Iwasawa modules and p-modular representations of GL2

Stefano Morra

ABSTRACT

Let F' be a finite extension of Q,. We associate, to certain smooth p-modular representa-
tions 7 of GLo(F’), a module &(7) on the mod-p Iwasawa algebra of the standard Iwahori
subgroup I of GL2(F). When F is unramified, we obtain a module on a suitable formally
smooth Fg-algebra, endowed with an action of & (the units in the ring of integers of F)
and an 0 equivariant, Frobenius semilinear endomorphism which turns out to be p-étale.
We study the torsion properties of such module, as well as its Iwahori-radical filtration.
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1. Introduction

The p-modular Langlands program. Let F be a p-adic field, O its ring of integers and kp
its residue field. The p-adic Langlands program has the ambition to establish a dictionary between

n-dimensional p-adic Galois representations of Gal(Qp /F) and certain p-adic Banach space repre-
sentations of GL, (F"). Such correspondence is expected to be compatible with mod-p reduction of
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coeflicients, to be realized in appropriate cohomologies of Shimura curves and to be to be compatible
with deformation-theoretic techniques.

This correspondence is well understood in the special case of GL2(Q)). The first breakthrough
was Breuil’s classification of p-modular supercuspidal representations of GL2(Q,) (cf. [Bre03a]),
yielding a natural parametrization of their isomorphism classes by means of irreducible 2-dimensional
Galois representations. The second breakthrough was the realization, by Colmez, of a functor from
smooth, finite length admissible p-modular representations of GL2(Q,) to Fontaine’s (¢, I')-modules
([Col], 8§IV).

The last years have experienced an extensive research for a p-modular correspondence for GLo
over finite extensions of Q. The most striking phenomenon is the proliferation of supercuspidal
representations (as showed by the work of Breuil and Paskunas [BP] and Hu [Hu]), which does
not seem to find any justification on the Galois side (the mod-p, absolutely irreducible Galois
representations of Gal(ap /F') are finitely many up to isomorphism).

Although many problems in the category of smooth p-modular representations of GLy(F') are
extremely delicate, investigations in the last years showed that their approach by Iwasawa theoretical
methods can be fruitful (cf. [HMS], [Sch]).

The aim of this paper is to develop this approach, describing a way to associate to a universal
p-modular representation of GLg a module over a power series ring of characteristic p (the Iwasawa
algebra of the integral points of a unipotent radical of GL2) endowed with commuting semilinear
actions of 0 and a Frobenius morphism .#, and study some of its properties when F is unramified.

It turns out that such module is torsion free, the Frobenius action is p-étale and its quotients
by certain non-zero submodules have dense torsion.

1.1 Description of the main results

All representations are smooth, over k-linear spaces, where k is a (sufficiently large) finite extension
of kr. By classical results of Barthel and Livné [BL94| a supersingular representation m of GLa(F)
is (up to twist) an admissible quotient of an explicit universal representation 7(c,0). The latter is

defined to be the cokernel of a certain GLo(F)-equivariant endomorphism (or Hecke operator) on the
GL2(F)
GL2(0F
with trivial action of the uniformizer w € F* (i.e. o is a Serre weight).

compact induction ind Vox T where o is an irreducible smooth representation of GLy(OF)F™

More precisely (cf. [Mol], Theorems 1.1 and 1.2) we have a GL2(0F)-equivariant decomposition
7(c,0) \GLQ((;F) = Roo,0PRo,1 and the smooth representations Ro 0 Roo,1 fit into an exact sequences:

0= Ve = indP™ (R ) = Roge — 0

where V,, is an explicit subquotient of the smooth induction ind?Lz(ﬁF ) Xe, the smooth character

Xe depending in a simple way on the highest weight of o (cf. §2 for more details).

Therefore a first step to understand the irreducible quotients of 7(o,0) consists in a precise
control of the representations R__ ;.

The universal Iwasawa module and its torsion properties. Let &, GL be the Pontryagin
duals of R, R, ; respectively. They are profinite modules over the Iwasawa algebra k[[I]] of I.
By restriction, they can equivalently be seen as modules for the Iwasawa algebra A associated to
the p-adic analytic group U~ (w) o [ wop 1 ], endowed with continuous actions of the groups

rd—ef[é 1+?Uﬁ } U+d—ef[(1] ﬁlF] and T(kF)d—eng 2],a,dek;}
F
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(where we consider T(kp) as a subgroup of GLy(OF) via the Teichmiiller section of the natural
reduction morphism T(0F) — T(kr)). The actions of I', T(kr) on &%, &L  are semilinear, as the
former groups normalize U™ (). On the other hand the group U™ only acts by continuous k-linear
endomorphisms and its action is extremely subtle. Its (partial) control is one of the technical heart
of the paper (cf. Corollary 4.9, Proposition 6.1).

The first result of this paper is a precise description of &2, (for e € {0,1}), as a projective
limit of finite dimensional A-modules endowed with continuous actions of T', T'(kr), UT (i.e. finite
dimensional k[[I]]-modules). From now on, we assume F' to be unramified over Q, and we write
r € {0,...,p— 1}/ for the f-tuple which parametrizes the isomorphism class of OlSLy (ke (cf. (4)
for such parametrization).

Moreover we assume the Serre weight o to be regular, i.e. that r € {1,...,p — 2}/. We remark
that some of the result of this paper can be modified to obtain similar statements in non-regular
cases, but the technicality of the arguments in their proofs have convinced the author not to include
them in this paper.

THEOREM 1.1 (Proposition 3.7). Let e € {0,1}. The k[[I]]-module &2 is obtained as the limit of
a projective system of finite length k[[I]]-modules {G;L+1}ne2N+1+. where, for allm € 2N + 1 + e,
n 2= 2, the transition morphisms &y, — &, _; fit into the following commutative diagram:

6:1_1C—> A/<an_2(”+n_2+1)’ i=0,...,f— 1> 1 (1)
A/<X§)”71(Ti+n71+1)’ i=0,..., f— 1> Hzf:—Ol X’Lpn72(p("‘i+n71+1)_(7’i+n72+1))
Projp 41

6.

n

e AXPM ) g f = 1)

ker(projn+1) ker(projnJrl)

where the left vertical complex is exact and proj, ., denotes the natural projection.

We make precise the content of Theorem 1.1. The Iwasawa algebra A can be seen, by the
Iwahori decomposition, as a k[[I]]-module. We recall that A is a complete local regular k algebra
and we determine (Lemma 3.2) a regular system of parameters Xo, ..., X;_1 € A, which give rise
to a system of eigenvectors for the action of T(kr) on the tangent space of A. All the morphisms
in the diagram (1) are k[[I]]-equivariant and it is shown (§3) that the ideals <an(”+"+1), i =
0,...,f— 1>A are stable under the actions of T', T(kp), UT (where the indices i + n appearing in
Ti+n are understood to be element in Z/fZ).

Moreover, we can describe precisely the monomorphisms
&o, o AJXP Tt o p 1),

deducing an explicit family of A-generators 43, for &7 ;.

The families ¢, | are compatible with the transition maps, yielding a set ¢35 of topological
A-generators for &% which is finite if and only if F' = Q, (in which case is a one-point set). In
other words we have an A-linear (and T(kp)-equivariant) continuous morphism with dense image

I] 4-¢e— 6 (2)

ec¥s,
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and the next step is to investigate the torsion properties of G2 :

THEOREM 1.2 (Propositions 7.5, 7.6, 7.7). For e € {0,1} the module &2, is torsion free over A and
contains a dense A-submodule of rank one over Frac(A).

Finally, if v € &3\ {0} is in the image of P.cye A-e — &3, the torsion submodule of &3, /(x)
is dense in &% /(x) 4.

Even if &% is not of finite type over A (unless F' = Q) it is possible to determine a k[[I]]-
submodule of finite co-length, which is finitely generated over an appropriate skew power series ring.
More precisely, A is endowed with a Frobenius endomorphism % : A — A, which is k-linear, T,
T(kp)-equivariant and characterized by the condition .7 (X;) = X? |

We set 621 < ker (6% — &) and, similarly, 622 & ker (6%, — &1); the result is then the
following:

THEOREM 1.3 (Proposition 5.11, 5.12). The module &Z! @& &Z2 is a submodule of &%, @ &1 of
finite co-length endowed with an % -semilinear, I', T'(kp)-equivariant endomorphism %,

The topological A-linearization of %o,
A0 (62} @ 622) 25> o2) g 22
has an image of finite co-length.
Finally, GZ! @ 622 (resp. GZ*T!) admits a finite family of generators as a module over the

skew power series ring A[[.Z]] (resp. A[[.#?]]), consisting of [F : Q,] distinct eigencharacters for the
T(kp)-action.

We refer the reader to the paper [Ven|, §2 for the definitions and basic properties of the skew
power series ring A[[.Z]].

The case I' = Q,. If ' = Q, we have a precise Galois theoretic description of the Iwasawa
module GZ! @ 622 in terms of Wach modules.
Fix an embedding k < F, and let ws : GQ , — k be a choice for the Serre fundamental character

of niveau 2, where GQ , 1S the absolute Calois group of the quadratic unramified extension Q2 of

r+1)

Qp. For 0 < r < p—1 we write ind (w for the unique (absolutely) irreducible Gq,-representation

1 . .
Pr+1) and whose determinant is w"*!

whose restriction to the inertia Iq, is described by wTH &) w2
(where w is the mod-p cyclotomic character). Under the p-modular Langlands correspondence for
GL5(Q,) ([Bre03a], Definition 4.2.4), the Galois representation ind(wj*!) is associated to the su-
persingular representation (o, 0).

In section 7.3 we verify that the .Z,.-module &Z! @& &Z2 associated to 7(c,,0) is compatible
with the p-modular Langlands correspondence for GL2(Q,). Indeed, the explicit description of the
elements in 42, lets us control the .Z,.-action on GZ! ® GZ2 and one can compare the .Z-action

with the Frobenius action on the Wach modules associated to crystalline Galois representations.

PROPOSITION 1.4 (Proposition 7.9). Let 0 < r < p—1, and write x(g,1) for the crystalline character
of Gq, such that x,1)(p ) = 1 and with labelled Hodge-Tate Weights —(0,1) (for a choice of an

G
embedding Q2 — Qp) Define the crystalline representation WH md Qp X?{i 11).

Then we have an isomorphism of p-modules
62 @622 5 N(V,p)

where N(VTH) is the mod-p reduction of the Wach module associated to V,11 and Gfol &) 6?02 is
the Iwasawa module of Theorem 1.3.
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We recall that the mod-p reduction of V.41 is the dual of ind (w§+1), in particular the statement
of Proposition 1.4 is consistent with the p-modular Langlands correspondence for GL2(Q,).

Radical filtration on the universal Iwasawa module. We focus on the radical filtration for
the k[[/]]-module &2,. Indeed, provided the surjection (2), we point out that none of the composite
morphisms A < &2 are equivariant for the extra actions of T, UT.

If [F: Qpl(p—1) < p(p—2) our results give a new, much simplified proof of the main theorems
of [Mo2]| describing the socle filtration for the representations R ,, avoiding almost completely
manipulations on Witt vectors.

The first result in this direction is the proof that the A-radical filtration on A is stable by the
actions of ", UT.

00,87

PROPOSITION 1.5 (Corollary 4.8). For any k € N the k-th power m* of the maximal ideal m of A
is endowed with a continuous action of I', UT, which is trivial on the quotient

mk/mk—i-(p—Q)‘
In particular, the k[[I]]-radical filtration on A coincides with the m-adic filtration.

Since 624 is free of rank one if F' = Q,, Proposition 1.5 (together with [Mol], Theorem 1.2)
gives another proof of [Bre03a], Théoreme 3.2.4 :

THEOREM 1.6 ([Bre03a], Théoreme 3.2.4, Corollaire 4.1.4). Assume F' = Q,, and write I(1) for the
pro-p Sylow subgroup of the Iwahori I. For any r € {0,...,p — 1} we have

dim (7 (r, O)I(l)) =2.

The action of I" being by k-algebra endomorphisms, the main difficulty to deduce Proposition 1.5
consists in the control of the UT-action; this is done by a delicate induction argument (Proposition
4.7). The statement of Proposition 1.5 is expected to be false as soon as F' ramifies over Q,, (the
integral torus T(0F) does not act semisimply on the tangent space of A).

Similarly as we did in the paper [Mo2], the next step is to control the action of k[[I]] on the
graded pieces Kerpy1 = ker (62,1 — &5 _;). The result is the following:

PROPOSITION 1.7 (Proposition 6.1). Let n > 2. For any k > 0 the A-submodule m*Ker, 1 is
endowed with a discrete action of I', UT, which is trivial on the quotient

wFKerppy /mF =2 Cer, .
In particular, the k[[I]]-radical filtration on Kery11 coincides with its A-radical filtration.

As for Proposition 1.5, the main difficulty in Proposition 1.7 is the control of the action of U™
and we use in a crucial way some of the properties of the Frobenius % on A.

The last step in order to recover the k[[I]]-radical filtration on &2, consists in an appropriate
“gluing” of the filtrations obtained by Proposition 1.7 on the subquotients {lCernH} The

n€2N+1+e’
argument is now mainly formal (as happened for the representation theoretic approach in [Mo2]).

THEOREM 1.8 (Proposition 7.1). Let @ € {0,1} and, for k € N, write .#, for the closure of m*&¢,
in G%.

Then the A-linear filtration {.%, coincides with the k[[I]|-radical filtration on &2_.

}kEN

We remark that we can find an explicit submodule 623 = ker (6%, — &3Y) of finite colength on
which the I" and U™ actions are trivial on the quotients %/ It (p—2)-

5
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We finally describe the isotypical components of for cosocyy (6;0), the k[[I]]-cosocle of &2.
If x is an irreducible k[[I]]-module, we write V(x) to denote the x-isotypical component of the
E[[I]]-cosocle of &2, and the result is the following:

COROLLARY 1.9 (Corollary 7.3). Assume that o is a regular Serre weight. Then

f-1 '
COSOCK(1]] (620) = V(X—z) ) @ V(Xﬁdetfzafpl(THrl))
i=0
f=1 _
cosocy(r) (%) = V(xadet ™) & (P V (xadet 2a™# +1)
i=0
where
dim(V(x-r)) = dim(V (x,det ™)) =1,
: “r —pi(ret1)yy _ ] OO for alli € {0,...,f —1} if F # Q,
dim(V (xrdet™*a ) = { 0 for alli € {0,...,f —1} if F = Q.

