et jouent un rôle central dans la sécurité des systèmes de chiffrements à flots ou
par blocs (qui sont les deux grandes catégories de schémas de chiffrement à clef secréte). Elles
interviennent comme éléments assurant la confusion de la fonction de chiffrement (concept défini
par Shannon [233]).

Les fonctions booléennes utilisées dans les systèmes de chiffrement doivent donc vérifier
plusieurs critères cryptographiques définis en réponse aux attaques inventées par les cryptanalystes.

Or, le cardinal de l’ensemble des fonctions booléennes étant doublement exponentiel en
le nombre de variables, les critères cryptographiques ne peuvent pas être étudiés par simple
investigation sur ordinateur, même pour des nombres de variables notoirement insuffisants. Des
preuves mathématiques concernant les limites dans lesquelles les compromis peuvent être trouvés,
et des constructions atteignant ces limites ou s’en approchant sont donc nécessaires. On ne peut
en effet pas trouver des fonctions satisfaisant les critères cryptographiques à de bons niveaux par
tirage aléatoire, les fonctions ayant les propriétés requises étant très peu denses dans l’ensemble
de toutes les fonctions booléennes.

Au début du chapitre 3, nous rappelons les principaux critères que devrait vérifier une fonction
booléenne pour un usage cryptographique. Le point important à noter est l’incompatibilité entre
certains de ces critères (s’ils sont pris à des niveaux trop élevés) ce qui amène à en relâcher
certains dans l’espoir de trouver des fonctions booléennes ayant de bonnes (à défaut d’optimales)
propriétés cryptographiques (pour une description plus détaillée, le lecteur pourra consulter le
Chapitre 8 de Claude Carlet [31]).

Synthèse des principaux résultats
1 – Profil de corrélation des fonctions booléennes. Dans un système de chiffrement à
flots, il est important de générer les bits de chiffrement de manière à assurer le principe de
confusion défini par Shannon. En effet, l’existence de corrélations entre la sortie de la fonction
booléenne et certaines de ses entrées peut être exploitée pour mettre en œuvre une attaque de
type “diviser pour régner” (voir e.g.[22, 251, 187, 236]). A cause de ce type d’attaque, il a été
introduit les fonctions dites sans corrélation jusqu’à un certain ordre. Plus précisément, une
fonction booléenne f est dite sans corrélation d’ordre t si sa distribution de valeurs ne change
pas quand on fixe au plus t entrées. Le système de chiffrement est d’autant plus résistant aux
attaques précédentes que la valeur de t est grande. Quand la fonction est sans corrélation d’ordre
t et équilibrée, on dit alors que la fonction est t-résiliente.

Mais Siegenthaler [236] a montré que le degré algébrique d’une fonction sans corrélation
d’ordre t est inférieur ou égal à n− t. De plus, il a été observé que la non-linéarité d’une fonction
booléenne sans corrélation d’ordre t ne peut dépasser 2n−1 − 2n2−1 − 2t (quand n est pair) [46].
Quand la fonction est de plus équilibrée, les bornes supérieures sur le degré et la nonlinéarité
des fonctions résilients d’ordre t sont plus basses. En effet, dans ce cas, le degré algébrique ne
peut dépasser n − t − 1 et la nonlinéarité est nécessairement inférieure ou égale à 2n−1 − 2t+1

si n2 − 1 < t < n− 1 et 2n−1 − 2n2−1 − 2t+1 si t ≤ n
2 − 1 (n pair). Par conséquent, la propriété

d’absence de corrélation à un ordre élevé n’est pas compatible avec la nécessité d’avoir un degré
algebrique elevé (ce qui est requis à cause de l’attaque de Berlekamp-Massey et des attaques
algébriques [72, 73, 226]) et une non-linéarité elevée (nécessaire à cause des attaques fondées
sur les approximations affines des fonctions booléennes parmi lesquelles l’attaque par corrélation
rapide). Il est donc impossible d’avoir une fonction booléenne sans corrélation avec un ordre elevé,
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un haut degré algébrique et une haute nonlinéarité. Il est hélas classique en cryptographie de se
retrouver face à une telle situation. Une attitude pourrait consister alors à se contenter d’une
fonction ayant un ordre t d’immunité aux corrélations qui ne soit pas trop bas et ayant le plus
haut degré possible et la meilleure non-linéarité possible. Une autre approche consiste à voir s’il
est possible d’affaiblir certaines des trois conditions tout en ayant au final une fonction convenable
pour un usage cryptographique. L’efficacité des attaques de Berlekamp-Massey et algébriques
et des attaques linéaires font que la propriété qu’il semble le plus raisonnable d’affaiblir est la
propriété d’absence de corrélation. Kurosawa et Matsumoto ([155]) avaient observé qu’il n’était
pas nécessairement requis d’être sans corrélation avec un ordre élevé. En effet, ils ont observé que,
pour les ordres élevés, la condition d’absence de corrélation entre entre la sortie de la fonction
booléenne et certaines de ses entrées pouvait être relachée et qu’avoir des corrélations faibles
semblait suffisant. Ils avaient alors proposé la notion de quasi-résilience fondée sur la distribution
des sous-fonctions. Nous avons alors proposé une notion alternative à la quasi-résilience fondée
elle sur la transformée de Walsh :

Définition 1. Soit n un entier supérieur ou égal à 2. Soit ϕ une application définie sur {0, . . . , n}
à valeurs dans N. Une fonction booléenne sur Fn2 est dite avec ϕ-immunité aux corrélations si,
pour tout, ω ∈ Fn2 ,

|χ̂f (ω)| ≤ ϕ(wt(ω))
où wt(ω) désigne le poids de Hamming du mot ω. Lorsque, de plus, la fonction booléenne est
équilibrée, elle est dite ϕ-résiliente.

La propriété définie ci-dessus est plus faible que l’absence de corrélation. Une fonction sans
corrélation d’ordre t est en effet une fonction avec ϕ-immunité aux corrélations avec ϕ nulle sur
{0, . . . , t}. Nous nous sommes demandés si la notion de ϕ-corrélation entrait dans le cadre des
travaux de Kurosawa et Matsumoto introduisant la quasi-résilience ([155]). Nous avons alors
observé qu’aucune de ces deux notions ne recouvrait complètement l’autre. En revanche, nous
avons montré plusieurs résultats reliant ces deux notions. En conclusion, chacune d’entre elles
offre une notion alternative à l’absence de corrélation.

Évidemment, pour que la notion de ϕ-immunité aux corrélations soit intéressante, il est
très important de restreindre le choix de ϕ. Nous avons alors analysé avec plus de finesse les
attaques par corrélation [22, 251]. Le principe d’une attaque par corrélation est de se ramener
à utiliser un algorithme de décodage d’un canal bruité. Il y a donc deux manières de rendre
complexe ce type d’attaque : obliger à disposer d’une trop grande quantité d’information pour
mettre en oeuvre l’attaque (complexité spatiale élevée) ou faire que l’algorithme de décodage
ait une trop grande complexité temporelle. En considérant ces deux aspects, il a été montré
qu’il fallait que ϕ(l) = O(

√
l) pour être dans le premier cas alors qu’il suffisait que ϕ(l) = O(2βl)

dans le second cas (profil de corrélation exponentiel). Nous avons ensuite considéré un autre
type de système de chiffrement : les systèmes de chiffrement itérés, comme les systèmes de
chiffrement auto-synchronisants. Nous avons montré qu’un tel système de chiffrement utilisant
une fonction booléenne avec profil de corrélation exponentiel aurait ainsi une bonne résistance à
l’attaque linéaire. Enfin, nous avons donné des constructions primaires et secondaires de fonctions
booléennes avec profil de corrélation exponentiel.

2 – Sur le nombre de fonctions booléennes résilientes: Avoir une information sur le
nombre de fonctions booléennes ayant une certaine propriété cryptographique particulière est très
intéressant. Il permet par exemple de savoir si de telles fonctions sont rares ou fréquentes dans
l’ensemble des fonctions booléennes. Mais généralement, compter les fonctions booléennes ayant
une certaine propriété s’avère être un problème très difficile. Pour preuve, bien peu de résultats
de ce type ont été trouvés jusqu’à nos jours.
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Une famille de fonctions jouant un rôle important en cryptographie dont nous avons parlé
dans le paragraphe précédent sont les fonctions dites résilientes. Beaucoup de travaux ont été
menés sur ces fonctions. En revanche, on ne connait pas grand chose sur le nombre de fonctions
booléennes m-résilientes à n variables, que nous noterons #Resmn . En effet, on connait seulement
le nombre de fonctions 1-résilientes pour n ≤ 7 (le nombre de fonctions de fonctions 1-résilients en
dimension 7 a été trouvé en 2007 [3]) et le nombre de fonctions m-résilientes lorsque m ≥ n−3[17].
En dehors de ces résultats, les principaux résultats obtenus sont des bornes supérieures (Carlet
et al. [37, 42]) et une estimation asymptotique (Canfield et al. [18]). En résumé, la valeur de
#Resmn est donc inconnue. Pour tenter d’estimer ce cardinal, nous avons adopté une approche
classique en combinatoire : écrire un cardinal au moyen d’une intégrale de Cauchy. Pour compter
le nombre d’éléments d’un ensemble, il est courant en combinatoire d’interpréter ce cardinal
comme un des coefficients d’une série génératrice. Dans cette optique, nous avons commencé par
écrire le nombre de fonctions m-résilientes comme le cardinal d’un autre ensemble en s’appuyant
sur la forme numérique normale des fonctions booléennes [38, 39].

Proposition 2. Soit Rm
n le sous-ensemble de RΘmn défini par

Rm
n =

{
(xJ)J∈Θmn ∈ RΘmn

∣∣∣∀I ∈ Pn, 0 ≤
∑
J∈Θmn
J⊂I

xJ ≤ 1
}
. (11.1)

Alors
#Resmn = #(ZΘmn ∩Rm

n ).

Le résultat précédent ramène donc le problème de compter le nombre de fonctions m-résilientes
à compter le nombre de points à coordonnées entières d’un polytope. L’étape suivante consiste
alors à introduire une série génératrice à plusieurs variables et à exprimer le nombre de fonctions
m-résilientes au moyen de l’intégrale de Cauchy d’une fraction rationnelle.

Proposition 3.
#Resmn = 1

(2iπ)2n

∮
G(z)dz

z
(11.2)

où G est définie par z = (zI)I∈Pn comme

G(z) =
∏
I∈Pn

(1 + zI)z−bI−1
I ·

∏
J∈Θmn

1
1−

∏
I∈Pn
J⊂I

zI
.

On peut en fait obtenir une autre représentation du même type pour #Resmn mais avec un
polynôme à plusieurs variables à coefficients entiers.

Proposition 4.
#Resmn = 1

(2iπ)#Γmn

∮
P (z)

∏
I∈Γmn

z
−(bI+1)
I

dz

z

où P est le polynôme à plusieurs indéterminées :

∀z ∈ C, P (z) =
∏
I∈Γmn

(1 + zI)
∏
J∈Θmn

1 +
∏
I∈Γmn
J⊂I

z
aI,J
I


avec

∀(I, J) ∈ Γmn ×Θm
n , aI,J =

(
#I −#J − 1

n−m−#J − 1

)
.
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Malheureusement, nous n’avons pas réussi jusqu’à présent à obtenir à partir de ces résultats
de résultats concrets. Le grand nombre de variables rend difficile leur calcul. Néanmoins, elles
offrent une nouvelle voie pour dénombrer les fonctions booléennes résilientes.

3 – Sur la non-linéarité d’ordre r des fonctions booléennes d’immunité algébraique
donnée. Parmi les attaques apparues dans la littérature ces dernieres années, les attaques dites
algébriques ont été l’objet de nombreux travaux. Pour quantifier la résistance à ces attaques
algébriques d’un système de chiffrement par flot utilisant une fonction booléenne, un nouveau
paramètre cryptographique à été introduit : l’immunité algébrique. L’immunité algébrique d’une
fonction booléenne f est le plus petit degré d’un annulateur p de f ou 1 + f , i.e. vérifiant fp = 0
ou (1 + f)p = 0. Un nouveau critère cryptographique a alors été défini : l’immunité algébrique
d’une fonction booléenne utilisée dans un système de chiffrement par flot doit être la plus elevée
possible (il a été montré que l’immunité algébrique d’une fonction booléenne à n variables était
au plus égale à dn2 e).

