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Abstract

We compute the dimension of Γ1(pn)-invariants for supersingular representations π(r, 0, 1)
of GL2(Qp), when r 6≡ 0 modulo p− 1.

WARNING: these notes are an alpha version, and thus highly unstable.
The details of the proofs (as well as simpler arguments) will be added as soon
possible.

1. Introduction and notations

The aim of this note is to describe in detail the Γ1(pk) (k ∈ N>) invariants for supersingular
representations π(r, 0, 1) where r ∈ {1, . . . , p− 2} and p > 2. The main result (Theorem 4.21) is the
following:

Theorem 1.1. Let r ∈ {1, . . . , p− 2} and k ∈ N>1. The dimension of the Γ1(pk)-invariants for the
supersingular representation π(r, 0, 1) is given by:

dimFp
(π(r, 0, 1)Γ1(pk)) =

{
2(2p

k−1
2 − 1) if k is odd;

2(p
k
2 + p

k−2
2 − 2) if k is even.

The general strategy is completely elementary -based on the study of certain eigenspaces issued
from the explicit description of π(r, 0, 1)- and can be outlined as follow:

o) from lemma 3.2 in [Mo] we are left to study the subspaces · · · ⊕Rk Rk+1, · · · ⊕Rk−1
Rk;

i) we study the Γ1(pk) invariants of Rt−1/Rt−2, for i ∈ {0, 1}, k + 2 > t > 1;

ii) from i) and left exactness of the functor H0(Γ1(pk), •) we compute the spaces

(· · · ⊕Rt−2 Rt−1)Γ1(pk)/(· · · ⊕Rt−4 Rt−3)Γ1(pk).

As annonced, we will not use any sophisticated arguments, the main difficulty will be painful and
boring computations (as we will see, we need to distingush according to the reduction of k modulo
4).

From now onwards, we fix an integer r ∈ {1, . . . , p− 2}.

1.1 Notations

For t > 2 and η a character of H we recall the B ∩K-equivariant isomorphism

IndKK0(pt−1)η|B∩K
∼→W+

t−1,χ ⊕W
−
t−1,χ

for suitable subspaces W±t−1,η. The description of such spaces is strightforward:

Lemma 1.2. Let t > 2. Then
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i) an Fp-base for the space W+
t−2,η is descrbed by

xl0,...,lt−2(e)
def
=
∑
λ0∈Fp

λl00

[
[λ0] 1
1 0

]
. . .

∑
λt−2∈Fp

λ
lt−2

t−2

[
1 0

pt−2[λt−2] 1

]
[1, e]

for lj ∈ {0, . . . , p− 1}, j ∈ {0, . . . , t− 2}.
ii) An Fp-base for the space W−t−2,η is described by the elements

x′lj ,...,lt−2
(e)

def
=
∑
λj∈Fp

λ
lj
j

[
1 0

pj [λj ] 1

]
. . .

∑
λt−2∈Fp

λ
lt−2

t−2

[
1 0

pt−2[λt−2] 1

]
[1, e]

where j ∈ {1, . . . , t− 3}, lj ∈ {1, . . . , p− 1}, lm ∈ {0, . . . , p− 1} for m ∈ {j + 1, . . . , t− 2}, and
the elements

x′lt−2

def
=

∑
λt−2∈Fp

λ
lt−2

t−2

[
1 0

pt−2[λt−2] 1

]
[1, e],[1, e]

for lt−2 ∈ {1, . . . , p− 1}.

Proof. Omissis.

We are now in the position to describe an Fp-basis for Rt−1/Rt−2, where t > 3:

Lemma 1.3 definition. Let t > 3. An Fp-basis for the K-representation Rt−1/Rt−2 is descrbed by
the following elements:

i) for j ∈ {1, . . . , r} the elements

xl0,...,lt−2(j)
def
=
∑
λ0∈Fp

λl00

[
[λ0] 1
1 0

]
. . .

∑
λt−2∈Fp

λ
lt−2

t−2

[
1 0

pt−2[λt−2] 1

]
[1, Xr−jY j ]

for lm ∈ {0, . . . , p− 1}, m ∈ {0, . . . , t− 2};
ii) the elements

xl0,...,lt−2(0)
def
=
∑
λ0∈Fp

λl00

[
[λ0] 1
1 0

]
. . .

∑
λt−2∈Fp

λ
lt−2

t−2

[
1 0

pt−2[λt−2] 1

]
[1, Xr]

for lm ∈ {0, . . . , p− 1}, m ∈ {0, . . . , t− 3} and lt−2 ∈ {r + 1, . . . , p− 1};
iii) for j ∈ {1, . . . , r} the elements

x′lj ,...,lt−2
(j)

def
=
∑
λj∈Fp

λ
lj
j

[
1 0

pj [λj ] 1

]
. . .

∑
λt−2∈Fp

λ
lt−2

t−2

[
1 0

pt−2[λt−2] 1

]
[1, Xr−jY j ]

for lm ∈ {0, . . . , p− 1}, m ∈ {1, . . . , t− 2};
iv) the elements

x′lj ,...,lt−2
(0)

def
=
∑
λj∈Fp

λ
lj
j

[
1 0

pj [λj ] 1

]
. . .

∑
λt−2∈Fp

λ
lt−2

t−2

[
1 0

pt−2[λt−2] 1

]
[1, Xr]

for lm ∈ {0, . . . , p− 1}, m ∈ {1, . . . , t− 3} and lt−2 ∈ {r + 1, . . . , p− 1};
v) the elements

[1, Xr−jY j ]

for j ∈ {1, . . . , r}.

For t = 2 the description is slighty different:
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Lemma 1.4 definition. An Fp-base for R1/R0 is descrbed as follow:

i) for j ∈ {1, . . . , r} the elements

xl0(j)
def
=
∑
λ0∈Fp

λl00

[
[λ0] 1
1 0

]
[1, Xr−jY j ]

for l0 ∈ {0, . . . , p− 1};
ii) the elements

xl0(0)
def
=
∑
λ0∈Fp

[
[λ0] 1
1 0

]
[1, Xr−jY j ]

for l0 ∈ {r, . . . , p− 1}
iii) for j ∈ {1, . . . , r} the elements

[1, Xr−jY j ].

We conclude the section with the main computationals tools for the description of the spaces
H0(Γi(p

k), π(r, 0, 1)).

Lemma 1.5. Let t > 3, j ∈ {1, . . . , t−2} and z′
def
=
∑t−2

n=j [λn]pn. If m ∈ N is such that 2j+m 6 t−1
then [

1 pm[µ]
0 1

] [
1 0
z′ 1

]
=

[
1 0

z̃′ 1

] [
a b
c d

]
for suitable p-adic integers a, b, c, d, z̃′ such that:

i) a, d ≡ 1 mod p and b = pm[µ];

ii) z̃′ =
∑t−2

n=j [λ̃n]pn where

a2) λ̃n = λn for n ∈ {j, . . . , 2j +m− 1}
b2) λ̃n+Sn−1(λ̃n−1) = λn for n ∈ {2j+m+1, . . . , t−2} where Sn−1(X) ∈ Fp[X] is a polynomial

of degree p− 1 and leading coefficient λn−1 − λ̃n−1;
c2) λ̃2j+m + λ2

jµ = λ2j+m if 2j +m ∈ {j, . . . , t− 2};

iii) c = pt−1[−St−2(λ̃t−2)] + pt∗ for a suitable p-adic integer ∗ ∈ Zp and

a3) St−2(X) ∈ Fp[X] is a polynomial of degree p − 1 and leading coefficient λ̃t−2 − λt−2 if
2j +m 6 t− 2

b3) St−2(X) ∈ Fp[X] is a polynomial of degree zero given by St−2(X) ∈ Fp[X] = µλ2
j .

Proof. Postponed.

As we will need later on, we recall the matrix equality:[
1 + pj [a] 0

0 1 + pj [d]

] [
1 0
z′ 1

]
=

[
1 0

z′(1 + pj [a])−1(1 + pj [d]) 1

] [
1 + pj [a] 0

0 1 + pj [d]

]
(1)

where j ∈ N>, a, d ∈ Fp and z is a p-adic integer.

Lemma 1.6. Let t > 4. We hae the following equalities in the amalgamed sum · · · ⊕Rt−2 Rt−1:
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i) ∑
λt−3∈Fp

[
1 0

pt−3[λt−3 + µ] 1

] ∑
λt−2∈Fp

λr+1
t−2

[
1 0

pt−2[λt−2 + Pµ(λt−3)] 1

]
[1, Xr] =

=
∑

λt−3∈Fp

[
1 0

pt−3[λt−3] 1

] ∑
λt−2∈Fp

λr+1
t−2

[
1 0

pt−2[λt−2] 1

]
[1, Xr] +

+(r + 1)(−1)r+1
∑

λt−3∈Fp

P−µ(λt−3)[1, (λt−3X + Y )r];

ii) ∑
λt−3∈Fp

[
1 0

pt−3[λt−3] 1

] ∑
λt−2∈Fp

λr+1
t−2

[
1 0

pt−2[λt−2 + µ] 1

]
[1, Xr] =

=
∑

λt−3∈Fp

[
1 0

pt−3[λt−3] 1

] ∑
λt−2∈Fp

λr+1
t−2

[
1 0

pt−2[λt−2] 1

]
[1, Xr] +

+(r + 1)(−1)r+1(−µ)
∑

λt−3∈Fp

[1, (λt−3X + Y )r].