Here, x,, a are the smooth characters of I characterized by
[a] 0 _ S iy [a] 0 — -1
X([ 0 [@])T Wlo @)~

Organization of the paper. In section 2 we recall the structure theorems for the universal p-
modular representations of GLg2 (Theorem 2.1), describing the construction of the representations
R, o» R 1 as it appears in [Mol1], §3.

We subsequently dualize these constructions in §3. After recalling the main formal properties
of Pontryagin duality for compact p-adic analytic groups, we determine the dual of a Serre weight
(§3.2), thanks to an appropriate choice of a regular system of parameters for the Iwasawa algebra
A. The description of the universal modules G2 follows finally from the construction of the Hecke
operator 1" (3.3). The main result is Proposition 3.7, where we give a precise account of G2 as a
k[[I]]-module.

Section 4 is devoted to the investigation of the A-radical filtration on A with respect to the extra
action of the groups I', UT and the main result is Corollary 4.8.

In §5 we study the Frobenius .# on A and its relations with the universal modules &2, . After
its formal definition and its first properties, we recall the constructions of [Ven] on the skew power
series ring A[[.#]] (§5.1.1). We subsequently deduce, in §5.2, the behavior of .# with respect to
certain modules (associated to the projective system defining &2, ) and we conclude (section 5.3)
with the construction of a Frobenius, with a p-étale action, on an appropriate submodule of &2 of
finite co-length. Moreover, we show that such submodule is of finite type over the skew power series
ring A[[.#]].

Section 6 is concerned with the k[[I]]-radical filtration for certain subquotients Ker,11 of &2.
The techniques are similar to those of §4 and the new ingredient (in order to control the action of
U™) is the crucial use of the properties of the Frobenius. We remark that the behavior of Kery,41 is
different for n = 1 and n > 2. The main result is Proposition 6.1.

Finally, the results of §6 and §4 are used in section 7.1 in order to recover the k[[I]]-radical
filtration on &2 (7.1). In section 7.2 we conclude describing the torsion properties of the universal
module &2_.

The paper ends (§8) with a brief comment on the parallel constructions for the principal and
special series representations for GLg(F'), where all the results are much simplified.
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1.2 Notation

Let p be an odd prime. We consider a p-adic field F', with ring of integers O'r, uniformizer w and
residue field k. We assume that [kp : Fp] = f is finite. We write val : ' — Z for the valuation
on F', normalized by val(w) = 1, x +— T for the reduction morphism 0 — kp and T — [z] for the
Teichmiiller lift k% — & (we set [0] = 0).

Consider the general linear group GLs. We fix the maximal torus T of diagonal matrices and
the unipotent radical U of upper unipotent matrices , so that B &' T x U is the Borel subgroup of
upper triangular matrices. We similarly write U for the opposite unipotent radical and B ETxU

for the opposite Borel.
Let .7 denote the Bruhat-Tits tree associated to GLa(F") (cf. [Ser77]) and consider the hyper-

special maximal compact subgroup K o GLy(OF). The following subgroups of K will play an
important role in this article:

— j d:eff j . d:ef 1 0
U™ (w?) (w? OF) (where j € N), r [ 0 14 wOp

] . Ut EU(op).
The natural reduction map T(0Fr) — T(kr) has a section (induced by the Teichmiiller lift) and
and we identify T(kr) as a subgroup of T(OF). Concretely, T(kp) = { [ la] ] } €K, a,d,e k:;}

For notational convenience, we introduce the following objects

def|:0 1 def|:0 ]-
=< a=

w01 } € GLy(F), :

] € GLy(F), Ko(w) € red_l(B(k‘F))

(where red : K — GLa(kr) is the reduction morphism).

Let E be a p-adic field, with ring of integers &' and finite residue field k (the “coefficient field”).
Up to enlarging F, we can assume that Card(Homp, (kp,k)) = [kr : Fp).

A representation o of a subgroup H; of GL3(Q,) is always understood to be smooth with
coefficients in k. If h € H; we sometimes write o(h) to denote the k-linear automorphism induced
by the action of h on the underlying vector space of . We denote by (o)t the space of H; invariant
vectors of o and by (¢) g, the space of H; co-invariant vectors.

Let Ho < H; be compact open subgroups of K. For a smooth representation o of Hy we write
indféa to denote the (compact) induction of o from Hs to H;. If v € o and h € H; we write [h, v]

for the unique element of indgéa supported in Hoh~! and sending h to v. We deduce in particular
the following equalities:

n - [h, v] = [h'h,v], [hk‘,v] = [h,o(k)v] (3)
for any ' € Hy, k € H».

If Z = F* is the center of GLy(F') and o is a representation of K Z we similarly write indg?
for the subspace of the full induction Indg?w)a consisting of functions which are compactly sup-
ported modulo the center Z (cf. [Bre03a], §2.3). For g € GLa(F'), v € 0 we use the same notation
[g, v] for the element of inngZQ(F)a having support in K Zg~!

verifies similar compatibility relations as in (3).

("),

and sending g to v; the element [g, v]

A Serre weight is an absolutely irreducible representation of K. Up to isomorphism they are of
the form

Q) (det'™ @, Sym™kE) gy k
T€Gal(kp /Fp)

where 7,t, € {0,...,p — 1} for all 7 € Gal(kp/F,) and t; < p — 1 for at least one 7. This gives
a bijective parametrization of the isomorphism classes of Serre weights by 2f-tuples of integers

7
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rrytr € {0,...,p — 1} such that t; < p — 1 for at least one 7. The Serre weight characterized by
t; =0, r, =p—1for all 7 € Gal(kp/F),) will be referred as the Steinberg weight and denoted by
St.

Recall that the K representations Sym’” k% can be identified with the homogeneous component
of degree 7, of the polynomial algebra kp[X,Y]. In this case, the action of K is described by

[ Z 2 ] XY (G@X 4 ey )T (BX + dY)
for any 0 < i < rr.
We fix once and for all a field homomorphism kg < k. The results of this paper do not depend
on this choice. Up to twist, a Serre weight has now the more concrete expression
f-1 v
oy & (Sym” /@2)F‘MbZ (4)
i=0
where 7 = (rg,...,74-1) € {0,...,p—1}/ and (Sym”kQ)FrObl is the K-representation obtained from
Sym"ik? via the homomorphism GLy(kp) — GLg(kp) induced by the i-th Frobenius z — 2?' on
kr. We usually extend the action of K to the group KZ, by imposing the scalar matrix w € Z to
act trivially.

Let G be a compact p-adic analytic group (cf. [DDSMS], §8.4). It is a profinite topological group,
with an open pro-p subgroup of finite rank.

The Iwasawa algebra k[[G]] associated to G is the limit of the group algebras associated to the
finite quotients of G:

Q¢ < lim k|G /U]
i

where the limit is taken over the open normal subgroups U of G (cf. [AB] for the main properties
of Iwasawa algebras). If G is pro-p, the associated Iwasawa algebra is a local noetherian regular
domain, whose maximal ideal m is the augmentation ideal:

m=ker(Qg —» k) =(x—1, z € G)q,

(note that the abstract ideal on the RHS is automatically closed since Q¢ is noetherian and com-
pact). In this case the Krull dimension of the associated graded ring gr(Qg) equals the dimension
of the group G. If moreover G is a finitely generated free abelian pro-p-group then dim(G) is the
Krull dimension of Q.

A module M over the Iwasawa algebra 2 is always understood to be a profinite left 2g-module
(i.e. an inverse limit of finite left Qg-modules). If M, N are profinite right and left Q¢ modules
respectively, their completed tensor product is the profinite k-module defined by

M@q,N < lim M/M' @, N/N'
M/!,N’
where the projective limit is taken over the open Qg-submodules M’, N' of M, N respectively. We
refer the reader to [RZ], §5.5 or [Wil], §7.7 for the basic properties of the completed tensor product
of profinite modules.

A k-valued character x of the torus T'(kr) will be considered, by inflation, as a smooth character
of any subgroup of Ky(w). We write x* to denote the conjugate character of x, defined by

X°(8) = x(sts™)
for t € T(kp). Similarly, if 7 is any representation of Ky(w), we write 7° to denote the conjugate

8
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representation, defined by
7%(h) = T7(aha)
for any h € Ko(w).
Ifr = (rg,...,ry—1) € {0,...,p— 1}/ is an f-tuple we define the characters of T (kr):

a 0 def Z{:_lpiri a 0 def ;1
wl([5a]) e (G a]) e

If 7 is a semisimple representation of Ky(w) we write V() (or simply V() if the representation
7 is clear from the context) for the x-isotypical component of 7; thus

T = @ Vi (x)-

XEX*(T(kr))

Let ¥ be an abelian category and write €*° for the full subcategory consisting of semisimple
objects; if X € € we can consider the functor
¢ — Sets
Y — Homg (X,Y).

If the functor is representable, by a couple X — @, we define the radical Rad(X) of X to be the

kernel
def

Rad(X) = ker(X — Q).

If R is a ring which is semisimple modulo its Jacobson ideal J and % is a full subcategory of
the category of left-R modules, then the radical of an object in ¥ always exists and we have

Rad(M)=J - M
for any M € %. In particular, for any object M € % we can define, by induction, the radical
filtration {Rad™(M)} _\ by Rad’(M) = M and Rad™(M) < J - Rad" (M) for n > 1.
The dual notion of the radical filtration is the socle filtration.

We recall some conventions on the multi-index notations. We write a@ & (a, ..., 1) to denote
an f-tuple o € N¥ and if o, B are f-tuples we define

i) a > B if and only if oy > B, for all s € {0,..., f —1};

def

i) a+ B = (o £ Po,...,ap_1 £ B 1) (where the difference o — 8 is defined only if a > j).

The length of an f-tuple a is defined as |a| & Zf:;& as and, for s € {0,..., f — 1} we define the
element e ) (0,...,0,1,0,...,0) where the only non-zero coordinate appears in position s.
If A=EK[[Xo,...,Xs-1]], A € kr and o € N/ is an f-tuple we write
-1
xe® ] x0e, e \Tiortes
s=0
with the usual convention 00 & 1.

Finally, we recall that if S is any set, and s1, s2 € S the Kronecker delta 4, ,) is defined by

5 def 0 if 817&82
(s1,82) = 1 if 51 = S9.
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2. Reminders on the universal representation for GLo

We recall here the definition of the universal representation for GLs, and we specialize its con-
struction by means of certain amalgamated sums of finite inductions. The main upshot is Theorem
2.1, which shows that in order to control the universal representation it is sufficient to consider a
suitable subrepresentation of the Iwahori subgroup of K. The reader is invited to refer to [Mol],
§2.1 and §3.1 for the omitted details.

We fix an f-tuple r € {0,...,p— 1}/ and write o = o, for the associated Serre weight described
in (4). In particular, the highest weight space of o affords the character y,. We recall ([BL94],
[Her1]) that the Hecke algebra #% z(o) is commutative and isomorphic to a polynomial algebra:

Hicz (o) S k[T).

The Hecke operator T is supported on the double coset KaK Z and is completely determined as a
suitable linear projection on o (cf. [Herl], Theorem 1.2); it admits an explicit description in terms
of the Bruhat-Tits tree of GLa(F') (cf. [Bre03a], §2.5).

The universal representation 7 (o, 0) for GLy is then defined! by the exact sequence
0 = ind% ;0 5 ind§ ;o — 7(0,0) — 0.

Using the Mackey decomposition for the K Z-restriction, we are able to describe 7(o,0)|xz as a
compact induction from an explicit Ky(w)-representation, as we outline in the following lines.

Let n € N. We consider the anti-dominant co-weight A,, € X (T), characterized by
1 0
M@ =] 5 o
and we introduce the subgroups

Ko@) = (@@ ) nx={ | 50 e

The element A,(w)s = [ » o | normalizes Ko(w™) and we define the Ko(w™)-representation

o™ as the Ko(w™)-restriction of ¢ endowed with the Ky(w™)-action twisted by the element
[ 2 o ] Explicitly,

P a b\ gy, d ) yrjyi,
whe d w"b a

Finally, for n > 1 we write
— ef . Ko(w n — de ~
Ry (0) ¥ deSEw%)(U( ), Ry < cosocKo(w)(U(l)) = socKO(w)(U(O)).

For notational convenience, we write Y* for a basis of R;. If the Serre weight o is clear from the
context, we write R, instead of R, (o).

The interest of the representations R, is that they realize the Mackey decomposition for ind% ;o

n>1

The interpretation in terms of the tree of GLy is clear: the k[K((w)]-module R, maps isomor-
phically onto the space of elements of ind,G( 0 having support on the double coset Ky(w)A,(w)K Z.

'In the current literature the universal representation is written m(c,0,1). We decided to write m(c,0) in order to
lighten the notations.

10
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In particular, if o is the trivial weight, a basis for R;; is parametrized by the vertices of .7, belonging
to the negative part of the tree and lying at distance n from the central vertex.

The Hecke morphism 7" induces, by transport of structure, a family of Ky(w)-equivariant mor-
def

phisms {(Tn)neg}n>1 defined on the k[Ko(w)]-modules R,: for n > 2 we have (15,)"*® = T - and,
for n = 1, we define

T _
(T1)"¢: Rf — R; @& Ry’;
this is possible since the image of T'| Ry lies in R, @ soc Ko(w)(a(o)), cf. [Mo2], Lemma 2.7.

neg

More expressively, one shows (cf. [Mo2], §2.1) that for any n > 1 the Hecke operator (7},)
admits a decomposition (7,,)"%® = T;} @ T,; where? the morphisms T : R, — R, are obtained
by compact induction (from Ky(w™) to Ko(w)) from the following morphisms:

tho < ind%gz:ll)a(”ﬂ) (5)
i , 1 0 .
Xyl e Y (An)f[ o 1 ] 1, X7];
and
byt 1nngEwn)H)g( 1), o) (6)

[1, XTIV ] e 65, YT
and, for n = 0, we have the natural epimorphism
T : R - Ry
X'y L 65, Y"

(this shows that T are monomorphisms and 7T, epimorphisms for all n > 1).

