Invariant elements for p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$

Stefano Morra

Abstract

Let p be an odd rational prime and F a p-adic field. We give a realization of the universal p-modular representations of $\mathbf{GL}_2(F)$ in terms of an explicit Iwasawa module. We specialize our constructions to the case $F = \mathbf{Q}_p$, giving a detailed description of the invariants under principal congruence subgroups of irreducible admissible p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$, generalizing previous work of Breuil and Paskunas [BP]. We apply these results to the local-global compatibility of Emerton [Eme10], giving a generalization of the classical multiplicity one results for the Jacobians of modular curves with arbitrary level at p.

Contents

1	Introduction	1
	1.1 Notation	5
2	Reminders on the universal representations for GL_2	8
	2.1 Construction of the universal representation	8
3	Structure theorems for universal representations	12
	3.1 Refinement of the Iwahori structure	12
	3.2 The case $F = \mathbf{Q}_p \dots \dots$	17
4	Study of K_t and I_t invariants	19
	4.1 Invariants for the Iwasawa modules $R_{\infty,\bullet}^-$	19
	4.2 Invariants for supersingular representations	25
5	The case of principal and special series	30
6	Global applications	32

1. Introduction

Let F be a p-adic field, with ring of integers \mathscr{O}_F and residue field k_F . This article is framed in the broad context of the p-modular Langlands correspondence, aimed to match continuous Galois representations of $\operatorname{Gal}(\overline{F}/F)$ over finite dimensional $\overline{\mathbf{F}}_p$ -vector spaces with certain $\overline{\mathbf{F}}_p$ -valued, smooth representations of the F-points of p-adic reductive groups.

This correspondence has first been defined in the particular case of $F = \mathbf{Q}_p$ and the group \mathbf{GL}_2 , thanks to the parametrization of supersingular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$ (cf. [Bre03a]). It is now completely established in the wide horizon of the p-adic Langlands correspondence for $\mathbf{GL}_2(\mathbf{Q}_p)$ (cf. [Col1], [Kis], [Pas1]) and admits a cohomological realization according to the local-global compatibility of Emerton [Eme10].

For other groups the situation turns out to be extremely more delicate. While p-modular Galois representations are well understood, the theory of p-modular representation of p-adic reductive

Stefano Morra

groups is at its beginning, starting with the pionieristic work of Barthel and Livné [BL94], [BL95] and recently achieved in greater generality by Herzig [Her2]. Even for \mathbf{GL}_2 , recent constructions of Breuil and Paskunas [BP] and Hu [Hu2] show a troubling proliferation of supersingular representations as soon as $F \neq \mathbf{Q}_p$. This phenomenon remains, at present, unexplained.

Nevertheless, the work [BP], [Hu] highlight that the crucial point in order to understand an irreducible admissible p-modular $\mathbf{GL}_2(F)$ representation π relies in a complete control of its *internal structure*, i.e. of the extensions between irreducible representations of certain congruence subgroups appearing as *subquotients* of π . A exhaustive study in this direction has started in [Mo1], where the author realizes the $\mathbf{GL}_2(\mathbf{Z}_p)$ -socle filtration for irreducible admissible $\mathbf{GL}_2(\mathbf{Q}_p)$ -representations.

In this article we pursue the investigation undertaken in [Mo1], clarifying the internal behavior of universal p-modular representations of $\mathbf{GL}_2(F)$ by means of structure theorems, showing the prominent role of an explicit Iwasawa module. This enables us, in the particular case of $F = \mathbf{Q}_p$, to describe exhaustively the space of fixed vectors of supersingular representations under principal congruence subgroups, generalizing previous results of Breuil and Paskunas [BP]. Thanks to the local-global compatibility theorems of Emerton [Eme10], we are able to generalize the classical "multiplicity one" results ([Maz], [Rib], [Edi], [Kha]) in the case of modular curves whose level is highly divisible by p.

We give a more precise account of the main results appearing in this paper.

Let k be a finite extension of k_F (the "field of coefficients"): all representations are on k linear spaces. From the classification of Barthel and Livné [BL94], a supersingular representation π of $\mathbf{GL}_2(F)$ is, up to twist, an irreducible admissible quotient of an explicit universal representation $\pi(\sigma,0)$. The latter is defined as the cokernel of a canonical Hecke operator on the compact induction $\mathrm{ind}_{\mathbf{GL}_2(\mathscr{O}_F)F^{\times}}^{\mathbf{GL}_2(F)}\sigma$, where σ is an irreducible smooth representation of $\mathbf{GL}_2(\mathscr{O}_F)F^{\times}$.

According to the work of Breuil and Paskunas [BP] and Hu [Hu2], the representation π is completely determined by its structure as $\mathbf{GL}_2(\mathscr{O}_F)$ and N representation, where N is the normalizer of the Iwahori subgroup I of $\mathbf{GL}_2(\mathscr{O}_F)$ (the crucial point being that $\mathbf{GL}_2(F)$ is canonically identified with the amalgamation of $\mathbf{GL}_2(\mathscr{O}_F)F^{\times}$ and N along their intersection IF^{\times}).

Our first results give a realization of the $\mathbf{GL}_2(\mathscr{O}_F)$ and the N restriction of $\pi(\sigma,0)$ in terms of certain k[I]-modules $R_{\infty,0}^-$, $R_{\infty,-1}^-$:

THEOREM 1.1 (Corollary 3.5). There is a canonical $\mathbf{GL}_2(\mathscr{O}_F)F^{\times}$ -isomorphism $\pi(\sigma,0)|_{\mathbf{GL}_2(\mathscr{O}_F)F^{\times}} \cong R_{\infty,0} \oplus R_{\infty,-1}$ where the representations $R_{\infty,0}$, $R_{\infty,-1}$ fit in the following exact sequences of $k[\mathbf{GL}_2(\mathscr{O}_F)]$ -modules:

$$0 \to V_1 \to \operatorname{ind}_I^{\mathbf{GL}_2(\mathscr{O}_F)} \left(R_{\infty,0}^- \right) \to R_{\infty,0} \to 0$$
$$0 \to V_2 \to \operatorname{ind}_I^{\mathbf{GL}_2(\mathscr{O}_F)} \left(R_{\infty,-1}^- \right) \to R_{\infty,-1} \to 0$$

for suitable subquotients V_1 , V_2 of an induction from a smooth character of the Iwahori subgroup, depending on σ .

The second structure theorem clarifies a result already appearing in [Mo5] (Proposition 3.5) and is concerned with the N-restriction of the universal representation $\pi(\sigma, 0)$. We remark that if $F = \mathbf{Q}_p$ this is a result of Paskunas ([Pas2], Theorem 6.3 and Corollary 6.5).

Theorem 1.2 (Propositions 3.7 and 3.8). In the notations of Theorem 1.1, we have the following I-equivariant exact sequences

$$0 \to W_1 \to (R_{\infty,-1}^-)^s \oplus R_{\infty,0}^- \to R_{\infty,0}|_I \to 0$$
$$0 \to W_2 \to (R_{\infty,0}^-)^s \oplus R_{\infty,-1}^- \to R_{\infty,-1}|_I \to 0$$

where W_1 , W_2 are convenient 1-dimensional k[I]-modules. Moreover, the action of the element $\begin{bmatrix} 0 & 1 \\ \varpi & 0 \end{bmatrix}$ on the universal representation $\pi(\sigma, 0)$ induces the k[I]-equivariant involution

$$(R_{\infty,-1}^-)^s \oplus R_{\infty,0}^- \xrightarrow{\sim} \left((R_{\infty,0}^-)^s \oplus R_{\infty,-1}^- \right)^s$$

$$(v_1, v_2) \longmapsto (v_2, v_1)$$

which restricts to an isomorphism $W_1 \stackrel{\sim}{\to} W_2^s$.

Here, the notation $(*)^s$ means that we are considering the action of I on * obtained by conjugation by the element $\begin{bmatrix} 0 & 1 \\ \varpi & 0 \end{bmatrix}$ (which is a representative for the only nontrivial coset of N/IF^{\times}).

An exhaustive control of the subquotients for the k[I]-modules $R_{\infty,0}^-$, $R_{\infty,-1}^-$ is crucial in order to extract the most subtle properties of supersingular representations for $\mathbf{GL}_2(F)$. For instance, in [Hu2] Hu gives a method to detect a subquotient of $R_{\infty,0}^- \oplus R_{\infty,-1}^-$ which essentially *characterizes* a supersingular quotient of $\pi(\sigma,0)$ and the studies of Schraen on the homological properties of $R_{\infty,0}^-$, $R_{\infty,-1}^-$ show that supersingular representations are *not* of finite presentation when $[F: \mathbf{Q}_p] = 2$ ([Sch]).

The k[I]-modules $R_{\infty,0}^-$, $R_{\infty,-1}^-$ admit an explicit construction, which is recalled in §3.1. Their Pontryagin duals are obtained as limits (over \mathbf{N}) of finitely presented modules whose first syzygy requires a strictly increasing number of generators as soon as $F \neq \mathbf{Q}_p$; in particular, $R_{\infty,0}^-$, $R_{\infty,-1}^-$ are not admissible unless $F = \mathbf{Q}_p$. A first study of $R_{\infty,0}^-$, $R_{\infty,-1}^-$ has been pursued by the author in [Mo5] (by representation theoretic methods) and in [Mo6], [Mo7] (using methods from Iwasawa theory).

In the case $F = \mathbf{Q}_p$ the behavior of $R_{\infty,0}^-$, $R_{\infty,-1}^-$ is particularly simple:

THEOREM 1.3 ([Mo1], Proposition 5.10). Let $F = \mathbf{Q}_p$. For $\bullet \in \{0, -1\}$ the k[I]-module $R_{\infty, \bullet}^-$ is uniserial.

This phenomenon, which can equally be deduced from the results of [Pas2] (Propositions 4.7 and 5.9), is at the heart of the studies carried out in [Mo1], [Mo4], [AM] and lets us detect in greatest detail the space of invariant vectors of supersingular representations $\pi(\sigma,0)$ of $\mathbf{GL}_2(\mathbf{Q}_p)$ under certain congruence subgroups.

The following theorem is a sharpening of the main result of [Mo1] and of [BP], Proposition 20.1:

THEOREM 1.4 (Corollary 4.14). Let $t \ge 1$ and let K_t be the principal congruence subgroup of $\mathbf{GL}_2(\mathcal{O}_F)$ of level p^t . Assume $\sigma = \operatorname{Sym}^r k^2$ where $r \in \{0, \dots, p-1\}$.

The space of K_t fixed vectors for the supersingular representation $\pi(\sigma,0)$ decomposes into the direct sum of two k[K]-modules $(\pi(\sigma,0))^{K_t} = (R_{\infty,0})^{K_t} \oplus (R_{\infty,-1})^{K_t}$. Each direct summand admits a K-equivariant filtration whose graded pieces are described by:

$$(R_{\infty,0})^{K_t}: \qquad \qquad \mathrm{Sym}^r k^2 - \mathrm{ind}_I^K \chi_{r+2} \mathrm{det}^{-1} - \mathrm{ind}_I^K \chi_{r+4} \mathrm{det}^{-2} - \ldots - \mathrm{ind}_I^K \chi_r - \mathrm{Sym}^{p-3-r} k^2 \otimes \mathrm{det}^{r+1}$$

 $(R_{\infty,-1})^{K_t}$: Sym^{p-1-r} $k^2 \otimes \det^r$ —ind^K χ_{-r+2} det^{r-1}—ind^K χ_{-r+4} det^{r-2}—...—ind^K χ_{-r} det^r—Sym^{r-2} $k^2 \otimes \det^r$ where we have $p^{t-1}-1$ parabolic inductions in each line and the algebraic representation Sym^{p-3-r} $k^2 \otimes \det^r$ in the first line (resp. Sym^{r-2} $k^2 \otimes \det^r$ in the second line) appears only if $p-3-r \geqslant 0$ (resp. $r-2 \geqslant 0$).

We recall that for any $n \in \mathbb{N}$ the natural $\mathbf{GL}_2(\mathbf{F}_p)$ -representation $\mathrm{Sym}^n k^2$ is viewed as a $\mathbf{GL}_2(\mathbf{Z}_p)$ -representation by inflation and that the smooth character χ_n of the Iwahori I is defined

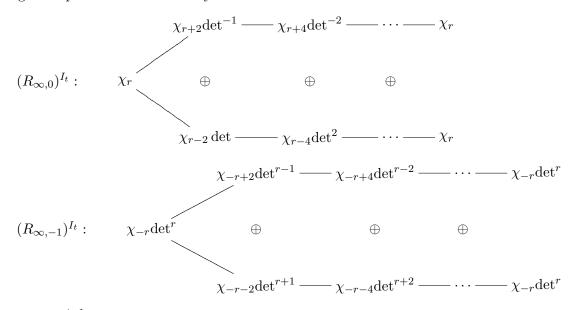
by $\begin{bmatrix} a & b \\ pc & d \end{bmatrix} \mapsto a^n \mod p$. One can indeed prove that the $\mathbf{GL}_2(\mathbf{Z}_p)$ socle filtration for $(R_{\infty,0})^{K_t}$, $(R_{\infty,-1})^{K_t}$ is obtained by the evident refinement of the filtration described by Theorem 1.4 (cf. Corollary 4.14).

The statement of Theorem 1.4 is deduced from Theorem 1.1, through a careful study of the K_t fixed vectors of the Iwasawa modules $R_{\infty,0}^-$, $R_{\infty,-1}^-$. As the latter are unserial, their K_t fixed elements can be easily recovered with a direct argument on Witt vectors (cf. Proposition 4.4).

In a similar fashion, we detect the fixed vectors for the congruence subgroup I_t , which is defined as the subgroup of K_{t-1} whose elements are upper unipotent modulo p^t :

Theorem 1.5 (Corollary 3.11, Propositions 4.6, 4.9). Let $t \ge 1$ and assume $\sigma = \operatorname{Sym}^r k^2$ for $r \in \{0, \dots, p-1\}$.

The space of I_t fixed vectors for the supersingular representation $\pi(\sigma,0)$ decomposes as $(\pi(\sigma,0))^{I_t} = (R_{\infty,0})^{I_t} \oplus (R_{\infty,-1})^{I_t}$. Each direct summand is a k[I]-module admitting an equivariant filtration whose graded pieces are described by:



and we have $p^{t-1} - 1$ characters on each horizontal line.

We point out that Theorem 1.4 and 1.5 had first been proved by the author in [Mo2], essentially with the same technical tools, but the lack of the structure Theorems 1.1 and 1.2 required a considerable amount of delicate estimates on Witt vectors. Moreover, our techniques could be applied to detect the fixed vectors for irreducible admissible $\mathbf{GL}_2(\mathbf{Q}_p)$ -representations under other congruence subgroups (see for instance [Mo3]).

As we remarked above, a precise control of K_t , I_t invariants has global applications, thanks to the geometric realization of the p-adic Langlands correspondence by Emerton [Eme10]. Let \overline{p} : $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \mathbf{GL}_2(k)$ be a continuous, irreducible odd Galois representation which we assume to be absolutely irreducible at p. Let N be its Artin conductor and κ its minimal weight (cf. [Ser87]); up to twist, we may assume $2 \le \kappa \le p$. Let $Y(Np^t)$ be the modular curve (defined over \mathbf{Q}) of level Np^t and $\mathfrak{m}_{\overline{p}}$ the maximal ideal in the spherical Hecke algebra of $H^1_{\acute{e}t}(Y(Np^t) \times_{\mathbf{Q}} \overline{\mathbf{Q}}, k)$ corresponding to \overline{p} .

The result is the following:

Invariant elements for p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$

THEOREM 1.6 (Proposition 6.1). Let K(N) be the kernel of the map

$$\prod_{\ell \mid N} \mathbf{GL}_2(\mathbf{Z}_\ell) \to \prod_{\ell \mid N} \mathbf{GL}_2(\mathbf{Z}_\ell/N)$$

and define

$$d \stackrel{\mathrm{def}}{=} \dim_k \left(\bigotimes_{\ell \mid N} \pi(\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbf{Q}}_{\ell}/\mathbf{Q}_{\ell})}) \right)^{K(N)}$$

where $\pi(\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbf{Q}}_{\ell}/\mathbf{Q}_{\ell})})$ is the smooth $\operatorname{GL}_2(\mathbf{Q}_{\ell})$ -representation attached to $\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbf{Q}}_{\ell}/\mathbf{Q}_{\ell})}$ by the Emerton-Helm p-modular Langlands correspondence ([EH]).

If $t \ge 1$ and $Np^t > 4$ we have

$$\dim_k \left(H^1_{\acute{e}t}(Y(Np^t) \times_{\mathbf{Q}} \overline{\mathbf{Q}}, k)[\mathfrak{m}_{\overline{\rho}}] \right) = 2d \left(2p^{t-1}(p+1) - 3 \right) \qquad \text{if } \kappa - 2 = 0$$

$$\dim_k \left(H^1_{\acute{e}t}(Y(Np^t) \times_{\mathbf{Q}} \overline{\mathbf{Q}}, k)[\mathfrak{m}_{\overline{\rho}}] \right) = 2d \left(2p^{t-1}(p+1) - 4 \right) \qquad \text{if } \kappa - 2 \neq 0.$$

Thanks to the relation between the étale cohomology of the modular curve $Y(Np^t)$ and the Tate module of its Jacobian, Theorem 1.6 generalizes the classical multiplicity one theorems ([Rib], [Maz]) to modular curves of arbitrary level at p. It is consistent with the results of Khare [Kha], where it is shown that the dimension of the $\bar{\rho}$ -isotypical component of the Jacobian of $X_1(Np^t)$ tends to infinity as the level at p increases.

The organization of the paper is the following.

We start (§2) by recalling the construction of the universal representation $\pi(\sigma, 0)$ for a p-adic field F, as well as some properties of finite parabolic induction for $\mathbf{GL}_2(\mathbf{F}_p)$ which will be used later on to describe the K_t -invariants for irreducible admissible representations of $\mathbf{GL}_2(\mathbf{Q}_p)$.

Section §3 is devoted to the realization of the structure theorems for universal representations. We first refine the constructions of §2 in order to define the Iwasawa modules $R_{\infty,0}^-$, $R_{\infty,-1}^-$ (§3.1); we subsequently specialize to the case $F = \mathbf{Q}_p$ (§3.2).

The space of invariant vectors for irreducible admissible representations is worked out in section 4. We first detect the invariants for the Iwasawa modules $R_{\infty,0}^-$, $R_{\infty,-1}^-$ (§4.1), relying crucially on the fact that such objects are unimodular (Proposition 4.4). We then use the structure theorems of section 3 to deduce the space of K_t and I_t fixed vectors for supersingular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$.

Section 5 is devoted to the case of principal and special series representations for $GL_2(\mathbf{Q}_p)$. The results are somehow similar, but can be detected with much less efforts.

Finally, we give in $\S 6$ a precise description of the global application of Theorems 1.4, 1.5 for the multiplicity spaces of mod p cohomology of modular curves.

1.1 Notation

Let p be an odd prime. We consider a p-adic field F, with ring of integers \mathscr{O}_F , uniformizer $\overline{\omega}$ and (finite) residue field k_F . Let $q \stackrel{\text{def}}{=} \operatorname{Card}(k_F)$ be its cardinality and $f \stackrel{\text{def}}{=} [k_F : \mathbf{F}_p]$ the residual degree. We write $x \mapsto \overline{x}$ for the reduction morphism $\mathscr{O}_F \to k_F$ and $\overline{x} \mapsto [\overline{x}]$ for the Teichmüller lift $k_F^{\times} \to \mathscr{O}_F^{\times}$ (we set $[0] \stackrel{\text{def}}{=} [0]$).