Proof. Postponed.

Lemma 1.7. Let k1, k2 be integers such that 0 6 k1 6 p−1 and 1 6 k2; let V be an Fp-vector space
with a base given by

B = {vi,j | 0 6 j 6 k1, 1 6 i 6 k2}.
Assume we are given, for a fixed µ ∈ Fp, an endomorphism φµ : V → V such that

φµ(vi,j) =

j∑
n=0

(
j

n

)
(µ)nvi+n,j−n

where we adopt the convention

vk,j
def
= vdke,j

for any k ∈ N>, j ∈ {0, . . . , k1}.
Then the endomorphism φµ has the scalar 1 as the only eigenvalue, and the associated eigenspace

is

V φµ=1 = 〈v1,0, . . . , vk2,0〉Fp .

Proof. Postponed.

2. Study of Rt−1/Rt−2

In this section we are going to study in detail some invariant spaces of the quotients Rt−1/Rt−2.
More precisely, we consider the following subgroups of K:

B ∩ I1 =

[
1 + pZp Zp

0 1 + pZp

]
;K ∩ U =

[
1 Zp
0 1

]
.

The obvoius reason is that

i) (K ∩ U) ·Kk = Γ0(pk);

ii) (B ∩ I1) ·Kk =

[
1 + pZp Zp
pkZp 1 + pZp

]
is normal in Γ1(pk), and the quotient is isomorphic to

H.
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We recall that the study of Kk-invariant has been pursued in [Mo].

2.1 Concerning the action of unipotent elements

In this section we are going to describe explicitly the invariant spaces (Rt−1/Rt−2)

 1 pjZp
0 1


for j ∈ N, t > 2. The strategy will be elementary, using succesive induction on j and on the
filtration defined on Rt−1/Rt−2; the main statement will be corollary 2.6, where we give a basis for

Rt−1/R

 1 Zp
0 1


t−2 .

The first step is

Lemma 2.1. Let t > 2, η a character of H (seen as a character of K0(pt−1) by inflation). Let m ∈ N

be such that t− 1 > m > 0 and define k0
def
= t−1−m

2 . Then an Fp-basis for (IndKK0(pt−1)η)

 1 pm

0 1


is described as follow:

i) If m > 1, the elements xl0,...,lm−1,0,...,0(e), with lj ∈ {0, . . . , p− 1} for j ∈ {0, . . . ,m− 1}, while
the element x0,...,0(e) if m = 0;

ii) for 1 6 k 6 k0 the elements

x′lk,...,l2k+m−1,0,...,0
(e)

where lk ∈ {1, . . . , p− 1}, lj ∈ {0, . . . , p− 1} for k + 1 6 j 6 2k +m− 1;

iii) for k0 < k 6 t− 2 the elements

x′lk,...,lt−2
(e)

where lk ∈ {1, . . . , p− 1}, lj ∈ {0, . . . , p− 1} for k + 1 6 j 6 t− 2

iv) the element [1, e];

Proof. Postponed (induction on m).

We switch now our attention to the spaces Rt−1/Rt−1. We recall that the graded piece of the
filtration induced by Fili(Rt−1) give

Q(0)0,t−1
0,...,0,r+1—IndKK0(pt−1)χ

s
ra— . . .—IndKK0(pt−1)χ

s
ra
r

The strategy to describe the invariant spaces of Rt−1/Rt−2 is therefore to use lemma 2.1 and an
inductive argument using the aforementioned filtration on Rt−1/Rt−2.

The result is the following:

Proposition 2.2. Let t > 2, m ∈ N such that t − 1 > m > 0; let moreover i ∈ N be such that

r − 1 > i > 0. If k0
def
= t−1−m

2 an Fp-basis for (Rt−1/Fili(Rt−1))

 1 pmZp
0 1


is described as follow:

i) The elements

xl0,...,lm−1,0,...,0(i+ 1)

where lj ∈ {0, . . . , p − 1} for j ∈ {0, . . . ,m − 1} (with the obivious conventions if m = 0 or
m = t− 2).

ii) For 1 6 k 6 k0, the elements

x′lk,...,l2k+m−1,0,...,0
(i+ 1)
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where lk ∈ {1, . . . , p− 1}, ln ∈ {0, . . . , p− 1} for n ∈ {k + 1, . . . , 2k +m− 1} (and the obvious
convention that “there are no zeros” if k = k0)

iii) for k0 < k 6 t− 2 the elements

x′lk...,lt−2
(j)

where j ∈ {i+ 1, . . . , r}, lk ∈ {1, . . . , p− 1} and ln ∈ {0, . . . , p− 1} for n ∈ {k + 1, . . . , t− 2}.
iv) the elements

[1, Xr−(i+1)Y i+1], . . . , [1, Y r].

Proof. Postponed (descending induction on i, using lemma 2.1. Inside the proof we use a lemma.
Let us consider the Fp-subspace U of Rt−1/Fili(Rt−1) generated by

a) Fili+1(Rt−1)/Fili(Rt−1);

b) the elements xl0,...,lm−1,0...,0(i+ 2) (the indices lj satisfying the conditions of the elements i) in
the statement of the proposition)

c) for 1 6 k 6 k0 the elements x′lk,...,l2k+m−1,0,...,0
(i+ 2) (the indices lj satisfying the conditions of

the elements ii) in the statement of the proposition)

d) for k0 < k 6 t− 2 the elements x′lk,...,lt−2
(j) with j ∈ {i+ 2, . . . , r} and the indices lj satisfying

the conditions of the elements iii) in the statement of the proposition)

e) the elements [1, Xr−(i+2)Y i+2], . . . , [1, Y r].

We notice that the subspace U ′ of U generated by the elements in d), e) is fixed under

[
1 pmZp
0 1

]
;

if U ′′ is the subspace generated by the elements in a), b), c) (notice also that U = U ′ uU ′′) we have
the following lemma

Lemma 2.3. Under the previous assumption, let j ∈ N be such that m 6 j 6 t − 1. Then, an

Fp-basis for U ′′

 1 pjZp
0 1


is described as follow:

a) the elements

xl0,...,lj−1,0,...,0(i+ 1)

(where the indices lj satisfy the conditions of the elements i) in the statement of the proposi-
tion);

b) for 1 6 n 6 t−1−j
2 the elements

x′ln,...,l2n+j−1,0,...,0
(i+ 1)

(where the indices lj satisfy the conditions of the elements ii) in the statement of the propo-
sition);

c) for t−1−j
2 < n 6 t− 2 the elements

x′ln,...,lt−2
(i+ 1)

(where the indices lj satisfy the conditions of the elements iii) in the statement of the propo-
sition);

d) for t−1−1
2 < k 6 t−1−m

2 the elements

x′lk,...,l2k+m−1,0,...,0
(i+ 2)

(where the indices lj satisfy the conditions of the elements ii) in the statement of the propo-
sition);
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e) the element [1, Xr−(i+1)Y i+1].

Proof. Postponed. (descending induction on j)

The proposition follow applying the lemma with j = m.

We are now in the position to prove the key result of this section.

Proposition 2.4. Let t > 2, t− 2 > m > 0 be integers and assume t+m > 3. Define k0
def
= t−1−m

2 .

An Fp-basis for (Rt−1/Rt−2)

 1 pmZp
0 1


is described as follow:

i) the elements

xl0,...,lm−1,0...,0,r+1(0)

where ln ∈ 0, . . . , p− 1 for n ∈ {0, . . . ,m − 1} (and with the obvious conventions if m = 0 or
m = t− 2);

ii) for 1 6 k < k0 the elements

x′lk,...,l2k+m−1,0,...,0,r+1(0)

where lk ∈ {1, . . . , p − 1}, ln ∈ {0, . . . , p − 1} for n ∈ {k + 1, . . . , 2k + m − 1} (if the latter is
non empty; and “there ate no zeros” for 2k +m− 1 = t− 3).

iii) for k0 < k 6 t− 2 the elements

x′lk,...,lt−2
(j)

where:

• for 1 6 j 6 r, lk ∈ {1, . . . , p − 1} and ln ∈ {0, . . . , p − 1} where n ∈ {k + 1, . . . , t − 2} (if
non empty);

•• for j = 0, lt−2 ∈ {r+1, . . . , p−1}, lk ∈ {1, . . . , p−1} (non empty condition only if k < t−2),
and if k 6 t− 4, ln ∈ {0, . . . , p− 1} if n ∈ {k + 1, . . . , t− 3}.

iv) the elements

[1, Xr−1Y ], . . . , [1, Y r]

v) if k0 ∈ N, the elements

x′lk0 ,...,l
i
t−2(i)

where i ∈ {0, 1}, lk0 ∈ {1, . . . , p − 1}, l0t−2 ∈ {r + 1, . . . , p − 1}, l1t−2 ∈ {0, . . . , r} and ln ∈
{0, . . . , p− 1} where n ∈ {k0 + 1, . . . , t− 3} (if non empty).