The Hecke operators T can be used to construct a family of amalgamated sums, in the following
way. We define R, © Ry R5 as the push out:

. _
Ry - Ity

—Tfi sz
Ry >Ry @p- Ry

and, assuming we have inductively constructed pr,_1 : R, _; — Ry ® RD @ R, R, | (where
n > 3 is odd), we define the amalgamated sum R, @ Ry PRy n+1 Dy the following co-cartesian
diagram:
_ T, _
Rn ¢ Rn+1
—prn—10Ty, Pra+41
\
Ry ©p Ry @y - @ By =Ry ©p- Ry Op, - Op,; Ry

2é[ccording to [Mol], the morphisms T;¥ should be written as (T7F)"°8. We decided to use here the lighter notation
T,

11
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The amalgamated sums R, ® rr PRy R, ., (where n is odd) form, in an evident manner, an
inductive system and we define

— def

R = lm Ry ©pr - Opp Ry
ne2N+1
We can repeat the previous construction for n even, defining an inductive system of Ky(w)-
representations R @© rR; @Ry R, ., and we write
— def . — —
Roop = lm Ry ©pp - Op; Ry
n€2N+2

~.» and the universal representation 7(c,0) is de-

The relation between the representations R
scribed by the following

THEOREM 2.1 ([Mol], Theorem 1.1). Let 0 = o, be a Serre weight. The K Z-restriction of the
universal representation m(o,0) decomposes as m(0,0)|kz = Roo,0 ® Roo,1 and we have short exact
sequences of K-representations

0 — Rad(x,) — indﬁo(w) (R) = Roco = 0

0 — Soc(x;) — indgo(w) (R;o,l) — R — 0

where Rad(x,), Soc(x;) are defined by

Rad(x,) =S¢, Soc(x;) £ ifr=20
Rad(x;) =1, Soc(x;) &St ifr=p-—1
Rad(x,) & Rad (indgo(w)xr), Soc(x;) def Soc(indgo(w)xi> otherwise.
Proof. This is Corollary 3.4 in [Mol]. O

We shall remark that the representations Ry o Roq can also be used to control the action of
the normalizer of the Iwahori subgroup, cf. [Mol], Proposition 3.8.

3. Dual translation

The first step in order to control the representations R R, consists in a precise knowledge of

00,0
their Pontryagin duals &%, &L . We start by recalling some well-known results about the duality
between smooth representations of compact p-adic analytic groups and profinite modules (§3.1) and
we specialize the construction to the group U™ (w). In particular, we determine a family of T(kp)-
eigenvectors for the tangent space of k[[U™(w)]], which lets us easily deduce the dual of a Serre
weight (3.2). The description of &%, &1 follows then by a formal construction, which is detailed

in section 3.3.

We fix throughout this section a Serre weight ¢ = o,.. In particular, the highest weight space of
o affords the Koy(w)-character x,.

3.1 Review of Pontryagin duality

The aim of this section is to give a precise survey of the main formal properties of Pontryagin duality
for compact p-adic analytic groups. The subject is classical and we invite the reader to refer to the
work of Emerton [Eme], §2.2 or Ribes-Zalesskii [RZ], §5.1 for more details.

Let A be a complete, Noetherian local & r-algebra with finite residue field and let G be a compact
p-adic analytic group (cf. [DDSMS], §8.4).

12
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The category Mod@(A) of smooth, A-linear G-representations is defined as the category of
locally Artinian A-modules endowed with the discrete topology and a continuous action of G. On
the other hand, we have the category Modp;°(A) of profinite A[[G]]-modules.

We recall the following result

THEOREM 3.1 (Pontryagin Duality). For any compact-open subgroup K of G we have an involutive
anti-equivalence of categories
Mod#(A) «— Mody°(A)
vV — VY.

Moreover the equivalence is compatible with restriction and induction: if K1 < K» are two compact
open subgroups of G and V' € Mody (A) then

(indf2V)" = A[[K2))® ae,y (V)Y

and the functor ind% is right adjoint to the restriction to K; (Frobenius reciprocity).

We content ourselves to recall that the dual of V' € Mod§®(A) is defined as V¥ < Homg,. (V, F/OF),
the latter endowed with the compact-open topology (hence the topology of the simple convergence
as the Op-modules V, F//OF are endowed with the discrete topology) and the action of K given by

(g- ) E flgWw) forany ge K,veV, feVV.
Conversely, if M € Mod}°(A) one considers the topological dual M"Y o om‘g’;t(M JF|OR),
endowed with the discrete topology and the (continuous) contragradient action of G.

Let H < G be compact open, and V' € Modg)(A) (which will be considered as an element
of Mod@*(A) by inflation). Let {K,}nen be a family of compact open subgroups of G' such that
Ko = pen Kn is closed and such that, for any compact open subgroup U < G one has H - U 2
Kty for some n(U) € N. Then any continuous function f : G — V which is left K-equivariant
is automatically left K-equivariant for some n (depending on f), and we have ind%}ow Ko =
liLnind%nW K, - Hence:

\Y
(0% VI ) =t (i, Vi) = tim AIGI® e, (V)" = ALGT@ e (V)

(the last equality clearly holds if G is discrete, and one passes to the inverse limit over the open
compact normal subgroups of G, cf. [RZ], Theorem 6.10.8).

We deduce, using the continuity of the restriction functor and the Mackey decomposition, that
for a closed subgroup U of G we have an isomorphism of profinite A[[U]]-modules

(1‘1[[GH<§§>A[KOo (Vi) >|A[[Uﬂ =~ ]  AlUN®agerme10vy (V1)) ageroe-1noy (7)
ecU\G/Koo
We can now specialize the previous construction to our situation. For n > m > 1 let us define:
A & KU (@™) /U (@), A Z KU (@™)]].

They are regular noetherian local k-algebras and we write A & 4, to ease notations.
By the Iwasawa decomposition, the Verma modules

E[[Ko(@™)]] @10 (emtry 1y E[[Ko(@™)]] @g[iro(wo)) 1

are free of rank one as A, ,,, Ap,-modules respectively (where Ko(w™) = () Ko(w™)).
neN

13
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Hence Ay, Ay, are naturally endowed with a continuous action of I', U™, T(kp), and we would
like to describe such actions in terms of regular parameters for A,, ,, An,.

Note that the objects
1 (0) X E[[Ko(@™)])) @kqircoeny (07FD)".

are pseudo-compact modules of finite length over k[[U~(w)]] admitting an explicit description in
terms of k[[Ko(w)]]-stable ideals of A (cf. Proposition 3.3). To ease notations, we omit the Serre
weight o if this is clear from the context.

The universal module S = (I~ (7(0,0)) (where I~ (7(0,0)) is the I-subrepresentation of the
universal module 7 (o, 0) defined in the work of Hu [Hul]) is then obtained as an appropriate gluing
of the “Verma” modules S, 1(c) along the Hecke operators (7)Y (cf. Proposition 3.7). Therefore,
in order to obtain any pertinent information of the I-quotients of 7(c,0) (or, rather, of I~ (7 (c,0)))
it is important to understand the I-action on the Iwasawa modules Sp4+1(0).

Note that the natural action of ', UT, T(kr) on A,, is induced by conjugation on the elements
of U™ (@w™) C A* (and similarly happens for Ap, n, Sp+1, Si ). Therefore, as T normalizes U it is

n
easy to see that I', T(kp) act by local k-algebra automorphisms on A, , A, (and semilinearly on

SnJrlv ng+1).

The finite torus T(kr) acts semi-simply on the tangent space of A and we are able to determine,
in the unramified case, a regular system of parameters for the maximal ideal m of A, formed by
T (kr)-eigenvectors.

LEMMA 3.2. Assume that F'/Q, is unramified. Define, for i € {0, ..., f — 1}, the following elements
of A:

] d:e[ _pi 1 0
X; EEQJX [ A 1 ] c A.
AEk)
The family {Xo,...,Xs_1} is a regular system of parameters for the maximal ideal m in A and

T(kr) acts on X; by the character a™"'

Proof. We have to show that the elements X; form a basis for the tangent space of A. This is
equivalent to ask that the discrete A module

KU (p)/U™ (0")] = k[U™ (p)] @kju-p2)) 1
admits the images of the elements X; as a basis for the first graded piece in its radical filtration.
We can now apply [Mo2], Proposition 4.4 (with m = n = 1), noticing that X; is nothing but the

element F(1 in the notation of loc. cit.

p—l-ei
The statement about the action of T'(kp) is an easy check. O

For n > 1 consider the natural injection Ko(p"*!) < Ko(p). It induces a monomorphism of
Iwasawa algebras, hence a morphism of Verma modules

k[[Ko (0" )@k 1 = FIEo(0) )@k (poep) - (8)
This provides, by restriction to k[[U™(p)]], a monomorphism of Iwasawa algebras
Apy1 — A
and it is immediate to see that the elements
X0, = S| iy 1] e ko e
Aek)

14
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form a regular system of parameters for the maximal ideal of A,i1, and ijn is an T(kp)-

. . . it
eigenvector, of associated eigencharacter a™? .

3.2 The dual of a Serre weight

We describe here the dual of the Serre weight o = o, as an explicit k[[Ko(p)]]-quotient of A. We use
in a crucial way the T(kp)-eigenvectors decomposition of the tangent space of A given in Lemma
3.2. Thus, from now until the end of the paper, we assume that F' is unramified.

PROPOSITION 3.3. Let 0 = o, be a Serre weight and fix isomorohisms ¢ : x, — (o)K0®) ;s .
(0) Ko(p) = X5 Let n > 1.
If dimy (o) # q then the following Hom spaces are 1-dimensional,
HomKo(p )( R deognll)xr) = (Pn)k; HomKO( )(md E nll)XTa ) = (Yn)k

and ¢y, (resp. vy,) is a monomorphism (resp. epimorphism) which, as a k-linear map, depends only
on ¢ (resp. (). If dimy (o) = q the following Hom spaces are 2 dimensional:

Homyg, ) (0™, ind 00 x3) = (6, dn)is  Homgey e (indge(0ks X, ™) = (0, G

and ¢y, 1, are isomorphisms (depending only on t, (° as k-linear maps) while q~5n, Jn have one
dimensional image.

Finally we have exact sequences of k[[Ko(p™)]]-modules:

0 — < v n+17'z+1)’ 1 = 07 ey f — ].> — k[[KO(p”)H ®k[[K0(pn+1)]] (Xﬂdetiz) (O-(n))V —0

(™) — K[[Ko(p™)]] Do (pr+1y] (Xadet ™) = (K[[Ko(0™)]] @uprco oty (Xpdet ™)) /( H i n+1p 7

Note that, in the hypotheses of Proposition 3.3, one has
E[[Ko(p™)]] @iy o1y (xedet ™) = k[UT (p™) /U~ (p" )] @5 (xpdet ™)

as Ay pn, T(kr)-modules.

Proof. We start from the the exact sequence (9).
We see that the Ko(p™t!)-restriction of o(™ is described by

oo = P xzel

0<ysr

Note now that the isomorphism ¢ induces, by conjugation by the element A, (p)s, an isomorphism
NOR (J(”))Ko(p ) 3 X;- In particular we have (0(”))K0(p ) — (O’)Ko(p) as k-linear spaces and

therefore if we define ¢,, to be the image of «(™ by the Frobenius reciprocity isomorphism

Hom e, (01", x5) 2 Horm g (01, nd o) x2) (1)

we see that ¢, does not depend on n as a k-linear morphism.

If dim(o) # q, the T (kr)-characters of o are all distinct so that, by (11) the Hom space
o(p")

HOmKO(pn)(U( ") 1nd Ko(p" +1)X,,) is one dimensional.

Moreover ¢, is an injective morphism: by construction, ((bn(vﬁ))(l) is a linear generator of x;
if v, € (0)%1®) is non-zero. Thus (ker(qﬁn))U_(pn) = 0, and the claim follows as U™ (p") is a pro-p
group.

15
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If dim(o) = ¢ then the lowest weight vector v(*) and the highest weight vector v, in ¢ are the
only T(kp)-eigenvectors of o™ affording the character Xy We deduce two linearly independent
morphisms

¢n7 gn € HomKo(p")( ( ) lndKOEpnll)Xz)

characterized by (¢n(vy))(1) = e and (an(v(f)))(l) = e for a linear generator e of x;. As above, we
see that ¢, is a monomorphism (independent from n as a k-linear map) and hence an isomorphism
for dimension reasons; and moreover that soc(c(™) is a subspace of ker(¢,).

Do)

appearing in the socle and the cosocle we deduce that ¢n has to factor via cosoc(o(™) into a non-zero
morphism.

As the characters of the socle filtration for in X; are all distinct except for the those

Passing to duals we deduce an epimorphism of k[[K(p)]]-modules:

G KU~ (p") /U~ (0" )] @1 (xpdet ™) - (o))"
which is an isomorphism if dim(o) = q.

Assume dim(o) # ¢. By counting dimensions, the equality

ker(¢y) = (XP" 0D y—o, . f—1)

is established once we show that X} m_(l”H) € ker(¢Y) for any i = 0,..., f — 1.

This is immediate, since the T(kp) eigencharacters of (a("))v (which are all distinct) are de-
scribed by

(™) |p gy = (}9 (xydet™")a™2

0<j<r

while T(kr) acts on Xf) n+(1”+1) by (Xﬂdet_f) a—(rit1e
The proof of the existence of the natural exact sequence (10) is similar and left to the reader,

noticing that cosoc((c(™)V) = (soc(a(”)))v = (x§)" and that the T (kp)-eigencharacter of Hf ! Xr ni(lp 1=ri)

s (xp)"- 0

3.3 The dual of the universal module

In this section we complete the dictionary between the representations R, , and the corresponding
Pontryagin dual &2,.

We first describe the dual of the Hecke morphisms 7.F in terms of k[[Ko(p)]]-modules. For each
finite level, the dual operators (7)Y let us glue the modules S, 11, obtaining certain k[[Ko(p)]]-
subquotients &, ; of A, i.e. Ko(p)-stable ideals generated by an explicit family of monomials in A.
The universal modules &3, are obtained as a limit of the modules &3 ,; via appropriate transition
maps; they are not of finite type over A (except if ' = Q).