Récemment, Carlet [30] a introduit une nouvelle notion : de profil de non-linéarité d’une
fonction booléenne. Le profil de non-linéarité d’une fonction booléenne à n variables est la suite
ordonnée des non-linéarités d’ordre r (où r varie de 1 à n− 1) de la fonction booléenne, où la
non-linéarité d’ordre r d’une fonction booléenne est définie comme la distance minimale de la
fonction booléenne à l’ensemble des fonctions booléennes de degrés algébriques au plus r. Plusieurs
travaux [72, 113, 137, 152, 204] ont montré l’importance d’étudier non seulement la non-linéarité
d’ordre 1 mais aussi les non-linéarités d’ordre supérieures (i.e. la non-linéarité standard) en
proposant d’autres approximations que les approximations affines (indiquons néanmoins que,
pour être faisables, les attaques présentées dans ces travaux demandent une non-linéarité d’ordre
r faible; signalons aussi que ce paramètre est aussi un indicateur important pour les systèmes de
chiffrement par blocs).

Une question classique en cryptographie est d’étudier la compatibilité entre deux paramètres
cryptographiques. Nous nous sommes alors intéressés à la non-linéarité d’ordre r des fonctions
booléennes en relation avec leurs immunités algébriques. Nous nous demandions alors s’il était
possible qu’une fonction ait à la fois un bon profil de nonlinéarité (valeurs élevées) et une haute
immunité algébrique. Nous avons donc cherché à estimer la non-linéarité d’ordre r des fonctions
booléennes ayant une immunité algébrique donnée.

Peu de résultats avaient été trouvés sur cette question. Principalement, il avait été montré par
Lobanov en 2006 une borne inférieure sur la nonlinéarité d’ordre 1. Dans la même année, deux
autres bornes inférieures sur la non-linéarité d’ordre r impliquant l’immunité algébrique ont été
obtenues par Carlet et al. [34, 30] (mais aucune de ces deux bornes inférieures n’améliore l’autre
dans tous les cas). En 2008, nous avons obtenu une nouvelle borne inférieure de la non-linéarité
d’ordre r des fonctions Booléennes en fonction de leur immunité algébriques.

Théorème 5. Soit f une variable à n-variables d’immunité algébrique k et soit r un entier
positif strictement inférieur à k. Alors

nlr(f) ≥
k−r−1∑
i=0

(
n

i

)
+

k−r−1∑
i=k−2r

(
n− r
i

)

Cette nouvelle borne inférieure améliore de façon significative l’une des bornes inférieures
proposées par Carlet et al. [34]pour tous les ordres tandis qu’elle n’améliore l’autre borne proposée
par Carlet [30] que pour des ordres faibles (i.e. dans le cas le plus intéressant cryptographiquement).
Pour obtenir cette borne inférieure sur la non-linéarité d’ordre r, nous avons commencé par
minorer la distance entre une fonction booléenne f et une fonction booléenne g de degré algébrique
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au plus r à l’aide de la dimension de l’espace des annulateurs d’une fonction h de degré au plus j,
notée dj,h.

Lemme 6. Soit f une fonction à n variables vérifiant AI(f) = k. Soit r un entier positif
strictement inférieur à k. Alors, pour toute fonction g à n variables de degré algébrique au plus r,
we have

dist(f, g) ≥ dk−1,g + dk−1,1⊕g.

Puis, on utilise la minoration suivante sur ces dimensions dk,g à partir de laquelle nous avons
déduit le théorème précédent.

Proposition 7. Soit g une fonction booléenne à n variables de degré algébrique au plus r. Alors,
pour tout entier positif k, dk,g ≥

∑k−r
i=0

(
n−r
i

)
. Si g est le complément à un de l’indicatrice d’un

sous-espace affine de Fn2 de dimension (n− r) alors dk,g =
∑k−r
i=0

(
n−r
i

)
.

Un point important est qu’à r fixé, cette borne inférieure ainsi que les résultats obtenus par
Carlet et al. dépendent de manière croissante de AI(f).

4 – Sur une conjecture combinatoire sur des mots binaires Comme nous l’avons indiqué
dans le paragraphe précédent, l’apparition des attaques algébriques a rendu nécessaire pour un
usage cryptographique qu’une fonction booléenne ait une immunité algébrique la plus haute
possible. Plusieurs constructions de fonctions booléennes ayant une bonne immunité algébrique,
mais pas nécessairement optimale, ont été proposées dans la littérature. Mais, très peu de fonctions
ayant une haute immunité algébrique et vérifiant d’autres critères cryptographiques, comme être
équilibrée ou avoir une haute non-linéarité, ont été trouvées. En fait, la plupart des fonctions
booléennes proposées ayant une immunité algébrique optimale, i.e. telles qie AI(f) = dn/2e, ont
une nonlinéarité basse [49, 78, 164, 165, 51], souvent proche de la borne inférieure donnée par
Lobanov [172]:

nl(f) ≥ 2n−1 −
(
n

bn2 c

)
.

En 2010, Tu et Deng [249] ont montré qu’il pouvait y avoir des fonctions booléennes de la
classe des Partial Spread, introduite par Dillon [86], ayant une immunité algébrique optimale sous
réserve que la conjecture suivante soit vraie.

Conjecture 8 (conjecture de Tu et Deng). Pour tout k ≥ 2 et tout t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 |a+ b = t et wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

Tu et Deng ont vérifié par ordinateur que la propriété précédente était satisfaite pour k ≤ 29.
Ils ont aussi observé que, dans le cas où la conjecture est vérifiée, on pouvait obtenir en dimension
paire des fonctions booléennes ayant une haute immunité algébrique et une haute non-linéarité
(meilleure que celles des fonctions proposées par Carlet et Feng [50]).

Dans la poursuite des travaux de Tu et Deng, Tang et al. [246] ont utilisé une méthode récursive
de construction de fonctions équilibrées avec haute non-linéarité, proposée par Dobbertin [94],
pour construire à partir des fonctions de Tu et Deng [249, 248] des fonctions booléennes avec une
meilleure non-linéarité.

Les fonctions obtenues par Tu et Deng semblaient prometteuses. Malheureusement, Carlet [47]
observa qu’elles offraient une faible résistance aux attaques algébriques rapides. Carlet tenta
sans succès de proposer une modification de la construction de Tu et Deng. Mais Wang et
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Johansson [259] montrèrent qu’il serait difficile par des transformations simples de construire à
partir des fonctions de Tu et Deng des fonctions résistantes aux attaques algébriques rapides.

En 2011, dans le même esprit que le travail de Tu et Deng [249], Tang, Carlet et Tang [245]
proposèrent une famille infinie de fonctions booléennes ayant une bonne immunité algébrique avec
une bonne résistance aux attaques algébriques rapides. Leur approche a principalement consisté
à changer une division dans la construction de Tu et Deng en une multiplication. Néanmoins,
comme Tu et Deng, ils avaient besoin pour montrer l’optimalité de l’immunité algebrique de leurs
fonctions que soit vérifiée une famille d’inégalités :

Conjecture 9 (conjecture de Tang–Carlet–Tang). Pour tout k ≥ 2 et tout t ∈
(
Z/(2k − 1)Z

)∗,
#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | a− b = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

Ils vérifièrent expérimentalement que l’inégalité précédente était vérifiée pour k ≤ 29, ainsi
que le résultat suivant, généralisant la conjecture précédente, pour k ≤ 15.

Conjecture 10 (conjecture de Tang–Carlet–Tang). Soit k ≥ 2 un entier, t ∈
(
Z/(2k − 1)Z

)∗,
u ∈ Z/(2k − 1)Z vérifiant gcd(u, 2k − 1) = 1 et ε ∈ {−1, 1}. Alors

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ εb = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

Cette dernière conjecture unifie la conjecture 9 et la conjecture de Tu et Deng (déduite en
prenant u = 1 et ε = +1). Les résultats de Tang, Carlet et Tang [245] furent repris et étendus
par Jin et al. [139]. Dans leur article, leur principale idée est de remplacer y par y2k−1−u dans
la construction de Tang, Carlet et Tang, ce qui permet d’unifier la famille de Tu et Deng [249],
obtenue en posant u = 1, et la famille de Tang, Carlet et Tang [245], obtenue avec u = 2k − 2.
Comme les résultats de leurs prédécesseurs, ils ont du supposer que soit vérifiée une propriété:

Conjecture 11 (conjecture de Jin et al. ). Soit k ≥ 2 un entier, t, u, v ∈
(
Z/(2k − 1)Z

)∗ vérifiant
gcd(u, 2k − 1) = gcd(v, 2k − 1) = 1. Alors

#
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t; wH(a) + wH(b) ≤ k − 1
}
≤ 2k−1 .

En résumé, plusieurs conjectures ont été formulées qui sont vérifiées exclusivement expérimen-
talement par leurs auteurs. Leur principal intérêt réside dans le fait que de leur validité dépend
de l’existence d’une fonction ayant une haute immunité algébrique avec une bonne non-linéarité.

Notons St,v,u,k les ensembles qui interviennent dans les conjectures prȩ́edentes:

St,v,u,k =
{

(a, b) ∈
(
Z/(2k − 1)Z

)2 | ua+ vb = t; wH(a) + wH(b) ≤ k − 1
}

,

où k ≥ 2, t ∈
(
Z/(2k − 1)Z

)∗ et u, v ∈ (Z/(2k − 1)Z
)×, i.e. u et v admettent un inverse modulo

2k − 1. La conjecture de Tu et Deng postule que #St,+1,1,k ≤ 2k−1 tandis que la conjecture de
Tang, Carlet et Tang postule que #St,−1,1,k ≤ 2k−1 ey #St,ε,u,k ≤ 2k−1. Enfin, la conjecture de
Jin et al. dit que #St,v,u,k ≤ 2k−1.

En 2010, nous avons entrepris l’étude de la conjecture de Tu et Deng 1. Plus précisément, nous
nous sommes intéressés à dénombrer les ensembles St,+1,1,k (i.e. les ensembles de la conjecture de
Tu et Deng). Pour cela nous avons introduit la fonction suivante2 :

1En fait en 2010, seule la conjecture de Tu et Deng etait formulée. J-P. Flori [105] puis J-P. Flori et H. Randriam
[106] ont poursuivi notre travail notamment dans plusieures directions et ont obtenu plusieurs résultats intéressants
sur cette question.

2Cette fonction avait servi aussi dans les travaux de J-P. Flori et H. Randriam pour mieux comprendre les
autres conjectures.
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Définition 12. Pour a, t ∈
(
Z/(2k − 1)Z

)∗,
r(a, t) = wH(a) + wH(t)− wH(a+ t) ,

i.e. r(a, t) est le nombre de retenues générées par l’addition binaire de a et t. Et on pose

r(0, t) = k ,

i.e. r(0, t) = r(1, t). La fonction r ainsi définie vérifie r(−t, t) = k.

En utilisant la fonction r, nous avons alors reformulé la conjecture précédente en termes de
"retenues" survenant dans une addition modulo 2k − 1. Ceci nous a permis d’une part de trouver
des expressions explicites pour certains cardinaux #St,+1,1,k et d’autre part de montrer que la
conjecture de Tu et Deng est vraie asymptotiquement. Nous avons également montré que la
borne de la conjecture est atteinte pour certains entiers dont la representation binaire contient
beaucoup de "1" et des "0" isolés. Nous conjecturons également que de tel entiers sont les seuls
qui atteignent la limite. En outre, nous fournissons des informations qui n’ont malheureusement
pas servis à fournir une preuve complète de la conjecture de Tu et Deng mais ont permis à Cohen
et Flori de prouver que trés récemment que le cas particulier de la conjecture requis par la famille
de Tang, Carlet et Tang [245] est vrai. Nos résultats ont contribué à une meilleure compréhension
de ces conjectures qui sont de nature combinatoire. Malheureusement jusqu’a ce jour, la preuve
complète de la conjecture Tu et Deng est toujours un problème ouvert malgré plusieurs tentatives
et démonstrations fausses de certains chercheurs et une étude trés poussée réalisée par Flori et
Randriambololona. De plus aucune conjecture presenté ci-dessus n’a été résolu sauf celle de Tang,
Carlet et Tang dont la preuve de sa vilidité a été donnée trés récemment par G. Cohen et J.P
Flori [67].
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• J-P. Flori, H. Randriambololona, G. Cohen et S. Mesnager. On a conjecture about binary
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Applications, SETA 2010, LNCS 6338, pages 346-358. Springer, Heidelberg, 2010 ([104]).

