Parity of ranks of abelian surfaces

Céline Maistret

joint with Vladimir Dokchitser and Holly Green

University of Bristol

November 30, 2021

Theorems (Dokchitser V., M.; Green H, M.)

Let K be a number field. Assuming finiteness of III, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of

- all semistable* principally polarized abelian surfaces over K,
- $E_1 \times E_2/K$, for elliptic curves E_1, E_2 with isomorphic 2-torsion groups.

*good ordinary reduction a places above 2.

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A/K be an abelian variety over a number field

$$A(K) \simeq \mathbb{Z}^{rk(A)} \oplus T, \quad rk_A, |T| < \infty.$$

Birch and Swinnerton-Dyer conjecture

Granting analytic continuation of the *L*-function of A/K to \mathbb{C} ,

$$rk(A) = ord_{s=1}L(A/K, s) =: rk_{an}(A).$$

Conjectural functional equation

The completed L-function $L^*(A/K, s)$ satisfies

$$L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$$

• • • • • • • • • • • • •

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A/K be an abelian variety over a number field

$$A(K) \simeq \mathbb{Z}^{rk(A)} \oplus T, \quad rk_A, |T| < \infty.$$

Birch and Swinnerton-Dyer conjecture

Granting analytic continuation of the L-function of A/K to \mathbb{C} ,

$$rk(A) = ord_{s=1}L(A/K, s) =: rk_{an}(A).$$

Conjectural functional equation

The completed L-function $L^*(A/K, s)$ satisfies

 $L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$

3

イロト 不得 トイヨト イヨト

Ranks of abelian varieties and conjectures

Mordell-Weil Theorem

Let A/K be an abelian variety over a number field

$$A(K) \simeq \mathbb{Z}^{rk(A)} \oplus T, \quad rk_A, |T| < \infty.$$

Birch and Swinnerton-Dyer conjecture

Granting analytic continuation of the *L*-function of A/K to \mathbb{C} ,

$$rk(A) = ord_{s=1}L(A/K, s) =: rk_{an}(A).$$

Conjectural functional equation

The completed L-function $L^*(A/K, s)$ satisfies

$$L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$$

Céline Maistret (University of Bristol)

3

< □ > < □ > < □ > < □ > < □ > < □ >

Parity of analytic rank

Analytic rank

$$rk_{an}(A) := ord_{s=1}L(A/K, s).$$

Sign in functional equation

$$L^*(A/K, s) = W(A) \ L^*(A/K, 2-s), \quad W(A) \in \{\pm 1\}.$$

Consequence

$$(-1)^{\mathsf{rk}_{\mathsf{an}}(\mathsf{A})} = \mathsf{W}(\mathsf{A}).$$

Céline Maistret (University of Bristol) Parity of ranks of abel

November 30, 2021

< □ > < 同 > < 回 > < 回 > < 回 >

B.S.D. modulo 2

$$(-1)^{rk(A)} = (-1)^{rk_{an}(A)} = W(A).$$

Global root number

The sign in the functional equation W(A) is conjectured to be equal to the global root number of A:

$$W(A) = w(A).$$

Parity conjecture

$$(-1)^{rk(A)} = w(A).$$

Céline Maistret (University of Bristol)

November 30, 2021

э

イロト イヨト イヨト イヨト

B.S.D. modulo 2

$$(-1)^{rk(A)} =_{BSD} (-1)^{rk_{an}(A)} = W(A).$$

Global root number

The sign in the functional equation W(A) is conjectured to be equal to the global root number of A:

$$W(A) = w(A).$$

Parity conjecture

$$(-1)^{rk(A)} = w(A).$$

Céline Maistret (University of Bristol)

November 30, 2021

э

< □ > < □ > < □ > < □ > < □ > < □ >

B.S.D. modulo 2

$$(-1)^{rk(A)} =_{BSD} (-1)^{rk_{an}(A)} = W(A).$$

Global root number

The sign in the functional equation W(A) is conjectured to be equal to the global root number of A:

$$W(A) = w(A).$$

Parity conjecture

$$(-1)^{rk(A)} = w(A).$$

Céline Maistret (University of Bristol)

November 30, 2021

э

イロト イポト イヨト イヨト

B.S.D. modulo 2

$$(-1)^{rk(A)} = (-1)^{rk_{an}(A)} = W(A).$$

Global root number

The sign in the functional equation W(A) is conjectured to be equal to the global root number of A:

$$W(A) = w(A) = \prod_{v} w_{v}(A)$$

Parity conjecture

$$(-1)^{rk(A)} = w(A)$$

Céline Maistret (University of Bristol)

November 30, 2021

э

< □ > < □ > < □ > < □ > < □ > < □ >

Example :
$$E/\mathbb{Q}$$
 : $y^2 + xy = x^3 - x$, $\Delta_E = 5\cdot 13$

Using Parity conjecture

$$(-1)^{rk(E)} = \prod_{v} w_v = w_\infty \cdot w_5 \cdot w_{13}$$

$$w_5 = w_{13} = 1, \qquad w_\infty = -1$$

E has odd rank

$$(-1)^{rk(E)} = -1 \cdot 1 \cdot 1 = -1.$$

E has a point of infinite order over $\mathbb Q.$

э

<ロト < 四ト < 三ト < 三ト

Example :
$$E/\mathbb{Q}$$
 : $y^2 + xy = x^3 - x$, $\Delta_E = 5\cdot 13$

Using Parity conjecture

$$(-1)^{rk(E)} = \prod_{v} w_v = w_\infty \cdot w_5 \cdot w_{13}$$

$$w_5 = w_{13} = 1, \qquad w_\infty = -1$$

E has odd rank

$$(-1)^{rk(E)} = -1 \cdot 1 \cdot 1 = -1.$$

E has a point of infinite order over $\mathbb Q.$

э

イロト イポト イヨト イヨト

Example :
$$E/\mathbb{Q}$$
 : $y^2 + xy = x^3 - x$, $\Delta_E = 5\cdot 13$

Using Parity conjecture

$$(-1)^{rk(\mathcal{E})} = \prod_{v} w_{v} = w_{\infty} \cdot w_{5} \cdot w_{13}$$

$$w_5 = w_{13} = 1, \qquad w_\infty = -1$$

E has odd rank

$$(-1)^{rk(E)} = -1 \cdot 1 \cdot 1 = -1.$$

E has a point of infinite order over $\mathbb Q.$

э

イロト イポト イヨト イヨト

Example :
$$E/\mathbb{Q}$$
 : $y^2 + xy = x^3 - x$, $\Delta_E = 5\cdot 13$

Using Parity conjecture

$$(-1)^{rk(E)} = \prod_{v} w_v = w_\infty \cdot w_5 \cdot w_{13}$$

$$w_5 = w_{13} = 1, \qquad w_\infty = -1$$

E has odd rank

$$(-1)^{rk(E)} = -1 \cdot 1 \cdot 1 = -1.$$

E has a point of infinite order over \mathbb{Q} .

