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Abstract

Let p > 5 be a prime number. In [BL94] Barthel and Livné gave a classification for irre-
ducible representations of GL2(F ) over Fp, for F a p-adic field, discovering some objects,
referred to as “supersingular”, which appear as subquotients of universal representations
π(r, 0, 1). In this paper we give a detailed description of the Iwahori structure of such
universal representations, in the case when F is an unramified extension of Qp. We de-
termine a fractal structure which shows how and why the techniques used for Qp fail and
which lets us determine“natural” subrepresentations of the universal object π(r, 0, 1). As
a corollary, we get the Iwahori structure of tamely ramified principal series.
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1. Introduction

Let p be a prime number and F a p-adic field. In the papers [BL94], [BL95] Barthel and Livné studied
a classification (recently generalized for general GLn(F ) by Herzig in [Her]) for the representations
of GL2(F ) with coefficients in an algebraic closure of Fp. Besides characters, principal unramified
series and special series, they found a new class of irreducible objects referred to as “supersingular”,
which are defined, up to twist, as subquotients of a universal representation, which we will note
π(r, 0, 1) for an f -tuple r = (r0, . . . , rf−1), where f is the residual degree of F . The existence of
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supersingular representations is assured by a Zorn-type argument (see [BL95], Proposition 11) and
a complete exhaustive study for supersingular representations is a relevant open problem in the
emerging p-adic Langlands program. Indeed, in a conjectural mod p-Langlands correspondence it
is expected that the supersingular objects are intimately related to Galois representations arising
from elliptic curves with supersingular reduction.

This is actually the case if F = Qp (when the universal representations are indeed irreducible).
Such result is due to Breuil [Bre03] where he reaches a complete classification of supersingular
representations thanks to direct computations on the ring of Witt vectors of Fp. If F 6= Qp the
situation is not clear. For the time being, the problem of classifying supersingular representations
looks to be infinitely more involved compared to its Galois analogue (known from the works of Serre
[Ser72]). The methods of Paskunas [Pas] and Breuil-Paskunas [Br-Pa], which associate an infinite
family Π(ρ) of supersingular representations to a single Galois object ρ, are a major progress in this
direction, but it is not clear, especially after the work of Hu [Hu1], how to distingush in a canonical
way a privileged supersingular representation inside Π(ρ). We remark that the methods of [Pas] and
[Br-Pa] have been improved by Hu’s canonical diagrams in [Hu2]; unfortunately canonical diagrams
are difficult to calculate explicitly.

Another approach to the problem has been treated by Schein in [Sch] where he studies the
universal representations for a totally ramified extension F/Qp. He detects a natural quotient Ve−1
of π(r, 0, 1) which enjoys an universal property with respect to supersingular representations whose
GL2(OF )-socle respects a certain combinatorics conjecturally associated to suitable Galois repre-
sentations arising from elliptic curves with supersingular reduction (the modular weights introduced
in [BDJ] and generalised in [Sch1])

In this paper we describe the Iwahori structure for the universal representation π(r, 0, 1) in
the case where F/Qp is unramified, generalizing Breuil’s method. In particular, our result give the
irreducibility for F = Qp and shows how and why the universal representations fail to be irreducible
otherwise. With “Iwahori structure” we mean that we are able to detect the Iwahori-socle filtration
for π(r, 0, 1) as well as the extension between two consecutive graded pieces. As a byproduct we will
deduce the Iwahori structure of principal and special series and the presence of a natural injection
c−IndGKZV ↪→ π(r, 0, 1). The reader will find out that, as soon as F 6= Qp, the Iwahori-socle
filtration for the universal representation relies on an extremely complicated combinatorics.

The main result of this paper is to show that such combinatorics can be handled with the help
of some simple Euclidean data; such a method -a far reaching generalisation of the techniques of
[Bre03]- can be briefly described as follow. We detect a natural Fp-basis B of π(r, 0, 1) as well as
an injection:

B ↪→ Z[F :Qp];

as we will show, its image R is explicitely known. For v ∈ B we define the set of antecedents Sv

of v as the set of v′ ∈ B such that v′ = v − es where es is the s-th element of the canonical base
of Z[F :Qp]. When we claim that the Iwahori structure for π(r, 0, 1) is described by R we mean the
following facts (see Definition 1.7 for a precise formalism):

i) the Iwahori-socle filtration
{
π(r, 0, 1)J

}
is obtained from R by removing successively the points

with empty antecedents;

ii) if v0, v1 ∈ B and J ∈ N are such that vi is an eigenvector for the (J − i)-th graded piece
π(r, 0, 1)J−i/π(r, 0, 1)J−i−1 of the socle filtration of the universal representation, then the
linear space 〈v0, v1〉 gives a nontrivial equivariant extension of v1 by v0 inside the quotient
π(r, 0, 1)J/π(r, 0, 1)J−2 if and only if v0 is an antecedent of v1.

According to this terminology the main result is the following (see Proposition 5.18):
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Theorem 1.1. The Iwahori structure of the universal representations is described by R.

We give in Figure 1 the idea of such structure for the quadratic unramified extension of Qp.

As annonced, we get some other byproducts as

Theorem 1.2. Let π be a tamely ramified principal series and write π|I = π+⊕π− for the Mackey
decomposition deduced from the restriction of π to the Iwahori subgroup I. Then the Iwahori
structure of π+ (resp. π−) is described by the lattice N[F :Qp], naturally embedded in Z[F :Qp].

and

Theorem 1.3. Let r /∈ {(0, . . . , 0), (p − 1, . . . , p − 1)} and let χs be the conjugate character of
(σr)

U(Fq). There is a sub KZ-representation V 6 π(r, 0, 1)|KZ isomorphic to the kernel of the
natural map

Ind
GL2(Fq)
B(Fq)

χs/soc(Ind
GL2(Fq)
B(Fq)

χs)� cosoc(Ind
GL2(Fq)
B(Fq)

χs)

and such that the map (induced by Frobenius reciprocity)

c−IndGKZV → π(r, 0, 1)

is injective.

We remark that the existence of such an injective morphism has already been discovered by
Paskunas in an unpublished draft.

Such results rely on an heavy formalism and they need preparation to be handled. In particular,
from section §4 we start using the Euclidean dictionary as a key tool to manage the combinatorics
of the representation under study. In order to guide the reader the statements and the proofs
are preceded by a detailed translation in Euclidean terms (otherwise they would sound as empty
exercises of combinatorics) and each section opens with an exhaustive description of the Euclidean
strategy adopted to reach our aims.

The reasons which make our strategy work are essentially three:

i) we detect a suitable basis B of the universal representation which is well behaved with respect
to the action of the Iwahori subgroup and the canonical Hecke operator T ∈ EndG(c−IndGKZσr);

ii) the action of the Iwahori subgroup on the elements of B can be read through certain universal
Witt polynomials whose homogeneous degree is known;

iii) the correspondence between the elements of the basis B and integer points in R[F :Qp] is
compatible with the homogeneous degree of the polynomials of ii).

We hope the tehcniques introduced in this paper can be the starting point for further devel-
opments in the conjectural mod p Langlands programm. In particular our approach in terms of
“harmonic analysis”, developed here by explicit methods, should be adapted in a more general set-
ting, for instance for GLn and for any finite extension of Qp. Nevertheless, the combinatoric for
such generalisations should become soon extremely intricate and we think it can not reasonably be
handled without the use of a more general and synthetic framework on harmonic analysis on the
Bruhat-Tits building.

We believe that suitable comparisons between Breuil-Paskunas methods and the explicit descrip-
tion of π(r, 0, 1) in terms of the basis B could shed new light in the research of good supersingular
representaitons of GL2(F ). A natural questions, suggested by the referee, is the following: given a
supersingular Breuil-Paskunas representation π and a Serre weight σ appearing as a subobject of
π|KZ , is it possible to describe the kernel of the natural map π(σ, 0, µ)� π in terms of the Euclidean
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Figure 1: The picture represents part of the Euclidean structure associated to π(r, 0, 1), in the
particular case p = 5, f = 2, r = (2, 1), according to the decomposition of π(r, 0, 1) given by
Propositions 2.9 and 3.5. The axes let us parametrise certains elements of the compact induction
according to the immersions of Fp2 in Fp. The Iwahori-socle for π(r, 0, 1) is deduced by the points
having empty antecedent, according to Definition 1.7.
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structure associated to π(σ, 0, µ)? (here µ is a convenient unramified character of Z, choosen in such
a way that the central character of π(σ, 0, µ) and π coincide).

The precise terms of such comparison are still unclear to the author. We suppose they should
clarify the nature of the several parameters appearing in the constructions of [Br-Pa], giving a
hierarchy which should be hopefully deduced from the Euclidean structure associated to π(r, 0, 1).

The structure of the paper is then the following.

The first two sections §2 and §3 are formal and do not need the hypothesis F/Qp unramified.
Section §2 is essentially a dictionary which let us detect a natural equivariant filtration on the
KZ-restriction of the universal representation. We first introduce a family of KZ-representations
{Rn}n∈N. Through some convenient Hecke operators T±n : Rn → Rn±1 we define inductively a
direct system of amalgamated sums (each of them endowed with a natural filtration) which leads
to an explicit isomorphism (Proposition 2.9):

π(σr, 0, 1)|KZ
∼→ lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)⊕ lim
−→
n even

(R1/R0 ⊕R2 · · · ⊕Rn Rn+1).

We remark that such isomorphism was already drafted by Breuil in [Bre].
In section 3 we start from an Iwahori-splitting Rn+1 = R+

n+1 ⊕ R
−
n+1 to deduce, in the same

flavour of the preceeding section, an inductive system of amalgamated sums · · · ⊕R±n R
±
n+1. Such

amalgamated sums are endowed with a natural Iwahori-filtration revealed by a short exact sequence

0→ · · · ⊕R±n−2
R±n−1 → · · · ⊕R±n R

±
n+1 → R±n+1/R

±
n → 0. (1)

The resulting inductive limits are related to the universal representation by the following

Proposition 1.4. We have an exact Iwahori-equivariant sequence

0→ 〈(v+, v−)〉Fp → ( lim
−→
n odd

R+
0 ⊕R+

1
· · · ⊕R+

n
R+
n+1)⊕ ( lim

−→
n odd

R−0 ⊕R−1 · · · ⊕R−n R
−
n+1)→

→ ( lim
−→
n odd

R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0

where v± ∈ lim
−→
n odd

R±0 ⊕R±1 · · · ⊕R±n R
±
n+1 (and are explicitly known).

