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Abstract. Let F be a totally real field in which p is unramified. Let r : GF →
GL2(Fp) be a modular Galois representation which satisfies the Taylor–Wiles

hypotheses and is tamely ramified and generic at a place v above p. Let m be
the corresponding Hecke eigensystem. We describe the m-torsion in the mod

p cohomology of Shimura curves with full congruence level at v as a GL2(kv)-

representation. In particular, it only depends on r|IFv and its Jordan–Hölder

factors appear with multiplicity one. The main ingredients are a description

of the submodule structure for generic GL2(Fq)-projective envelopes and the

multiplicity one results of [EGS15].

1. Introduction

Fix a prime p and a totally real field F/Q. Fix a modular Galois representation
r : GF → GL2(Fp) with corresponding Hecke eigensystem m. Fix a place v|p of
F . Mod p local-global compatibility predicts that the m-torsion subspace, which
we denote by π, in the mod p cohomology of a Shimura curve with infinite level at
v realizes the mod p Langlands correspondence for GL2(Fv) (see [Bre10]), general-
izing the case of modular curves ([Col10, Eme11, Paš13]). The goal of the mod p
local Langlands program is then to describe π in terms of the restriction to the de-
composition group at v, r|Gv , though it is not even known whether π depends only
on r|Gv . One of the major difficulties is that little is known about supersingular
representations outside of the case of GL2(Qp) (see [AHHV17]).

We now assume that p is unramified in F and that r|Gv is 1-generic (see Defi-
nition 4.1). Let K = GL2(Ov) and I1 ⊂ K be the usual pro-p Iwahori subgroup.
[BDJ10] and [Bre14, Conjecture B.1] conjecturally describe the K-socle and I1-
invariants of π—in particular they should satisfy mod p multiplicity one when the
tame level is minimal (see §5). [Gee11b] and [EGS15] later confirmed these con-
jectures. [Bre14] shows that such a π (also satisfying other properties known for
m-torsion in completed cohomology) must contain a member of a family of represen-
tations constructed in [BP12]. If f = 1, this family has one element, and produces
the (one-to-one) mod p Langlands correspondence for GL2(Qp). For f > 1, each
family is infinite (see [Hu10]), and so a näıve one-to-one correspondence cannot
exist. Moreover, the K-socle and the I1-invariants are not sufficient to specify a
single mod p GL2(Qpf )-representation when f > 1.

However, [EGS15] proves a stronger multiplicity one result than what is used
in the construction of [BP12], namely a result for any lattice in a tame type with
irreducible cosocle. We strengthen this result in tame situations as follows (cf.
Corollary 5.4). Let K(1) ⊂ K be the kernel of the natural map K � GL2(kv).
Assume that in the definition of π we consider the cohomology of a Shimura curve
with infinite level at v and minimal tame level (see §5 for a precise statement).
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Theorem 1.1. Suppose that r is 1-generic and tamely ramified at v and satisfies
the Taylor–Wiles hypotheses. Then the GL2(kv)-representation πK(1) is isomorphic
to the representation D0(r|Gv ) (which depends only on r|Iv ) constructed in [BP12].
In particular, its Jordan–Hölder constituents appear with multiplicity one.

If the Jordan–Hölder constituents of a GL2(kv)-representation appear with mul-
tiplicity one, we say that the representation is multiplicity free.

Corollary 1.2. For p > 3, there exists a supersingular GL2(Fv)-representation π
such that πK(1) is multiplicity free.

Remark 1.3. We know of no purely local proof of this result.

Proof. We can and do choose r such that r|Gv is 1-generic and irreducible by [GK14,
Corollary A.3]. Then the GL2(Fv)-socle π′ of π is supersingular (and irreducible)
by [EGS15, Corollary 10.2.3] and [BP12, Theorem 1.5(i)], and π′K(1) ⊂ πK(1) is
multiplicity free by Theorem 1.1. �

The theorem is obtained by combining results of [EGS15] with a description
of the submodule structure of generic GL2(kv)-projective envelopes (see Theorem
3.14). Note that this theorem precludes infinitely many representations constructed
in the proof of [Hu10, Theorem 4.17] from appearing in completed cohomology. It is
not clear to the authors whether the results of [Bre14, EGS15] uniquely characterize
π when r is tamely ramified.

We now make a brief remark on the genesis of this paper. The second and third
authors arrived independently at a proof of Theorem 1.1 (in an unreleased preprint)
following a different argument, but related to the strategy presented here which was
outlined in an unreleased preprint by the first author. Relating the two approaches
led to this collaboration. After our paper had been written, we were notified that
Hu and Wang also obtained a similar result independently [HW18].

We now give a brief overview of the paper. In Section 2, we describe the extension
graph, which simplifies the combinatorics of Serre weights. Section 3 is the technical
heart of the paper, where we describe the submodule structure of generic GL2(Fq)-
projective envelopes. In Section 4, we use the results of Section 3 to give two
different characterizations of a construction of [BP12]. Finally, in Section 5, we
derive our main result.

1.1. Acknowledgments. Many of the ideas in this article, especially the com-
binatorics of Section 2 and proof of Proposition 3.8, came out of the joint work
[LLHLM20] of the first two authors with Bao V. Le Hung and Brandon Levin. We
thank them heartily for their collaboration. The first author thanks Florian Herzig
for answering questions and providing references on modular representation the-
ory, Yongquan Hu for answering a question about K(1)-invariants, and Matthew
Emerton for numerous long and enlightening discussions about p-adic Langlands.
The second and third authors were visitors at I.H.E.S. when they first worked on
this topic. The debt this article owes to the work of Christophe Breuil, Matthew
Emerton, Toby Gee, Vytautas Paškūnas, and David Savitt will be obvious to the
reader. The first author was supported by the National Science Foundation under
agreement No. DMS-1128155.
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1.2. Notation. We introduce some notation that will be in force throughout. If
F is any field, we write F for a separable closure of F and GF := Gal(F/F )
for the absolute Galois group of F . If F is a global field and v is a place of F ,
we fix an embedding F ↪→ F v, and we write Iv ⊂ Gv to denote the inertia and
decomposition subgroups at v of GF . We further write $v ∈ Fv to denote an
uniformizer. If WFv ≤ GFv denotes the Weil group of GFv we normalize Artin’s
reciprocity map ArtFv : F×v → W ab

Fv
in such a way that the geometric Frobenius

elements are sent to uniformizers.
Throughout the paper, the place v will divide p, and Fv/Qp will be an unramified

extension of degree f . Let q = pf . We fix a coefficient field F which is a finite
extension of Fq. Without further mention, all representations will be over F. We
fix an embedding ι0 : Fq ↪→ F. The letters i and j will denote elements of Z/f .
Let ιi = ι0 ◦ ϕi be the i-th Frobenius twist of ι0.

Let G be the algebraic group ResFq/Fp GL2. Let Z ⊂ T (resp. ZGL2
⊂ TGL2

)
be the center in the diagonal torus in ResFq/Fp GL2 (resp. in GL2). Note that the
choice of ι0 gives an isomorphism

(1.1) T ×Fp F ∼=
∏
i∈Z/f

TGL2/F
.

Thus, the Weyl group W of (G,T ) (and sometimes the analogous version for SL2)

is identified with Sf2 . Let WGL2
be the Weyl group of (GL2, TGL2

), we denote by
w0 the non trivial element of WGL2

.
Let X∗(T ) := X∗(T ×Fp Fp) be the character group which is identified with

(Z2)f by (1.1) and let ε′i ∈ X∗(T ) correspond to the f -tuple which is (1, 0) in the
i-th coordinate and (0, 0) otherwise. Let η =

∑
i ε
′
i. We denote by C0 the base p-

alcove in X∗(T )⊗Z R, i.e. the set of λ ∈ X∗(T )⊗Z R such that 0 < 〈λ+η, α∨〉 < p
for all positive coroots α∨. (We define the positive coroots with respect to the
Borel of upper triangular matrices in all embeddings.) Let X0(T ) ⊂ X∗(T ) be the
subgroup generated by ιi ◦ det for i ∈ Z/f . We say that a weight µ is p-restricted
if 0 ≤ 〈µ, α∨〉 < p for all positive coroots α∨. It is customary to write X1(T ) for
the set of p-restricted weights.

Let Gder = ResFq/Fp SL2 and T der be the diagonal torus. We write ΛW =

X∗(T der) for the weight lattice for Gder and ΛR ⊂ ΛW for the root lattice.
Note that the root lattice of G is canonically isomorphic to ΛR, and we fix

this identification from now on. Note moreover that the restriction map induces
a surjection X∗(T ) � ΛW with kernel X0(T ). Let εi be the image of ε′i via the
surjection X∗(T ) � ΛW .