э

イロト イボト イヨト イヨト

Known results

Česnavičius; Coates-Fukaya-Kato-Sujatha; Dokchitser-Dokchitser; Kramer-Tunnell; Monsky; Morgan; Nekovář.

(p)-parity conjecture is known for

- elliptic curves over \mathbb{Q} ,
- elliptic curves over K admitting a p-isogeny,
- elliptic curves over totally real number field when $p \neq 2$ (all non CM cases and some CM cases for p = 2),
- \Rightarrow open for elliptic curves over number fields in general,
 - Jacobians of hyperelliptic curves base-changed from a subfield of index 2,
 - abelian varieties admitting a suitable isogeny.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

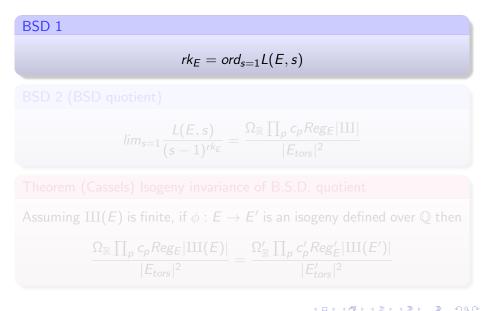
Computing the parity of rank of abelian varieties

$$(-1)^{rk(A)} = w(A).$$

Céline Maistret (University of Bristol) Parity of ranks of abelian surface

November 30, 2021

Computing the parity of the rank of elliptic curves



Computing the parity of the rank of elliptic curves

BSD 1

$$\mathsf{rk}_{\mathsf{E}} = \mathsf{ord}_{s=1}\mathsf{L}(\mathsf{E}, s)$$

BSD 2 (BSD quotient)

$$\lim_{s=1} \frac{L(E,s)}{(s-1)^{rk_E}} = \frac{\Omega_{\mathbb{R}} \prod_{p} c_p Reg_E |\mathrm{III}|}{|E_{tors}|^2}$$

Theorem (Cassels) Isogeny invariance of B.S.D. quotient

Assuming $\operatorname{III}(E)$ is finite, if $\phi: E \to E'$ is an isogeny defined over \mathbb{Q} then

$$\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p} Reg_{E} | \mathrm{III}(E) |}{|E_{tors}|^{2}} = \frac{\Omega_{\mathbb{R}}' \prod_{p} c_{p}' Reg_{E}' | \mathrm{III}(E') |}{|E_{tors}'|^{2}}$$

э

イロト イヨト イヨト

Computing the parity of the rank of elliptic curves

BSD 1

$$\mathsf{rk}_{\mathsf{E}} = \mathsf{ord}_{s=1}\mathsf{L}(\mathsf{E}, s)$$

BSD 2 (BSD quotient)

$$\lim_{s=1} \frac{L(E,s)}{(s-1)^{rk_E}} = \frac{\Omega_{\mathbb{R}} \prod_{p} c_p Reg_E |\mathrm{III}|}{|E_{tors}|^2}$$

Theorem (Cassels) Isogeny invariance of B.S.D. quotient

Assuming $\operatorname{III}(E)$ is finite, if $\phi: E \to E'$ is an isogeny defined over \mathbb{Q} then

$$\frac{\Omega_{\mathbb{R}} \prod_{p} c_{p} Reg_{E} | \mathrm{III}(E) |}{|E_{tors}|^{2}} = \frac{\Omega_{\mathbb{R}}' \prod_{p} c_{p}' Reg_{E}' | \mathrm{III}(E') |}{|E_{tors}'|^{2}}$$

< ロト < 同ト < ヨト < ヨト

Example : E/\mathbb{Q} : $y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$

 E/\mathbb{Q} admits a 2-isogeny

Using Cassel's theorem

$$c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad \Omega_{\mathbb{R}} = 2\Omega_{\mathbb{R}}'$$

$$\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^2\Omega_{\mathbb{R}}\prod_{\rho}c_{\rho}}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^2\Omega'_{\mathbb{R}}\prod_{\rho}c'_{\rho}} = \frac{\Omega_{\mathbb{R}}\prod_{\rho}c_{\rho}}{\Omega'_{\mathbb{R}}\prod_{\rho}c'_{\rho}} \cdot \Box = \frac{2}{4} \cdot \Box \neq 1$$

⇒ E has a point of infinite order.

Céline Maistret (University of Bristol)

Parity of ranks of abelian surfaces

November 30, 2021

э.

イロト 不得 トイヨト イヨト

Example : E/\mathbb{Q} : $y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$

 E/\mathbb{Q} admits a 2-isogeny

Using Cassel's theorem

$$c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad \Omega_{\mathbb{R}} = 2\Omega_{\mathbb{R}}'$$

$$\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^2\Omega_{\mathbb{R}}\prod_{\rho}c_{\rho}}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^2\Omega'_{\mathbb{R}}\prod_{\rho}c'_{\rho}} = \frac{\Omega_{\mathbb{R}}\prod_{\rho}c_{\rho}}{\Omega'_{\mathbb{R}}\prod_{\rho}c'_{\rho}} \cdot \Box = \frac{2}{4} \cdot \Box \neq 1$$

 \Rightarrow *E* has a point of infinite order.

