Parity of ranks of abelian surfaces

Céline Maistret
joint with Vladimir Dokchitser and Holly Green
University of Bristol

November 30, 2021

Theorems (Dokchitser V., M.; Green H, M.)

Let K be a number field. Assuming finiteness of \amalg, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of

- all semistable* principally polarized abelian surfaces over K,
- $E_{1} \times E_{2} / K$, for elliptic curves E_{1}, E_{2} with isomorphic 2-torsion groups.
*good ordinary reduction a places above 2.

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A / K be an abelian variety over a number field

$$
A(K) \simeq \mathbb{Z}^{r k(A)} \oplus T, \quad r k_{A},|T|<\infty .
$$

Birch and Swinnerton-Dyer conjecture
Granting analytic continuation of the L-function of A / K to \mathbb{C},

$$
r k(A)=\operatorname{ord}_{s=1} L(A / K, s)=: r k_{a n}(A) .
$$

Conjectural functional equation
The completed L-function $L^{*}(A / K, s)$ satisfies

$$
L^{*}(A / K, s)=W(A) L^{*}(A / K, 2-s), \quad W(A) \in\{ \pm 1\}
$$

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A / K be an abelian variety over a number field

$$
A(K) \simeq \mathbb{Z}^{r k(A)} \oplus T, \quad r k_{A},|T|<\infty .
$$

Birch and Swinnerton-Dyer conjecture
Granting analytic continuation of the L-function of A / K to \mathbb{C},

$$
r k(A)=\operatorname{ord}_{s=1} L(A / K, s)=: r k_{a n}(A) .
$$

The completed L-function $L^{*}(A / K, s)$ satisfies

$$
L^{\prime}(A / K, S)=W(A) L^{\prime}(A / K, 2-S), \quad W(A) \in\{ \pm 1\}
$$

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A / K be an abelian variety over a number field

$$
A(K) \simeq \mathbb{Z}^{r k(A)} \oplus T, \quad r k_{A},|T|<\infty
$$

Birch and Swinnerton-Dyer conjecture
Granting analytic continuation of the L-function of A / K to \mathbb{C},

$$
r k(A)=\operatorname{ord}_{s=1} L(A / K, s)=: r k_{a n}(A) .
$$

Conjectural functional equation
The completed L-function $L^{*}(A / K, s)$ satisfies

$$
L^{*}(A / K, s)=W(A) L^{*}(A / K, 2-s), \quad W(A) \in\{ \pm 1\} .
$$

Parity of analytic rank

Analytic rank

$$
r k_{a n}(A):=\operatorname{ord}_{s=1} L(A / K, s) .
$$

Sign in functional equation

$$
L^{*}(A / K, s)=W(A) L^{*}(A / K, 2-s), \quad W(A) \in\{ \pm 1\} .
$$

Consequence

$$
(-1)^{r k_{2 n}(A)}=W(A)
$$

Parity conjecture

B.S.D. modulo 2

$$
(-1)^{r k(A)} \underset{B \bar{S} D}{ }(-1)^{r k_{a n}(A)}=W(A)
$$

Global root number
The sign in the functional equation $W(A)$ is conjectured to be equal to the global root number of A :

$$
W(A)=w(A) .
$$

Parity conjecture

$$
(-1)^{r k(A)}=w(A) .
$$

Parity conjecture

B.S.D. modulo 2

$$
(-1)^{r k(A)} \underset{B \bar{S} D}{ }(-1)^{r k_{a n}(A)}=W(A) .
$$

Global root number

The sign in the functional equation $W(A)$ is conjectured to be equal to the global root number of A :

$$
W(A)=w(A)
$$

Parity conjecture

$$
(-1)^{r k(A)}=w(A) .
$$

Parity conjecture

B.S.D. modulo 2

$$
(-1)^{r k(A)} \underset{B \bar{S} D}{ }(-1)^{r k_{a n}(A)}=W(A) .
$$

Global root number

The sign in the functional equation $W(A)$ is conjectured to be equal to the global root number of A :

$$
W(A)=w(A)
$$

Parity conjecture

$$
(-1)^{r k(A)}=w(A)
$$

Parity conjecture

B.S.D. modulo 2

$$
(-1)^{r k(A)}{ }_{B \bar{S} D}(-1)^{r k_{a n}(A)}=W(A) \text {. }
$$

Global root number
The sign in the functional equation $W(A)$ is conjectured to be equal to the global root number of A :

$$
W(A)=w(A)=\prod_{v} w_{v}(A)
$$

Parity conjecture

$$
(-1)^{r k(A)}=w(A)
$$

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

Does it have a point of infinite order?

$$
\begin{gathered}
(-1)^{r k(E)}=\prod_{v} w_{v}=w_{\infty} \cdot w_{5} \cdot w_{13} \\
w_{5}=w_{13}=1, \quad w_{\infty}=-1
\end{gathered}
$$

$$
(-1)^{r k(E)}=-1 \cdot 1 \cdot 1=-1
$$

E has a point of infinite order over \mathbb{Q}.

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

Does it have a point of infinite order?
Using Parity conjecture

$$
(-1)^{r k(E)}=\prod_{v} w_{v}=w_{\infty} \cdot w_{5} \cdot w_{13}
$$

$$
w_{5}=w_{13}=1, \quad w_{\infty}=-1
$$

E has a point of infinite order over \mathbb{Q}.

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

Does it have a point of infinite order?
Using Parity conjecture

$$
(-1)^{r k(E)}=\prod_{v} w_{v}=w_{\infty} \cdot w_{5} \cdot w_{13}
$$

$$
w_{5}=w_{13}=1, \quad w_{\infty}=-1
$$

E has a point of infinite order over \mathbb{Q}.

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

Does it have a point of infinite order?
Using Parity conjecture

$$
(-1)^{r k(E)}=\prod_{v} w_{v}=w_{\infty} \cdot w_{5} \cdot w_{13}
$$

$$
w_{5}=w_{13}=1, \quad w_{\infty}=-1
$$

E has odd rank

$$
(-1)^{r k(E)}=-1 \cdot 1 \cdot 1=-1
$$

E has a point of infinite order over \mathbb{Q}.