Proof. Thanks to proposition 2.2 (and a direct space decoposition as in the proof of the latter) we
see that we are led to the study of the subspace U ′′ of Rt−1/Rt−2 generated by the elements:

a) Q0,t−1
0,...,0,r+1(0);

b) the elements

xl0,...,lm−1,0,...,0(1)

for ln ∈ {0, . . . , p− 1}, where n ∈ {0, . . . ,m− 1} (if non empty);

c) for 1 6 k 6 k0 the elements

x′lk,...,l2k+m−1,0,...,0
(1)

where lk ∈ {1, . . . , p− 1} and ln ∈ {0, . . . , p− 1} for n ∈ {k+ 1, . . . , 2k+m− 1} (if non empty)

We then have the following lemma.
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Lemma 2.5. In the previous situation, consider an integer j ∈ N with t− 2 > j > m+ 1, and put

j0
def
= t−1−j

2 . An Fp-basis for U ′′

 1 pjZp
0 1


is described by:

a) the elements

xl0,...,lj−1,0,...,0,r+1(0)

where the indices lu verify the conditions in i);

b) for 1 6 n < j0, the elements

x′ln,...,l2n+j−1,0...,0,r+1(0)

where ln ∈ {1, . . . , p− 1} and lu ∈ {0, . . . , p− 1} for u ∈ {n+ 1, . . . , 2n+ j− 1} (if non empty);

c) for j0 6 n 6 t− 2, the elements

x′ln,...,lt−2
(0)

where lt−2 ∈ {r+1, . . . , p−1}, ln ∈ {1, . . . , p−1} if n < t−2 and, for n 6 t−4, lu ∈ {0, . . . , p−1}
for u ∈ {n+ 1, . . . , t− 3};

d) for j0 6 k 6 k0 the elements

x′lk,...,l2k+m−1,0,...,0,r+1(1)

where the indices lu verify the conditions described in the point c) above.

Proof. Induction on j.

Lemma 2.5 enable us to establish the inductive step for the proof of the main statement.

As a consequence, we can describe explicitly the space of

[
1 Zp
0 1

]
-invariants:

Corollary 2.6. Let t > 4. An Fp-basis for (Rt−1/Rt−2)

 1 Zp
0 1


is described as follow:

i) the element

x0,...,0,r+1(0);

ii) for 1 6 k < t−1
2 the elements

x′lk,...,l2k−1,0,...,0,r+1(0)

where lk ∈ {1, . . . , p− 1} and lu ∈ {0, . . . , p− 1} for u ∈ {k + 1, . . . , 2k − 1} (if non empty);

iii) for t−1
2 < k 6 t− 2 the elements

x′lk,...,t−2(j)

where

• for 1 6 j 6 r we have lk ∈ {1, . . . , p− 1} and lu ∈ {0, . . . , p− 1} for n ∈ {k + 1, . . . , t− 2}
(if non empty);

•• for j = 0 we have lt−2 ∈ {r+ 1, . . . , p− 1}, lk ∈ {1, . . . , p− 1} if k < t− 2 and, if moreover
k 6 t− 4, lu ∈ {0, . . . , p− 1} for u ∈ {k + 1, . . . , t− 3};

iv) the elements

[1, Xr−1Y ], . . . , [1, Y r];

v) If k0
def
= t−1

2 ∈ N the elements

x′lk0 ,...,l
i
t−2

(i)

8
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where l
(1)
t−2 ∈ {0, . . . , r}, l

(0)
t−2 ∈ {r + 1, . . . , p − 1}, lk0 ∈ {1, . . . , p − 1} and lu ∈ {0, ,̇p − 1} for

u ∈ {k0 + 1, . . . , t− 3} (if non empty).

The remaining cases t = 3, t = 2 can be detected by a direct computation.

Lemma 2.7. An Fp-basis for (R2/R1)

 1 Zp
0 1


is described as follow:

i) the element

x0,r+1(0);

ii) the elements

x′r+1(0), . . . , x′p−1(0);

iii) the elements

x′l1(1)

where l1 ∈ {p − 2, p − 1, 1, . . . , er − 2d} (with the obvious convention on the ordering on the
set {1, . . . , p− 1});

iv) the elements

[1, Xr−1Y ], . . . , [1, Y r];

Proof. Postponed

Lemma 2.8. An Fp-basis for (R1/R0)

 1 Zp
0 1


is described as follow:

i) the element

xr(0);

ii) the elements

[1, Xr−1Y ], . . . , [1, Y r].

Proof.

3. Study of invariants in the amalgamed sum -I

The aim of this section is to describe in detail the

[
1 Zp
0 1

]
-invariants of the spaces Ri/Ri−1⊕Ri+1

· · ·⊕Rn Rn+1), for n > 1 and i ∈ {0, 1}. The stategy is elementary and can be summed up as follow:

1) by the left exactness of the

[
1 Zp
0 1

]
-functor, it sufficies to study the spaces

(· · · ⊕Rt−2 Rt−1)

 1 Zp
0 1


/(· · · ⊕Rt−4 Rt−3)

 1 Zp
0 1


;

2) using the properties of the amalgamed sum, we dispose of a sequence of equivariant surjections

· · ·� Rt−3/Rt−4 ⊕Rt−2 Rt−1 � Rt−3/Filr−1(Rt−3)⊕Rt−2 Rt−1 � Rt−1/Rt−2.

3) by the results in section §2.1, we can use an inductive argument on the preceeding sequences
to deduce the description of the spaces in 1).

The following result is formal

9
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Lemma 3.1. Let t > 2 and let j ∈ N be an integer such that 1 6 j 6 t−2
2 . We have equivariant

surjections

Rt−1−2j/Rt−2−2j ⊕Rt−2j · · · ⊕Rt−2 Rt−1 � Rt−1−2j/Fil(Rt−1−2j)⊕Rt−2j · · · ⊕Rt−2 Rt−1 �

� Rt+1−2j/Rt−2j ⊕Rt+2+2j · · · ⊕Rt−2 Rt−1

Proof. Formal consequence of the properties of the amalgamed sum.

In order to clarify the exposition, we are lead to treat separately the cases where t is even or
odd. From now on, we fix t ∈ N; in order not to overload the notations -but not to avoid confusions
as well- we adopt the following convention: the (image of the) elements of Rt−1 in the amalgamed
sum will be noted by

x
(′)
...,lt−2

(i);

while the (image of elements) of Rt−1−2j (where t−1
2 > j > 1) will be noted by

y
(′)
...,lt−2−2j

(i).

We hope this will avoid confusions without making the notations too heavy.

3.1 Analysis for t odd

We start with some introductory lemmas:

Lemma 3.2. Let t > 5. Fix j ∈ N an integer with t−2
2 > j > 1, and define U as the subspace of

Rt−1−2j/Filr−1(Rt−1−2j)⊕Rt−2j · · · ⊕Rt−2 Rt−1 generated by:

a) Rt−1−2j/Filr−1(Rt−1−2j);

b) the elements (images of elements in Rt+1−2j ; we use the “y” notation, even if, for j = 1 we
should have used the “x” notation to bo consistent to what we wrote above)

y′l t+1−2j
2

,...,l1t−2
(1);

where the indices lu verify conventionsanalogous to v) of corollary 2.6;
for 1 6 k < t+1−2j

2 the elements

y′lk,...,l2k−1,0,...,0,r+1

where the indices lu verify conventions analogous to ii) of corollary 2.6;
the element

y0,...,0,r+1(0);

c) the elements

y′l t+3−2j
2

,...,lt−1−2j ,r,p−1−r,r(1) (homomorphic image from Rt+3−2j);

...

y′l t−3
2
,...,lt−1−2j ,r,p−1−r,...,p−1−r,r(1) (homomorphic image from Rt−3);

x′l t−1
2
,...,lt−1−2j ,r,p−1−r,...,p−1−r,r(1).

Then, the space of

[
1 pmZp
0 1

]
-invariants of U , for t− 1− 2j > m > 1, is described by:

a1) the space

(Rt−1−2j/Filr−1(Rt−1−2j))

 1 pmZp
0 1



10
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b1) the elements in c), as well as the elements

y′l t+1−2j
2

,...,l1t−2
(1);

(where the indices lu verify conventionsanalogous to v) of corollary 2.6);

c1) for t−2j−m
2 6 k < t+1−2j

2 the elements

y′lk,...,l2k−1,0...,0,r+1(0)

(where the indices lu verify conventions analogous to ii) of corollary 2.6).