We have an analogous result in the even case.

It will therefore be enough to focus our attention on the inductive limits of section §3.
The Euclidean dictionary is developed in section 4. Thanks to the natural filtration on the inductive
limits, we are primarly concerned with the Iwahori structure of the representations R±n+1. We detect

a convenient Fp-basis B±n+1 (Lemma 2.6) and determine a natural way to identify the elements of

B±n+1 with integer valued points of R[F :Qp] (see section 4.1.1 for details). If we write R±n+1 to
denote the image of B±n+1 in the [F : Qp]-dimensional real Euclidean space (such an image looks as
a parallelepipoid of side pn+ε(r + 1) for ε ∈ {0, 1} according to the cases R+

n+1, R
−
n+1) then

Proposition 1.5. The structure R±n+1 describes, according to Definition 1.7, the Iwahori structure
of R±n+1.

Because of the geometry of the polytope R±n+1 we indeed see that the socle filtration can be de-
tected by successive cuttings by suitable hyperplanes (parallel to the antidiagonal X0+ · · ·+Xf−1 =
0).

We similarly deduce the structure of tamely ramified principal series (Proposition 1.2). Unfortu-
nately, these results rely on a careful analysis of the behaviour of some universal Witt polynomials,
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Figure 2: This is the structure associated to the quotient R+
n+1/R

+
n , in the particular case p = 5,

f = 2, r = (2, 1). The structure of such quotients is more complicated compared to R+
n+1; it

is deduced from a delicate subdivision of R+
n+1/R

+
n into increasing subspaces, suggested by the

geometry of R+
n+1/n.

contained in the two appendices A and B.
Section §5 deals finally with the universal representation π(r, 0, 1). We are first concerned with

the graded pieces of the natural filtrations introduced in §3: it is the object of §5.1. Thanks to the
behaviour of the canonical basis B±n with respect to the Hecke operators of §3 we easily determine
a natural basis B±n+1/n for each R±n+1/R

±
n and we associate an Euclidean structure R±n+1/n to it.

Such a structure is more complicated than the previous R±n+1 and can not be determined directely
by Proposition 1.5 but a suitable decomposition of R±n+1/n as a union of inreasing polytopes enable
us to state the

Proposition 1.6. The structure R±n+1/n describes, according to Definition 1.7, the Iwahori struc-

ture of R±n+1/R
±
n .

An example, for r = (2, 1), of the Euclidean image of R+
n+1/n is given in Figure 2.

As a byproduct, the natural filtrations of section §3 and the previous description of the basis
B±n+1 let us deduce Proposition 1.3.

The conclusion is in section §5.2 where we study the amalgamated sums · · ·⊕R±n R
±
n+1. Again, the

behaviour of the canonical base B±n with respect to the Hecke operators let us deduce, by induction
on the exact sequence (1), an Euclidean structure, say R±even,odd. Such a structure has a regular

fractal nature, due to a convenient glueing of the blocks R±n+1/n. Simple remarks on the geometry

of R±even,odd, as well as the fact that · · · ⊕R±n−2
R±n−1 is a Iwahori-subrepresentation of · · · ⊕R±n R

±
n+1,

let us deduce the main result of Theorem 1.1.

We introduce now the basic conventions and notations of the paper (we essentially use the
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formalism and notations of [Bre03]).

Fix a prime 1 p > 5 and let F be a finite unramified extension of Qp; let f
def
= [F : Qp] be the

residue degree. We write OF to denote the ring of integers of F and fix the uniformizer p ∈ OF : let
kF be the residue field; it is a finite field with q

def
= pf elements. We fix an isomorphism kF ∼= Fq;

as F is unramified, we deduce an isomorphism OF
∼= W (Fq) where W (Fq) denotes the ring of

Witt vectors of Fq. We will write [·] : F×q →W (Fq)
× to denote the Teichmüller character (putting

[0]
def
= 0). We finally fix an algebraic closure Fp of Fq.

For any k ∈ N the natural action of GL2(Fq) on F2
q lets us determine, by functoriality of the

k-th symmetric power, the GL2(Fq)-representation SymkF2
q . It is isomorphic (up to a choice of

an Fq-basis for F2
q) to Fq[X,Y ]hk , the homogeneous component of degree k of the ring Fq[X,Y ],

endowed with the usual modular action:[
a b
c d

]
Xk−iY i = (aX + cY )k−i(bX + dY )i.

We recall that for s ∈ N, (Fq[X,Y ]hk)Frob
s

is the representation obtained by functoriality, in the
evident way, from the field automorphism x 7→ xp

s
defined on Fq.

For τ ∈ Gal(Fq/Fp) and rτ , tτ ∈ {0, . . . , p− 1} we consider the GL2(Fq)-representation

σ{rτ},{tτ}
def
=

⊗
τ∈Gal(Fq/Fp)

(dettτ ⊗Fq SymrτF2
q)⊗τ Fp;

such representations, called Serre weights, exhaust all irreducible GL2(Fq)-representations with
coefficients in Fp (and they are pairwise non isomorphic if we impose tτ < p − 1 for at least one
element τ ∈ Gal(Fq/Fp)). A Serre weight is said to be regular if 1 6 ri 6 p− 3 for all i (see [Gee],
Definition 2.1.5).

We fix once for all an immersion τ : Fq ↪→ Fp. Such a choice determines, up to twist, a manifest
isomorphism

σ{rτ},{tτ}
∼= σ(r0,...,rf−1)

def
=

f−1⊗
s=0

(Fp[Xs, Ys]
h
rs)

Frobs

for a suitable r
def
= (r0, . . . , rf−1) ∈ {0, . . . , p− 1}f ; such an isomorphism will be assumed to be fixed

once for all throughout the paper. We notice that the choice of another immersion acts on the right
hand side by a cyclic permutation on the indices s in the obvious sense.

Write G
def
= GL2(F ), K

def
= GL2(OF ) and Z

def
= Z(G). We write K0(p) to denote the Iwahori

subgroup of K. The GL2(Fq)-representation σr will be seen, by the inflation map K � GL2(Fq),
as a smooth representation of K. By imposing p ∈ Z to act trivially, the smooth K-action on
σr extends to a smooth action of KZ: by abuse of notation we will write σr to denote either the
GL2(Fq), the K or the KZ-representation obtained by this procedure (or, as usual, the underlying
vector space of σr).

Similarly, the character

χr : B(Fq)→ F
×
p[

a b
0 d

]
7→ a

∑f−1
s=0 p

srs

will be considered, by inflation as a character of any open subgroup of K0(p). We write then χsr to

1For a technical reason, the case p = 3 is slightly more delicate: see the note in Proposition 4.7.
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denote the conjugate character of χr. We denote by a the character

B(Fq)→ F
×
p[

a b
0 d

]
7→ ad−1.

Recall the compact induction:

c−IndGKZσr

defined as the Fp-linear space of functions f : G → σr, compactly supported modulo Z, verifying
f(kg) = k · f(g) for any k ∈ K, g ∈ G; it is endowed with the smooth left action of G defined by
right translations.

For g ∈ G, v ∈ σr we define
[
g, v
]
∈ c−IndGKZσr as the unique function f supported in KZg−1

and such that f(g−1) = v. Then we have

g′ ·
[
g, v
]

=
[
g′g, v

]
for g′ ∈ G[

gk, v
]

=
[
g, k · v

]
for k ∈ KZ.

Each function f ∈ c−IndGKZσr can be written as a Fp-linear combination of a finite family of
functions

[
g, v
]
; if g varies in a fixed system of coset representatives for G/KZ and v varies in a

fixed Fp-basis of σr the aforementioned writing is then unique.
We leave to the reader the task to adapt the previous definitions and remarks to such objects as

Ind
K0(pm)
K0(pn+1)

τ

where K0(p
n+1)

◦
6 K0(p

m)
◦
6 K are the open subgroups of K defined by (3) and τ is a smooth

representation of K0(p
n+1).

From [BL94], Proposition 8-(1) there exists a canonical Hecke operator (depending on r) T ∈
EndG(c−IndGKZσr). It realizes an isomorphism between the Fp-algebra of endomorphisms EndG(c−IndGKZσr)
and the ring of polynomials in one variable over Fp. We then define the universal representation of
GL2(F ) as the cokernel of the canonical operator T :

π(r, 0, 1)
def
= coker(T ).

We recall some conventions on the multiindex notations. We write α
def
= (α0, . . . , αf−1) to denote

an f -tuple α ∈ Nf . If α, β are f -tuples we define

i) α+ β
def
= (α0 + β0, . . . , αf−1 + βf−1);

ii) α > β if and only if αs > βs for all s ∈ {0, . . . , f − 1};

iii)
(α
β

) def
=
∏f−1
s=0

(
αs
βs

)
.

For n ∈ N we will write n
def
= (n, . . . , n) ∈ Nf .

If α+ β = r we define the following element of σr:

XαY β def
= ⊗f−1s=0X

αs
s Y βs

s ;

for λ ∈ Fq and α ∈ {0, . . . , p− 1}f we put

λα
def
= λ

∑f−1
s=0 p

sαs .

For an integer n ∈ N we define bnc ∈ {0, . . . , f − 1} as the unique integer m ∈ {0, . . . , f − 1}
congruent to n modulo f . Similarly, if n 6= 0 we define dne ∈ {1, . . . , q − 1} as the unique integer

m ∈ {1, . . . , q − 1} congruent to n modulo q − 1; we set d0e def
= 0.
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Let R be a smooth representation of K0(p) over Fp. We recall the definition of the socle filtration
{socN (R)}N∈N on R: we set soc0(R) = soc(R) (the maximal semisimple subrepresentation of R)
and, assuming socN (R) being defined, the submodule socN+1(R) is defined to be the inverse image
of soc(R/socN (R)) via the natural projection R� R/socN (R). We set formally soc−1(R) = 0. We
therefore get an increasing, exhausting and separate filtration on R, with semisimple layers.

Throughout the paper we describe the socle filtration of R by means of subset R ⊆ Zf suitably
associated to R: this is a crucial formalism whose meaning we define precisely in the following
Definition.

Definition 1.7. Let B be an Fp-basis of R and P a bijection of B onto a subset R in Zf . Let
B′ ⊆ B be a subset and R′ denote its image through the bijection P ; for v ∈ B′ we define the set
of antecedents of v in R′ as:

Sv(B
′)

def
=
{
w ∈ B′ s.t. P (w) = P (v)− es for s ∈ {0, . . . , f − 1}

}
(where {e0, . . . , ef−1} is the canonical basis of Zf ).