3

(日)

Example :
$$E/\mathbb{Q}$$
 : $y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$

Lemma (Dokchitser-Dokchitser)

If ϕ is an isogeny of degree d such that $\phi^{\vee}\phi = \phi\phi^{\vee} = [d]$ then

$$\frac{Reg_E}{Reg_{E'}} = d^{rk(E)} \cdot \Box$$

$$c_{5} = c_{13} = 1, \quad c_{5}' = c_{13}' = 2, \quad \Omega_{\mathbb{R}} = 2\Omega_{\mathbb{R}}'$$

$$\Rightarrow \frac{Reg_{E}}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^{2}\Omega_{\mathbb{R}}\prod_{p}c_{p}}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^{2}\Omega_{\mathbb{R}}'\prod_{p}c_{p}'} = \frac{\Omega_{\mathbb{R}}\prod_{p}c_{p}}{\Omega_{\mathbb{R}}'\prod_{p}c_{p}'} \cdot \Box = \frac{2}{4} \cdot \Box = 2 \cdot \Box$$

\Rightarrow *E* has odd rank

Céline Maistret (University of Bristol)

Parity of ranks of abelian surfaces

November 30, 2021

< □ > < □ > < □ > < □ > < □ > < □ >

Example :
$$E/\mathbb{Q}$$
 : $y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$

Lemma (Dokchitser-Dokchitser)

If ϕ is an isogeny of degree d such that $\phi^{\vee}\phi = \phi\phi^{\vee} = [d]$ then

$$\frac{Reg_E}{Reg_{E'}} = d^{rk(E)} \cdot \Box$$

$$c_{5} = c_{13} = 1, \quad c_{5}' = c_{13}' = 2, \quad \Omega_{\mathbb{R}} = 2\Omega_{\mathbb{R}}'$$

$$\Rightarrow \frac{Reg_{E}}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^{2}\Omega_{\mathbb{R}}\prod_{p}c_{p}}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^{2}\Omega_{\mathbb{R}}'\prod_{p}c_{p}'} = \frac{\Omega_{\mathbb{R}}\prod_{p}c_{p}}{\Omega_{\mathbb{R}}'\prod_{p}c_{p}'} \cdot \Box = \frac{2}{4} \cdot \Box = 2 \cdot \Box$$

$$\Rightarrow$$
 E has odd rank

Céline Maistret (University of Bristol)

November 30, 2021

• • • • • • • • • • • • •

Example :
$$E/\mathbb{Q}$$
 : $y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$

Lemma (Dokchitser-Dokchitser)

If ϕ is an isogeny of degree d such that $\phi^{\vee}\phi = \phi\phi^{\vee} = [d]$ then

$$\frac{Reg_E}{Reg_{E'}} = d^{rk(E)} \cdot \Box$$

$$c_{5} = c_{13} = 1, \quad c_{5}' = c_{13}' = 2, \quad \Omega_{\mathbb{R}} = 2\Omega_{\mathbb{R}}'$$

$$\Rightarrow \frac{Reg_{E}}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^{2}\Omega_{\mathbb{R}}\prod_{p}c_{p}}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^{2}\Omega_{\mathbb{R}}'\prod_{p}c_{p}'} = \frac{\Omega_{\mathbb{R}}\prod_{p}c_{p}}{\Omega_{\mathbb{R}}'\prod_{p}c_{p}'} \cdot \Box = \frac{2}{4} \cdot \Box = 2 \cdot \Box$$

\Rightarrow *E* has odd rank

Céline Maistret (University of Bristol)

November 30, 2021

э

(日)

Computing the parity of the rank

For an elliptic curve *E* with a *p* isogeny ϕ to *E'*

$$p^{rk(E)} = rac{\Omega_E}{\Omega_{E'}} \prod_{\ell} rac{c_\ell}{c_\ell'} \cdot \Box$$

For an elliptic curve E with a p isogeny ϕ to E'

$$(-1)^{rk(E)} = (-1)^{ord_{\rho}\left(\frac{\Omega_{E}}{\Omega_{E'}}\prod_{\ell}\frac{c_{\ell}}{c_{\ell}'}\right)}$$

In general

For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee} = [p]$

$$(-1)^{rk(A)} = (-1)^{ord_p\left(\frac{\Omega_A}{\Omega_{A'}}\prod_{\ell}\frac{c_{\ell}(A)}{c_{\ell}(A')}\frac{|\mathrm{III}(A)|}{|\mathrm{III}(A')|}\right)}$$

Céline Maistret (University of Bristol)

Computing the parity of the rank

For an elliptic curve *E* with a *p* isogeny ϕ to *E'*

$$p^{rk(E)} = rac{\Omega_E}{\Omega_{E'}} \prod_{\ell} rac{c_\ell}{c_\ell'} \cdot \Box$$

For an elliptic curve E with a p isogeny ϕ to E'

$$(-1)^{rk(E)} = (-1)^{ord_{\rho}\left(rac{\Omega_{E}}{\Omega_{E'}}\prod_{\ell}rac{c_{\ell}}{c_{\ell}'}
ight)}$$

In general

For an abelian variety A with an isogeny ϕ satisfying $\phi\phi^{\vee} = [p]$

$$(-1)^{rk(A)} = (-1)^{ord_p\left(\frac{\Omega_A}{\Omega_{A'}}\prod_{\ell}\frac{c_{\ell}(A)}{c_{\ell}(A')}\frac{|\mathrm{III}(A)|}{|\mathrm{III}(A')|}\right)}$$

Céline Maistret (University of Bristol)

Computing the parity of the rank

For an elliptic curve *E* with a *p* isogeny ϕ to *E'*

$$p^{rk(E)} = rac{\Omega_E}{\Omega_{E'}} \prod_{\ell} rac{c_\ell}{c_\ell'} \cdot \Box$$

For an elliptic curve E with a p isogeny ϕ to E'

$$(-1)^{rk(E)} = (-1)^{ord_p\left(rac{\Omega_E}{\Omega_{E'}}\prod_\ell rac{c_\ell}{c_\ell'}
ight)}$$

In general

For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee} = [p]$

$$(-1)^{\mathsf{rk}(A)} = (-1)^{\mathsf{ord}_p\left(rac{\Omega_A}{\Omega_{A'}}\prod_\ell rac{c_\ell(A)}{c_\ell(A')}rac{|\operatorname{III}(A)|}{|\operatorname{III}(A')|}
ight)}$$

Céline Maistret (University of Bristol)

$$(-1)^{rk(A)} = w(A).$$

Proving the parity conjecture

For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee} = [p]$

$$(-1)^{rk(A)} = (-1)^{ord_p\left(\frac{\Omega_A}{\Omega_{A'}}\prod_{\ell}\frac{c_{\ell}(A)}{c_{\ell}(A')}\frac{|\operatorname{III}(A)|}{|\operatorname{III}(A')|}\right)} \stackrel{?}{=} w(A) = \prod_{\nu} w_{\nu}(A)$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

$$(-1)^{rk(A)} = w(A).$$

Proving the parity conjecture

For an abelian variety A with an isogeny ϕ satisfying $\phi \phi^{\vee} = [p]$

$$(-1)^{rk(A)} = (-1)^{ord_p\left(\frac{\Omega_A}{\Omega_{A'}}\prod_{\ell}\frac{c_{\ell}(A)}{c_{\ell}(A')}\frac{|\operatorname{III}(A)|}{|\operatorname{III}(A')|}\right)} \stackrel{?}{=} w(A) = \prod_{\nu} w_{\nu}(A)$$

Céline Maistret (University of Bristol) Parity of ranks of abelia

э

イロト イポト イヨト イヨト

▼ Types of p.p. abelian surfaces

Theorem (see Gonzales-Guàrdia-Rotger)

Let A/K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_K J(C)$, where C/K is a smooth curve of genus 2,
- $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K,
- $A \simeq_{\kappa} Res_{F/K}E$, where $Res_{F/K}E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F/K.