Let n > 2. Recall (§2) that the Hecke morphism 7, | is obtained as the induction, from Ko(p" 1)

to Ko(p), of the Ko(p"~!)-equivariant morphism

T o —>1nd ( ) o

Let K;(p") be the maximal pro-p subgroup of Ko(p") and fix an isomorphism ¢ : (o)%o®) = Xr as
in the statement of Proposition 3.3.

16
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(n—1)

Since K1(p") is normal in Ko(p" ') and it acts trivially on o we deduce a factorization

("~ ) n
g (n) (12)

where the vertical arrow is induced from the A, (p™)s-twist of ¢.

Note that ¢} does not depend on n as a k-linear map and, thanks to its explicit definition given
in (5), we may and do assume that the isomorphism ¢ is such that the diagonal arrow in the diagram
(12) is precisely ¢,—1, independently from n.

Dualizing (12) and using Lemma 3.3 we obtain:

(o) <— (x2)" @ HIU~ (1)) @ [[U~ (o)1 (X2 L0, )

i

HU- M@ ()"

where the vertical arrow is induced by base change from the projection (0(”))\/ —» (Xz)v and the

tensor product is over k[[U~(p")]] (otherwise stated). We conclude that (7. ;)V is the natural
projection for any n > 2.

We turn our attention to (7;,)". As above, we fix an isomorphism * : (0)g,p) — x5 and

recall that the Hecke morphism 7}, is obtained as the induction, from Ky(p”) to Ko(p), of the
Ky(p™)-equivariant morphism

. Ko(p™ n n
t, :deggnll)a( ) 5 o),

Since K;(p"t!) (the maximal pro-p subgroup of Ky(p"t1)) acts trivially on ¢(™ and is normal in
Ko(p™) we deduce a factorization

1nd E nll)g(n‘Fl) — O'(n) (13)
. 1Ko(p™)
e

where the vertical arrow is induced from the A, 41(p)s-twist of ¢°.

As before we may and do fix the isomorphism ¢* in such a way that the diagonal arrow in the
diagram (13) is precisely v, for any n > 1.

Dualizing (13) and using Lemma 3.3 we obtain:
n i 3 n— 1 rz
()" @ K{[U~(pM)]] @ K[[U~ (pH XY, d) <—00)¥ @4 U~ ()])/(X,5,)

KU~ ("] @ (xe)”
17
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where the vertical arrow is induced by base change from the injection

(xe)" = () @ k[[U~ (")) /(X" Dy
f-1
1 H Xff,;i
=0

the diagonal arrow is deduced from Lemma 3.3 and the tensor product in the RHS is over k[[U~ (p"1)]]
(otherwise stated).

‘We obtain

ProproSITION 3.4. Let n > 1.
The dual of the partial Hecke operator T, : R, @ x*. » — R, ®@x2, is the natural surjection:

AP D) o 1) o AP et g f 1),
The dual of the partial Hecke operator T, : R, | ® X%, — R, ® xZ, is the monomorphism:

AP et g 1) e AKX oo f 1)

f—1
1 H X?"ﬂ(P(T’i+n+1)—(m+n_1+1)).

=0

Finally T\ : R1 — Ry is dualized to:

() = Ao () HXITY i=0,.., f — 1)
f-1
1= H XZ"
1=0

Proof. This is deduced from the previous discussion for n > 2. The case n = 1 is immediate. O

We can now describe the Pontryagin dual &3, of R, , as a projective limit of certain k[[/o(p)]]-
modules of finite length, which are explicit Ko(p)-stable ideals of A.

Indeed, we can introduce a system of k[[K((p)]]-modules obtained by a recursive fibered product
along the dual Hecke morphisms: if we assume the injection Se¢ Xg, , ...5,_» Sn—1 < Sp—1 being
constructed, we define Se xg,,, - -+ X5, Spy1 through the following cartesian diagram

SQ XS.+1 e XSn Sn—i—l > SO XS.+1 T XSf,L,l Sn—l
~

Y +\Vv
Sn+1 ) Sn

where the upper (resp. left) dotted arrow is an epimorphism (resp. monomorphism) by base change.

DEFINITION 3.5. For e € {0,1} let m,n € 2N + 1+ e be such that n > m. We define the k[[Ky(p)]]-
modules

def >m def
:Hrl =S XSet1 """ XSn Sn+17 Gn—i—l = ker <67.1+1 - 6:)11) :

18
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For n > 1 define the integer

n—1

Mign(0) S Y p°(ries +1)(= 1)
s=k

and we write my; if n, o are clear from the context. Note that for all j > 1 one has
Kerjin & ker (&3, —6;1) = (xP ") o f 1)
and therefore by the description of the Hecke operators given in Proposition 3.4, one obtains:

PROPOSITION 3.6. For e € {0,1} let m,n € 2N + 1 + o be such that n > m. The elements

F-1
e 2ite 7 j .+]. . .
C3(j+1)10i = Xi (ri2gretl) T x>
1=0
fori=0,...,f -1, jzo oo, Bt and
a) the element eo & lf 01 lelfmo,z(a) ife=0,

b) the element e; £ lf 01 leo’l(a)jfo =1,
form a family 9y, | of A-generators for the k[[Ko(p)]|-stable ideal &y, 11 <A1 py1.
Similarly, the set

e m—1—e oo n—1—e |
giﬁd—f{e2(j+l)+-,m fOT# <J S Tule{o)"'af_l}}

is a family of A-generators for the k[[Ko(p)]]-stable ideal &2 L1 <9 A

Note that, a priori, it is not at all obvious that submodule of S,,41 generated by the elements
listed in %n}ﬁ is stable under the action of I, UT.

We can summarize the preceding discussion in the following:

PROPOSITION 3.7. Let 0 = o, be a Serre weight. For e € {0,1} there is an inductive system of
k[[Ko(p)]]-modules

- Gpy1 > Gy 1= S

such that, for all n > 1, the transition morphisms fit into a commutative diagram with exact rows:

0—— K:e’l“n+1 6n+1 anl 0 (14)
Snfl
[(T;)v
(T7)Y
0—— ,Ce’l“n+1 Sn+1 Sn 0
and where Kerp11 = <Xf’nnjr(f’+1) 1=0,...,f— 1> < Snpt1-
By letting
S X lim G (resp SZ™ = ker (6;0 — 6;”_1> ifme2N+1+ o>
n€2<N_+1+.

we have a family 42 (resp. 92™) of topological A-generators for &% (resp. 92™)
G5 = {€a(j+1)teis €, forj eN, i€ {0,...,f—1}}

e m—1—e .
<resp. goi df{€2(g+1)+o i forj > Z 5 i€{0,....f - 1}}>
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which is compatible at each finite level with the families 43, fﬁ, ie. foranyn € 2N + 1+ o,
i€{0,...,f—1},0<j< "_TH we have €9(j11)1e,i > €2(j41)+e,is Co > €o Via G5 — &5 1.

Proof. Everything is clear from the previous discussion, the only non-trivial assertion being the

compatibility of the elements in ¢ ;, ¢;_; via the transition morphisms &, — &5 _;.

However, this is an elementary check using the explicit definition of the elements eg(; 1)1 and
of the morphism (7},)V.

For instance, in the particular case where ¢ = 0 (i.e. n odd) and j = 0 one has

ri+1 Miln _ ri+1 m1,l,n—2 P 2(p(Ti4n—1+1)—(rign—2+1))
e = (e e ) T
l l l

in other words (T;7)Y(e2i) = (T}, )" (e2;) (where ez; € 43, in the LHS and ez; € ¢r_; in the
RHS), which is precisely the required compatibility. O

REMARK 3.8. The bare definition of the elements in ¢y | may look complicated, but it becomes
very natural if one visualizes the transition morphisms (TF)V in terms of monomials in A: see the
example in Figure 1.

REMARK 3.9. Note that if in the statement of Proposition 3.6 we moreover assume that r; < p — 1

for all i, then the elements in &3, | are all non-zero in &, ;.

4. A filtration on monogenic Iwasawa modules

The aim of this section is to give a first partial control of the I' and U*t-action on the m-adic filtration
on A. Even though the I'-action is comparatively simple to control (as the action is through k-algebra
homomorphisms), the UT is extremely subtle and its partial control (Corollary 4.9) is one of the
technical heart of this paper.

Recall that A has a structure of a k[[K¢(p)]]-module via the isomorphism

(Mo koot )la = 4

and it is endowed with the m-adic valuation:
A2 NU {0}

Z@XZ — min{|j], j s.t. Kj # 0}.
J

We are going to show that ord is compatible with the action of I, U" and, even more precisely,
PROPOSITION 4.1. Let g € T, UT and P(X) € A. Then
ord((g — 1) - P(X)) > ord(P(X)) + (p — 2).

The proof occupies the rest of this section.

Recall that A is endowed with a Frobenius homomorphism ¢ defined by ¢(X;) = X”. For k € N
we write (qbk (m)) for the ideal of A generated by the image of m via the k-th composite of the
Frobenius ¢*. Note that in particular any element P(X) in (¢*(m)) verifies

ord(P(X)) > r.
The following observation will be used constantly:
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FIGURE 1: The figure represents the fibered product Ker,4+1 xg, Kerp—1 when f = 2, rg > 7y,
n € 2N + 1.
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LEMMA 4.2. Let n € N and z € Op. In the Iwasawa algebra A we have:

10 val(z)
[pz 1]61+¢ (m).

Proof. Writing z = p*®(®) 2y we have
1 0] _ 1 0]\
pz 1| pzo 1
pval(z)
(L8]
pzo 1

and the result follows since the maximal ideal of A is the augmentation ideal. O

val(z)

We start with the action of I':
LEMMA 4.3. Let v € 1 + pOp = T. Then, for any i =0,..., f —1 we have
v Xi € X; + (6" (m)).
In particular, if j € N/ we have
~-Xie X1+ZKZ—1(¢val(x)+l(m))|i|‘
i20

Proof. Let us write v =1 + px and z d:efp[)\]x for an element x € Or. We have:

i [ 1 0
X, = S oA
v Xim S| e 1)
A€k }
_pri' 1 0][1 0
N p[A] 1 pz 1
ek -
10
—p val(z)
€ Z:X)\ mn 1](1+¢ (m)),
Ak

where the last equality follows from Lemma 4.2.
The second statement is then clear, as the elements of I' act by k-algebra endomorphisms. [

4.1 Digression on some regular elements and Fourier sums

The action of UT on A is more subtle: it is only k-linear and difficult to explicitly describe in terms
of monomials in A. Nevertheless we are able to approximate the monomials in A by means of certain
discrete Fourier series in & (U_(p), k:) and this is enough to get a first estimate on the UT-action.

Let n > m > 1. For i € {m,...,n} let [, € {0,...,p — 1}HomErk) he an f-tuple, say I, =
{lir } reHom (ke k). We introduce the following elements of Ay,

m,n)  def 1 0 1 0
DRI | LR [pm[sa"”“(Am)} 1 } e 2 [T [p”[so‘”“(kn)] 1

Am€F, T A€Fy T
1 0
Xmr E T(A) 71 [ _ }
" A2;~( ) Pl )] 1
m&lyg

where ¢ is the absolute Frobenius on kr and the products appearing in the definition of F (mn) are
taken over all the embeddings 7 : kr < k (with the usual convention that 0° &' 1).
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def

We fix an embedding 7 : kr < k and write more expressively l; ; = [; - o, S0 that

l
- ]Op]’tjdef lz
”T = i

If the level m is clear, we just write X; instead of X, i to ease the notations.

yTOOP

Recall from [Mol], §4.1.1 that Fl(m.’?)l (and X! as well) can be identified by an element in N/

Fm, i Zpl "lir).

Define the quantity:

n
rp (R ,) T E H( 1> 1H ®=1-ty) > “Fi

i=m

The following proposition provides us with a dictionary between the Fourier sums defined above
and the monomial elements in A:

PROPOSITION 4.4. Let n > m >0 and let L = (L,,,,...,1,) € {{0,...,p— l}f} ) be an (n—m)-
tuple of f-tuples.

Then one has the following equality in A, ,:

Xl = /-le(m n) 11, mod mlt+®—1)
- mo* 7p
where
f-1 > )
1 A Ll P
xt=1] x; g
=0
and
p—1-L%(p—-1-1iyl5
foralli=m,... n.

We invite the reader to compare the statement of Proposition 4.4 with [Bre|, Théoréme 7.1,
where we have a similar statement for the image of the elements X; in k[[X]] via the morphism
Or — Z, induced by the trace (and mlZl+(P=1) is replaced by mI*! in loc. cit.).

Proof. The proof is divided into two steps: the residual case (n —m = 1) and a dévissage. Note
that for n — m = 1 the statement is clear up to the explicit multiplicative constant, by looking at
the action of the finite torus.

LEMMA 4.5. Keep the setting of Proposition 4.4 and assume that n —m = 1.
For any f-tuplel € {0,...,p — 1}/ we have the following equality in At

! ki Fp— if|l] >0
L= Kok, f 1 xp=l
oFp—1+(— ) XP= else
Proof. Note first that
Fire, = (p— 1= L)k (15)
and that k., = 1 for all ¢ € {0, ..., f —1}. The statement is therefore an immediate induction using
Lemma 4.6 below. Ul
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LEMMA 4.6. Keep the hypotheses of Lemma 4.5. Assume moreover that | + e; < p — 1. Then:
FE—eiFEfl_( _l_l) p—1—(l+e;)-

Proof. By the very definition of the elements F},_1_,, Fj,_1_; have

1 0
— p—1—e; L !
Froteafirt= 320 gy
A\ uekp
—1-1 , et
= 3 (e i
Jj<p—1-i J Aekp
and the result follows since
> et = g,
ANekp

O

We consider now the dévissage. Recall that the inclusion p™ 10 /p" O — p™Or /p" OF induces
an injective k-algebra homomorphism:

L Am_A,_Ln — Amﬂ
P
X1 = Xo

In order to emphasize the inductive argument, we write m, m; to denote the maximal ideal of A,
Aj respectively (so that, in particular ((my) = mP).