1) We say that the socle filtration {socN (R)}N∈N of R is described by R if the following holds:
there exists an increasing family {BN}N∈N of subsets of B such that

i) for all N ∈ N the family BN is an Fp-basis of socN (R);
ii) for all N ∈ N an Fp-basis for soc(R/socN−1(R)) is described as{

v ∈ B \BN−1, s.t.Sv(B \BN−1) = ∅
}
.

2) If the socle filtration of R is described by R we will say that the extensions between two graded
pieces are described by R if the following holds true:

for all N ∈ N and v ∈ BN+1 the Fp-linear subspace Ev,N of R/socN−1(R) generated
by v,Sv(B \ BN−1) is K0(p)-stable and for each w ∈ Sv(B \ BN−1) the induced
extension

0→ w → Ev,N/〈Sv(B \BN−1) \ {w}〉Fp → v → 0

is nonsplit (with the obvious meaning of w, v).

In Euclidean terms, the meaning of Definition 1.7 is the following:

1) the socle filtration of R is obtained from R by removing successively the points having empty
antecedent: a linear basis B0 for soc0(R) is described by the points of R having empty an-
tecedent; assuming we have a linear basis BN for socN (R) then a linear basis for socN+1(R)
is given by the disjoint union of BN and the points of P (B \BN ) having empty antecedent;

2) the segments between v and the set of its antecedents let us detemines all the nonsplit extensions
between two graded pieces of the socle filtration.

By abuse of terminology, we will call lattice of Rf a subset of Zf (the latter being naturally
embedded in Rf ) containing a linear base for Rf . The subset R will be often callet the associated
lattice for the representation R.

2. Preliminaries

As we outlined in the introduction, the main aim of this section is to describe the Iwahori-structure
of the universal representations π(r, 0, 1) of GL2(F ) over Fp.

Such representations have a completely explicit description in terms of the Bruhat-Tits tree and
of the Hecke operator T given in [Bre03], §2 and their Iwahori structure can indeed be found by direct
methods. Nevertheless, the extremely involved combinatorics of such results leads us to introduce
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an intermediary step -namely a suitable KZ-filtration- which lets us handle, in a reasonable way,
the high amount of technical computations. Precisely, we start (cf. definition 2.3) by introducing
the KZ-representations

Rn+1
def
= IndKK0(pn+1)σ

(n+1)
r

(where σ
(n+1)
r is aK0(p

n+1)-representation obtained by twisting the action ofK0(p
n+1) on σr|K0(pn+1)).

Such objects are endowed with an action of suitable “Hecke” operators T±n : Rn → Rn±1 (cf. Lemma
2.7), with respect to which we are able to define (inductively) a direct system of amalgamated sums
· · · ⊕Rn Rn+1 (cf. Proposition 2.8). Such amalgamated sums fit in a natural commutative diagram
(see Proposition 2.8) which lets us deduce a natural filtration on the resulting inductive limits.
The final result is then the isomorphism of Proposition 2.9, which relates the KZ-restriction of the
universal representation π(r, 0, 1)|KZ to the inductive limits constructed above; in particular, we
have a natural KZ-equivariant filtration on the universal representation π(r, 0, 1).

In Lemma 2.6 we introduce a “canonical” basis for the representations Rn+1. Such basis is well
behaved with respect to both the action of the Hecke operators and the action of the Iwahori sub-
group: this will be the key observation which lead us to the description of the Iwahori structure for
π(r, 0, 1).

We remark that the isomorphism of Proposition 2.9 does not rely on the fact that F/Qp is
unramified: the content of this section can be generalised in the evident manner for any finite
extension F of Qp.

Reminders on the universal representations π(r, 0, 1). For n ∈ N>1 we define

In
def
= {

n−1∑
j=0

pj [λj ] forλj ∈ Fq}

and we put I0
def
= {0}. The sets In let us describe the Bruhat-Tits tree in the following way: if

n,m ∈ N, λ ∈ In and

g0n,λ
def
=

[
pn λ
0 1

]
, g1n,λ

def
=

[
1 0
pλ pn+1

]
we get a decomposition

KZα−mKZ =
∐
λ∈Im

g0m,λKZ
∐ ∐

λ∈Im−1

g1m,λKZ (2)

thus describing the vertex of the tree having distance m from KZ (where we have written α
def
= g10,0).

The canonical Hecke operator T ∈ EndG(IndGKZσr), defined in [Bre03] §2.7, is then characterized
as follow:

Lemma 2.1. For n ∈ N>, λ ∈ In and 0 6 j 6 r we have:

T (
[
g0n,λ, X

r−jY j
]
) =

∑
λn∈Fq

[
g0n+1,λ+pn[λn]

, (−λn)jXr
]

+
[
g0n−1,[λ]n−1

, δj,r(λn−1X + Y )r
]

T (
[
g1n,λ, X

r−jY j
]
) =

∑
λn∈Fq

[
g1n+1,λ+pn[λn]

, (−λn)r−jY r
]

+
[
g1n−1,[λ]n−1

, δj,0(X + λn−1Y )r
]

where [·]n−1 : In → In−1 denotes the truncation of the (n− 1)-th p-adic digit.
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On some representations of the Iwahori subgroup

If n = 0 we have

T (
[
1G, X

r−jY j
]
) =

∑
λ0∈Fq

[
g01,[λ0], (−λ0)

jXr
]

+
[
α, δj,rY

r
]

T (
[
α,Xr−jY j

]
) =

∑
λ1∈Fq

[
g11,[λ1], (−λ1)

r−jY r
]

+
[
1G, δj,0X

r
]

.

Proof. A computation shows that the statement of Lemme 3.1.1 in [Bre03] has an obvious general-
isation for f > 1. The result follows then from Ibid., §2.5.

For n ∈ N we define the Fp-subspace of IndGKZσr:

W (n)
def
= {f ∈ IndGKZσr, s.t. the support of f is contained inKZα−nKZ}.

By Cartan decomposition the subspaces W (n) are KZ-stable for all n ∈ N and therefore

Lemma 2.2. There is a natural KZ-equivariant isomorphism

IndGKZσr
∼→
⊕
n∈N

W (n).

The representations Rn’s and the dictionary. Let n ∈ Z>−1; we define the open subgroups
of K:

K0(p
n+1)

def
=
{
g ∈ K, s.t. g =

[
a b

pn+1c d

]
for a, b, c, d ∈ OF

}
. (3)

As

[
0 1

pn+1 0

]
normalizesK0(p

n+1), the representation σr|K0(pn) induces, by conjugation, aK0(p
n+1)-

representation which will be denoted as σn+1
r (or simply σr if there is no risk of confusion). Explicitly,

we have

σ(n+1)
r (

[
a b

pn+1c d

]
) = σr(

[
d c

pn+1b a

]
).

We can therefore introduce the representations Rn+1:

Definition 2.3. Let n ∈ Z>−1. The K-representation Rn+1 is defined as

Rn+1
def
= IndKK0(pn+1)σ

n+1
r .

We can extend the action of K on Rn+1 to an action of KZ by letting p ∈ Z act trivially; the
resulting representation will be denoted again by Rn+1 and we will pass from the one to the other
without commentary.

Thanks to the decomposition (2) we get the following, elementary, description of the Rn:

Lemma 2.4. Let n ∈ Z>−1 Then:

i) right translation by αn+1w induces a bijection

K/K0(p
n+1)

∼→ KZα−n−1KZ/KZ;

ii) we have a decomposition

K =
∐

λ∈In+1

[
λ 1
1 0

]
K0(p

n+1)
∐ ∐

λ′∈In

[
1 0
pλ′ 1

]
K0(p

n+1);

11
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Moreover, if 1 6 m 6 n we have a decomposition

K0(p
m) =

∐
λ′∈In+1−m

[
1 0

pmλ′ 1

]
K0(p

n+1);

iii) the family{[[ λ 1
1 0

]
, Xr−jY j

]
,
[ [ 1 0

pλ′ 1

]
, Xr−jY j

]
forλ ∈ In+1, λ

′ ∈ In, 0 6 j 6 r
}

defines an Fp-basis for the representation Rn+1. Moreover, if 1 6 m 6 n, the family

{
[ [ 1 0

pmλ′ 1

]
, Xr−jY j

]
forλ ∈ In+1−m, 0 6 j 6 r}

defines an Fp-basis for the representation Ind
K0(pm)
K0(pn+1)

σr.

Proof. Omissis.

The relation between the representations Rn and the compact induction IndGKZσr|KZ is then
described by the following

Proposition 2.5. Let n ∈ Z>−1. We have a KZ-equivariant isomorphism

Φn+1 : W (n+ 1)
∼→ Rn+1

such that

Φn+1(
[
g0n+1,λ, X

r−jY j
]
) =

[ [ λ 1
1 0

]
, Xr−jY j

]
Φn+1(

[
g1n,λ′ , X

r−jY j
]
) =

[ [ 1 0
pλ′ 1

]
, XjY r−j]

for n > 0 and

Φ0(
[
1G, X

r−jY j
]
) = XjY r−j

for n = 0.
In particular, we have a KZ-equivariant isomorphism

IndGKZσr
∼→
⊕
n∈N

Rn

Proof. Elementary (see for instance [Mo], Proposition 3.4, whose proof generalizes line by line).

We introduce now a convenient Fp-basis for the representation Rn+1. Thanks to the transitivity

Ind
K0(pm)
K0(pn+1)

σr ∼= Ind
K0(pm)
K0(pm+1)

Ind
K0(pm+1)
K0(pn+1)

σr

(where 0 6 m 6 n) we see that a Vandermonde argument together with an immediate induction
give us the following:

Lemma 2.6 (Definition). Let n ∈ N. An Fp basis for the K-representation Rn+1 is described by
the elements

F
(1,n)
l1,...,ln

(ln+1)
def
=

n∑
i=1

∑
λi∈Fq

(λ
1

pi

i )li

[
1 0

pi[λ
1

pi

i ] 1

] [
1, Xr−ln+1Y ln+1

]
F

(0,n)
l0,...,ln

(ln+1)
def
=
∑
λ0∈Fq

λ
l0
0

[
[λ0] 1
1 0

] [
1, F

(1,n)
l1,...,ln

(ln+1)
]

12
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for li ∈ {0, . . . , p − 1}f (where i ∈ {0, . . . , n}) and ln+1 6 r, with the obvious conventions that if
n = 0 we have

F
(1,0)
∅ (l1)

def
=
[
1, Xr−ln+1Y ln+1

]
.