Types of p.p. abelian surfaces

Theorem (see Gonzales-Guàrdia-Rotger)

Let A/K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_K J(C)$, where C/K is a smooth curve of genus 2,
- $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K,
- $A \simeq_K Res_{F/K}E$, where $Res_{F/K}E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F/K.

Types of p.p. abelian surfaces

Theorem (see Gonzales-Guàrdia-Rotger)

Let A/K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_K J(C)$, where C/K is a smooth curve of genus 2,
- $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K,
- $A \simeq_K Res_{F/K}E$, where $Res_{F/K}E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F/K.

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
 - Jac(C) with $C: y^2 = f(x)$ and deg(f) = 6
- Reduce to Jacobians with specific 2-torsions
 - Regulator constant
- Use BSD invariance under isogeny to compute parity of rank
 - Richelot isogeny
- Express the parity as a product of local terms

$$\blacktriangleright \ (-1)^{rk(J)} = \prod_{\nu} \lambda_{\nu}$$

• Compute λ_v for all v

•
$$\Omega_J, c_\ell, \mu_v$$

• Compare λ_v and $w_v(J)$

•
$$(-1)^{rk(J)} = \prod_{\nu} \lambda_{\nu}$$
 $\prod_{\nu} \lambda_{\nu} = \prod_{\nu} w_{\nu}(J) = w(J)$

Strategy

• Reduce to Jacobians of hyperelliptic curves of genus 2

• Jac(C) with $C: y^2 = f(x)$ and deg(f) = 6

• Reduce to Jacobians with specific 2-torsions

Regulator constant

Theorem: Regulator constants (T. Dokchitser V. Dokchitser)

Suppose

- $C: y^2 = f(x)$ is semistable,
- $K_f =$ splitting field of f,
- Parity conjecture holds for J/L for all $K \subseteq L \subseteq K_f$ with $Gal(K_f/L) \subseteq C_2 \times D_4$.

Then the parity conjecture holds for J/K.

< □ > < □ > < □ > < □ > < □ > < □ >

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
 - Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
 - $C: y^2 = f(x)$ with $Gal(f) \subseteq C_2 \times D_4$
- Use BSD invariance under isogeny to compute parity of rank
 - Richelot isogeny
- Express the parity as a product of local terms

$$\blacktriangleright \ (-1)^{rk(J)} = \prod_{\nu} \lambda_{\nu}$$

• Compute λ_v for all v

•
$$\Omega_J, c_\ell, \mu_v$$

• Compare λ_v and $w_v(J)$

$$(-1)^{rk(J)} = \prod_{\nu} \lambda_{\nu}$$
 $(-1)^{rk(J)} = \prod_{\nu} w_{\nu}(J) = w(J)$

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
 - Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
 - $C: y^2 = f(x)$ with $Gal(f) \subseteq C_2 \times D_4$
- Use BSD invariance under isogeny to compute parity of rank

2 torsions:
$$J(\overline{K})[2] = \{[T_i, T_k], i \neq k\} \cup \{0\}$$
, where $T_i = (x_i, 0) \in C(\overline{K})$.

Proposition

If
$$Gal(f) \subseteq C_2 \times D_4$$
 then J admits
a **Richelot isogeny** Φ s.t. $\Phi \Phi^{\vee} = [2]$.



Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
 - Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
 - $C: y^2 = f(x)$ with $Gal(f) \subseteq C_2 \times D_4$
- Use BSD invariance under isogeny to compute parity of rank
 - $Gal(f) \subseteq C_2 \times D_4 \Rightarrow$ Richelot isogeny
- Express the parity as a product of local terms
 - $(-1)^{rk(J)} \prod_{v} \lambda_{v}$
- Compute λ_v for all v
 - Ω_J, c_ℓ, μ_v
- Compare λ_{v} and $w_{v}(J)$

•
$$(-1)^{rk(J)} = \prod_{\nu} \lambda_{\nu}$$
 $(-1)^{rk(J)} = \prod_{\nu} w_{\nu}(J) = w(J)$

Parity of the rank as a product of local terms

Using BSD invariance under isogeny

For a Jacobian J with a Richelot isogeny ϕ to J' (i.e. $\phi\phi^{\vee} = [2]$)

$$(-1)^{\mathsf{rk}(J)} = (-1)^{\mathsf{ord}_2\left(\frac{\Omega_J}{\Omega_{J'}}\prod_{\ell}\frac{c_{\ell}(J)}{c_{\ell}(J')}\frac{|\mathrm{III}(J)|}{|\mathrm{III}(J')|}\right)}$$

Theorem

Assume that $Gal(f) \subseteq C_2 \times D_4$. Then

$$(-1)^{rk(J)} = \prod_{v} (-1)^{\operatorname{ord}_2\left(\frac{c_v \mu_v}{c_v' \mu_v'}\right)},$$

where c_v, c'_v denote the Tamagawa numbers of J and J' respectively and $\mu_v = 2$ if C is deficient at $v, \mu_v = 1$ otherwise (cf Poonen-Stoll).

э

< □ > < □ > < □ > < □ > < □ > < □ >

Parity of the rank as a product of local terms

Using BSD invariance under isogeny

For a Jacobian J with a Richelot isogeny ϕ to J' (i.e. $\phi \phi^{\vee} = [2]$)

$$(-1)^{\mathsf{rk}(J)} = (-1)^{\mathsf{ord}_2\left(\frac{\Omega_J}{\Omega_{J'}}\prod_{\ell}\frac{c_{\ell}(J)}{c_{\ell}(J')}\frac{|\mathrm{III}(J)|}{|\mathrm{III}(J')|}\right)}$$

Theorem

Assume that $Gal(f) \subseteq C_2 \times D_4$. Then

$$(-1)^{rk(J)} = \prod_{v} (-1)^{ord_2(\frac{c_v \mu_v}{c_v' \mu_v'})},$$

where c_v, c'_v denote the Tamagawa numbers of J and J' respectively and $\mu_v = 2$ if C is deficient at v, $\mu_v = 1$ otherwise (cf Poonen-Stoll).