Known results

Česnavičius; Coates-Fukaya-Kato-Sujatha
Kramer-Tunnell; Monsky; Morgan; Nekovář.
Dokchitser-Dokchitser;
(p)-parity conjecture is known for

- elliptic curves over \mathbb{Q},
- elliptic curves over K admitting a p-isogeny,
- elliptic curves over totally real number field when $p \neq 2$ (all non CM cases and some CM cases for $p=2$),
\Rightarrow open for elliptic curves over number fields in general,
- Jacobians of hyperelliptic curves base-changed from a subfield of index 2,
- abelian varieties admitting a suitable isogeny.

Computing the parity of rank of abelian varieties

$$
(-1)^{r k(A)}=w(A) .
$$

Computing the parity of the rank of elliptic curves

BSD 1

$$
r k_{E}=\operatorname{ord}_{s=1} L(E, s)
$$

Assuming $\amalg(E)$ is finite, if $\phi: E \rightarrow E^{\prime}$ is an isogeny defined over \mathbb{Q} then

Computing the parity of the rank of elliptic curves

BSD 1

$$
r k_{E}=\operatorname{ord}_{s=1} L(E, s)
$$

BSD 2 (BSD quotient)

$$
\lim _{s=1} \frac{L(E, s)}{(s-1)^{r k_{E}}}=\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p} R e g_{E}|\amalg|}{\left|E_{\text {tors }}\right|^{2}}
$$

Assuming $\amalg(E)$ is finite, if $\phi: E \rightarrow E^{\prime}$ is an isogeny defined over \mathbb{Q} then

Computing the parity of the rank of elliptic curves

BSD 1

$$
r k_{E}=\operatorname{ord}_{s=1} L(E, s)
$$

BSD 2 (BSD quotient)

$$
\lim _{s=1} \frac{L(E, s)}{(s-1)^{r k_{E}}}=\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p} R_{e g}|\amalg|}{\left|E_{\text {tors }}\right|^{2}}
$$

Theorem (Cassels) Isogeny invariance of B.S.D. quotient
Assuming $\amalg(E)$ is finite, if $\phi: E \rightarrow E^{\prime}$ is an isogeny defined over \mathbb{Q} then

$$
\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p} R e g_{E}|\amalg(E)|}{\left|E_{\text {tors }}\right|^{2}}=\frac{\Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime} R e g_{E}^{\prime}\left|\amalg\left(E^{\prime}\right)\right|}{\left|E_{\text {tors }}^{\prime}\right|^{2}}
$$

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

E / \mathbb{Q} admits a 2-isogeny

Using Cassel's theorem

$$
\begin{aligned}
& c_{5}=c_{13}=1, \quad c_{5}^{\prime}=c_{13}^{\prime}=2, \quad \Omega_{\mathbb{R}}=2 \Omega_{\mathbb{R}}^{\prime} \\
& \Rightarrow \frac{R e g_{E}}{\operatorname{Reg}_{E^{\prime}}}=\frac{|Ш(E)|\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}} \prod_{p} c_{p}}{\left|\amalg\left(E^{\prime}\right)\right|\left|E(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}}=\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p}}{\Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}} \cdot \square=\frac{2}{4} \cdot \square \neq 1
\end{aligned}
$$

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

E / \mathbb{Q} admits a 2-isogeny

Using Cassel's theorem

$$
\begin{aligned}
& c_{5}=c_{13}=1, \quad c_{5}^{\prime}=c_{13}^{\prime}=2, \quad \Omega_{\mathbb{R}}=2 \Omega_{\mathbb{R}}^{\prime} \\
& \Rightarrow \frac{\operatorname{Reg}_{E}}{\operatorname{Reg}_{E^{\prime}}}=\frac{|\amalg(E)|\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}} \prod_{p} c_{p}}{\left|\amalg\left(E^{\prime}\right)\right|\left|E(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}}=\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p}}{\Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}} \cdot \square=\frac{2}{4} \cdot \square \neq 1
\end{aligned}
$$

$\Rightarrow E$ has a point of infinite order.

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

Lemma (Dokchitser-Dokchitser)
If ϕ is an isogeny of degree d such that $\phi^{\vee} \phi=\phi \phi^{\vee}=[d]$ then

$$
\frac{\operatorname{Reg}_{E}}{\operatorname{Reg} g_{E^{\prime}}}=d^{r k(E)} \cdot \square
$$

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

Lemma (Dokchitser-Dokchitser)

If ϕ is an isogeny of degree d such that $\phi^{\vee} \phi=\phi \phi^{\vee}=[d]$ then

$$
\frac{\operatorname{Reg}_{E}}{\operatorname{Reg} g_{E^{\prime}}}=d^{r k(E)} \cdot \square
$$

$$
c_{5}=c_{13}=1, \quad c_{5}^{\prime}=c_{13}^{\prime}=2, \quad \Omega_{\mathbb{R}}=2 \Omega_{\mathbb{R}}^{\prime}
$$

$$
\Rightarrow \frac{R e g_{E}}{\operatorname{Reg}_{E^{\prime}}}=\frac{|\amalg(E)|\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}} \prod_{p} c_{p}}{\left|\amalg\left(E^{\prime}\right)\right|\left|E(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}}=\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p}}{\Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}} \cdot \square=\frac{2}{4} \cdot \square=2 \cdot \square
$$

Example : $E / \mathbb{Q}: y^{2}+x y=x^{3}-x, \Delta_{E}=5 \cdot 13$

Lemma (Dokchitser-Dokchitser)

If ϕ is an isogeny of degree d such that $\phi^{\vee} \phi=\phi \phi^{\vee}=[d]$ then

$$
\frac{\operatorname{Reg}}{E} \operatorname{Reg}_{E^{\prime}}=d^{r k(E)} \cdot \square
$$

$$
\begin{aligned}
& c_{5}=c_{13}=1, \quad c_{5}^{\prime}=c_{13}^{\prime}=2, \quad \Omega_{\mathbb{R}}=2 \Omega_{\mathbb{R}}^{\prime} \\
& \Rightarrow \frac{R e g_{E}}{\operatorname{Reg}_{E^{\prime}}}=\frac{|\amalg(E)|\left|E^{\prime}(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}} \prod_{p} c_{p}}{\left|\amalg\left(E^{\prime}\right)\right|\left|E(\mathbb{Q})_{\text {tors }}\right|^{2} \Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}}=\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p}}{\Omega_{\mathbb{R}}^{\prime} \prod_{p} c_{p}^{\prime}} \cdot \square=\frac{2}{4} \cdot \square=2 \cdot \square
\end{aligned}
$$

