Corrigendum to "Iwasawa modules and p-modular representations of GL2"

Stefano Morra

We want to correct the statements in [Mor17, Proposition 4.4], and in the subsequent proof.
The problem in loc. cit. is that in the proof we worked as if $A_{m, n}$ were $k\left[\left[\left[\begin{array}{cc}1 & 0 \\ p^{m} \mathscr{O}_{F} / p^{n} \mathscr{O}_{F} & 1\end{array}\right]\right]\right]$, while we have instead $A_{m, n} \cong k\left[\left[\left[\begin{array}{cc}1 & 0 \\ p^{m} \mathscr{O}_{F} / p^{n+1} \mathscr{O}_{F} & 1\end{array}\right]\right]\right]$.

We give a corrected version of the statement and its proof. We freely use the notation of [Mor17] in what follows.

Proposition 0.1. Let $n \geqslant m \geqslant 1$ and let $\underline{l}=\left(\underline{l}_{m}, \ldots, \underline{l}_{n}\right) \in\left\{\{0, \ldots, p-1\}^{f}\right\}^{(n-m)}$ be an $(n-m+1)$ tuple of f-tuples.

Then one has the following equality in $A_{m, n}$:

$$
\underline{X}^{\underline{l}} \equiv \kappa_{\underline{l}} F_{\underline{p-1-\underline{l}_{m}}, \ldots, p-1-\underline{l}_{n}}^{(m, n} \bmod \mathfrak{m}^{|\underline{l}|+(p-1)}
$$

where

$$
\underline{X} \underline{\underline{l}}=\prod_{j=0}^{f-1} X_{j}^{\sum_{i=m}^{n} p^{i-m} l_{i, j}}
$$

and

$$
\underline{p-1}-\underline{l_{i}} \stackrel{\text { def }}{=}\left(p-1-l_{i, j}\right)_{j=0}^{f-1}
$$

for all $i=m, \ldots, n$.
Proof. The proof is divided into two steps: the residual case ($n-m=0$) and a dévissage. Note that for $n-m=0$ the statement is clear up to the explicit multiplicative constant, by looking at the action of the finite torus.

If $n=m$ and $\underline{l} \in\{0, \ldots, p-1\}^{f}$ is an f-tuple, we write $F_{\underline{l}}=F_{l}^{(m, m)}$ not to overload notation in what follows.

Lemma 0.2. Keep the setting of Proposition 0.1 and assume that $n-m=0$.
For any f-tuple $\underline{l} \in\{0, \ldots, p-1\}^{f}$ we have the following equality in $A_{m, m}$:

$$
\underline{X} \underline{\underline{l}}=\left\{\begin{array}{cc}
\kappa_{l} F_{\underline{p-1}-\underline{l}} & \text { if }|\underline{l}|>0 \\
\kappa_{0} F_{p-1} \underline{(-1)^{f-1}} \underline{X} \underline{p-1} & \text { else }
\end{array}\right.
$$

Proof. Note first that

$$
\begin{equation*}
\kappa_{\underline{l}+e_{i}}=\left(p-1-l_{i}\right) \kappa_{\underline{l}} \tag{1}
\end{equation*}
$$

and that $\kappa_{e_{i}}=1$ for all $i \in\{0, \ldots, f-1\}$. The statement is therefore an immediate induction using Lemma 0.3 below.

Stefano Morra

Lemma 0.3. Keep the hypotheses of Lemma 0.2. Assume moreover that $\underline{l}+e_{i} \leqslant \underline{p-1}$. Then:

$$
F_{\underline{p-1}-e_{i}} F_{\underline{p-1-\underline{l}}}=\left(p-1-l_{i}\right) F_{\underline{p-1}-\left(\underline{l}+e_{i}\right)} .
$$

Proof. By the very definition of the elements $F_{\underline{p-1-e_{i}}}, F_{\underline{p-1-\underline{l}}}$ have

$$
\begin{aligned}
F_{\underline{p-1}-e_{i}} F_{\underline{p-1}-\underline{l}} & =\sum_{\lambda, \mu \in k_{F}} \lambda^{\underline{p-1}-e_{i}}(\mu-\lambda)^{\underline{p-1}-\underline{l}}\left[\begin{array}{cc}
1 & 0 \\
p^{m}\left[\varphi^{-m+1}(\lambda)\right] & 1
\end{array}\right] \\
& =\sum_{\underline{j} \leqslant \underline{p-1}-\underline{l}}\left(\frac{p-1}{\underline{j}}-\underline{l}\right)(-1)^{\underline{j}} \sum_{\lambda \in k_{F}} \lambda^{p-1-e_{i}+\underline{j}} F_{\underline{p-1}-\underline{l}-\underline{j}}
\end{aligned}
$$

and the result follows since

$$
\sum_{\lambda \in k_{F}} \lambda \underline{\underline{p-1}-e_{i}+\underline{j}}=-\delta_{\underline{j}, e_{i}}
$$