For notational convenience we define

F
(0,−1)
∅ (l0)

def
= (−1)l0X l0Y r−l0

F
(1,−1)
∅ (∅) def

= Y r.

Such basis will be denoted by Bn+1.

The subset B+
n+1 ⊂ Bn+1 described by the elements of the form F

(0,n)
l0,...,ln

(ln+1) will be referred to

as the set of positive elements of Rn+1; the Fp-linear subspace generated by the positive elements
will be denoted as R+

n+1.

Similarly the subset B−n+1 ⊂ Bn+1 described by elements of the form F
(1,n)
l1,...,ln

(ln+1) will be

referred to as the set of negative elements of Rn+1; the Fp-linear subspace generated by the negative
elements will be denoted as R−n+1.

Hecke operators on the Rn+1. Let n ∈ N. Thanks to Lemma 2.1 the W (n)-restriction of the
operator T gives the Fp-linear morphism

T |W (n) : W (n)→W (n− 1)⊕W (n+ 1).

Such restriction is KZ-equivariant (by Cartan decomposition) and composition by the natural
projections gives us the KZ-equivariant operators

T+
n : W (n)→W (n+ 1) T−n : W (n)→W (n− 1).

By transport of structure (via the isomorphisms of Lemma 2.5) we get morphisms

T+
n : Rn → Rn+1 T−n : Rn → Rn−1

(where we used the same notations for the operators on W (n) and Rn). Their description in terms
of the canonical basis of Rn+1 is immediate, following from Lemmas 2.1 and 2.5:

Lemma 2.7. Let n > 0 ∈ N. The KZ-equivariant operators T+
n , T

−
n are characterized by

T+
n : Rn → Rn+1[

1, Xr−lnY ln
]
7→ (−1)ln

∑
λn∈Fq

(λ
1
pn

n )ln

[
1 0

pn[λ
1
pn

n ] 1

] [
1, Xr

]
T−n : Rn → Rn−1[

1, Xr−lnY ln
]
7→
{
δr,ln

[
1, Y r

]
if n > 1

δr,lnY
r if n = 1.

For n = 0 we have

R0 ↪→ R1

Xr−l0Y l0 7→
∑
λ0∈Fq

(−1)r−l0λ
r−l0
0

[
[λ0] 1
1 0

] [
1, Xr

]
+ δl0,0

[
1, Xr

]
.

Moreover, the operators T+
n are monomorphisms for all n ∈ N and the operators T−n are epimor-

phisms for all n ∈ N>1.

Proof. The characterisation of the operators T±n follows by the explicit descriptions given in Lemmas
2.1 and 2.5.

13
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As T+
n maps the basis Bn into a subset of Bn+1, the operator is injective for n > 1. As

[
1, Y r

]
(resp. Y r) is a K-generator for Rn−1 (resp. R0) for n > 2 (resp. n = 1), the operator T−n is
surjective.

We identify Rn with a K-subrepresentation of Rn+1 via the monomorphism T+
n without any

further commentary. For any odd integer n > 1 we use the Hecke operators T±n to define (inductively)
the amalgamated sum R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1 via the following co-cartesian diagram

Rn

−prn−1◦T−n

����

� � T+
n // Rn+1

prn+1

����
R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1

(where we define pr0 to be the identity map). Similarly we define the amalgamated sums R1/R0⊕R2

· · · ⊕Rn Rn+1 for any positive even integer n ∈ N>. The following result is then formal

Proposition 2.8. For any odd integer n ∈ N, n > 1 we have a natural commutative diagram

0 // Rn

−prn−1◦T−n����

T+
n // Rn+1

prn+1����

// Rn+1/Rn // 0

0 // R0 ⊕R1 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 · · · ⊕Rn Rn+1
π // Rn+1/Rn // 0

with exact lines.
We have an analogous result concerning the family

{R1/R0 ⊕R2 · · · ⊕Rn Rn+1}n∈2N\{0}.

Proof. Formal. See for instance [Mo], Proposition 4.1.

The following result let us complete the dictionary

Proposition 2.9. We have a KZ-equivariant isomorphism

π(σr, 0, 1)|KZ
∼→ lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)⊕ lim
−→
n even

(R1/R0 ⊕R2 · · · ⊕Rn Rn+1). (4)

Proof. The proof is formal and identical to [Mo], Proposition 3.9.

Remark 2.10. We can give analogous (in the evident way) definitions in the case where F is any
finite extension of Qp: we would then get a statement completely similar to Proposition 2.9.

3. First description of the Iwahori structure

The goal of this section is to give a first, general description for theK0(p)-representation π(r, 0, 1)|K0(p).
The endpoint is Proposition 3.5, which is the “Iwahori analogue” of Proposition 2.9 of the preceed-
ing section. More precisely, for each n ∈ N the block Rn+1 has a natural K0(p)-equivariant splitting
(by Mackey decomposition)

Rn+1 = R+
n+1 ⊕R

−
n+1

which is compatible with the Hecke operators T±n in the obvious sense (cf. Lemma/Definition 3.2).
This will enable us to repeat the constructions of §2, i.e. the construction of the inductive family of
amalgamated sums · · · ⊕R±n R

±
n+1, endowed with a natural filtration (cf. Lemma 3.4) .
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Thanks to Proposition 3.5 we see that we can content ourselves to the study of the amalgamated
sums · · · ⊕R±n R

±
n+1: actually we have a K0(p)-equivariant surjection

( lim
−→
n odd

· · · ⊕R+
n
R+
n+1)⊕ ( lim

−→
n odd

· · · ⊕R−n R
−
n+1)⊕ ( lim

−→
n even

· · · ⊕R+
n
R+
n+1)⊕ ( lim

−→
n even

· · · ⊕R−n R
−
n+1)

↓
π(r, 0, 1)|K0(p)

whose kernel is “small” (and explicitly determined).

The following elementary result will be crucial.

Lemma 3.1. Let a ∈ {0, . . . , q − 1}. Then∑
λ∈Fq

λa =

{
0 if a 6= q − 1
−1 if a = q − 1.

Proof. Omissis.

The representations R±n+1 and the Hecke operators (T±n )pos, neg. Fix n ∈ N; the Fp-linear
decomposition given by Lemma 2.6

Rn+1
∼= R+

n+1 ⊕R
−
n+1 (5)

is easily checked to be K0(p)-equivariant (realising the Mackey decomposition for Rn+1|K0(p)) and
we clearly have a K0(p)-equivariant isomorphism

R−n+1
∼→ Ind

K0(p)
K0(pn+1)

σn+1
r .

We moreover define the following K0(p)-representations:

R+
0

def
= R0, R−0

def
= 〈Y r〉Fp , (R1/R0)

+ def
= Im(R+

1 ↪→ R1 � R1/R0).

The decomposition given in (5) and the description of Lemma 2.7 lets us define 2 the Hecke
operators (T±n )pos, neg on the representations R±n+1:

Lemma 3.2 (Definition). Let n ∈ N>1.

i) The restriction of the Hecke operator T+
n on the K0(p)-subrepresentations R+

n , R−n of Rn
induces two K0(p)-equivariant monomorphisms,

(T+
n )pos : R+

n ↪→ R+
n+1

(T+
n )neg : R−n ↪→ R−n+1

ii) The restriction of Hecke operator T−n on the K0(p)-subrepresentations R+
n , R−n of Rn induces

two K0(p)-equivariant epimorphisms,

(T−n )pos : R+
n � R+

n−1
(T−n )neg : R−n � R−n−1

Proof. Except for the operator (T−1 )pos, the result follows immediately from the decomposition
Rn|K0(p)

∼= R+
n ⊕R−n and the properties and characterisations of the Hecke operators T±n .

Concerning (T−1 )pos : R+
1 → R0 we notice that

(T−1 )pos(F
(0)
l0(r)

) =
∑
i6r

Xr−iY i(
∑
λ0∈Fq

λ
l0+i
0 )

2We apologize to the reader if the notation (T±n )pos, neg looks heavy. We believe it is convenient if we want to be
precise and keep track of the various parameters on which depend the representations we deal with.
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and the result follows from Lemma 3.1.

Corollary 3.3. The natural K0(p)-equivariant map

R+
2 → (R1/R0)

+

is an epimorphism.

Proof. Omissis.

Amalgamated sums and first description of the Iwahori structure. Using the Hecke o-
perators defined in Lemma 3.2 we can introduce the following amalgamated sums, analogously to
the constructions of §2.

Let n ∈ N be odd and • ∈ {+,−}. We can define inductively a natural K0(p)-representation
R•0 ⊕R•1 · · · ⊕R•n R

•
n+1 together with canonical morphisms pr•n+1, ι

•
n−1 via the co-cartesian diagram

R•n

−(prn−1)•◦(T−n )•

��

� � (T+
n )• // R•n+1

(prn+1)•∃!

��
R•0 ⊕R•1 · · · ⊕R•n−2

R•n−1 ∃!

ι•n−1 // R•0 ⊕R•1 · · · ⊕R•n R
•
n+1.

(with the convention that (T±j )+
def
= (T±j )pos and (T±j )−

def
= (T±j )neg).

For n ∈ N even and • ∈ {+,−} we can define the amalgamated sums (R1/R0)
•⊕R•2 · · ·⊕R•nR

•
n+1,

together with canonical morphisms pr•n+1, ι
•
n−1 in the evident analogous way (with the convention

that (R1/R0)
− = R−1 .)

The following result is similar to Proposition 2.8:

Lemma 3.4. Let n ∈ N be odd, • ∈ {+,−}. Then ι•n−1 is a monomorphism, pr•n+1 is an epimorphism
and we have a K0(p)-equivariant commutative diagram with exact lines:

0 // R•n

−(T−n )•����

(T+
n )• // R•n+1

pr•n+1

����

πn+1 // R•n+1/R
•
n

// 0

R•n−1
pr•n−1����

0 // R•0 ⊕R•1 · · · ⊕R•n−2
R•n−1

ιn−1 // R•0 ⊕R•1 · · · ⊕R•n R
•
n+1

πn+1// R•n+1/R
•
n

// 0.

We have an analogous result when n ∈ N> is even.

Proof. The proof is identical to Proposition 2.8, using that the maps R•1
(T−1 )•

� R•0 and R•2
(T−2 )•

�
(R1/R0)

• are epimorphisms.