$\Rightarrow E$ has odd rank

Computing the parity of the rank

For an elliptic curve E with a p isogeny ϕ to E^{\prime}

$$
p^{r k(E)}=\frac{\Omega_{E}}{\Omega_{E^{\prime}}} \prod_{\ell} \frac{c_{\ell}}{c_{\ell}^{\prime}} \cdot \square
$$

$$
(-1)^{r k(E)}=(-1)^{\operatorname{ord}_{\rho}\left(\frac{\Omega_{E}}{\Omega_{E^{\prime}}} \Pi_{\ell} \frac{c_{\ell}}{c_{\ell}^{\prime}}\right)}
$$

For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee}=[p]$

$$
(-1)^{r k(A)}=(-1)^{\operatorname{ord}_{p}\left(\frac{\Omega_{A}}{\Omega_{A^{\prime}}} \prod_{\ell} \frac{c_{Q}\left(A^{\prime}\right)}{c_{\ell}\left(A^{\prime}\right)} \frac{\| \Pi(A)}{\left.\|\left(A^{\prime}\right)\right)}\right)}
$$

Computing the parity of the rank

For an elliptic curve E with a p isogeny ϕ to E^{\prime}

$$
p^{r k(E)}=\frac{\Omega_{E}}{\Omega_{E^{\prime}}} \prod_{\ell} \frac{c_{\ell}}{c_{\ell}^{\prime}} \cdot \square
$$

For an elliptic curve E with a p isogeny ϕ to E^{\prime}

$$
(-1)^{r k(E)}=(-1)^{\operatorname{ord}_{\rho}\left(\frac{\Omega_{E}}{\Omega_{E^{\prime}}} \Pi_{\ell} \frac{c_{\ell}}{c_{\ell}^{\prime}}\right)}
$$

For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee}=[p]$

$$
(-1)^{r k(A)}=(-1)^{\operatorname{ord}_{p}\left(\frac{\Omega_{A}}{\Omega_{A^{\prime}}} \prod_{\ell} \frac{c_{\ell}\left(A^{\prime}\right)}{c_{\ell}\left(A^{\prime}\right)} \frac{\| \Pi\left(A^{\prime}\right)}{\left.\|\left(A^{\prime}\right)\right)}\right)}
$$

Computing the parity of the rank

For an elliptic curve E with a p isogeny ϕ to E^{\prime}

$$
p^{r k(E)}=\frac{\Omega_{E}}{\Omega_{E^{\prime}}} \prod_{\ell} \frac{c_{\ell}}{c_{\ell}^{\prime}} \cdot \square
$$

For an elliptic curve E with a p isogeny ϕ to E^{\prime}

$$
(-1)^{r k(E)}=(-1)^{\operatorname{ord}_{\rho}\left(\frac{\Omega_{E}}{\Omega_{E^{\prime}}} \Pi_{\ell} \frac{c_{\ell}}{c_{\ell}}\right)}
$$

In general
For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee}=[p]$

$$
(-1)^{r k(A)}=(-1)^{\operatorname{ord}_{p}\left(\frac{\Omega_{A}}{\Omega_{A^{\prime}}} \Pi_{\ell} \frac{c_{\ell}(A)}{c_{\ell}\left(A^{\prime}\right)} \frac{|\amalg(A)|}{\left|\amalg\left(A^{\prime}\right)\right|}\right)}
$$

Parity conjecture

$$
(-1)^{r k(A)}=w(A) .
$$

Proving the parity conjecture For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee}=[p]$ $(-1)^{r k(A)}=(-1)^{\operatorname{ord}_{p}\left(\frac{\Omega_{A}}{\Omega_{A^{\prime}}} \Pi_{\ell} \frac{c_{\ell}(A)}{c_{\ell}\left(A^{\prime}\right)} \frac{|\amalg(A)|}{\left|\amalg\left(A^{\prime}\right)\right|}\right)} \stackrel{?}{=} w(A)=\prod w_{v}(A)$

Parity conjecture

$$
(-1)^{r k(A)}=w(A)
$$

Proving the parity conjecture

For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee}=[p]$

$$
(-1)^{r k(A)}=(-1)^{\operatorname{ord}_{\rho}\left(\left.\frac{\Omega_{A}}{\Omega_{A^{\prime}}} \Pi_{\ell} \frac{c_{\ell}(A)}{c_{\ell}\left(A^{\prime}\right)} \right\rvert\, \frac{|\amalg(A)|}{\| \amalg\left(A^{\prime}\right) \mid}\right)} \stackrel{?}{=} w(A)=\prod_{V} w_{v}(A)
$$

Parity conjecture for principally polarized abelian surfaces

```
\nabla Types of p.p. abelian surfaces
Theorem (see Gonzales-Guàrdia-Rotger)
Let A/K be a principally polarized abelian surface defined over a number
field K. Then A is one of the following three types:
    - A\simeq}\mp@subsup{\simeq}{K}{}J(C),\mathrm{ where C/K is a smooth curve of genus 2,
    - A}\mp@subsup{\simeq}{K}{}\mp@subsup{E}{1}{}\times\mp@subsup{E}{2}{}\mathrm{ , where E}\mp@subsup{E}{1}{},\mp@subsup{E}{2}{}\mathrm{ are two elliptic curves defined over K,
    - }A\mp@subsup{\simeq}{K}{}\mp@subsup{R}{Res//K}{*}\mathrm{ , where ResF/KE is the Weil restriction of an
    elliptic curve defined over a quadratic extension F/K.
```