Let π be the action of Frobenius on X∗(T ) so that, for instance, πε′i = ε′i+1.
For a dominant character µ ∈ X∗(T ) we write V (µ) for the Weyl module defined

in [Jan03, II.2.13(1)]. It has a unique simple G-quotient L(µ). If µ =
∑
i µ

(i)
i , where

µi ∈ X∗(TGL2
) and µ

(i)
i = ιi ◦µi for i ∈ Z/f , is p-restricted then L(µ) = ⊗iL(µi)

(i)

by the Steinberg tensor product theorem as in [Her09, Theorem 3.9] (as usual
L(µi)

(i) denotes the i-th Frobenius twist of L(µi)). Let Γ be the group G(Fp) ∼=
GL2(Fq). Let F (µ) be the Γ-representation L(µ)|Γ, which remains irreducible by
[Her09, A.1.3]. Note that F (µ) ∼= F (λ) if and only if µ ∼= λ mod (p− π)X0(T ).

Let W der
a denote the affine Weyl group for Gder which is canonically isomorphic

to the affine Weyl group Wa of G. It is the semidirect product ΛR oW . Let W̃ be

the extended affine Weyl group of G and W̃ der be the extended affine Weyl group
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of Gder. They are defined as the semidirect product X∗(T ) o W and ΛW o W

respectively. Note that we have a surjective morphism W̃ � W̃ der induced by
X∗(T ) � ΛW . If λ ∈ ΛR (resp. λ ∈ X∗(T ), resp. λ ∈ ΛW ) we write tλ for the
image of λ ∈ ΛR (resp. λ ∈ X∗(T ), resp. λ ∈ ΛW ) under the usual embedding

ΛR ↪→ Wa (resp. X∗(T ) ↪→ W̃ , resp. ΛW ↪→ W̃ der), i.e. tλ is the translation
by λ. Note that we can extend the Frobenius action on the affine Weyl groups
by declaring (πs)j = sj+1 for s ∈ W . There is a multiplication by p isomorphism

W̃ → pX∗(T ) oW sending w̃ = tωw 7→ w̃p = tpωw. For w̃ ∈ W̃ we will use · to
denote the p-dot action w̃ · µ = w̃p(µ+ η)− η.

Let Ω ⊂ W̃ be the stabilizer of C0 under the p-dot action and Ωder its image

under the map W̃ � W̃ der. For instance, when f = 1, the set Ωder is formed by the
elements id and (12)t−ε. (Note that, in the notation of [LLHLM20], Ω and Ωder

would be denoted as W̃+
1 and W̃+,der

1 respectively.)

2. The extension graph

In this section, we describe what is called the extension graph in [LLHLM20, §2]
for GL2. The modifications from GL3 are straightforward.

Definition 2.1. Let Se = {εi}i. For J ⊂ Se, let

(2.1) ωJ =
∑
ω∈J

ω.

The inclusion ΛW ↪→ W̃ der (resp. X∗(T ) ↪→ W̃ ) induces an isomorphism ιder :

ΛW /ΛR
∼→ W̃ der/W der

a (resp. ι : X∗(T )/ΛR
∼→ W̃/Wa). Let Pder ⊂ ΛW × Ωder be

the subset of pairs (ω, w̃) with ιder(−π−1(ω) + ΛR) = w̃W der
a .

We similarly define P ⊂ X∗(T ) × Ω. Note that restriction gives a natural sur-
jection P � Pder.

The following lemma is easily checked.

Lemma 2.2. The map (ω, w̃) 7→ ω induces a bijection β : Pder ∼−→ ΛW .

Given J ⊆ Se we write (ωJ , w̃J) for the element of Pder mapped to ωJ via β,
with decomposition w̃J = wJ t−π−1ωJ where wJ ∈W .

Following [LLHLM20, Definition 2.1.2] we have

Definition 2.3. We say that a weight λ ∈ X1(T ) is regular p-restricted (or simply
p-regular) if 0 ≤ 〈λ, α∨〉 < p− 1 for all positive roots α ∈ ΛR. We write Xreg(T ) ⊆
X1(T ) for the set of regular p-restricted weights.

Let µ be an element of Xreg(T )/(p− π)X0(T ). While we will often fix some lift
of µ in X∗(T ), the constructions below will not depend on the choice of this lift.
We define a map

Pder → X∗(T )/(p− π)X0(T )(2.2)

(ω, w̃) 7→ w̃′ · (µ− η + ω′),

where (ω′, w̃′) ∈ P is a lift of (ω, w̃). The map (2.2) does not depend on the choice
of lift. Then we define

t′µ : ΛW → X∗(T )/(p− π)X0(T )

to be the composition of β−1 with (2.2).



MULTIPLICITY ONE AT FULL CONGRUENCE LEVEL 5

Define ΛµW to be the set

ΛµW = {ω ∈ ΛW : 0 < 〈ω + µ, α∨〉 < p} .
(where we take the image of µ in ΛW ). Let tµ be the restriction of t′µ to ΛµW .

We establish some properties of tµ.

Proposition 2.4. Let µ ∈ Xreg(T ). If ω ∈ ΛµW , then any lift to X∗(T ) of tµ(ω) is
regular and p-restricted. Moreover, the map tµ is injective.

Proof. The proof is analogous to that of [LLHLM20, Proposition 2.1.3]. �

The following proposition gives symmetries of the extension graph.

Proposition 2.5. Let µ ∈ Xreg(T ). Let ω ∈ ΛµW and let λ − η be a lift of tµ(ω)
and β−1(ω) = (ω, w̃). Then

tλ(ν) = tµ(w−1(ν) + ω)

for ν ∈ ΛλW , where w ∈W is the image of w̃.

Proof. This follows by a direct computation analogous to the one in the proof of
[LLHLM20, Proposition 2.1.5]. �

We now recall the definition of the depth of a weight.

Definition 2.6. Let λ ∈ X∗(T ) be a dominant weight and let n ∈ N. We say
that λ lies n-deep in its alcove if for each positive coroot α∨ there exists an integer
mα ∈ Z such that pmα + n < 〈λ+ η, α∨〉 < p(mα + 1)− n.

Note that Definition 2.6 above is consistent with [LLHLM20, Definition 2.1.9]
and that λ ∈ X1(T ) is p-regular if and only if it is 0-deep.

Definition 2.7. Let µ =
∑
i µ

(i)
i ∈ X∗(T ) be a p-restricted weight.

We say that µ is generic if µ − η (which lies in the closure of the alcove C0) is
1-deep.

An element of µ ∈ X∗(T )/(p − π)X0(T ) is generic if any lift of µ is. Note that
a generic weight is p-regular.

Following [LLHLM20], we introduce the notion of adjacency in the extension
graph.

Definition 2.8. Two elements ω, ω′ ∈ ΛµW are said to be adjacent if ω−ω′ ∈ {±εj}
for some index j.

We now justify the term “extension graph”. Recall that Γ denotes the group
G(Fp) ∼= GL2(Fq). A Serre weight is an absolutely irreducible representation of
Γ over an F-vector space. Each Serre weight is obtained by restriction to Γ from
an irreducible algebraic representation of G of highest weight λ ∈ X1(T ), and this
process gives a bijection between from X1(T )/(p − π)X0(T ) to the set of Serre
weights of Γ (as described in [Her09, Theorem 3.10]). As we mentioned in §1.2,
given λ ∈ X1(T ) we write F (λ) for the Serre weight corresponding to λ. We say
that a Serre weight F is p-regular if F ∼= F (λ) where λ ∈ X1(T ) is regular p-
restricted (cf. Definition 2.3). Given µ ∈ C0 and ω ∈ ΛµW , we get a corresponding
p-regular Serre weight F (tµ(ω)). One can prove (cf. [LLHLM20, Propositions 2.1.3
and 2.1.4]) that F (tµ(−)) induces a bijection between the set ΛµW and the set of
p-regular Serre weights of Γ with the same central character as F (µ− η).
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Proposition 2.9. Let µ ∈ C0. Let ω, ω′ ∈ ΛµW such that λ − η := tµ(ω) and
λ′ − η := tµ(ω′) are generic. Then

dim Ext1
Γ(F (λ− η), F (λ′ − η)) = dim Ext1

Γ(F (λ′ − η), F (λ− η)) ≤ 1

with equality if and only if ω and ω′ are adjacent in the graph ΛµW .

Proof. By Proposition 2.5, we can assume without loss of generality that ω = 0.
Then the extensions of σ := F (µ−η) are given by the first layer of the cosocle filtra-
tion of the projective envelope of σ. The proposition now follows from Propositions
3.2 and 3.6 (which do not depend on this proposition). �

We next show that a set of modular Serre weights forms a hypercube in the
extension graph.

We write W for the set of Serre weights. By the discussion preceeding Proposition
2.9, this is in bijection with the image of X1(T ) in X∗(T )/(p−π)X0(T ). Write Wreg

for the set of regular Serre weights which is in bijection with the image of Xreg(T )
in W . We have a bijection R : X∗(T ) → X∗(T ) (also called Herzig reflection)
defined by λ 7→ w0t−η · λ. It induces a bijection R : Wreg → Wreg.