Chapitre 4
Les fonctions courbes forme une famille importante en théorie de l’information (cryptographie,
codes correscteurs, sequences etc). Rothaus [227] les introduisit dans les années soixante et
Dillon fut un des premiers à les étudier dans sa thèse [82]. Les fonctions courbes n’existent qu’en
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dimension paire. En dimension n = 2m, les fonctions booléennes courbes sont les fonctions à
distance 2n−1 − 2m−1 du code de Reed-Muller d’ordre 1, noté RM(1, n), c’est-à-dire l’ensemble
des fonctions booléennes affines (de degré algébrique au plus 1). En fait, ce sont les fonctions à
distance maximale de RM(1, n) et ce sont les seules qui possèdent cette propriété en dimension
paire. Une manière3 equivalente d’énoncer cette propriété est d’utiliser un paramètre important
en cryptographie : la non-linéarité. La non-linéarité d’une fonction booléenne se définit alors
comme la distance maximale de la fonction à l’ensemble des fonctions affines. En dimension paire,
les fonctions courbes sont celle de non-linéarité maximale.

Un autre objet important associé à l’ensemble des fonctions courbes est, à dimension n fixée,
ce qu’on appelle le groupe des automorphismes i.e. le groupe des permutations π de Fn2 telles
que, pour toute fonction courbe f , la fonction f ◦ π est aussi courbe. Il a été montré que ce
groupe coïncide avec le groupe général affine, c’est-à-dire le groupe des automorphismes linéaires,
composé avec le groupe des translations par une fonction affine [31].

Cette propriété permet de définir une relation d’équivalence entre deux fonctions courbes
appelée EA-équivalence : deux fonctions booléennes f et g sont dites EA-équivalentes s’il existe
une fonction booléenne affine ` et un automorphisme affine A de Fn2 tels que f = g ◦ A + `.
Une classe de fonctions booléennes est alors dite complète si elle contient toutes les fonctions
EA-équivalentes aux fonctions booléennes de la classe.

Il existe peu de classes infinies de fonctions courbes dans la littérature. La plus connue est la
classe des fonctions courbes de Maiorana-McFarland. Une fonction f : F2m

2 → F2 appartient à la
classe de Maiorana-McFarland si elle s’écrit en représentation bivariée

∀(x, y) ∈ Fm2 × Fm2 , f(x, y) = φ(x) · y + g(y) (11.3)

avec φ une permutation de Rm et g une fonction booléenne sur Rm. Nous noterons dans la
suiteM la classe des fonctions courbes de Maiorana-McFarland etM la classe complétée par
EA-équivalence.

Dillon [82] introduisit dans sa thèse plusieurs autres classes infinies de fonctions courbes.
Parmi ces classes, il a défini deux classes notées PS− et PS+. Les fonctions booléennes de PS−
(resp. PS+) sont les fonctions booléennes dont les supports sont l’union de 2m−1 (resp. 2m−1 + 1)
espaces vectoriels de dimension m deux à deux supplémentaires privés du vecteur nul et qui
sont égales à 0 (resp. 1) en 0. La réunion de ces deux classes est notée PS et s’appelle dans la
terminologie anglo-saxonne Partial Spread class.

Dillon a aussi introduit deux autres sous-familles de PS : la classe PSap, incluse dans PS−
et une famille qu’il a appelée “classe H”. La famille PSap est l’ensemble des fonctions booléennes
s’écrivant

∀(x, y) ∈ Fm2 × Fm2 , f(x, y) = g
(
yx2m−2

)
(11.4)

en représentation bivariée où g est une fonction équilibrée nulle en 0. Pour définir la classe H,
nous allons identifier Fn2 et F2n (qui est un espace vectoriel de dimension n sur F2). Une fonction
booléenne n’est plus alors vue comme une fonction de Fn2 dans F2 mais comme une application
de F2n dans F2 (qui est alors un sous-corps du corps F2n ; il existe plusieurs représentations des
fonctions de F2n dans F2 que nous rappelons au Chapitre 1). La classe H est alors l’ensemble
des fonctions de F2n dans F2 qui s’écrivent en représentation bivariée :

∀(x, y) ∈ F2m × F2m , f(x, y) = Trm1 (y + xG(yx2m−2)) (11.5)

où Trn1 désigne la trace d’un élément de F2n sur F2 et G est une permutation de F2m vérifiant
3Notez qu’il existe une autre manière de définir les fonctions courbes en termes de dérivées (i.e. dire que leur

support est un ensemble différence)
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(P1) G(x) + x ne s’annule jamais

(P2) Pour tout β ∈ F?2m , la fonction G(x)+βx est 2-vers-1, c’est-à-dire, tout élément de l’ensemble
d’arrivée à 0 ou 2 antécédents.

Enfin, récemment, de nouvelles familles de fonctions courbes ont été trouvées parmi les
fonctions de Niho. Ces classes sont nouvelles en tant que représentations traces (si elles avaient été
en représentation Forme Algébrique Normale alors on ne les aurait considérées comme nouvelles
qu’après avoir montré qu’elles n’étaient pas déjà connues en tant que fonctions). Les fonctions de
Niho sont les fonctions de F2n dans F2 , n = 2m, dont les restrictions aux espaces vectoriels ωF2m

sont linéaires. Ces fonctions ont la particularité que leur représentation univariée est constituée
exclusivement de monômes dont les exposants sont des entiers congrus à une puissance de 2
modulo 2m − 1.

Le concept de fonction courbe existe aussi pour les fonctions booléennes vectorielles, i.e. les
fonctions de Fn2 dans Fr2. Nous appellerons de telles fonctions des (n, r)-fonctions.

Étant donnée une (n, r)-fonction F , les fonctions coordonnées de F sont les fonctions booléennes
f1, · · · , fr définies par F (x) = (f1(x), · · · , fr(x)) pour tout x ∈ Fn2 . On appelle alors fonction
composante de F toute combinaison linéaire des fonctions coordonnées à coefficients non tous
nuls.

La non-linéarité d’une fonction vectorielle F est la non-linéarité minimale de ses fonctions
composantes. Elle fut introduite par Nyberg [212] et, plus tard, étudiée par Chabaud et Vaudenay
[53]. La non-linéarité d’une fonction vectorielle est un paramètre important en cryptographie car
elle quantifie le niveau de résistance d’une boîte à substitution à l’attaque linéaire [181].

Les fonctions vectorielles courbes (aussi appelées fonctions parfaitement non-linéaires) sont les
fonctions de non-linéarité maximale, c’est-à-dire, celles ayant la non-linéarité égale à 2n−1−2n/2−1.
Un point important est que les (n, r)-fonctions courbes n’existent que quand n est pair et pour
r ≤ n/2 [211].

Cette contrainte fait que les fonctions vectorielles courbes ne sont pas utilisables seules pour
concevoir une boîte à substitution, mais ces fonctions ont l’avantage d’offrir la meilleure résistance
aux attaques différentielles et linéaires. Elles peuvent donc être utilisées pour construire des
(n, n)-fonctions ayant une bonne résistance aux attaques linéaires et différentielles (voir [32]).

Synthèse des principaux résultats
1 – La classe H. La condition (P1) donnée par Dillon pour définir la classe H n’est pas
nécessaire pour assurer qu’une fonction de la forme (11.5) soit courbe. Elle sert en fait seulement
à assurer que la classe H soit une extension de la classe PS. La classe H de Dillon peut être vue
comme un cas particulier d’une classe plus générale (que nous avons noté H) dont les éléments
sont des fonctions de F2n dans F2 dont la représentation bivariée est

g(x, y) = Trm1
(
µy(x2m−1 + 1) + xG

(
yx2m−2

))
(11.6)

où G est une permutation de F2m vérifiant la propriété (P2) ci-dessus. Nous avons montré que la
classe H coïncide avec la classe des fonctions courbes dont les restrictions aux espaces vectoriels
ωF2m sont linéaires, en d’autres termes, en représentation univariée, les éléments de la classe
H sont les fonctions de Niho courbes. La classe H contient donc toutes les fonctions courbes
trouvées dans [93, 160].

Cette nouvelle classe unifie donc plusieurs familles connues de fonctions courbes [82, 93, 160].
Elle offre par conséquent un cadre unique et général pour étudier les propriétés de ces familles.
En particulier, nous avons utilisé ce cadre pour déterminer les duales de certaines des familles
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présentées dans [93, 160] (voir le paragraphe 2). Autre apport important, nous avons montré
qu’on pouvait associer les fonctions courbes de la classe H à une famille de polynômes étudiée en
géométrie projective finie appelés les o-polynômes (voir le paragraphe 3). A la lumière de cette
relation, nous avons proposé plusieurs familles de fonctions courbes potentiellement nouvelles
grâce à la liste de o-polynômes établie par les géomètres pendant 40 ans. Pour l’instant, nous
n’avons pas encore pu déterminer lesquelles de ces familles de fonctions courbes étaient réellement
nouvelles (c’est-à-dire EA-inéquivalentes à une autre famille déjà connue).

Une extension naturelle, qu’on notera K, de la classe H est de considérer les fonctions dont les
restictions aux espaces ωF?2m sont affines. Les fonctions de cette nouvelle classe sont les fonctions
dont la représentation bivariée est

f(x, y) = Trm1
(
µy(x2m−1 + 1) + xG

(
yx2m−2

)
+ F (yx2m−2)

)
(11.7)

où F est une application de F2m dans F2m . Si l’on prend µ = 0 et G = 0 dans l’expression
précédente, on obtient une fonction dont les restrictions aux espaces ωF?2m sont constantes. En
représentation univariée, les fonctions constantes sur ωF?2m sont les fonctions booléennes dites
de Dillon, c’est-à-dire les fonctions booléennes dont l’expression ne contient que des mônomes d’
exposants congrus à 0 modulo 2m − 1 (les fonctions courbes de Dillon sont les fonctions de la
forme g(δx) +µ avec g ∈ PSap, δ ∈ F?2n et µ ∈ F2). Nous avons entièrement identifié les fonctions
courbes dans cette nouvelle classe. En particulier, nous avons montré que la classe K englobe, en
plus de celles de la classe H précédente, les fonctions de Dillon hyper-courbes (voir Chapitre 5).

Enfin, on signalera que la classe K contient aussi d’autres familles de fonctions booléennes sous-
optimales mais intéressantes en cryptographie (Chapitre 8): des familles de fonctions booléennes
semi-courbes en dimension paire.

2 – Les duales des fonctions courbes de la classe H. La duale d’une fonction booléenne
f : F2n → F2 est l’unique fonction booléenne f̃ définie par

∀w ∈ F2n , χ̂f (w) = (−1)f̃(w)2m. (11.8)

La duale f̃ d’une fonction booléenne courbe f possède la propriété remarquable d’être aussi une
fonction booléenne courbe dont la duale est f .

Dobbertin et al [93] avaient laissé sans réponse la question suivante : les duales des fonctions
de Niho courbes de [93] sont-elles EA-équivalentes à une des familles de [93] ? La classe H nous
a permis d’avoir un nouveau regard sur les fonctions de [93]. Il est effet possible d’écrire la duale
d’une fonction de la classe H comme la fonction caractéristique d’un certain ensemble.

Proposition 13. Soit f une fonction booléenne de la classe H définie par (11.6). Alors la duale
de f est la fonction caractéristique de l’ensemble

{(α, β) ∈ F2m × F2m ∈ F2m | G(z) + (β + µ)z = α n’a pas de solutions dans F2m}. (11.9)

Ce résultat ouvre une nouvelle voie pour le calcul des duales des fonctions de Niho courbes
laissé en chantier dans [93, 160]. Pour deux des familles de [93, 160], nous avons réussi (dans un
premier travail joint avec Carlet puis un second avec Budaghyan, Carlet, Helleseth et Kholosha)
àà aller jusqu’au bout du calcul et à déterminer leurs duales.