Consider the general linear group \mathbf{GL}_2 , whose F-points will be denoted by $G \stackrel{\text{def}}{=} \mathbf{GL}_2(F)$. We fix the maximal torus \mathbf{T} of diagonal matrices and the unipotent radical \mathbf{U} of upper unipotent matrices, so that $\mathbf{B} \stackrel{\text{def}}{=} \mathbf{T} \ltimes \mathbf{U}$ is the Borel subgroup of upper triangular matrices. We write $\overline{\mathbf{B}} = \mathbf{T} \ltimes \overline{\mathbf{U}}$ for the opposite Borel, and $Z \stackrel{\text{def}}{=} Z(G)$ for the center of the F-points of \mathbf{GL}_2 . Let \mathscr{T} be the Bruhat-Tits

tree associated to $\mathbf{GL}_2(F)$ (cf. [Ser77]) and consider the hyperspecial maximal compact subgroup $K \stackrel{\text{def}}{=} \mathbf{GL}_2(\mathscr{O}_F)$.

The object of study of this article are the following congruence subgroups of K:

$$K_t \stackrel{\text{def}}{=} \ker \left(K \stackrel{red_t}{\longrightarrow} \mathbf{GL}_2(\mathscr{O}_F/(\varpi^t)) \right), \qquad I_t \stackrel{\text{def}}{=} \left(red_t^{-1} \left(\mathbf{U}(\mathscr{O}_F/(\varpi^t)) \right) \right) \cap K_{t-1}$$

where $t \in \mathbf{N}$ and red_t denotes the mod ϖ^t reduction map. For notational convenience, we introduce the following objects

$$s \stackrel{\text{def}}{=} \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \in \mathbf{GL}_2(F), \qquad \alpha \stackrel{\text{def}}{=} \left[\begin{array}{cc} 0 & 1 \\ \varpi & 0 \end{array} \right] \in \mathbf{GL}_2(F), \qquad K_0(\varpi) \stackrel{\text{def}}{=} red_1^{-1} \big(\mathbf{B}(k_F) \big).$$

Let E be a p-adic field, with ring of integers \mathcal{O} and finite residue field k (the "coefficient field"). Up to enlarging E, we can assume that $\operatorname{Card}(\operatorname{Hom}_{\mathbf{F}_p}(k_F,k)) = [k_F : \mathbf{F}_p]$.

A representation σ of a subgroup H of $\mathbf{GL}_2(\mathbf{Q}_p)$ is always understood to be smooth with coefficients in k. If $h \in H$ we will sometimes write $\sigma(h)$ to denote the k-linear automorphism induced by the action of h on the underlying vector space of σ . We denote by $(\sigma)^H$ the linear space of H fixed vectors of σ .

Let $H_2 \leq H_1$ be compact open subgroups of K. For a smooth representation σ of H_2 we write $\operatorname{ind}_{H_2}^{H_1} \sigma$ to denote the (compact) induction of σ from H_2 to H_1 . If $v \in \sigma$ and $h \in H_1$ we write [h, v] for the unique element of $\operatorname{ind}_{H_2}^{H_1} \sigma$ supported in $H_2 h^{-1}$ and sending h^{-1} to v. We deduce in particular the following equalities:

$$h' \cdot [h, v] = [h'h, v], \qquad [hk, v] = [h, \sigma(k)v] \tag{1}$$

for any $h' \in H_1$, $k \in H_2$.

The previous construction will mainly be used when $H_1 = K$, $H_2 = K_0(\varpi)$. In this situation we define, for any $v \in \sigma$ and $l \in \mathbb{N}$, the element

$$f_l(v) \stackrel{\text{def}}{=} \sum_{\lambda \in k_F} \lambda^l \begin{bmatrix} [\lambda] & 1 \\ 1 & 0 \end{bmatrix} [1, v] \in \operatorname{ind}_{K_0(\varpi)}^K \sigma.$$

If $Z \cong F^{\times}$ is the center of $\mathbf{GL}_2(F)$ and σ is a representation of KZ we will similarly write $\mathrm{ind}_{KZ}^{\mathbf{GL}_2(F)}\sigma$ for the subspace of the full induction $\mathrm{Ind}_{KZ}^{\mathbf{GL}_2(F)}\sigma$ consisting of functions which are compactly supported modulo the center Z (cf. [Bre03a], §2.3). For $g \in \mathbf{GL}_2(F)$, $v \in \sigma$ we use the same notation [g,v] for the element of $\mathrm{ind}_{KZ}^{\mathbf{GL}_2(F)}\sigma$ having support in KZg^{-1} and sending g^{-1} to v; the element [g,v] verifies similar compatibility relations as in (1).

A $Serre\ weight$ is an absolutely irreducible representation of K. Up to isomorphism they are of the form

$$\bigotimes_{\tau \in \operatorname{Gal}(k_F/\mathbf{F}_p)} \left(\det^{t_\tau} \otimes_{k_F} \operatorname{Sym}^{r_\tau} k_F^2 \right) \otimes_{k_F, \tau} k \tag{2}$$

where $r_{\tau}, t_{\tau} \in \{0, \dots, p-1\}$ for all $\tau \in \operatorname{Gal}(k_F/\mathbf{F}_p)$ and $t_{\tau} < p-1$ for at least one τ . This gives a bijective parametrization of isomorphism classes of Serre weights by 2f-tuples of integers $r_{\tau}, t_{\tau} \in \{0, \dots, p-1\}$ such that $t_{\tau} < p-1$ for some τ . The Serre weight characterized by $t_{\tau} = 0$, $t_{\tau} = p-1$ for all $t_{\tau} \in \operatorname{Gal}(k_F/\mathbf{F}_p)$ will be referred as the Steinberg weight and denoted by $t_{\tau} = 0$.

Recall that the K representations $\operatorname{Sym}^{r_{\tau}} k_F^2$ can be identified with $k_F[X,Y]_{r_{\tau}}^h$, the linear subspace of $k_F[X,Y]$ described by the homogeneous polynomials of degree r_{τ} .

In this case, the action of K is described by

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \cdot X^{r_{\tau}-i} Y^i \stackrel{\text{def}}{=} (\overline{a}X + \overline{c}Y)^{r_{\tau}-i} (\overline{b}X + \overline{d}Y)^i$$

for any $0 \leq i \leq r_{\tau}$.

We fix once and for all a field homomorphism $k_F \hookrightarrow k$. The results of this paper do not depend on this choice.

Up to twist by a power of det, a Serre weight has now the more concrete expression

$$\sigma_{\underline{r}} \cong \bigotimes_{i=0}^{f-1} \left(\operatorname{Sym}^{r_i} k^2 \right)^{\operatorname{Frob}^i} \tag{3}$$

where $\underline{r} = (r_0, \dots, r_{f-1}) \in \{0, \dots, p-1\}^f$ and $(\operatorname{Sym}^{r_i} k^2)^{\operatorname{Frob}^i}$ is the representation of K obtained from $\operatorname{Sym}^{r_i} k^2$ via the homomorphism $\operatorname{\mathbf{GL}}_2(k_F) \to \operatorname{\mathbf{GL}}_2(k_F)$ induced by the i-th Frobenius $x \mapsto x^{p^i}$ on k_F .

We will usually extend the action of K on a Serre weight to the group KZ, by imposing the scalar matrix $\varpi \in Z$ to act trivially.

A k-valued character χ of the torus $\mathbf{T}(k_F)$ will be considered, by inflation, as a smooth character of any subgroup of $K_0(\varpi)$. We will write χ^s to denote the conjugate character of χ , defined by

$$\chi^s(t) \stackrel{\text{def}}{=} \chi(sts)$$

for any $t \in \mathbf{T}(k_F)$.

Similarly, if τ is any representation of $K_0(\varpi)$, we will write τ^s to denote the conjugate representation, defined by

$$\tau^s(h) = \tau(\alpha h \alpha)$$

for any $h \in K_0(\varpi)$.

Finally, if σ is a Serre weight, we write $\sigma^{[s]}$ for the unique Serre weight non isomorphic to σ and whose highest weight space affords the character $((\sigma)^{K_0(\varpi)})^s$. Concretely, if σ appears in the K socle of an induction $\operatorname{ind}_{K_0(\varpi)}^K \chi$, then $\sigma^{[s]}$ appears in the socle of $\operatorname{ind}_{K_0(\varpi)}^K \chi^s$.

If $\underline{r} = (r_0, \dots, r_{f-1}) \in \{0, \dots, p-1\}^f$ is an f-tuple we define the characters of $\mathbf{T}(k_F)$:

$$\chi_{\underline{r}}\bigg(\left[\begin{array}{cc}a&0\\0&d\end{array}\right]\bigg)\stackrel{\mathrm{def}}{=} a^{\sum_{i=0}^{f-1}p^ir_i}, \qquad \qquad \mathfrak{a}\bigg(\left[\begin{array}{cc}a&0\\0&d\end{array}\right]\bigg)\stackrel{\mathrm{def}}{=} ad^{-1}.$$

If $H \leq K$ is an open subgroup and τ is a representation of H we write $\{\operatorname{soc}^i(\tau)\}_{i\in\mathbb{N}}$ to denote its socle filtration (we set $\operatorname{soc}^0(\tau)\stackrel{\text{def}}{=}\operatorname{soc}(\tau)$). We will use the notation

$$\operatorname{soc}^{0}(\tau)$$
— $\operatorname{soc}^{1}(\tau)/\operatorname{soc}^{0}(\tau)$ —...— $\operatorname{soc}^{n+1}(\tau)/\operatorname{soc}^{n}(\tau)$ —...

to denote the sequence of consecutive graded pieces of the socle filtration for τ (in particular, each $\cos^{i+1}(\tau)/\cos^{i}(\tau)$ — $\cos^{i+2}(\tau)/\cos^{i+1}(\tau)$ is a non-split extension).

More generally, if τ is an H-representation endowed with an increasing filtration $\{\tau_i\}_{i\in\mathbb{N}}$ we will write

$$\operatorname{socfil}(\tau_0)$$
— $\operatorname{socfil}(\tau_1/\tau_0)$ —...— $\operatorname{socfil}(\tau_{i+1}/\tau_i)$ —...

to mean that

- i) the socle filtration for τ is obtained, by refinement, from the filtration induced on τ by the socle filtration of each graded piece τ_{i+1}/τ_i ;
- ii) the sequence of consecutive graded pieces of the socle filtration for τ is obtained as the juxtaposition of the sequences of the graded pieces associated to the socle filtration of each τ_{i+1}/τ_i .

If S is any set, and $s_1, s_2 \in S$ we define the Kronecker delta

$$\delta_{s_1,s_2} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 0 & \text{if} \quad s_1 \neq s_2 \\ 1 & \text{if} \quad s_1 = s_2. \end{array} \right.$$

Moreover, for $x \in \mathbf{Z}$, we define $\lfloor x \rfloor \in \{0, \dots, p-2\}$ (resp. $\lceil x \rceil \in \{1, \dots, p-1\}$) by the condition $\lfloor x \rfloor \equiv x \equiv \lceil x \rceil \mod p - 1$.

2. Reminders on the universal representations for GL₂

We recall here the precise definition of the universal representation of \mathbf{GL}_2 . We provide an explicit construction in terms of Hecke operators and Mackey decomposition, which turns out to be useful to realize the structure theorems of $\S 3$. We end the section collecting some results on finite inductions for smooth characters of the Iwahori subgroup.

The main references are the work of Breuil [Bre03a], §2 and [Mo1], §2 and §3.

2.1 Construction of the universal representation

We fix an f-tuple $\underline{r} \in \{0, \dots, p-1\}^f$ and write $\sigma = \sigma_{\underline{r}}$ for the associated Serre weight described in (2). In particular, the highest weight space of σ affords the character $\chi_{\underline{r}}$. We recall ([BL95], [Her1]) that the Hecke algebra $\mathscr{H}_{KZ}(\sigma) \stackrel{\text{def}}{=} \operatorname{End}_G(\operatorname{ind}_{KZ}^G \sigma)$ is commutative and isomorphic to the algebra of polynomials in one variable over k:

$$\mathscr{H}_{KZ}(\sigma) \stackrel{\sim}{\to} k[T].$$

The Hecke operator T is supported on the double coset $K\alpha KZ$ and completely determined as a suitable linear projection on σ (cf. [Her1], Theorem 1.2); it admits an explicit description in terms of the Bruhat-Tits tree of $\mathbf{GL}_2(F)$ (cf. [Bre03a], §2.5).

The universal representation $\pi(\sigma, 0, 1)$ for GL_2 is then defined by the exact sequence

$$0 \to \operatorname{ind}_{KZ}^G \sigma \xrightarrow{T} \operatorname{ind}_{KZ}^G \sigma \to \pi(\sigma, 0, 1) \to 0.$$

In the rest of this section we study the KZ-restriction of $\pi(\sigma, 0, 1)$ in terms of its Mackey decomposition, giving a precise construction by means of a family of suitable Hecke operators.

Let $n \in \mathbb{N}$. We consider the anti-dominant co-weight $\lambda_n \in X(\mathbf{T})_*$ characterized by

$$\lambda_n(\varpi) = \left[\begin{array}{cc} 1 & 0 \\ 0 & \varpi^n \end{array} \right]$$

and we introduce the subgroup

$$K_0(\varpi^n) \stackrel{\text{def}}{=} (\lambda_n(\varpi)K\lambda_n(\varpi^{-1})) \cap K = \left\{ \begin{bmatrix} a & b \\ \varpi^n c & d \end{bmatrix} \in K, \ c \in \mathscr{O}_F \right\}.$$

The element $\begin{bmatrix} 0 & 1 \\ \varpi^n & 0 \end{bmatrix}$ normalizes $K_0(\varpi^n)$ and we define the $K_0(\varpi^n)$ -representation $\sigma^{(n)}$ as the

 $K_0(\varpi^n)$ restriction of σ endowed with the twisted action of $K_0(\varpi^n)$ by the element $\begin{bmatrix} 0 & 1 \\ \varpi^n & 0 \end{bmatrix}$. Explicitly,

$$\sigma^{(n)}\bigg(\left[\begin{array}{cc}a&b\\\varpi^nc&d\end{array}\right]\bigg)\cdot\underline{X}^{\underline{r}-\underline{j}}\underline{Y}\underline{j}\stackrel{\mathrm{def}}{=}\sigma\bigg(\left[\begin{array}{cc}d&c\\\varpi^nb&a\end{array}\right]\bigg)\underline{X}^{\underline{r}-\underline{j}}\underline{Y}\underline{j}.$$

Finally, we write

$$R_n(\sigma) \stackrel{\text{def}}{=} \operatorname{ind}_{K_0(\varpi^n)}^K (\sigma^{(n)}).$$

Invariant elements for p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$

If the Serre weight σ is clear from the context, we set $R_n = R_n(\sigma)$. For notational convenience we define $R_{-1} \stackrel{\text{def}}{=} 0$.

We have a K-equivariant isomorphism (deduced from Frobenius reciprocity)

$$R_n \xrightarrow{\sim} k[K\lambda_n(\varpi)KZ] \otimes_{k[KZ]} \sigma$$

$$[1, v] \longmapsto \lambda_n(\varpi) \otimes s \cdot v$$

$$(4)$$

which realizes the Mackey decomposition for $\operatorname{ind}_{KZ}^G \sigma$:

$$(\operatorname{ind}_{KZ}^G \sigma)|_{KZ} \xrightarrow{\sim} \bigoplus_{n \in \mathbb{N}} R_n.$$

Here, $k[K\lambda_n(\varpi)KZ]$ is the k-linear space on the double coset $K\lambda_n(\varpi)KZ$, endowed with its natural structure of (k[K], k[KZ])-bimodule.

The interpretation in terms of the tree of \mathbf{GL}_2 is clear: the k[K]-module R_n maps isomorphically onto the space of elements of $\mathrm{ind}_{KZ}^G \sigma$ having support on the double coset $K\lambda_n(\varpi)KZ$. In particular, if σ is the trivial weight, a linear basis for R_n is parametrized by the vertices of $\mathscr T$ lying at distance n from the central vertex.

The Hecke endomorphism T induces, by transport of structure, a family of K-equivariant morphisms T_n defined on the k[K]-modules R_n : $T_n \stackrel{\text{def}}{=} T|_{R_n}$. From the explicit description of the Hecke operator T one sees (cf. [Mo5], §2.2.1) that $\text{Im}(T_n)$ is a sub-object of $R_{n+1} \oplus R_{n-1}$ so that we can further consider the composition with the canonical the projections

$$T_n^{\pm}: R_n \xrightarrow{T_n} R_{n+1} \oplus R_{n-1} \longrightarrow R_{n\pm 1}.$$

It turns out that, for $n \ge 1$, the operators T_n^{\pm} are obtained by compact induction (from $K_0(\varpi^n)$ to K) from the following morphisms t_n^{\pm} :

$$t_n^+: \sigma^{(n)} \hookrightarrow \operatorname{ind}_{K_0(\varpi^n)}^{K_0(\varpi^n)} \sigma^{(n+1)}$$

$$\underline{X}^{\underline{r}-\underline{j}}\underline{Y}^{\underline{j}} \mapsto \sum_{\lambda_n \in k_F} (-\lambda_n)^{\underline{j}} \begin{bmatrix} 1 & 0 \\ \varpi^n[\lambda_n] & 1 \end{bmatrix} [1, \underline{X}^{\underline{r}}];$$

$$t_{n+1}^-: \operatorname{ind}_{K_0(\varpi^n)}^{K_0(\varpi^n)} \sigma^{(n+1)} \twoheadrightarrow \sigma^{(n)}$$

$$[1, X^{\underline{r}-\underline{j}}\underline{Y}^{\underline{j}}] \mapsto \delta_{\underline{i},\underline{r}}\underline{Y}^{\underline{r}}.$$

For n = 0 we similarly have

$$T_0^+: \sigma^{(0)} \hookrightarrow R_1$$

$$\underline{X}^{\underline{r}-\underline{j}}\underline{Y}^{\underline{j}} \mapsto \sum_{\lambda_0 \in k_F} (-\lambda_0)^{\underline{r}-\underline{j}} \begin{bmatrix} [\lambda_0] & 1 \\ 1 & 0 \end{bmatrix} [1, \underline{X}^{\underline{r}}] + \delta_{\underline{j},\underline{0}}[1, \underline{X}^{\underline{r}}]$$

$$T_1^-: R_1 \twoheadrightarrow \sigma^{(0)}$$

$$[1, \underline{X}^{\underline{r}-\underline{j}}\underline{Y}^{\underline{j}}] \mapsto \delta_{\underline{j},\underline{r}}\underline{Y}^{\underline{r}}.$$

In particular, T_n^+ (resp. T_n^-) are monomorphisms (resp. epimorphisms).

We deduce the following exact sequence of K-representations

$$0 \to \bigoplus_{n \in \mathbf{N}} R_n \xrightarrow{\bigoplus_n T_n} \bigoplus_{n \in \mathbf{N}} R_n \to \pi(\sigma, 0, 1)|_{KZ} \to 0$$

so that, by the exactness of filtered co-limits and the definition of the Hecke operators T_n we obtain

$$\left(\lim_{\substack{\longrightarrow\\n\text{ odd}}}\operatorname{coker}\left(\bigoplus_{j=0}^{\frac{n-1}{2}}T_{2j+1}\right)\right) \oplus \left(\lim_{\substack{\longrightarrow\\n\text{ even}}}\operatorname{coker}\left(\bigoplus_{j=0}^{\frac{n}{2}}T_{2j}\right)\right) \cong \pi(\sigma,0,1)|_{KZ}$$
(5)

The representations $\operatorname{coker}\left(\bigoplus_{j=0}^{\frac{n-1}{2}} T_{2j+1}\right)$ can be described in a more expressive way as a suitable push-out of the partial Hecke operators T_n^{\pm} . Indeed one verifies that $\operatorname{coker}(T_1) = R_0 \oplus_{R_1} R_2$, where the push out is defined by the following co-cartesian diagram

$$R_{1} \xrightarrow{T_{1}^{+}} R_{2}$$

$$-T_{1}^{-} \downarrow \qquad pr_{2}$$

$$R_{0} \xrightarrow{R_{0}} R_{0} \oplus R_{1} R_{2}.$$

If we assume we have inductively constructed $pr_{n-1}: R_{n-1} \to R_0 \oplus_{R_1} \cdots \oplus_{R_{n-2}} R_{n-1}$ (where $n \ge 3$ is odd), we define the amalgamated sum $R_0 \oplus_{R_1} \cdots \oplus_{R_n} R_{n+1}$ by the following co-cartesian diagram:

Using the universal properties of push-outs and cokernels, one obtains a canonical isomorphism of k[K]-modules

$$\operatorname{coker}\left(\bigoplus_{j=0}^{\frac{n-1}{2}} T_{2j+1}\right) \cong R_0 \oplus_{R_1} R_2 \oplus_{R_3} \cdots \oplus_{R_n} R_{n+1}$$

(cf. [Mo5], Proposition 2.8 or [Mo1], Proposition 3.9) together with a commutative diagram with exact lines

$$0 \longrightarrow R_{n} \xrightarrow{T_{n}^{+}} R_{n+1} \longrightarrow R_{n+1}/R_{n} \longrightarrow 0 \qquad (6)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow R_{0} \oplus_{R_{1}} \cdots \oplus_{R_{n-2}} R_{n-1} \xrightarrow{\iota_{n}} R_{0} \oplus_{R_{1}} \cdots \oplus_{R_{n}} R_{n+1} \longrightarrow R_{n+1}/R_{n} \longrightarrow 0$$

We construct in a completely analogous fashion the amalgamated sums $(R_1/R_0) \oplus_{R_2} \cdots \oplus_{R_n} R_{n+1}$ for $n \in 2\mathbb{N}$, obtaining an isomorphism

$$\operatorname{coker}\left(\bigoplus_{j=0}^{\frac{n}{2}} T_{2j}\right) \cong (R_1/R_0) \oplus_{R_2} \cdots \oplus_{R_n} R_{n+1}$$

and a similar commutative diagram as in (6).