Moreover, for t− 1− 2j > t−1
2 , the space of

[
1 Zp
0 1

]
-invariants of U is described by

a2) the space

(Rt−1−2j/Filr−1(Rt−1−2j))

 1 Zp
0 1


;

b2) the elements

y′l t+1−2j
2

,...,l1t−2
(1)

with (lt−1−2j , lt−2j) ≺ (p− 1, r) (in addition to the usual conventions on indices lu);

c2) the elements described in c), with the extra condition lt−1−2j 6= p− 1

Proof. Postponed. (Induction on m).

Remark 3.3. The second part of the statement of lemma 3.2 holds also for t− 1− 2j = t−1
2 , where

the extra condition on the elements x′l t−1
2
,...,lt−1−2j ,r,p−1−r,...,p−1−r,r(1) is instead lk0 6=ep− 3e.

We now state the key result of the section.

Lemma 3.4. Let t > 5, put k0
def
= t−1

2 and let j ∈ N be such that t− 1− 2j > k0 + 1. The space of[
1 Zp
0 1

]
-invariants inside Rt−1−2j/Rt−2−2j ⊕ · · · ⊕Rt−2 Rt−2 is described as follow:

i) the elements

x′lk,...,lt−2
(j)

the indices j, lu satisfying the conventions described in iii) of corollary 2.6;
the elements

[1, Xr−1Y ], . . . , [1, Y r];

the elements

x′lk0 ,...,l
0
t−2

(0)

ii) the elements

x′lk0 ,...,l
1
t−2

(1)

where the indices lu verify the condition of v) in corollary 2.6, toghether with (lt−2−2j , . . . , lt−2) �
(r, p− 1− r, . . . , p− 1− r, r); moreover such elements are invariant in R0⊕R1 ⊕ · · · ⊕Rt−2 Rt−1

if (lt−2−2j , . . . , lt−2) ≺ (r, p− 1− r, . . . , p− 1− r, r);

11
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iii) elements of the form

y′l t−3
2
,...,lt−3−2j ,r,p−1−r,...,p−1−r,r(1) (homomorphic image from Rt−3);

...

y′l t+1−2j
2

,...,lt−3−2j ,r,p−1−r,r(1) (homomorphic image from Rt+1−2j);

iii) the space

(Rt−1−2j/Rt−2−2j)

 1 Zp
0 1


;

iv) homomorphic image of elements inside (R0 ⊕R1 · · · ⊕Rt−2 Rt−1)

 1 Zp
0 1


.

Proof. It is an induction on j, using the results in lemma 3.2

We define, for t > 2 the space

Vt−1
def
= (R0 ⊕R1 · · · ⊕Rt−2 Rt−1)

 1 Zp
0 1


/(R0 ⊕R1 · · · ⊕Rt−4 Rt−3)

 1 Zp
0 1


.

To complete the description of Vt−1 in the case t odd we have to distinguish two situations.

3.1.1 Analysis for k0 even. We assume now k0(
def
= t−1

2 ) even. We therefore have to consider the
chain of epimorphisms (where we assume t > 5)

Rk0/Rk0−1 ⊕Rk0+1
· · · ⊕Rt−2 Rt−1 � Rk0/Filr−1(Rk0)⊕Rk0+1

· · · ⊕Rt−2 Rt−1 �

� Rk0+2/Rk0+1 ⊕Rk0+3
· · · ⊕Rt−2 Rt−1.

Thanks to lemma 3.4 and lemma 3.2 we deduce

Proposition 3.5. Let t > 5 be such that k0 ∈ 2N . An Fp-basis for Vt−1 is described by:

a) for k0 < k 6 t− 2 the elements

x′lk,...,lt−2
(j)

where the indices j, lu verify the conditions described in iii) of corollary 2.6;

b) the elements

[1, Xr−1Y ], . . . , [1, Y r];

c) the elements

x′lk0 ,...,l
0
t−2

(0)

where the indices lu verify the conditions described in v) of corollary 2.6;

d) the elements

x′lk0 ,...,lt−2
(1)

where lk0 ∈ {1, . . . , p− 1} and (lk0+1, . . . , lt−2) ≺ (r, p− 1− r, dots, p− 1− r, r);
e) for lk0 ∈ {p − 2, p − 1, 1, . . . , dp − 3 − re − 1} (if non empty, and with the obvious convention

on the ordering on the set {1, . . . , p− 1}) the elements

x′lk0 ,r,...,r
(1)

together with the element

x′dp−3−re,r,...,r(1) + c0ydp−3e,p−1−r,r,...,r(1)

12
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for a suitable constant c0 ∈ Fp.

Proof. Postponed.

3.1.2 Analysis for k0 odd We assume now k0(
def
= t−1

2 ) odd. We therefore have to consider the
chain of epimorphisms (where we assume t > 7)

Rk0+1/Rk0 ⊕Rk0+2
· · · ⊕Rt−2 Rt−1 � Rk0+1/Filr−1(Rk0+1)⊕Rk0+2

· · · ⊕Rt−2 Rt−1 �

� Rk0+3/Rk0+2 ⊕Rk0+4
· · · ⊕Rt−2 Rt−1.

Thanks to lemma 3.4 and lemma 3.2 we deduce

Proposition 3.6. Let t > 5 be such that k0 ∈ 2N + 1. An Fp-basis for Vt−1 is described by:

a) for k0 < k 6 t− 2 the elements

x′lk,...,lt−2
(j)

where the indices j, lu verify the conditions described in iii) of corollary 2.6;

b) the elements

[1, Xr−1Y ], . . . , [1, Y r];

c) the elements

x′lk0 ,...,l
0
t−2

(0)

where the indices lu verify the conditions described in v) of corollary 2.6;

d) the elements

x′lk0 ,...,lt−2
(1)

where lk0 ∈ {1, . . . , p− 1} and (lk0+1, . . . , lt−2) ≺ (p− 1− r, r, . . . , p− 1− r, r);
e) for lk0 ∈ {p − 2, p − 1, 1, . . . , dr − 2e − 1} (if non empty, and with the obvious convention on

the ordering on the set {1, . . . , p− 1}) the elements

x′lk0 ,p−1−r,r,...,r(1)

together with the element

x′dr−2e,p−1−r,r,...,r(1) + c0ydp−3−re,r,...,r(1)

for a suitable constant c0 ∈ Fp.

The case t = 3 requires some extra care and is treated below:

Lemma 3.7. An Fp-basis for V2 is described by:

i) the elements

[1, Xr−1Y ], . . . , [1, Y r];

ii) the elements

x′r+1(0), . . . , x′p−1(0);

iii) for l1 ∈ {p− 2, p− 1, 1, . . . , dr − 2e − 1} the elements

x′l1(1)

and the element

x′dr−2e(1) +XY r−1

(where XY r−1 ∈ R0)

13
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We are now left to count the dimensions of such spaces.

Lemma 3.8. Let t > 1 be an odd integer and put k0
def
= t−1

2 .
The dimension of Vt−1 is then:

dimFp
(Vt−1) =

{
pk0−1(p− 1) + (p− 1)[(p− r)p

k0−1
p+1 − (p− 1− r)pk0−1] + (p− 1− r) if k0 is even

pk0−1(p− 1) + (p− 1)(r + 1)p
k0−1−1
p+1 + r if k0 is odd

for t > 3 and

dimFp
(V0) = 1

The dimension of

[
1 Zp
0 1

]
-invariants of R0 ⊕R1 · · · ⊕Rt−2 Rt−1 is given by:

dimFp
(R0 ⊕R1 · · · ⊕Rt−2 Rt−1)

 1 Zp
0 1


=

{
pk0 + (r + 1)p

k0−1
p+1 if k0 > 0 is even

p+ r + p(pk0−1 − 1) + p(r + 1)p
k0−1−1
p+1 if k0 is odd

Proof. Computation.

3.2 Analysis for t even

In this paragraph, we fix an even integer t ∈ 2N. The analysis of

[
1 Zp
0 1

]
-invariants for R1/R0⊕R2

· · · ⊕Rt−2 Rt−1 follows closely the arguments seen in paragraph §3.1. In particular, the proofs will
mostly be left to the reader.

We recall the sequence of equivariant epimorphisms

(R1/R0)⊕R2 · · · ⊕Rt−2 Rt−1 � (R1/Filr−1(R1))⊕R2 · · · ⊕Rt−2 Rt−1 � (R3/R2)⊕R4 · · · ⊕Rt−2 Rt−1 � . . .

(Rt−3/Filr−1(Rt−3))⊕Rt−2 Rt−1 � Rt−1/Rt−2

and that, for t > 4, an Fp-basis for (Rt−1/Rt−2)

 1 Zp
0 1


is described as follow:

a) the element x0,...,0,r+1(0);

b) for 1 6 k 6 k′0 the elements

x′ll,...,l2k−1,0,...,0,r+1

with lk ∈ {1, . . . , p− 1} and lu ∈ {0, . . . , p− 1} for u ∈ {k + 1, . . . , 2k − 1} (if non empty);

c) for k′0 + 1 6 k 6 t− 2 the elements

x′lk,...,lt−2
(j)

where the indices j, lu verify the conditions of corollary 2.6-iii)

d) the elements

[1, Xr−1Y ], . . . , [1, Y r],

where we defined

k′0
def
=
t− 2

2
.