In order to give a first description of the K0(p)-representation π(r, 0, 1)|K0(p) we are now left to
determine the relations between the amalgamated sums · · · ⊕R•n R

•
n+1 and the restriction (· · · ⊕Rn

Rn+1)|K0(p).
We will treat in detail the analysis of the limit ( lim

−→
n, odd

R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p). The case n

even is proved in a similar way and is left to the reader.
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Proposition 3.5. The decomposition Rn|K0(p)
∼= R+

n ⊕R−n induces the following K0(p)-equivariant
exact sequences:

0→ 〈(F (0,−1)
∅ (0),−F (1,−1)

∅ (∅))〉Fp → ( lim
−→
n odd

R+
0 ⊕R+

1
· · · ⊕R+

n
R+
n+1)⊕ ( lim

−→
n odd

R−0 ⊕R−1 · · · ⊕R−n R
−
n+1)→

→ ( lim
−→
n odd

R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0

and

0→ 〈(F (0)
r (0),−F (1,0)

∅ (0))〉Fp → ( lim
−→
n even

(R1/R0)
+ ⊕R+

2
· · · ⊕R+

n
R+
n+1)⊕ ( lim

−→
n even

R−1 ⊕R−2 · · · ⊕R−n R
−
n+1)→

→ ( lim
−→
n even

(R1/R0)⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0.

Proof. Let us assume n odd, leaving the case n even to the reader (the proof being analogous). The
functor lim

−→
is exact if the index category is filtrant and the forgetful functor For : RepK0(p) →

VectFp commutes with lim
−→

. It is therefore enough to show that we have an inductive system of exact

sequences

0→ 〈(F (0,−1)
∅ (0),−F (1,−1)

∅ (∅))〉Fp → (R+
0 ⊕R+

1
· · · ⊕R+

n
R+
n+1)⊕ (R−0 ⊕R−1 · · · ⊕R−n R

−
n+1)→

→ (R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p) → 0

with the natural morphisms R•0⊕R•1 · · ·⊕R•n R
•
n+1 → R0⊕R1 · · ·⊕Rn Rn+1 being injective. The proof

will be an induction on n.
Let • ∈ {+,−}. By the universal property of the push out we deduce the following commutative

diagram

0 // R•1 //

������

����

R•2 //

uukkkkkkkkkkkkk

����

R•2/R
•
1

//

{{vvvvv
0

0 // R1

����

// R2

����

// R2/R1
// 0

0 // R•0 //
r R

������
R•0 ⊕R•1 R

•
2

//

∃!
f•

uu

R•2/R
•
1

//
mM

{{wwwww
0

0 // R0
// (R0 ⊕R1 R2)|K0(p)

// R2/R1
// 0

and the morphism f• is injective by the four Lemma applied to the “bottom” diagram: recall that
(T+

0 )• is injective and we check easily the injectivity of the morphism R•2/R
•
1 → R2/R1. We deduce

the commutative diagram with exact lines

0 // R+
0 ⊕R

−
0

//

��

(R+
0 ⊕R+

1
R+

2 )⊕ (R−0 ⊕R−1 R
−
2 ) //

��

(R+
2 /R

+
1 )⊕ (R−2 /R

−
1 )

��

// 0

0 // R0
// (R0 ⊕R1 R2)|K0(p)

// R2/R1
// 0.

(6)

The isomorphism (R+
2 /R

+
1 )⊕ (R−2 /R

−
1 )
∼→ R2/R1 and the exact sequence

0→ 〈(F (0,−1)
∅ (0),−F (1,−1)

∅ (∅))〉 → R+
0 ⊕R

−
0 → R0 → 0

give the result, via the snake Lemma applied to the diagram (6).
We treat now the inductive step. By the inductive hypothesis and the definition of the Hecke
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operators (T±n )pos,neg, we dispose of the commutative diagrams

R•n

����

� � // Rn

����
R•n−1

����

� � // Rn−1

����
R•0 ⊕R•1 · · · ⊕R•n−2

R•n−1
� � / R0 ⊕R1 · · · ⊕Rn−2 Rn−1

(our inductive hypothesis giving the injectivity of the lower arrow) from which we deduce the
following commutative diagram with exact rows

0 // R•n //

~~|||||||||||||||||

����

R•n+1
//

������������������

����

R•n+1/R
•
n

//

���������������
0

0 // Rn

����

// Rn+1

����

// Rn+1/Rn // 0

0 // ···⊕R•n−2
R•n−1 //

nN

~~}}}}}}}}}}}}}}}}
···⊕R•n

R•n+1 //

∃!
f•

��

R•n+1/R
•
n

//
s S

����������������
0

0 // (···⊕Rn−2
Rn−1)|K0(p)

// (···⊕Rn2Rn+1)|K0(p)
// Rn+1/Rn // 0.

Again, the morphism f• is injective by the four Lemma and we deduce as well the following com-
mutative diagram

0

��
(R0 ⊕R1 · · · ⊕Rn−1 Rn−1)|K0(p)

��
(R0 ⊕R1 · · · ⊕Rn Rn+1)|K0(p)

��
Rn+1/Rn

��
0.

0

��
(R+

0 ⊕R+
1
· · · ⊕R+

n−1
R+
n−1)⊕ (R−0 ⊕R−1 · · · ⊕R−n−1

R−n−1)

��

//

(R+
0 ⊕R+

1
· · · ⊕R+

n+1
R+
n+1)⊕ (R−0 ⊕R−1 · · · ⊕R−n+1

R−n+1)

��

//

(R+
n+1/R

+
n )⊕ (R−n+1/R

−
n )

��

//

0

As the natural morphism (R+
n+1/R

+
n )⊕ (R−n+1/R

−
n )→ Rn+1/Rn is an isomorphism, the conclusion

follows by applying the snake Lemma and using the exact sequence

0→ 〈(F (0,−1)
∅ (0),−F (1,−1)

∅ (∅))〉Fp → (R+
0 ⊕R+

1
· · · ⊕R+

n−2
R+
n−1)⊕ (R−0 ⊕R−1 · · · ⊕R−n−2

R−n−1)→

→ (R0 ⊕R1 · · · ⊕Rn−2 Rn−1)|K0(p) → 0.
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coming from the inductive hypothesis.

4. Representations of the Iwahori subgroups

In this section we introduce the fundamental techniques which let us describe easily the Iwahori
structure of the representations R±n+1, appeared in §3, in terms of simple Euclidean data. Appro-
priate refinements of such methods let us, later on, describe more complicate objects, such as the
representations R±n+1/R

±
n or the universal representations π(r, 0, 1) appearing in §5.

We hope that suitable improvements of the ideas and techniques presented here will eventually
lead to the detection of the “good” supersingular representations which should appear in a mod p
local Langlands correspondence (see also Remark 4.3).

We focus our attention on the representations Ind
K0(p)
K0(pn+1)

1: the description of R±n+1 can be

obtained with identical techniques (cf. sections §4.1.3 or 4.2). The Iwahori structure of such objects
-given by Proposition 4.2- may look complicated, but the key point is that its combinatorics can be
controlled by an easy Euclidean method which we outline as follows.

First of all we detect a “canonical” Fp-basis B for the representation Ind
K0(p)
K0(pn+1)

1 (definition 4.1).

We see that each element F
(1,n)
l1,...,ln

∈ B is parametrized by a family of f -tuples li ∈ {0, . . . , p− 1}f ,

family which can be used to define a point (in the näıve sense) (x0, . . . , xf−1) ∈ Rf−1. In this way,
we can associate, bijectively, the elements of the basis B to the integer points of an f -hypercube
R, of side pn − 1 embedded in Zf−1: this is detailed in paragraph 4.1.1.

The following step (§4.1.2) consists in veryfing that the Euclidean lattice R describes the Iwahori

structure of Ind
K0(p)
K0(pn+1)

1, in the sense of Definition 1.7. As R is an f -hypercube, this means that

the Iwahori socle filtration of Ind
K0(p)
K0(pn+1)

1 is deduced by successive intersections of the lattice R

with the antidiagonals X0 + · · ·+Xf−1 = constant (see also Figure 3), i.e.:

i) a linear basis for the N -th composition factor of the socle filtration of Ind
K0(p)
K0(pn+1)

1 is given by

the point lying below the hyperplane X0 + · · ·+Xf−1 = N

ii) a linear basis for the N -th layer of the socle filtration is given by the points lying on the
hyperplane X0 + · · ·+Xf−1 = N .

This is the content of Proposition 4.2, the technical heart of the methods introduced in this
paper. We verify, via the delicate estimates on Witt vectors of Appendices A and B, that the

behaviour of the canonical elements F
(1,n)
l1,...,lf−1

fits the previous Euclidean picture.

The interested reader is invited to see the beginning of section 4.1.2 for further details concerning
the general techniques and phenomena appearing in the proof of Proposition 4.2.

As annonced the same techniques let us detect the K0(p)-structure for the representations R±n+1:
the involved combinatorics can be handled with the help of a simple Euclidean picture (an f -
parallelepipoid). The precise statements are Propositions 4.10 and 4.11 which deal with R−n+1 and
R+
n+1 respectively.

The constructions and computations of this section let us, as an application, determine the
Iwahori structure for principal and special series: this is the object of §4.3. Again, in terms of
Euclidean space, we see that the successive layers for the K0(p)-socle filtration are detected by the
intersections of Nf (the “hypercube” associated to such series) with the hyperplanes X0 + · · · +
Xf−1 = constant.
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Figure 3: The Euclidean picture of Ind
K0(pm)
K0(pn+1)

1 for p = 5, m 6 n−1. The N -th composition factor

for the socle filtration is described by the points of R lying below the line X0 +X1 = N . Each point

should be interpreted as a F
(n−1,n)
ln−1,ln

-block; the square with thicker lines are then the F
(n)
tn

-blocks.

4.1 The negative case.

Let 1 6 m 6 n be integers. In this section we examine the K0(p)-socle filtration (and the extensions

between two consecutive graded pieces) for the representations Ind
K0(pm)
K0(pn+1)

χ where χ : K0(p
n+1)→

F
×
p is a smooth character of K0(p

n+1) (i.e. the inflation of a character of the finite Borel B(Fq) by
the morphism K0(p

n+1)� B(Fq)). Thanks to the canonical isomorphism :

Ind
K0(pm)
K0(pn+1)

χ ∼= (Ind
K0(pm)
K0(pn+1)

1)⊗ χ

we can assume that χ = 1 is the trivial character. Finally, let {e} be an Fp-basis for the underlying
vector space associated to the character χ.