Given a monomial X! e Ay n, We can write
(1) (2)
X=X (xt)

for IV € {0,...,p— 1}, 1 e N/ verifying [ = V) + p1(?).
By the inductive hypothesis on A,,;1,, we have

2) 1, 1|4 (p—1 1 ©) _
) € i EE D) < F 0

and we claim that

Claim: In the situation above, we have
X1 ey 1)F( "™ modmi D, (17)
This will imply the statement of Proposition 4.4 since from (16) and (17) we easily get
Xl=4x F(mln)l I 4+ mll+e-1),

Proof of the Claim. By Lemma 4.5 we have, in Am ne
(1)
Xl 1)F( p—1— ey + ZXP myn- (18)
=0

. : . . L -1
Let us consider a monomial X? X' L appearing with a non-zero coefficient in the sum sz:o XP A

in the RHS of (18). As the finite torus T'(kr) acts semisimply on A,, , and xt
we deduce that the f-tuple ¢ € N verifies:

-1 -1
Zp77‘j = Zp%m —p*! modgq — 1.
§=0 §=0

24
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This implies || = [IV)] — 1 mod p — 1, hence the Claim. O

We are now ready to analyze the Ut-action on the monomials in A. Note that for z € O the

x

action of [ o s ] on the Iwasawa algebra k[[U~(p)]] is obtained, by linearity, from the following
continuous maps

Ox,j
Or —> Op
z
Z —

14 pzx
via

[(1) 916] [; H:{W;’j(z) (1)H1+ém 1_pj25x’j(z)H(1) x(lﬂfm)—l 19)

PROPOSITION 4.7. For any x € Op and X! € A we have

[ b ] Xi € X0 mlHe-2),

Proof. Tt is enought to prove the statement in k[Ko(p)] @[k, ) 1 for any finite level n € N.

In the latter case, the statement is exactly the statement of [Mo2], Proposition 4.7 (with m = 1),
provided the dictionary given by Proposition 4.4, which lets us identify the Fourier series used in
[Mo2] with monomials in A.

If f verifies f(p—1) < p(p — 2) we can nevertheless avoid the reference to [Mo2] and use instead
an inductive argument via the embeddings

L L L
Apip == Agy — A

Let us write
Xl _ Xi(l)b(xl@))
where j = 1(1) —i—pl'(?), 1(1) €{0,...,p — 1}. Assume the statement holds for As,,.
As [j]+ (p—1) < p|2(2)\ + p(p — 1), we deduce from Proposition 4.4 and (19) that:
1 1 [uw - m[ 1 oH 1 0} ({1+p[)\u]+p2* (1] } -<z>>
KiK., X1 = M L - X7
(g rige) [ 0 1] = A%;F pIN 1] PPN 1 PP+ L—pl +p2 |

modulo mHI+®=1), Using Lemmas 4.2, 4.3 and the inductive hypothesis on As ,, we have

1+ p[Au] + p** (1] i@ 5@ 5@ +(p—2)
[ PP Lopll +p2e |2 €A 20

(again, my denotes the maximal ideal in As ;) and since we assume f(p — 1) < p(p — 2) we obtain

L< [ 1 +p1;>[k>\#] . —[Z%Au] } _Xj@)) _ L(Kl@)) modulo w2
Moreover
/,( [ 9 1 ) 0 } _Xj(2)) = L(Z(/\Z,U)pigin(Z)H) modulo L(mg(z)‘ﬂp*l))
pP=A\%p] 1 2

where the scalars ¢; € F;, depend on 4, j @),
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As in our situation we have p(|j?| + (p — 1)) > |j| + (p — 2), we finally obtain

L [y] } : 0 i (1) 4 2pi [ 10 } 4 (p—2
CXE =N i xrit A A +2pi modulo mlZ+®—2)
[0 1] ; s A;kF p[A] 1

for some scalars v; € F,, and we conclude using Proposition 4.4. O

As a corollary, we get

COROLLARY 4.8. For any k > 0 the ideal m* < A is a k[[K¢(p)]]-submodule of A.
Moreover, the action of T(1 + pOr) x Ut is trivial on the quotients

mk/kar(pr).
Proof. Tt follows from Lemma 4.3 and Proposition 4.7. O

Since for all n > 1 we have an epimorphism of k[[Ko(p)]]-modules A — S,,11(0) we immediately
deduce

COROLLARY 4.9. Let n,k > 1. Let o be a Serre weight and write m* for the image of m* via the
projection A — S, y1(c). The filtration {m*}, is stable by the action of T, U* and T(kr). Moreover
the action of I', U™ is trivial on the quotient

5. The twisted Frobenius

In this section we construct a “twisted” Frobenius morphism between the graded pieces Ker,41 of
the natural filtration on &2,. This morphism is I', T(kp)-equivariant and it is obtained from the
twisted Frobenius .# on A (the latter induced from conjugation by the element as).

The main properties of the twisted Frobenius are listed in Proposition 5.4 and 5.7: roughly speak-
ing, this morphism lets us translate information from S2(c), where computations are still accessible,
to higher dimensional quotients S, 11(c), where things get considerably more complicated.

In section 5.3 we determine an explicit k[[Ko(p)]]-submodule of &% @ &L  of finite colength,
endowed with an .#-semilinear, I', T (kp)-equivariant endomorphism, which turns out to be p-étale.
The main result is summarized in Proposition 5.11. As a corollary, we deduce that such submodule
is of finite type over the skew polynomial ring A[[.#]] (Corollary 5.12).

We remark that some of the statements of §5.1, 5.2, which refer to the k[[Ko(p"*!)]]-modules
(a(”+1))v, hold in greater generality for any k[[Ko(p"*!)]]-module. Nevertheless we believe that the
specialized statements of Lemmas 5.1 and 5.6 are more expressive for the subsequent applications
to the universal module &2, .

5.1 Analysis for the trivial weight

Let [ > j > 1 and consider the k[[K((p?)]]-module
)) def /. Ko(p?
Sl(]) o (deggl))l)v;
recall that, as a k[[U~(p’)]]-algebra, Sl(j) is nothing but A;;_;.

def 75 ; 1

Define B~ (p) = B(0F) N Ko(p’) so that restriction to k[[B~(p’)]] provides, by the Iwahori

decomposition, the following isomorphism of k[[B~ (p’)]]-modules:

S ks iy = KB~ (07)]] @i iy 1
2%
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we can thus define a Frobenius morphism

Fji ng) - Sl(i)1

induced by conjugation by [ o o ] (we omit the indexes 7, in .%;; to ease notations). The following
lemma is then immediate:
LEMMA 5.1. The morphism % respects the natural k-algebra structures on Sl(j), Sl(i)l.

(G+1)
I+1

It is injective,

with image S and it is described explicitly by

F .89 — sV

pi=1 pl
X > X g

Moreover it is T(kp) and I'-equivariant.

Proof. This is clear. I

We can give a very rough estimate on the compatibility between the Frobenius and the Ut

action on SI(J ), Indeed, we have

LEMMA 5.2. The action of UT on Sl(j) is trivial if and only if | < 2j.
Proof. Recall that for z € O the elements

1 0
1o

give a family of generators for the module k[[Ko(p?)||@yxy i) 1- If * € OF we have
P i(2) =pz+p¥2

for a suitable 2/ € Op with val(z') = val(z2?) and the statement is then clear from the equality
(19). O

We therefore deduce
COROLLARY 5.3. Let m > 1 > j > 1. The (m — l)-composite of F :
N gm—l .
st 25, s

factors through the U™ invariants of S if and only if 0 < 2(j — 1) + m.

Proof. Tt suffices to remark that .#™ ! induces an isomorphism of Sl(j ) onto the subalgebra S%er_l)
of S%) and use Lemma 5.2. OJ
5.1.1 The skew power series ring A[[#]]. The evident, similar constructions of the previous

section, with Ko(p') replaced by Ko(p™), give us a Frobenius endomorphism on A:

PROPOSITION 5.4. We have a I', T(kr)-equivariant monomorphism of local k-algebras % : A — A
described by

F:A— A
Xi — sz—l'
In particular we have a decomposition

A= P F(A)x:

0<i<p—1

and . is a flat endomorphism of A.
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Proof. The relation .#(X;) = X? | comes from a direct computation on the definition of X; and
# . Moreover one has

A= B KU
9€U~ (p)/U~ (p?)
which shows that % is an injective and flat endomorphism on A. O

We recall (cf. [Ven], §2) the skew power series ring A[[.Z]], whose elements are formal power
series 2 a; " with a; € A and multiplication law induced by
F 0™ F(a)F

for any a € A. It is a local ring, endowed with a structure of complete, separated topological ring,
a basis of open neighborhoods of 0 being described by

k—1 o)
H mF 7t x H AT
i=0 i—k

for k € N. In particular, the skew polynomial ring A[.%] is a dense subring of A[[.Z]].
We introduce the following notion (cf. [Fon], §B 1.3)

DEFINITION 5.5. An % -semilinear morphism ¢ of profinite A-modules D1 % Dy is p-étale if the
image of the natural map
id
A®A,yD1 Zﬁf D,

has finite colength.

5.2 Analysis for a general Serre weight

The aim of this section is to endow the modules S, (o) with a Frobenius morphism .%,, and collect
some basic properties which are useful to obtain a Frobenius on subobjects of the universal module
Soo (the universal module itself does not have a Frobenius action).

As usual we let o be a Serre weight whose highest weight space affords the trivial character of
Ky(p). Recall that we have defined, for [ > j > 1, the modules

S (o) & k[[Ko(p')]] (o)) (0)-
We have

LEMMA 5.6. Let l > j > 1. There exists a unique morphism %, : Sl(j) (o) — sY)

111 (o) of k-algebras
making the following diagram commute

o
S —— S}, (21)

S ()77 89 (o),

where the vertical arrows are induced by the morphisms (¢;)" and (¢;;1)" of Proposition 3.3.

Proof. Tt suffices to use the explicit definition of .% and to recall that the kernel of the vertical arrow
L. l—1(,..
on the RHS (resp. on the LHS) is the ideal generated by the elements Xf:(l”H) (resp. XfiH(fZH))

fori=0,...,f—1.

As SO _, Sl(j)(a) is a morphism of k[[Ky(p’)]]-modules we get

I+1
28
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PROPOSITION 5.7. Let [ > j > 1. We have a monomorphism of k-algebras

Fy: 89 (o) — S, (0)

Jj—1 J
X Xf_l

(2

verifying the following properties :
i) The morphism %, is I' and T(kr)-equivariant.

i) The morphism %, admits the factorization

S l(]) ( Sl(—l—)l

\J

+1)
S (o)

with the vertical arrow being the natural inclusion.

iti) Let m > 1. If 0 < 2(j — 1) + m — 1 then the composite morphism
. zm—l .
57(0) 75 59 (o)
factors through the Ut-invariants of S’ (o).

Proof. Part i) and ii) follow from the properties of the morphism .# (Lemma 5.1) and from Lemma
5.6, recalling that the vertical arrows in the diagram (21) are morphisms of k[[Ko(p’T!)]]-modules.

Property iii) follows from Corollary 5.3 using the epimorphism Sm 41 s (o) (which is Ut-
equivariant). O

5.3 The twisted Frobenius on the universal Iwasawa module

The aim of this section is to construct, from the twisted Frobenii .%, of Proposition 5.7, a Frobenius
morphism .# on a suitable k[[Kq(p)]]-submodule &Z! & 622 C &Y% @ &L,. Such submodule is of
finite co-length and the action of .% is p-étale. Moreover, 2! @ &22 is of finite rank on the skew
power series ring A[[.#]]. Throughout this section o = o, is a fixed Serre weight.

We start from the following

LEMMA 5.8. For n > 3 we have commutative diagrams of k-linear spaces:

[y [y
Snf2Ci> Snfl Snf2Cﬁ> Snfl

where the horizontal arrows are the monomorphisms of k-algebras of Proposition 5.7 (with j = 1)
and the vertical arrows are the morphisms of k[[Ko(p)]]-modules defined in Proposition 3.4.

Proof. The commutativity of the diagrams can be checked directly, using the definition of the
morphisms in terms of the regular parameters X; (noticing that %, is a morphism of k-algebras).
The details are left to the reader. O

Since the E[[Ko(p)]]-modules &, admit an explicit family of A-generators, we easily see that
F 5 Sp+1 — Spte induces a morphism between appropriate submodules of &1 and &,,42.
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PROPOSITION 5.9. Let n € 2N + 1 and ey(j41); € =l "~ 1 (cf. Definition 3.5). The morphism Z :
Sn+1 <> Snp4o verifies
yo(€2(j+l),i) = €2(j+1)+1,i-1 € gn}fz
Similarly, for m € 2N + 2 one has
Fo(a(jt)414) = €2(j+2)i-1 € Gko

In particular, we have the following commutative diagrams

5%+1Q;%2>5%+2 Sm+lﬁiﬂ;>sm+2
e%LL Giig e;ﬁf& S
and the morphisms
&1, & o2 622, 4 62!
n+1 n+2 m+1 m-+2
are I', T(kp) equivariant, % -semilinear and p-étale over A.

Proof. The ﬁrst part of the statement follows from an elementary computation on the elements
>2
62(]+1) S g (I‘GSp. 62(j+1)+1,i S g;Jrl).
F o
We deduce the factorization of the morphism Sy, 41 < Sy12 (resp. Sm+1 <—> Sm+2), as the module
512 (resp. 6m+2) is generated, over A, by the elements ey} 1)1, € @2 '~75 (resp. by the elements
€2(j+1),i € G io)-
The induced morphisms on the k[[K¢(p)]]-modules are clearly .#-semilinear and I", T (k) equiv—
ariant. Their p-étale nature follows agaln by noticing that the A- generators of Gn 1o (resp. Gm +2)

are the elements ey(j11)41; € @2 ~7 (resp. the elements €2(j+1),i gm+2) and the cokernel of
655;2 — 65#2 is the finite A-module Kers. O

We are now left to prove that the morphisms of Proposition 5.9 are compatible with the transition
maps of the projective system defining the universal modules &Z!, G22.