We notice that the elements of the form c), d) are certanly invariant in the amalgamed sum (as
they are homomorphic image of invariant elements of Rt−1).

The followng results are completely analogous to lemmas 3.2 and 3.4.
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Lemma 3.9. Let j ∈ N>1. We consider the subspace U of (Rt−1−2j/Filr−1(Rt−1−2j))⊕· · ·⊕Rt−2Rt−1

generated by the following elements:

a) Rt−1−2j/Filr−1(Rt−1−2j);

b) the homomorphic image from Rt+1−2j of the elements 1 for 1 6 k < t−1−2j
2 the elements

(homomorphic image from Rt+1−2j)

y′lk,...,l2k−1,0,...,0,r+1

where the indices lu verify conventions analogous to ii) of corollary 2.6;
the element

y0,...,0,r+1(0)

(homomorphic image from Rt+1−2j);

c) the elements

y′l t−2j
2

,...,lt−1−2j ,r+1(0) (homomorphic image from Rt+1−2j);

...

y′l t−4
2
,...,lt−1−2j ,r,p−1−r,...,p−1−r,r+1(0) (homomorphic image from Rt−3);

x′l t−2
2
,...,lt−1−2j ,r,p−1−r,...,p−1−r,r+1(0).

Then, the space of

[
1 pmZp
0 1

]
-invariants of U , for t− 1− 2j > m > 1, is described by:

a1) the space

(Rt−1−2j/Filr−1(Rt−1−2j))

 1 pmZp
0 1


b1) the elements in c);

c1) for t−2j−m
2 6 k < t−1−2j

2 the elements

y′lk,...,l2k−1,0...,0,r+1(0)

(where the indices lu verify conventions analogous to ii) of corollary 2.6).

Moreover, for t− 1− 2j > t−1
2 , the space of

[
1 Zp
0 1

]
-invariants of U is described by

a2) the space

(Rt−1−2j/Filr−1(Rt−1−2j))

 1 Zp
0 1


;

b2) the elements described in c), with the extra condition lt−1−2j 6= p− 1

Proof. Postponed. (Induction on m).

Remark 3.10. The second part of the statement of lemma 3.9 holds also for t−1−2j = t−2
2 , where

the extra condition on the elements x′lk′0
,...,lt−1−2j ,r,p−1−r,...,p−1−r,r+1(0) is instead lk′0 6= dp− 3e.

Similarly, we have:

1once again we use the “y” notation, even if, for j = 1 we should have used the “x” notation to be consistent with
our notations. The same remark holds for the element y′l t−2j

2

,...,lt−1−2j ,r+1(0) described in c) below.

15
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Lemma 3.11. Let t > 4 and let j ∈ N>1 be such that t− 1− 2j > k′0 + 1. The space of

[
1 Zp
0 1

]
-

invariants inside Rt−1−2j/Rt−2−2j ⊕ · · · ⊕Rt−2 Rt−1 is described as follow:

i) for k0 < k 6 t− 2 the elements

x′lk,...,lt−2
(j)

the indices j, lu satisfying the conventions described in iii) of corollary 2.6, as well as the
elements

[1, Xr−1Y ], . . . , [1, Y r];

ii) the elements

x′lk′0
,...,lt−3,r+1(0)

where the indices lu verify the condition of ii) in corollary 2.6, toghether with (lt−2−2j , . . . , lt−3) �
(r, p− 1− r, . . . , p− 1− r); moreover such elements are invariant in R1/R0 ⊕ · · · ⊕Rt−2 Rt−1 if
(lt−2−2j , . . . , lt−3) ≺ (r, p− 1− r, . . . , p− 1− r);

iii) elements of the form

y′l t−4
2
,...,lt−3−2j ,r,p−1−r,...,p−1−r,r+1(0) (homomorphic image from Rt−3);

...

y′l t−2j
2

,...,lt−3−2j ,r,p−1−r,r+1(0) (homomorphic image from Rt+1−2j);

iv) the space

(Rt−1−2j/Rt−2−2j)

 1 Zp
0 1


;

v) homomorphic image of other suitable elements inside (R1/R0 · · · ⊕Rt−2 Rt−1)

 1 Zp
0 1


.

Proof. Postponed.

As in section 3.1, we define, for t > 2 the space

Vt−1
def
= ((R1/R0)⊕R2 · · · ⊕Rt−2 Rt−1)

 1 Zp
0 1


/((R1/R0)⊕R2 · · · ⊕Rt−4 Rt−3)

 1 Zp
0 1


.

Again, to complete the description of Vt−1 in the case t even we have to distinguish two situations.

3.2.1 Analysis for k′0 odd. We assume now k′0 odd. We therefore have to consider the chain of
epimorphisms (where we assume t > 4)

(Rk′0/Rk′0−1)⊕Rk′0+1
· · · ⊕Rt−2 Rt−1 � (Rk′0/Filr−1(Rk′0))⊕Rk′0+1

· · · ⊕Rt−2 Rt−1 �

� (Rk′0+2/Rk′0+1)⊕Rk′0+3
· · · ⊕Rt−2 Rt−1.

Thanks to lemma 3.11 and lemma 3.9 we deduce

Proposition 3.12. Let t > 4 be such that k′0 is odd, and k′0 > 1. An Fp-basis for Vt−1 is described
by:

a) for k0 < k 6 t− 2 the elements

x′lk,...,lt−2
(j)

where the indices j, lu verify the conditions described in iii) of corollary 2.6;
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b) the elements

[1, Xr−1Y ], . . . , [1, Y r];

c) the elements

x′lk′0
,...,lt−3,r+1(0)

where lk′0 ∈ {1, . . . , p− 1} and (lk0+1, . . . , lt−3) ≺ (r, p− 1− r, . . . , p− 1− r);
d) for lk0 ∈ {p − 2, p − 1, 1, . . . , dp − 3 − re − 1} (if non empty, and with the obvious convention

on the ordering on the set {1, . . . , p− 1}) the elements

x′lk0 ,r,...,p−1−r,r+1(0)

together with the element

x′dp−3−re,r,...,r+1(0) + c0ydp−3e,p−1−r,r,...,p−1−r,r+1(0)

for a suitable constant c0 ∈ Fp.

Proof. Postponed.

With some extra care, we deduce the same result for t = 4:

Lemma 3.13. Let t = 4. Then an Fp-basis for (R1/R0 ⊕R2 R3)

 1 Zp
0 1


is described by:

a) an Fp-basis of (R1/R0)

 1 Zp
0 1


;

b) the elements

x′l1,r+1(0)

where l1 ∈ {p − 2, p − 1, 1, . . . , dp − 3 − re − 1} (with the obvious convention on the ordering
on the set {1, . . . , p− 1});

c) the element

x′dp−3−re,r+1(0) + c0xr+1(0)

for a suitable constant c0 ∈ Fp;

d) the elements

x′l2(j)

where the indices j, l2 verify the conditions of iii) in corollary 2.6, as well as the elements

[1, Xr−1Y ], . . . , [1, Y r].

Proof. Postponed.

3.2.2 Analysis for k′0 even. We assume now k′0 even. We therefore have to consider the chain
of epimorphisms (where we assume t > 4)

(Rk′0+1/Rk′0)⊕Rk′0+2
· · · ⊕Rt−2 Rt−1 � (Rk′0+1/Filr−1(Rk′0+1))⊕Rk′0+2

· · · ⊕Rt−2 Rt−1 �

� (Rk′0+3/Rk′0+2)⊕ · · · ⊕Rt−2 Rt−1.

Thanks to lemma 3.11 and lemma 3.9 we deduce

Proposition 3.14. Let t > 4 be such that k′0 is even. An Fp-basis for Vt−1 is described by:

17
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a) for k0 < k 6 t− 2 the elements

x′lk,...,lt−2
(j)

where the indices j, lu verify the conditions described in iii) of corollary 2.6;

b) the elements

[1, Xr−1Y ], . . . , [1, Y r];

c) the elements

x′lk′0
,...,lt−3,r+1(0)

where lk′0 ∈ {1, . . . , p− 1} and (lk0+1, . . . , lt−3) ≺ (p− 1− r, r, . . . , p− 1− r);
d) for lk0 ∈ {p − 2, p − 1, 1, . . . , dr − 2e − 1} (if non empty, and with the obvious convention on

the ordering on the set {1, . . . , p− 1}) the elements

x′lk0 ,p−1−r,...,p−1−r,r+1(0)

together with the element

x′dr−2e,p−1−r,...,p−1−r,r+1(0) + c0ydp−3−re,r,...,p−1−r,r+1(0)

for a suitable constant c0 ∈ Fp.

Proof. Postponed.

We are now left to count the dimensions of such spaces.