In order to lighten notations, we put

$$R_{\infty,0} \stackrel{\text{def}}{=} \lim_{\substack{\longrightarrow \\ n \text{ odd}}} R_0 \oplus_{R_1} \dots \oplus_{R_n} R_{n+1}$$

(where the inductive system is defined by the natural morphisms ι_n appearing in the diagram (6))

and, similarly,

$$R_{\infty,-1} \stackrel{\text{def}}{=} \lim_{\substack{\longrightarrow \\ n \text{ even}}} (R_1/R_0) \oplus_{R_2} \cdots \oplus_{R_n} R_{n+1}.$$

If we need to emphasize their dependence on the Serre weight σ we will write $R_{\infty,0}(\sigma)$, $R_{\infty,-1}(\sigma)$.

2.1.1 Induced representations for $\mathbf{B}(\mathbf{F}_p)$. In this section we specialize to $k_F = \mathbf{F}_p$ the results of [BP], §2 (see also [BS00]), which describe the structure of a $\mathbf{GL}_2(k_F)$ -representation parabolically induced from a character of a Borel subgroup. The results here will be used to complete the computations for the K_t invariant vectors of supersingular representations for $\mathbf{GL}_2(\mathbf{Q}_p)$.

Let $i, j \in \{0, ..., p-1\}$ and let us consider the $\mathbf{B}(\mathbf{F}_p)$ -character $\chi_i^s \mathfrak{a}^j$. If e is a fixed linear basis for the underlying vector space associated to $\chi_i^s \mathfrak{a}^j$ and if $l \in \mathbf{Z}$, we recall the elements $f_l \stackrel{\text{def}}{=} f_l(e) \in \operatorname{ind}_{\mathbf{B}(\mathbf{F}_p)}^{\mathbf{GL}_2(\mathbf{F}_p)} \chi_i^s \mathfrak{a}^j$ defined in §1.1.

The following result clarifies the relation between the elements f_l and the socle filtration for the finite parabolic induction:

Proposition 2.1. Let $i, j \in \{0, \dots, p-1\}$. Then

i) for $l \in \{0, ..., p-1\}$, f_l is an $\mathbf{T}(k_F)$ -eigenvector, whose associated eigencharacter is $\chi_{i-2j} \det^j \mathfrak{a}^{-l}$, and the set

$$\mathscr{B} \stackrel{\text{def}}{=} \{ f_l, [1, e] \ 0 \leqslant l \leqslant p - 1, \}$$

is an linear basis for $\operatorname{ind}_{\mathbf{B}(\mathbf{F}_p)}^{\mathbf{GL}_2(\mathbf{F}_p)} \chi_i^s \mathfrak{a}^j$.

ii) If $i - 2j \not\equiv 0$ [p - 1] then we have a nontrivial extension

$$0 \to \operatorname{Sym}^{\lfloor i-2j \rfloor} k^2 \otimes \operatorname{det}^j \to \operatorname{ind}_{\mathbf{B}(\mathbf{F}_p)}^{\mathbf{GL}_2(\mathbf{F}_p)} \chi_i^s \mathfrak{a}^j \to \operatorname{Sym}^{p-1-\lfloor i-2j \rfloor} k^2 \otimes \operatorname{det}^{i-j} \to 0.$$

The families

$$\{f_0, \dots, f_{\lfloor i-2j \rfloor - 1}, f_{\lfloor i-2j \rfloor} + (-1)^{i-j} [1, e]\},$$
 $\{f_{i-2j}, \dots, f_{p-1}\}$

induce a basis for the socle and the cosocle of $\operatorname{ind}_{\mathbf{B}(\mathbf{F}_p)}^{\mathbf{GL}_2(\mathbf{F}_p)} \chi_i^s \mathfrak{a}^j$ respectively.

iii) If $i-2j \equiv 0$ [p-1] then $\operatorname{ind}_{\mathbf{B}(\mathbf{F}_p)}^{\mathbf{GL}_2(\mathbf{F}_p)} \chi_i^s \mathfrak{a}^j$ is semi-simple and

$$\operatorname{ind}_{\mathbf{B}(\mathbf{F}_p)}^{\mathbf{GL}_2(\mathbf{F}_p)} \chi_i^s \mathfrak{a}^j \xrightarrow{\sim} \left(1 \oplus \operatorname{Sym}^{p-1} k^2 \right) \otimes \det^j.$$

The families

$$\{f_0 + (-1)^j [1, e]\},$$
 $\{f_0, f_1, \dots, f_{p-2}, f_{p-1} + (-1)^j [1, e]\}$

induce an k-basis for \det^j and $\operatorname{Sym}^{p-1}k^2 \otimes \det^j$ respectively.

Proof. Omissis. Cf. [BP], Lemmas 2.5, 2.6, 2.7.

We end this section with a technical remark on Witt polynomials, which, combined with Lemma 2.1, enables us to conclude the delicate computations needed to describe the K_t fixed vectors for supersingular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$ (§4.2). We recall ([AC], Chapitre 9, §1, partie 4) that if \mathbf{F} is a finite extension of \mathbf{F}_p we have the following equality in the associated ring of Witt vectors $\mathbf{W}(\mathbf{F})$:

$$[\mu] + [\lambda] \equiv [\lambda + \mu] + p[S_1(\lambda, \mu)] \mod p^2$$

where $\mu, \lambda \in \mathbf{F}$, $[\cdot] : \mathbf{F} \to \mathbf{W}(\mathbf{F})$ is the usual Teichmüller lift and $S_1 \in \mathbf{Z}[X, Y]$ is an homogeneous polynomial of degree p:

$$S_1(X,Y) = -\sum_{s=1}^{p-1} \frac{\binom{p}{s}}{p} X^{p-s} Y^s.$$
 (7)

An immediate manipulation gives

$$S_1(X - Y, Y) = -S_1(X, -Y). (8)$$

3. Structure theorems for universal representations

The aim of this section is to introduce some structure theorems for the universal representation $\pi(\sigma, 0, 1)$ of \mathbf{GL}_2 . These results concern both the KZ-restriction and the N-restriction of $\pi(\sigma, 0, 1)$ and show that the behavior of universal representations is controlled by a certain, explicit, k[I]-module $R_{\infty,\bullet}^-$. If $F = \mathbf{Q}_p$ the Pontryagin dual of such module turns out to be of finite type over a suitable discrete valuation ring: this is the crucial phenomenology which gives us a complete understanding of irreducible admissible representations of $\mathbf{GL}_2(\mathbf{Q}_p)$. If F is a nontrivial finite extension of \mathbf{Q}_p the situation is extremely delicate: the dual of $R_{\infty,\bullet}^-$ is defined over a complete Noetherian regular local ring of Krull dimension $[F:\mathbf{Q}_p]$ and is not any longer of finite type (if F is of characteristic p the module is defined over a non-noetherian profinite ring, and still not of finite type, cf. $[\mathrm{Mo}7]$).

We keep the notation of the previous section, in particular σ is a fixed Serre weight. We invite the reader to refer to [Mo5], §3 for the omitted details. We remark that the results of [Mo5], §3 are formal and hold true for *any* local field with finite residual degree (cf. also [Mo5], p.1077).

3.1 Refinement of the Iwahori structure

Let $n \in \mathbb{N}_{>}$. Restriction of functions from K to $K_0(\varpi)$ gives a $K_0(\varpi)$ -equivariant exact sequence

$$0 \to R_n^+ \to R_n \to \operatorname{ind}_{K_0(\varpi^n)}^{K_0(\varpi)} (\sigma^{(n)}) \to 0$$

which is easily checked to be split, therefore realizing the Mackey decomposition for $R_n|_{K_0(\varpi)}$. We thus define for $n \ge 1$

$$R_n^- \stackrel{\text{def}}{=} \operatorname{ind}_{K_0(\varpi^n)}^{K_0(\varpi)} (\sigma^{(n)})$$

and one verifies (cf. [Mo5], §3.1) that the partial Hecke morphisms T_n^{\pm} give rise to a family of $K_0(\varpi)$ -equivariant morphisms

$$(T_n^+)^{\text{neg}}: R_n^- \hookrightarrow R_{n+1}^-, \qquad (T_n^+)^{\text{pos}}: R_n^+ \hookrightarrow R_{n+1}^+$$

$$(T_{n+1}^-)^{\text{neg}}: R_{n+1}^- \twoheadrightarrow R_n^-, \qquad (T_{n+1}^-)^{\text{pos}}: R_{n+1}^+ \twoheadrightarrow R_n^+.$$

For technical reasons we define

$$R_0^+ \stackrel{\text{def}}{=} R_0|_{K_0(\varpi)}, \qquad \qquad R_0^- \stackrel{\text{def}}{=} \operatorname{cosoc}_{K_0(\varpi)}(R_1^-), \qquad \qquad R_{-1}^+ \stackrel{\text{def}}{=} \operatorname{cosoc}_{K_0(\varpi)}(R_0^+), \qquad R_{-1}^- \stackrel{\text{def}}{=} 0$$

as well as the operators

$$\begin{split} &(T_0^+)^{\mathrm{neg}}: R_0^- \overset{0}{\to} R_1^-, & (T_0^+)^{\mathrm{pos}}: R_0^+ \hookrightarrow R_1 \twoheadrightarrow R_1^+ \\ &(T_1^-)^{\mathrm{neg}}: R_1^- \twoheadrightarrow R_0^-, & (T_1^-)^{\mathrm{pos}}= T_1^-|_{R_1^+}: R_1^+ \twoheadrightarrow R_0^+ \\ &(T_0^-)^{\mathrm{neg}}: R_0^- \overset{0}{\to} R_{-1}^-, & (T_0^-)^{\mathrm{pos}}: R_0^+ \twoheadrightarrow R_{-1}^+. \end{split}$$

We leave as an exercise to the reader to check that the morphism $(T_0^+)^{\text{pos}}$ is injective and the amalgamated sum $R_{-1}^+ \oplus_{R_0^+} R_1^+$ with respect to the couple $(-(T_0^-)^{\text{pos}}, (T_0^+)^{\text{pos}})$ is canonically

Invariant elements for p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$

isomorphic to the image of the $K_0(\varpi)$ -morphism $R_1^+ \to R_1 \to R_1/R_0$.

Following the procedures of section 2.1 we can construct inductive systems of amalgamated sums via the partial Hecke operators $(T_n^{\pm})^{\text{pos, neg}}$:

$$\left\{ R_{\bullet}^* \oplus_{R_{\bullet+1}^*} \cdots \oplus_{R_n^*} R_{n+1}^* \right\}_{n \in 2\mathbf{N} + \bullet + 1}$$
(9)

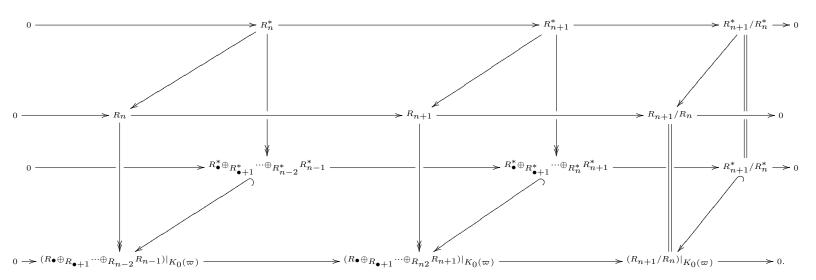
where $\bullet \in \{0, -1\}, * \in \{+, -\}.$

For $\bullet \in \{0, -1\}, * \in \{+, -\}$ we write

$$R_{\infty,\bullet}^* \stackrel{\text{def}}{=} \lim_{\substack{\longrightarrow \\ n \in 2\mathbf{N} + \bullet + 1}} R_{\bullet}^* \oplus_{R_{\bullet+1}^*} \cdots \oplus_{R_n^*} R_{n+1}^*.$$

The relation between the amalgamated sums (9) and the ones defined in §2.1 is given by the following

PROPOSITION 3.1. Let $\bullet \in \{0, -1\}, * \in \{+, -\}$ and $n \in 2\mathbb{N} + \bullet + 1, n \ge 2$. We have a commutative diagram of $K_0(\varpi)$ -representations, with exact rows



Proof. This is proved in [Mo5], in the proof of Proposition 3.5, by induction.

REMARK 3.2. We write explicitly the morphisms which initialize the inductive argument of Proposition 3.1. Concerning R_0^+ , R_1^- we have the evident monomorphisms

$$R_0^+ \stackrel{\sim}{\to} R_0; \qquad \qquad R_{-1}^- \oplus_{R_0^-} R_1^- = R_1^- \hookrightarrow R_1;$$

concerning R_0^- we have

$$R_0^- \hookrightarrow R_0$$
 $e \mapsto \underline{Y}^{\underline{r}}.$

Finally, it is easy to verify that the morphism $R_{-1}^+ \oplus_{R_0^+} R_1^+ \hookrightarrow R_1/R_0$ is induced by the couple:

$$R_1^+ \to R_1/R_0; \qquad R_{-1}^+ \hookrightarrow R_1/R_0;$$

 $e \mapsto [1, \underline{X}^r].$

It is therefore convenient to write $\underline{Y}^{\underline{r}}$, $\underline{X}^{\underline{r}}$ for a linear basis for R_0^- and R_{-1}^+ respectively.

Before introducing the first structure theorem for universal representations of \mathbf{GL}_2 we need the following

Definition 3.3. If $\sigma = \sigma_r$ is a Serre weight as in (3) we write

$$S(\sigma) \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{c} Soc \bigg(\mathrm{ind}_{K_0(\varpi)}^K \chi_{\underline{r}}^s \bigg) \\ \frac{1}{St} \end{array} \right., \qquad R(\sigma) \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{c} Rad \bigg(\mathrm{ind}_{K_0(\varpi)}^K \chi_{\underline{r}} \bigg) & \text{if } \dim(\sigma) \notin \{0,q\} \\ \overline{St} & \text{if } \dim(\sigma) = 1 \\ 1 & \text{if } \dim(\sigma) = q. \end{array} \right.$$

The result is then:

PROPOSITION 3.4. For any $n \in 2\mathbb{N} + 1$, $m \in 2\mathbb{N} + 2$ we have the following exact sequence of k[K]-modules:

$$0 \to R(\sigma) \to \operatorname{ind}_{K_0(\varpi)}^K \left(R_0^- \oplus_{R_1^-} \cdots \oplus_{R_n^-} R_{n+1}^- \right) \to R_0 \oplus_{R_1} \cdots \oplus_{R_n} R_{n+1} \to 0$$

$$0 \to S(\sigma) \to \operatorname{ind}_{K_0(\varpi)}^K \left(R_1^- \oplus_{R_2^-} \cdots \oplus_{R_m^-} R_{m+1}^- \right) \to (R_1/R_0) \oplus_{R_2} \cdots \oplus_{R_m} R_{m+1} \to 0$$

Proof. We start proving the first exact sequence. Recall that R_0^- is isomorphic to the character $\chi_{\underline{r}}$ so that

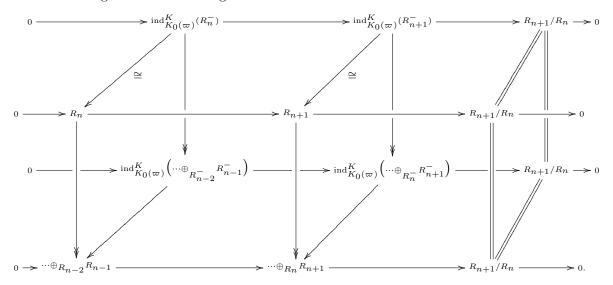
$$0 \to \mathrm{R}(\sigma) \to \mathrm{ind}_{K_0(\varpi)}^K(R_0^-) \to R_0 \to 0$$

is true by definition. By induction we assume the statement holds true for all $-1 \le j \le n-2$, j odd (the case j = -1 being the initialization of the inductive argument).

Recall that for all $i \in \mathbb{N}_{>}$ the natural $K_0(\varpi)$ -monomorphism $R_i^- \hookrightarrow R_i$ gives rise to a Kisomorphism $\operatorname{ind}_{K_0(\varpi)}^K R_i^- \stackrel{\sim}{\to} R_i$ and, by exactness of induction, we get an exact sequence

$$0 \to \operatorname{ind}_{K_0(\varpi)}^K \left(R_n^- \right) \to \operatorname{ind}_{K_0(\varpi)}^K \left(R_{n+1}^- \right) \to R_{n+1}/R_n \to 0.$$

We therefore deduce from Proposition 3.1, using Frobenius reciprocity and exactness of induction, the following commutative diagram with exact lines



In particular we deduce

$$0 \longrightarrow \operatorname{ind}_{K_{0}(\varpi)}^{K} \left(\cdots \oplus_{R_{n-2}^{-}} R_{n-1}^{-} \right) \longrightarrow \operatorname{ind}_{K_{0}(\varpi)}^{K} \left(\cdots \oplus_{R_{n}^{-}} R_{n+1}^{-} \right) \longrightarrow R_{n+1}/R_{n} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \cdots \oplus_{R_{n-2}} R_{n-1} \longrightarrow \cdots \oplus_{R_{n}} R_{n+1} \longrightarrow R_{n+1}/R_{n} \longrightarrow 0$$

and the conclusion follows from the Snake lemma and the inductive hypothesis on the morphism $\operatorname{ind}_{K_0(\varpi)}^K \left(\cdots \oplus_{R_{n-2}^-} R_{n-1}^- \right) \twoheadrightarrow \cdots \oplus_{R_{n-2}} R_{n-1}$.

The second exact sequence is proved in the evident, similar fashion, noticing that the K-sub-representation of R_1/R_0 generated by $[1, \underline{X}^{\underline{r}}]$ is isomorphic to $\operatorname{coker}(S(\sigma) \to \operatorname{ind}_{K_0(\varpi)}^K \chi_{\underline{r}}^s)$.

As a corollary, we deduce the first structure theorem for the universal representations of GL_2 :

COROLLARY 3.5. We have the following exact sequences of k[K]-modules:

$$0 \to R(\sigma) \to \operatorname{ind}_{K_0(\varpi)}^K (R_{\infty,0}^-) \to R_{\infty,0} \to 0$$
$$0 \to S(\sigma) \to \operatorname{ind}_{K_0(\varpi)}^K (R_{\infty,-1}^-) \to R_{\infty,-1} \to 0$$

Proof. The functor $\operatorname{ind}_{K_0(\varpi)}^K(\cdot)$ commutes with co-limits, as it is exact and commutes with (arbitrary) co-products. Since filtered co-limits are exact the result follow from Proposition 3.4.

REMARK 3.6. We point out that the same argument has been used in [AM] to get the structure theorem for the special case $F = \mathbf{Q}_p$ (loc. cit., Corollaire 3.1).