PROPOSITION 5.10. Let n € 2N + 3. We have a commutative diagram

1S CH
\ \
Sn41° Sn+2
5%( 5'n—i-l
Crak &2
\ \
S:—lc S'n

where the horizontal arrows are the previously defined Frobenii morphisms.
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We have a similar result for m € 2N + 4 and the diagram

>2 >1
6m+1‘f\\ Gm—i-zr\

Sma1© Sm+2
Sm( Sm+1
622(\ &7
S 1€ S

Proof. The top and bottom squares of the diagram are commutative, by Proposition 5.9; the squares

on the left and right sides are commutative by the construction of the fibered products 6ii1, T}n2+1

Finally, the front square is commutative by Lemma 5.8.

The commutativity of the back square follows by an easy diagram chase, noticing that the
composite morphism &2 — S, 41 (resp. G2 — S,,41) is a monomorphism. O

We therefore deduce:

PROPOSITION 5.11. We have a I, T(kp)-equivariant, .7 -semilinear morphism
F 67 =627
which is p-étale and verifies

>2
F(ea(j+1),i) = €2(j+1)+1,i—1 € 9%
for all eg(j11),; € 42

Similarly, we have a T, T(kr)-equivariant, .7 -semilinear morphism
F 622 62!
which is p-étale and verifies
F (€a(j+1)414) = €2(j4+2)+1,i—1 € 95"
for all ey(j11),; € 427,

Proof. The assertions follow from Proposition 5.9 and the compatibility with the transition mor-
phisms given by Proposition 5.10. For the p-étale property of the second morphism we just remark
that, from the proof of Proposition 5.9, we have an exact sequence

A®z 4672 — 62l — Kera — 0
for all m € 2N + 2, and by passing to the limit we get a complex
ARz 4622 — &2 — Kery — 0

which is again exact (the transition morphisms in the projective system are all epi). O

In particular, we deduce a finiteness property for the modules 2!, 22 on the twisted polyno-
mial algebra A[[.%2]]:
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COROLLARY 5.12. For e € {0,1} we have a A[[.%?]]-equivariant surjection

-1
P All7Nezres — &2
=0

€2+ei F7 €24e-

Proof. To ease notation, we consider the case where e = (. It is clear by Proposition 5.11 that for
all I € N we have a semilinear morphism

Fr ez -6z
which verifies

ﬁzl(‘£2(j+l)+1,i) = €2(j+1+1),i—21
for all j e N, i €{0,...,f—1}. We deduce that the natural morphism

~
—

A[§2]62+.’i — 6501

<.
Il
=)

€2tei F7 €216

is A[.Z?]-linear, continuous and with dense image. Since the completion A[[.#?2]] is compact and
G221 is separated, the statement follows. O

A speculation. One can verify that the universal module 8% ©&Y contains many A-submodules
of finite rank which are .#-stables. The theory of Wach modules suggests that such (A, .%)-submodules
may be related to finite dimensional Go-representation, where G, is the absolute Galois group of
the Kummer extension Fa, & Upen F(mi) for a compatible system (;);en of p-roots of the uni-
formizer p € F (i.e. ¥ = m_1 if i > 1, mo o p). Indeed, there are many non-canonical morphisms of
k-algebras A — k ®r, kr[[X]] and one could try to (arbitrarily) construct some (¢, k ®p, kr[[X]])-
modules of finite rank from (A, .%)-submodules in &% @& &L_.

For instance, let us define
e 1 11
h e [TX Y = oo, [T 2 e 8%
i#0 i#j
(the equalities can be verified at any finite level &9 ;).
We have f; € 62! and an easy computation (which can be performed at any finite level) gives

-1
FH ) = - [P,
1=0
Hence the module Af; @ A.Z (f1) is an .#-stable, rank 2 A-submodule of &%, @ &L, with an explicit
action of .# on the A-generators (f1,.Z#(f1)).

One should expect to find a huge number of other finite rank, .#-stable submodules in &% ®&. ;
the meaning of this phenomenon in Galois theoretical terms remains, at present, mysterious.

6. A filtration on the ideals Ker, |

We recall that, for @ € {0,1}, the universal module &2 is a pseudo-compact module over A, with
a separated filtration consisting of open neighborhoods of 0 whose graded pieces are isomorphic to
Kerpyq for n € 2N + 1 + o. For n > 1 the description of the graded pieces Ker,41 in terms of the
regular parameters X; is deduced by Proposition 3.3:

/Cern_,_l = <€n+1,iu 1€ {0, ,f — 1}>A
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_ —1(yTitn—1+1 Titn—1+1
where e,11; = F" (X)) and X0 = €201 € S2(0).

As we did for the monogenic modules S,+1(0), we endow the module Kery,4; with a natural
A-linear filtration {Ij »41}ren, which turns out to be k[[Ko(p)]]-stable.

The T(kp), I-stability of Iy ,+1 follows easily, as these groups act by algebra homomorphisms
on Sp+1(0). The action of UT is, again, more delicate and we need to use in a crucial way that the
A-generators e,11; of Kerp41 lie in the image of the twisted Frobenius .# n=1 in particular that
they are fixed under the Ut-action if n > 2 (cf. Proposition 5.7, ii4)).

When n = 1 the situation is slightly more complicated and we need some extra arguments (cf.
Lemma 6.5).

We fix a Serre weight o = 0,; for the rest of this section we further assume that o is weakly
regular, i.e. 0 < r; <p—2foralli=0,...,f—1 (cf. [Gee] Definition 2.1.5). Up to twist we may
and do further assume that the highest weight space of o affords the trivial character.

For any n > 1 we have an epimorphism of A-modules

-1
@A “ln4l,i T ICern_H (22)
i=0
€ntl,i — 97171()(3}7511“)
which is T(kr)-equivariant if we make T(kr) act by the character a~P'(ri+1) op €nt1,i—n+l-

The k[[Ko(p)]]-module EB ' A-e,y1.q is endowed with the valuation ord,; of the infimum

ordy41 ZP )ent1,i) = E min{ord(Pi(X)),i=0,...,f —1}

hence with an A-linear filtration {I lg,n 41 )% Let {Ix ny1}r be the filtration on Kery,q 1 induced from

{I}} .1 }& via the morphism (22). Concretely, one has Ij, 41 = 25;01 m¥e,11,. As the morphism

(22) is not T, Ut-equivariant, there is no reason for which {fj 11} should be a filtration of
E[[Ko(p)]]-modules on Kery1.

We define
h™ hio) = max{\nl Tiy|, for iy, ip € {0,..., f —1}}
The result is the following:
PROPOSITION 6.1. Assume that o is a weakly regular Serre weight. Let n > 1 and consider the

induced A-linear filtration {Ik,nJrl}keN on Kerpy1.

For each k € N the A-submodule Iy, ,, 41 is stable under the Ko(p)-action and, moreover, the I',
Ut-actions are trivial on the quotients

T2/ Tit(p—2—1),25 T/ Ty (p—2) 1 i > 2

In particular, for all n > 2 the filtration {Ij, n+1}k€N defines the k[[Ky(p)]|-radical filtration on
Kern+1 and the same result holds true forn =1 if h # p — 2.

As the morphism (22) is A-linear and T(kp)-equivariant it is clear that the filtration { I ;41 } bEN
is T(kp)-stable and defines the A-radical filtration on Ker, 1.

With some additional work, using that I' acts semilinearly and commutes with the T(kp)-
action, one could indeed state a more precise result concerning the I'-action on S(o). Moreover,
the statement of Proposition 6.1 can be proved to hold true even in some non-regular situations.
As the proofs of such results are very technical and do not add any substantial improvements to
the main results of this paper, we decided to omit them.
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The rest of this section is devoted to the proof of the I' and Ut-stability of {I’WH}keN; the
techniques are similar to those introduced in section §4, using now in a crucial way the properties
of the twisted Frobenius .%. Indeed, as the A-generators of Ker,1 lie in the image of the twisted
Frobenius it suffices to investigate the I, Ugr action on the Iwasawa module Ss(o) (where the
computations are still accessible) to get the control of the filtration {Ik,n+1} kEN for a general n.

6.1 On the I'-action

We start our analysis with a careful study of the I'-action on the filtration {I 41 }xen, when n = 1.
By the properties of the twisted Frobenius .% (cf. Proposition 5.7), this lets us detect the behavior
of {Ij n+1}tren for arbitrary n € N.

We start with the following :
LEMMA 6.2. Let i € {0,...,f —1} and p € kp.
We have the following equality in A; 3 = A/(XfQ, i=0,...,f—1):
1 0
-1)-X; = + PS‘W( )
<[0 1+p[u]] ) & 0<sz<;1
where

i) £(s) €{0,...,p— 1}/ is the unique non-zero f-tuple such that XP*T4*) affords the eigenchar-
acter a”%;

1) Ps(p) is a “polynomial” in p of total degree |s|:
- S e
0<asp—1

for some v o € k such that vs, = 0 as soon as || > |s].

Proof. We compute

[(1) 1+39[u]]'Xi:[(1) 1—|—p } ZAPMZ[ 1>\] (1]]

Aekp

ZAH_ei[p[lx] ﬂ [pQ[lku] (”

Aekp

We note that, for any = € kj:, we have the following equality in A; o:

[p[lm](l)]:[(l)[g]H;?]zlﬂL[ } > ovxe

0<s<p—1

=1+ Z rus X

0<s<p—1

for some v, € k. Therefore

1 0 1 0
)( ){ + )(ps Ap 1—e;+s]1] [ ]
[ ] OSZ: Hn X ) pAl 1

0 1+ p[y ot

where s[1] denotes the shifted f-tuple associated to s, defined by (s[1]); = (8)i—1-
Define [—s[1]+¢;] € {0,...,p—1} as the unique non-zero f-tuple such that Al=slll+e:] = y=slll+e:
for all A € kp. Since [ 5 ;% | - Xi is an a~“-eigenvector for T(kp) we can use Proposition 4.4
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we to deduce:

p—1—e;+s[1] 1 0 [—8[1]—&-61}
PO P R R e
€kFp

modulo (m(—1+lsl—r* ) q—erreny (the a=¢Fslisotypical component of m®=1Flsl=#" )

The conclusion follows, as for any s # e;_1, there is precisely one non-zero f-tuple £(s) €
{0,...,p — 1} such that XPs+4) affords the T(kp)-character a~. O

As a corollary, we obtain a precise description of the I'-action on the A-generators for Kers:
COROLLARY 6.3. Let i € {0,...,f — 1}, u € kp. We have the following equality in Sa(c):
1 0 ] ) rtl it (i) s+((s)
— 1) X = P N Py X
( [ 0 1+ plyl 0<s<pil
where

i) £(s) € {0,...,p— 1}/ is the unique non-zero f-tuple such that XPstHs) affords the eigenchar-
acter a—¢i(ritl).

i) Ps(p) is a “polynomial” in p of degree |s|:

Z Vs, alb™

O0<asp—1
for some vs o € k such that vs, = 0 as soon as |a| > |s|.

Proof. We recall that I' acts by k-algebra endomorphism on A; the result follows from a direct
computation on binomial developments via Lemma 6.2. 0

We can now use the properties of the twisted Frobenius to deduce, from Corollary 6.3, the
behavior of the filtration {Ij 41} with respect to the I'-action.

LEMMA 6.4. Let X2 € m* and let v € T.
For any i € {0, ..., f — 1} we have the following relation in Sy4+1(0):

v (XLentr,i) € (v XL) (ens1,i + Z€n+1,s 9n_1(mp_1_h))- (23)

In particular the I'-action is trivial on the quotients
Lo/ Lo p—1-n),25 Tent1/Dos(p—1)myr  for n = 2.

Proof. Recall that epy1,; = F" (X1 11+1) with X/ 11+1 € Sa(0).

As T acts by conjugation on A (recall the isomorphism k[[Ko(p)]] @[k, peey) 1 = A) and F is
I'-equivariant we deduce:

v (XLentr,i) € (v XL) (F (7 e2i4n-1))-
We claim that
Claim: Let v € I'. We have the following relation in Sa(o):
(v —1) 'Xfi+1 c ngerlm(pfl)fh
Provided the Claim, the statement of Lemma 6.4 follows.
Proof of the Claim. By Lemma 4.3 we have:
(v —1) 'Xiri+1 € mp-ltritl (24)
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We moreover recall that Kery is a k[[Ko(p)]]-submodule in Sa(o), with A generators given by
Xrstlfor s =0,...,f — 1.

As X" € Kery we deduce that the left-hand side in (24) is indeed in mP~' 7+ N Cery and
the result follows by the definition of h. O

6.2 On the Ut-action.

We turn our attention to the action of the upper unipotent radical UT. Once again, the statements
are much more delicate to prove and we now need the precise description of the I'-action provided
by Corollary 6.3. It is at this point that we require o to be weakly regular. It is actually possible
to treat the non regular case but the proofs become much more technical and we decided not to
include them here.

The following Lemma is analogous to the Claim in the proof of Lemma 6.4, using Corollary 4.9
instead of Lemma 4.3:

LEMMA 6.5. Let x € Op, i € {0,...,f —1} and let j € N/ be an f-uplet. We have the following

relation in S3(0):
( I: (1) :f ] _ 1) _Xle?”iJrl c ZX§5+1m‘l‘+(p_2)_h.
S
Proof. By corollary 4.9 we have:

We moreover recall that Kery is a k[[Ko(p)]]-submodule in Sa(o), with A generators given by
Xt for s =0,...,f — 1.