We consider now the dévissage. Recall that the inclusion $p^{m+1} \mathscr{O}_{F} / p^{n+1} \mathscr{O}_{F} \hookrightarrow p^{m} \mathscr{O}_{F} / p^{n+1} \mathscr{O}_{F}$ induces an injective k-algebra homomorphism:

$$
\begin{aligned}
\iota: A_{m+1, n} & \hookrightarrow A_{m, n} \\
X_{m+1, i} & \mapsto X_{m, i}^{p} .
\end{aligned}
$$

In order to emphasize the inductive argument, we write $\mathfrak{m}, \mathfrak{m}_{1}$ to denote the maximal ideal of $A_{m, n}$, $A_{m+1, n}$ respectively (so that, in particular $\iota\left(\mathfrak{m}_{1}\right)=\mathfrak{m}^{p}$).

Given a monomial $\underline{X}^{\underline{l}} \in A_{m, n}$, we can write

$$
\underline{X}^{\underline{l}}=\underline{X}^{\underline{l}^{(1)}} \iota\left(\underline{X}^{\underline{l}^{(2)}}\right)
$$

for $\underline{l}^{(1)} \in\{0, \ldots, p-1\}^{f}, \underline{l}^{(2)} \in \mathbf{N}^{f}$ verifying $\underline{l}=\underline{l}^{(1)}+p \underline{l}^{(2)}$.
By the inductive hypothesis on $A_{m+1, n}$ we have

$$
\begin{equation*}
\iota\left(\underline{\underline{\underline{l}}}^{\mathbf{l}^{(2)}}\right) \in \kappa_{\underline{l}^{(2)}} F_{\underline{p-1}-\underline{l}^{(2)}}^{(m+1, n)}+\iota\left(\mathfrak{m}_{1}^{\left|\underline{l}^{(2)}\right|+(p-1)}\right)=\kappa_{\underline{l^{(2)}}} F_{\underline{p-1}-\underline{\underline{l}}^{(2)}}^{(m+1, n)}+\mathfrak{m}^{p \underline{l^{(2)}} \mid+p(p-1)} \tag{2}
\end{equation*}
$$

and we claim that
Claim: In the situation above, we have

$$
\begin{equation*}
\underline{X}^{\underline{l}^{(1)}} \in \kappa_{\underline{l}^{(1)}} F_{\underline{p-1-\underline{l}} \underline{l}^{(1)}}^{(m)} \bmod \mathfrak{m}^{\left|\underline{l}^{(1)}\right|+(p-1)} . \tag{3}
\end{equation*}
$$

This will imply the statement of Proposition 0.1 since from (2) and (3) we easily get

$$
\underline{X}^{\underline{l}} \equiv \kappa_{\underline{l}} F_{\underline{p-1}-\underline{l}_{m}, \ldots, \underline{p-1}-\underline{l}_{n}}^{\left(m, \mathfrak{m}^{\underline{l}} \mid+(p-1)\right.} .
$$

Proof of the Claim. By Lemma 0.2 we have, in $A_{m, n}$:

$$
\begin{equation*}
\underline{X}^{\underline{\underline{l}}^{(1)}} \in \kappa_{\underline{l}^{(1)}} F_{\underline{p-1}-\underline{l}^{(1)}}^{(m)}+\sum_{i=0}^{f-1} X_{i}^{p} \cdot A_{m, n} . \tag{4}
\end{equation*}
$$

Let us consider a monomial $X_{i}^{p} \underline{X} \underline{\underline{t}}$ appearing with a non-zero coefficient in the sum $\sum_{i=0}^{f-1} X_{i}^{p} A_{m, n}$ in the RHS of (4). As the finite torus $\mathbf{T}\left(k_{F}\right)$ acts semisimply on $A_{m, n}$ and $\underline{X}^{\underline{l}^{(1)}}, X_{i}^{p}$ are eigenvectors, we deduce that the f-tuple $\underline{t} \in \mathbf{N}$ verifies:

$$
\sum_{j=0}^{f-1} p^{j} r_{j} \equiv \sum_{j=0}^{f-1} p^{j} l_{j}^{(1)}-p^{i+1} \bmod q-1 .
$$

This implies $|\underline{t}| \equiv\left|\underline{l}^{(1)}\right|-1 \bmod p-1$, hence the Claim.

References

Mor17 Stefano Morra, Iwasawa modules and p-modular representations of GL2, Israel J. Math. 219 (2017), no. 1, 1-70. MR 3642015

Stefano Morra morra@math.univ-paris13.fr
Université Paris 8, Laboratoire d'Analyse, Géométrie et Applications, LAGA, Université Sorbonne Paris Nord, CNRS, UMR 7539, F-93430, Villetaneuse, France