Definition 2.10. A Serre weight F is said to be n-deep (resp. generic) if we can
write F ∼= F (λ) for a weight λ ∈ X1(T ) which is n-deep (resp. generic).

For s ∈ W and a character µ ∈ X∗(T ), we denote the corresponding Deligne–
Lusztig representation as in [Her09, Lemma 4.2] by Rs(µ).

We always assume that Rs(µ) is defined over W (F), the ring of Witt vectors of
F. Given a Deligne–Lusztig representation Rs(µ) as above, we write JH(Rs(µ)) to
denote the set of Jordan–Hölder constituents of the mod p reduction of a Γ-invariant
W (F)-lattice inside Rs(µ).

It is easy to see that if µ − η is n-deep then any weight F (λ − η) ∈ JH(Rs(µ))
is n− 1-deep. In particular, if µ− η is 1-deep, then # JH(Rs(µ)) = 2f and all the
Jordan-Hölder constituents in JH(Rs(µ)) are 0-deep. Following [GHS18, §9.1] an
L-parameter for G is, in our context, equivalent to a continuous homomorphism
IFv → GL2(F) which extends to GFv . Given an inertial L-parameter τ we can
associate a Deligne–Lusztig representation Vφ(τ) following [GHS18, Proposition
9.2.1]. We define the set W ?(τ) as

W ?(τ) = {R(F ), F ∈ JH(Vφ(τ))}

where, similarly as above, the notation JH(Vφ(τ)) stands for the set of Jordan–
Hölder constituents of the mod p reduction of a Γ-invariant W (F)-lattice inside
Vφ(τ).

Proposition 2.11. Suppose that τ is an inertial L-parameter such that Vφ(τ) =
Rs(µ). Assume that µ− η is 1-deep. Then W ?(τ) = F (tµ({sωJ : J ⊂ Se})).

Proof. The obvious crystalline lifts, in the sense of [GHS18, §7.1], have Hodge–Tate
weights wtsπω−pω(µ), where wt−ω ranges over all elements of Ω. Noting that

wtsω−pπ−1ω(µ)− η ≡ wt−π−1ω · (µ+ sω − η) mod (p− π)X0(T )

≡ tµ(sω) mod (p− π)X0(T )

and that the image of {ω | wt−ω ∈ Ω} in ΛW is {ωJ | J ⊂ Se}, we have that, in the
notation of [GHS18], Wobv(τ) = F (tµ({sωJ : J ⊂ Se})). Finally, W ?(τ) = Wobv(τ)
(see [Gee11a, §4.2]). �
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3. Generic GL2(Fq)-projective envelopes

In this section, we describe the submodule structure of generic GL2(Fq)-projective
envelopes, i.e. GL2(Fq)-projective envelopes of Serre weights which are generic in
the sense of Definition 2.10.

Recall that Γ is the group G(Fp) ∼= GL2(Fq) and if R is a Γ-representation, we

write R(i) to denote its i-th Frobenius twist. In what follows we set µ =
∑f−1
i=0 µ

(i)
i ∈

X∗(T ) where µi = (ai, bi) ∈ Z2.

Assume that µ−η is dominant. If we write µ−η =
∑f−1
i=0 riε

′
i+
∑f−1
i=0 di(1, 1)(i)

Breuil and Paskunas define a Γ-representation (R(ri)i) ⊗ det
∑
i p
idi in [BP12],§3.

We define Rµ to be the dual of the representation (R(ri)i)⊗ det
∑
i p
idi .

The following known theorem gives a coarse description of generic Γ-projective
envelopes.

Theorem 3.1. Assume that 1 ≤ ai − bi ≤ p − 1 for all i. Then Rµ = ⊗f−1
i=0 R

(i)
µi ,

where

(1) Rµi is a Γ-representation with a filtration Fil0Rµi = Rµi , Fil1Rµi
∼=

V (w0t(−1,1) · (µi − ε′0)), Fil2Rµi
∼= F (µi − ε′0), and Fil3Rµi = 0, and

(2) gr0Rµi and gr2Rµi are isomorphic to F (µi−ε′0) and gr1Rµi is isomorphic

to F (w0t−ε′i · (µi − ε
′
0))⊗ F (ε′0)(1).

Moreover, if there exists an index i such that ai − bi > 1 then Rµ is a projective
(and injective) envelope of the weight F (µ−η). Else, if ai−bi = 1 for all i, then the
representation Rµ is isomorphic to the direct sum of the projective (and injective)
envelope of the weight F (µ− η) and a twist of the Steinberg representation.

Proof. See [BP12, §3, Lemmas 3.4, 3.5]. �

The filtrations on Rµi induce a tensor multifiltration on Rµ. More precisely,
the set {0, 1, 2}f has a partial order so that (ki)i = k ≤ k′ = (k′i)i if ki ≤ k′i for
all i ∈ Z/f . We write k < k′ if k ≤ k′ and k 6= k′. For k = (ki)i ∈ {0, 1, 2}f ,

let FilkRµ := ⊗i Filki+1 R
(i)
µi . Then Filk

′
Rµ ( FilkRµ if and only if k < k′. Let

Fil>kRµ =
∑

k<k′ Filk
′
Rµ. Let grkRµ = FilkRµ/Fil>kRµ. To ease notation,

we will also denote grkRµ by Wk. For k = (ki)i ∈ {0, 1, 2}f , let |k| = k =
∑
i ki.

There is also the tensor filtration Filk⊗Rµ =
∑
|k|=k FilkRµ. Note in particular that

for all k ∈ {0, 1, 2}f we have a natural surjection Rµ/Fil>kRµ � Rµ/Filk+1
⊗ Rµ

whose restriction to Wk ⊆ Rµ/Fil>kRµ is injective.

Proposition 3.2. grk⊗Rµ = ⊕|k|=kWk.

Proof. This follows from general facts about tensor products of filtered objects. �

To describe the representations Wk, we will need the following translation prin-
ciples.

Proposition 3.3. Let λ−η, ω ∈ X∗(T ) be dominant weights in alcove C0. Assume
that L(ω)|T is multiplicity free and that for all weights ν of L(ω)|T , λ − η + ν is
still in alcove C0. Then we have an isomorphism

(1) F (λ− η)⊗ F (ω) ∼= ⊕ν∈JH(L(ω)|T )F (λ− η + ν).

Assume moreover that 〈λ− η, α∨〉 > 0 for at least one positive coroot α∨. Then we
have an isomorphism
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(2) Rλ ⊗ F (ω) ∼= ⊕ν∈JH(L(ω)|T )PF (λ−η+ν)

where we have written PF (λ−η+ν) to denote a projective envelope of the Serre weight
F (λ−η+ν). (In particular, PF (λ−η+ν)

∼= Rλ+ν if F (λ−η+ν) is not a character.)

Remark 3.4. In the statement of the Proposition 3.3 assume that 〈ω, α∨〉 ≤ 1 for
all positive coroots α∨. It is then easy to check that the proposition applies with
ω = ε′i for all i as soon as λ− η is 1-deep.

Proof. We prove the analogous results for Gder. By [Pil93, Lemma 5.1(i)] we have
a Gder-decomposition L(λ)⊗L(ω) ∼= ⊕ν∈JH(L(ω)|T )L(λ+ν) and the first statement

for Gder follows by restriction to the finite group Gder(Fp).
As for the second statement, we need to recall some standard facts about injective

envelopes of Frobenius kernels. Let TSL2
be the standard torus of SL2/Fp . For

any r ≥ 1 we let (SL2)r denote the r-th Frobenius kernel of SL2 and, for any
weight λ ∈ Xr(TSL2

) we write Qr(λ) for the injective envelope of L(λ)|(SL2)rTSL2
.

Under our assumption on p the (SL2)rTSL2 -module Qr(λ) has a unique SL2-module
structure, as well as a SL2-equivariant decomposition:

(3.1) Qr(λ) ∼= ⊗r−1
i=0Q1(λi)

(i)

if λ decomposes as λ =
∑r−1
i=0 p

iλi with each λi ∈ X∗(TSL2
) being p-restricted.

Assume now that ω ∈ Xr(TSL2
) is such that L(ω) is multiplicity free and λ+ ν

lies in the same alcove as λ for any weight ν ∈ JH(L(ω)|T ). By [Pil93, Lemma
5.1(ii)] and 3.1 we have a decomposition

(3.2) Qr(λ)⊗L(ω) ∼= ⊕ν∈JH(L(ω)|T )Qr(λ+ ν) ∼= ⊕ν∈JH(L(ω)|T )⊗r−1
i=0 Q1(λi + νi)

(i)

where we have written ν =
∑r−1
i=0 p

iνi with νi ∈ X1(TSL2) for all ν ∈ JH(L(ω)|T ).
The second statement of the Proposition for Gder follows now from 3.2.
The statements for G are now deduced from the previous results on Gder by a

formal argument, cf. for instance [LLHLM20], Theorem 4.1.3. �

From now on we assume that µ− η is 1-deep. In particular Rµ is the projective
envelope of the weight F (µ− η).