As XIXT iT1 ¢ Kery we deduce that the left-hand side in (25) is indeed in mP~ 27+l 0 KCery
and the result follows by the definition of A. O

LEMMA 6.6. Let n > 2 and x € OF. For any i € {0,...,f — 1} we have the following relation in
Sn+1(0')f

1 l’ . _ .
< [ 0 1 :| - 1) : (Xlen—‘rl,i—n—‘rl) € Zen-‘rl,smp 243l = Ip—?-i—lil,n—i—l (26)
s

In particular, for any k € N, the UT-action of U™ is trivial on the quotients

Iy 1/ Do (p—2) 1 i > 25 Iio/Irip—2-no2-

Proof. We only need to prove the statement when n > 2. In this case we deduce by Proposition
5.7-ii3) that epi1i—nt1 = ﬂ(Xi”'H) = F(ea;) is fixed by UT.
According to Proposition 4.4 we have

- . 1 0 ;
“lyj — Z p—1—j l71+(p—1)
Ky X! = d A [pz(/\) 1 ] modulo m

where we used the evident compact notations: A = (A1,..., An) € (kp)", pz(Q) S e ()]
and, if j = Z?:lp’_ll’(z) with z(’) € {0,...,p— 1} we define
A=l g )\113;1_1(1) )\123;1_1@ U e A
As U™ stabilizes mZIT®=1) and fixes en+1,; we can therefore write:
1 z —1yj ) _ p—1—j 1 0 1+ prz 0 gn—1 )
{ 01 ] (o Lennions) =205 s Copy 1] 0 1o paae [T )
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As F is I- equ1varlant and I'P acts trivially on S2(0), we are left to understand the quantity

1+ p[f)\l] 0 il
{ 0 1— p[ZM] Xi' € Sy(o).
We now use the notations and the statement of Corollary 6.3, which provides us with the equality:
(27)
1+ pxz 0 |
Op 1 — pady(2) ] “entli-nt+l = X“+l + Z (A1) XPstis) 4 + (- 2/\1x)n+1Xp(r +1))_

0<s<p—1

Let us fix an f-tuple s appearing in the RHS in (27) and write

Pg(Alj): Z Vg()‘lf)g

0<a<p—1

where v, = v, o verify v, = 0 as soon as |a| > |s|.
s |s] > 0 it exists an m € {0, ..., f — 1} (depending on s) such that the element
XPstl(s)=(rm+1) o,

is well defined and belongs to Kers.
Therefore we can write:

2A= [ poa() 1 ] FrH P D) X)) =
d A

1 0

= Kp"frp"‘lﬁ(é)*p"—l(’"m+1)6n+1,m+n—1ZAE71 [ poz(z(A)) 1

} Py(\7T) (28)

Let us further develop the RHS in (28). In the development of Ps(A\;Z) we fix an « such that
la| < |s| and we obtain

o ps+p" T (s)—p" T (rm+1) pol—jr& 1 0
2%, X 6n+1,m+nlz)\:)\ AL [p(gm(z()\)) 1 }

and, by Proposition 4.4 and the definition of the Ut-action on A, we have
i 1 0 1 «x >2 >2 (1)_
p—l-j & 372+ —a] 772+ =]+ (p—1)
2N Lo 1)<l 1) (& o )

where j> = pj(Q) + - +p”_1l'(”) and [1'(1) —a] €{0,...,p— 1}/ is the unique non-zero f-tuple
) g (1) .
such that )\J = )\[11  for all A1 € kp. In particular (29) is in mlZI=lel+na(r=1) where n, € N
is such that |l(1)| — |na| + na(p — 1) = 0 (this follows from the definition of \[l'(l) —al|).
If we show that

p"sl+p M) = P i + 1) — || = p -2 (30)
we finally obtain by Corollary 4.9 (as s and « were arbitrary) :
g?”—1< > P(uDX p8+f<8>> =0 (31)
0<s<p—1

modulo I|1|+(p—2),n+1 .

But since |a| < |s| and 7, < p —2 (as o is weakly regular), the inequality (30) is obvious.
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In the very same manner one shows that

—1—j 1 0 n— T3 T —
pPPLat [ Poa(z(0) 1 } FrAFHIXTH) =0 (32)
X A

modulo I|l|+(}7—2),’n+1‘
Therefore, by (31) and (32) we obtain

[ (1) Qf ] '(H;Xienﬂ,i—nﬂ) = ;Ap_l_j [ péz(i(A)) (1) } - F" L (eq,).

modulo Ip_2+|l‘|7n+1.

Again by Proposition 4.4 and the definition of the UT-action on A we have

;W—j[mzé(m Velo 1] (i)

and the result finally follows from Corollary 4.9. O

7. The universal Iwasawa module

We can finally analyze some properties of the universal Iwasawa module G2 . We first focus on the
Iwahori radical filtration (§7.1). The main result is Proposition 7.1, where we show that, for a regular
Serre weight o, the A-radical filtration on &2 coincides with the k[[Ko(p)]]-radical filtration. In
Corollary 7.3 we deduce the isotypical components of the cosocle of G2 : we have a 2-dimensional
isotypical space, together with some other infinite dimensional spaces as soon as F' # Q.

In section 7.2 we study some torsion properties for the universal module &2, proving that it is
torsion free over A and it contains a dense submodule of rank one over Frac(A) (Proposition 7.7).

We fix a Serre weight o = o0, as in section §6; in particular o is weakly regular: 0 < r; < p — 2
for alli € {0,..., f —1}. We say that o is regular if we further have r; > 1 for all i € {0,..., f—1};
in particular for a regular Serre weight we have h(o) # 0 (cf. §6 for the definition of h(c)). We
remark that our definition of regular Serre weight differs slightly from [Gee] (cf. loc. cit., Definition
2.1.5). Once again, some of the results of this section hold true in greater generality, but the proofs
in non-regular cases become more technical (and we decided not to include them here).

Recall that, by Proposition 3.7, we have an A-linear morphism with dense image

M= @ A- 62(j+1)+0,i> DA-eo T (G

€2(j+1)+e,i€9%
as well as a family of compatible commutative diagrams

Voo

M2 &2 (33)
L
. i1 .
n+1 i>> 6n+1

° def

where M7 | = < ) A- 62(j+1)+.7i> DA e,
62(j+1)+.7i€g_~._

We make T (kp) act by a?""*(ir2iretD (3 $)V on ey;, 1), ; and by (x,)¥ on eg (vesp. by (x5)"

on e1); in this way the morphisms ¥, ¥,,+1 become T(kp)-equivariant.
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7.1 Filtration on the Fibered products

We endow the k[[Ko(p)]]-module M2, with the valuation of the infimum, i.e. with the A-linear
filtration { /k'} ., defined by:

Pl {ZPJ Jeaj41)sei + Po(X)ea € M3, minford(P;;(X)), ord(Pu(X))} > k}

By Proposition 4.8 the filtration {_#Z2}, is k[[Ko(p)]]-stable and realizes the k[[Ko(p)]]-radical
filtration on Mg,. We define in the analogous, evident way the filtration {_#;* .}, on the modules
M;  forn > 1.

We define in the obvious way the A-linear filtration {fk'}k on G2:

T E Voo (7).

By letting .7, ., W, ( Hrns1)s the commutative diagram (33) lets us write more expressively

= () i (Fas): (34)
nE2N+1+e

As the morphisms ¥, ¥, 1 are not I', UT-equivariant there is no reason, a priori, for the
filtration on &3, &;,_ | to be k[[Ko(p)]]-stable; as we did in §4 and §6 the aim of this section is to
prove that this is indeed the case, i.e. that % is a k[[Ky(p)]]-submodule in &2, for any k > 0.

This follows (almost) directly from Corollary 4.9 and Proposition 6.1, using a formal argument
on the valuation ord,; on the modules Sy, 11(0).

A remark for the case e = (0. In order to get a better result for the behavior of the filtrations

L, fk?n +1 we need to slightly refine their construction. This is because the k[[Ko(p)]]-module &
behaves in a slightly different way as the modules 6>2m+1 (m,t > 1), cf. Lemma 6.5.
Thus, assume that n > 3 is odd.

def

Write 67° = ker (69 — &9) for x € {n+1,00} and set Mz? for the stadard complement of M9
in M$. The morphism ¥, restricts to an A-linear, T(kp)-equivariant morphism with dense image

W23 M2Z3 — &Z3 (resp. an A-linear, T(kp)- equ1var1ant epimorphism ‘lln+1 Mfil — 65&) and

we have the evident compatibility between ¥Z3 and ¥ +1 as in (33).

We define in the analogous way the filtrations {.%; 3, {0 +1}k on 623 and Giil, having

I = () o (220 (35)
ne2N+3

Let f,fz be the image of 70, in &% via ‘1’00|Mg- It is a closed A-submodule of &Y, as M) is
finitely generated. Since 8%, = &Z3 x5, &9 and Jfg, f,fZ are closed in &% we have

=97+ 752

and similarly, 72 | = f Tt ]]fz +1 (with the obvious definition of ffi 1)

We are now ready to describe the behavior of . with respect to the I', UT actions:

PROPOSITION 7.1. Assume o is a weakly regular Serre weight.
a) The A-linear filtration {#!}; on &L (resp. {ffS}k on 623 C &%) is k[[Ko(p)]]-stable.
39



STEFANO MORRA

b) For all k € N, the I', U" actions are trivial on the subquotients

1/ g1 >3/ 723
Tl T2 T o)

of GL , &Z3 respectively.

¢) Assume further that o is regular. Then the A-linear filtration {0}y, on &% is k[[Ko(p)]]-stable
and the I', UT actions are trivial on the subquotients

>3 <2
I T2 T Trip2)n)-

In particular, the filtration {72}y defines the k[[Ko(p)]]-radical filtration on &', and on &Z3; the
same result holds true for &Y if o is further assumed to be regular.

As the action of I', Uy is continuous and the projection maps pry,+1 are k[[Ko(p)]]-equivariant
we deduce from the expressions (34), (35) above that it is enough to prove Proposition 7.1 for an
arbitrary finite level &5 4

We first consider the case n = 1.

LEMMA 7.2. Assume that o is a regular Serre weight. The A-linear filtration JISQ on &Y is formed
by k[[Ko(p)]]-modules. Moreover for any k > 0 the T, UT-action is trivial on the quotients

j122/j£+(p72)7h,2‘

Proof. Recall that Kers is a k[[Ko(p)]]-submodule of Sy and #0, = I} 5 for k > 1 (where Iy are
the k[[Ko(p)]]-submodules defining the radical filtration on Kers, cf. §6). It is therefore enough, by
means of Lemmas 6.4 and 6.6, to show that for any g € T', UT we have (g — 1) X~ € m?P~27"Cers.
Writing

—1)X~ = ZXTS“P

for some Py(X) € A, we have ord(X" T Ps(X)) > p — 2+ |r| by Corollary 4.9 hence ord(Ps(X)) >
p— 34 |r| — rs . The result follows, recalling that f > 2 and r; > 1 for all i. d

Proof of Proposition 7.1 in the finite case. Fix n > 2 and consider the module &5 | C Syy1(0).
We note that jk.n+1 is the image, inside &3 , |, of the A-module mF @4 M; g

° . n—1—e |
cﬂk‘,n-{-l = <e2(j+1)+0,i)60) J = 0) ceey T? 1= 05 cee af - 1>mkA'

Fix a couple (jo,i) € {0,...,"‘TH} x {0,...,f — 1}, an f-tuple I € N/ of length |I| = k;
consider the element

XL ea(jo41)+esi0 (resp. Xte,).

As ker(6;,,, — &3, ,,) is generated (over A) by the elements ey(j1 1)y, for jo < j < =52,
1=0,...,f —1 we can write

(g—1) 'XL€2(j0+1)+'710 Z ZP, 62 (j+1)+e,i

1=0 7270

(resp. (g—1)- X! Z ZPJ i(X)e2(j+1)4e,i + Pe(X)es) and, by Corollary 4.8, we deduce that

]>0
ord(Pji(X)ea(jt1)+ei) =k + (p = 2) + ord(eagjo41)+e,i0)

for all 7 and j > jo (vesp. ord(Pe(X)es) = k + (p — 2) + ord(es) and ord(Pji(X)ea(j11)+e:) =
k+ (p—2)+ ord(es) for all j >0, 7).
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Thanks to Lemma 7.2 and Proposition 6.1 it is now enough to prove that
ord(€s(jo+1)+ei0) = OTd(€(j1+1)10,i)

for any j > jo and any i (resp. to prove that ord(es) > ord(ey(j;1)4s,) for any j > 1 — e and
any ). Recalling the valuation of the elements €3 1)1e, €e (cf. Definition 3.5) we are left to prove
the inequality

f—1 n—1 f-1 n-1
S Y DT P 2 P e 4 DY Y (C1) (g + 1
1=0 s=2jp+1+e 1=0 s=2j+1+e

forall j > joand alli =0,...,f —1 (resp.

f-1 ,n—
Z(Z Tz+s+1)Ps—5o,0> > p 0 (rivajre + 1) +Z Z )T (rigs + 1)p

s=0 1=0 s= 2]+1+0
forallj >1—eandalli=0,...,f —1). By a simple manipulation we are reduced to prove that
-1
P (ripm +1) < Y 0" (Mpm + 1) = 0" (rpme1 + 1)
=0
where m & 2j + e > 1. This is trivially true if f >3 or f = 2 and ¢ is weakly regular. O

Thanks to Proposition 7.1 we obtain the isotypical components appearing in the cosocle of the
universal module &2 :

COROLLARY 7.3. Assume that o is a regular Serre weight. Then
-1 '
cosocyr (6%) = V(x—r) ® @ V (xpdet "a P i)
i=0

-1 _
COSOCK[1]] (Géo) = V(Xﬂdet_i) o) @ V(deet—za—pz(rﬁl))
i=0

where
dim(V (x-r)) = dim(V (xydet ™)) = 1,
: —r P )Yy _  O© foralli € {0,...,f -1} if F #Q,
dim (V' (x;det™"a ) { 0 foralli € {0,...,f—1} if F = Q,,.
Proof. 1t is an immediate consequence of Proposition 7.1. O

7.2 Torsion properties of the universal module

In this section we prove that &% is A-torsion free and, given any elements e, e’ € 4% the natural
morphism A-e® A-e’ — &2 factors trough a rank one quotient of A-e@® A-¢’. Recall that o = o,
is a fixed regular Serre weight.

We start from the following elementary observation:
LEMMA 7.4. Let € {0,1}. Then, for any [ € {0,...,f — 1} and any j € N we have
: _1\s+1+4e s _
Tim > ()T (g 4 1) = +o0.
nE2N+1+e s=9(j+1)+1+e
Proof. It is an elementary computation. O

41



STEFANO MORRA

One first property of the universal module is that, for any choice of generators e, e’ € 4%, the
natural morphism A -e® A - e’ — &% has a nonzero kernel.
PROPOSITION 7.5. Let @ € {0,1} and fix two elements e, e’ € 4% with e # €.
The natural morphism
A-edA-e — &2
(P(X), P'(X)) = P(X)e + P'(X)e/

has a nonzero kernel.

Proof. The proof is elementary and we only consider the case ¢ = 0 (the other is similar).