Parity conjecture for principally polarized abelian surfaces

$\boldsymbol{\nabla}$ Types of p.p. abelian surfaces

```
Theorem (see Gonzales-Guàrdia-Rotger)
Let A/K be a principally polarized' abelian surface defined over a number
field K. Then A is one of the following three types:
    A\simeq}\mp@subsup{\simeq}{K}{}J(C)\mathrm{ , where C/K is a smooth curve of genus 2,
    - }A\mp@subsup{\simeq}{K}{}\mp@subsup{E}{1}{}\times\mp@subsup{E}{2}{}\mathrm{ , where E}\mp@subsup{E}{1}{},\mp@subsup{E}{2}{}\mathrm{ are two elliptic curves defined over K,
    A \simeqK Res F/KE, where ResF/K}E\mathrm{ is the Weil restriction of an
    elliptic curve defined over a quadratic extension F/K.
```


Parity conjecture for principally polarized abelian surfaces

$\boldsymbol{\nabla}$ Types of p.p. abelian surfaces

Theorem (see Gonzales-Guàrdia-Rotger)

Let A / K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_{K} J(C)$, where C / K is a smooth curve of genus 2,
- $A \simeq_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K,
- $A \simeq_{K} \operatorname{Res}_{F / K} E$, where $\operatorname{Res}_{F / K} E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F / K.

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- $\operatorname{Jac}(\mathrm{C})$ with $C: y^{2}=f(x)$ and $\operatorname{deg}(f)=6$
- Reduce to Jacobians with specific 2-torsions
- Regulator constant
- Use BSD invariance under isogeny to compute parity of rank
- Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k(J)}=\prod_{v} \lambda_{v}$
- Compute λ_{v} for all v
- $\Omega_{J}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}(J)$
- $(-1)^{r k(J)}=\prod_{v} \lambda_{v}$
$\prod_{v} \lambda_{v}=\prod_{v} w_{v}(J)=w(J)$

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- $\operatorname{Jac}(\mathrm{C})$ with $C: y^{2}=f(x)$ and $\operatorname{deg}(f)=6$
- Reduce to Jacobians with specific 2-torsions

V Regulator constant

Theorem: Regulator constants (T. Dokchitser V. Dokchitser)
Suppose

- $C: y^{2}=f(x)$ is semistable,
- $K_{f}=$ splitting field of f,
- Parity conjecture holds for J / L for all $K \subseteq L \subseteq K_{f}$ with $G a l\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}$.
Then the parity conjecture holds for J / K.

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
- $C: y^{2}=f(x)$ with $G a l(f) \subseteq C_{2} \times D_{4}$
- Use BSD invariance under isogeny to compute parity of rank
- Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k(J)}=\prod_{v} \lambda_{v}$
- Compute λ_{v} for all v
- $\Omega_{J}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}(J)$
- $(-1)^{r k(J)}=\prod_{v} \lambda_{v}$
$(-1)^{r k(J)}=\prod_{v} w_{v}(J)=w(J)$

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
- $C: y^{2}=f(x)$ with $G a l(f) \subseteq C_{2} \times D_{4}$
- Use BSD invariance under isogeny to compute parity of rank

2 torsions: $J(\bar{K})[2]=\left\{\left[T_{i}, T_{k}\right], i \neq k\right\} \cup$ $\{0\}$, where $T_{i}=\left(x_{i}, 0\right) \in C(\bar{K})$.

Proposition

If $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4}$ then J admits a Richelot isogeny Φ s.t. $\Phi \Phi^{\vee}=[2]$.

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
- $C: y^{2}=f(x)$ with $G a l(f) \subseteq C_{2} \times D_{4}$
- Use BSD invariance under isogeny to compute parity of rank
- $G a l(f) \subseteq C_{2} \times D_{4} \Rightarrow$ Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k(J)} \Pi_{v} \lambda_{v}$
- Compute λ_{v} for all v
- $\Omega_{J}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}(J)$
- $(-1)^{r k(J)}=\prod_{v} \lambda_{v}$

$$
(-1)^{r k(J)}=\prod_{v} w_{v}(J)=w(J)
$$

Parity of the rank as a product of local terms

Using BSD invariance under isogeny
For a Jacobian J with a Richelot isogeny ϕ to $J^{\prime}\left(\right.$ i.e. $\left.\phi \phi^{\vee}=[2]\right)$

$$
(-1)^{r k(J)}=(-1)^{\operatorname{ord}_{2}\left(\frac{\Omega_{J}}{\Omega_{J^{\prime}}} \Pi_{\ell} \frac{c_{\ell}(J)}{c_{\ell}\left(J^{\prime}\right)} \frac{|\amalg(J)|}{\left|\amalg\left(J^{\prime}\right)\right|}\right)}
$$

Assume that $G a l(f) \subseteq C_{2} \times D_{4}$. Then

where c_{v}, c_{v}^{\prime} denote the Tamagawa numbers of J and J^{\prime} respectively and $\mu_{v}=2$ if C is deficient at $v, \mu_{v}=1$ otherwise (cf Poonen-Stoll).

Parity of the rank as a product of local terms

Using BSD invariance under isogeny

For a Jacobian J with a Richelot isogeny ϕ to J^{\prime} (i.e. $\phi \phi^{\vee}=[2]$)

$$
(-1)^{r k(J)}=(-1)^{\left.\operatorname{ord}_{2}\left(\frac{\Omega_{J}}{\Omega_{J^{\prime}}} \Pi_{\ell} \frac{c_{\ell}(J)}{c_{\ell}\left(J^{\prime}\right)}\right) \frac{|\amalg(J)|}{\| \Pi\left(J^{\prime}\right) \mid}\right)}
$$

Theorem

Assume that $G a l(f) \subseteq C_{2} \times D_{4}$. Then

$$
(-1)^{r k(J)}=\prod_{V}(-1)^{\operatorname{ord}_{2}\left(\frac{c_{V} \mu_{V}}{c_{v} \mu_{V}}\right)},
$$

where c_{v}, c_{v}^{\prime} denote the Tamagawa numbers of J and J^{\prime} respectively and $\mu_{v}=2$ if C is deficient at $v, \mu_{v}=1$ otherwise (cf Poonen-Stoll).