We introduce now the canonical base of Ind
K0(pm)
K0(pn+1)

1 and its interpretation in terms of lattices

of Rf .

Definition 4.1. For j ∈ {m, . . . , n} let lj = (l
(0)
j , . . . , l

(f−1)
j ) ∈ {0, . . . , p − 1}f be a f -tuple. We

define the element F
(m,n)
lm,...,ln

∈ Ind
K0(pm)
K0(pn+1)

1 as3

F
(m,n)
lm,...,ln

def
=

n∑
j=m

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1, e
]
.

3As remarked by the Referee, if λj runs over Fq so does λ
1
pj

j and the expression for F
(m,n)
lm,...,ln

may be simplifid.

Nevertheless we find our writing well adapted when we need to manipulate the (pseudo-)homogeneous degree of
universal Witt polynomials in a coherent way, see for instance the note in Proposition 4.4.
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For a notational convenience, we define F
(n+1,n)
ln+1,...,ln

def
=
[
1, e
]

and ln+1
def
= 0.

The set

B
def
=

{
F

(m,n)
lm,...,ln

∈ Ind
K0(pm)
K0(pn+1)

1, for (lm, . . . , ln) ∈
{
{0, . . . , p− 1}f

}n+1−m
}

is an Fp-basis for Ind
K0(pm)
K0(pn+1)

1.

The fact that B is an Fp basis for Ind
K0(pm)
K0(pn+1)

1 is again an induction together with a Vander-

monde argument as for Lemma 2.6.

4.1.1 Interpretation in terms of lattices. As anticipated in the introduction, each element
of B can be seen as a “point” of a Z-lattice in the standard Euclidean f -dimensional space Rf :
such correspondence is given by the injective map

B
P
↪→ Rf (7)

F
(m,n)
lm,...,ln

7→
( n∑
j=m

pj−ml
(bj−mc)
j , . . . ,

n∑
j=m

pj−ml
(bf−1+j−mc)
j

)
whose image will be denoted by R. We notice that R is a f -hypercube of side pn−m+1 − 1, with a
natural recursive structure in the following sense: for an f -tuple tn ∈ {0, . . . , p− 1}f , the subset of
functions whose last p-adic digits are fixed to be equal to tn, i.e.{

F
(m,n)
lm,...,ln−1,tn

∈ B lj ∈ {0, . . . , p− 1}f , form 6 j 6 n− 1
}
,

corresponds to an f -sub-hypercube of R of side pn−m − 1 via the bijection P . It will be referred to

as the F
(n)
tn

-block of R. The hypercube R is then obtained as the juxtaposition of the F
(n)
tn

-blocks

for varying tn ∈ {0, . . . , p− 1}f . This is visualized, for instance, in Figure 3, where the squares with

thicker lines correspond to the F
(n)
tn

-blocks. The notion of block can be adapted in the evident way
if considering the functions where the k last p-adic digits are fixed (with 1 6 k 6 n −m + 1): we
get this way a f -sub-hypercube of R of side pn−m+1−k − 1.

We are therefore allowed to apply the terminology of real Euclidean spaces to the elements of B,
meaning their image through the map P . In particular if ei

def
= (δ0,i, . . . , δf−1,i) ∈ {0, 1}f we define

Fm,n(lm,...,ln)−ei
by

Fm,n(lm,...,ln)−ei
=

{
0 if P←(P (Fm,nlm,...,ln

)− ei) = ∅
the only element of P←(P (Fm,nlm,...,ln

)− ei) otherwise.

In order to give the statement concerning the K0(p
m)-structure of Ind

K0(pm)
K0(pn+1)

χ we still need

some notation. If (lm, . . . , ln) is a (n+ 1−m)f -tuple, we define

Nm,n(lm, . . . , ln)
def
=

f−1∑
s=0

l(s)m + p(

f−1∑
s=0

l
(s)
m+1) + · · ·+ pn−m(

f−1∑
s=0

l(s)n )

e(lm, . . . , ln)
def
= (

f−1∑
s=0

psl(s)m ) + · · ·+ (

f−1∑
s=0

psl(s)n );

in particular any F
(m,n)
lm,...,ln

lies on the antidiagonal X0 + · · ·+Xf−1 = Nm,n(lm, . . . , ln).

21



Stefano Morra

Let N ∈ N. We define the Fp-linear subspace

(Ind
K0(pm)
K0(pn+1)

1)N
def
= 〈Fm,nlm,...,ln

∈ B s.t. Nm,n(lm, . . . , ln) < N〉Fp ;

it is the subspace generated by the functions lying strictly below the antidiagonal X0+. . . Xf−1 = N .

We refer the reader to Figure 3 to have the Euclidean interpretation in the case f = 2.

Let (lm, . . . , ln) be a fixed -tuple. For s ∈ {0, . . . , f − 1}, we define

Ξs
def
=
{
a ∈ {m, . . . , n}, s.t. lbs+a−mca 6= 0

}
and we set

a0(s)
def
=

{
min(Ξs) if Ξs 6= ∅
n+ 1 otherwise.

The Euclidean meaning of a0(s) is clear: if we consider the F
(a0(s),n)
la0(s)

,...,ln
-block then the function

F
(m,n)
lm,...,ln

lies on its s-th face (which is a (f − 1)-hypercube of side pa0(s)−m − 1).

The K0(p
m)-structure of Ind

K0(pm)
K0(pn+1)

χ is then given by the following

Proposition 4.2. Let r
def
= (r0, . . . , rf−1) ∈ {0, . . . , p− 1}f−1 be a f − tuple, m,n be integers such

that 1 6 m 6 n and let F
(m,n)
lm,...,ln

∈ Ind
K0(pm)
K0(pn+1)

χsr be as in definition 4.1. If a, b, c, d ∈ OF are integers

such that g
def
=

[
a b
pmc d

]
∈ K0(p

m) we have

gF
(m,n)
lm,...,ln

= ae(lm,...,ln)χsr(g)(F
(m,n)
lm,...,ln

−
f−1∑
s=0

(ca−1)p
s
l
bs+a0(s)−mc
a0(s)

F
(m,n)
lm,...,ln−es

+ y)

where, putting N
def
= Nm,n(lm, . . . , ln), we have y ∈ (Ind

K0(pm)
K0(pn+1)

χsr)N−1.

In particular, the K0(p)-socle filtration, as well as the extensions between two consecutive graded

pieces, of Ind
K0(pm)
K0(pn+1)

χsr is described by the associated lattice R.

We emphatise again the meaning of Proposition 4.2 in terms of lattices in Rf : the socle filtration

of Ind
K0(pm)
K0(pn+1)

χ is given by cutting up the hypercube R by the antidiagonals X0 + · · ·+Xf−1 = N

(precisely, socN is obtained from the cutting by the antidiagonalX0+· · ·+Xf−1 = N); the extensions
between two consecutive graded pieces are visualized by the segments of length 1 obtained from the
cutting of R by two consecutive antidiagonals X0 + · · ·+Xf−1 = N , X0 + · · ·+Xf−1 = N − 1.
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Here below an example for f = 2.

.... . .

.... . .

χs
r χs

ra

χs
ra

p

. . . . . . . . . -

...

...

...

6

...

...

...

...

. . .

. . .

. . .

. . .

χs
r

χs
ra

−1

χs
ra

−p

pn+1−m-1. . .1 2 . . .

pn+1−m-1

...

1

2

...

Here, each “point” in the lattice corresponds to a function Fm,nlm,...,ln
∈ B according to the map

P described in (7). The N -th composition factor socN (Ind
K0(pm)
K0(pn+1)

1) of the socle filtration can be

read as the intersection of R with the semispace X0 + · · · + Xf−1 6 N , and the N -th graded

piece socN (Ind
K0(pm)
K0(pn+1)

1)/socN−1(Ind
K0(pm)
K0(pn+1)

1) as the intersection with the antidiagonal X0 + · · ·+

Xf−1 = N . Finally, a “point” of coordinates (
∑n

j=m p
j−ml

(bj−mc)
j ,

∑n
j=m p

j−ml
(b1+j−mc)
j ) should be

understood as the character χsra
e(lm,...,ln).

Remark 4.3. We hope that suitable improvements of the techniques introduced here could lead to a
better understanding of some important representations of the Iwahori subgroup (R±n+1, R

±
n+1/R

±
n ,

the universal representations...). For instance, our result shows that for a fixed point P ∈ R lying
on the hyperplane X0 + · · · + Xf−1 = N , the K0(p)-subrepresentation generated by P lives inside
the linear space generated by P , the elements P − ei for i ∈ {0, . . . , f − 1} and some elements lying
strictly below the hyperplane X0 + · · ·+Xf−1 = N − 1. In particular, it is not clear (and probably
false) that the K0(p)-subrepresentation generated by P = (x0, . . . , xf−1) lives in the subspace

X0 6 x0 ∩ · · · ∩Xf−1 6 xf−1.

An answer to this question would be of great importance in understanding supersingular represen-
tations for GL2(F ).

4.1.2 Proof of Proposition 4.2. The section is devoted to the proof of Proposition 4.2. It
is the technical part of the paper and the methods rely on a careful analysis of suitable invariants
associated to certain universal Witt polynomials. Such invariants, together with the choice of the
“natural” linear basis B, lead us to the following key phenomena:

i) the elements of the canonical basis B are “well behaved” with respect to the action of g ∈
K0(p), i.e. one can naturally describe gF

(1,n)
l1,...,ln

as a linear combination of elements of B;

ii) the parameters describing the elements appearing in the linear development of gF
(1,n)
l1,...,ln

depend

on some universal Witt polynomyals, whose (pseudo-)homogeneous degree is known (see section
6.4 for the precise definition of pseudo-homogeneity).
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iii) the correspondence between the elements of B and the points in the associated hypercube is
well behaved with respect to the homogeneous degree of the universal Witt polynomials.

It is here that we need the results of the Appendices A, B, which deal with certains invariants
of some universal Witt polynomials; throughout the proofs of Propositions 4.4, 4.5, 4.7 we make
use of some notations introduced in such appendices, in particular §6.2, 6.3 and 6.4.1 (we will give
precise references in the proofs as well).