We can now introduce the second structure theorem for universal representations of $\mathbf{GL_2}$, describing the action of N, the normalizer of the Iwahori subgroup $K_0(\varpi)$, on $\pi(\sigma, 0, 1)$.

We start recalling the structure theorem for the $K_0(\varpi)$ -restriction of $\pi(\sigma, 0, 1)$ (cf. [Mo5], Proposition 3.5).

Proposition 3.7. We have the following $K_0(\varpi)$ -equivariant exact sequences

$$0 \to W_1 \to R_{\infty,0}^+ \oplus R_{\infty,0}^- \to R_{\infty,0}|_{K_0(\varpi)} \to 0$$

$$0 \to W_2 \to R_{\infty,-1}^+ \oplus R_{\infty,-1}^- \to R_{\infty,-1}|_{K_0(\varpi)} \to 0$$

where W_1 , W_2 are the 1-dimensional spaces defined by $W_1 \stackrel{\text{\tiny def}}{=} \langle (\underline{Y^{\underline{r}}}, -\underline{Y^{\underline{r}}}) \rangle$ and $W_2 \stackrel{\text{\tiny def}}{=} \langle (\underline{X^{\underline{r}}}, -\underline{X^{\underline{r}}}) \rangle$.

Proof. This is [Mo5], Proposition 3.5 (notice that, in the notation of *loc. cit.*, the elements $(-1)^{\underline{r}}F_{\underline{r}}^{(0)}(0)$ and $-[1,\underline{X}^{\underline{r}}]$ of R_1 coincide in the quotient R_1/R_0 , by the definition of the operator T_0).

In order to control the action of the normalizer N we are therefore left to study the action of the element $\alpha \stackrel{\text{def}}{=} \left[\begin{array}{cc} 0 & 1 \\ \varpi & 0 \end{array} \right]$. The result is the following:

Proposition 3.8. There exists two $K_0(\varpi)$ -equivariant isomorphisms

$$\iota_{-1}: R_{\infty,-1}^- \stackrel{\sim}{\to} \left(R_{\infty,0}^+\right)^s$$
$$\iota_0: R_{\infty,0}^- \stackrel{\sim}{\to} \left(R_{\infty,-1}^+\right)^s$$

such that

- i) $\iota_{-1}(\underline{X}^{\underline{r}}) = \underline{Y}^{\underline{r}} \text{ and } \iota_0(\underline{Y}^{\underline{r}}) = \underline{X}^{\underline{r}};$
- ii) The isomorphisms ι_{-1} , ι_0 induce a commutative diagram (of k-linear spaces) with exact lines

$$0 \longrightarrow W_1 \oplus W_2 \longrightarrow R_{\infty,0}^- \oplus R_{\infty,0}^+ \oplus R_{\infty,-1}^- \oplus R_{\infty,-1}^+ \longrightarrow \pi(\sigma,0,1) \longrightarrow 0$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$0 \longrightarrow W_2 \oplus W_1 \longrightarrow R_{\infty,-1}^+ \oplus R_{\infty,-1}^- \oplus R_{\infty,0}^+ \oplus R_{\infty,0}^- \longrightarrow \pi(\sigma,0,1) \longrightarrow 0$$

where the right vertical arrow is the automorphism induced by the action of α on $\pi(\sigma, 0, 1)$.

Stefano Morra

Proof. We start showing that, for any $n \ge -1$, we have a $K_0(\varpi)$ -equivariant isomorphism

$$r_n: R_{n+1}^- \xrightarrow{\sim} (R_n^+)^s.$$

The case n=-1 is trivial, as the spaces R_0^- , R_{-1}^+ are 1-dimensional, affording the characters $\chi_{\underline{r}}$ and $\chi_{\underline{r}}^s$ respectively and we have $R_0^- = \langle \underline{Y}^r \rangle$, $R_{-1}^+ = \langle \underline{X}^r \rangle$ via the equivariant embeddings $R_0^- \hookrightarrow R_0$, $R_{-1}^+ \hookrightarrow (R_1/R_0)^+$ respectively (cf. Remark 3.2).

Assume now $n \ge 0$. Recall that for any $j \ge 0$ we have a K-equivariant isomorphism (cf. (4)):

$$\operatorname{ind}_{K_0(\varpi^j)}^K(\sigma^{(j)}) \xrightarrow{\sim} k[K\lambda_j(\varpi)KZ] \otimes_{k[KZ]} \sigma$$
$$[1,v] \mapsto \begin{bmatrix} 0 & 1 \\ \varpi^j & 0 \end{bmatrix} \otimes v.$$

We deduce the following k-linear morphism:

$$R_{n+1}^- \hookrightarrow R_{n+1} \stackrel{\sim}{\to} k[K\lambda_{n+1}(\varpi)KZ] \otimes_{k[KZ]} \sigma \stackrel{\sim}{\to} k[K\lambda_n(\varpi)KZ] \otimes_{k[KZ]} \sigma \stackrel{\sim}{\to} R_n \twoheadrightarrow R_n^+$$

where the central arrow is induced by the action of α on the compact induction $(\operatorname{ind}_{KZ}^G\sigma)|_{KZ}$. As α normalizes $K_0(\varpi)$ we deduce that the composite arrow $r_n:R_{n+1}^-\to (R_n^+)^s$ is $K_0(\varpi)$ -equivariant and an easy check shows that r_n is an epimorphism, hence an isomorphism by dimension reasons. As the Hecke operator T is equivariant, we deduce furthermore that the diagram

$$R_{n+1}^{-} \xrightarrow{r_n} (R_n^{+})^s$$

$$(T_{n+1}^{-})^{\text{neg}} \downarrow \qquad \downarrow (T_n^{-})^{\text{pos}}$$

$$R_n^{-} \xrightarrow{r_{n-1}} (R_{n-1}^{+})^s$$

$$(10)$$

commutes for all $n \ge 1$.

The diagram commutes also for n=0 and we have $r_0(\underline{X^r})=\underline{Y^r}$ (by $K_0(\varpi)$ -equivariance r_0 induces an isomorphism between the highest weight spaces of the representations R_1^-, R_0^+).

The Proposition will be completely proved once we show that for any $n \ge -1$ we have a $K_0(\varpi)$ -equivariant isomorphism $f_n : \cdots \oplus_{R_n^-} R_{n+1}^- \to (\cdots \oplus_{R_{n-1}^+} R_n^+)^s$ which verifies the prescribed conditions on the images of \underline{X}^r , \underline{Y}^r (for n even, odd respectively).

We treat the case when n is even, the other being symmetric. It is an induction on n where the case n=0 is given by $r_0: R_1^- \stackrel{\sim}{\to} (R_0^+)^s$.

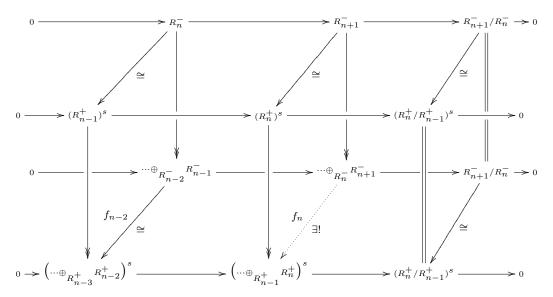
Assume $n \ge 2$ and that we have an isomorphism f_{n-2} making the following diagram commute:

$$R_{n}^{-} \longrightarrow R_{1}^{-} \oplus_{R_{2}^{-}} \cdots \oplus_{R_{n-2}^{-}} R_{n-1}^{-}$$

$$\downarrow \wr \qquad \qquad \qquad f_{n-2} \downarrow \wr \qquad \qquad \qquad (R_{n-1}^{+})^{s} \longrightarrow (R_{0}^{+} \oplus_{R_{1}^{+}} \cdots \oplus_{R_{n-3}^{+}} R_{n-2}^{+})^{s}$$

(with the prescribed property on the image of the element $\underline{X}^r \in R_1^-$).

Using (10) we deduce the commutative diagram with exact lines



where the morphism f_n is obtained from the universal property of $\cdots \oplus_{R_n^-} R_{n+1}^-$ (notice also that $(\cdots \oplus_{R_{n-1}^+} R_n^+)^s = \cdots \oplus_{(R_{n-1}^+)^s} (R_n^+)^s$). The morphism f_n is moreover an isomorphism, verifying the prescribed property on the image of the element $\underline{X}^r \in R_1^-$.

This completes the inductive step and, passing to co-limits, one gets the isomorphism ι_{-1} as in the statement.

3.2 The case $F = \mathbf{Q}_p$

We specialize some of the previous constructions to the case $F = \mathbf{Q}_p$. By Corollary 3.5, Proposition 3.7 and Proposition 3.8 we see that the structure of the universal representation $\pi(\sigma, 0, 1)$ depends crucially on the modules $R_{\infty, \bullet}^-$, where $\bullet \in \{-1, 0\}$.

The dual of $R_{\infty,\bullet}^-$ is a module on the Iwasawa algebra $k[[\mathscr{O}_F]]$, and is *not* of finite type as soon as $F \neq \mathbf{Q}_p$. Moreover $k[[\mathscr{O}_F]]$ is a complete regular noetherian local ring of dimension $[F : \mathbf{Q}_p]$ if F is a finite extension of \mathbf{Q}_p and is not even noetherian if $\operatorname{char}(F) = p$ (see also [Mo6], [Mo7]).

When $F = \mathbf{Q}_p$ the situation is much simpler: $R_{\infty,\bullet}^-$ is the dual of a monogenous module over a discrete valuation ring (the Iwasawa algebra of \mathbf{Z}_p).

We start recalling the following result:

PROPOSITION 3.9. Let $n \ge 0$. The $k[K_0(p)]$ -module R_{n+1}^- is uniserial, of dimension $(r+1)p^n$, and its socle filtration is described by

$$\chi_r^s$$
 $--\chi_r^s \mathfrak{a}$ $--\chi_r^s \mathfrak{a}^2$ $--\dots$ $--\chi_r^s \mathfrak{a}^{(r+1)p^n-1}$.

Proof. This is deduced from [Mo1], Proposition 5.10 and the fact that we have a $K_0(p^{n+1})$ -equivariant embedding $\sigma^{(n+1)} \hookrightarrow \operatorname{ind}_{K_0(p^{n+2})}^{K_0(p^{n+1})} \chi_r^s$; moreover, for $p \ge 5$ it can equally be seen as a particular case of of [Mo5], Proposition 4.10.

Alternatively, the statement is a consequence of [Pas2], Propositions 4.7 and 5.9. \Box

The statement of Proposition 3.9 can be made more expressive.

We recall from [Mo5] that for a finite unramified extension F/\mathbf{Q}_p the $k[K_0(p)]$ -module R_{n+1}^- admits a linear basis \mathscr{B}_{n+1}^- which is endowed with a partial order (cf. op. cit., Lemma 2.6). The partial ordering on \mathscr{B}_{n+1}^- induces therefore a k-linear filtration on the space R_{n+1}^- and one of the main result of [Mo5] (cf. op. cit., Proposition 4.10) is to show that such filtration is $K_0(p)$ -stable.

When $F = \mathbf{Q}_p$ such ordering is indeed *total* (this is linked with the aforementioned phenomenon that we are considering modules over a complete local noetherian regular ring of Krull dimension $[F : \mathbf{Q}_p]$).

Explicitly, we have a bijection

$$\{0,\ldots,p-1\}^n \times \{0,\ldots,r\} \xrightarrow{\sim} \mathscr{B}_{n+1}^-$$

$$(l_1,\ldots,l_{n+1}) \longmapsto F_{(l_1,\ldots,l_n)}^{(1,n)}(l_{n+1})$$

$$(11)$$

where we define the element

$$F_{(l_1,\dots,l_n)}^{(1,n)}(l_{n+1}) \stackrel{\text{def}}{=} \sum_{\lambda_1 \in \mathbf{F}_p} \lambda_1^{l_1} \begin{bmatrix} 1 & 0 \\ p[\lambda_1] & 1 \end{bmatrix} \dots \sum_{\lambda_n \in \mathbf{F}_p} \lambda_n^{l_n} \begin{bmatrix} 1 & 0 \\ p^n[\lambda_n] & 1 \end{bmatrix} [1, X^{r-l_{n+1}} Y^{l_{n+1}}] \in R_{n+1}^-.$$

The total ordering on \mathscr{B}_{n+1}^- is then induced from the order of **N** via the *injective* map

$$\mathcal{B}_{n+1}^{-} \overset{P}{\hookrightarrow} \mathbf{N}$$

$$F_{(l_{1},\dots,l_{n})}^{(1,n)}(l_{n+1}) \mapsto P(F_{(l_{1},\dots,l_{n})}^{(1,n)}(l_{n+1})) \stackrel{\text{def}}{=} \sum_{j=0}^{n} p^{j} l_{j+1}$$

(and thus coincides with the anti-lexicographical order \prec on the LHS of (11)). If $F_1, F_2 \in \mathscr{B}_{n+1}^-$, we write $F_1 \prec F_2$ if $P(F_1) < P(F_2)$.

Since R_{n+1}^- is uniserial, it is easy to describe the amalgamated sum $\cdots \oplus_{R_n^-} R_{n+1}^-$:

PROPOSITION 3.10. Let $n \ge 1$. The kernel of the projection map $R_{n+1}^- \to \cdots \oplus_{R_n^-} R_{n+1}^-$ is described by:

$$\ker \left(R_{n+1}^- \twoheadrightarrow \cdots \oplus_{R_n^-} R_{n+1}^-\right) = \left\{ \begin{array}{l} \langle F \in \mathscr{B}_{n+1}^-, \ F \prec F_{r,p-1-r,\dots,p-1-r,r}^{(1,n)}(0) \rangle & \text{if } n \in 2\mathbf{N}+1 \\ \\ \langle F \in \mathscr{B}_{n+1}^-, \ F \prec F_{p-1-r,r,\dots,p-1-r,r}^{(1,n)}(0) \rangle & \text{if } n \in 2\mathbf{N}+2. \end{array} \right.$$

Proof. We consider the case where n is odd (the other is similar). Since R_{n+1}^- is uniserial and the linear filtration on R_{n+1}^- induced by the linear order on \mathscr{B}_{n+1}^- coincides with the socle filtration, it will be enough to show that

$$\dim\left(\left\langle F\in\mathscr{B}_{n+1}^{-},\ F\prec F_{r,p-1-r,\dots,p-1-r,r}^{(1,n)}(0)\right\rangle\right)=\dim(R_{n+1}^{-})-\dim(\dots\oplus_{R_{n}^{-}}R_{n+1}^{-}).$$

This is a straightforward check: indeed

$$\dim\left(\left\langle F \in \mathcal{B}_{n+1}^{-}, \ F \prec F_{r,p-1-r,\dots,p-1-r,r}^{(1,n)}(0)\right\rangle\right) = r\left(\sum_{j=0}^{\frac{n-1}{2}} p^{2j}\right) + p(p-1-r)\left(\sum_{j=0}^{\frac{n-3}{2}} p^{2j}\right)$$
$$= (p-r)\frac{p^{n-1}-1}{p+1} + rp^{n-1}$$

and

$$\dim(\cdots \oplus_{R_n^-} R_{n+1}^-) = 1 + (r+1)(-1)\sum_{j=0}^n (-p)^j = (r+1)\frac{p^{n+1}-1}{p+1} + 1;$$
$$\dim(R_{n+1}^-) = p^n(r+1).$$

As $R_{\infty,\bullet}^-$ is a co-limit of the modules $\cdots \oplus_{R_n^-} R_{n+1}^-$, the transition maps being monomorphisms, we deduce

Invariant elements for p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$

COROLLARY 3.11. For $\bullet \in \{0, -1\}$ the $k[K_0(p)]$ -module $R_{\infty, \bullet}^-$ is uniserial. Its socle filtration is described by

respectively.

We write $\{\mathscr{F}_n\}_{n\in\mathbb{N}}$ for the socle filtration for $R_{\infty,0}^-$ (in particular, \mathscr{F}_0 is the socle of $R_{\infty,0}^-$ and \mathscr{F}_n is the n+1-dimensional sub-module of $R_{\infty,0}^-$).

REMARK 3.12. It is easy to see that for any $n \ge 0$ the modules R_{n+1}^- (and hence the modules $R_{\infty,\bullet}^-$) are uniserial even when restricted to the subgroup $\overline{\mathbf{U}}(p\mathbf{Z}_p)$. This follows again from [Mo1], Proposition 5.10 and can equally be deduced from the results of Paskunas, [Pas2], Proposition 4.7 and 5.9.

4. Study of K_t and I_t invariants

In this section we assume $F = \mathbf{Q}_p$. The aim is to describe in detail the K_t and I_t invariants for supersingular representations $\pi(\sigma, 0, 1)$ of $\mathbf{GL}_2(\mathbf{Q}_p)$.

Thanks to the structure theorems of §3 we are essentially left to understand the invariants for the Iwasawa modules $R_{\infty,\bullet}^-$. This is developed in section 4.1: the argument follows easily from the uniserial property of $R_{\infty,\bullet}^-$, but one should carefully carry out computations in order to handle some delicate K-extensions which will appear later on in section 4.2.

The invariants for the supersingular representation $\pi(\sigma, 0, 1)$ will be determined in §4.2, combining the results on $R_{\infty, \bullet}^-$ with the structure theorems.

4.1 Invariants for the Iwasawa modules $R_{\infty,\bullet}^-$

We are going to describe in detail the spaces of K_t invariants (resp. I_t invariants) for the $k[K_0(p)]$ modules $R_{\infty,\bullet}^-$ (resp. $R_{\infty,\bullet}^*$).

4.1.1 Intertwinings between the modules $R_{\infty,\bullet}$. Recall (§1.1) that for a Serre weight σ we write $\sigma^{[s]}$ for its conjugate weight. We start from the following

Proposition 4.1. The intertwining operator $\pi(\sigma,0,1) \stackrel{\sim}{\to} \pi(\sigma^{[s]},0,1)$ induces a KZ-isomorphism

$$R_{\infty,0}(\sigma) \xrightarrow{\sim} R_{\infty,-1}(\sigma^{[s]}).$$
 (12)

Proof. We have a KZ-equivariant monomorphism

$$R_{\infty,0}(\sigma) \hookrightarrow \pi(\sigma,0,1)|_{KZ} \stackrel{\sim}{\to} \pi(\sigma^{[s]},0,1)|_{KZ} \stackrel{\sim}{\to} R_{\infty,0}(\sigma^{[s]}) \oplus R_{\infty,-1}(\sigma^{[s]}).$$

As $R_{\infty,0}(\sigma)$ and $R_{\infty,0}(\sigma^{[s]})$ have irreducible non isomorphic socles, we deduce that the composite

$$\phi_1: R_{\infty,0}(\sigma) \hookrightarrow \pi(\sigma,0,1)|_{KZ} \xrightarrow{\sim} \pi(\sigma^{[s]},0,1)|_{KZ} \twoheadrightarrow R_{\infty,-1}(\sigma^{[s]})$$

is a KZ-equivariant monomorphism. Similarly, the composite

$$\phi_2: R_{\infty,-1}(\sigma) \hookrightarrow \pi(\sigma,0,1)|_{KZ} \stackrel{\sim}{\to} \pi(\sigma^{[s]},0,1)|_{KZ} \twoheadrightarrow R_{\infty,0}(\sigma^{[s]})$$

is a KZ-equivariant monomorphism. As $\phi_1 \oplus \phi_2$ coincides (by construction) with the intertwining operator $\pi(\sigma, 0, 1) \xrightarrow{\sim} \pi(\sigma^{[s]}, 0, 1)$ via the isomorphism (5) we deduce that ϕ_1 , ϕ_2 are epimorphisms and the proof is complete.

Stefano Morra

If $p \geqslant 5$ the statement of Proposition 4.1 can be sharpened, giving an isomorphism between the positive and negative parts of $R_{\infty,0}(\sigma)$, $R_{\infty,-1}(\sigma^{[s]})$:

PROPOSITION 4.2. Assume $p \ge 5$. Then the isomorphism (12) induces the $K_0(p)$ -equivariant isomorphisms

$$R_{\infty,0}^-(\sigma) \xrightarrow{\sim} R_{\infty,-1}^-(\sigma^{[s]}), \qquad \qquad R_{\infty,0}^+(\sigma) \xrightarrow{\sim} R_{\infty,-1}^+(\sigma^{[s]}).$$

Proof. We let e_0 (resp. e_0^+) be a linear generator for the space $\operatorname{soc}(R_{\infty,0}^-(\sigma))$ (resp. for the space $\operatorname{soc}(R_{\infty,0}^+(\sigma))$). Similarly we define the elements $e_{[s]}$, $e_{[s]}^+$.