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
- $C: y^{2}=f(x)$ with $G a l(f) \subseteq C_{2} \times D_{4}$
- Use BSD invariance under isogeny to compute parity of rank
- $G a l(f) \subseteq C_{2} \times D_{4} \Rightarrow$ Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k(J)}=\Pi_{v}(-1)^{\text {ord }\left(\frac{c q \mu_{v}}{\left(\tau_{1} \mu_{v}\right.}\right)}$,
- Compute λ_{v} for all v
- $\Omega_{J}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}(J)$

$$
(-1)^{r k(J)}=\prod_{v} \lambda_{v} \quad(-1)^{r k(J)}=\prod_{v} w_{v}(J)=w(J)
$$

Local arithmetic of elliptic curves

Kodaira symbol	I_{0}	$\begin{gathered} \mathrm{I}_{n} \\ (n \geq 1) \end{gathered}$	II	III	IV	I_{0}	$\begin{gathered} \mathrm{I}_{n}^{*} \\ (n \geq 1) \end{gathered}$	IV*	III*	II*
Special fiber ẽ (The numbers indicate multiplicities)	\bigcirc		\rangle	$)^{1}$						
$m=$ number of irred. components	1	n	1	2	3	5	$5+n$	7	8	9
$\begin{aligned} & E(K) / E_{0}(K) \\ & \quad \cong \tilde{\varepsilon}(k) / \tilde{\mathcal{E}}^{0}(k) \end{aligned}$	(0)	$\frac{\mathbb{Z}}{n \mathbb{Z}}$	(0)	$\frac{\mathbb{Z}}{2 \mathbb{Z}}$	$\frac{\mathbb{Z}}{3 \mathbb{Z}}$	$\frac{\mathbb{Z}}{2 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}}$	$\begin{gathered} \frac{\mathbb{Z}}{2 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}} \\ \frac{n \text { even }}{} \\ \frac{\mathbb{Z}}{4 \mathbb{Z}} \\ n \text { odd } \end{gathered}$	$\frac{\mathbb{Z}}{3 \mathbb{Z}}$	$\frac{\mathbb{Z}}{2 \mathbb{Z}}$	(0)
$\tilde{\varepsilon}^{0}(k)$	$\tilde{E}(k)$	k^{*}	k^{+}							

Entries below this line only valid for $\operatorname{char}(k)=p$ as indicated

$\operatorname{char}(k)=p$			$p \neq 2,3$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p \neq 2,3$
$v\left(\mathcal{D}_{E / K}\right)$ (discriminant)	0	n	2	3	4	6	$6+n$	8	9	10
$f(E / K)$ (conductor)	0	1	2	2	2	2	2	2	2	2
behavior of j	$v(j) \geq 0$	$v(j)=-n$	$\tilde{j}=0$	$\tilde{j}=1728$	$\tilde{j}=0$	$v(j) \geq 0$	$v(j)=-n$	$\tilde{j}=0$	$\tilde{j}=1728$	$\tilde{j}=0$

Local arithmetic of hyperelliptic curves, p odd (joint with T. and V. Dokchitser and A. Morgan)

Cluster Picture	000000	$000_{2 r} 000_{0}$	0000 (10)	$\bigcirc 00^{2} \times()^{1}$	$\bigcirc 0 \bigcirc^{\frac{1}{2}} \bigcirc^{\frac{m}{2}}{ }_{0}$		
$\overline{\mathscr{C}}$	2	$\nmid \underset{1}{(r-1)} \neq 1$				$\dot{i}^{(n)} \dot{i}^{(m)} \stackrel{i}{i}^{(k)}$	
Number of components	1	$r+1$	n	$n+r$	$n+m-1$	$n+m+k-1$	$n+m+r-1$
$\begin{gathered} \overline{\mathscr{J}}(k) / \\ \overline{\mathcal{J}}^{0}(k) \end{gathered}$	(0)	(0)	$\frac{\mathbb{Z}}{n \mathbb{Z}}$	$\frac{\mathbb{Z}}{n \mathbb{Z}}$	$\frac{\mathbb{Z}}{n \mathbb{Z}} \times \frac{\mathbb{Z}}{m \mathbb{Z}}$	$\underset{\substack{d=g \\ d=\operatorname{Zg} \\ t=[n, m, k) \\ t=(n m+n k+m k) / d}}{\frac{\mathbb{Z}}{}}$	$\frac{\mathbb{Z}}{n \mathbb{Z}} \times \frac{\mathbb{Z}}{m \mathbb{Z}}$
c_{p}	1	1	n	n	$n m$	$n m+n k+k m$	$n m$
$v\left(\Delta_{\text {min }}\right)$	0	$12 r$	n	$12 r+n$	$n+m$	$n+m+k$	$12 r+n+m$
$f(C / K)$	0	0	1	1	2	2	2

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
- $C: y^{2}=f(x)$ with $G a l(f) \subseteq C_{2} \times D_{4}$
- Use BSD invariance under isogeny to compute parity of rank
- $G a l(f) \subseteq C_{2} \times D_{4} \Rightarrow$ Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k(J)}=\Pi_{v}(-1)^{\text {ord }_{2}\left(\frac{c c \mu_{v}}{c_{v} \mu_{v}}\right)}$,
- Compute λ_{v} for all v
- $\Omega_{J}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}(J)$

$$
(-1)^{r k(J)}=\prod_{v} \lambda_{v} \quad(-1)^{r k(J)}=\prod_{v} w_{v}(J)=w(J)
$$

Parity conjecture for principally polarized abelian surfaces

Strategy

∇ Types of p.p. abelian surfaces
Theorem (see Gonzales-Guàrdia-Rotger)
Let A / K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_{K} J(C)$, where C / K is a smooth curve of genus 2,
- $A \simeq_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K,
- $A \simeq_{K} \operatorname{Res}_{F / K} E$, where $\operatorname{Res}_{F / K} E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F / K.