Lemma 3.15. Let t > 1 be an even integer and put k′0
def
= t−1

2 .
The dimension of Vt−1 is then:

dimFp
(Vt−1) =

 pk
′
0−1(p− 1)(r + 1) + (p− 1)[(r + 1)p

k′0−1
p+1 − rp

k′0−1] + r if k′0 is even

pk
′
0−1(p− 1)(r + 1) + (p− 1)(p− r)p

k′0−1−1
p+1 + (p− 1− r) if k′0 is odd

for t > 4 and

dimFp
(V1) = r + 1

The dimension of

[
1 Zp
0 1

]
-invariants of R1/R0 ⊕R2 · · · ⊕Rt−2 Rt−1 is given by:

dimFp
(R0 ⊕R1 · · · ⊕Rt−2 Rt−1)

 1 Zp
0 1


=


pk
′
0 + r + p(r + 1)p

k′0−1
p+1 if k0 > 0 is even

(p− 1)(r + 2) + 1 + (r + 1)p2 p
k′0−1−1
p+1 + p(pk

′
0−1 − 1)

if k0 is odd

Proof. Computation.

4. Study of invariants in the amalgamed sum -II

In the present section we are going to complete our study of Γ1(pk)-invariants for supersingular
representations π(r, 0, 1) of GL2(Qp), with r 6= 0, p− 1.

To be more precise, for k ∈ N>1 we describe in detail the spaces

Wk
def
= (· · · ⊕Rk Rk+1)Γ1(pk)/(· · · ⊕Rk−2

Rk−1)Γ1(pk)

W̃k
def
= (· · · ⊕Rk−1

Rk)
Γ1(pk)/(· · · ⊕Rk−3

Rk−2)Γ1(pk);
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together with the results in section §3 we will then be able to compute the dimension of Γ1(pk)-
invariants (proposition 4.21).

We start with the following, elementary, observation:

Γ1(pk) =

[
1 Zp
0 1

] [
1 + pkZp pkZp
1 + pkZp pkZp

]
for k > 1; (2)

(· · · ⊕Rk−2−i Rk−1−i)
Γ1(pk) = (· · · ⊕Rk−2−i Rk−1−i)

 1 Zp
0 1


for i ∈ {0, 1}. (3)

We are now lead to the analysis of the two cases Wk and W̃k.

4.1 Study of Wk

An immedate consequence of corollary 2.6 and proposition 3.5 in [Mo] is that

Lemma 4.1. Let k > 2. Then an Fp-basis for (Rk+1/Rk)
Γ1(pk) is described by:

a) the element x0,...,0,r+1(0);

b) for 1 6 n 6 k+1
2 the elements

x′ln,...,l2n−1,0...,0,r+1(0)

where ln ∈ {1, . . . , p− 1} and lu ∈ {0, . . . , p− 1} for u ∈ {n+ 1, . . . , 2n− 1} (if non empty);

c) for k+1
2 6 n 6 k the elements

x′ln,...,lk−1,r+1(0)

where, if n < k, we convene that ln ∈ {1, . . . , p − 1} and lu ∈ {0, . . . , p − 1} for u ∈ {n +
1, . . . , k − 1} (if non empty)

We can now describe an Fp-basis for the subspace Vk+1 ∧ (Rk+1/Rk)
Γ1(pk):

Proposition 4.2. Let k > 2 be an integer. An Fp-basis for Vk+1 ∧ (Rk+1/Rk)
Γ1(pk) is described as

follow:

1) for k odd the elements:

x′l k+1
2
,...,lk−1,r+1(0)

where lu ∈ {0, . . . , p− 1} for u ∈ {k+1
2 , . . . , k − 1}.

2) Assume k even. Then the basis is described by the elements

x′l k+2
2
,...,lk−1,r+1(0)

where lu ∈ {0, . . . , p− 1} for u ∈ {k+2
2 , . . . , k − 1}, and the elements

a2) if k
2 is odd the elements

x′l k
2
,...,lk−1,r+1(0)

with l k
2
∈ {1, . . . , p− 1} and (l k+2

2
, . . . , lk−1) ≺ (r, p− 1− r, . . . , p− 1− r); the elements

x′l k
2
,r,p−1−r,...,p−1−r,r+1(0)

for l k
2
∈ {p− 2, p− 1, 1, . . . , dp− 3− re − 1} together with

x′dp−3−re,r,p−1−r,...,p−1−r,r+1(0) + c0ydp−3e,p−1−r,...,p−1−r,r+1(0)

where c0 ∈ Fp is a suitable constant;
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b2) if k
2 is even the elements

x′l k
2
,...,lk−1,r+1(0)

with l k
2
∈ {1, . . . , p− 1} and (l k+2

2
, . . . , lk−1) ≺ (p− 1− r, . . . , p− 1− r); the elements

x′l k
2
,p−1−r,...,p−1−r,r+1(0)

for l k
2
∈ {p− 2, p− 1, 1, . . . , dr − 2e − 1} together with

x′dr−2e,p−1−r,...,p−1−r,r+1(0) + c0ydp−3−re,r,...,p−1−r,r+1(0)

where c0 ∈ Fp is a suitable constant.

Proof. Postponed.

For sake of completeness, we recall the results for k = 1.

Lemma 4.3. For k = 1 the space V2 ∧ (R2/R1)Γ1(p) is 1-dimensional, and a basis is given by the
element

x′r+1(0).

Let v ∈ (· · · ⊕Rk Rk+1) be the canonical lift of an element v ∈ Vk ∧ (Rk+1/Rk)
Γ1(pk). If we write

pr for the map

(· · · ⊕Rk Rk+1)Γ1(pk) pr→ Rk+1/Rk

then we see that v is in the image of pr iff it exists y ∈ · · · ⊕Rk−2
Rk−1 such that y + v ∈ (· · · ⊕Rk

Rk+1)Γ1(pk) which is equivalent to v ∈ (· · · ⊕Rk Rk+1)Γ1(pk) since v is

[
1 Zp
0 1

]
-invariant and y is

Kk-invariant in the amalgamed sum.
We outline the elementary result:

Lemma 4.4. Let k > 1. The action of

[
1 + pkZp 0

0 1 + pkZp

]
is trivial on the canonical lifts of the

elements in Vk ∧ (Rk+1/Rk)
Γ1(pk). Moreover if 1 6 n 6 k − 1 we have[

1 0
pk[µ] 1

]
x′ln,...,lk−1,r+1(0) = x′ln,...,lk−1,r+1(0) +

+(r + 1)(−1)r+1(−µ)(κ(lk−1))y′ln,...,lk−2
(r − (p− 1− lk−1))

where we define

κ(lk−1)
def
=

{
0 if lk−1 < p− 1− r;
6= 0if lk−1 > p− 1− r.

(with the convention that, for n = k − 1, y′l−1
(x) = [1, Xr−xY x]).

Proof. Postponed.

We define U as the Fp-subspace of (· · · ⊕Rk Rk+1) generated by the canonical lifts of Vk ∧

(Rk+1/Rk)
Γ1(pk). Then (· · · ⊕Rk−2

Rk−1) + U is a

[
1 0

pkZp 1

]
-stable subspace of (· · · ⊕Rk Rk+1).

4.1.1 The case k odd. Assume now k > 2, k odd. We have the following result:

Lemma 4.5. Let k > 2, k odd. We consider j ∈ N such that k−2j−1 > k+1
2 . Then the

[
1 0

pkZp 1

]
-

invariants of ((Rk−2j−1/Rk−2j−2)⊕ · · · ⊕Rk−2
Rk−1) + U are described by:

20



Study of Γ1(pk) invariants for supersingular representations of GL2(Qp)

a) the space ((Rk−2j−1/Rk−2j−2)⊕ · · · ⊕Rk−2
Rk−1);

b) the elements

x′l k+1
2
,...,lk−1,r+1(0)

where (lk−2−2j , . . . , lk−1) � (r, p − 1 − r, . . . , p − 1 − r) and (l k+1
2
, . . . , lk−2j−3) ∈ {0, . . . , p −

1}k−2j−2− k+1
2 .

Proof. Postponed. (induction on j).

We therefore deduce:

Proposition 4.6. Let k > 2 be odd. An Fp-basis for Wk is described by the elements

x′l k+1
2
,...,lk−1,r+1(0)

where

(l k+1
2
, . . . , lk−1, r + 1) ≺

{
(p− 1− r, r, . . . , r, p− 1− r) if k+1

2 ∈ 2N

(r, p− 1− r, . . . , r, p− 1− r) if k+1
2 ∈ 2N + 1.

Proof. Postponed.

For k = 1 we get

Lemma 4.7. For k = 1 we have

dimFp
(W1) = 0.

Proof. Postponed.