Definition 3.5. Let S = {±εi}i, and J be the set of subsets of S. For J ∈ J
define ωJ :=

∑
ω∈J ω ∈ ΛW and σJ := F (tµ(ωJ)). Finally, let k(J) := (ki(J))i ∈

{0, 1, 2}f where ki+1(J) := #{±εi} ∩ J , and let k(J) := #J = |k(J)|.

The following key multiplicity one result allows one to give a reasonable descrip-
tion of the submodule structure of generic Γ-projective envelopes.

Proposition 3.6. Let k ∈ {0, 1, 2}f . Then Wk
∼=

⊕
J∈J, k(J)=k

σJ . Moreover, this

sum is multiplicity free.

Proof. By definition and Theorem 3.1(2) we have Wk
∼= ⊗i(F (λi − ε′0)⊗ F (νi))

(i)

where λi − ε′0 = w0t−ε′0 · (µi − ε
′
0) if ki+1 = 1 and λi − ε′0 = µi − ε′0 otherwise,

and νi = ε′0 if ki = 1 and νi = 0 otherwise. Note that λi − ε′0 is n-deep in
its alcove C0 if and only if µi − ε′0 is n-deep in its alcove. By Proposition 3.3,
F (λi − ε′0)⊗F (ε′0) ∼= F (λi)⊕F (λi + (−1, 1)). In particular, Wk is semisimple and
of length 2δ, where δ = #{i : ki = 1}.

Suppose that J ∈ J such that k(J) = k. Then tµ(ωJ)i = (λi − ε′0 + ω′i) where
ω′i = 0 if ki 6= 1 and is ε′0 or w0ε

′
0 otherwise. By the last paragraph, there is an
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inclusion σJ ↪→Wk. One easily checks that #{J ∈ J : k(J) = k} = #{ωJ : k(J) =
k} = 2δ. Since #{ωJ : k(J) = k} = #{σJ : k(J) = k} by Proposition 2.4 and Wk

is semisimple and of length 2δ, we are done. �

By abuse of notation, σJ will often denote the σJ -isotypic component of Wk(J),
which is isomorphic to σJ by Proposition 3.6.

In what follows we fix k ∈ {0, 1, 2}f and let k = |k|. Let

Wk,k+1 := FilkRµ/
(

Filk+2
⊗ Rµ ∩ FilkRµ

)
⊂ Filk⊗Rµ/Filk+2

⊗ Rµ.

The module Wk,k+1 is endowed with the induced filtration from Filk⊗Rµ/Filk+2
⊗ .

This is a two step filtration with associated graded pieces described as follows. We
have grkWk,k+1 = Wk and grk+1Wk,k+1 = ⊕k′Wk′ where the direct sum ranges
over the elements k′ ∈ {0, 1, 2}f satisfying k ≤ k′ and k′ − k = 1. We have the
following refinement of Proposition 3.6.

Lemma 3.7. Keep the previous hypotheses and notation. The graded piece

grk+1Wk,k+1 ⊂ grk+1
⊗ Rµ

is multiplicity free.

Proof. Suppose that σ ∈ JH(grk+1Wk,k+1) is a constituent appearing with mul-
tiplicity. By Proposition 3.6, we deduce the existence of J1, J2 ∈ J with k(J1) 6=
k(J2), σJ1

∼= σ ∼= σJ2 , and k(J1), k(J2) are of the form k′ above. In what follows,
we write (k1,i)i = k1 := k(J1) and similarly k2 := k(J2). Let j1, j2 ∈ {0, . . . , f −1}
be the unique elements such that kj1+1 +1 = k1,j1+1 and kj2+1 +1 = k2,j2+1. Then
j1 6= j2, and hence kj2+1 + 1 = k1,j1+1, from which we see that the j1 component
of ωJ1 and ωJ2 must differ. By Proposition 2.4, we conclude that σJ1 6∼= σJ2 , a
contradiction. �

Let now k′ ∈ {0, 1, 2}f be as above and let j ∈ Z/f be such that ki+1 = k′i+1 for
i 6= j and kj+1 + 1 = k′j+1. We define

Wk,k′ := ⊗i 6=j grki+1 R(i)
µi ⊗ (Filkj+1 Rµj/Filkj+1+2Rµj )

(j),

which is a quotient of Wk,k+1. We endow Wk,k′ with the induced quotient filtration
from Wk,k+1; it is a two step filtration with graded pieces grkWk,k′ = Wk and
grk+1Wk,k′ = Wk′ .

Proposition 3.8. Suppose that J ⊂ J ′ and #J ′ \ J = 1. Let k = k(J) and k′ =
k(J ′). Then there is a subquotient of Wk,k′ which is the unique up to isomorphism
nontrivial extension of σJ by σJ′ .

Proof. Suppose that J ′ \ J ⊂ {±εj} and that kj+1 = 0 (resp. kj+1 = 1). It suffices
to show that σJ′ (resp. σJ) is not in the cosocle (resp. the socle) of Wk,k′ . Indeed,
this would show that the image of the extension Wk,k′ under the map (canonically

defined up to scalar) Ext1
Γ(Wk,Wk′) → Ext1

Γ(Wk, σJ′) (resp. Ext1
Γ(Wk,Wk′) →

Ext1
Γ(σJ ,Wk′)) is nonzero. Since by Proposition 2.9, the map (canonically defined

up to scalar) Ext1
Γ(Wk, σJ′)→ Ext1

Γ(σJ , σJ′) (resp. Ext1
Γ(σJ ,Wk′)→ Ext1

Γ(σJ , σJ′))
is an isomorphism, we would be done. We show the following: if kj+1 = 0 (resp.
kj+1 = 1), then the cosocle (resp. the socle) of Wk,k′ is isomorphic to Wk (resp.
Wk′).

Assume that kj+1 = 0. We freely use the notation in the proof of Proposition

3.6. Recall that Wk
∼= ⊗i(F (λi − ε′0) ⊗ F (νi))

(i), which is semisimple. There is
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a surjection ⊗i(Rλi ⊗ F (νi))
(i) � Wk,k′ . Noting that λi − ε′0 is 1-deep for all i

we see that Proposition 3.3 applies and hence the latter surjection is actually the
projective envelope of the semisimple representation Wk. We conclude that the
cosocle of Wk,k′ is Wk, as desired.

If kj+1 = 1, one makes the dual argument using the injection Wk′ ↪→ ⊗i(Rλi ⊗
F (νi))

(i). �

Fix J ∈ J. Recall that by Proposition 3.6, there is a unique submodule of

Wk(J) ⊂ Rµ/Fil>k(J)Rµ isomorphic to σJ . Let us write k := k(J) and k := |k| in

what follows. Let PσJ be a projective envelope of σJ . Then HomΓ(PσJ , grk+1
⊗ Rµ) ∼=

HomΓ(σJ , grk+1
⊗ Rµ) = 0 by Proposition 3.6 and the fact that σJ ∼= σJ′ implies that

ωJ = ωJ′ by Proposition 2.4, which implies that #J ≡ #J ′ mod 2. Then since
PσJ is projective, the natural map

HomΓ(PσJ ,Filk⊗Rµ/Filk+2
⊗ Rµ)→ HomΓ(PσJ , grk⊗Rµ)

is an isomorphism between vector spaces of dimension 1. Thus a fixed morphism
PσJ � σJ ⊂ Wk ⊂ grk⊗Rµ (unique up to scalar), uniquely lifts to a morphism

ψJ : PσJ → Filk⊗Rµ/Filk+2
⊗ Rµ. Note that since σJ ⊂ Wk, we could also take a

lift of PσJ � σJ ⊂ Wk in HomΓ(PσJ ,Wk,k+1), which must coincide with ψJ by

uniqueness. We conclude that the image of ψJ lies in Wk,k+1. Let V J be the image

of ψJ , which obtains a filtration from Wk,k+1. The following describes the structure

of V J .

Proposition 3.9. We have that grk⊗ V J = σJ and grk+1
⊗ V J = ⊕J′σJ′ where the

sum runs over J ′ such that J ⊂ J ′ and #J ′ −#J = 1.

Proof. Since V J has irreducible cosocle isomorphic to σJ and σJ ⊂ grk⊗ V J , grk⊗ V J =
σJ . By Proposition 3.8, for every J ′ as in the statement of the theorem there is a
subquotient σJ,J ′ of Wk,k+1 which is a nontrivial extension of σJ by σJ′ . Conse-

quently there exists a non zero map ψ
′
J : PσJ →Wk,k′ whose image contains σJ,J ′ .