Parity conjecture for principally polarized abelian surfaces

Strategy

$A \simeq{ }_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
- $E_{1}[2] \simeq E_{2}[2] \Rightarrow$ Singular Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k\left(J E_{1} \times E_{2}\right)}=\prod_{v} \lambda_{v}$
- Compute λ_{v} for all v
- $\Omega_{E_{1} \times E_{2}}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}\left(E_{1} \times E_{2}\right)$
- $(-1)^{r k\left(E_{1} \times E_{2}\right)}=\prod_{v} \lambda_{v} \quad \prod_{v} \lambda_{v}=\prod_{v} w_{v}\left(E_{1} \times E_{2}\right)=w\left(E_{1} \times E_{2}\right)$

Parity conjecture for principally polarized abelian surfaces

Strategy

$A \simeq{ }_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
$\checkmark E_{1}[2] \simeq E_{2}[2] \Rightarrow$ Singular Richelot isogeny
Let $f(x)$ be a separable monic cubic polynomial with $f(0) \neq 0$. Then (up to quadratic twists)
- $E_{1} \simeq y^{2}=f(x), \quad E_{2} \simeq y^{2}=x f(x)$,
- there exists $\phi: E \times J a c E^{\prime} \rightarrow \operatorname{Jac} C$, where $C: y^{2}=f\left(x^{2}\right)$; such that $\phi \phi^{\vee}=[2]$.

Parity conjecture for principally polarized abelian surfaces

Strategy

$A \simeq{ }_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
- $E_{1}[2] \simeq E_{2}[2] \Rightarrow$ Singular Richelot isogeny
- Express the parity as a product of local terms
$-(-1)^{r k\left(E_{1} \times E_{2}\right)}=\prod_{v} \lambda_{v}$
- Compute λ_{v} for all v
- $\Omega_{E_{1} \times E_{2}}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}\left(E_{1} \times E_{2}\right)$
- $(-1)^{r k\left(E_{1} \times E_{2}\right)}=\prod_{v} \lambda_{v} \quad \prod_{v} \lambda_{v}=\prod_{v} w_{v}\left(E_{1} \times E_{2}\right)=w\left(E_{1} \times E_{2}\right)$

Parity conjecture for principally polarized abelian surfaces

Strategy

$A \simeq{ }_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
- $E_{1}[2] \simeq E_{2}[2] \Rightarrow$ Singular Richelot isogeny
- Express the parity as a product of local terms

Computing the parity of the rank

$$
(-1)^{r k\left(E_{1} \times E_{2}\right)}=(-1)^{\operatorname{ord}_{2}\left(\frac{\Omega_{E_{1} \times E_{2}}}{\Omega_{\mathrm{JacC}}} \Pi_{\ell} \frac{\frac{c_{\ell}\left(E_{1} \times E_{2}\right)}{\left.c_{\ell} \operatorname{JacC}\right)}}{\frac{1}{\amalg(J \mathrm{JacC)})}}\right)}
$$

Parity conjecture for principally polarized abelian surfaces

Strategy

$A \simeq{ }_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
- $E_{1}[2] \simeq E_{2}[2] \Rightarrow$ Singular Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k\left(E_{1} \times E_{2}\right)}=\prod_{v} \lambda_{v}$
- Compute λ_{v} for all v
- $\Omega_{E_{1} \times E_{2}}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}\left(E_{1} \times E_{2}\right)$
- $(-1)^{r k\left(E_{1} \times E_{2}\right)}=\prod_{v} \lambda_{v} \quad \prod_{v} \lambda_{v}=\prod_{v} w_{v}\left(E_{1} \times E_{2}\right)=w\left(E_{1} \times E_{2}\right)$

Local comparison: Elliptic curves

Let E / \mathbb{Q} and E^{\prime} / \mathbb{Q} be two elliptic curves related by a 2-isogeny

$$
E: y^{2}=x\left(x^{2}+a x+b\right) \quad E^{\prime}: y^{2}=x\left(x^{2}-2 a x+\left(a^{2}-4 b\right)\right)
$$

Theorem (Dokchitser-Dokchitser)

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{\ell}}{c_{\ell}}\right)}=\left(-2 a, a^{2}-4 b\right)_{\ell}(a,-b)_{\ell} w_{\ell}
$$

- $\prod_{v}(a, b)_{v}=1$ (product formula for Hilbert symbols)
- non-split multiplicative reduction where $v(\Delta(E))$ is odd
- need "discriminant and field of definition of tangents"
- consider the real place to find right invariants

Local comparison: Elliptic curves

Let E / \mathbb{Q} and E^{\prime} / \mathbb{Q} be two elliptic curves related by a 2-isogeny

$$
E: y^{2}=x\left(x^{2}+a x+b\right) \quad E^{\prime}: y^{2}=x\left(x^{2}-2 a x+\left(a^{2}-4 b\right)\right)
$$

Theorem (Dokchitser-Dokchitser)

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{\ell}}{c_{\ell}^{\prime}}\right)}=\left(-2 a, a^{2}-4 b\right)_{\ell}(a,-b)_{\ell} w_{\ell}
$$

- $\prod_{v}(a, b)_{v}=1$ (product formula for Hilbert symbols)
- non-split multiplicative reduction where $v(\Delta(E))$ is odd
- need "discriminant and field of definition of tangents"
- consider the real place to find right invariants

Local comparison : Jacobians of $C_{2} \times D_{4}$ genus 2 curves

Theorem

If $G a l(f) \subseteq C_{2} \times D_{4}$ and C is semistable at v (and good ordinary above 2) then

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} \mu_{v}}{c_{v}^{\prime} \mu_{v}^{\prime}}\right)}=E_{v} \cdot w_{v} .
$$

For each place v of K, define the following Hilbert symbols at v

Local comparison : Jacobians of $C_{2} \times D_{4}$ genus 2 curves

Theorem

If $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4}$ and C is semistable at v (and good ordinary above 2) then

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v} \mu_{v}}{c_{v}^{\prime} \mu_{v}^{\prime}}\right)}=E_{v} \cdot w_{v} .
$$