Théorème 14. Soit n = 2m avec m impair et f définie par

∀t ∈ F2n , f(t) = Trm1 (at2
m+1) + Trn1 (bt(2

m−1) 1
4 +1)
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où a ∈ F?2m et b ∈ F?2n vérifient b2m+1 = a et b4 6= a2. Soit v défini par les relations Trnm(v) = 1
et b4 = a2v2m−1. Alors, la duale de f est :

f̃(a 1
2w) = Trm1

(v 2m+1
2 + 1 + Trnm(v2mw)

)(Trnm(vw) + v
2m+1

2

Trnm(v−1)

) 1
3
 .

Et, le degré algébrique de la duale de f est m+3
2 .

Théorème 15. Soit n = 2m, r > 1 un entier vérifiant gcd(r,m) = 1 et f une fonction booléenne
sur F2n définie par

f(t) = Trn1
(
at2

m+1 +
2r−1−1∑
i=1

t(2
m−1) i

2r +1
)
,

avec a ∈ F2n vérifiant a+ a2m = 1. Soit u ∈ F2n vérifiant u+ u2m = 1. Alors la duale de f est
égale à

f̃(w) = Trm1
((
u(1 + w + w2m) + u2n−r + w2m)(1 + w + w2m)1/(2r−1)

)
.

De plus, le degré algébrique de f̃(w) est égal à d+ 1 où d < m est l’unique entier positif vérifiant
dr ≡ 1 (mod m).

Le Théorème 14 répond notamment à la question posée précédemment car aucune des fonctions
de [93] n’a un degré algébrique égal à m+1

3 pour m > 3; la fonction f̃ du Théorème 14 est donc
nécessairement EA-inéquivalente à toutes les fonctions introduites dans [93] (en effet, les degrés
algébriques de fonctions EA-équivalentes sont nécessairement égaux).

3 – La classe H et les o-polynômes. Avant tout chose, rappelons que la propriété d’être
courbe est conservée par l’addition d’une fonction linéaire. De plus, dire que G vérifie (P2) est
équivalent à dire que G + ν, ν ∈ F2m , vérifie (P2). Remarquons maintenant qu’en changeant
G par G + µ et en additionnant à g la fonction linéaire Trm1 (µy) dans (11.6), on change g par
Trm1

(
xG
(
yx2m−2)). Nous pouvons donc supposer sans perte de généralité à partir de maintenant

que µ = 0.
Le fait important que nous avons observé est que la condition (P2) est équivalente à dire que,

(P3) Pour tout γ ∈ F2m , l’application définie par

z ∈ F2m 7→

{
G(z+γ)+G(γ)

z si z 6= 0
0 si z = 0

est une permutation de F2m .

Or, les fonctions G vérifiant (P3) sont connues par les géomètres qui les appellent des
o-polynômes et qui sont associés à des objets géométriques appelés dans la terminologie anglo-
saxonne, hyperovals. Plusieurs familles (plus précisément 8 familles) de o-polynômes ont été
trouvées dans la littérature pendant 40 ans :

1. G(z) = z6 avec m impair [219];

2. G(z) = z3·2k+4, avec m = 2k − 1 [111];
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3. G(z) = z2k+22k , avec m = 4k − 1 [111];

4. G(z) = z22k+1+23k+1 , avec m = 4k + 1 [111];

5. G(z) = z2k + z2k+2 + z3·2k+4, avec m = 2k − 1 [133];

6. G(z) = z
1
6 + z

1
2 + z

5
6 avec m impair [221] (en notant que G(z) = D5

(
z

1
6

)
, où D5 est un

polynôme de Dickson) [224];

7. G(z) = δ2(z4+z)+δ2(1+δ+δ2)(z3+z2)
z4+δ2z2+1 + z1/2, avec Trm1 (1/δ) = 1 et, si m ≡ 2 [mod 4], alors

δ 6∈ F4 [262];

8. G(z) = 1
Trnm(v)

[
Trnm(vr)(z + 1) + Trnm

[
(vz + v2m)r

] (
z + Trnm(v)z1/2 + 1

)1−r]+ z1/2, avec
m pair, r = ± 2m−1

3 , v ∈ F22m , v2m+1 = 1 et v 6= 1 [263].

Chaque o-polynôme donné précédement permet d’obtenir une sous-famille de la classe H. En
fait, chacune des fonctions précédentes ne donne pas qu’une seule sous-famille de la classe H. En
effet, nous avons identifié plusieurs transformations possibles des o-polynômes ci-dessus donnant
de nouvelles fonctions vérifiant (P2). La plupart de ces transformations conduisent à des fonctions
booléennes courbes EA-équivalentes à celles déduites directement à partir de G. Nous avons
identifié en revanche une transformation pouvant conduire à des fonctions EA-inéquivalentes. En
effet, l’inverse d’un o-polynôme vérifie aussi la condition (P2) (en d’autres termes, l’inverse d’un
o-polynôme est un o-polynôme). Dans certains cas, nous avons montré la EA-inéquivalence entre
les o-polynômes de la classe H construites à partir de G et de G−1.

1. m impair et x, y ∈ F2m :

• f(x, y) = Trm1 (x−5y6);
• f(x, y) = Trm1 (x 5

6 y
1
6 ).

Les deux fonctions booléennes sont donc de même degré algébrique m. On ne peut donc
rien conclure sur la EA-équivalence ou EA-inéquivalence de ces deux fonctions booléennes.

2. m = 2k − 1 et x, y ∈ F2m :

• f(x, y) = Trm1 (x−3·(2k+1)y3·2k+4);

• f(x, y) = Trm1 (x−3·(2k−1−1)y3·2k−1−2).

Le degré de la première fonction est égal à m− 1 (si k > 2) et la seconde est de degré m (si
k > 2). Par conséquent, ces deux fonctions sont EA-inéquivalentes.

3. m = 4k − 1 et x, y ∈ F2m :

• f(x, y) = Trm1 (x1−2k−22k
y2k+22k);

• f(x, y) = Trm1 (x23k−1−22k+2ky1−23k−1+22k−2k).

Le degré des deux fonctions booléennes est égal à 3k nous ne pouvons donc rien conclure
sur la EA-équivalence ou la EA-inéquivalence à partir du degré algébrique.

4. m = 4k + 1 et x, y ∈ F2m :

• f(x, y) = Trm1 (x1−22k+1−23k+1
y22k+1+23k+1);
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• f(x, y) = Trm1 (x23k+1−22k+1+2ky1−23k+1+22k+1−2k)

La première fonction booléenne est de degré 2k+ 1 et la seconde de degré algébrique 3k+ 2;
les deux fonctions sont donc EA-inéquivalentes.

5. m = 2k − 1 et x, y ∈ F2m :

• f(x, y) = Trm1 (x1−2ky2k + x−(2k+1)y2k+2 + x−3·(2k+1)y3·2k+4);

• f(x, y) = Trm1
(
y
(
y2k+1x−(2k+1) + y3x−3 + yx−1

)2k−1−1
)
..

Les deux fonctions ont un degré algébrique m ce qui ne permet pas de conclure sur la
EA-équivalence ou EA-inéquivalence de ces deux fonctions.

6. m impair et x, y ∈ F2m :

• f(x, y) = Trm1 (x 5
6 y

1
6 + x

1
2 y

1
2 + x

1
6 y

5
6 );

• f(x, y) = Trm1
(
x
[
D 1

5

(
y
x

)]6)
où D 1

5
est un polynôme de Dickson (1/5 désignant

l’inverse de 5 modulo 22m − 1 (voir [224])

La première fonction booléenne est de degré max(m, 2,m) = m. Nous laissons ouvert le
problème qui consiste à déterminer une expression explicite de la seconde fonction ainsi que
son degré.

Une question importante qui reste en suspens est de savoir si certaines des fonctions courbes
précédentes n’appartiennent à aucune des classes connues de fonctions courbes, et notamment la
classe de Maiorana-McFarland.

4 – Fonctions de Niho courbes et Subiaco / Adelaide hyperovales Grâce au cadre
général offert par la classe H, nous avons réussi à étendre une des familles introduites dans [93],
i.e. les fonctions de la forme

f(t) = Trm1 (at2
m+1) + Trn1 (bt3(2m−1)+1) (11.10)

avec a ∈ F∗2m et b ∈ F∗2n . Les auteurs avaient montré dans [93] qu’une fonction booléenne de
la forme (11.10) était courbe en supposant que b2m+1 = a et que b était la puissance cinquième
d’un élément de F2m . En écrivant les fonctions de cette famille sous la forme donnée par (11.7),
i.e. en déterminant l’expression de la fonction G, nous avons observé avec Helleseth et Kholosha
que la fonction G obtenue, dont l’expression dépend évidememnt de a et b, appartenait à une
sous-famille connue de o-polynômes, les Subiaco hyperovales lorsque b2m+1 = a. En d’autres
termes, la deuxième condition introduite par les auteurs dans [93] n’est pas nécessaire (ce qui
implique l’existence d’autres fonctions courbes qui n’étaient pas obtenues dans Dobbertin et al
[93]) et les fonctions booléennes de la forme (11.10) sont donc courbes en supposant seulement
que b2m+1 = a.

Théorème 16. Soit n = 2m, b2m+1 = a et f(t) = Trm1 (at2m+1) + Trn1 (bt3(2m−1)+1)

1. Supposons m impair. Soit v = 1 et u ∈ F4 \ {0, 1}. Alors

G(z) = a
1
2 + Trnm(bu) + a

1
2 fs(z)
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Si b = 1, alors

G(z) = z2 + z

(z2 + z + 1)2 + z1/2

est un o-polynôme et donc f est courbe.

2. Supposons m ≡ 2 (mod 4). Soit v = 1, u ∈ F16 \ F4 avec u5 = 1 et u + u2m = w où
w2 + w + 1 = 0. Alors

G(z) = a
1
2 + Trnm(b) + (1 + ws+ s

1
2 ) Trnm(b(u4 + 1))fs(z)

est un o-polynôme et donc f(t) est courbe (aussi pour b qui n’est pas une puissance cinquième
d’un élément de F2n).

Signalons que la fonction G donnée dans le théorème précédent correspond au o-polynôme
(g) dans la liste des o-polynômes du paragraphe précédent. En plus de ce résultat, nous avons
aussi réussi ( dans un travail commun avec Helleseth et Kholosha) àapporter une réponse à une
question laissée ouverte concernant la fonction courbe suivante : m = 4, f(t) = Trm1 (t2m+1) +
Trn1

(
t5(2m−1)+1 + t7(2m−1)+1). Cette fonction avait été trouvée par Kholosha en 2004 suite à une

recherche par ordinateur. A cette èpoque, Kholosha s’était demandé sans parvenir à répondre si
cette fonction était vraiment nouvelle, i.e. si elle était EA-inéquivalente aux fonctions de Niho
courbes connues. Nous avons répondu à son interrogation en montrant que cette fonction est
EA-équivalente à une fonction booléenne courbe de la famille (11.10).

Enfin, nous avons montré également que la relation entre la classe des binomiales courbes
de la forme f(t) = Trm1 (at2m+1) + Trn1 (bt 1

6 (2m−1)+1) ([93]) et les o-polynômes donne lieu à des
Adelaide hyperovales.

A ce jour, tous les o-pôlynomes associés aux cinq familles de fonctions courbes connues de
type Niho ont été identifié.

Pour conclure cette section, avec Carlet, nous avons introduit une nouvelle classe H de
fonctions courbes qui est plus large que celle introduite par Dillon en 1974.