By uniqueness, the composition of ψJ with projection to Wk,k′ is ψ
′
J , and therefore

σJ,J ′ is a quotient of V J . We see that ⊕J′σJ′ ⊂ grk+1
⊗ V J .

Since grk+1
⊗ Wk,k+1 is multiplicity free by Lemma 3.7, it suffices to show that if

σJ′ ⊂ grk+1
⊗ Wk,k+1 is a Jordan–Hölder factor of grk+1

⊗ V J then J ′ has the above

form. Since V J has Loewy length two and cosocle isomorphic to σJ , if σJ′ is a
Jordan–Hölder factor of grk+1

⊗ V J , V J must have as a quotient a nontrivial extension
of σJ by σJ′ . Hence ωJ′ − ωJ = ±εj for some j by Proposition 2.9. Since σJ′ ⊂
grk+1
⊗ Wk,k+1, we deduce, from Proposition 3.6 and the description of grk+1

⊗ Wk,k+1,
that k(J ′) ≥ k(J) and |k(J ′)| = |k(J)| + 1; in particular ki(J

′) − ki(J) = δij .
So if i 6= j, then J ∩ {±εi} = J ′ ∩ {±εi}. While if i = j, then J ′ ∩ {±εj} =
J ∩ {±εj} t {ω′J − ωJ}. Hence J ′ is of the above form. �

Fix J ∈ J. Recall that by Proposition 3.6, there is a unique submodule of

Wk(J) ⊂ Rµ/Fil>k(J)Rµ isomorphic to σJ . If PσJ is a projective envelope of

σJ , then the morphism PσJ � σJ ⊂ Wk(J) ⊂ Rµ/Fil
>k(J)
⊗ Rµ lifts to a map

ψJ : PσJ → Rµ. We let VJ be the image of ψJ . The following proposition partially
describes the graded pieces of VJ .
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Proposition 3.10. Let J ∈ J. The filtration Filk on Rµ induces a filtration on

the submodule VJ . Then for all J ′ such that J ⊂ J ′, σJ′ ⊂ grk(J′) VJ .

Proof. We proceed by induction on k = k(J ′). Suppose that k < k(J). Then
J 6⊂ J ′, and there is no J ′ as in the statement of the theorem. Thus the theorem
holds in this case.

If k = k(J), then J ⊂ J ′ implies that J ′ = J . By construction, σJ ⊂ grk(J) VJ ,
and so the theorem holds in this case.

Now assume that k > k(J) and that the theorem holds for grk−1
⊗ VJ . Suppose

that J ′ ∈ J such that J ⊂ J ′ and k(J ′) = k. Then there exists a J ′′ ∈ J such that

J ⊆ J ′′ ⊂ J ′ and #J ′′ = k − 1. By the inductive hypothesis σJ′′ ⊂ grk(J′′) VJ ⊂
grk−1
⊗ VJ . We thus obtain a nonzero map PσJ′′ → Filk−1

⊗ VJ/Filk+1
⊗ VJ which lifts

the map PσJ′′ � σJ′′ ⊂ Wk(J′′), and therefore must be ψJ′′ . By definition, the

image of ψJ′′ is V J′′ . By Proposition 3.9, σJ′ ⊂ grk(J′) V J′′ ⊂ grk(J′) VJ . �

For Proposition 3.13, we need the following two formal lemmas about tensor
products of filtered vector spaces.

Lemma 3.11. Let k and k′ ∈ {0, 1, 2}f . Then FilkRµ∩Filk
′
Rµ = Filk

′′
Rµ where

k′′i = max(ki, k
′
i).

Proof. Clearly, Filk
′′
Rµ ⊂ FilkRµ ∩ Filk

′
Rµ. For each i ∈ Z/f , choose a basis

for Rµi compatible with the filtration and consider the corresponding tensor basis

for Rµ. Then the elements of the tensor basis in FilkRµ (resp. Filk
′
Rµ) form a

basis for FilkRµ (resp. Filk
′
Rµ). Thus the elements of the tensor basis in FilkRµ∩

Filk
′
Rµ form a basis for FilkRµ ∩Filk

′
Rµ. These elements are in Filk

′′
Rµ, and so

FilkRµ ∩ Filk
′
Rµ ⊂ Filk

′′
Rµ. �

For I ⊆ {0, 1, 2}f , let FilI Rµ :=
∑

k∈I FilkRµ.

Lemma 3.12. Let I and I ′ ⊆ {0, 1, 2}f . Then

FilI Rµ ∩ FilI
′
Rµ =

∑
k∈I,k′∈I′

FilkRµ ∩ Filk
′
Rµ.

Proof. Clearly,
∑

k∈I,k′∈I′ FilkRµ∩Filk
′
Rµ ⊂ FilI Rµ∩FilI

′
Rµ. For each i ∈ Z/f ,

choose a basis for Rµi compatible with the filtration and consider the corresponding

tensor basis for Rµ. Since the elements of the tensor basis in FilkRµ span FilkRµ

for any k, the elements of the tensor basis in FilI Rµ (resp. FilI
′
Rµ) span FilI Rµ

(resp. FilI
′
Rµ) and thus form a basis for FilI Rµ (resp. FilI

′
Rµ). Thus the

elements of the tensor basis in FilI Rµ ∩FilI
′
Rµ form a basis for FilI Rµ ∩FilI

′
Rµ.

It is easy to see that a basis element is in FilI Rµ (resp. FilI
′
Rµ) if and only it is in

FilkRµ (resp. Filk
′
Rµ) for some k ∈ I (resp. k′ ∈ I ′). Thus FilI Rµ ∩ FilI

′
Rµ ⊂∑

k∈I,k′∈I′ FilkRµ ∩ Filk
′
Rµ. �

The following proposition shows that VJ does not depend on the choice of lift
ψJ , but rather just on J ∈ J.

Proposition 3.13. Let J ∈ J. Let ψ′J be a lift of the map PσJ � σJ ⊂ Wk(J) ⊂
Rµ/Fil>k(J)Rµ. Then the image of ψ′J lies in VJ . In other words, VJ does not
depend on the choice of ψJ .
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Proof. We recursively define maps φk : PσJ → Filk⊗Rµ ∩ Fil>k(J)Rµ and maps

ψk : PσJ → Filk⊗ VJ for k > k(J). Let φk(J)+1 = ψ′J − ψJ : PσJ → Fil
k(J)
⊗ Rµ ∩

Fil>k(J)Rµ. Since ψ′J and ψJ coincide modulo Fil
k(J)+1
⊗ Rµ ∩ Fil>k(J)Rµ, we see

that the image of φk(J)+1 lies in Fil
k(J)+1
⊗ Rµ ∩ Fil>k(J)Rµ.

We now define φk+1 and ψk in terms of φk. We first claim that the σJ -isotypic

part of grk⊗ Fil>k(J)Rµ lies in grk⊗ VJ for all k. Indeed, by Lemmas 3.11 and 3.12,

Filk⊗ Fil>k(J)Rµ (resp. Filk+1
⊗ Fil>k(J)Rµ) is the sum

∑
k>k(J),|k|≥k FilkRµ (resp.∑

k>k(J),|k|≥k+1 FilkRµ). From this, we see that grk⊗ Fil>k(J)Rµ = ⊕k>k(J),|k|=kWk,

which is ⊕J′σJ′ where the sum runs over J ′ such that k(J ′) > k(J) and k(J ′) = k
by Proposition 3.6. If additionally σJ′ ∼= σJ , then ωJ′ = ωJ by Proposition 2.4.
The properties k(J ′) > k(J) and ωJ′ = ωJ imply that for each i ∈ Z/f , either
J ′ ∩ {±εi} = J ∩ {±εi} or J ∩ {±εi} is empty. In any case, J ⊂ J ′. We conclude
that σJ′ ⊂ grk⊗ VJ by Proposition 3.10.

Thus the image of φk in grk⊗ Fil>k(J)Rµ, which is σJ -isotypic, lies in grk⊗ VJ .

Let ψk : PσJ → Filk⊗ VJ be a lift of the map PσJ → grk⊗ VJ induced by φk. Let

φk+1 = φk − ψk : PσJ → Filk⊗Rµ ∩ Fil>k(J)Rµ. Since φk and ψk coincide modulo

Filk+1
⊗ Rµ ∩ Fil>k(J)Rµ, the image of φk+1 lies in Filk+1

⊗ Rµ ∩ Fil>k(J)Rµ.

Then by construction, ψ′J = ψJ +
∑2f
k=k(J)+1 ψ

k. Thus imψ′J ⊂ imψJ +∑2f
k=k(J)+1 imψk ⊂ VJ . �

The following is the main submodule structure theorem for generic Γ-projective
envelopes.