For each place v of K, define the following Hilbert symbols at v

$$
\begin{aligned}
E_{v}= & \left(\delta_{2}+\delta_{3},-\ell_{1}^{2} \delta_{2} \delta_{3}\right) . \\
& \left(\delta_{2} \eta_{2}+\delta_{3} \eta_{3},-\ell_{1}^{2} \eta_{2} \eta_{3} \delta_{2} \delta_{3}\right) . \\
& \left(\hat{\delta}_{2} \eta_{3}+\hat{\delta}_{3} \eta_{2},-\ell_{1}^{2} \eta_{2} \eta_{3} \hat{\delta}_{2} \hat{\delta}_{3}\right) . \\
& \left(\xi,-\delta_{1} \hat{\delta}_{2} \hat{\delta}_{3}\right) \cdot\left(\eta_{2} \eta_{3},-\delta_{2} \delta_{3} \hat{\delta}_{2} \hat{\delta}_{3}\right) \cdot\left(\eta_{1},-\delta_{2} \delta_{3} \Delta^{2} \hat{\delta}_{1}\right) . \\
& \left(c, \delta_{1} \delta_{2} \delta_{3} \hat{\delta}_{2} \hat{\delta}_{3}\right) \cdot\left(\hat{\delta}_{1}, \frac{\ell_{1}}{\Delta}\right) \cdot\left(\ell_{1}^{2}, \ell_{2} \ell_{3}\right) \cdot\left(2,-\ell_{1}^{2}\right) \cdot\left(\hat{\delta}_{2} \hat{\delta}_{3},-2\right)
\end{aligned}
$$

Parity conjecture for principally polarized abelian surfaces

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
- Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
- $C: y^{2}=f(x)$ with $G a l(f) \subseteq C_{2} \times D_{4}$
- Express the parity as a product of local terms
- $(-1)^{r k(J)}=\prod_{v}(-1)^{\text {ord2 }\left(\frac{c \tau \mu_{v}}{\left(\nu_{v} \mu_{v}\right.}\right)}$,
- Compute λ_{v} for all v
- $\Omega_{J}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}(J)$

$$
(-1)^{r k(J)}=\prod_{v} \lambda_{v}=\prod_{v} w_{v}(J)=w(J)
$$

Theorem (Dokchitser V., M.)

Let K be a number field. Assuming finiteness of \amalg, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of all semistable* principally polarized abelian surfaces over K.
*good ordinary reduction a places above 2.

Local comparison : $E_{1} \times E_{2}$

Theorem

Let $f(x)=x^{3}+a x^{2}+b x+c \in K[x]$ such that $c \neq 0$ and write $L=a b-9 c$. Then

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v}(E) c_{c}\left(\operatorname{Jac} E^{\prime}\right)}{c_{v}(\operatorname{JacC}) \mu_{v}(C)}\right)}=E_{v} \cdot w_{v}(E) w_{v}\left(\operatorname{Jac}\left(E^{\prime}\right)\right) .
$$

For each place v of K, define the following Hilbert symbols at v

$$
E_{v}=(b,-c)\left(-2 L, \Delta_{f}\right)(L,-b)
$$

Invariants were found using Sturm polynomials.

- E_{V} recovers the error term for elliptic curves with a 2-isogeny
- E_{V} generalizes for $\operatorname{deg}(f)>4(H$. Green)

Local comparison : $E_{1} \times E_{2}$

Theorem

Let $f(x)=x^{3}+a x^{2}+b x+c \in K[x]$ such that $c \neq 0$ and write $L=a b-9 c$. Then

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v}(E) c_{c}\left(\operatorname{Jac} E^{\prime}\right)}{c_{v}(\operatorname{JacC}) \mu_{v}(C)}\right)}=E_{v} \cdot w_{v}(E) w_{v}\left(\operatorname{Jac}\left(E^{\prime}\right)\right) .
$$

For each place v of K, define the following Hilbert symbols at v

$$
E_{v}=(b,-c)\left(-2 L, \Delta_{f}\right)(L,-b)
$$

Invariants were found using Sturm polynomials.

- E_{V} recovers the error term for elliptic curves with a 2-isogeny
- E_{v} generalizes for $\operatorname{deg}(f)>4(H$. Green)

Parity conjecture for principally polarized abelian surfaces

Strategy

$A \simeq{ }_{K} E_{1} \times E_{2}$, where E_{1}, E_{2} are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
- $E_{1}[2] \simeq E_{2}[2] \Rightarrow$ Singular Richelot isogeny
- Express the parity as a product of local terms
- $(-1)^{r k(J)}=\prod_{v} \lambda_{v}$
- Compute λ_{v} for all v
- $\Omega_{J}, c_{\ell}, \mu_{v}$
- Compare λ_{v} and $w_{v}\left(E_{1} \times E_{2}\right)$

$$
(-1)^{r k\left(E_{1} \times E_{2}\right)}=\prod_{v} \lambda_{v}=\prod_{v} w_{v}\left(E_{1} \times E_{2}\right)=w\left(E_{1} \times E_{2}\right)
$$

Theorem (Green H, M.)
Let K be a number field. Assuming finiteness of \amalg, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of $E_{1} \times E_{2} / K$, for elliptic curves E_{1}, E_{2} with isomorphic 2-torsion groups.

Thank you for your attention

Precise resutls

Theorem (Dokchitser V., M.)

The parity conjecture holds for all principally polarized abelian surfaces over number fields A / K such that $\Psi_{A / K(A[2])}$ has finite $2-$, $3-$, $5-$ primary part that are either

- the Jacobian of a semistable genus 2 curve with good ordinary reduction above 2, or
- semistable and not isomorphic to the Jacobian of a genus 2 curve.

Theorem (Green H, M.)

Let K be a number field and $E_{1}, E_{2} / K$ be elliptic curves. If $E_{1}[2] \simeq E_{2}[2]$ as Galois modules, then the 2-parity conjecture holds for E_{1} / K if and only if it holds for E_{2} / K.

Regulator constants

Theorem (T. and V. Dokchitser)

Suppose

- A semistable p.p. abelian variety,
- $F=K(A[2])$,
- $\amalg(A / F)\left[p^{\infty}\right]$ is finite for odd primes p dividing $[F: K]$,
- Parity holds for A / L for all $K \subseteq L \subseteq F$ with $G a l(F / L)$ a 2 -group.