Thanks to the decomposition

K0(p
m) = H ·

[
1 OF

0 1

] [
1 + pOF 0

0 1 + pOF

] [
1 0

pmOF 1

]
(8)

for m > 1 we are led to study separately the actions of lower unipotent, diagonal and upper
unipotent matrices on the elements of the canonical basis B: this will be the object of the next
three paragraphs.

The action of lower unipotents matrices. We study here the action of the closed subgroup[
1 0

pmOF 1

]
of K0(p

m) on Ind
K0(pm)
K0(pn+1)

1; we first need to introduce a family of Fp-subspaces of

Ind
K0(pm)
K0(pn+1)

1.

Let F
(m,n)
lm,...,ln

∈ B and set (x0, . . . , xf−1)
def
= P (F

(m,n)
lm,...,ln

) ∈ R. We define the Fp-subspace

W(lm,...,ln)
of Ind

K0(pm)
K0(pn+1)

1 as follows

P (W(lm,...,ln)
)

def
= {(x′0, . . . , x′f−1) ∈ R s.t. it exists k > 0 for which

k(p− 1) 6
f−1∑
s=0

(xs − x′s) < (k + 1)(p− 1) andx′j 6 xj + k for all j = 0, . . . , f − 1}.

The image P (W(lm,...,ln)
) ⊆ Rf looks as a snowflake: in Figure 4 an example for f = 2 (and p = 5).

It is immediate to check that if F
(m,n)

l′m,...,l
′
n
∈ W(lm,...,ln)

then W(l′m,...,l
′
n)
⊆ W(lm,...,ln)

. The action

of

[
1 0

pmOF 1

]
is then described in the following

Proposition 4.4. Let F
(m,n)
lm,...,ln

∈ B, and write N
def
= Nm,n(lm, . . . , ln). Let g =

[
1 0
pmc 1

]
∈[

1 0
pmOF 1

]
for c ∈ OF . Then we have

g · F (m,n)
lm,...,ln

= F
(m,n)
lm,...,ln

−
f−1∑
s=0

cp
s
l
bs+a0(s)−mc
a0(s)

F
(m,n)
(lm,...,ln)−es

+ y

for a suitable y ∈ (Ind
K0(pm)
K0(pn+1)

1)N−1. More precisely, via the projection

Ind
K0(pm)
K0(pn+1)

1
pr
� Ind

K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−(pf+2),

the image of the element y is contained in the image of the subspace W(lm,...,ln)
.

Proof. As the action of

[
1 0

pmOF 1

]
is continuous, we can assume that c belongs to a set of

topological generators (for the additive structure) of OF ; in particular, we can assume c = [µ
1
pm ]
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Figure 4: Euclidean interpretation of W(lm,...,ln)
for p = 5. By Proposition 4.4 the representation

generated by F
(m,n)
lm,...,ln

under the action of lower unipotent matrices lives inside the linear space
generated by W(lm,...,ln)

. Notice the fractal structure due to the behaviour of Witt polynomials.
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for µ ∈ Fq.
Using the notations of §6.2, we can write the following equality in pmOF /p

n+1OF :

pm[µ
1
pm ] +

n∑
j=m

pj [λ
1

pj

j ] =
n∑

j=m

pj [λ
1

pj

j + (S̃
1

pj

j−m)] (9)

A direct computation describes4 the action of g on the function F
(m,n)
lm,...,ln

:[
1 0

pm[µ] 1

]
F

(m,n)
lm,...,ln

=

=
n−1∑
j=m

∑
ij6lj

(
lj
ij

)
(−s0(S̃0)im)

∑
λj∈Fq

(λ
1

pj

j )lj−ij (−sj−m(S̃j−m+1)
1

pj+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, F

(n)
ln−in

]
.

As deg(sj−1(S̃j)) 6 pj for each j ∈ {1, . . . , n − m} we can apply Proposition 7.3 (with Tm+j =

sj−1(S̃j)) to conclude that

g · F (m,n)
lm,...,ln

= F
(m,n)
lm,...,ln

+

f−1∑
s=0

βsF
(m,n)
(lm,...,ln)−es

+ y

where y ∈ Ind
K0(pm)
K0(pn+1)

1 is the element described in the statement, for suitable elements βs ∈ Fq.

We are now left to prove that βs = −(µ
1
pm )p

s
l
bs+a0(s)−mc
a0(s)

.

We use the notations of Proposition 7.3 (in particular, we need the quantities κ
(b),s
a , κ

(b)
a used

in its proof) and we recall that, for b = m + 1, . . . , n, a polynomial −sb−m−1(S̃b−m(X,Y )) is
homogeneous of degree pb−m if Xa has degree pa, Y degree p0 (and S̃0 = Y ).

If we pick an element

x
def
=

∑
λm∈Fq

(λ
1
pm

m )κm

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

appearing in the development of gF
(m,n)
lm,...,ln

we have, for b ∈ {m+ 1, . . . , n},

b−1∑
a=m

pa−mκ(b),sa = i
(s)
b pb−m − α(s)

b

where i
(s)
b (pb−m− 1) > α(s)

b > i
(s)
b is the exponent of Y in the fixed monomial of −sb−1−m(S̃b−m)i

(s)
b

(recall that any monomial Y c
∏b−1−m
i=0 Xai

i with c = 0 or
∑
ai = 0 appears in the development of

4It is in such situations that Definition 4.1 turns out to be useful, as it let us handle in a coherent way the exponents

of the λj in the development of (λ
1
pj

j )lj−ij (−sj−m(S̃j−m+1)
1

pj+1 )ij+1 .
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−sb−1−m(S̃b−m) with coefficient zero unless b = m). Considering that p > 3 the inequalities

s(κm) + p s(κm+1) + · · ·+ pn−m s(κn) 6

6(s(lm − im) + s(pb−1cκ(m+1)
m ) + · · ·+ s(pb−(n−m)cκ(n)m )) +

+p(s(lm+1 − im+1) + s(pb−1cκ
(m+2)
m+1 ) + · · ·+ s(pb−(n−m−1)cκ

(n)
m+1)) + . . .

· · ·+ pn−m−1(s(ln−1 − in−1) + s(pb−1cκ
(n)
n−1)) + pn−m(s(ln − in)) 6

6 s(lm − im) +

f−1∑
s=0

s(κ(m+1),s
m ) +

p(s(lm+1 − im−1)) + (

f−1∑
s=0

(s(κ(m+2),s
m + p s(κ

(m+2),s
m+1 )))) + . . .

· · ·+ (

f−1∑
s=0

(s(κ(n),sm ) + p s(κ
(n),s
m+1) + · · ·+ pn−m−1 s(κ

(n),s
n−1 ))) + pn−m s(ln − in) 6

6
n∑

a=m

pa−m(s(la − ia)) +
n∑

b=m+1

(
pb−m(s(ib))−

f−1∑
s=0

α
(s)
b

)
have to be equalities if we furthermore require our element to lie on the hyperplane X0+· · ·+Xf−1 =

N − 1; in particular we must have i
(s)
b = 0 for all couples (b, s) ∈ {m, . . . , n}× {0, . . . , f − 1} except

one and only one, say (b0, s0), for which we must have i
(s0)
b0

= 1.
We notice that for b0 6= m we require furthermore that αb0 = 1 i.e. the exponent of Y appearing

in the fixed monomial of −sb0−m−1(S̃b0−m) is 1. Thanks to Lemmas 6.3 and 6.4 we check that

x = −(µ
1
pm )p

s0
(l
bs+a0(s)−mc
a0(s)

)F
(m,n)
lm,...,n−es0

as required.

The action of diagonal matrices. We are going to study the action of the subgroup[
1 + pOF 0

0 1 + pOF

]
on the elements of B. If z ∈ pmOF /p

n+1OF , an elementary computation shows that[
1 + pa 0

0 1 + pd

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
k

where k ∈ K0(p
n+1) is upper unipotent modulo p and z′ ∈ pmOF /p

n+1OF is determined by the
condition

z′ ≡ (1 + pa)−1(1 + pd)zmod pn+1. (10)

We can therefore content ourself studying the action of an element of the form x
def
=

[
1 0
0 1 + pα

]
for α ∈ OF .

Proposition 4.5. Let g ∈
[

1 + pOF 0
0 1 + pOF

]
and fix F

(m,n)
lm,...,ln

∈ B; writeN
def
= Nm,n(lm, . . . , ln).
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We then have the equality

g · F (m,n)
lm,...,ln

= Fm,nlm,...,ln
+ y

where y ∈ Ind
K0(pm)
K0(pn+1)

1)N−1.

More precisely, via the projection

Ind
K0(pm)
K0(pn+1)

1
pr
� Ind

K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−(pf+2),

the image of y is contained in the image of the subspace W(lm,...,ln)
and writing

y =
∑
i∈I

βiF
(m,n)
lm(i),...,ln(i)

(for a suitable set of indices I and scalars βi ∈ F
×
p ) we have that each function F

(m,n)
lm(i),...,ln(i)

which

is not in the kernel ker(pr) lies on an hyperplane

X0 + · · ·+Xf−1 = N − t(p− 1)

for some t ∈ N>.

Proof. The proof is completely analogous to the proof of Proposition 4.4. As remarked above, it

is enough to consider the case x =

[
1 0
0 1 + pα

]
where α =

∑∞
j=0 p

j [α
1

pj

j ]. Using the notations of

§6.3 we see that

(1 + pα)(
n∑

j=m

pj [λ
1

pj

j ]) ≡
n∑

j=m

pj [λ
1

pj

j + Q̃
1

pj

j ] mod pn+1

and we deduce[
1 0
0 1 + pα

]
Fm,nlm,...,ln

=

=
n−1∑
j=m

∑
ij6lj
im=0

(
lj
ij

) ∑
λj∈Fq

(λ
1

pj

j )lj−ij (−qj−m(Q̃j+1−m))ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, F

(n)
ln−in

]
(11)

(with the obvious conventions if n ∈ {m,m+1}). As each polynomial (−qj−1(Q̃j)) ∈ Fp[λm, . . . , λj−1−m],
for 1 6 j 6 n−m is homogeneous of degree pj (in the shifted grading for which λm+h is homoge-
neous of degree ph for h > 0) we can apply Proposition 7.3 with Tm+j = (−qj−1(Q̃j)) to get the
first part of the statement.

We are left to prove 2). Consider an integer t ∈ N and an hyperplane H : X0 + . . . Xf−1 = N − t.
Following the proof of Proposition 7.3, a necessary condition for an element∑

λm∈Fq

(λ
1
pm

m )κm

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

appearing in the developement of (11) to lie in H is then

n∑
j=m

pj−m s(κj) ≡ N − tmod p− 1.