By Proposition 3.7 we can write the following equivariant exact sequences

$$\begin{split} 0 &\to \langle (e_0^+, e_0) \rangle \to R_{\infty,0}^+(\sigma) \oplus R_{\infty,0}^-(\sigma) \to R_{\infty,0}(\sigma)|_{K_0(p)} \to 0 \\ 0 &\to \langle (e_{[s]}^+, e_{[s]}) \rangle \to R_{\infty,-1}^+(\sigma^{[s]}) \oplus R_{\infty,-1}^-(\sigma^{[s]}) \to R_{\infty,-1}(\sigma^{[s]})|_{K_0(p)} \to 0 \end{split}$$

(up to replace the elements e_0 , $e_{[s]}$ by suitable nonzero scalar multiples), hence obtaining the induced isomorphisms

$$\begin{split} R^-_{\infty,0}(\sigma)/\langle e_0\rangle \oplus R^+_{\infty,0}(\sigma)/\langle e_0^+\rangle &\stackrel{\sim}{\to} R_{\infty,0}(\sigma)/\langle \overline{e}\rangle \\ R^-_{\infty,-1}(\sigma^{[s]})/\langle e_{[s]}\rangle \oplus R^+_{\infty,-1}(\sigma^{[s]})/\langle e_{[s]}^+\rangle &\stackrel{\sim}{\to} R_{\infty,-1}(\sigma^{[s]})/\langle \overline{e}^{[s]}\rangle \end{split}$$

where \overline{e} is a linear basis for the image of the subspace $\langle (0, e_0), (e_0^+, 0) \rangle \leqslant R_{\infty,0}^+(\sigma) \oplus R_{\infty,0}^-(\sigma)$ in $R_{\infty,0}(\sigma)$ and $\overline{e}^{[s]}$ is defined in the evident, analogous way.

By Corollary 3.11 we note that the $K_0(p)$ -socle of $R_{\infty,-1}(\sigma^{[s]})/\langle \overline{e}^{[s]} \rangle$ is described by

$$\operatorname{soc}(R_{\infty,-1}(\sigma^{[s]})/\langle \overline{e}^{[s]}\rangle) = \chi_r \mathfrak{a} \oplus \chi_r \mathfrak{a}^{-1}$$

which is multiplicity free if $p \ge 5$.

As \overline{e} , $\overline{e}^{[s]}$ are fixed under the action of the pro-p Sylow of $K_0(p)$, we deduce from Lemma 4.3 that the isomorphism (12) induces a $K_0(p)$ -equivariant isomorphism

$$R_{\infty,0}(\sigma)/\langle \overline{e} \rangle \stackrel{\sim}{\longrightarrow} R_{\infty,-1}(\sigma^{[s]})/\langle \overline{e}^{[s]} \rangle.$$

Since the representations $R_{\infty,0}^{\pm}(\sigma)$, $R_{\infty,-1}^{\pm}(\sigma^{[s]})$ are uniserial and $\operatorname{soc}(R_{\infty,-1}(\sigma^{[s]})/\langle \overline{e}^{[s]}\rangle)$ is multiplicity free, one deduces the isomorphisms

$$R_{\infty,0}^-(\sigma)/\langle e_0 \rangle \stackrel{\sim}{\to} R_{\infty,-1}^-(\sigma^{[s]})/\langle e_{[s]} \rangle,$$
 $R_{\infty,0}^+(\sigma)/\langle e_0^+ \rangle \stackrel{\sim}{\to} R_{\infty,-1}^+(\sigma^{[s]})/\langle e_{[s]}^+ \rangle.$

The statement follows.

The following result is well known (it is an immediate consequence of [Bre03a], Théorème 3.2.4 and Corollaire 4.1.4), but we decided to give here a self contained argument:

LEMMA 4.3. In the hypotheses of Proposition 4.2 we have $\dim(R_{\infty,0}(\sigma))^{K_1(p)} = 1$, where $K_1(p)$ is the pro-p Sylow of $K_0(p)$.

Proof. We use the notations appearing in the proof of Proposition 4.2.

Define $Z_1 \stackrel{\text{def}}{=} K_1(p) \cap Z$. Then Z_1 acts trivially on $R_{\infty,0}(\sigma)$ and the exact sequence

$$0 \to \langle \overline{e}_0 \rangle \to R_{\infty,0}(\sigma) \to R_{\infty,0}^-(\sigma)/\langle e_0 \rangle \oplus R_{\infty,0}^+(\sigma)/\langle e_0^+ \rangle \to 0$$

yields the exact sequence of cohomology

$$0 \to \langle \overline{e}_0 \rangle \to \left(R_{\infty,0}(\sigma) \right)^{K_1(p)/Z_1} \to \left(R_{\infty,0}^-(\sigma)/\langle e_0 \rangle \right)^{K_1(p)/Z_1} \oplus \left(R_{\infty,0}^+(\sigma)/\langle e_0^+ \rangle \right)^{K_1(p)/Z_1} \to H^1(K_1(p)/Z_1, \langle \overline{e}_0 \rangle).$$

Recall that, as $K_1(p)/Z_1$ acts trivially on $\langle \overline{e}_0 \rangle$, the space $H^1(K_1(p)/Z_1, \langle \overline{e}_0 \rangle)$ is naturally identified with the space of continuous group homomorphisms $\text{Hom}(K_1(p)/Z_1, k)$.

By Corollary 3.11 and since the space $\operatorname{Ext}^1_{K_0(p)/Z_1}(\chi^s_r\mathfrak{a}^{r+1},\chi^s_r\mathfrak{a}^r)$ is one dimensional ([Pas2], Proposition 5.4), one checks that the image of the composite map

 $(R_{\infty,0}^-(\sigma)/\langle e_0 \rangle)^{K_1(p)/Z_1} \hookrightarrow (R_{\infty,0}^-(\sigma)/\langle e_0 \rangle)^{K_1(p)/Z_1} \oplus (R_{\infty,0}^+(\sigma)/\langle e_0^+ \rangle)^{K_1(p)/Z_1} \to \operatorname{Hom}(K_1(p)/Z_1, k)$ coincides with the linear subspace generated by morphism

$$K_0(p)/Z_1 \to k$$

$$\begin{bmatrix} a & b \\ pc & d \end{bmatrix} \mapsto \overline{c}.$$

Similarly, the image of the subspace $\left(R_{\infty,0}^+(\sigma)/\langle e_0^+\rangle\right)^{K_1(p)/Z_1}$ coincides with the linear subspace generated by morphism

$$K_0(p)/Z_1 \to k$$

$$\begin{bmatrix} a & b \\ pc & d \end{bmatrix} \mapsto \bar{b}.$$

From [Pas2], Proposition 5.2 we deduce that the connection homomorphism is surjective, hence an isomorphism as the $K_0(p)$ -representations $R_{\infty,0}^-(\sigma)$, $R_{\infty,0}^+(\sigma)$ are uniserial.

The conclusion follows.
$$\Box$$

By virtue of Proposition 4.1 (resp. Proposition 3.8) it will be enough to study the K_t invariants (resp. I_t invariants) for the Iwasawa module $R_{\infty,0}^-$ (resp. $R_{\infty,0}^-$ and $R_{\infty,-1}^-$).

Recall that $R_{\infty,0}^-$ is unserial, and we denoted by $\{\mathscr{F}_n\}_{n\in\mathbb{N}}$ its socle filtration (cf. Corollary 3.11). The K_t invariants of $R_{\infty,0}^-$ are then described by the following

Proposition 4.4. Let $t \ge 1$. We have a $K_0(p)$ -equivariant exact sequence

$$0 \to \left(R_{\infty,0}^-\right)^{K_t} \to \mathscr{F}_{p^{t-1}} \to \chi_r^s \mathfrak{a}^{r+1} \to 0.$$

Moreover, for any lift $e_1 \in \mathscr{F}_{p^{t-1}}$ of a linear basis of $\chi^s_r \mathfrak{a}^{r+1}$ we have

$$\left(\begin{bmatrix} 1 + p^t a & p^t b \\ p^t c & 1 + p^t d \end{bmatrix} - 1 \right) \cdot e_1 = \overline{c} \kappa_{e_1} e_0$$
(13)

where $a, b, c, d \in \mathbf{Z}_p$, $\kappa_{e_1} \in k^{\times}$ is a suitable nonzero scalar depending only on e_1 and e_0 is a linear generator of $\operatorname{soc}(R_{\infty,0}^-)$.

Proof. As $R_{\infty,0}^-$ is admissible uniserial and K_t is normal in $K_0(p)$ we deduce that $\left(R_{\infty,0}^-\right)^{K_t} = \mathscr{F}_{n(t)}$ where $n(t) \in \mathbf{N}$ is defined by

$$n(t) = \max \left\{ n \in \mathbf{N}, \text{ s.t. } \mathscr{F}_n = (\mathscr{F}_n)^{K_t} \right\}$$

and hence we are left to prove that $n(t) = p^{t-1} - 1$ (an elementary computation shows that the graded piece $\mathscr{F}_{p^{t-1}}/\mathscr{F}_{p^{t-1}-1}$ affords the character $\chi_r^s \mathfrak{a}^{r+1}$).

This will be a careful computation, using the properties of Witt polynomials. We remark that the cases where $r \in \{0, p-1\}$ are slightly more delicate to verify.

We start from the following

LEMMA 4.5. Let $K_1(p^{t+2})$ be the maximal pro-p subgroup of $K_0(p^{t+2})$. Let $z \stackrel{\text{def}}{=} \sum_{j=1}^t p^j [\lambda_j] \in \mathbf{Z}_p$ and $a, b, c, d \in \mathbf{Z}_p$. Then we have

$$\left[\begin{array}{cc} 1+p^ta & p^tb \\ p^tc & 1+p^td \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ z & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ z' & 1 \end{array}\right] \kappa'$$

for a suitable element $\kappa' \in K_1(p^{t+2})$ and

$$z' = \sum_{j=1}^{t-1} p^{j} [\lambda_{j}] + p^{t} [\lambda_{t} + \overline{c}] + p^{t+1} [S_{1}(\lambda_{t}, \overline{c}) + r(\lambda_{1})]$$

where $S_1(\lambda_t, \overline{c})$ is the specialization of the Witt polynomial (7) and $r \in \mathbf{F}_p[\lambda_1]$ is a linear polynomial in λ_1 depending on a, b, c, d.

Proof. We have

$$\begin{bmatrix} 1 & 0 \\ -z' & 1 \end{bmatrix} \begin{bmatrix} 1+p^ta & p^tb \\ p^tc & 1+p^td \end{bmatrix} \begin{bmatrix} 1 & 0 \\ z & 1 \end{bmatrix} = \begin{bmatrix} 1+p^t(a+bz) & p^tb \\ w & 1+p^t(d-bz') \end{bmatrix}$$

where $w \stackrel{\text{def}}{=} -z'(1+p^t(a+bz)) + z + p^t(c+dz)$. Thus $z' \equiv (z+p^tc+p^tdz)(1+p^ta)^{-1} \mod p^{t+2}$ (notice that $p^tbzz' \equiv 0 \mod p^{t+2}$) and we deduce

$$z' \equiv (z + p^t c + p^t dz)(1 - p^t a) \mod p^{t+2}$$
$$\equiv z + p^t c + p^t dz - p^t az - p^{2t} ac \mod p^{t+2}$$

(the first line is deduced noticing that $(z + p^t c + p^t dz)p^{2t} \equiv 0 \mod p^{t+2}$ and the second noticing that $p^{2t}z \equiv 0 \mod p^{t+2}$).

The result follows from an immediate computation on Witt vectors.

In order to complete the proof of the Proposition we now distinguish two cases.

Case A: t is odd.

It suffices to show that $(R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-)^{K_t}$ is a proper sub- $k[K_0(p)]$ -module of dimension p^{t-1} sitting inside $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-$ (notice that $\dim(R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-) \geqslant p^{t-1} + 1$ is verified for all values of $t \geqslant 1$, $p \geqslant 3$ and $r \in \{0, \ldots, p-1\}$).

We recall that, for a t-tuple $(l_1, \ldots, l_t) \in \{0, \ldots, p-1\}^t$, we have

$$F_{l_1,\dots,l_t}^{(1,t)}(0) \equiv \begin{cases} 0 & \text{if } (l_1,\dots,l_t) \prec (r,p-1-r,\dots,p-1-r,r) \\ F_{r,p-1-r,\dots,p-1-r,r}^{(1,t)}(0) & \text{if } (l_1,\dots,l_t) = (r,p-1-r,\dots,p-1-r,r) \end{cases}$$
(14)

in $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-$, by Proposition 3.10.

We again have to distinguish two situations

Sub-case A1: r

By the unseriality of $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-$ and the compatibility between the $K_0(p)$ -action and the linear ordering on \mathscr{B}_{n+1}^- we deduce that the $(p^{t-1}+1)$ -dimensional sub-module of $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-$ is generated by the element $F_{r,p-1-r,\dots,p-1-r,r+1}^{(1,t)}(0) \in \mathscr{B}_{t+1}^-$

If $(l_1,\ldots,l_t) \leq (r,p-1-r,r,\ldots,p-1-r,r+1)$ is a t-tuple we deduce, from Lemma 4.5 and

(14), the following equality in $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-$:

$$\begin{pmatrix}
 \begin{bmatrix}
 1 + p^t a & p^t b \\
 p^t c & 1 + p^t d
 \end{bmatrix} - 1
\end{pmatrix} \cdot F_{l_1,\dots,l_t}^{(1,t)}(0) =$$

$$= \sum_{j=1}^{l_t} \binom{l_t}{j} (-\overline{c})^j F_{l_1,\dots,l_{t-1},l_t-j}^{(1,t)}(0) \equiv -l_t \overline{c}^j F_{l_1,\dots,l_{t-1},l_t-1}^{(1,t)}(0) \qquad (as \ l_t \leqslant r+1)$$

$$\equiv \begin{cases}
 0 & \text{if } (l_1,\dots,l_t) \prec (r,p-1-r,r,\dots,p-1-r,r+1) \\
 -(r+1)\overline{c}F_{r,p-1-r,\dots,p-1-r,r}^{(1,t)}(0) & \text{if } (l_1,\dots,l_t) = (r,p-1-r,r,\dots,p-1-r,r+1)
\end{cases}$$

This proves the Proposition for t odd and r .

Sub-case A2: r = p - 1.

This situation is slightly more delicate and we need to know the properties of the homogeneous degree of the Witt polynomial $S_1(X, Y)$ defined in (7).

As in case A1 we see that the $(p^{t-1}+1)$ -dimensional sub-module of $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_t^-} R_{t+1}^-$ is generated by the element $F_{r,p-1-r,\dots,p-1-r,0}^{(1,t)}(1) \in \mathcal{B}_{t+1}^-$.

We now have, for a (t-1)-tuple (l_1, \ldots, l_{t-1})

$$\left(\begin{bmatrix} 1 + p^{t}a & p^{t}b \\ p^{t}c & 1 + p^{t}d \end{bmatrix} - 1 \right) \cdot F_{l_{1},\dots,l_{t-1},0}^{(1,t)}(1) = \sum_{\lambda_{1} \in \mathbf{F}_{p}} \lambda_{1}^{l_{1}} \begin{bmatrix} 1 & 0 \\ p[\lambda_{1}] & 1 \end{bmatrix} \cdots \\ \cdots \sum_{\lambda_{t-1} \in \mathbf{F}_{p}} \lambda_{t-1}^{l_{t-1}} \begin{bmatrix} 1 & 0 \\ p^{t-1}[\lambda_{t-1}] & 1 \end{bmatrix} \sum_{\lambda_{t} \in \mathbf{F}_{p}} \begin{bmatrix} 1 & 0 \\ p^{t}[\lambda_{t} + \overline{c}] & 1 \end{bmatrix} \left(S_{1}(\lambda_{t}, \overline{c}) + r(\lambda_{1}) \right) [1, X^{r}]$$

where $S_1(\lambda_1, \bar{c}) + r(\lambda_1)$ is defined as in Lemma 4.5. Thanks to (8) we can write

$$\sum_{\lambda_t \in \mathbf{F}_p} \begin{bmatrix} 1 & 0 \\ p^t [\lambda_t + \overline{c}] & 1 \end{bmatrix} (S_1(\lambda_t, \overline{c}) + r) [1, X^r] = \sum_{\lambda_t \in \mathbf{F}_p} \begin{bmatrix} 1 & 0 \\ p^t [\lambda_t] & 1 \end{bmatrix} (-S_1(\lambda_t, -\overline{c}) + r') [1, X^r]$$

where $r' \in \mathbf{F}_p[\lambda_1]$ is a convenient polynomial of degree 1 in λ_1 (depending on a, b, c, d). In particular, $-S_1(\lambda_t, -\overline{c}) + r' = (-\overline{c})\lambda_t^{p-1} + P(\lambda_t)$ for a convenient polynomial of degree p-2 in λ_t and hence, by (14),

$$\left(\begin{bmatrix} 1 + p^t a & p^t b \\ p^t c & 1 + p^t d \end{bmatrix} - 1 \right) \cdot F_{l_1, \dots, l_{t-1}, 0}^{(1,t)}(1) \equiv (-\overline{c}) F_{l_1, \dots, l_{t-1}, p-1}^{(1,t)}(0).$$

Again, we have

$$F_{l_1,\dots,l_{t-1},p-1}^{(1,t)}(0) \equiv \begin{cases} 0 & \text{if } (l_1,\dots,l_{t-1}) \prec (r,p-1-r,\dots,p-1-r) \\ -(r+1)\overline{c}F_{r,p-1-r,\dots,p-1-r,r}^{(1,t)}(0) & \text{if } (l_1,\dots,l_{t-1}) = (r,p-1-r,\dots,p-1-r) \end{cases}$$

This let us conclude the case r = p - 1 (the K_t invariance of the elements $F_{l_1,...,l_t}^{(1,t)}(0)$ is clear).

Case B: t is even.

The argument are completely analogous to those of Case A and the details are left to the reader. We distinguish again two situations.

Sub-case B1: r > 0.

We now consider the element $F_{r,p-1-r,\dots,p-1-r,r}^{(1,t-1)}(1)\in\mathscr{B}_t^-$ as a linear generator for the $(p^{t-1}+1)$ -dimensional sub-module of $R_0^-\oplus_{R_1^-}\cdots\oplus_{R_{t-1}^-}R_t^-$.

As we have seen for the Case A1 we have

$$\begin{pmatrix}
 \begin{bmatrix}
 1 + p^t a & p^t b \\
 p^t c & 1 + p^t d
 \end{bmatrix} - 1
\end{pmatrix} \cdot F_{l_1, \dots, l_{t-1}}^{(1,t-1)}(1) \equiv$$

$$\equiv \begin{cases}
 0 & \text{if } (l_1, \dots, l_{t-1}) \prec (r, p-1-r, \dots, p-1-r, r) \\
 \overline{c} F_{r, p-1-r, \dots, p-1-r, r}^{(1,t-1)}(0) & \text{if } (l_1, \dots, l_{t-1}) = (r, p-1-r, \dots, p-1-r, r)
\end{cases}$$

(the K_t invariance of the elements $F_{l_1,\dots,l_{t-1}}^{(1,t-1)}(0)$ is clear).

Sub-case B1: r = 0.

In this situation we have to consider the element $F_{r,p-1-r,\dots,r,0,1}^{(1,t+1)}(0) \in \mathscr{B}_{t+2}^-$ as a linear generator for the $(p^{t-1}+1)$ -dimensional sub-module of $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_{t+1}^-} R_{t+2}^-$.