Then the parity conjecture holds for A / K.

Remark

The Sylow 2-subgroup of S_{6} is $C_{2} \times D_{4}$.
Hence if $\operatorname{Gal}\left(K_{f} / L\right)$ is a 2-group then $\operatorname{Gal}\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}$.
By Theorem 2.ii: if $G a l\left(K_{f} / L\right) \subseteq C_{2} \times D_{4}, C$ semistable and good ordinary at 2-adic places then the 2-parity conjecture holds for J / L.
Thus if $\left|\amalg\left(J / K_{f}\right)\left[2^{\infty}\right]\right|<\infty$ then the parity conjecture holds for J / L.

Complete local formula

Theorem

Fix an exterior form Ω^{\prime} of J^{\prime} and denote $\Omega_{v}^{\prime o}, \Omega_{v}^{o}$ the Néron exterior forms at the place v of K associated to Ω^{\prime} and $\phi^{*} \Omega^{\prime}$ respectively. Then $(-1)^{r k_{2}(J)}=\prod_{v}(-1)^{\lambda_{v}}$ with

$$
\lambda_{v \mid \infty}=\operatorname{ord}_{2}\left(\frac{n \cdot m_{v}}{|k e r(\alpha)| \cdot n^{\prime} \cdot m_{v}^{\prime}}\right), \quad \lambda_{v \nmid \infty}=\operatorname{ord}_{2}\left(\frac{c_{v} \cdot m_{v}}{c_{v}^{\prime} \cdot m_{v}^{\prime}}\left|\frac{\phi^{*} \Omega_{v}^{\prime o}}{\Omega_{v}^{\circ}}\right|_{v}\right),
$$

where n, n^{\prime} are the number of K_{v}-connected components of J and J^{\prime}, α is the restriction of ϕ to the identity component of $J\left(K_{v}\right), c_{v}$ and c_{v}^{\prime} the Tamagawa numbers of J and J^{\prime}, and $m_{v}=2$ if C is deficient at v, $m_{v}=1$ otherwise.
p^{∞}-Selmer rank and p-parity conjecture
p^{∞} Selmer rank
For a prime p, define the p^{∞} Selmer rank as

$$
\begin{gathered}
r k_{p}(A)=r k(A)+\delta_{p}, \text { where } \\
\amalg\left[p^{\infty}\right]=\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\delta_{p}} \times \amalg_{0}\left[p^{\infty}\right], \quad\left|\amalg_{0}\left[p^{\infty}\right]\right|<\infty .
\end{gathered}
$$

Assuming finiteness of $\amalg(A)$; for all prime p

$$
r k(A)=r k_{p}(A) .
$$

p-parity conjecture
For all prime p,

$$
(-1)^{r k_{p}(A)}=w(A)
$$

Error term and arithmetic invariants of the variety

- E/K with multiplicative reduction and 2-isogeny

$$
\Rightarrow-\frac{c_{4}}{c_{6}} \equiv b_{2} \equiv a \bmod K^{\times 2}
$$

- Let A / K be an abelian variety. For any prime ℓ, write $\phi_{0}(\ell)$ for the ℓ-primary component of

$$
\phi_{o}(k) \simeq A(K) / A(K)^{0} .
$$

Then for $\ell \neq p$

$$
\phi_{o}(\ell) \simeq \frac{\left.\left(T_{\ell}(A(\bar{K})) \otimes \mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)\right)^{I_{K}}}{\left.\left(T_{\ell}(A(\bar{K}))\right)^{I_{K}} \otimes \mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)}
$$

The error term (except the contribution of \amalg) is Galois theoretic

Deficiency

Definition: Deficiency

If X is a curve of genus g over a local field \mathcal{K}, we say that X is deficient if X has no \mathcal{K}-rational divisor of degree $g-1$. If X is a curve of genus g over a global field K, then a place v of K is called deficient if X / K_{v} is deficient.

2-isogeny equivalent for Jacobians: Richelot isogeny

Existence

$\left\{\right.$ Galois stable subgroup of $J_{\text {tors }}$ of order d \} \leftrightarrow
$\{$ Isogeny of degree $d\}$
\Rightarrow Look at J[2] and find a Galois stable subgroup of order 4

Points on $J(K)$ and $J(K)[2]$

Points on $J(K)$:
$D=P+Q-P_{\infty}^{+}-P_{\infty}^{-}=[P, Q]$, where $P, Q \in C(K)$ or $P=\bar{Q} \in C(F), \quad[F: K]=2$

Adding points on $J(K)$: $\left[P, P^{\prime}\right]+\left[Q, Q^{\prime}\right]=\left[R, R^{\prime}\right]$

2 torsion: $J(\bar{K})[2]=\left\{\left[T_{i}, T_{k}\right], i \neq k\right\} \cup\{0\}$, where $T_{i}=\left(x_{i}, 0\right) \in C(\bar{K})$.

Richelot isogeny

- $\operatorname{Gal}(f) \subseteq C_{2}^{3} \rtimes S_{3} \quad \Longrightarrow \quad$ Richelot isogeny

$$
\begin{aligned}
& \qquad f(x)=q_{1}(x) q_{2}(x) q_{3}(x) \text { with roots } \alpha_{i}, \beta_{i} \\
& D_{1}=\left[\left(\alpha_{1}, 0\right),\left(\beta_{1}, 0\right)\right], \quad D_{2}=\left[\left(\alpha_{2}, 0\right),\left(\beta_{2}, 0\right)\right], \quad D_{3}=\left[\left(\alpha_{3}, 0\right),\left(\beta_{3}, 0\right)\right] \\
& \text { lie in } J(\bar{K})[2] \text { and }\left\{0, D_{1}, D_{2}, D_{3}\right\} \text { is a Galois stable subgroup of } J(K)[2]
\end{aligned}
$$

Proposition
If $G a /(f) \subseteq C_{2}^{3} \rtimes S_{3}$ then J admits a Richelot isogeny Φ s.t. $\Phi \Phi^{*}=[2]$.

Remark: Explicit construction

There is an explicit model for the curve C^{\prime} underlying the isogenous Jacobian J^{\prime}.