| 4 回 6 4 回 6 4 回 6

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
 - Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
 - $C: y^2 = f(x)$ with $Gal(f) \subseteq C_2 \times D_4$
- Use BSD invariance under isogeny to compute parity of rank
 - $Gal(f) \subseteq C_2 \times D_4 \Rightarrow$ Richelot isogeny
- Express the parity as a product of local terms
 - $(-1)^{rk(J)} = \prod_{\nu} (-1)^{ord_2(\frac{c_{\nu}\mu_{\nu}}{c_{\nu}'\mu_{\nu}'})},$
- Compute λ_v for all v
 - Ω_J, c_ℓ, μ_v
- Compare λ_{v} and $w_{v}(J)$

$$(-1)^{rk(J)} = \prod_{v} \lambda_v$$

$$(-1)^{rk(J)} = \prod_{v} w_v(J) = w(J)$$

Local arithmetic of elliptic curves

Kodaira symbol	I ₀	I_n $(n \ge 1)$	II	III	IV	I*	$\begin{matrix} \mathbf{I}_n^* \\ (n \ge 1) \end{matrix}$	IV*	III*	II*	
Special fiber Č (The numbers indicate multi- plicities)	0			l) (1			$\begin{array}{c}1\\1\\2\\2\\1\end{array}$	$\begin{array}{c c}1 & & \\1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array}$	$1 \frac{2}{2} \frac{3}{4}$ $1 \frac{2}{2} \frac{3}{3}$	$\begin{array}{c c} 2 & 1 \\ \hline 4 & 3 \\ 5 & -3 \\ \hline 6 & -4 \\ \hline 2 & 4 \end{array}$	
m = number of irred. components	1	n	1	2	3	5	5+n	7	8	9	
$E(K)/E_0(K)$ $\cong \tilde{\mathcal{E}}(k)/\tilde{\mathcal{E}}^0(k)$	(0)	$\frac{\mathbb{Z}}{n\mathbb{Z}}$	(0)	$\frac{\mathbb{Z}}{2\mathbb{Z}}$	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$	$\frac{\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}}{\frac{n \text{ even}}{\mathbb{Z}}}$ $\frac{\frac{\mathbb{Z}}{4\mathbb{Z}}}{\frac{4\mathbb{Z}}{n \text{ odd}}}$	$\frac{\mathbb{Z}}{3\mathbb{Z}}$	$\frac{\mathbb{Z}}{2\mathbb{Z}}$	(0)	
$\tilde{\mathcal{E}}^{0}(k)$	$\tilde{E}(k)$	k^*	k^+	k^+	k^+	k^+	k^+	k^+	k^+	k^+	
Entries below this line only valid for $char(k) = p$ as indicated											
$\operatorname{char}(k) = p$			$p \neq 2, 3$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p \neq 2$	$p \neq 3$	$p \neq 2$	$p \neq 2, 3$	
$v(\mathcal{D}_{E/K})$ (discriminant)	0	n	2	3	4	6	6 + n	8	9	10	
f(E/K) (conductor)	0	1	2	2	2	2	2	2	2	2	
behavior of j	$v(j) \ge 0$	v(j) = -n	$\tilde{j} = 0$	$\tilde{j} = 1728$	$\tilde{j} = 0$	$v(j) \geq 0$	v(j) = -n	$\tilde{j} = 0$	$\tilde{j} = 1728$	$\tilde{j} = 0$	

Local arithmetic of hyperelliptic curves, *p* odd (joint with T. and V. Dokchitser and A. Morgan)

(J						0 /		
Cluster Picture								
ß	2					(n) (m) (k)		
Number of components	1	r + 1	п	n + r	n + m - 1	n + m + k - 1	n + m + r - 1	
$\frac{\overline{\mathcal{J}}(k)}{\overline{\mathcal{J}}^{0}(k)}$	(0)	(0) (0) $\frac{\mathbb{Z}}{n^2}$		$\frac{\mathbb{Z}}{n\mathbb{Z}}$	$\frac{\mathbb{Z}}{n\mathbb{Z}} \times \frac{\mathbb{Z}}{m\mathbb{Z}}$	$\frac{\overline{Z}}{d\overline{Z}} \times \frac{\overline{Z}}{t\overline{Z}}$ $d = gcd(n, m, k)$ $t = (nm + nk + mk)/d$	$\frac{\mathbb{Z}}{n\mathbb{Z}} \times \frac{\mathbb{Z}}{m\mathbb{Z}}$	
C _p	1	1 1 <i>n n nm</i>		nm	nm + nk + km	nm		
$v(\Delta_{min})$	0	12 <i>r</i>	n	12 <i>r</i> + <i>n</i>	<i>n</i> + <i>m</i>	n + m + k	12r + n + m	
f(C/K)	0	0	1 1		2 2		2	

Céline Maistret (University of Bristol)

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
 - Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions
 - $C: y^2 = f(x)$ with $Gal(f) \subseteq C_2 \times D_4$
- Use BSD invariance under isogeny to compute parity of rank
 - $Gal(f) \subseteq C_2 \times D_4 \Rightarrow$ Richelot isogeny
- Express the parity as a product of local terms
 - $(-1)^{rk(J)} = \prod_{\nu} (-1)^{ord_2(\frac{c_{\nu}\mu_{\nu}}{c_{\nu}'\mu_{\nu}'})},$
- Compute λ_v for all v
 - Ω_J, c_ℓ, μ_v
- Compare λ_{v} and $w_{v}(J)$

$$(-1)^{rk(J)} = \prod_{v} \lambda_v$$

$$(-1)^{rk(J)} = \prod_{v} w_v(J) = w(J)$$

▲山 マ チ ヨ マ チ

Strategy

Types of p.p. abelian surfaces

Theorem (see Gonzales-Guàrdia-Rotger)

Let A/K be a principally polarized abelian surface defined over a number field K. Then A is one of the following three types:

- $A \simeq_{\mathcal{K}} J(C)$, where C/K is a smooth curve of genus 2,
- $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K,
- $A \simeq_{\mathcal{K}} Res_{F/\mathcal{K}} E$, where $Res_{F/\mathcal{K}} E$ is the Weil restriction of an elliptic curve defined over a quadratic extension F/\mathcal{K} .