A direct computation together with an argument on Witt polynomials (as in Case A2) shows that

$$\begin{pmatrix}
 \begin{bmatrix}
 1 + p^t a & p^t b \\
 p^t c & 1 + p^t d
 \end{bmatrix} - 1
\end{pmatrix} \cdot F_{l_1, \dots, l_{t-1}, 0, 1}^{(1,t+1)}(0) \equiv$$

$$\equiv \begin{cases}
 0 & \text{if } (l_1, \dots, l_{t-1}) \prec (r, p - 1 - r, \dots, p - 1 - r, r) \\
 \bar{c} F_{r, p-1-r, \dots, p-1-r, r}^{(1,t+1)}(0) & \text{if } (l_1, \dots, l_{t-1}) = (r, p - 1 - r, \dots, p - 1 - r, r)
\end{cases}$$

We turn now our attention to the analysis of I_t invariants for the modules $R_{\infty,\bullet}^-$. The result is the following:

PROPOSITION 4.6. If either $t \ge 1$ and $p \ge 5$ or $t \ge 2$ and p = 3 the action of $\mathbf{U}(p^{t-1}\mathbf{Z}_p)$ is trivial on $\mathscr{F}_{p^{t-1}}$.

In particular

$$(R_{\infty,0}^-)^{I_t} = (R_{\infty,0}^-)^{K_t} = \mathscr{F}_{p^{t-1}-1}$$

and for any $x \in \mathscr{F}_{p^{t-1}}$ we have

$$\left(\left[\begin{array}{cc} 1 + p^t a & p^{t-1}b \\ p^t c & 1 + p^t d \end{array} \right] - 1 \right) \cdot x = \overline{c} \kappa_x e_0$$

where $a, b, c, d \in \mathbf{Z}_p$, $\kappa_x \in k$ is an appropriate scalar depending only on x and e_0 is a linear generator of $\operatorname{soc}(R_{\infty,0}^-)$.

Proof. Once we show that $\mathscr{F}_{p^{t-1}}$ is fixed under the action of $\mathbf{U}(p^{t-1}\mathbf{Z}_p)$, the second part of the statement follows easily by the Iwahori decomposition and Proposition 4.4.

Again, we can check the $\mathbf{U}(p^{t-1}\mathbf{Z}_p)$ -invariance of $\mathscr{F}_{p^{t-1}}$ by an explicit argument on Witt vectors. We notice that, for $z = \sum_{j=1}^{t+1} p^j [\lambda_j]$ and $b \in \mathbf{Z}_p$ we have

$$\left[\begin{array}{cc} 1 & p^{t-1}b \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ z & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ z' & 1 \end{array}\right] \kappa'$$

where $\kappa' \in K_1(p^{t+2})$ (the maximal pro-p subgroup of $K_0(p^{t+2})$) and $z' = \sum_{j=1}^t p^j [\lambda_j] + p^{t+1} [\lambda_{t+1} - \lambda_1^2 \overline{b}]$.

We distinguish several cases according to the values of t and r.

Case A: t is odd.

A direct computation gives the following equality inside R_{t+1} :

$$\left(\begin{bmatrix} 1 & p^{t-1}b \\ 0 & 1 \end{bmatrix} - 1 \right) F_{l_1,\dots,l_t}^{(1,t)}(l_{t+1}) = \begin{cases} 0 & \text{if } l_{t+1} = 0 \\ -\overline{b}F_{\lceil l_1+2 \rceil,l_2,\dots,l_t}^{(1,t)}(0) & \text{if } l_{t+1} = 1. \end{cases}$$

This proves the result for $R_{\infty,0}^-$ when $t \ge 1$ is odd and r < p-1, since $\mathscr{F}_{p^{t-1}}$ is linearly generated by the elements $F \in \mathscr{B}_{t+1}^-$ verifying $F \le F_{r,p-1-r,\dots,p-1-r,r+1}^{(1,t)}(0)$ (cf. case A1 in the proof of Proposition 4.4).

As far as the case r=p-1 is concerned, we recall (Proposition 3.10) that $F_{\lceil l_1+2\rceil,l_2,\dots,l_{t-1},0}^{(1,t)}(0)\equiv 0$ inside the amalgamated sum $R_0^-\oplus_{R_1^-}\cdots\oplus_{R_t^-}R_{t+1}^-$ as soon as t>1. If t=1 we have $F_2^{(1)}(0)\equiv 0$ as soon as 2< r. This let us deduce the required result for $R_{\infty,0}^-$ when r=p-1 and $t\geqslant 2$ (or t=1 and p>3), since $\mathscr{F}_{p^{t-1}}$ is linearly generated by the elements $F\in\mathscr{B}_{t+1}^-$ verifying $F\preceq F_{r,p-1-r,\dots,p-1-r,0}^{(1,t)}(1)$ (cf. case A2 in the proof of Proposition 4.4).

Case B: t is even.

Since

$$\left(\begin{bmatrix} 1 & p^{t-1}b \\ 0 & 1 \end{bmatrix} - 1 \right) F_{l_1,\dots,l_{t-1}}^{(1,t-1)}(l_t) = 0$$

inside R_t^- , the result is clear for r > 0 via the description of $\mathscr{F}_{p^{t-1}}$ (again, cf. the case B1 in the proof of Proposition 4.4).

Concerning the case r = 0 we have

$$\left(\begin{bmatrix} 1 & p^{t-1}b \\ 0 & 1 \end{bmatrix} - 1 \right) F_{l_1,\dots,l_{t-1},0,1}^{(1,t+1)}(0) = \overline{b} F_{\lceil l_1+2\rceil,\dots,l_{t-1},0,0}^{(1,t+1)}(0)$$

which is zero in the amalgamated sum $R_0^- \oplus_{R_1^-} \cdots \oplus_{R_{t+1}^-} R_{t+2}^-$; the conclusion follows again from the explicit description of $\mathscr{F}_{p^{t-1}}$ (cf. the case B2 in the proof of Proposition 4.4).

Remark 4.7. The statements of Propositions 4.4 and 4.6 hold if we replace $R_{\infty,0}^-$ with $R_{\infty,-1}^-$. If $p \geqslant 5$ this follows immediately from the generality of the Serre weight σ and Proposition 4.2.

Otherwise, one can pedantically repeat the direct arguments in the proofs of Propositions 4.4 and 4.6, noticing that now the $(p^{t-1}+1)$ dimensional submodule of $R_{\infty,-1}^-$ is generated by the element $F_{p-1-r,r,\dots,p-1-r,r+1}^{(1,t)}(0)$ if t is even and r < p-1, by the element $F_{p-1-r,r,\dots,p-1-r,0}^{(1,t)}(1)$ if t is even and r = p-1, etc...

The tedious details are left to the interested reader.

Remark 4.8. From the equality (13) we deduce that the exact sequence of Proposition 4.4

$$0 \to \mathscr{F}_{p^{t-1}-1} \to \mathscr{F}_{p^{t-1}} \to \chi^s_r \mathfrak{a}^{r+1} \to 0$$

is non-split even when restricted to $\overline{\mathbf{U}}(p^t\mathbf{Z}_p)$. Hence, by Remark 3.12, the space of $\overline{\mathbf{U}}(p^t\mathbf{Z}_p)$ -fixed vectors in $R_{\infty,0}^-$ is precisely $\mathscr{F}_{p^{t-1}-1}$

4.2 Invariants for supersingular representations.

We are now in the position to determine precisely the space of K_t , I_t fixed vectors for supersingular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$.

The case of I_t fixed vectors is an immediate consequence of Proposition 3.8 and Proposition 4.6:

PROPOSITION 4.9. Let $t \ge 1$ and $p \ge 5$ (or $t \ge 2$ and p = 3). We have a short exact sequence of $k[K_0(p)]$ -modules

$$0 \to W_1 \to (R_{\infty,0}^-)^{I_t} \oplus (R_{\infty,0}^+)^{I_t} \to (R_{\infty,0})^{I_t} \to 0$$
 (15)

(where W_1 is the 1-dimensional space defined in Proposition 3.7).

In particular, for any $t \ge 1$ and $p \ge 3$ we have

$$\dim(\pi(\sigma, 0, 1))^{I_t} = 2(2p^{t-1} - 1).$$

Stefano Morra

Proof. Write e_0 (resp. e_0^+) for a linear generator of $\operatorname{soc}_{K_0(p)}(R_{\infty,0}^-)$ (resp. $\operatorname{soc}_{K_0(p)}(R_{\infty,0}^+)$). Up to replace e_0 , e_0^+ by appropriate scalar multiples, we have an equivariant exact sequence (cf. Proposition 3.7)

$$0 \to \langle (e_0, e_0^+) \rangle \to R_{\infty,0}^- \oplus R_{\infty,0}^+ \to R_{\infty,0}|_{K_0(p)} \to 0.$$

From the associated long exact sequence in cohomology, we see that the exactness of (15) is established once we prove that the natural morphism

$$H^1(I_t, \langle (e_0, e_0^+) \rangle) \to H^1(I_t, R_{\infty,0}^-) \oplus H^1(I_t, R_{\infty,0}^+)$$

is injective. Recall that, as I_t acts trivially on $\langle (e_0, e_0^+) \rangle$, we have a canonical isomorphism

$$H^1(I_t, \langle (e_0, e_0^+) \rangle) \cong \operatorname{Hom}(I_t, k)$$

(where the Hom denotes the space of continuous group homomorphisms).

Assume that $\gamma \in \text{Hom}(I_t, k)$ has trivial image in $H^1(I_t, R_{\infty,0}^-) \oplus H^1(I_t, R_{\infty,0}^+)$. This means that there exists an element $(x^-, x^+) \in R_{\infty,0}^- \oplus R_{\infty,0}^+$ such that

$$\gamma(g)(e_0, e_0^+) = (g - 1)(x^-, x^+) \in \langle (e_0, e_0^+) \rangle \tag{16}$$

for all $g \in I_t$. In particular $x^- \in (R_{\infty,0}^-/\langle e_0 \rangle)^{I_t}$, $x^+ \in (R_{\infty,0}^+/\langle e_0^+ \rangle)^{I_t}$ and by Lemma 4.10 below it follows that x^- (resp. x^+) belongs to the $(p^{t-1}+1)$ -dimensional submodule of $R_{\infty,0}^-$ (resp. $R_{\infty,0}^+$), $i.\ e.\ that\ x^- \in \mathscr{F}_{p^{t-1}}$.

Hence, for $g = \begin{bmatrix} 1 + p^t a & p^{t-1}b \\ p^t c & 1 + p^t d \end{bmatrix} \in I_t$ we deduce from Proposition 4.6 that

$$(g-1)x^- = \overline{c}\kappa^- e_0$$

where $\kappa^- \in k$ depends only on x^- . By symmetry (see Remark 4.7 and Proposition 3.8) we similarly have

$$(g-1)x^+ = \overline{b}\kappa^+ e_0^+$$

for an appropriate scalar $\kappa^+ \in k$ depending only on x^+ .

It follows from (16) that $\kappa^- \overline{c} = \kappa^+ \overline{b}$ for any choice of $c, b \in \mathbf{Z}_p$ and this implies $\kappa^- = \kappa^+ = 0$, i.e. γ is the zero homomorphism.

Thanks to Proposition 4.6, Remark 4.7 and the isomorphism $R_{\infty,-1}^- \xrightarrow{\sim} (R_{\infty,0}^+)^s$ (Proposition 3.8) we deduce from (15) that

$$\dim(R_{\infty,0})^{I_t} = (2p^{t-1} - 1)$$

if either $t \ge 1$ and $p \ge 5$ or $t \ge 2$ and p = 3, and hence (by generality of σ and Proposition 4.1)

$$\dim(\pi(\sigma, 0, 1))^{I_t} = 2(2p^{t-1} - 1).$$

if either $t \ge 1$ and $p \ge 5$ or $t \ge 2$ and p = 3. The remaining case t = 1 and p = 3 is covered in [Bre03a] and the proof is complete.

LEMMA 4.10. In the notations and hypotheses of Proposition 4.9 we have

$$\dim(R_{\infty,0}^-/\langle e_0\rangle)^{I_t} = p^{t-1} = \dim(R_{\infty,0}^+/\langle e_0^+\rangle)^{I_t}.$$

Proof. The equivariant exact sequence

$$0 \to \langle e_0 \rangle \to R_{\infty,0}^- \to R_{\infty,0}^- / \langle e_0 \rangle \to 0$$

yields the exact sequence

$$0 \to \langle e_0 \rangle \to \left(R_{\infty,0}^-\right)^{\overline{\mathbf{U}}(p^t\mathbf{Z}_p)} \to \left(R_{\infty,0}^-/\langle e_0 \rangle\right)^{\overline{\mathbf{U}}(p^t\mathbf{Z}_p)} \to H^1(p^t\mathbf{Z}_p,\langle e_0 \rangle).$$

We have $H^1(p^t\mathbf{Z}_p, \langle e_0 \rangle) \cong \operatorname{Hom}(p^t\mathbf{Z}_p, k)$ and, as k is p-elementary abelian and the Frattini quotient of $p^t\mathbf{Z}_p$ is $\mathbf{Z}/(p)$, we deduce that $\operatorname{Hom}(p^t\mathbf{Z}_p, k)$ is one dimensional. We therefore deduce by Remark 4.8 that $\dim(R_{\infty,0}^-/\langle e_0 \rangle)^{I_t} \leqslant p^{t-1}$.

Finally, the element $e_1 \in R_{\infty,0}^-$ defined in Proposition 4.4 is I_t -fixed in $R_{\infty,0}^-/\langle e_0 \rangle$ (Proposition 4.6) and linearly independent with the elements in $(R_{\infty,0}^-)^{I_t}$: it follows that $\dim(R_{\infty,0}^-/\langle e_0 \rangle)^{I_t} = p^{t-1}$.

By Remark 4.7 we have an analogous result for $R_{\infty,-1}^-$, and the equality

$$\dim \left(R_{\infty,0}^+/\langle e_0^+\rangle\right)^{I_t} = p^{t-1}$$

follows then from the intertwinings of Proposition 3.8.

We turn our attention to the analysis of K_t fixed vectors for supersingular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$. We start recalling some results (cf. [Mo1]) concerning the KZ-socle filtration for the representations $\mathrm{ind}_{K_0(p)}^K(R_{\infty,0}^-)$ and $\pi(\sigma,0,1)$.

The $K_0(p)$ -socle filtration $R_{\infty,0}^-$ induces a K-equivariant filtration on $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$ (hence on $R_{\infty,0}$); the extensions between its first graded pieces look as follow:

$$\operatorname{ind}_{K_0(p)}^K \chi_r^{\mathfrak{s}} \mathfrak{a}^r - \operatorname{ind}_{K_0(p)}^K \chi_r^{\mathfrak{s}} \mathfrak{a}^{r+1} - \operatorname{ind}_{K_0(p)}^K \chi_r^{\mathfrak{s}} \mathfrak{a}^{r+2} - \operatorname{ind}_{K_0(p)}^K \chi_r^{\mathfrak{s}} \mathfrak{a}^{r+3} - \dots$$

$$(17)$$

One can show ([Mo1], Lemmas 6.8 and 6.9 or [AM]) that the KZ-equivariant filtration on $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$ obtained by the evident refinement of (17) is indeed the KZ-socle filtration for $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$ (cf. [Mo1], Theorem 1.1).

In particular, if $e_1 \in \mathscr{F}_{p^{t-1}}$ is a linear generator for the socle

$$\operatorname{soc}_{K_0(p)}\left(R_{\infty,0}^-/\mathscr{F}_{(p^{t-1}-1)}\right) = \chi_r^s \mathfrak{a}^{r+1}$$

we see that

$$\operatorname{soc}_K \bigg(\operatorname{ind}_{K_0(p)}^K \big(R_{\infty,0}^- / \mathscr{F}_{(p^{t-1}-1)} \big) \bigg) = \operatorname{soc}_K \big(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^{r+1} \big),$$

where the finite induction of the RHS is generated, under K, by the image of the element $[1, e_1]$ via the map $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \twoheadrightarrow \operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)/\mathscr{F}_{(p^{t-1}-1)}$). Notice moreover that if $R_{\infty,t}$ denotes the image of $\operatorname{ind}_{K_0(p)}^K(\mathscr{F}_{(p^{t-1}-1)})$ inside $R_{\infty,0}$ we have, for $t \geq 1$

$$\operatorname{ind}_{K_0(p)}^K (R_{\infty,0}^-/\mathscr{F}_{(p^{t-1}-1)}) \stackrel{\sim}{\to} R_{\infty,0}/R_{\infty,t}$$

via the epimorphism of Corollary 3.5. We recall that the main properties of the element $e_1 \in \mathscr{F}_{p^{t-1}}$ were described in Proposition 4.4 and 4.6 and we define the following element of $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$:

$$f(e_1) \stackrel{\text{def}}{=} \sum_{\lambda_0 \in \mathbf{F}_p} \begin{bmatrix} [\lambda_0] & 1 \\ 1 & 0 \end{bmatrix} [1, e_1] - \delta_{r, p-3} [1, e_1] \in \operatorname{ind}_{K_0(p)}^K(R_{\infty, 0}^-).$$

By Proposition 2.1 we see that

LEMMA 4.11. Via the natural epimorphism $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \to \operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) / \mathscr{F}_{(p^{t-1}-1)}$ the element $f(e_1)$ maps to a highest weight vector for the Serre weight $\operatorname{Sym}^{\lfloor p-3-r \rfloor} k^2 \otimes \det^{r+1}$ appearing in $\operatorname{soc}_K(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^{r+1})$, unless (r,p) = (p-1,3) (in which case it maps to a highest weight vector for $\overline{St} \otimes \det$).

Since K_t is normal in K, the sub-module $R_{\infty,t}$ is formed by K_t fixed vectors. Nevertheless, for $r \leq p-3$, it is strictly contained in $(R_{\infty,0})^{K_t}$:

Lemma 4.12. Assume $r \leq p-3$. The natural morphism

$$\left\langle \operatorname{ind}_{K_0(p)}^K (\mathscr{F}_{(p^{t-1}-1)}), f(e_1) \right\rangle_{k[K]} \hookrightarrow \operatorname{ind}_{K_0(p)}^K (R_{\infty,0}^-) \twoheadrightarrow R_{\infty,0}$$

factors through $(R_{\infty,0})^{K_t} \hookrightarrow R_{\infty,0}$.

Proof. It suffices to show that for any $\kappa \in K_t$ we have

$$(\kappa - 1) \cdot f(e_1) \in \ker \left(\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \twoheadrightarrow R_{\infty,0} \right).$$

For $a, b, c, d \in \mathbf{Z}_p$ we have

$$\begin{bmatrix} 1+p^t a & p^t b \\ p^t c & 1+p^t d \end{bmatrix} \begin{bmatrix} [\lambda_0] & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} [\lambda_0] & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1+p^t a' & p^t b' \\ p^t c' & 1+p^t d' \end{bmatrix}$$
(18)

with $\overline{c'} = \overline{b} + (\overline{a-d})\lambda_0 - \overline{c}\lambda_0^2$.

We therefore deduce from Proposition 4.4 the following equality in $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$:

$$\left(\begin{bmatrix} 1 + p^t a & p^t b \\ p^t c & 1 + p^t d \end{bmatrix} - 1 \right) \cdot f(e_1) = \overline{b} f_0(e_0) + (\overline{a - d}) f_1(e_0) - \overline{c} (f_2(e_0) + \delta_{r, p - 3}[1, e_0]).$$

where e_0 is a convenient linear generator of $\operatorname{soc}_{K_0(p)}(R_{\infty,0}^-)$.

Since the kernel of the epimorphism $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \twoheadrightarrow R_{\infty,0}$ is linearly generated by the elements

$$\ker\left(\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \to R_{\infty,0}\right) = \langle f_0(e_0), \dots, f_{p-2-r}(e_0), f_{p-1-r}(e_0) + [1, e_0]\rangle_k$$

(cf. Corollary 3.5 and Proposition 2.1) the required result follows.