Les éléments de la classe H sont en représentation bivariée et constituent les fonctions courbes
dont les restrictions aux espaces vectoriels (qui forment un spread) {Ea = {(x, ax), x ∈ F2m}, a ∈
F2m} et E∞ = {(0, y), y ∈ F2m} sont linéaires. En représentation univariée, les éléments de
la classe H correspondent aux fonctions courbes de type Niho. Cette correspondance offre un
nouveau cadre géneral pour étudier les propriétés des fonctions courbes de type Niho. Nous avons
utilisé ce cadre pour répondre à plusieurs questions laissée ouvertes dans la littérature concernant
les fonctions courbes connues de type Niho. Par ailleurs, nous avons établi un lien entre les
éléments de la classe H (et donc les fonctions courbes de type Niho) et les o-polynômes qui sont des
polynômes associés à des objets géométriques particuliers (du domaine de la géométrie projective
finie). Ce lien nous a permis d’exploiter les travaux de recherche des géomètres (particulièrement
difficiles !) des 40 dernières années et d’exhiber de nouvelles familles de fonctions courbes de type
Niho (dont la liste etait relativement courte).

5 – Fonctions vectorielles courbes Construire des fonctions vectorielles courbes a motivé
un certain nombre de travaux. On distingue généralement deux grands types de constructions de
fonctions courbes: les constructions dites primaires qui sont des familles de fonctions courbes et
les constructions dites secondaires dont le principe est de proposer un mécanisme de contruction
de fonctions courbes à partir d’autres fonctions courbes.
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A l’instar des fonctions booléennes, il existe des relations d’équivalence entre fonctions
booléennes vectorielles. Pour les fonctions vectorielles booléennes, les relations d’équivalence les
plus importantes sont l’EA-équivalence et la CCZ-équivalence. Deux (n, r)-fonctions F et F ′ sont
dites EA-équivalentes s’il existe deux automorphismes affines L de Fn2 dans Fn2 et L′ de Fr2 dans
Fr2 et une fonction affine L′′ de Fn2 dans Fr2 telles que F ′ = L′ ◦ F ◦ L+ L′′. L’EA-équivalence est
en fait un cas particuluer de la CCZ-équivalence [33]. Deux (n, r)-fonctions F et F ′ sont dites
CCZ-équivalentes si leurs graphes GF := {(x, F (x)), x ∈ Fn2} et G′F := {(x, F ′(x)), x ∈ Fn2} sont
équivalents, au sens de l’équivalence affine, c’est-à-dire s’il existe une permutation affine L de
Fn2 × Fr2 telle que L(GF ) = G′F .

Un point important est que la non-linéarité est invariante par CCZ-equivalence (et donc aussi
par EA-équivalence). Récemment, Budaghyan et Carlet [12] ont montré que pour les fonctions
vectorielles courbes et les fonctions booléennes à sortie simple, la CCZ-équivalence coïncide avec
l’EA-équivalence.

Les constructions primaires de fonctions vectorielles courbes proviennent pour la plupart de
constructions de fonctions booléennes adaptées aux fonctions vectorielles. Comme observé en
premier par Nyberg dans [211], les deux principales familles de fonctions booléennes courbes
peuvent être généralisées au cas des fonctions vectorielles conduisant à des grandes familles de
fonctions vectorielles courbes. La première famille de fonctions vectorielles courbes est dans la
lignée de la classe de Maiorana-McFarland et nous appelerons la classe de Maiorana-McFarland
des fonctions vectorielles courbes. La deuxième famille est inspirée de la classe PSap introduite
par Dillon. Les fonctions dans cette deuxième famille sont des fonctions vectorielles courbes dont
les fonctions composantes appartiennent à la classe PSap. Une troisième famille a été identifiée
depuis : la classe de Maiorana-McFarland étendue.

Nous avons généralisé des constructions primaires connues et en avons proposé de nouvelles.
En particulier, nous proposons une autre construction de fonctions vectorielles courbes dans
l’esprit de la classe PS. Nous avons ensuite étendu des constructions secondaires connues et
proposé de nouvelles constructions secondaires de (n, r)-fonctions courbes.

Très récemment, nous avons montré que les o-polynômes permettent aussi la construction
primaire de plusieures fonctions courbes vectorielles optimales :

Théorème 17. Soit G un o-polynôme. Soient F , F ′ deux fonctions vectorielles de F2n ≈
F2m × F2m à F2m tels que pour tout (x, y) ∈ F2m × F2m ,

F (x, y) = xG(yx2m−2)

and
F ′(x, y) = xG−1(yx2m−2)

Alors les fonctions F et F ′ sont courbes.

Publications
Les résultats présentés dans le chapitre 4 ont fait l’objet des publications suivantes :

• C. Carlet et S. Mesnager. On Dillon’s class H of bent functions, Niho bent functions and
o-polynomials. Journal of Combinatorial Theory-JCT-serie A 118, pages 2392–2410, 2011(
[44]).

• C. Carlet et S. Mesnager. On the construction of bent vectorial functions. Journal of
Information and Coding Theory: Algebraic and Combinatorial Coding Theory, volume 1,
No. 2, pages 133-148, 2010 [16].
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• T. Helleseth, A. Kholosha et S. Mesnager. Niho Bent Functions and Subiaco/Adelaide
Hyperovals. Proceedings of the 10-th International Conference on Finite Fields and Their
Applications (Fq’10) Contemporary Math., AMS, 2012 ([126]).

• C. Carlet, T. Helleseth, A. Kholosha et S. Mesnager. On the Dual of Bent Functions with
2r Niho Exponents. IEEE International Symposium on Information Theory, ISIT 2011,
pages 703-707, Saint-Petersturg, Russie, 2011([41]).

• L. Budaghyan, C. Carlet, T. Helleseth, A. Kholosha et S. Mesnager. Further results on
Niho bent functions. IEEE Transactions on Information Theory-IT. Vol. 58 no. 11, pages
6979–6985, 2012 ([14]).

Chapitre 5
Les fonctions hyper-courbes furent introduites par Youssef et Gong [271] à Eurocrypt en 2001. La
première définition des fonctions hyper-courbes était fondée sur une propriété de la transformée
de Hadamard, introduite par Golomb et Gong [115]. Les fonctions hyper-courbes présentent un
intérêt à la fois théorique et pratique. En effet, d’une part, elles sont utlisées dans des boîtes
à substitution; plus précisément, dans le système de chiffrement DES (The Data Encryption
Standard). D’autre part, elles sont aussi intéressantes sur un plan théorique : elles sont en effet
courbes mais surtout elles sont à distance maximale de l’ensemble des permutations monomiales
de F2n (c’est-à-dire, des fonctions bijectives dont l’expression est la trace d’une puissance) et non
seulement des fonctions affines comme les fonctions courbes. De telles fonctions sont certainement
plus rares que les fonctions courbes et, d’ailleurs, à ce jour, on connait peu de familles de fonctions
hyper-courbes. Même si elles doivent être moins nombreuses que les fonctions courbes, avoir
une classification exhaustive des fonctions hyper-courbes semble illusoire et donc identifier le
plus de familles de fonctions hyper-courbes est important et permettra certainement de mieux
comprendre leur structure.

Comme indiqué dans [54], identifier des familles infinies de fonctions hyper-courbes est un
problème difficile. En fait, depuis 2001, très peu de familles infinies de fonctions hyper-courbes ont
été identifiées. La pluplart d’entre elles sont des fonctions monomiales courbes pour lesquelles on a
simplement montré qu’elles sont aussi hyper-courbes (et la totalité de ces fonctions appartiennent
à la classe PSap). Récemment, Charpin et Gong [55, 54] ont considéré des fonctions sur F2n

dont l’expression est de la forme
∑
r∈E Trn1 (βrxr(2

m−1)), où E est un ensemble de représentants
des classes cyclotomiques modulo 2m + 1 de taille maximale n = 2m, et avec des coefficients βr
dans F2n . Elles ont caractérisé au moyen des polynômes de Dickson et de sommes exponentielles
les fonctions hyper-courbes potentielles de cette famille dans le cas où les coefficients βr dans le
sous-corps F2m .Toutefois, il reste difficile d’expliciter à partir de leurs caractérisations des classes
infinies de fonctions hyper-courbes, i.e. expliciter les coefficients βr. Le résultat le plus abouti
jusqu’ à 2009 concernant les fonctions hyper-courbes dans l’esprit des travaux de [54] a concerné
la fonction Trn1 (βxr(2m−1)) où r est premier avec 2m + 1 pour laquelle il a été montré que cette
dernière fonction est hyper-courbe si et seulement si β est un zéro d’une somme de Kloosterman
[82],[54],[159]).

Synthèse des principaux résultats
Nous nous sommes intéressé aux deux familles de fonctions booléennes suivantes sur F2n , n = 2m
que nous avons introduites en 2009:
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• la famille Fn des fonctions booléennes de la forme :

f
(r)
a,b (x) = Trn1 (axr(2

m−1)) + Tr2
1(bx

2n−1
3 ), pgcd(r, 2m + 1) = 1

• la famille Gn des fonctions booléennes de la forme

ga,b(x) = Trn1
(
ax3(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
avec a ∈ F?2m et b ∈ F?4 . Un premier point important est que, quand m est impair, ces deux
familles sont des sous-familles d’une classe plus générale introduite par Dillon, la classe PS−. En
effet, toutes les fonctions booléennes de ces deux familles possèdent la propriété d’être constantes
sur les espaces uF?2m où u parcours le groupe cyclique U des racines (2m + 1)-ième de l’unité;
les fonctions courbes de ces deux familles appartiennent donc à la classe PS−. Un second point
important à noter est que les fonctions de ces deux familles appartiennent donc à l’extension K
de la classe H introduite précédement (voir 11.7). Le troisième fait important est qu’aucune de
ces deux familles ne rentre dans le cadre des travaux de Charpin et Gong [54]. Enfin, il n’existe
pas dans ces deux familles d’autres fonctions courbes que celles qui sont hyper-courbes (en fait
toutes les fonctions courbes de ces deux familles sont dans la classe de PS#

ap).
Dans la lignée du résultat sur la fonction de Dillon Trn1 (βx2m−1), nous avons réussi à identifier

les fonctions hyper-courbes au moyen de sommes exponentielles quand m est impair :

Théorème 18. Soit n = 2m avec m impair (m > 3). Soit a ∈ F?2m et b ∈ F?4 . Soit f (r)
a,b la

fonction définie sur F2n par f (r)
a,b (x) = Trn1 (axr(2m−1)) + Tr2

1(bx 2n−1
3 ) avec pgcd(r, 2m + 1) = 1

1. f (r)
a,b est hyper-courbe si et seulement si Km(a) = 4.

2. f (r)
a,b est hyper-courbe si et seulement si f (r)

a,b2 est hyper-courbe.

3. Les fonctions courbes f (r)
a,b sont dans la PSap (resp. PS#

ap) si b = 1 (resp. si b 6= 1).

4. La duale de la fonction courbe f (r)
a,b est f (r)

a2m ,b2
.

Dans la continuité de ce premier travail, nous avons poursuivi plus avant notre recherche
théorique des éléments courbes de la famille Fn dans le cas où m est pair tout en menant
parallèlement une étude par ordinateur4. Nous avons montré que, pour toutes les fonctions
courbes trouvées par ordinateur, la condition Km(a) = 4 du théorème précédent est vérifiée. Ces
résultats expérimentaux tentent à montrer que cette dernière condition serait nécessaire. Nous
avons aussi expérimentalement déterminé les valeurs a pour lesquelles Km(a) = 4 et regardé si
les fonctions binomiales correspondantes étaient courbes. Nous avons observé que, pour toutes
les valeurs de a trouvées, les fonctions binomiales courbes associées étaient en effet courbes. Ces
résultats expérimentaux nous amènent à penser que la même condition que dans le cas impair
serait une condition nécessaire et suffisante pour caractériser les éléments courbes de la famille
Fn dans le cas où m est pair. Néanmoins, nous n’avons pas réussi pour l’instant à confirmer
théoriquement cette observation expérimentale.

4nous avons utilisé Sage [241] et Cython [9], les librairies Givaro [96], NTL [235] et gf2x [10] qui permettent de
faire des calculs efficaces dans les corps finis
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Nous avons ensuite étudié les fonctions de la famille Gn5. Nous avons montré que cette famille
ne contenait aucune fonction courbe quand m ≡ 3 (mod 6). En revanche, dans le cas où m 6≡ 3
(mod 6), nous avons identifié les fonctions courbes de Gn au moyen de sommes exponentielles :

Théorème 19. Soit n = 2m avec m impair. Soit a ∈ F?2m . Soit β un élément primitif de F4 . Soit
ζ un générateur du groupe cyclique U des racines (2m+ 1)-ième de l’unité. Pour (i, j) ∈ {0, 1, 2}2,
soit gaζi,βj une fonction booléenne appartenant à la famille Gn

1. Supposons m 6≡ 3 (mod 6). Alors:

• Si Trm1 (a1/3) = 0 alors, pour tout (i, j) ∈ {0, 1, 2}2, la fonction gaζi,βj est (hyper)-
courbe si et seulement si Km(a) = 4.