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strategy

 $A \simeq_{K} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K

• Use BSD invariance under isogeny to compute parity of rank

• $E_1[2] \simeq E_2[2] \Rightarrow$ Singular Richelot isogeny

• Express the parity as a product of local terms

•
$$(-1)^{\mathsf{rk}(JE_1 \times E_2)} = \prod_{\nu} \lambda_{\nu}$$

• Compute λ_v for all v

$$\triangleright \ \Omega_{E_1 \times E_2}, c_{\ell}, \mu_{\nu}$$

• Compare
$$\lambda_{\nu}$$
 and $w_{\nu}(E_1 \times E_2)$
• $(-1)^{rk(E_1 \times E_2)} = \prod_{\nu} \lambda_{\nu} \qquad \prod_{\nu} \lambda_{\nu} = \prod_{\nu} w_{\nu}(E_1 \times E_2) = w(E_1 \times E_2)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Strategy

 $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K

Use BSD invariance under isogeny to compute parity of rank
 ▼ E₁[2] ≃ E₂[2] ⇒ Singular Richelot isogeny

Let f(x) be a separable monic cubic polynomial with $f(0) \neq 0$. Then (up to quadratic twists)

•
$$E_1 \simeq y^2 = f(x), \quad E_2 \simeq y^2 = xf(x),$$

• there exists $\phi : E \times \text{Jac}E' \rightarrow \text{Jac}C$, where $C : y^2 = f(x^2)$; such that $\phi \phi^{\vee} = [2]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Strategy

 $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
 *E*₁[2] ≃ *E*₂[2] ⇒ Singular Richelot isogeny
- Express the parity as a product of local terms

•
$$(-1)^{rk(E_1 \times E_2)} = \prod_{\nu} \lambda_{\nu}$$

• Compute λ_v for all v

$$\triangleright \ \Omega_{E_1 \times E_2}, c_{\ell}, \mu_{\nu}$$

• Compare
$$\lambda_{\nu}$$
 and $w_{\nu}(E_1 \times E_2)$
• $(-1)^{rk(E_1 \times E_2)} = \prod_{\nu} \lambda_{\nu} \qquad \prod_{\nu} \lambda_{\nu} = \prod_{\nu} w_{\nu}(E_1 \times E_2) = w(E_1 \times E_2)$

(4) (日本)

Strategy

 $A \simeq_{\mathcal{K}} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over \mathcal{K}

- Use BSD invariance under isogeny to compute parity of rank
 *E*₁[2] ≃ *E*₂[2] ⇒ Singular Richelot isogeny
- Express the parity as a product of local terms

Computing the parity of the rank

$$(-1)^{\textit{rk}(E_1 \times E_2)} = (-1)^{\textit{ord}_2\left(\frac{\Omega_{E_1 \times E_2}}{\Omega_{\mathsf{JacC}}} \prod_{\ell} \frac{c_{\ell}(E_1 \times E_2)}{c_{\ell}(\mathsf{JacC})} \frac{1}{|\mathsf{III}(\mathsf{JacC})|}\right)}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Strategy

 $A \simeq_{\kappa} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over K

- Use BSD invariance under isogeny to compute parity of rank
 *E*₁[2] ≃ *E*₂[2] ⇒ Singular Richelot isogeny
 - $= L_1[2] = L_2[2] \rightarrow \text{Singular Hencist isogeny}$
- Express the parity as a product of local terms

•
$$(-1)^{rk(E_1 \times E_2)} = \prod_{v} \lambda_v$$

- Compute λ_v for all v
 - $\blacktriangleright \ \Omega_{E_1 \times E_2}, c_{\ell}, \mu_{\nu}$

• Compare
$$\lambda_{\nu}$$
 and $w_{\nu}(E_1 \times E_2)$
• $(-1)^{rk(E_1 \times E_2)} = \prod_{\nu} \lambda_{\nu} \qquad \prod_{\nu} \lambda_{\nu} = \prod_{\nu} w_{\nu}(E_1 \times E_2) = w(E_1 \times E_2)$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Local comparison : Elliptic curves

Let E/\mathbb{Q} and E'/\mathbb{Q} be two elliptic curves related by a 2-isogeny

$$E: y^2 = x(x^2 + ax + b)$$
 $E': y^2 = x(x^2 - 2ax + (a^2 - 4b))$

Theorem (Dokchitser-Dokchitser)

$$(-1)^{ord_2(rac{c_\ell}{c_\ell})} = (-2a, a^2 - 4b)_\ell(a, -b)_\ell w_\ell$$

• $\prod_{\nu} (a, b)_{\nu} = 1$ (product formula for Hilbert symbols)

- non-split multiplicative reduction where $v(\Delta(E))$ is odd
- need "discriminant and field of definition of tangents"
- consider the real place to find right invariants

Local comparison : Elliptic curves

Let E/\mathbb{Q} and E'/\mathbb{Q} be two elliptic curves related by a 2-isogeny

$$E: y^2 = x(x^2 + ax + b)$$
 $E': y^2 = x(x^2 - 2ax + (a^2 - 4b))$

Theorem (Dokchitser-Dokchitser)

$$(-1)^{\operatorname{ord}_2(rac{c_\ell}{c_\ell})}=(-2\mathsf{a},\mathsf{a}^2-4\mathsf{b})_\ell(\mathsf{a},-\mathsf{b})_\ell\mathsf{w}_\ell$$

• $\prod_{\nu} (a, b)_{\nu} = 1$ (product formula for Hilbert symbols)

- non-split multiplicative reduction where $v(\Delta(E))$ is odd
- need "discriminant and field of definition of tangents"
- consider the real place to find right invariants

Local comparison : Jacobians of $C_2 \times D_4$ genus 2 curves

Theorem

If $Gal(f) \subseteq C_2 \times D_4$ and C is semistable at v (and good ordinary above 2) then

$$(-1)^{\operatorname{ord}_2(\frac{c_{\nu}\mu_{\nu}}{c_{\nu}'\mu_{\nu}'})} = E_{\nu} \cdot w_{\nu}.$$

For each place v of K, define the following Hilbert symbols at v

$$E_{\mathbf{v}} = (\delta_{2} + \delta_{3}, -\ell_{1}^{2}\delta_{2}\delta_{3}) \cdot (\delta_{2}\eta_{2} + \delta_{3}\eta_{3}, -\ell_{1}^{2}\eta_{2}\eta_{3}\delta_{2}\delta_{3}) \cdot (\delta_{2}\eta_{3} + \hat{\delta}_{3}\eta_{2}, -\ell_{1}^{2}\eta_{2}\eta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\delta_{2}\eta_{3} + \hat{\delta}_{3}\eta_{2}, -\ell_{1}^{2}\eta_{2}\eta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\eta_{1}, -\delta_{2}\delta_{3}\Delta^{2}\hat{\delta}_{1}) \cdot (\xi, -\delta_{1}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\eta_{2}\eta_{3}, -\delta_{2}\delta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\eta_{1}, -\delta_{2}\delta_{3}\Delta^{2}\hat{\delta}_{1}) \cdot (c, \delta_{1}\delta_{2}\delta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\hat{\delta}_{1}, \frac{\ell_{1}}{\Delta}) \cdot (\ell_{1}^{2}, \ell_{2}\ell_{3}) \cdot (2, -\ell_{1}^{2}) \cdot (\hat{\delta}_{2}\hat{\delta}_{3}, -2)$$