We can now describe completely the K_t fixed vectors of $R_{\infty,0}$:

PROPOSITION 4.13. Let $t \ge 1$. The space of K_t fixed vectors of $R_{\infty,0}$ is given by

$$(R_{\infty,0})^{K_t} = \begin{cases} \left\langle \operatorname{ind}_{K_0(p)}^K (\mathscr{F}_{(p^{t-1}-1)}), f(e_1) \right\rangle_{k[K]} & \text{if } r \leqslant p - 3\\ \operatorname{ind}_{K_0(p)}^K (\mathscr{F}_{(p^{t-1}-1)}) & \text{if } r \in \{p-2, p-1\}. \end{cases}$$
 (19)

Proof. In order to ease notations we define the k[K]-module

$$M_0 \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \left\langle \operatorname{ind}_{K_0(p)}^K \big(\mathscr{F}_{(p^{t-1}-1)} \big), f(e_1) \right\rangle_{k[K]} & \text{if } r \leqslant p-3 \\ \\ \operatorname{ind}_{K_0(p)}^K \big(\mathscr{F}_{(p^{t-1}-1)} \big) & \text{if } r \in \{p-2, p-1\} \end{array} \right.$$

and write M for its image in $R_{\infty,0}$ under the epimorphism $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \twoheadrightarrow R_{\infty,0}$.

Assume that $R_{\infty,0}^{K_t}/M \neq \{0\}$.

Then, by the description of the K-socle filtration for $R_{\infty,0}$, we see that

$$\operatorname{soc} \left(R_{\infty,0}^{K_t} / M \right) = \operatorname{soc} \left(R_{\infty,0} / M \right) = \left\{ \begin{array}{ll} \operatorname{cosoc} (\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^{r+1}) & \text{if } r \leqslant p-4 \\ \overline{St} \otimes \operatorname{det}^{-1} & \text{if } r = p-3 \\ \operatorname{soc} (\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^{r+1}) & \text{if } r \in \{p-2, p-1\}. \end{array} \right.$$

¹The scrupolous reader will notice a slight abuse of notation: in the RHS of (19) we have k[K]-submodules of $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$ and one should consider their images under the epimorphism $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \twoheadrightarrow R_{\infty,0}$. This abuse should cause no confusion, avoiding instead an overload of notations.

Moreover, the following elements of $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$

$$\begin{cases}
f_{p-3-r}(e_1) & \text{if } r \leq p-3 \\
f_0(e_1) & \text{if } r \in \{p-2, p-1\} \text{ and } (r,p) \neq (p-1,3) \\
f_0(e_1), f_0(e_1) - [1, e_1] & \text{if } (r,p) = (p-1,3).
\end{cases} (20)$$

are mapped to a linear basis for the highest weight space of $\operatorname{soc}(R_{\infty,0}/M)$ (in the case (r,p) = (p-1,3) then $f_0(e_1)$, $f_0(e_1) - [1,e_1]$ are mapped to the highest weight space of $\overline{St} \otimes \operatorname{det}$, det respectively).

Since M is formed by K_t fixed vectors the elements described in (20) should be K_t fixed vectors of $R_{\infty,0}$. This is absurd, as we show in the following lines.

We treat first the case $r \leq p-3$. Thanks to (18) and Proposition 4.4 we have the following equality in $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-)$:

$$\left(\begin{bmatrix} 1 + p^t a & p^t b \\ p^t c & 1 + p^t d \end{bmatrix} - 1 \right) \cdot f_{p-3-r}(e_1) = \overline{b} f_{p-3-r}(e_0) + (\overline{a-d}) f_{p-2-r}(e_0) - \overline{c} f_{p-1-r}(e_0)$$

(where e_0 is again a convenient linear generator of $\operatorname{soc}_{K_0(p)}(R_{\infty,0}^-)$).

Via Proposition 2.1 and the epimorphism of Corollary 3.5 we deduce the following equality in $R_{\infty,0}$:

$$\left(\left[\begin{array}{cc} 1 + p^t a & p^t b \\ p^t c & 1 + p^t d \end{array} \right] - 1 \right) \cdot f_{p-3-r}(e_1) = -\overline{c} f_{p-1-r}(e_0).$$

But $f_{p-1-r}(e_0)$ is a linear generator for the highest weight space of $soc(R_{\infty,0})$ (Proposition 2.1) and hence $f_{p-3-r}(e_1)$ can not be a K_t fixed vector in $R_{\infty,0}$.

The case $r \in \{p-2, p-1\}$ is completely analogous: we have

$$\left(\begin{bmatrix} 1+p^t a & p^t b \\ p^t c & 1+p^t d \end{bmatrix} - 1 \right) \cdot f_0(e_1) = \overline{b} f_0(e_0) + (\overline{a-d}) f_1(e_0) - \overline{c} f_2(e_0) \tag{21}$$

(resp.

$$\left(\begin{bmatrix} 1 + p^t a & p^t b \\ p^t c & 1 + p^t d \end{bmatrix} - 1 \right) \cdot \left(f_0(e_1) - [1, e_1] \right) = \overline{b} f_0(e_0) + (\overline{a - d}) f_1(e_0) - \overline{c} \left(f_2(e_0) + [1, e_0] \right) (22)$$

when (r,p)=(p-1,3)) and one verifies by Proposition 2.1 that the RHS of (21) (resp. of (22)) is mapped to a linearly independent family inside $\operatorname{soc}(R_{\infty,0})$ via the epimorphism $\operatorname{ind}_{K_0(p)}^K(R_{\infty,0}^-) \to R_{\infty,0}$.

This completes the proof. \Box

As a corollary, we get the desired structure for K_t fixed vectors of supersingular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$:

COROLLARY 4.14. Let $t \ge 1$. The space of K_t fixed vectors for the supersingular representation $\pi(\sigma, 0, 1)$ decomposes into the direct sum of two k[K]-modules $(\pi(\sigma, 0, 1))^{K_t} = (R_{\infty, 0})^{K_t} \oplus (R_{\infty, -1})^{K_t}$, whose socle filtration is respectively described by:

$$(R_{\infty,0})^{K_t}: \operatorname{Sym}^r k^2 -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^{r+1}) -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^{r+2}) - \ldots -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^{r}) - \operatorname{Sym}^{p-3-r} k^2 \otimes \operatorname{det}^{r+1})$$

$$(R_{\infty,-1})^{K_t}: \quad \operatorname{Sym}^{p-1-r}k^2 \otimes \operatorname{det}^r -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}) -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^2) - \ldots -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s) - \operatorname{Sym}^{r-2}k^2 \otimes \operatorname{det}^r - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^2) - \ldots - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s) - \operatorname{Sym}^{r-2}k^2 \otimes \operatorname{det}^r - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^2) - \ldots - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \chi_r^s \mathfrak{a}^2) - \ldots$$

where we have $p^{t-1} - 1$ parabolic inductions in each line and the weight $\operatorname{Sym}^{p-3-r}k^2 \otimes \det^{r+1}$ in the first line (resp. $\operatorname{Sym}^{r-2}k^2 \otimes \det$ in the second line) appears only if $p-3-r \geqslant 0$ (resp. $r-2 \geqslant 0$).

Stefano Morra

Proof. The statement concerning the direct summand $(R_{\infty,0})^{K_t}$ follows immediately from Corollary 3.5 and Proposition 4.13. By the generality of σ and Proposition 4.1 one deduces the result for $(R_{\infty,-1})^{K_t}$.

In particular, we have

COROLLARY 4.15. Let $t \ge 1$. The dimension of K_t invariant for the supersingular representation $\pi(\sigma, 0, 1)$ is given by

$$\dim((\pi(\sigma,0,1))^{K_t}) = (p+1)(2p^{t-1}-1) + \begin{cases} p-3 & \text{if } r \notin \{0,p-1\} \\ p-2 & \text{if } r \in \{0,p-1\}. \end{cases}$$

5. The case of principal and special series

In order to complete the picture concerning K_t and I_t invariants for irreducible admissible representations of $\mathbf{GL}_2(\mathbf{Q}_p)$ we are left to treat the case of principal and special series.

Recall ([BL94], [Her2]) that the irreducible principal series for $\mathbf{GL}_2(\mathbf{Q}_p)$ are described by the parabolic induction

$$\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)} (\operatorname{un}_{\mu} \otimes \omega^r \operatorname{un}_{\mu^{-1}})$$

where $\mu \in \overline{k}^{\times}$, un_{μ} is the unramified character of \mathbf{Q}_{p}^{\times} verifying $\operatorname{un}_{\mu}(p) = \mu$, $r \in \{0, \dots, p-1\}$ and $(r, \mu) \notin \{(0, \pm 1), (p-1, \pm 1)\}$. The special series are described (up to twist) by the short exact sequence

$$0 \to 1 \to \operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)} 1 \to \operatorname{St} \to 0.$$
 (23)

It is easy to see that we have K-equivariant isomorphisms (see for instance [Mo1], §10):

$$\left(\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)}\left(\operatorname{un}_{\mu}\otimes\omega^r\operatorname{un}_{\mu^{-1}}\right)\right)|_{K}\cong\operatorname{ind}_{K_0(p^{\infty})}^{K}\chi_r^s\cong\lim_{\substack{\longrightarrow\\n\geqslant 1}}\left(\operatorname{ind}_{K_0(p^{n+1})}^{K}\chi_r^s\right)$$

where $K_0(p^{\infty}) \stackrel{\text{def}}{=} \mathbf{B}(\mathbf{Z}_p)$ and the transition morphisms for the co-limit in the RHS are obtained inducing the natural monomorphisms of $K_0(p^n)$ -representations

$$\chi_r^s \hookrightarrow \operatorname{ind}_{K_0(p^{n+1})}^{K_0(p^n)} \chi_r^s.$$

Moreover by the Bruhat-Iwahori and Mackey decompositions, we have a $K_0(p)$ -equivariant split exact sequence

$$0 \to \left(\operatorname{ind}_{K_0(p^{\infty})}^K \chi_r^s\right)^+ \to \operatorname{ind}_{K_0(p^{\infty})}^K \chi_r^s \to \operatorname{ind}_{K_0(p^{\infty})}^{K_0(p)} \chi_r^s \to 0.$$

The following results are formal.

LEMMA 5.1. Let $\mu \in \overline{k}^{\times}$ and $r \in \{0, ..., p-1\}$. We have a K-equivariant isomorphism

$$\left(\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)}\left(\operatorname{un}_{\mu}\otimes\omega^r\operatorname{un}_{\mu^{-1}}\right)\right)|_K\cong\operatorname{ind}_{K_0(p)}^K\left(\lim_{\substack{\longrightarrow\\n\geqslant 1}}\left(\operatorname{ind}_{K_0(p^{n+1})}^{K_0(p)}\chi_r^s\right)\right).$$

The action of $\begin{bmatrix} 0 & 1 \\ p & 0 \end{bmatrix}$ on the principal series $\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)}(\operatorname{un}_{\mu} \otimes \omega^r \operatorname{un}_{\mu^{-1}})$ induces an isomorphism

$$\left(\operatorname{ind}_{K_0(p^{\infty})}^{K_0(p)}\chi_r^s\right)^s \stackrel{\sim}{\longrightarrow} \left(\operatorname{ind}_{K_0(p^{\infty})}^K\chi_r^s\right)^+.$$

Proof. The first isomorphism comes from the continuity and transitivity of the induction functor $\operatorname{ind}_{K_0(p)}^K(\cdot)$. The second comes from a direct computation on the explicit isomorphism

$$(\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)}(\operatorname{un}_{\mu} \otimes \omega^r \operatorname{un}_{\mu^{-1}}))|_{K_0(p)} \cong \operatorname{ind}_{K_0(p^{\infty})}^{K_0(p)} \chi_r^s \oplus \left(\operatorname{ind}_{K_0(p^{\infty})}^K \chi_r^s\right)^+$$

given by Mackey decomposition (recalling that $\begin{bmatrix} 0 & 1 \\ p & 0 \end{bmatrix}$ normalizes $K_0(p)$).

The K_t , I_t fixed vectors for the co-limit $\lim_{\substack{n \geq 1 \\ n \geq 1}} (\operatorname{ind}_{K_0(p^{n+1})}^{K_0(p)} \chi_r^s)$ are described by the

PROPOSITION 5.2. Let $t \ge 1$ and $r \in \{0, ..., p-2\}$. Then

$$\left(\operatorname{ind}_{K_0(p^{\infty})}^{K_0(p)}\chi_r^s\right)^{K_t} = \operatorname{ind}_{K_0(p^t)}^{K_0(p)}\chi_r^s = \left(\operatorname{ind}_{K_0(p^{\infty})}^{K_0(p)}\chi_r^s\right)^{I_t}$$

Proof. We know that $\operatorname{ind}_{K_0(p^{n+1})}^{K_0(p)}\chi_r^s$ is uniserial for all $n\geqslant 1$, in particular the co-limit $\lim_{\substack{\longrightarrow\\n\geqslant 1}} \left(\operatorname{ind}_{K_0(p^{n+1})}^{K_0(p)}\chi_r^s\right)$

is uniserial. It is therefore sufficient to prove the result in the statement replacing the co-limit by $\operatorname{ind}_{K_0(p^{t+1})}^{K_0(p)} \chi_r^s$.

In this case, we have again an explicit linear basis \mathscr{B}_{t+1}^- for the induced representation $\operatorname{ind}_{K_0(p^{t+1})}^{K_0(p)}\chi_r^s$, endowed with a linear ordering which is compatible with the $K_0(p)$ -socle filtration (see [Mo1] §5 or [Mo5], §4):

$$\mathscr{B}_{t+1}^{-} \ni F_{l_1,\dots,l_t}^{(1,t)} \stackrel{\text{def}}{=} \sum_{\lambda_1 \in \mathbf{F}_p} \lambda_1^{l_1} \begin{bmatrix} 1 & 0 \\ p[\lambda_1] & 1 \end{bmatrix} \dots \sum_{\lambda_t \in \mathbf{F}_p} \lambda_t^{l_t} \begin{bmatrix} 1 & 0 \\ p^t[\lambda_t] & 1 \end{bmatrix} [1,e]$$

where $(l_1, \ldots, l_t) \in \{0, \ldots, p-1\}^t$ and e is a linear basis for the character χ_r^s (again \mathcal{B}_{t+1}^- is endowed with the lexicographical order).

The statement can be now verified directly, as for Proposition 4.4, 4.6, but the computations are much easier. \Box

We finally deduce:

PROPOSITION 5.3. Let $\mu \in \overline{k}^{\times}$ and $r \in \{0, \dots, p-1\}$ and let $t \geqslant 1$. The K-socle filtration for the K_t invariants of the principal series $\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)}(\operatorname{un}_{\mu} \otimes \omega^r \operatorname{un}_{\mu^{-1}})$ is described by

$$\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K\chi_r^s) - -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K\chi_r^s\mathfrak{a}) - -\operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K\chi_r^s\mathfrak{a}^2) - - \ldots - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K\chi_r^s)$$

where the number of parabolic induction is p^{t-1} .

Moreover, the I_t fixed vectors for the principal series $\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)}(\operatorname{un}_{\mu} \otimes \omega^r \operatorname{un}_{\mu^{-1}})$ are described by

$$\left(\operatorname{ind}_{\mathbf{B}(\mathbf{Q}_p)}^{\mathbf{GL}_2(\mathbf{Q}_p)}(\operatorname{un}_{\mu}\otimes\omega^r\operatorname{un}_{\mu^{-1}})\right)^{I_t}\cong\operatorname{ind}_{K_0(p^t)}^{K_0(p)}\chi^s_{\underline{r}}\oplus\left(\operatorname{ind}_{K_0(p^t)}^{K_0(p)}\chi^s_{\underline{r}}\right)^s.$$

The Steinberg representation verifies in particular

$$(St)^{K_t}: \qquad \overline{St} - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \mathfrak{a}) - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K \mathfrak{a}^2) - \ldots - \operatorname{socfil}(\operatorname{ind}_{K_0(p)}^K 1)$$

(where the number of parabolic induction is $p^{t-1}-1$) and

$$(St)^{I_t} \cong \operatorname{ind}_{K_0(p^t)}^{K_0(p)} 1 \oplus_1 \left(\operatorname{ind}_{K_0(p^t)}^{K_0(p)} 1\right)^s$$

where the amalgamated sum on the RHS is defined through the natural $K_0(p)$ -equivariant morphism $1 \hookrightarrow \operatorname{ind}_{K_0(p^t)}^{K_0(p)} 1$.

Stefano Morra

Proof. This is an immediate consequence of Lemma 5.1 and Proposition 5.2 (using the fact that K_t is normal in K).

The statement concerning the Steinberg representation is clear from the exact sequence (23).

Notice that from the uniseriality of $\operatorname{ind}_{K_0(p^{\infty})}^{K_0(p)}\chi_r^s$ and Lemma 5.1 we have an isomorphism

$$\left(\operatorname{ind}_{K_0(p^t)}^{K_0(p)}\chi_{\underline{r}}^s\right)^s \stackrel{\sim}{\longrightarrow} \left(\operatorname{ind}_{K_0(p^{t-1})}^K\chi_{\underline{r}}^s\right)^+$$

for any $t \ge 1$ and any smooth character χ_r^s (by a counting dimension argument).

6. Global applications

In this section we describe the relation between the results of §4.2 and the local-global compatibility of the p-modular Langlands correspondence recently established by Emerton. We first need to recall some of the constructions of [Eme10] (see also [Bre11]).

Let \mathbf{A}_f be the ring of finite adeles of \mathbf{Q} , $G_{\mathbf{Q}}$ be the absolute Galois group of \mathbf{Q} and write $G_{\mathbf{Q}_\ell}$ for its decomposition group at a rational prime ℓ .

For a compact open subgroup K_f of the adelic group $\mathbf{GL}_2(\mathbf{A}_f)$ we write $Y(K_f)$ to denote the modular curve (defined over \mathbf{Q}) whose complex points are

$$Y(K_f)(\mathbf{C}) = \mathbf{GL}_2(\mathbf{Q}) \setminus ((\mathbf{C} \setminus \mathbf{R}) \times \mathbf{GL}_2(\mathbf{A}_f) / K_f).$$

For $A \in \{\mathscr{O}, k\}$ we consider the first étale cohomology group

$$H^1(K_f)_A \stackrel{\text{def}}{=} H^1_{\acute{e}t}(Y(K_f)_{\overline{\mathbf{Q}}}, A)$$

where $Y(K_f)_{\overline{\mathbf{Q}}}$ is the base change of $Y(K_f)$ to $\overline{\mathbf{Q}}$.

For a fixed compact open subgroup K^p of $\mathbf{GL}_2(\mathbf{A}_f^p)$ we introduce the following modules, endowed with commuting actions of $G_{\mathbf{Q}}$ and $\mathbf{GL}_2(\mathbf{Q}_p)$:

$$H^1(K^p)_k \stackrel{\text{def}}{=} \varinjlim_{K_p} H^1(K_p K^p)_k, \quad \text{and} \quad \widehat{H}^1(K^p)_{\mathscr{O}} \stackrel{\text{def}}{=} \left(\varinjlim_{K_p} H^1(K_p K^p)_{\mathscr{O}} \right)^{\wedge}$$

where K_p runs over the compact open subgroups of $\mathbf{GL}_2(\mathbf{Q}_p)$ and the hat \wedge denotes the p-adic completion of the \mathscr{O} -module $\lim_{\stackrel{\longrightarrow}{K_p}} H^1(K_pK^p)_{\mathscr{O}}$.

$$\overrightarrow{K_p}$$

Let Σ_0 be a finite set of non-Archimedean places of \mathbf{Q} , not containing p and let $\Sigma \stackrel{\text{def}}{=} \Sigma_0 \cup \{p\}$. We will be interested in compact open subgroups of $\mathbf{GL}_2(\mathbf{A}_f^p)$ of the form $K_{\Sigma_0}K_0^{\Sigma}$, where K_{Σ_0} is a compact open subgroup of $G_{\Sigma_0} \stackrel{\text{def}}{=} \prod_{\ell \in \Sigma_0} \mathbf{GL}_2(\mathbf{Q}_{\ell})$ and $K_0^{\Sigma} \stackrel{\text{def}}{=} \prod_{\ell \notin \Sigma} \mathbf{GL}_2(\mathbf{Z}_{\ell})$; we will write for short

$$H^1(K_{\Sigma_0})_k \stackrel{\text{def}}{=} H^1(K_{\Sigma_0} K_0^{\Sigma})_k$$
, and $\widehat{H}^1(K_{\Sigma_0})_{\mathscr{O}} \stackrel{\text{def}}{=} \widehat{H}^1(K_{\Sigma_0} K_0^{\Sigma})_{\mathscr{O}}$.