• Si Trm1 (a1/3) = 1 alors:

(a) ga,βj n’est pas courbe pour tout j ∈ {0, 1, 2}.
(b) Pour tout i ∈ {1, 2}, gaζi,βj est (hyper)-courbe si et seulement si Km(a) +

Cm(a, a) = 4.

2. Supposons m ≡ 3 (mod 6). Alors, pour tout i ∈ {0, 1, 2}, gaζi,b n’est pas courbe pour toute
valeur de a ∈ F?2m et b ∈ F?4 .

La duale d’une fonction courbe ga,b de Gn appartient à Gn et est égal à ga2m ,b2

En conclusion, nous avons réussi à identifier toutes les fonctions (hyper)-courbes de ces deux
familles au moyen de sommes exponentielles classiques : sommes de Kloosterman et sommes
cubiques.

Publications

Les résultats présentés dans le chapitre 5 ont fait l’objet des publications suivantes :

• S. Mesnager. A new family of hyper-bent Boolean functions in polynomial form. Proceedings
of Twelfth International Conference on Cryptography and Coding. Cirencester, United
Kingdom. M. G. Parker (Ed.) IMACC 2009, LNCS 5921, pages 402–417. Springer,
Heidelberg (2009) ([196]).

• S. Mesnager. A new class of Bent Boolean functions in polynomial forms. Proceedings of
international Workshop on Coding and Cryptography, WCC 2009, pages 5-18, Ullensvang,
Norway, pages 5–18, 2009([195]).

• S. Mesnager. A New Class of Bent and Hyper-Bent Boolean Functions in Polynomial Forms.
Journal Designs, Codes and Cryptography (DCC) volume 59, Numbers 1-3, pages 265-279,
2011([197]).

5Notez que la partie monomiale des fonctions de la classe Gn i.e. Trn
1
(
ax3(2m−1)

)
n’est jamais courbe car

l’exposant 3(2m − 1) n’est pas un exposant courbe puisqu’il ne verifie pas les conditions nécessaires pour qu’un
exposant monomial soit courbe. En revanche, la partie monomiale de la classe Fn i.e. Trn

1 (axr(2m−1)) est courbe
si et seulement si a est un zéro de la somme de Kloosterman definie sur F2m
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Chapitre 6
Charpin et Gong se sont attaquées dans [54] à extraire les fonctions courbes définies sur F2n de
la forme ∑

r∈R
Trn1 (βrxr(2

m−1))

où n := 2m et R est un ensemble de représentants des classes cyclotomiques modulo 2m + 1 de
taille maximale n = 2m et βr ∈ F2n .

Quand r est premier avec 2m + 1, on remarque que l’ exposant de chacun des termes dans
l’expression des fonctions précédentes est un exposant de Dillon. L’ensemble des fonctions courbes
et hyper-courbes de la forme précédente coïncide donc.

Pour identifier les fonctions hyper-courbes de la forme précédente, Charpin et Gong se sont
restreintes au cas où tous les coefficients βr appartenaient à F2m . Et avec cette restriction, elles
ont introduit dans [54] des caractérisations très intéressantes du carractère courbe des fonctions
de la forme ci-dessus en utilisant les polynômes de Dickson.

Synthèse des principaux résultats
Dans la continuité des resultats de Charpin et Gong, nous avons cherché à obtenir des caractéri-
sations similaires aux leurs pour les éléments d’une sous-famille Hn de PS−. Cette sous-famille
Hn est constituée des fonctions booléennes de la forme∑

r∈R
Trn1 (arxr(2

m−1)) + Tr2
1(bx

2n−1
3 )

où R est un ensemble de représentants des classes cyclotomiques modulo 2n−1 de taille maximale
n := 2m, {ar, r ∈ R} est un sous-ensemble de F2m et b est un élément de F?4 .

Cette famille Hn contient en particulier les familles Fn et Gn éudiées dans le chapitre précédent.
Nous avons alors caractérisé les éléments (hyper)-courbes de cette famille au moyen de sommes
exponentielles et de polynômes de Dikcon de degré r et 3. En particulier, quand b est un élément
primitif de F4 , nous avons ramené la question de savoir si un élément de Hn est (hyper)-courbe
ou non au calcul du poids de Hamming d’une certaine fonction booléenne.

Théorème 20. ([192]) Soit n = 2m avec m impair. Soit b ∈ F?4 et β u élément primitif de
F4 . Soit far,b une fonction de la famille Hn. Soit gar la fonction booléenne définie sur F2m par
gar (x) =

∑
r∈R Trm1 (arDr(x)), où Dr(x) est le polynôme de Dockson de degré r.

1. far,b est hyper-courbe si et seulement si far,b est courbe.

2. Les fonctions courbes far,b appartiennent à la classe PS−. De plus, les fonctions courbes
far,b sont dans la classe PSap (resp. PS#

ap) si b = 1 (resp. si b 6= 1).

3. Les trois énoncés suivants sont alors équivalents :

(a) far,β est hyper-courbe;

(b)
∑

x∈F?2m ,Trm1 (x−1)=1

χ
(
gar (D3(x))

)
= −2;

(c)
∑
x∈F2m

χ
(

Trm1 (x−1) + gar (D3(x))
)

= 2m − 2 wt(gar ◦D3) + 4.



Résumé long 349

4. far,1 est hyper-courbe si et seulement si,
2
∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
gar (D3(x))

)
− 3

∑
x∈F?2m ,Trm1 (x−1)=1 χ

(
gar (x)

)
= 2.

Dans le chapitre précédent, nous avions ramené le problème d’identifier les éléments hyper-
courbes de la famille Fn à déterminer les valeurs de F2m pour lesquelles la somme de Kloosterman
Km(a) prenait la valeur 4. Les caractérisations obtenues ici sont aussi des sommes exponentielles
mais moins explicites que celles obtenues dans le chapitre précédent (où les fonctions considérées
étaient des binomiales). Mais, néanmoins, on peut montrer qu’on retrouve à partir des carac-
térisations présentées dans le théorème précédent tous les résultats présentés dans le chapitre
précédent pour les familles Fn et Gn.

En reprenant notre approche, Wang, Tang, Qi, Yang et Xu [258] ont considéré la famille
suivante (en remplaçant le terme sur F4 par un terme sur F16) :

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Tr4
1

(
bx

2n−1
5

)
où les coefficients ar sont dans F2m , le coefficient b est dans F16 et m est choisi tel que m ≡ 2

(mod 4). L’ensemble R est le même que le nôtre.
En collaboration avec Flori, nous avons raffiné les résultats de Wang et al. en ajoutant les

expressions de leurs transformées de Walsh, leurs degrés algébriques et leurs duales.
Dans le but d’apporter un point final à ce type de question, nous avons entrepris l’étude de la

famille des fonctions booléennes de la forme générale :

fa,b(x) =
∑
r∈R

Trn1
(
arx

r(2m−1)
)

+ Trt1
(
bxs(2

m−1)
)

où n = 2m est une entier pair, R est un ensemble de représentants des classes cyclotomiques
modulo 2m + 1, les coefficients ar sont dans F2m , s est un diviseur de 2m + 1, i.e. s(2m − 1) est
un exposant de Dillon, t = o(s(2m − 1)), i.e. t est la taille de la classe cyclotomique de s modulo
2m + 1, le coefficient b est dans F2t .

Cette dernière classe recouvre l’ensemble des familles précédentes (y compris celle de Wang,
Tang, Qi, Yang et Xu [258]) ainsi que d’autres qui sont encore non étudiées.

Nous avons cherché à caractériser de la manière la plus simple possible les fonctions hyper-
courbes de la forme précédente. Nous avons réussi à les écrire aussi à l’aide de sommes exponen-
tielles et de polynômes de Dickson. Malheureusement, nous avons obtenu des caractérisations
plus complexes que dans les cas précédents et difficilement exploitables dans l’immédiat pour
expliciter des familles concrètes de fonctions hyper-courbes.

Publications
Les résultats présentés dans le chapitre 6 ont fait l’objet des publications suivantes :

• S. Mesnager. Hyper-bent Boolean Functions with Multiple Trace Terms. Proceedings of
International Workshop on the Arithmetic of Finite Fields. WAIFI 2010, LNCS 6087, pages.
97–113. Springer, Heidelberg, 2010 ([192]).

• S. Mesnager Bent and Hyper-bent Functions in polynomial form and Their Link With Some
Exponential Sums and Dickson Polynomials. IEEE Transactions on Information Theory-IT,
Vol 57, No 9, pages 5996-6009, 2011 ([198]).

• S. Mesnager et J.P Flori. On hyper-bent functions via Dillon-like exponents. IEEE
International Symopsium on Infomation Theory ISIT 2012. IMT, Cambridge, MA, USA,
2012 ([202])
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Chapitre 7
Un lien entre sommes exponentielles et variétés algébriques avait été mis en lumière il y longtemps,
permettant de transférer l’étude de sommes exponentielles à l’étude de variétés algébriques. Ce
lien a été exploité par plusieurs auteurs : Weil [264] qui a déduit de l’hypothèse de Riemman
une borne pour les sommes de Kloosterman; Leonard et Williams [161] ont exprimé des sommes
de Kloosterman au moyen de courbes elliptiques; Lachaud et Wolfmann [157], et Katz et
Livné [146], exploitèrent la théorie des courbes elliptiques pour étudier la distribution de sommes
de Kloosterman.

Très récemment Lisonek [170] a utilisé ce lien pour réécrire la caractérisation de Charpin et
Gong [54] et ramener la vérification de la condition énoncée par cette caractérisation à compter
les points de courbes hyperelliptiques. Il en a alors déduit (grâce un algorithme de comptage de
points sur une courbe hyperelliptique) un algorithme pour identifier les éléments hyper-courbes
d’une sous-famille de la famille considérée par Charpin et Gong.

Synthèse des principaux résultats
Dans le chapitre 7, nous reprenons l’approche de Lisonek6 mais dans un cadre plus général et en
reformulant de manière générique le lien entre des sommes exponentielles (qui interviennent dans
les critères de (hyper)-courbes) et des cardinaux de courbes hyperelliptiques. Plus précisément
nous avons établie les deux propositions suivantes:

Proposition 11.0.1. Soit f : F2m → F2m une fonction telle que f(0) = 0, g = Trm1 (f), et Gf
la courbe (affine) définie sur F2m par

Gf : y2 + y = f(x) .

Alors ∑
x∈F∗2m

χ (g(x)) = −2m − 1 + #Gf .

Proposition 11.0.2. Soit f : F2m → F2m une fonction , g = Trm1 (f), et Hf la courbe (affine)
définie sur F2m par

Hf : y2 + xy = x+ x2f(x) ,

Alors ∑
x∈F∗2m

χ (Trm1 (1/x) + g(x)) = −2m + #Hf .

Dans un travail conjoint avec Flori, nous avons alors reformulé les caractérisations proposées
par Wang et al. et les nôtres (présentées dans le chapitre précédent) au moyen de cardinaux de
courbes hyperelliptiques. Nous avons présenté ensuite un algorithme permettant de tester si un
élément de la famille Hn (resp. de la famille de Wang et al.) est hyper-courbe ou non. Néanmoins,
l’algorithme obtenu n’offre pas un moyen trés efficace d’identifier explicitement les fonctions
hyper-courbes de Hn. Dans ce but, nous avons présenté un raffinement de cet algorithme afin
d’obtenir un test plus efficace, plus rapide en pratique, pour vérifier si un élément de Hn est
hyper-courbe ou non. Nous avons en effet montré que la complexité temporelle et spatiale de l’

6Dans l’ordre chronologique de nos résultats, nous avons en fait repris l’esprit de la démarche de Lisonek pour
la première fois dans le cadre des fonctions semi-courbes



Résumé long 351

algorithme ainsi obtenu est polynomiale pour certaines sous-familles de Hn. L’idée du raffinement
de l’algorithme consisté à uliliser des propriétes mathématiques de certaines applications faisant
intervenir les polynômes de Dickson. Ceci a permis d’éviter de calculer certains cardinaux de
courbes hyperelliptiques.