(A) → (A

Local comparison : Jacobians of $C_2 \times D_4$ genus 2 curves

Theorem

If $Gal(f) \subseteq C_2 \times D_4$ and C is semistable at v (and good ordinary above 2) then

$$(-1)^{\operatorname{ord}_2(\frac{c_{\nu}\mu_{\nu}}{c_{\nu}'\mu_{\nu}'})} = E_{\nu} \cdot w_{\nu}.$$

For each place v of K, define the following Hilbert symbols at v

$$E_{\nu} = (\delta_{2} + \delta_{3}, -\ell_{1}^{2}\delta_{2}\delta_{3}) \cdot (\delta_{2}\eta_{2} + \delta_{3}\eta_{3}, -\ell_{1}^{2}\eta_{2}\eta_{3}\delta_{2}\delta_{3}) \cdot (\hat{\delta}_{2}\eta_{3} + \hat{\delta}_{3}\eta_{2}, -\ell_{1}^{2}\eta_{2}\eta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\hat{\delta}_{2}\eta_{3} + \hat{\delta}_{3}\eta_{2}, -\ell_{1}^{2}\eta_{2}\eta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\eta_{1}, -\delta_{2}\delta_{3}\Delta^{2}\hat{\delta}_{1}) \cdot (\xi, -\delta_{1}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\eta_{2}\eta_{3}, -\delta_{2}\delta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\eta_{1}, -\delta_{2}\delta_{3}\Delta^{2}\hat{\delta}_{1}) \cdot (c, \delta_{1}\delta_{2}\delta_{3}\hat{\delta}_{2}\hat{\delta}_{3}) \cdot (\hat{\delta}_{1}, \frac{\ell_{1}}{\Delta}) \cdot (\ell_{1}^{2}, \ell_{2}\ell_{3}) \cdot (2, -\ell_{1}^{2}) \cdot (\hat{\delta}_{2}\hat{\delta}_{3}, -2)$$

э

(日) (四) (日) (日) (日)

Strategy

- Reduce to Jacobians of hyperelliptic curves of genus 2
 - Types of p.p. abelian surfaces
- Reduce to Jacobians with specific 2-torsions

•
$$C: y^2 = f(x)$$
 with $Gal(f) \subseteq C_2 \times D_4$

• Express the parity as a product of local terms

•
$$(-1)^{rk(J)} = \prod_{v} (-1)^{ord_2(\frac{c_v \mu_v}{c_v' \mu_v'})}$$

- Compute λ_v for all v
 - Ω_J, c_ℓ, μ_v
- Compare λ_v and $w_v(J)$

$$(-1)^{rk(J)} = \prod_{v} \lambda_{v} = \prod_{v} w_{v}(J) = w(J)$$

Theorem (Dokchitser V., M.)

Let K be a number field. Assuming finiteness of III, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of all semistable* principally polarized abelian surfaces over K.

*good ordinary reduction a places above 2.

Local comparison : $E_1 \times E_2$

Theorem

Let $f(x) = x^3 + ax^2 + bx + c \in K[x]$ such that $c \neq 0$ and write L = ab - 9c. Then $(-1)^{ord_2(\frac{c_V(E)c_V(JacE')}{c_V(JacC)\mu_V(C)})} = E_v \cdot w_v(E)w_v(Jac(E')).$

For each place v of K, define the following Hilbert symbols at v $E_v = (b,-c)(-2L,\Delta_f)(L,-b)$

Invariants were found using Sturm polynomials.

- E_v recovers the error term for elliptic curves with a 2-isogeny
- E_v generalizes for deg(f) > 4 (H. Green)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Local comparison : $E_1 \times E_2$

Theorem

Let $f(x) = x^3 + ax^2 + bx + c \in K[x]$ such that $c \neq 0$ and write L = ab - 9c. Then $(-1)^{ord_2(\frac{c_V(E)c_V(JacE')}{c_V(JacC)\mu_V(C)})} = E_v \cdot w_v(E)w_v(Jac(E')).$

For each place v of K, define the following Hilbert symbols at v $E_v = (b, -c)(-2L, \Delta_f)(L, -b)$

Invariants were found using Sturm polynomials.

- E_v recovers the error term for elliptic curves with a 2-isogeny
- E_v generalizes for deg(f) > 4 (H. Green)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Strategy

 $A \simeq_{\mathcal{K}} E_1 \times E_2$, where E_1, E_2 are two elliptic curves defined over \mathcal{K}

- Use BSD invariance under isogeny to compute parity of rank
 *E*₁[2] ≃ *E*₂[2] ⇒ Singular Richelot isogeny
- Express the parity as a product of local terms

$$\blacktriangleright \ (-1)^{rk(J)} = \prod_{\nu} \lambda_{\nu}$$

- Compute λ_v for all v
 - $\blacktriangleright \Omega_J, c_\ell, \mu_v$
- Compare λ_v and $w_v(E_1 \times E_2)$

$$(-1)^{\mathsf{rk}(\mathsf{E}_1 \times \mathsf{E}_2)} = \prod_{v} \lambda_v = \prod_{v} w_v(\mathsf{E}_1 \times \mathsf{E}_2) = w(\mathsf{E}_1 \times \mathsf{E}_2)$$

(4) (日本)

Theorem (Green H, M.)

Let *K* be a number field. Assuming finiteness of III, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of $E_1 \times E_2/K$, for elliptic curves E_1, E_2 with isomorphic 2-torsion groups.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Thank you for your attention

▲ 同 ▶ → 三 ▶

Precise resutls

Theorem (Dokchitser V., M.)

The parity conjecture holds for all principally polarized abelian surfaces over number fields A/K such that $\coprod_{A/K(A[2])}$ has finite 2–, 3–, 5– primary part that are either

- the Jacobian of a semistable genus 2 curve with good ordinary reduction above 2, or
- semistable and not isomorphic to the Jacobian of a genus 2 curve.

Theorem (Green H, M.)

Let K be a number field and $E_1, E_2/K$ be elliptic curves. If $E_1[2] \simeq E_2[2]$ as Galois modules, then the 2-parity conjecture holds for E_1/K if and only if it holds for E_2/K .

э.