For a compact open subgroup K_p in $\mathbf{GL}_2(\mathbf{Q}_p)$ we write $\mathbf{T}(K_pK_{\Sigma_0}K_0^{\Sigma})$ for the sub \mathscr{O} -algebra of

$$\operatorname{End}_{\mathscr{O}[G_{\mathbf{Q}}]}(H^1(K_pK_{\Sigma_0}K_0^{\Sigma})_{\mathscr{O}})$$

generated by the Hecke operators T_{ℓ} , S_{ℓ} for those primes $\ell \notin \Sigma$.

If $K'_p \leqslant K_p$ are compact open in $\mathbf{GL}_2(\mathbf{Q}_p)$ we have a (surjective) transition homomorphism $\mathbf{T}(K_p'K_{\Sigma_0}K_0^{\Sigma}) \twoheadrightarrow \mathbf{T}(K_pK_{\Sigma_0}K_0^{\Sigma})$, which is compatible, in the evident sense, with the actions on the étale cohomologies. We deduce a $G_{\mathbf{Q}} \times \mathbf{GL}_2(\mathbf{Q}_p)$ equivariant action of

$$\mathbf{T}(K_{\Sigma_0}) \stackrel{\text{def}}{=} \varprojlim_{K_p} \mathbf{T}(K_p K_{\Sigma_0} K_0^{\Sigma})$$

on the module $\widehat{H}^1(K_{\Sigma_0})_{\mathscr{O}}$, hence ([Eme10], (5.1.2)) on $H^1(K_{\Sigma_0})_k$.

By construction, the action of $\mathbf{T}(K_{\Sigma_0})$ on the sub-module $H^1(K_pK_{\Sigma_0}K_0^{\Sigma})_{\mathscr{O}}$ (resp. $H^1(K_pK_{\Sigma_0}K_0^{\Sigma})_k$) factors through the surjection $\mathbf{T}(K_{\Sigma_0}) \twoheadrightarrow \mathbf{T}(K_pK_{\Sigma_0}K_0^{\Sigma})$.

Let $\overline{\rho}: G_{\overline{\mathbf{Q}}} \to \mathbf{GL}_2(k)$ be a continuous, absolutely irreducible Galois representation. We assume moreover that $\overline{\rho}$ is modular and we define Σ_0 to be the set of primes dividing the Artin conductor of $\overline{\rho}$ ([Ser87], §1.2).

We recall that a compact open subgroup K_{Σ_0} of G_{Σ_0} is an allowable level for $\overline{\rho}$ if there exists a maximal ideal \mathfrak{m} of $\mathbf{T}(K_{\Sigma_0})$, having residue field k and such that

$$T_{\ell} \equiv \operatorname{tr}(\overline{\rho}(\operatorname{Frob}_{\ell})) \mod \mathfrak{m}, \qquad S_{\ell} \equiv \ell^{-1} \operatorname{det}(\overline{\rho}(\operatorname{Frob}_{\ell})) \mod \mathfrak{m}.$$

Since $\overline{\rho}$ is modular we deduce from the level part of Serre conjecture that any compact open subgroup in the Σ_0 -component of ker $(\mathbf{GL}_2(\widehat{\mathbf{Z}}) \to \mathbf{GL}_2(\widehat{\mathbf{Z}}/(N)))$ is an allowable level for $\overline{\rho}$.

If K_{Σ_0} is allowable and \mathfrak{m} is a maximal ideal associated to $\overline{\rho}$ in the previous sense, we consider the following \mathfrak{m} -adic completion:

$$\mathbf{T}(K_{\Sigma_0})_{\overline{\rho}} \stackrel{\mathrm{def}}{=} \mathbf{T}(K_{\Sigma_0})_{\mathfrak{m}}, \qquad \widehat{H}^1(K_{\Sigma_0})_{\mathscr{O},\overline{\rho}} \stackrel{\mathrm{def}}{=} \left(\widehat{H}^1(K_{\Sigma_0})_{\mathscr{O}}\right)_{\mathfrak{m}}, \qquad H^1(K_{\Sigma_0})_{k,\overline{\rho}} \stackrel{\mathrm{def}}{=} \left(H^1(K_{\Sigma_0})_k\right)_{\mathfrak{m}}.$$

The action of the completed Hecke algebra $\mathbf{T}(K_{\Sigma_0})_{\overline{\rho}}$ on the $G_{\overline{\mathbf{Q}}} \times \mathbf{GL}_2(\mathbf{Q}_p)$ -modules $\widehat{H}^1(K_{\Sigma_0})_{\mathscr{O},\overline{\rho}}$, $H^1(K_{\Sigma_0})_{k,\overline{\rho}}$ is equivariant. Moreover for an inclusion of allowable levels $K'_{\Sigma_0} \leqslant K_{\Sigma_0}$ we have a surjective transition homomorphism $\mathbf{T}(K'_{\Sigma_0})_{\overline{\rho}} \to \mathbf{T}(K_{\Sigma_0})_{\overline{\rho}}$ which is compatible, in the evident sense, with the actions on the completed étale cohomologies.

Therefore, the co-limit $\widehat{H}^1_{\mathscr{O},\overline{\rho},\Sigma} \stackrel{\text{def}}{=} \varinjlim_{K_{\Sigma_0}} \widehat{H}^1(K_{\Sigma_0})_{\mathscr{O},\overline{\rho}}$, taken over all allowable levels K_{Σ_0} in G_{Σ_0} ,

is naturally a module over the \mathscr{O} -algebra $\mathbf{T}_{\overline{\rho},\Sigma} \stackrel{\text{def}}{=} \varprojlim_{K_{\Sigma_0}} \mathbf{T}(K_{\Sigma_0})_{\overline{\rho}}$ and the same holds for the co-limit

$$H^1_{k,\overline{\rho},\Sigma} \stackrel{\text{def}}{=} \underset{K_{\Sigma_0}}{\lim} H^1(K_{\Sigma_0})_{k,\overline{\rho}} \text{ ([Eme10], (5.3.4))}.$$

The modules $\widehat{H}^1_{\mathscr{O},\overline{\rho},\Sigma}$, $H^1_{k,\overline{\rho},\Sigma}$ are furthermore endowed with a linear action of $G_{\overline{\mathbf{Q}}} \times \mathbf{GL}_2(\mathbf{Q}_p) \times G_{\Sigma_0}$ which turns out to be $\mathbf{T}_{\overline{\rho},\Sigma}$ -linear. Notice again that, by construction, the action of $\mathbf{T}_{\overline{\rho},\Sigma}$ on the submodule $\widehat{H}^1(K_{\Sigma_0})_{\mathscr{O},\overline{\rho}}$ (resp. $H^1(K_{\Sigma_0})_{k,\overline{\rho}}$) factors through the surjection of local \mathscr{O} -algebras $\mathbf{T}_{\overline{\rho},\Sigma} \twoheadrightarrow \mathbf{T}(K_{\Sigma_0})_{\overline{\rho}}$.

We can now introduce a local-global application of the results in section 4.2.

PROPOSITION 6.1. Let $p \ge 3$ and $\overline{\rho}: G_{\mathbf{Q}} \to \mathbf{GL}_2(k)$ be an odd, continuous, absolutely irreducible Galois representation such that $\overline{\rho}|_{G_{\mathbf{Q}_p}}$ is absolutely irreducible. Let Σ_0 be the set of primes dividing the Artin conductor of $\overline{\rho}$ and let κ be the minimal weight associated to $\overline{\rho}|_{G_{\mathbf{Q}_p}}$ (cf. [Ser87], §2.2).

Let K_{Σ_0} be an allowable level for $\overline{\rho}$ and define

$$d \stackrel{\text{def}}{=} \dim_k \left(\bigotimes_{\ell \in \Sigma_0} \pi(\overline{\rho}|_{G_{\mathbf{Q}_\ell}}) \right)^{K_{\Sigma_0}}$$
 (24)

where $\pi(\overline{\rho}|_{G_{\mathbf{Q}_{\ell}}})$ is the smooth p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_{\ell})$ attached to $\overline{\rho}|_{G_{\mathbf{Q}_{\ell}}}$ via the p-modular Langlands correspondence of Emerton-Helm ([EH]).

Then, if either $t \ge 1$ and $p \ge 5$ or $t \ge 2$ and p = 3 we have

$$\begin{split} \dim_k \left(H^1_{\acute{e}t}(Y(K_tK_{\Sigma_0}K_0^\Sigma)_{\overline{\mathbf{Q}}},k)[\mathfrak{m}] \right) &= 2d \big(2p^{t-1}(p+1) - 3 \big) \qquad \text{if } \kappa - 2 \equiv 0 \, \text{mod} \, p + 1 \\ \dim_k \left(H^1_{\acute{e}t}(Y(K_tK_{\Sigma_0}K_0^\Sigma)_{\overline{\mathbf{Q}}},k)[\mathfrak{m}] \right) &= 2d \big(2p^{t-1}(p+1) - 4 \big) \qquad \text{if } \kappa - 2 \not\equiv 0 \, \text{mod} \, p + 1 \\ \dim_k \left(H^1_{\acute{e}t}(Y(I_tK_{\Sigma_0}K_0^\Sigma)_{\overline{\mathbf{Q}}},k)[\mathfrak{m}] \right) &= 4d \big(2p^{t-1} - 1 \big). \end{split}$$

where $K_0^{\Sigma} \stackrel{\text{def}}{=} \prod_{\ell \notin (\Sigma_0 \cup \{p\})} \mathbf{GL}_2(\mathbf{Z}_{\ell})$ and \mathfrak{m} is a maximal ideal associated to $\overline{\rho}$ in the Hecke algebra $\mathbf{T}(K_{\Sigma_0})$.

Proof. Let \mathfrak{m} be a maximal ideal of the Hecke algebra $\mathbf{T}(K_{\Sigma_0})$ associated to $\overline{\rho}$. We will use the same notation \mathfrak{m} for the maximal ideals of the local \mathscr{O} -algebras $\mathbf{T}(K_{\Sigma_0})_{\overline{\rho}}$, $\mathbf{T}_{\overline{\rho},\Sigma}$.

Assume that either $t \ge 1$ and $p \ge 5$ or $t \ge 2$ and p = 3. Then for $K_{\mathfrak{p}} \in \{K_t, I_t\}$, the congruence subgroup $K_{\mathfrak{p}} \prod_{\ell \ne p} \mathbf{GL}_2(\mathbf{Z}_{\ell})$ is neat² in the sense of [Eme10], Definition 5.3.7 (the proof of Lemme 2 (1) in §5.5 of Carayol's article [Car] applies line to line).

We can therefore use [Eme10] Lemma 5.3.8 (2) and the equivariance of the Hecke action on the cohomology spaces to obtain

$$\left(H^1_{k,\overline{\rho},\Sigma}\right)^{K_{\mathfrak{p}}K_{\Sigma_0}}[\mathfrak{m}]=H^1(K_{\mathfrak{p}}K_{\Sigma_0}K_0^\Sigma)_{k,\overline{\rho}}[\mathfrak{m}]=H^1(K_{\mathfrak{p}}K_{\Sigma_0}K_0^\Sigma)_k[\mathfrak{m}]$$

(where \mathfrak{m} is seen as an ideal of $\mathbf{T}_{\overline{\rho},\Sigma}$, $\mathbf{T}(K_{\Sigma_0})_{\overline{\rho}}$ or $\mathbf{T}(K_{\Sigma})$ thanks to the compatibility of the Hecke action on the sub-modules of $H^1_{k,\overline{\rho},\Sigma}$, $H^1(K_{\mathfrak{p}}K_{\Sigma_0}K_0^{\Sigma})_k$).

Let $\overline{\kappa-2} \in \{0,\ldots,p\}$ be defined by $\overline{\kappa-2} \equiv \kappa-2 \bmod p+1$ (we know from [Ser87] that $\overline{\kappa-2} < p-1$). From the proof of Proposition 6.1.20 in [Eme10] we have an equivariant isomorphism

$$H^1_{k,\overline{\rho},\Sigma}[\mathfrak{m}] \cong \overline{\rho} \otimes \pi_p \otimes \pi_{\Sigma_0}(\overline{\rho})$$

where $\pi_{\Sigma_0}(\overline{\rho}) \stackrel{\text{def}}{=} \otimes_{\ell \in \Sigma_0} \pi(\overline{\rho}|_{G_{\mathbf{Q}_l}})$ and π_p is a supersingular representation whose KZ-socle contains, up to twist, the weight $\sigma \stackrel{\text{def}}{=} \operatorname{Sym}^{\overline{\kappa-2}} k^2$ (more precisely π_p is, up to twist, the supersingular representation attached to $\overline{\rho}|_{G_{\mathbf{Q}_p}}$ in [Bre03a]).

We deduce

$$H^{1}(K_{\mathfrak{p}}K_{\Sigma_{0}}K_{0}^{\Sigma})_{k}[\mathfrak{m}] \cong \overline{\rho} \otimes (\pi_{p})^{K_{\mathfrak{p}}} \otimes (\pi_{\Sigma_{0}}(\overline{\rho}))^{K_{\Sigma_{0}}}$$

and the result follows from Proposition 4.9, Corollary 4.15 and the definition of d, noticing that $\pi_p \cong \pi(\sigma, 0, 1)$ up to twist.

Remark 6.2. By the level part of the refined Serre conjecture ([Ser87]) one expects the subgroup

$$K_{1,\Sigma_0}(N) \stackrel{\text{\tiny def}}{=} \left\{ \left[egin{array}{cc} a & b \\ c & d \end{array}
ight] \in \prod_{\ell \in \Sigma_0} \mathbf{GL}_2(\mathbf{Z}_\ell) | \ c \equiv d-1 \equiv 0 \, \mathrm{mod} \, N
ight\}$$

to be an allowable level for which d=1 in (24), at least if the semi-simplifications $\overline{\rho}|_{G_{\mathbf{Q}_{\ell}}}^{\mathrm{ss}}$ are not twists of $1 \oplus |\cdot|$.

In the classical ℓ -adic correspondence this is indeed the compatibility between the Artin and adelic conductor but in the ℓ -modular case, such compatibility does not seem to appear in the current literature.

References

- AM R. Abdellatif, S. Morra, Structure interne des représentations modulo p de $SL_2(\mathbf{Q}_p)$, preprint (2012).
- BS00 M. Bardoe, P. Sin, The permutation modules for $GL(n+1, \mathbf{F}_q)$ acting on $\mathbf{P}^n(\mathbf{F}_q)$ and \mathbf{F}_q^{n+1} , J. London Math. Soc. 61 (2000), 58-80.
- BL94 L. Barthel, R. Livné, Irreducible modular representation of GL₂ of a local field, Duke Math. J. 75 (1994), 261-292.
- BL95 L. Barthel, R. Livné, Modular representations of GL₂ of a local field: the ordinary unramified case,
 J. Number Theory 55 (1995), 1-27.
- AC N. Bourbaki, Éléments de Mathématiques: Algèbre Commutative, Chapitres 8 et 9, Masson (1983), Paris.

²For the same reason, the group $K_tK(N)K_0^{\Sigma}$ is neat, where K(N) is the subgroup defined in Theorem 1.6 in §1.

Invariant elements for p-modular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$

- Bre11 C. Breuil, Correspondance de Langlands p-adique, compatibilité local-global et applications, Seminaire Bourbaki 1031, to appear in Astérisque
- Bre03a C. Breuil, Sur quelques répresentations modulaires et p-adiques de $\mathbf{GL}_2(\mathbf{Q}_p)$ I, Compositio Math. 138 (2003), 165-188.
- BP C. Breuil, V. Paskunas, Towards a modulo p Langlands correspondence for GL₂ Memoirs of Amer. Math. Soc. 216 (2012).
- Car H. Carayol, Sur les représentations galoisiennes modulo ℓ attachées aux formes modulaires, Duke Math. J. 59 (1989), 785-801.
- Col1 P. Colmez, Représentations de $GL_2(\mathbf{Q}_p)$ et (ϕ, Γ) -modules, Astérisque 330 (2010), 281-509.
- Edi B. Edixhoven, The weight in Serre's conjectures on modular forms, Inv. Math 109 (1992), 563-594.
- EH M. Emerton, D. Helm, The local Langlands correspondence for \mathbf{GL}_n in families, preprint (2011) available at http://www.math.uchicago.edu/emerton/pdffiles/families.pdf
- Emelo M. Emerton, Local-global compatibility in the p-adic Langlands programm for $GL_{2/\mathbf{Q}}$, preprint (2011), available at http://www.math.uchicago.edu/emerton/pdffiles/lg.pdf
- Her1 F. Herzig, A Satake isomorphism in characteristic p. Comp. Math. 147 (2011), 263-283.
- Her2 F. Herzig, The classification of irreducible admissible mod p representations of a p-adic GL_n , Inv. Math 186 (2011), 373-434.
- Hu Y. Hu, Sur quelques représentation supersingulières de $GL_2(\mathbf{Q}_{p^f})$, J. of Algebra. 324 (2010), 1577-1615.
- Hu2 Y. Hu, Diagrammes canoniques et représentations modulo p de $GL_2(F)$, J. Inst. Math. Jussieu 11 (2012), 67 118.
- Kha C. Khare, Congruences between cusp forms: the (p,p) case, Duke Math. J. 80 (1995), 631-667.
- Kis M. Kisin, Deformations of $G_{\mathbf{Q}_p}$ and $\mathbf{GL}_2(\mathbf{Q}_p)$ representations, Astérisque 330 (2010), 529-542.
- Maz B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. de l'IHÉS 47 (1977).
- Mo1 S. Morra, Explicit description of irreducible $\mathbf{GL}_2(\mathbf{Q}_p)$ -representations over $\overline{\mathbf{F}}_p$, J. of Algebra 339 (2011), 252-303.
- Mo2 S. Morra, Invariant elements under some congruence subgroups for irreducible $\mathbf{GL}_2(\mathbf{Q}_p)$ representations over $\overline{\mathbf{F}}_p$, preprint (2009).
- Mo3 S. Morra Study of $\Gamma_0(p^k)$, $\Gamma_1(p^k)$ invariants for supersingular representations of $\mathbf{GL}_2(\mathbf{Q}_p)$, preprint (2010).
- Mo4 S. Morra, Multiplicity theorems modulo p for $GL_2(\mathbf{Q}_p)$, preprint 2010.
- Mo5 S.Morra On some representations of the Iwahori subgroup, J. of Number Theory 132 (2012), 1074-1150.
- Mo6 S.Morra Iwasawa modules with extra structure and p-modular representations of GL_2 , preprint (2012).
- Mo7 S.Morra Iwasawa modules and p-modular representations of GL_2 over a function field, in preparation.
- Pas1 V. Paskunas, *The image of Colmez's Montreal functor* preprint (2010), available at http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.2008v1.pdf
- Pas2 V. Paskunas, Extension for supersingular representations of $GL_2(\mathbf{Q}_p)$, Astérisque 331 (2010), 317-353.
- Rib K. Ribet, On modular representations of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$ arising from modular forms, Inv. Math. 100 (1990), 431-476
- Sch B. Schraen, Sur la présentation des représentations supersingulières de $\mathbf{GL}_2(F)$, preprint (2012), available at http://lmv.math.cnrs.fr/annuaire/benjamin-schraen/travaux-de-benjamin-schraen/article/travaux-et-publications
- Ser77 J-P. Serre, Arbres, amalgames, SL₂, Astérisque 46 (1983).
- Ser87 J-P. Serre, Sur les représentations modulaires de degré 2 de $Gal(\mathbf{Q}/\mathbf{Q})$, Duke Math. J. 54 (1987), 179-230.

Stefano Morra

Stefano Morra stefano.morra@univ-montp2.fr

Laboratoire de Mathématiques de Montpellier, place Eugène Bataillon, Case courrier 051, 34095 Montpellier cedex 5, France

Current address: The Fields Institute, 222 College Street, Toronto, Ontario M5T 3J1, Canada