4.1.2 The case k even. In this section we assume that k ∈ N is an even integer. We have then

Lemma 4.8. Let j ∈ N be such that k − 2j − 1 > k
2 + 1. The space of

[
1 0

pkZp 1

]
-invariants of

((Rk−2j−1/Rk−2j−2)⊕ · · · ⊕Rk−2
Rk−1) + U is described by

a) the space ((Rk−2j−1/Rk−2j−2)⊕ · · · ⊕Rk−2
Rk−1);

b) the elements described in 2− a2) (resp. 2− b2)) of proposition 4.2 if k
2 is odd (resp. even);

c) the elements

x′l k
2 +1

,...,lk−1,r+1(0)

where (lk−2−2j , . . . , lk−1) � (r, p − 1 − r, . . . , p − 1 − r) and (l k
2

+1, . . . , lk−3−2j) ∈ {0, . . . , p −

1}
k
2
−2j−2. Moreover, if we have (lk−2−2j , . . . , lk−1) ≺ (r, p − 1 − r, . . . , p − 1 − r), the element

is invariant in the amalgamd sum lim
−→
n even

((R1/R0)⊕R2 · · · ⊕Rn Rn+1).

Proof. Postponed. (Induction on j).

We are now able to describe Wk for k even:

Proposition 4.9. Let k > 2 be an even integer. An Fp-basis for Wk is described as follow:

1) if k
2 is odd, the elements

x′l k
2
,...,lk−1,r+1(0)
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where (l k
2

+1, . . . , lk−1) ≺ (r, . . . , p− 1− r) and l k
2
∈ {0, . . . , p− 1} together with the following

p− 2− r-elements

x′p−1,r,...,p−1−r,r+1(0) + c1x
′
r,p−1−r,...,p−1−r,r+1(0);

x′1,r,...,p−1−r,r+1(0);

...

x′dp−3−re−1,r,...,p−1−r,r+1(0);

x′dp−3−re,r,...,p−1−r,r+1(0) + c0ydp−3e,p−1−r,r,...,p−1−r,r+1(0).

2) If k
2 is even, the elements

x′l k
2
,...,lk−1,r+1(0)

where (l k
2

+1, . . . , lk−1) ≺ (p− 1− r, r, . . . , p− 1− r) and l k
2
∈ {0, . . . , p− 1} together with the

following r − 1-elements

x′p−1,p−1−r,...,p−1−r,r+1(0) + c1x
′
p−1−r,...,p−1−r,r+1(0);

x′1,p−1−r,...,p−1−r,r+1(0);

...

x′dr−2e−1,p−1−r,...,p−1−r,r+1(0);

x′dr−2e,p−1−r,...,p−1−r,r+1(0) + c0ydp−3−re,r,...,p−1−r,r+1(0).

We can sum up the results, giving the dimensions of the spaces Wk.

Proposition 4.10. Let k ∈ N>1. The dimension of the space Wk is then given by

1) for k odd, we have

dimFp
(Wk) =

 (p− 1− r)p
k+1
2 −1
p2−1

+ pr p
k−3
2 −1
p2−1

if k+1
2 ∈ 2N

(p− r)p
k−1
2 −1
p+1 if k+1

2 ∈ 2N + 1

2) For k even, we have

dimFp
(Wk) =

 p(p− r)p
k
2−1−1
p+1 + (p− 2− r) if k

2 ∈ 2N + 1

p[(p− 1− r)p
k
2−1
p2−1

+ pr p
k
2−2−1
p2−1

] + (r − 1) if k+1
2 ∈ 2N

4.2 Study of W̃k

In this section, we follow closely the steps which led us to the description of Wk in paragraph 4.1.

Again, we use corollary 2.6 and proposition 3.5 in [Mo] to get

Lemma 4.11. Let k > 3 be an integer. An Fp-basis for (Rk/Rk−1)Γ1(pk) is described as follow:

a) the element x0,...,0,r+1(0)

b) for 1 6 n < k
2 the elements

x′ln,...,l2n−1,0,...,0,r+1(0)

where the indices lu verify the conditions in ii) of proposition 2.6;

c) for n ∈ {k2 ,
k+1

2 } ∩N the elements

x′
ln,...,lk−2,l

(i)
k−1

(i)
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where i ∈ {0, 1}, l(0)
k−1 ∈ {r + 1, . . . , p − 1}, l(1)

k−1 ∈ {0, . . . , r} and (ln, . . . , lk−2) ∈ {0, . . . , p −
1}k−1−n.

For k = 2 an Fp-basis for (R2/R1)Γ1(p2) is given by

a2) the element x0,r+1(0);

b2) the elements

x′r+1(0), . . . , x′p−1(0);

c2) the elements

x′0(1), . . . , x′dr−2e(1)

together with the element x′p−2(1) if r = p− 2.

For k = 1 an Fp-basis for (R1/R0)Γ1(p) is given by

xr(0).

We deduce an Fp-basis for the space Vk ∧ (Rk/Rk−1)Γ1(pk):

Lemma 4.12. Let k ∈ N, k > 3. An Fp-basis for the space Vk ∧ (Rk/Rk−1)Γ1(pk) is described as
follow.

1) Assume k even. Then we have the elements

a1)

x′
l k
2 +1

,...,lk−2,l
(i)
k−1

(i)

where i ∈ {0, 1}, l(0)
k−1 ∈ {r+1, . . . , p−1}, lk−1 ∈ {0, . . . , r} and (l k

2
+1, . . . , lk−2) ∈ {0, . . . , p−

1}
k
2
−2;

b1)

x′l k
2
,...,lk−1

(0)

where lk−1 ∈ {r+1, . . . , p−1}, l k
2
∈ {1, . . . , p−1} and (l k

2
+1, . . . , lk−2) ∈ {0, . . . , p−1}

k
2
−2;

c1) According to the parity of k
2 we have

c1.1) if k
2 is even the elements

x′l k
2
,...,lk−1

(1)

where l k
2
∈ {1, . . . , p− 1} and (l k

2
+1, . . . , lk−1) ≺ (r, . . . , r), together with the elements

x′p−2,r,...,r(1);

x′p−1,r,...,r(1);

x′1,r,...,r(1);

...

x′dp−3−re−1,r,...,r(1);

x′dp−3−re,r,...,r(1) + c0y
′
dp−3e,p−1−r,r,...,r(1);

(with c0 ∈ Fp a suitable constant);

c1.2) if k
2 is odd the elements

x′l k
2
,...,lk−1

(1)
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where l k
2
∈ {1, . . . , p − 1} and (l k

2
+1, . . . , lk−1) ≺ (p − 1 − r, . . . , r), together with the

elements

x′p−2,r,...,r(1);

x′p−1,r,...,r(1);

x′1,r,...,r(1);

...

x′dr−2e−1,r,...,r(1);

x′dr−2e,r,...,r(1) + c0y
′
dp−3−re,r,...,r(1);

(with c0 ∈ Fp a suitable constant);

2) Assume k odd. Then we have the elements

a2)

x′
l k+1

2
,...,lk−2,l

(i)
k−1

(i)

where i ∈ {0, 1}, l(0)
k−1 ∈ {r+1, . . . , p−1}, l(i)k−1 ∈ {0, . . . , r} and (l k+1

2
, . . . , lk−2) ∈ {0, . . . , p−

1}
k+1
2
−2;

b2) According to the parity of k−1
2 we have:

b2.1) if k−1
2 is odd, the elements

x′l k−1
2
,...,lk−2,r+1(0)

where (l k+1
2
, . . . , lk−2) ≺ (r, . . . , p − 1 − r), l k−1

2
∈ {1, . . . , p − 1} together with the

elements

x′p−2,r,...,p−1−r,r+1(0);

x′p−1,r,...,p−1−r,r+1(0);

x′1,r,...,p−1−r,r+1(0);

...

x′dp−3−re−1,r,...,p−1−r,r+1(0);

x′dp−3−re,r,...,p−1−r,r+1(0) + c0y
′
dp−3e,p−1−r,r,...,p−1−r,r+1(0);

(with c0 ∈ Fp a suitable constant, and, for k = 3, y′... is remplaced by yr+1(0));

b2.2) if k−1
2 is even, the elements

x′l k−1
2
,...,lk−2,r+1(0)

where (l k+1
2
, . . . , lk−2) ≺ (p− 1− r, . . . , p− 1− r), l k−1

2
∈ {1, . . . , p− 1} together with
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the elements

x′p−2,p−1−r,...,p−1−r,r+1(0);

x′p−1,p−1−r,...,p−1−r,r+1(0);

x′1,p−1−r,...,p−1−r,r+1(0);

...

x′dr−2e−1,p−1−r,...,p−1−r,r+1(0);

x′dr−2e,p−1−r,...,p−1−r,r+1(0) + c0y
′
dp−3−re,r,...,p−1−r,r+1(0);

(with c0 ∈ Fp a suitable constant).

Proof. Postponed.

For sae of completeness, we have cover the cases k ∈ {1, 2}:

Lemma 4.13. For k = 2 an Fp-basis for V2 ∧ (R2/R1)Γ1(p2) is described by the elements b2), c2) of
lemma 4.11; for k = 1 an Fp-basis for V1 ∧ (R1/R0)Γ1(p) is described by the element xr(0).

We are lead to distinguish two situations, according to the parity of k.

4.2.1 The case k even. In this paragraph we fix k ∈ 2N, k > 2. We start with the following
observation

Lemma 4.14. In the amalgamed sum lim
−→
n,odd

R0⊕R1 · · ·⊕RnRn+1 the action of

[
1 + pkZp 0

0 1 + pkZp

]
is trivial on the lifs of the elements 1) in proposition 4.12, as well as on the elements described in
lemma 4.13.