イロト イヨト イヨト

Regulator constants

Theorem (T. and V. Dokchitser)

Suppose

- A semistable p.p. abelian variety,
- F = K(A[2]),
- $\operatorname{III}(A/F)[p^{\infty}]$ is finite for odd primes p dividing [F:K],
- Parity holds for A/L for all $K \subseteq L \subseteq F$ with Gal(F/L) a 2-group. Then the parity conjecture holds for A/K.

Remark

The Sylow 2-subgroup of S_6 is $C_2 \times D_4$. Hence if $Gal(K_f/L)$ is a 2-group then $Gal(K_f/L) \subseteq C_2 \times D_4$. By Theorem 2.ii: if $Gal(K_f/L) \subseteq C_2 \times D_4$, C semistable and good ordinary at 2-adic places then the 2-parity conjecture holds for J/L. Thus if $|III(J/K_f)[2^{\infty}]| < \infty$ then the parity conjecture holds for J/L.

3

(日)

Complete local formula

Theorem

Fix an exterior form Ω' of J' and denote $\Omega_{\nu}'^o$, Ω_{ν}^o the Néron exterior forms at the place ν of K associated to Ω' and $\phi^*\Omega'$ respectively. Then $(-1)^{rk_2(J)} = \prod_{\nu} (-1)^{\lambda_{\nu}}$ with

$$\lambda_{\nu\mid\infty} = \operatorname{ord}_2\left(\frac{n \cdot m_{\nu}}{|\operatorname{ker}(\alpha)| \cdot n' \cdot m_{\nu}'}\right), \quad \lambda_{\nu \nmid \infty} = \operatorname{ord}_2\left(\frac{c_{\nu} \cdot m_{\nu}}{c_{\nu}' \cdot m_{\nu}'} \Big| \frac{\phi^* \Omega_{\nu}'^o}{\Omega_{\nu}^o} \Big|_{\nu}\right),$$

where *n*, *n'* are the number of K_v -connected components of *J* and *J'*, α is the restriction of ϕ to the identity component of $J(K_v)$, c_v and c'_v the Tamagawa numbers of *J* and *J'*, and $m_v = 2$ if *C* is deficient at *v*, $m_v = 1$ otherwise.

э

p^{∞} -Selmer rank and *p*-parity conjecture

p^{∞} Selmer rank

For a prime p, define the p^{∞} Selmer rank as

 $rk_{\rho}(A) = rk(A) + \delta_{\rho}$, where

 $\operatorname{III}[p^{\infty}] = (\mathbb{Q}_p/\mathbb{Z}_p)^{\delta_p} \times \operatorname{III}_0[p^{\infty}], \quad |\operatorname{III}_0[p^{\infty}]| < \infty.$

Assuming finiteness of III(A); for all prime p

$$rk(A) = rk_p(A).$$

p-parity conjecture

For all prime p,

$$(-1)^{rk_p(A)} = w(A).$$

Céline Maistret (University of Bristol)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Error term and arithmetic invariants of the variety

• E/K with multiplicative reduction and 2-isogeny

$$\Rightarrow -\frac{c_4}{c_6} \equiv b_2 \equiv a \bmod K^{\times 2}$$

• Let A/K be an abelian variety. For any prime ℓ , write $\phi_o(\ell)$ for the ℓ -primary component of

$$\phi_o(k) \simeq A(K)/A(K)^0.$$

Then for $\ell \neq p$

$$\phi_o(\ell) \simeq \frac{\left(T_\ell(A(\bar{K})) \otimes \mathbb{Q}_\ell/\mathbb{Z}_\ell\right)\right)^{I_{K}}}{\left(T_\ell(A(\bar{K}))\right)^{I_{K}} \otimes \mathbb{Q}_\ell/\mathbb{Z}_\ell)}$$

The error term (except the contribution of III) is Galois theoretic

Céline Maistret (University of Bristol)

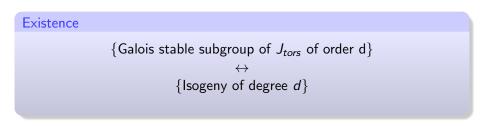
Parity of ranks of abelian surfaces

November 30, 2021

Deficiency

Definition : Deficiency

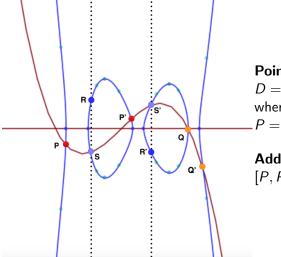
If X is a curve of genus g over a local field \mathcal{K} , we say that X is deficient if X has no \mathcal{K} -rational divisor of degree g - 1. If X is a curve of genus g over a global field K, then a place v of K is called deficient if X/K_v is deficient. 2-isogeny equivalent for Jacobians : Richelot isogeny



\Rightarrow Look at J[2] and find a Galois stable subgroup of order 4

Céline Maistret (University of Bristol) P

Points on J(K) and J(K)[2]



Points on J(K): $D = P + Q - P_{\infty}^+ - P_{\infty}^- = [P, Q],$ where $P, Q \in C(K)$ or $P = \overline{Q} \in C(F), \quad [F : K] = 2$

Adding points on J(K): [P, P'] + [Q, Q'] = [R, R']

2 torsion: $J(\overline{K})[2] = \{[T_i, T_k], i \neq k\} \cup \{0\}, \text{ where } T_i = (x_i, 0) \in C(\overline{K}).$

Céline Maistret (University of Bristol)

Richelot isogeny

•
$$Gal(f) \subseteq C_2^3 \rtimes S_3 \implies$$
 Richelot isogeny

$$f(x) = q_1(x)q_2(x)q_3(x) \text{ with roots } \alpha_i, \beta_i.$$

$$D_1 = [(\alpha_1, 0), (\beta_1, 0)], \quad D_2 = [(\alpha_2, 0), (\beta_2, 0)], \quad D_3 = [(\alpha_3, 0), (\beta_3, 0)]$$

lie in $J(\overline{K})[2]$ and $\{0, D_1, D_2, D_3\}$ is a Galois stable subgroup of $J(K)[2]$.

Proposition

If $Gal(f) \subseteq C_2^3 \rtimes S_3$ then J admits a **Richelot isogeny** Φ s.t. $\Phi \Phi^* = [2]$.

Remark : Explicit construction

There is an explicit model for the curve C' underlying the isogenous Jacobian J'.

Céline Maistret (University of Bristol)

Parity of ranks of abelian surfaces

November 30, 2021

▲□▶▲母▶▲≡▶▲≡▶ ≡ めぬ⊙