L’apport fondamental et principal, comme l’ont montré nos résultats numériques, est que les
caractérisations utilisant les courbes hyperelliptiques fournissent un moyen plus efficace, et pas
seulement asymptotiquement, pour identifier les fonctions hyper-courbes que les caractérisations
utilisant des sommes exponentielles.

Dans la dernière partie du Chapitre 7, nous rappelons des résultats classiques sur la divisibilité
des sommes de Kloosterman binaires et donnons d’autres preuves de ces résultats utilisant la
théorie des courbes elliptiques. Nous proposons différentes stratégies pour trouver les zéros des
sommes de Kloosterman binaires et développons un algorithme pour déterminer en quels points
une somme de Kloosterman binaire prend la valeur 4.

Publications
Les résultats présentés dans le Chapitre 7 ont fait l’objet des publications suivantes :

• J.P. Flori et S. Mesnager. Dickson polynomials, hyperelliptic curves and hyper-bent
functions. Proceedings of 7-th International conference SEquences and Their Applications,
SETA 2012, LNCS 7280 , pages 40–52. Springer, Heidelberg, 2012 ([102]).

• J.P. Flori, S. Mesnager et G. Cohen. Binary Kloosterman sums with value 4. Proceedings
of Thirteenth International Conference on Cryptography and Coding, IMACC 2011, LNCS
7089, pages 61-78, Springer, 2011([103]).

Chapitre 8
De nombreux travaux ont été consacrés à la résistance de systèmes de chiffrement aux attaques
par corrélation rapides (pour les systèmes de chiffrement par flot) ou aux attaques linéaires (pour
les systèmes de chiffrement par blocs). Notamment, différents raffinements de ces attaques ont
été étudiés et plusieurs constructions de fonctions booléennes offrant une bonne résistance à
ces attaques ont été proposées. Parmi ces constructions, une famille joue un rôle central : les
fonctions courbes [227] (dont nous avons beaucoup parlé dans le Chapitre 4). D’autres familles
jouent aussi un rôle important à savoir la sous-famille des fonctions courbes homogènes [223] et
les fonctions hyper-courbes [271], les fonctions Z-courbes[92] et negabent [218].

Un des traits importants des fonctions courbes est qu’elles ne sont pas équilibrées, ce défaut
fait qu’il n’est pas possible de les utiliser directement pour concevoir un système de chiffrement.
Or il existe une autre famille de fonctions booléeennes dont la non-linéarité est haute : la famille
des fonctions semi-courbes [62]. L’intérêt de ces fonctions est que le spectre de Walsh contient la
valeur 0 et donc que la fonction peut être équilibrée simplement par l’addition d’une fonction
affine (la fonction ainsi obtenue a exactement la même non-linéarité que la fonction de départ).
Cette famille a été introduite par Chee, Lee et Kim à Asiacrypt en 1994 [62]. Elles ont été
tout d’abord présentées comme les seules fonctions dont le spectre de Walsh est de cardinal 3
et ayant la plus haute non-linéarité [19]. Cette famille est en fait une sous-famille de la famille
des fonctions dites plateaux [276, 275]. Elles sont étudiées car, à l’instar des fonctions courbes,
leurs transformées de Walsh ne prennent pas de grandes valeurs, propriété importante à cause de
l’attaque par corrélation rapide [188] et l’attaque linéaire [182]. Certaines d’entre elles possèdent
une immunité aux corrélations, vérifient les critères de propagation pour des ordres élevés et
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ont une fonction d’autocorrélation prenant de petites valeurs. En revanche, elles partagent avec
les fonctions courbes le défaut de ne pas pouvoir être de degré algébrique élevé (au plus n/2 en
dimension n paire; mais, comme les fonctions courbes, elles peuvent être utilisées pour construire
des fonctions booléennes avec de bonnes propriétés cryptographiques [31]). Plusieurs familles
différentes de fonctions semi-courbes en dimension paire ont été proprosées dans la littérature
: fonctions partiellement courbes [31] de noyau de dimension 2, restrictions à un sous-espace
{a, b}⊥ de co-dimension 2 de fonctions courbes dont les dérivées secondes DaDbf̃ de la duale de
la fonction courbe est nulle [19, 20].

Dans [59], Charpin et al. donnent une condition nécessaire et suffisante pour qu’une fonction
booléenne quadratique booléenne soit semi-courbe. D’autres constructions sont aussi proposées
dans [62, 242]; mais, les fonctions ainsi obtenues représentent probablement une très faible partie
de l’ensemble des fonctions semi-courbes.

Les fonctions semi-courbes existent en dimension paire et aussi en dimension impaire. Quand n
est pair, le spectre des Walsh des fonctions semi-courbes est constitué des trois valeurs 0 et ±2n+2

2 .
Elles peuvent être équilibrées par addition d’une fonction linéaire et ont la non-linéarité maximale
qu’une fonction plateau peut avoir. Quand n est impair, on ne connait pas la non-linéarité
maximale d’une fonction plateau. En revanche, on connait la non-linéarité maximale des fonctions
quadratiques, qui sont toutes des fonctions plateaux, qui est égale à 2n−1 − 2n−1

2 [176] (en petite
dimension, il a été observé que cette valeur était aussi la non-linéarité maximale d’une fonction
plateau [209]). Les fonctions qui atteignent la borne précédente sont appelées semi-courbes en
dimension impaire. Leurs spectres de Walsh sont constitués des trois valeurs 0, ±2n+1

2 [63].
Plusieurs auteurs de la communauté de la théorie des séquences se sont intéressés à trouver

des familles de fonctions semi-courbes. En effet, les fonctions de haute non-linéarité correspondent
aux séquences faiblement corrélées avec les m-séquences (les séquences de longueur maximale
générée par les registres linéaires à décalage) [127] [125].

Les principales constructions de fonctions semi-courbes sont dues à Gold [112], Niho [210],
Helleseth [124, 125], Helleseth et Kumar [127]. Toutefois, la plupart des familles proposées
dans ces travaux sont construites à partir de fonctions puissances, i.e. les fonctions de la forme
x 7→ Trn1

(
xd
)
, en dimension impaire. Khoo, Gong et Stinson [149] ont trouvé une nouvelle famille

de séquences semi-courbes et ont obtenu dans [150] des fonctions semi-courbes quadratiques en
dimension impaire (plus précisement des combinaisons linéaires de fonctions de Gold). Leurs
résultats ont été étendus par Charpin, Pasalic et Tavernier [59] à d’autres familles de fonctions
quadratiques. En particulier, ces derniers ont montré comment obtenir une fonction semi-courbe
cubique par concaténation de fonctions courbes quadratiques.

Synthèse des principaux résultats
A l’instar de nos travaux sur les fonctions hyper-courbes, notre motivation a été de caractériser
les fonctions semi-courbes de plusieurs familles de fonctions booléennes à l’aide de sommes
exponentielles en dimension paire et par suite proposer des nouvelles constructions. Dans un
premier travail, nous avons considéré des fonctions booléennes en forme univariée et dont chaque
terme est une fonction monôme dont l’exposant est de Dillon ou de Niho [201]. De plus, nous
avons également fourni des caractérisations efficaces du caractère "semi-courbe" pour plusieurs
familles de fonctions en termes de cardinaux de courbes hyperelliptiques. Ce travail fut en fait
notre premier travail7 dans l’esprit des résultats de Lisonek.

7Dans l’ordre chronologique, nous avons établis ces résultats avant ceux concernant la propriété "hyper-courbe".
Plus précisément, nous avons utilisé l’idée de l’approche de Lisonek dans le cadre des fonctions semi-courbes avant
de l’étendre au cadre des fonctions hyper-courbes.
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Notre etude sur les constructions explicites de familles infinies de semi-courbes nous a permis
de penser que les fonctions semi-courbes dont la restriction aux espaces uF?2m où u parcours le
groupe cyclique des racines 2m + 1-ème de l’unité, sont essentiellement les fonctions obtenues
en additionnant une fonction courbe de type Niho et une fonction de la classe PS#

ap. Dans un
travail avec C. Carlet nous avons alors généralisé les constructions de fonctions semi-courbes
que nous avons proposées dans [199] puisque nous avons montré dans [45] comment construire
des fonctions semi-courbes en dimension paire à partir de fonctions de PSap et une fonction
courbe dont les restrictions à certains sous-espaces vectoriels, formant ce qu’on appelle dans la
terminologie anglo-saxonne un spread, sont linéaires.

Théorème 21. Soit m ≥ 2 avec n = 2m. Soit {Ei, i = 1, . . . , 2m+ 1} des sous-espaces-vectoriels
de F2n et h une fonction booléenne dont la restriction à chacun des sous-espaces vectoriels Ei est
linéaire (éventuellement nulle). Soit S un sous-ensemble de {1, . . . , 2m+1}. Posons g =

∑
i∈S 1Ei

(mod 2) où 1Ei est la fonction indicatrice de Ei. Alors g + h est courbe si et seulement si g et h
sont courbes.

Grâce au résultat précédent, nous en déduisons plusieurs nouvelles classes de fonctions semi-
courbes en forme bivariée. En effet, on peut déduire des fonctions de la classe H présentées dans
le Chapitre 4 les familles suivantes :

Soit g une fonction booléenne de la classe PSap. Soit h une des fonctions booléennes de la
liste suivante ([44]) :

• h(x, y) = Trm1 (x−5y6), m impair;

• h(x, y) = Trm1 (x 5
6 y

1
6 ), m impair:

• h(x, y) = Trm1 (x−3·(2k+1)y3·2k+4), m = 2k − 1;

• h(x, y) = Trm1 (x−3·(2k−1−1)y3·2k−1−2), m = 2k − 1;

• h(x, y) = Trm1 (x1−2k−22k
y2k+22k), m = 4k − 1;

• h(x, y) = Trm1 (x23k−1−22k+2ky1−23k−1+22k−2k), m = 4k − 1;

• h(x, y) = Trm1 (x1−22k+1−23k+1
y22k+1+23k+1), m = 4k + 1;

• h(x, y) = Trm1 (x23k+1−22k+1+2ky1−23k+1+22k+1−2k), m = 4k + 1;

• h(x, y) = Trm1 (x1−2ky2k + x−(2k+1)y2k+2 + x−3·(2k+1)y3·2k+4), m = 2k − 1;

• h(x, y) = Trm1 (y(y2k+1x−(2k+1) + y3x−3 + yx−1)2k−1−1), m = 2k − 1;

• h(x, y) = Trm1 (x 5
6 y

1
6 + x

1
2 y

1
2 + x

1
6 y

5
6 ), m impair;

• h(x, y) = Trm1 (x[D 1
5

(
y
x

)
]6), m impair, oùD 1

5
est le polynôme de Dickson d’indice 1

5 .

Alors la fonction g + h est semi-courbe. En forme univariée, il est possible d’expliciter
un peu plus ces familles de fonctions semi-courbes en donnant une expression polynomiale de
certaines sous-familles. Dans ce cas, on utilise le spread {uF2m ; u ∈ U} (où U est le groupe
multiplicatif {u ∈ F2n ;u2m+1 = 1}). En considérant ce spread, des fonctions dont les restrictions
aux sous-espaces vectoriels uF2m sont linéaires sont de la forme (voir [93]) :

Tro((2
m−1)s+1)

1

(
asx

(2m−1)s+1
)

with 1 ≤ s ≤ 2m
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Il est connu aussi que les fonctions dont la forme est la suivante appartiennent à la classe PSap :∑
r∈R

Tro((2
m−1)r)

1

(
brx

(2m−1)r
)

where R ⊂ {1, · · · , 2m}.

En s’appuyant d’une part sur les résultats donnés par Dobbertin et al. dans [93] et d’autre
part sur les résultats donnés par Charpin et Gong [54], nous avons obtenu le résultat suivant.