Theorem 3.14. Let µ ∈ X∗(T ). Assume that µ − η is 1-deep. Let J ′ and J ∈ J
and let VJ′ and VJ be the submodules of Rµ defined above Proposition 3.10. If
J ⊂ J ′ then VJ′ ⊂ VJ .

Proof. Suppose that J ⊂ J ′. First note that σJ′ ⊂ Rµ/Fil>k(J′)Rµ is contained

in VJ/Fil>k(J′) VJ by Proposition 3.10. Let ψ′J′ : PσJ′ → VJ be a lift of the

composition PσJ′ � σJ′ ⊂ VJ/Fil>k(J′) VJ ⊂ Rµ/Fil>k(J′)Rµ. Then imψ′J′ = VJ′

by Proposition 3.13. We conclude that VJ′ ⊂ VJ . �

Recall that for J ∈ J, we defined maps ψJ : PσJ � VJ ⊂ Rµ above Proposition
3.10. The following lemma will be useful for multiplicity computations.

Lemma 3.15. Let σ be a Serre weight and Pσ a projective envelope of σ. The
vector space HomΓ(Pσ, Rµ) is spanned by the set {ψJ : σJ ∼= σ}.

Proof. Since Pσ is a projective Γ-module, HomΓ(Pσ, Rµ)
∼→ ⊕k HomΓ(Pσ, grkRµ).

Since grkRµ is semisimple, HomΓ(Pσ, grkRµ)
∼→ HomΓ(σ, grkRµ). The space

HomΓ(σ, grkRµ) is one-dimensional if there exists a J ∈ J with k(J) = k so that
σ ∼= σJ and is otherwise zero by Proposition 3.6. In the case that HomΓ(σ, grkRµ)
is nonzero, it is spanned by the image of ψJ . �

4. The Breuil–Paškūnas construction

In this section, we use the results of Section 3 to give two distinct characteriza-
tions of a Γ-module constructed in [BP12].
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Let Fv/Qp be an unramified extension. Fix a tamely ramified representation
ρ : GFv → GL2(F), and let Rw(µ) = Vφ(ρ∨(1)) where µ = (µi)i ∈ X∗(T ) and
w ∈W = (S2)f .

Definition 4.1. We say that ρ is 1-generic if for all possible choices of µ we have
that µ − η is 1-deep in alcove C0 and moreover the image of µ − η in the weight

lattice of Gder is not of the form
∑f−1
i=0 εi nor

∑f−1
i=0 (p− 3)εi. (We have 2f possible

choices for µ, a posteriori.)

Concretely, if µ =
∑
i µ

(i)
i where µi = (ai, bi) ∈ Z2 then µ is 1-generic iff 2 ≤

ai − bi ≤ p− 2 for all i and moreover (ai − bi)i /∈ {(2, . . . , 2), (p− 2, . . . , p− 2)}.

Note that if ρ is 1-generic then for any F (µ− η) ∈W ?(ρ∨(1)) the corresponding
projective envelope Rµ satisfies the hypotheses of Theorem 3.14. Moreover, if ρ is
1-generic as in Definition 4.1, then it is in particular generic in the sense of [BP12,
Definition 11.7] and [EGS15, Definition 2.1.1].

We assume throughout that ρ is 1-generic. Let σ := F (µ − η) ∈ W ?(ρ∨(1)).
Recall that the Weyl group W acts naturally on ΛW . Let Sw = w(Se). Then
W ?(ρ∨(1)) = F (tµ({ωJ : J ⊂ Sw})) by Proposition 2.11. (We adopt the notation
similar to (2.1): if J ⊂ Sw define ωJ :=

∑
ω∈J ω.)

Definition 4.2. Let ρ be 1-generic and let σ := F (µ− η) ∈W ?(ρ∨(1)). We define
the Γ-representation D∨0 (σ, ρ) as

D∨0 (σ, ρ) = Rµ/
( ∑
J⊂Sw
#J=1

VJ
)
.

Lemma 4.3. With the hypotheses of Definition 4.2, the space

HomΓ

( ⊕
κ ∈ W ?(ρ∨(1))

Pκ, D
∨
0 (σ, ρ)

)
has dimension at most one and is nonzero if and only if κ ∼= σ.

Proof. Let J0 ∈ J be such that σJ0
∼= κ ∈ W ?(ρ∨(1)). Recall from §3 that

for any J ∈ J we have defined a morphism ψJ : PσJ → Rµ with image VJ .
By Lemma 3.15, we see that the space HomΓ(PσJ0 , Rµ), and hence its quotient

HomΓ(PσJ0 , D
∨
0 (σ, ρ)), is spanned by the image of {ψJ : ωJ0 = ωJ}. Thus it suf-

fices to show that the image of ψJ in HomΓ(PσJ0 , D
∨
0 (σ, ρ)) is zero unless J = ∅

since σ∅ ∼= σ.
Let J ∈ J such that ωJ = ωJ0 . If wεj ∈ J for some j, then VJ ⊂ V{wεj} by

Theorem 3.14, and we conclude that the image of ψJ in

HomΓ(PσJ , D
∨
0 (σ, ρ))

is 0. Thus if the image of ψJ is nonzero, then wεj /∈ J for all j.
If wεj /∈ J for all j, then J ⊂ Sw0w where w0 ∈W is the longest element. Hence

ωJ is in the closed w0w-chamber in X∗(T ), and is 0 if and only if J = ∅. Since
ωJ = ωJ0 is also in the closed w-chamber in X∗(T ), we conclude that ωJ = 0 and
J = ∅. Of course, the image of ψ∅ in HomΓ(PσJ , D

∨
0 (σ, ρ)) is nonzero. �

Let D∨0 (ρ) = ⊕σ∈W ?(ρ∨(1))D
∨
0 (σ, ρ). Let D0(ρ) be (D∨0 (ρ))∨ (where (·)∨ de-

notes the Pontrjagin duality). The following proposition gives a characterization of
D∨0 (ρ), which is key for multiplicity one.
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Recall that in [BP12, Theorem 13.8] a Γ-representation D0(ρ) is attached to a
generic continuous Galois representation ρ : GQ

pf
→ GL2(F). For the sake of

readibility, we denote this Γ-representation by DBP
0 (ρ).

Proposition 4.4. Assume that ρ : GFv → GL2(F) is 1-generic. Then D0(ρ) ∼=
DBP

0 (ρ). In particular the Jordan–Hölder factors of D0(ρ) appear with multiplicity
one.

Proof. The cosocle ofD∨0 (ρ) is isomorphic to⊕σ∈W ?(ρ∨(1))σ, and for σ ∈W ?(ρ∨(1)),
σ appears with multiplicity one in D∨0 (ρ) by Lemma 4.3. We will show that there
is a surjection from D∨0 (ρ) to any representation with these properties.

Indeed, assume that Q is any Γ-representation with cosocle ⊕σ∈W ?(ρ∨(1))σ and

such that any σ ∈ W ?(ρ∨(1)) appears with multiplicity one in Q. Fix σ ∈
W ?(ρ∨(1)) and write σ = F (µ − η). We have a map Rµ → Q whose compos-
ite with Q � cosoc(Q) is non-zero. Let J ∈ J be such that J ⊂ Sw and #J = 1
(we follow the notations as in the beginning of this section) and write QJ for the
image of VJ ⊆ Rµ in Q. For any J as above, if QJ = 0 then VJ ⊂ ker(Rµ → Q). If
QJ = 0 for all J as above, then the map Rµ → Q would factor through D∨0 (σ, ρ). If
for all σ ∈W ?(ρ∨(1)), QJ = 0 for all J as above, then we would obtain a surjection
D∨0 (ρ) � Q. Assume for the sake of contradiction that for some σ and some J as
above, QJ 6= 0. Then the modular weight σJ would appear as a Jordan–Hölder
factor of the radical of Q. However, σJ is also a Jordan–Hölder factor of the cosocle
of Q, contradicting the multiplicity one assumption.

To conclude, note that σ ∈W ?(ρ∨(1)) if and only if σ∨ ∈W ?(ρ) (cf. e.g. [Her09,
Proposition 6.23]). Hence by duality, D0(ρ) satisfies hypothesis [BP12, Theorem
13.8(iii)]. �

Recall that we denote by W (F) the ring of Witt vectors of F. If σ(τ) is a tame
type defined over W (F)[1/p] and σ0(τ) ⊆ σ(τ) is a Γ-stable W (F)-lattice in it, we
denote by σ0(τ) the mod p reduction of σ0(τ).

Lemma 4.5. Suppose that D∨0 is a Γ-representation such that dim HomK(D∨0 , σ)
is 1 if σ ∈ W ?(ρ∨(1)) and 0 otherwise. Assume moreover that for any tame type
σ(τ) and for any W (F)-lattice σ0(τ) ⊆ σ(τ) such that soc(σ0(τ)) is irreducible, one
has

dim HomK(D∨0 , σ
0(τ)) ≤ 1.