By the construction of & it is enough to prove that for n € 2N + 1, n >> 0, we have a
commutative diagram

A-edA-€ (SR
A-edA-€ S04

7

where @ is an appropriate A-module of rank at most 1.

There exists n € 2N + 1, n >> 0 such that the maps de — &9 ,, A¢’ — &Y, are both
non zero. Since & nt1 < Sny1 and the latter is a quotient of A, we deduce that there exists two
monomials P(X), P'(X) € A such that P(X)e # 0 # P'(X)e’ and P(X)e + P'(X)e’ =0 in &9 4

We can therefore set Q = (Ae ® Ae')/(P(X)e, P'(X)e') 4.

It is now enough to show that we have P(X)e+ P'(X)e’ = 0 in &Y 5 and this is clear since (the
image of) e, e’ are monomials of S,,13, hence P(X)e, P'(X)e’ are monomials of S, +3 which maps
to nonzero elements in S, 1o via the natural projection S, 13 — Sp4+2 (and, by construction, their
image in S, 12 belongs to the image of S, 41 in Sp42). O

On the other hand, we can prove that &% is A-torsion free:

PROPOSITION 7.6. Let o be a regular Serre weight. The associated universal modules &Y., &1 are
torsion free as A-modules.

Proof. Recall that for n € 2N + 1 + e we write pry41 : 63, — &, for the natural projection.

Assume the statement is false. Then there are non-zero elements P(X) € A, x € &2 such that
P(X)- -z =0in &2,. Since = # 0 there is ng € 2N + 1 + e such that pr,,41(z) # 0 in &, 41. Write

def

mi = ordy, (P(X), m; = ordx, (prng+1(z))
where ordy; () denotes the order in the direction X; of an element * € Sy, 1.

An immediate induction, together with the definition of the transition morphisms &3, | — &;,_,
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gives
n—ng—1

ordy, (prat1(z)) = mj + Z pn0+j(_1)j+'(7”z‘+no+j +1)=
=0

n—1
=mj+ Y p (=1 (riy; + 1)
J=no
for all n € 2N 4+ 1 + e, n > ng. Hence, by Lemma 7.4, we deduce that for any ¢ € {0,...,f — 1}
there exists n; € 2N + 1 + o, n; >> 0 such that:
n;—1
mi +mfi+ Y P (1) (rigy + 1) < P (Fign, + 1); (36)
J=no
in particular, it exists N € 2N + 1+ e, N >> ng such that (36) holds for all i € {0, ..., f — 1} with
n; replaced by N.
We can thus find a suitable lift y € A of pry41(z) via the morphism A — Sy41 such that

ordx, (P(X)y) < p" (rin + 1)

for all ¢ € {0,...,f — 1} and this means precisely that P(X)y maps to a nonzero element via
A — Sni1, against the hypothesis that P(X)z =0 in &2_. O

We deduce, from Proposition 7.5 and 7.6, the following result on the torsion properties of the
E[[Ko(p)]]-module &2 :

PROPOSITION 7.7. Let z € G2 be a nonzero element, lying in the image of the natural morphism

Then &3 /(x) 4 has a natural structure of profinite A-module and the torsion submodule Tor(&?2,/{(z) 4)
is dense in &%, /(x) 4 for the natural profinite topology.

Proof. Since A is compact it is clear that (z) 4 is a closed submodule of &2, . By Proposition 7.5 we
deduce that the image of the natural morphism

P Aae-e,
ec¥Ys,

is a rank one, dense A-submodule of G2 . The result follows. O]

7.3 The case F = Q,

The aim of this section is to describe explicitly the k[[Ko(p)]]-module GZ! ®©&Z2 in Galois theoretical
terms when F' = Q,.

Let Qp2 be the quadratic unramified extension of Q,. We fix an embedding Q,» S E and, for
j € {0,1}, we write 7; o Frob{Q , Where Flronp2 is the absolute Frobenius on Q2. With this

P
choice, we can define the fundamental Serre character wo of niveau 2 associated to the residual
embedding F2 — k. For n € {1,...,p} we write ind(wy) for the unique (absolutely) irreducible
2-dimensional representation of Gq, whose restriction to the inertia subgroup Iq, is isomorphic to

wf @& wh™ and whose determinant is w” (where w is the mod-p cyclotomic character).

If 0 < r < p—1 the Galois representation ind (w’;rl) corresponds to the supersingular represen-

tation (0, 0) and the aim of this section is to show that the #-module GZ! & &Z2 is isomorphic

to the “mod-p Wach module” associated to the dual of ind (wht).
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Recall that for e € {0,1} we have defined (cf. Definition 3.5) the elements ey 11)1e; as F'= Q,
we omit the subscript ¢ in what follows. Then G2 is easily seen to be generated over A by the only
element e,.

Fix n € 2N + 1. Using the definition of the elements eq, e2 one verifies that e; = X - e in &Y ;.
Since n € 2N + 1 is arbitrary we deduce that GZ! is the submodule of G2 generated (over A) by
the element es = X - eg; a completely analogous argument shows that &Z2 is the submodule of &L
generated (over A) by the element ez = X"+ - ;.

We turn our attention to the action of the Frobenius. By Proposition 5.11 we have
F(ez) = e3 (37)
ﬁ(eg) =ey4 = X(pil)(wrl)eg.
As usual, the equality e, = X®~D0+e, is verified in any quotient &)1 (with n > 3) using the
explicit description of the elements e4, €5 given in Proposition 3.7.

We leave to the reader the task to verify that T(kr) acts on ey, es by the character (Xra)v SO
that, by Proposition 7.1 we deduce the Z; action:

Verie = V€21e + (prl) “€2ie mod XP~!

for e € {0, 1}.

Let V;.11(0) be the irreducible crystalline representation of Gq, with Hodge-Tate weights (0, —(r+
1)) and whose trace of Frobenius equals zero. We claim that GZ! @ &22 is isomorphic, as a Frobe-
nius module, to the mod-p reduction of Wach module associated to V,;1(0).We decided to include

a self contained argument of this well-known result and we invite the reader to refer to [Ber] for the
general theory of Wach modules (cf. also [BLZ] or [Doul]).

Let 0 <7 < p—1and N,4;(0) be the rank two ¢-module over ¢[[X]] whose Frobenius action
is characterized by

gl = sl | (S g | (38)

where (n1,ns) is a @[[X]]-basis for N,;1(0) and q & HX""L ¢ G[[X]]. By the work of [BLZ]
(Proposition 3.1.3), there exists a &[[X]]-semilinear, p-equivariant Z)-action on N, 1(0), which is
trivial modulo XN, 1(0); this gives rise to a well defined structure of Wach module on N, 1(0).

The module N,.;(0) is endowed with a filtration (cf. [Ber|, Théoreme I11.4.4)
Fi/ (N,41(0)) = {2 € N,11(0), ¢(z) € ¢'N,41(0)}

and one sees that

‘ Ony @ Ong if Jj<0
Fil! (N;41(0)/XN,11(0)) = Ony if 1<j<r+1 (39)
0 if  j>r42

(cf. [BLZ], proof of Proposition 3.2.4).

By [Ber], Proposition I11.4.2 and Corollaire I11.4.5 we have an isomorphism of filtered p-modules
over E:

E ®g (Nyg1(0)/XNy1(0)) = Deris(Vrg1(0))
for an appropriate crystalline representation V,.;1(0) with Hodge-Tate weights {0, —(r + 1)}.

LEMMA 7.8. In the previous hypotheses, we have an isomorphism of cristalline representations
G
Vit1(0) = indGZ” ngr 11) where x(o,1) is the crystalline character of GQp2 with labelled Hodge-Tate
p? ’
weights —(0,1) and such that x,1)(p) = 1.
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Proof. By the equations (38) and (39) we have a complete description of the filtered p-module
E Q¢ (NTH(O)/XNTH(O)) (note that q""'ny = p"*lny mod XN, 1(0)). The result follows then
from Breuil [Bre03b] Proposition 3.1.2 et 3.1.1.

Alternatively, we can prove the Lemma using the theory of Wach modules, as we outline in the
following lines.

One easily sees by (39) that the filtered module E ®¢, (Ny4+1(0)/XN,11(0)) has no nonzero,
¢-admissible proper submodules, and hence V;.11(0) is irreducible. Let 7,41(0) be the &g-lattice of
Vr+1(0) corresponding to N,;(0) via the equivalence of [Ber| Proposition II1.4.2.

By results of [Dou], §2 we can describe the GQp2 -restriction of 7,41 (0) in terms of Wach modules
over Z,» ®z, Op[[X]]. Recall the natural isomorphism of rings

Z,2 ®z, 0[|X]] — O[[X]] & O[[X]]
z® P(X) — (10(z)P(X), 71 (z)P(X)).
By [Doul, Proposition 2.5 and 2.6, the Wach module over Z,: ®z, Op[[X]] associated to T;11(0)|cq |,
P

is obtained by extension of scalars from N,41(0). In particular its Frobenius action is defined by:

[p(n1), o(n2)] = [n1,na] [ (qrﬁ?j?«ﬂ) E(l)(l)g }

and the matrix equality

om0 L@y G 1= e @y e[ 6

shows that we have an isomorphism of Wach modules

N(Tr+1(0>‘GQp2) — Nos41),1 ® Niyr0),1

where Ng,11y1 (resp. N.410),1) are the rank one Wach modules over Z,» ®z, Or[[X]] whose
Frobenius action is characterized, on appropriate generators 19, 71, by ¢(n0) = (1,q" 1 )no (resp.
©(m) = (q"", 1)y, cf. also [Dou], §3.1.).
By [Dou], Proposition 3.5 et seq. we have
E ®¢ N(O,rJrl),l = Dcris(Xzajll))a E®g N(r+1,0),1 = Dcris(XfI&))
where X(1,0) (resp. X(o,1)) is the crystalline character of labelled Hodge-Tate weights —(1,0) (resp.

—(0,1)) such that x(o,1)(p) = 1 = x(1,0(p). It follows that, VTH(O)\GQP2 = XHCS) & xzafll) and we

deduce

as V;41(0) is irreducible. O
The mod-p reduction of the crystalline character x(o,1) is deduced from [Dou], Lemma 6.2:

X(0,1) = Wy !
hence the mod-p reduction of the crystalline representation V;11(0) is given by
V,41(0) = (ind (@)
(note that V,11(0) is irreducible as r < p — 1), and we define the mod-p Wach module:
N((ind(w5™))") = Ny41(0) @ k-

Since qn1 ® 1 = XP~n; ® 1 in N, 1(0) ®4 k, by comparing the equations (38) and (37) we
deduce:
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PROPOSITION 7.9. Let F = Q, and 0 = o, for r € {0,...,p — 1}. We have an isomorphism of
w-modules over A:
62! @ 622 = N((ind(ws ™))",

where G2} © G22 is the k[[Ko(p)]]-module associated to the supersingular representation (o, 0).

8. A note on Principal and Special series

We give here a glimpse to the previous constructions when considering tamely ramified principal
series. The arguments are now much simpler; we invite the reader to refer to [Mol], §5 for the
omitted details.

Recall that the tamely ramified principal series for GLy(F') are described (up to a twist by a
smooth character) by the parabolic induction

def . GLo (F)

Tppu = indg 7 (un, ® w?unufl) (40)

]

where p € EX, un,, is the unramified character of F* verifying un,(w) = u, r € {0,...,p— 1}/ and
wy is a choice of a Serre fundamental character of level f.

It is known by the work of Barthel and Livné [BL94] that the principal series (40) is absolutely
irreducible if either |r| ¢ {0,q} or |r| € {0,¢} and u ¢ {1,—1}.

On the other hand if |r| € {0,¢} and u € {1,—1} we have a short exact sequence

GLo(

B(F)F)l — St — 0.

0—1—ind

where St denotes the Steinberg representation for GLo(F') (which is absolutely irreducible).
Since B(F')\GL2(F') is compact, we have the following K-equivariant isomorphism

. 1GLy(F ~ s K ORTINAIEY ¢
(mdB(Pf)( )(unu ® whun,,—1)) |k = ind g ooy Xy = h_rr)l(deo(wnH)Xz) (41)
n>1
where the transition morphisms for the co-limit in the RHS are obtained inducing the natural
monomorphisms of Ky(w™)-representations

. 1Ko(w™
X = indi =0 g (42)
(which is unique up to a scalar).

To the tamely ramified principal series 7, we associate the Ko(w)-subrepresentation

— def. Ko(w) _s
R, = deS(wOO)Xz'

The representation R_ controls the representation theoretic behavior of principal and special
series representations for GLy(F):

ProprosITION 8.1. Let 7., be a tamely ramified principal series and let RZ, be the associated
Ky(w) submodule. We have a K-equivariant isomorphism

~ oK —
Truli = indg, ) Roo

If N denotes the normalizer in GLy(F') of the standard Iwahori subgroup, we have a N-equivariant
isomorphism

Teuln = Ry, @ (Ry)”
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where the action of o on the RHS is given by the involution
R, — (Ry)°
v U,
In particular, the Steinberg representation fits in the following exact sequences:
0= 1— indf o Ry, — Stlx =0
0—1— R @ (Ry) — Stly — 0.

Proof. The assertions on the K-structure of 7, , follow from the isomorphism (41) and the formal
properties of the compact induction functor.

The assertions on the N-structure of 7, ;, can be checked directly using the Mackey decomposition
~ (i Ko(@) s . 1Ko(w)
(T, |K0(w) = (deO(woo)Xﬂ) @ (deo(w)mE(F)Xﬁ) (43)

and noticing that a normalizes Ky(w) (hence the Ky(w)-equivariant isomorphism between the
direct summands in the RHS of (43), once we endow one of them with the conjugate action of
Ky(w)). O

Assume now that F' is unramified over Q.
We define G to be the Pontryagin dual of R__. In other words, G, is the Verma module

Goo = K[[Ko(P)]] @a(iro(p=y) (X2)
so that the Iwahori decomposition and (41) we have
1 Pt —
600_1%114/@1. i=0,...,f—1)

where the morphisms defining the projective system are the natural projection (and respect the
k[[Ko(p)]]-module structures).

By Proposition 4.9 we deduce that the A-linear filtration on &, induced by powers of the
maximal ideal m < A is k[[Ko(p)]]-stable and the I, UT-action is trivial on the quotients

mk /mk+(p—2) )
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