Corollaire 22. Soit f une fonction booléenne dont l’expression est de la forme :

f(x) = Trm1 (a0x
2m+1) +

L∑
i=1

Trn1 (aix(2m−1)si+1) +
∑
r∈R

Tro((2
m−1)r)

1 (brx(2m−1)r)

où L est un entier positif, 2 ≤ si ≤ 2m, si 6= 2m−1 + 1, 1 ≤ r ≤ 2m, a0 ∈ F2m , ai ∈ F2m et
br ∈ F2o((2m−1)r) (avec au moins un des coefficient ai 6= 0 et un des coefficients br 6= 0). Supposons
que :

1) Le nombre de racines u de U := {x ∈ F2n ;x2m+1 = 1} de l’équation Trnm(cu)+
∑L
i=1 Trnm(aiu2si−1)+

a
1
2
0 = 0 est égal à 0 ou 2 pour tout c ∈ F2n ,

2) La somme
∑
u∈U χ(

∑
r∈R Tro((2

m−1)r)
1 (brur)) est égal à 1.

Alors, f est semi-courbe.

Par ce résultat et grâce aux résultats que nous avons obtenus sur les fonctions (hyper)-courbes,
nous avons pu expliciter trente nouvelles familles infinies de fonctions semi-courbes gi + hj
(i ∈ {1, · · · , 6}, j ∈ {1, · · · , 5}) en forme univariée où gi est une des familles ci-dessous (définies
sur F2n et appartenant toutes à la classe PSap) :

• g1(x) = Trn1 (axr(2m−1)); gcd(r, 2m + 1) = 1, a ∈ F?2m vérifiant Km(a) = 0

• g2(x) = Trn1 (axr(2m−1)) + Tr2
1(bx 2n−1

3 ); gcd(r, 2m + 1) = 1, m > 3 impair, b ∈ F?4 , a ∈ F?2m
vérifiant Km(a) = 4

• g3(x) = Trn1 (aζix3(2m−1)) + Tr2
1(βjx 2n−1

3 ); m impair et m 6≡ 3 (mod 6), β est un élément
primitif de F4 , ζ est un générateur du groupe cyclique U des racines (2m + 1)-ième de
l’unité, (i, j) ∈ {0, 1, 2}2, a ∈ F?2m vérifiant Km(a) = 4 et Trm1 (a1/3) = 0

• g4(x) = Trn1 (aζix3(2m−1)) + Tr2
1(βjx 2n−1

3 ); m impair et m 6≡ 3 (mod 6), β est un élément
primitif de F4 , ζ est un générateur du groupe cyclique U des racines (2m + 1)-ième de
l’unité, i ∈ {1, 2}, j ∈ {0, 1, 2}, a ∈ F?2m vérifiant Km(a) + Cm(a, a) = 4 et Trm1 (a1/3) = 1 ,

• g5(x) =
∑2m−1−1
i=1 Trn1

(
βxi(2

m−1)); β ∈ F2m \ F2 ,

• g6(x) =
∑2m−2−1
i=1 Trn1

(
βxi(2

m−1)); m impair et β(2m−4)−1 ∈ {x ∈ F?2m ; Trm1 (x) = 0},

et hj est une des fonctions courbes ci-dessous (dont chaque terme est une fonction monôme
dont l’exposant est un exposant de Niho) :

• h1(x) = Trm1
(
a1x

2m+1); a1 ∈ F?2m

• h2(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1)3+1
)
;

a1 ∈ F?2n , a2m+1
2 = a1 + a2m

1 = β5 avec β ∈ F?2n
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• h3(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1) 1
4 +1
)
;

a1 ∈ F?2n a
2m+1
2 = a1 + a2m

1 , m impair

• h4(x) = Trn1
(
a1x

(2m−1) 1
2 +1 + a2x

(2m−1) 1
6 +1
)
; a1 ∈ F?2n a

2m+1
2 = a1 + a2m

1 , m pair

• h5(x) = Trn1
(
αx2m+1 +

∑2r−1−1
i=1 xsi

)
, r > 1 tel que gcd(r,m) = 1, α ∈ F2n vérifiant

α+ α2m = 1, si = (2m − 1) i
2r (mod 2m + 1) + 1 , i ∈ {1, · · · , 2r−1 − 1}

Publications
Les résultats présentés dans ce chapitre ont fait l’objet des publications suivantes :

• S. Mesnager. Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and
Dickson polynomials. IEEE Transactions on Information Theory-IT, Vol 57, No 11, pages
744–7458, 2011([199]).

• S. Mesnager. Semi-bent functions with multiple trace terms and hyperelliptic curves.
Proceeding of International Conference on Cryptology and Information Security in Latin
America (IACR), Latincrypt 2012, LNCS 7533, Springer, pages 18–36, 2012 ([200]).

• S. Mesnager et G. Cohen . On the link of some semi-bent functions with Kloosterman sums.
Proceeding of International Workshop on Coding and Cryptology (IWCC 2011), LNCS
6639, pages 263–272, Springer, 2011([201]).

• C. Carlet et S. Mesnager. On Semi-bent Boolean Functions. IEEE Transactions on
Information Theory-IT, Vol 58, No 5, pages 3287-3292, 2012 ([45]).

Chapitre 9
Les codes de Reed-Muller, introduits par E. Muller et L. S. Reed en 1954, sont des familles
de codes les plus étudiées. A l’exception des codes de Reed-Muller d’ordre 1 ou des codes de
longueurs petites, leur distance minimale, i.e. la plus petite distance entre deux mots du code,
est plus petite que celle des codes BCH. L’intérêt de ces codes est qu’il existe des algorithmes
efficaces de décodage associés. Ils contiennent aussi des sous-codes non-linéaires de paramètres
optimaux et pour lesquels des algorithmes de décodage efficaces existent aussi. Bien qu’il ait fait
l’objet de nombreux travaux, leur rayon de recouvrement est inconnu à l’exception des codes de
Reed-Muller de longueur petite ou des codes de Reed-Muller d’ordre 1 de longueur 2m avec m
pair. Le rayon de recouvrement d’un code C d’un ensemble X est la valeur du plus petit rayon ρ
pour lequel il est possible de recouvrir X avec des boules de Hamming de rayon ρ centrées en
les mots du code. Le rayon de recouvrement représente aussi le nombre maximal d’erreurs qui
peuvent être corrigées en utilisant le décodage par maximum de vraisemblance.

Il a été obtenu des bornes inférieure et supérieure pour le rayon de recouvrement des codes de
Reed-Muller, mais l’écart entre ces deux bornes est très grand. Il est intéressant et important
d’améliorer autant que possible ces bornes. Un ouvrage intéressant sur le rayon de recouvrement
est [68] et une liste non-exhaustive de travaux sur le rayon de recouvrement est [69, 130, 131, 186,
230, 239].

Parmi les propriétés des codes de Reed-Muller, une propriété importante est que leur mots
peuvent être identifiés aux supports de fonctions booléennes. Plus précisément, le code de
Reed-Muller d’ordre r, noté RM(r, n), peut être identifié à l’ensemble des fonctions booléennes
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de degré algébrique au plus r. Le rayon de recrouvrement de RM(r, n) coïncide alors avec la
non-linéarité d’ordre r maximale. La non-linéarité d’ordre r généralise la non-linéarité standard
et est définie comme la distance minimale d’une fonction booléenne à l’ensemble des fonctions
booléennes de degrés algébriques au plus r. Elle quantifie la résistance d’une fonction booléenne
aux attaques utilisant des approximations des fonctions booléennes par des fonctions de bas degrés
[152, 234]. La nonlinéarité d’ordre r pourrait aussi donner des informations sur la résistance
d’une fonction booléenne aux attaques algébriques [73, 187], comme l’a observé Carlet dans [34].
Récemment, une autre notion de rayon de recouvrement a été introduite dans le contexte des
systèmes de chiffrement par flots [143, 7].

Synthèse des principaux résultats
Notre principale contribution avec C. Carlet a été d’améliorer la borne supérieure sur rayon
de recouvrement du code de Reed-Muller d’ordre 2. Notre approche repose principalement sur
l’introduction de sommes de caractères et sur la caractérisation des mots des codes de Reed-Muller
d’ordre 2 de poids au plus deux fois et demi la distance minimale de ce code.

Théorème 23. Pour tout entier positif n ≥ 17, le rayon de recouvrement ρ(2, n) du code de
Reed-Muller RM(2, n) d’ordre 2 est majoré par⌊

2n−1 −
√

15
2 · 2n2 ·

(
1− 122929

21 · 2n −
155582504573

4410 · 22n

)⌋
(11.11)

Ce résultat nous a permis d’améliorer la borne sur les codes de Reed-Muller d’ordre quelconque.
Jusqu’à ce résultat, la meilleure borne asymptotique connue sur le rayon de recrouvrement ρ(r,m)
du code de Reed-Muller d’ordre r, r ≥ 2, était :

ρ(2, n) ≤ 2n−1 −
√

15 2n2−1 +O(1).

En utilisant l’inégalité classique

ρ(r, n) ≤ ρ(r − 1, n− 1) + ρ(r, n− 1),

nous arrivons par récurrence sur r à améliorer la borne connue et obtenons la borne supérieure
asymptotique suivante :

Théorème 24. Soit r un entier positif supérieur ou égal à 2. Le rayon de recouvrement du code
de Reed-Muller d’ordre r vérifie asymptotiquement

ρ(r, n) ≤ 2n−1 −
√

15
2 · (1 +

√
2)r−2 · 2n/2 +O(nr−2) (11.12)

Cela faisait 15 ans qu’aucune amélioration n’avait été trouvé et, à ce jour, nos résultats n’ont
pas été améliorés.

Nous terminons en expliquant schématiquement et dans les grandes lignes notre démarche
pour obtenir la majoration sur le rayon de recouvrement des codes de Reed-Muller d’ordre 2.
Notre idée a été de commencer par majorer le rayon de recouvrement en introduisant les sommes
suivantes:

Sk(f) =
∑

g∈RM(2,n)

∑
x∈Fn2

(−1)f(x)+g(x)

2k

. (11.13)
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puis de montrer que

∀k ≥ 1, ρ(2,m) ≤ 2m−1 − 1
2 min
f∈Bm

√
Sk+1(f)
Sk(f) (11.14)

Nous avons ensuite montré, pour une fonction booléenne f ∈ Bm, que

Sk(f) = #RM(2,m)Dk if k = 1, 2, 3

Sk(f)#RM(2,m)
(
Dk +N

(8)
k M

(8)
f

)
if k = 4, 5

Sk(f) = #RM(2,m)
(
Dk +N

(8)
k M

(8)
f +

k∑
w=6

2wkM (2w)
f

)
if k ≥ 6

où

• Dk est le nombre de choix possibles d’un uplet (x1, · · · , x2k)
∑2k
i=1 1xi = 0.

• N (w)
k = #Ng où wt(g) = w et Ng est le nombre de choix possibles d’un uplet (x1, . . . , x2k)

d’éléments de Fm2 tels que
∑2k
i=1 1xi = g.

• M (w)
f est une somme de caractère sur les mots de RM(2,m)⊥, c’est-à-dire le code de

Reed-Muller RM(m− 3,m), de poids de Hamming w.

Pour calculer les valeurs des nombres Dk et N (w)
k , nous introduisons des séries génératrices et

montrons que ([z2k]A(z) désigne le coefficient de z2k

2k! dans le développement de Taylor de A en
z = 0) :

Dk = [z2k] cosh2n(z)

N
(2w)
k = [z2k] tanh2w cosh2n(z)

Maintenant, on voit qu’obtenir une borne supérieure sur ρ(2,m) revient à trouver une borne
inférieure sur minf∈Bm

√
Sk+1(f)
Sk(f) . Pour cela, nous utilisons les caractérisations connues dans la

littérature des mots du code RM(m− 3,m).

Publications
Les premiers résultats furent annoncés à la conférence ISIT. Les résultats présentés dans ce
chapitre ont été publiés à IEEE-IT:

• C. Carlet et S. Mesnager. "Improving the upper bounds on the covering radii of binary
Reed-Muller codes". IEEE Transactions on Information Theory, vol. 53, no. 1, pages,
162–173, 2007([43]).
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