Then JH(rad(D∨0 )) ∩W ?(ρ∨(1)) = ∅.

Proof. Suppose that σ ∈ W ?(ρ∨(1)), and σ is a Jordan–Hölder factor of the rad-
ical of D∨0 . By properties of projective envelopes, we can choose a Γ-surjection
⊕κ∈W ?(ρ∨(1))Pκ � D∨0 . Let Iκ ⊂ D∨0 the image of Pκ. We have rad(D∨0 ) =∑
κ∈W ?(ρ∨(1)) rad(Iκ), thus there is some κ such that σ is a Jordan–Hölder factor

of the radical of Iκ. For a Γ-representation M , we now denote by FilkM the coso-
cle filtration on M . Then we have σ ⊂ grkD∨0 for some k > 0. Without loss of
generality, suppose that k is minimal among such Serre weights σ ∈W ?(ρ∨(1)).

We claim that k = 1. Assume that k > 1.
By minimality of k, Fil1 Iκ/Filk Iκ does not contain any weight in W ?(ρ∨(1)) as

a Jordan–Hölder factor. Let κ = F (µ−η) so that Pκ ∼= Rµ. Thus that VJ ⊂ ker(θ)
for all J such that #J = 1 and σJ ∈ W ?(ρ∨(1)). By Lemma 4.3, rad(Iκ) does not
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contain any weight in W ?(ρ∨(1)) as a Jordan–Hölder factor, and in particular σ.
This is a contradiction.

Thus, there is a quotient E of D∨0 which has Loewy length two and socle iso-
morphic to σ. Choose a type σ(τ) so that σ(τ) contains κ and σ as Jordan–
Hölder factors (one can even choose σ(τ) to have Jordan–Hölder factors exactly
the set W ?(ρ∨(1))). There exists a unique up to homothety lattice σ0(τ) such that
soc(σ0(τ)) ∼= σ (see [EGS15, Proposition 4.1.1]). There is an injection E ↪→ σ0(τ)
by [EGS15, Theorem 5.1.1]. Then the maps D∨0 � E ↪→ σ0(τ) and D∨0 � σ ↪→
σ0(τ) are linearly independent, so that dim HomK(D∨0 , σ

0(τ)) > 1, a contradic-
tion. �

The following proposition is an alternative characterization of D∨0 (ρ).

Proposition 4.6. Suppose that D∨0 is a Γ-representation such that HomK(D∨0 , σ)
has dimension 1 if σ ∈ W ?(ρ∨(1)) and 0 otherwise. Assume moreover that for
any tame type σ(τ) and for any W (F)-lattice σ0(τ) ⊆ σ(τ) such that soc(σ0(τ)) is
irreducible, one has

dim HomK(D∨0 , σ
0(τ)) ≤ 1.

Then there is a Γ-surjection D∨0 (ρ) � D∨0 .

Proof. By properties of projective envelopes, there is a Γ-equivariant surjection
⊕κ∈W ?(ρ∨(1))Pκ � D∨0 . Fix σ ∈W ?(ρ∨(1)), and let σ = F (µ−η). Let θ : Rµ → D∨0
be a restriction of the above surjection to one direct summand. Fix J such that
#J = 1 and σJ ∈ W ?(ρ∨(1)). By Lemma 4.5, σJ does not appear in the image of
θ. Thus VJ ⊆ Rµ is in the kernel of θ, and the above surjection factors through
D∨0 (ρ). �

5. Global applications

In this section, we deduce our main theorem on cohomology of Shimura curves
at full congruence level. We are going to follow closely [BD14], §3.2, 3.5 and 3.6,
and [EGS15], §6.5.

Recall that F is a totally real field where p is unramified. We write Σp (resp.
Σ∞) the set of places of F above p (resp. above ∞). We write AF to denote the
ring of adèles of F . We fix a continuous Galois representation r : GF → GL2(F)
which satisfies the following conditions:

(i) r is modular;
(ii) r|GF (ζp)

is absolutely irreducible;

(iii) if p = 5 then the image of r(GF (ζp)) in PGL2(F) is not isomorphic to A5;
(iv) r|GFw is generic (in the sense of [EGS15], Definition 2.1.1) for all w ∈ Σp.

We write Σr for the ramification set of r. We fix the continuous character ψ : GF →
F× defined by ψ := ω det r and write ψ̃ to denote its Teichmüller lift.

Let D be a quaternion algebra with center F and let ΣD be the set of places
where D ramifies. We assume that:

◦ #(Σ∞ \ ΣD) ≤ 1;
◦ Σp ∩ ΣD = ∅.

We define S := Σp ∪ (ΣD \Σ∞)∪Σr. We note that the condition p > 3 (coming
from the genericity assumption on r|GFw ) guarantees the existence of a place w1 /∈ S
such that:

◦ N(w1) 6≡ 1 modulo p;
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◦ the ratio of the eigenvalues of r(Frobw1
) is not in {1, N(w1)±1}; and

◦ if ` is a prime such that [F (
√̀

1) : F ] ≤ 2, then w1 - `

(cf. [BD14], item (iv) in the proof of Lemma 3.6.2). If ` is the unique prime number
which is divisible by w1, we then define Kw1 ≤ (OD)×w1

as the pro-`-Iwahori of
(OD)×w1

. The conditions on w1 and Kw1 guarantee that for any open compact
subgroup Kw1 ≤ (D ⊗F A∞,w1

F )×, the subgroup Kw1K
w1 is sufficiently small in

the sense of [GK14], §2.1.2.
We define KS :=

∏′
w/∈S Kw where Kw := (OD)×w for all w /∈ S ∪ {w1}. We now

follow the procedure of [EGS15], §6.5 to obtain a space of algebraic automorphic
forms with minimal tame level. We fix once and for all a place v ∈ Σp and assume
moreover that

(v) for all w ∈ ΣD, r|GFw is non-scalar.

Let S′ ⊆ Σp ∪ΣD be the subset of finite places w ∈ Σp ∪ΣD such that r|GFw is
reducible. Write W (F) for the ring of Witt vectors of F. Following [EGS15], §6.5
(which is in turn based on [BD14], §3.3 and the proof of Proposition 3.5.1 in loc.
cit.), we fix for each w ∈ S \{v} the following data (we refer to [EGS15] and [BD14]
for their precise definitions):

(1) if r|GFw is irreducible, the maximal compact Kw := (OD)×w , an inertial type
τw : Iw → GL2(W (F)) (as in [EGS15, Proposition 3.5.1] if w ∈ Σp, as in
[BD14], Cas IV in §3.3 else), and a W (F)-lattice Lw ⊆ σ(τw).

(2) if r|GFw is reducible and w /∈ S′, a compact subgroup Kw ≤ (OD)×w and a free
W (F)-module Lw with a locally constant action of Kw (cf. also [BD14], Cas
III at §3.3, and Cas (ii) in the proof of Proposition 3.5.1);

(3) if w ∈ S′, a compact subgroup Kw ≤ (OD)×w , a free W (F)-module Lw with a
locally constant action of Kw and a scalar βw ∈ F× (cf. also [BD14], Cas I and
II at §3.3 and Cas (iii) in the proof of Proposition 3.5.1).

We further remark that the Kw-representation Lw has been chosen so that the

center Fw ∩ Kw acts on Lw via ψ̃ ◦ ArtFw . We define Kv
S :=

∏
w∈S\{v}

Kw, Kv :=

Kv
SK

S and Ṽ v :=
⊗

w∈S\{v}
Lw, which is a W (F)-module of finite type with a locally

constant action of Kv
S , hence of Kv by inflation. Via ψ̃ we can and do endow Ṽ v

with an action of Kv(A
(∞,v)
F )×. We write Ṽ v

ψ̃
to denote the resulting Kv(A

(∞,v)
F )×-

representation.

Let K := KvKv. Let RepψF(Kv) be the category of F-modules of finite type,
endowed with an action of Kv := (OD)×v

∼= GL2(OFv ) and such that Kv ∩ F×v
acts via the character ψ ◦ ArtFv . In particular if Vv ∈ RepψF(Kv) then the finite

F-module V := Ṽ v
ψ̃
⊗ Vv is endowed with an action of K(A

(∞,v)
F )× which extends

naturally to an action of K(A∞F )×. We write Vψ to denote the resulting K(A∞F )×-
representations. By construction (A∞F )× acts on Vψ via ψ.