The action of

[
1 0

pkZp 1

]
is trivial on the lifts of the elements

x′l k
2
,...,lk−1

(0)

where (l k
2
, . . . , lk−2) ∈ {0, . . . , p− 1}

k
2
−1 and lk−1 ∈ {r + 1, . . . , p− 1}.

Finally, let n ∈ {k2 +1, k+1
2 }∩N and assume k > 6. We have the following equality in the amalgamed

sum:[
1 0

pk[µ] 1

]
x′l k

2 +1
,...,lk−1

(1) = x′l k
2 +1

,...,lk−1
(1) +

+δr,lk−1
(r + 1)(−1)r+1µκ(lk−2)yl k

2 +1
,...,lk−3

(r − (p− 1− lk−2))

where we define

κ(lk−2)
def
=

{
0 if lk−2 < p− 1− r;
6= 0if lk−2 > p− 1− r.

(and with the convention that, for k = 6, y′l−1
(x) = [1, Xr−xY x]).

For k > 4, let U be the subspace of R0 ⊕R1 · · · ⊕Rk−1
Rk generated by the (canonical lift of the)

following elements:

a) the elements c1.1) (resp. c1.2)) of lemma 4.12-1) if k
2 is even (resp. odd);
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b) the elements

x′l k
2 +1

,...,lk−1
(1)

where lk−1 ∈ {0, . . . , r} and (l k
2

+1, . . . , lk−2) ∈ {0, . . . , p− 1}
k
2
−2.

As in §4.1.1 we start with a lemma

Lemma 4.15. Let k > 4 be an even integer, and let j ∈ N be such that k − 2j − 2 > k
2 + 1. Then,

the space of

[
1 0

pkZp 1

]
-invariants of ((Rk−2j−2/Rk−2j−3)⊕ · · · ⊕Rk−3

Rk−2) + U is described by

a) the space ((Rk−2j−2/Rk−2j−3)⊕ · · · ⊕Rk−3
Rk−2);

b) the elements c1.1) (resp. c1.2)) of lemma 4.12-1) if k
2 is even (resp. odd);

c) the elemets

x′l k
2 +1

,...,lk−1
(1)

where (lk−2j−3, . . . , lk−1) � (r, . . . , r) and (l k
2

+1, . . . , lk−2j−4) ∈ {0, . . . , p − 1}
k
2
−2j−4. More-

over, if (lk−2j−3, . . . , lk−1) ≺ (r, . . . , r), such elements are invariant in the amalgamed sum
lim
−→
n,odd

R0 ⊕R1 · · · ⊕Rn Rn+1.

Thanks to the preceeding lemma, we are able to describe an Fp-basis for W̃k, when k is even.

Proposition 4.16. Let k ∈ 2N be a non zero even integer. An Fp-basis for the space W̃k is described
as follow.

a) The elements

x′l k
2
,...,lk−1

(0)

where lk−1 ∈ {r + 1, . . . , p− 1} and (l k
2
, . . . , lk−2) ∈ {0, . . . , p− 1}

k
2
−1;

b) according to the parity of k
2 the elements

b1) if k
2 is odd, the r − 1 elements

x′0,p−1−r,...,r(1);

x′1,p−1−r,...,r(1);

...

x′dr−2e−1,p−1−r,...,r(1);

x′dr−2e,p−1−r,...,r(1) + c0y
′
dp−3−re,r,...,r(1)

(where y′... has to be replaced by XY r−1 ∈ R0 if k = 2 and c0 ∈ Fp is a suitable constant)
together with the elements

x′l k
2
,...,lk−1

(1)

where (l k
2

+1, . . . , lk−1) ≺ (p− 1− r, . . . , r) and l k
2
∈ {0, . . . , p− 1}.
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b2) if k
2 is even, the p− 2− r elements

x′0,r,...,r(1);

x′1,r,...,r(1);

...

x′dp−3−re−1,r,...,r(1);

x′dp−3−re,r,...,r(1) + c0y
′
dp−3e,p−1−r,r,...,r(1)

(where c0 ∈ Fp is a suitable constant) together with the elements

x′l k
2
,...,lk−1

(1)

where (l k
2

+1, . . . , lk−1) ≺ (r, . . . , r) and l k
2
∈ {0, . . . , p− 1}.

4.2.2 The case k odd Assume now k an odd integer. As the element xr(0) ∈ R1/R0 is clearly
Γ1(p)-invariant, we will assume k > 3 throught this paragraph.

As in the previous section we have

Lemma 4.17. In the amalgamed sum lim
−→
n,even

(R1/R0)⊕R2 · · ·⊕RnRn+1 the action of

[
1 + pkZp 0

0 1 + pkZp

]
is trivial on the lifs of the elements 2) in proposition 4.12.

The action of

[
1 0

pkZp 1

]
is trivial on the lifts of the elements

x′l k
2
,...,lk−1

(0)

where (l k+1
2
, . . . , lk−2) ∈ {0, . . . , p− 1}

k+1
2
−2 and lk−1 ∈ {r + 1, . . . , p− 1}.

We therefore define U as the Fp-subspace of (R1/R0)⊕R2 · · ·⊕Rk−1
Rk generated by the (canonical

lifts of the) elements

x′l k+1
2
,...,lk−1

(1)

where lk−1 ∈ {0, . . . , r} and (l k+1
2
, . . . , lk−2) ∈ {0, . . . , p− 1}

k+1
2
−2.

We have

Lemma 4.18. Let k > 3 be an od integer and let j ∈ N be such that k − 2j − 2 > k+1
2 . The space

of

[
1 0

pkZp 1

]
-invariants of ((Rk−2j−2/Rk−2j−3)⊕ · · · ⊕Rk−3

Rk−2) + U is described by:

a) the space ((Rk−2j−2/Rk−2j−3)⊕ · · · ⊕Rk−3
Rk−2);

b) the elements

x′l k+1
2
,...,lk−1

(1)

where (lk−2j−3, . . . , lk−1) � (r, . . . , r) and (l k+1
2
, . . . , lk−2j−4) ∈ {0, . . . , p − 1}

k−1
2
−2j−3. More-

over, such elements are invariant in the amalgamed sum (R1/R0)⊕R2 · · ·⊕Rk−1
Rk if (lk−2j−3, . . . , lk−1) ≺

(r, . . . , r).

Proof. Postponed.

We finally get the description of W̃k for k > 3, k odd.
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Proposition 4.19. Let k ∈ N be an odd integer, and assume k > 3. An Fp-basis for W̃k is described
as follow.

a) the elements

x′l k+1
2
,...,lk−1

(0)

where lk−1 ∈ {r + 1, . . . , p− 1} and (l k+1
2
, . . . , lk−2) ∈ {0, . . . , p− 1}

k+1
2
−2;

b) according to the parity of k−1
2 we have

b1) if k−1
2 is even, the elements in b2.2) of lemma 4.12 together with the elements

x′l k+1
2
,...,lk−1

(1)

with (l k+1
2
, . . . , lk−1) ≺ (p− 1− r, . . . , r);

b2) if k−1
2 is odd, the elements in b2.1) of lemma 4.12 together with the elements

x′l k+1
2
,...,lk−1

(1)

with (l k+1
2
, . . . , lk−1) ≺ (r, . . . , r).

Proof. Postponed.

We sum up what We can sum up the results, giving the dimensions of the spaces Wk.

Proposition 4.20. Let k ∈ N>3. The dimension of the space W̃k is then given by

1) for k odd, we have

dimFp
(W̃k) =



p((p− 1− r)p
k−1
2 −1
p2−1

+ pr p
k−5
2 −1
p2−1

) + r + (p− 1)p
k−3
2

if k−1
2 ∈ 2N

p(p− r)p
k−3
2 −1
p+1 + (p− 1− r) + (p− 1)p

k−3
2

k−1
2 ∈ 2N + 1

2) For k even, we have

dimFp
(W̃k) =



(p− 1− r)p
k
2
−1 + p(r + 1)p

k
2−1−1
p+1 + (r − 1)

if k
2 ∈ 2N + 1

(p− 1− r)p
k
2
−1 + p(r p

k
2−1
p2−1

+ p(p− 1− r)p
k−4
2 −1
p2−1

) + (p− 2− r)
if k+1

2 ∈ 2N

We are finally able to compute the dimension of Γ1(pk)-invariants, using propositions 3.15, 4.10,
4.20:

Theorem 4.21. Let k ∈ N>1 be an integer and r ∈ {1, . . . , p− 1}. Then the dimension of Γ1(pk)-
invariants for the supersingular representation π(r, 0, 1) of GL2(Qp) is described as follow:

dimFp
(π(r, 0, 1)Γ1(pk)) =

{
2(2p

k−1
2 − 1) if k is odd;

2(p
k
2 + p

k−2
2 − 2) if k is even.

Proof. Postponed.
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