If #
(
Σ∞ \ ΣD

)
= 1 we define the space of algebraic modular forms of level K,

coefficients in Vψ and central character ψ as:

(5.1) Sψ(K,V ∨v ) := H1
ét(XK ⊗F F ,F(Vψ)∨)
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where XK is the smooth projective algebraic curve associated to K as in [BD14,
§3.1] and FV ∨ψ is the local system on XK ⊗F F associated to V ∨ψ in the usual way

(cf. [BD14, proof of Lemma 6.2]).
If #

(
Σ∞ \ ΣD

)
= 0 we define the space of algebraic modular forms of level K,

coefficients in Vψ and central character ψ as:

(5.2) Sψ(K,V ∨v ) :=

{
f : D×\(D ⊗F A∞F )× → V ∨ψ , f continuous,

f(gk) = k−1f(g) ∀g ∈ (D ⊗F A∞F )×, k ∈ K(A∞F )×

}
.

We have a variation of the previous spaces with “infinite level at v” defined as
follows:

Sψ(Kv,F) := lim→
Uv≤Kv

Sψ(KvUv,F)

where Uv ranges among the compact open subgroups Kv. It is endowed with a
smooth action of D×v

∼= GL2(Fv).
The F-modules Sψ(K,V ∨v ), Sψ(Kv,F) are faithful modules over a certain Hecke

algebra which is defined as follows. Consider the F-polynomial algebra TS∪{w1} :=

F[T
(i)
w , w /∈ S ∪ {w1}]. For all w /∈ S ∪ {w1}, 1 ≤ i ≤ 2 define the Hecke operator

T
(i)
w as the usual double classe operator acting on Sψ(K,V ∨v ):[

GL2(OFw)

(
$wIdi

Id2−i

)
GL2(OFw)

]
We then have an evident morphism of F-algebras TS∪{w1} → EndW (Sψ(K,V ∨v ))
whose image will be denoted by T(Vv). From the hypothesis (i) there is a surjection
αr : T(Vv)→ F such that

det
(
XId2 − ψr(Frobw)

)
= X − αr(T (1)

w )X + N(w)αr(T
(2)
w )

for all w /∈ S ∪ {w1}. We note mr := ker(αr).

For w ∈ S′∪{w1} we can define the Hecke operator T
(1)
w acting on Sψ(K,V ∨v )mr

(cf. [EGS15] §6.5, cf. also [BD14], §3.3 Cas I et II), as well as scalars βw ∈ F×.
We write T′(Vv) for the subalgebra of EndT(Vv)(Sψ(K,V ∨v )mr ) generated by T(Vv)

and the operators T
(1)
w , w ∈ S′ ∪ {w1}. In particular T(Vv)mr ⊆ T′(Vv) is a

finite extension of semi-local rings. If m′r denotes the ideal of T′(Vv) above mr and

generated by the elements T
(1)
w − βw, we easily see that m′r is a maximal ideal in

T′(Vv).
Note that the choices of types σ(τw), lattices Lw ⊆ σ(τw) and scalars βw (cf.

items (1), (2) and (3) above) are exactly those of [EGS15, §6.5] (in turn based on
[BD14, §3.3-3.5]) and the m′r-generalized eigenspace of the modules (5.1), (5.2) are
precisely the m′r-generalized eigenspace of the spaces of fixed determinant algebraic
modular forms with V ∨ψ -coefficients and minimal level as defined in [EGS15, §6.5]

(and denoted as Smin(V ∨v )mr in loc. cit.).

If #
(
Σ∞ \ ΣD

)
= 1 (resp. #

(
Σ∞ \ ΣD

)
= 0) we define the smooth Kv-

representation π(ρv) := HomF[GF ](r, Sψ(Kv,F)[m′r]) (resp. π(ρv) := Sψ(Kv,F)[m′r])
We set Kv(1) := ker(Kv � Γ). From the main results in [EGS15] we have the fol-
lowing statement:
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Theorem 5.1 ([EGS15], Theorem 9.1.1 and 10.1.1). Let r : GF → GL2(F) be a
continuous Galois representation satisfying the hypotheses (i)-(v) above. Then

cosocΓ((π(ρv)
∨)Kv(1)) = ⊕

σ∈W ?(ρv(1)∨)
σ.

Let σ(τ) be a Kv-type and let σ0(τ) a W (F)-lattice with irreducible socle. Then

HomΓ((π(ρv)
∨)Kv(1), σ

0(τ))

is at most one dimensional.

Proof. We let M∞ : RepψF(Kv)→ Modf.t.(R∞) be the fixed determinant and mini-
mal level patching functor associated to r as in [EGS15, §6.5]. By abuse of notation
we let m′r denote the maximal ideal of R∞. By construction of the functor M∞,

for any representation Vv ∈ RepψF(Kv) we have an isomorphism(
M∞(Vv)/m

′
r

)∨ ∼= Sψ(KvKv, V
∨
v )[m′r]

together with a compatible morphism of local rings Rψ̃∞ → T′(Vv)m′r .
Since KvUv is sufficiently small for any choice of a compact open subgroup

Uv ≤ Kv and since m′r is non-Eisenstein, a standard spectral sequence argument
gives: (

Sψ(Kv,F)[m′r]
)Kv(1) ∼= Sψ(KvKv(1),F)[m′r].

In particular if Kv(1) acts trivially on Vv ∈ RepψF(Kv) we obtain(
M∞(Vv)/m

′
r

)∨ ∼= Sψ(KvKv, V
∨
v )[m′r](5.3)

∼= HomΓ(Vv, Sψ(KvKv(1),F)[m′r])

∼= HomKv (Vv, π(ρv)
Kv(1)).

If σ0(τ) is a lattice with irreducible cosocle in a tame type σ(τ), we now deduce
from [EGS15, Theorem 10.1.1] that HomKv (σ0(τ), π(ρv)) is at most one dimen-
sional. With σ0(τ) as in the statement of the theorem, σ0(τ)∨ is the reduction of
a lattice in the dual type σ(τ)∨ with irreducible cosocle and thus the second claim
in the theorem follows by Pontrjagin duality.

By (5.3), Nakayama’s lemma, and Pontrjagin duality, σ is a Jordan–Hölder factor
of the Γ-cosocle of (π(ρv)

∨)Kv(1) if and only if M∞(σ) 6= 0. By [EGS15, Theorem

9.1.1], M∞(σ) 6= 0 if and only if σ ∈ W ?(ρv). Finally, from the second part of the
theorem, one sees that σ appears in the Γ-cosocle of (π(ρv)

∨)Kv(1) with multiplicity
one by taking any lattice in a tame type whose reduction has irreducible socle
isomorphic to σ. �

From now on, we assume that:

(vi) ρv := r|GFv is semisimple and 1-generic in the sense of Definition 4.1.

Proposition 5.2. Let r : GF → GL2(F) be a continuous Galois representation
satisfying the hypotheses (i)-(vi) above. There is a Kv-surjection π(ρv)

∨ � D∨0 (ρv).

Proof. This is Pontrjagin dual to [Bre14, Proposition 9.3], noting that D∨0 (ρv)
∼=

(DBP
0 (ρv))

∨. �

Theorem 5.3. Let r : GF → GL2(F) be a continuous Galois representation sat-
isfying the hypotheses (i)-(vi) above. Then we have an isomorphism of Γ-modules
(π(ρv)

∨)Kv(1)
∼= D∨0 (ρv).
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Proof. By Proposition 5.2, there is a surjection (π∨)Kv(1) � D∨0 (ρv). By Theorem
5.1, (π∨)Kv(1) satisfies the conditions for D∨0 in Proposition 4.6. We conclude that
there is a surjection D∨0 (ρv) � (π∨)Kv(1). The composition of these surjections
is a surjective endomorphism of D∨0 (ρv), a finite length Γ-module, and is thus an
isomorphism. �

We conclude with the main result of this paper:

Corollary 5.4. Let r : GF → GL2(F) be a continuous Galois representation sat-
isfying the hypotheses (i)-(vi) above. Then

Sψ(KvKv(1),F)[m′r]
∼= DBP

0 (ρv).

In particular, the Γ-representation Sψ(KvKv(1),F)[m′r] only depends on r|Iv and
is multiplicity free.

Proof. Recall from the proof of Theorem 5.1 the isomorphism:(
Sψ(Kv,F)[m′r]

)Kv(1) ∼= Sψ(KvKv(1),F)[m′r].

The isomorphism follows now from Proposition 4.4 and Theorem 5.3 after applying
Pontrjagin duality. For the second statement, recall that D0(ρv) was defined only
in terms of W ?(ρ∨v (1)) and is multiplicity free by Proposition 4.4. �
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(2014), no. 5, 905–974. MR 3294620

[BDJ10] Kevin Buzzard, Fred Diamond, and Frazer Jarvis, On Serre’s conjecture for mod

` Galois representations over totally real fields, Duke Math. J. 155 (2010), no. 1,
105–161. MR 2730374
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France
E-mail address: benjamin.schraen@math.u-psud.fr


	1. Introduction
	1.1. Acknowledgments
	1.2. Notation

	2. The extension graph
	3. Generic GL2(Fq)-projective envelopes
	4. The Breuil–Paškunas construction
	5. Global applications
	References