Again, as each polynomial (−qj−1(Q̃j)), for 1 6 j 6 n − m is homogeneous of degree pj , and
s(h) ≡ hmod p − 1 we deduce that inequalities (25), (26), (27) and (28) appearing in the proof of
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Proposition 7.3 are actually equalities in Z/(p− 1) so that we get

n∑
j=m

pj−m s(κj) ≡ N − s(im) mod p− 1 = N.

The conclusion follows.

The action of upper unipotent matrices. We are left to study the action of the closed sub-

group

[
1 OF

0 1

]
on the elements of B. We recall that the action of K0(p

m) is continuous on

Ind
K0(pm)
K0(pn+1)

1 and the natural topology on

[
1 OF

0 1

]
coincides with the topology induced (via the

natural immersion) by K0(p
m). Thanks to the isomorphisms of abelian topological groups[

1 OF

0 1

]
∼= OF

∼= (Zp)
f

where the latter isomorphism is determined by the choice of a primitive element α ∈ Fq of Fq over

Fp (cf. Serre [Ser], Proposition 16 Ch.I) it is enough to study the action of elements g ∈
[

1 OF

0 1

]
of the form g =

[
1 [µ]
0 1

]
for µ ∈ Fq.

We start with an elementary computation:

Lemma 4.6. Let z ∈ pmOF /p
n+1OF and µ ∈ Fq. We have the following equality:[

1 [µ]
0 1

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
k

where k ∈ K0(p
n+1) is upper unipotent modulo p and z′ ∈ pmOF /p

n+1OF is uniquely determined
by the condition

z′ ≡ z(1 + z[µ])−1 mod pn+1 ≡
N∑
j=0

((−1)jzj+1[µj ]) mod pn+1

for N
def
= bn+1

m c.

Proof. Omissis.

We are now left to use Lemma 4.6 and the results of §6.4 in order to describe the required action

of

[
1 OF

0 1

]
:

Proposition 4.7. Let g ∈
[

1 OF

0 1

]
and fix F

(m,n)
lm,...,ln

∈ B. Write 5 N
def
= Nm,n(lm, . . . , ln). In the

quotient space 6

Ind
K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−(pm−2)+1

5Of course, this N does not have anything to do with N
def
= bn+1

m
c. We believe this conflict of notations will not give

rise to any confusion, as the meaning of N will be clear from the context.
6It is here that the assumption p 6= 3 is important: indeed, for p = 3, m = 1 the quotient space is

Ind
K0(p

m)

K0(pn+1)
1/(Ind

K0(p
m)

K0(pn+1)
1)N which is too small to deduce interesting information about the action of upper unipo-

tent matrices.
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we have the equality

g · F (m,n)
lm,...,ln

= F
(m,n)
lm,...,ln

.

Proof. As remarked at the begining of this paragraph, we can assume g =

[
1 [µ]
0 1

]
where µ ∈ Fq.

Using Lemma 4.6 and the results (and notations) of §6.4.1 we get the following equality in
OF /(p

n+1):

N∑
j=0

(−1)jzj+1[µj ] ≡
n∑

j=m

pj [λ
1

pj

j + Ũ
1

pj

j ] mod pn+1

so that, inside Ind
K0(pm)
K0(pn+1)

1, we have:

gFm,nlm,...,ln
=

n−1∑
j=m

∑
ij6lj
im=0

(
lj
ij

) ∑
λj∈Fq

(λ
1

pj

j )lj−ij (−uj(Ũ
1

pj+1

j+1 ))ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, F

(n)
ln−in

]

and we recall that Ũj = 0 for m 6 j 6 2m− 1. As for each 2m 6 j 6 n the polynomial −uj−1(Ũj)
is pseudo-homogeneous of degree pj − pm(pm− 2) the conclusion follows from Proposition 7.4, with
Vj = −uj−1(Ũj).

Proof of Proposition 4.2. The last step in order to complete the proof of Proposition 4.2 is
immediate:

Proposition 4.8. Let F
(m,n)
lm,...,ln

∈ B and let a, d ∈ Fq. We then have the following equality in

Ind
K0(pm)
K0(pn+1)

1: [
[a] 0
0 [d]

]
F

(m,n)
lm,...,ln

= ae(lm,...,ln)(

[
[a] 0
0 [d]

]
)F

(m,n)
lm,...,ln

.

In particular [
[a] 0
0 [d]

]
F

(m,n)
lm,...,ln−es

= ae(lm,...,ln)−p
s
(

[
[a] 0
0 [d]

]
)F

(m,n)
lm,...,ln−es

.

Proof. We just remark that for z =
∑n

j=m p
j [λj ] ∈ pmOF /p

n+1OF we have[
[a] 0
0 [d]

] [
1 0
z 1

]
=

[
1 0

z[a−1d] 1

] [
[a] 0
0 [d]

]
and that

z[a−1d] =

n∑
j=m

pj [λj(a
−1d)].

Finally, for a, b, c, d ∈ OF as in the statement of Proposition 4.2, we recall the matrix equality[
a b
pmc d

]
=

[
[a] 0
0 [d]

] [
1 0
pmz 1

] [
1 + px 0

0 1 + pw

] [
1 y
0 1

]
where x, y, z, w ∈ OF are suitable integers verifying z = cd−1. The result follows now from Propo-
sitions 4.4, 4.5, 4.7 and Lemma 4.8. 2
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Remark 4.9. We note that the bijection (7) depends on the immersion τ : Fq ↪→ Fp fixed in
the introduction and should be noted as Pτ . As another immersion τ ′ : Fq ↪→ Fp is obtained
by composing τ with a power φa of the frobenius on Fq we see that the map Pτ ′ is obtained by
composing Pτ with a power Φa, where Φ ∈ End(Rf ) is defined by Φ(es) = ebs+1c. Hence, as the
antidiagonal is fixed under Φ, Proposition 4.2 does not depend on τ .

4.1.3 The structure of the representations R−n . Fix an integer n ∈ N. We describe here
the socle filtration (and the extensions between two consecutive graded pieces) for the K0(p)-
representations R−n+1. Again, we can identify the negative elements of R−n+1 with the points of a
lattice of Rf according to the following injective map

B−n+1 ↪→ Rf

F
(1,n)
l1,...,ln

(ln+1) 7→ (

n+1∑
a=1

pa−1lbs+a−1ca )s∈{0,...,f−1}

whose image will be denoted by R−n+1; we define in the evident way the subspaces (R−n+1)N for
N ∈ N.

The structure of R−n+1 is then sumarized in the following

Proposition 4.10. Let n ∈ N, F
(1,n)
l1,...,ln

(ln+1) ∈ B−n+1 and let a, b, c, d ∈ OF be such that g
def
=[

a b
pc d

]
∈ K0(p). Define finally the integer N

def
= N1,n+1(l1, . . . , ln+1).

We have the equality

gF
(1,n)
l1,...,ln

(ln+1) = ae(l1,...,ln+1)χsr(g)(F
(1,n)
l1,...,ln

(ln+1)−
f−1∑
s=0

(ca−1)p
s
l
bs+a0(s)−1c
a0(s)

(−1)δa0(s),n+1F
(1,n)
l1,...,ln

(ln+1) + y)

where y ∈ (R−n+1)N−1.
In particular, theK0(p)-socle filtration ofR−n+1, as well as the extensions between two consecutive

graded pieces, are described by the associated lattice R−n+1.

Proof. We notice that we have a K0(p
n+1)-equivariant monomorphism

σ(n+1)
r ↪→ Ind

K0(pn+1)
K0(pn+2)

χsr

Xr−ln+1Y ln+1 7→ (−1)ln+1

∑
λn+1∈Fq

(λ
1

pn+1

n+1 )ln+1

[
1 0

pn+1[λ
1

pn+1

n+1 ] 1

] [
1, e
]
.

By transitivity and exactness of the induction functor Ind
K0(p)
K0(pn+1)

(•) we get a K0(p)-equivariant

monomorphism

R−n+1 ↪→ Ind
K0(p)
K0(pn+2)

χsr

F
(1,n)
l1,...,ln

(ln+1) 7→ (−1)ln+1F
(1,n+1)
l1,...,ln,ln+1

.

The conclusion is now immediate from Proposition 4.2.

4.2 The positive case

This section is again divided into two parts. We begin with the study of the K0(p)-representations
R+
n+1, for n ∈ N: they are described in Proposition 4.11. We subsequently switch our attention

introducing other K0(p) representations (the representations (IndKK0(pn+1)χ
s)+ defined in §4.3) which
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will let us describe the K0(p)-restriction of principal and special series (see §4.3).
The philosophy is completely analogous to the one of the previous paragraph: we verify by a

direct computation on the ring of Witt vectors that the K0(p)-structure of such objects can be
described in terms of f -parallelepipoids in the Euclidean space Rf .

Fix n ∈ N. We introduce the injective map

B+
n+1 ↪→ Rf

F
(0,n)
l0,...,ln

(ln+1) 7→ (

n+1∑
i=0

pil
(bs+ic)
i )s∈{0,...,f−1}

which lets us interpret the positive elements of R+
n+1 as points in a convenient lattice of Rf . The

image of such map (which is a parallelepipoid of side pn+1(rs + 1)− 1) will be denoted as R+
n+1. We

still need the following notations (see also §4.1.1):

i) for a (n+ 2)f -tuple (l0, . . . , ln+1) ∈
{
{0, . . . , p− 1}f

}n+2
define the integers

N0,n+1(l0, . . . , ln+1)
def
=

n+1∑
a=0

pas(la)

e(l0, . . . , ln+1)
def
= (

f−1∑
s=0

psl
(s)
0 ) + · · ·+ (

f−1∑
s=0

psl
(s)
n+1);

ii) for N ∈ N we define the Fp-linear subspace

(R+
n+1)N

def
=

〈
F

(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1 s.t. N0,n+1(l0, . . . , ln+1) < N

〉
Fp

;

iii) for a fixed (n+ 2)f -tuple (l0, . . . , ln+1) and s ∈ {0, . . . , f − 1}, we define

Ξs
def
=
{
a ∈ {0, . . . , n+ 1}, s.t. lbs+aca 6= 0

}
and we set

a0(s)
def
=

{
min(Ξs) if Ξs 6= ∅
0 otherwise.

For a given positive element F
(0,n)
l0,...,ln

(ln+1) we define the subspace W(l0,...,ln+1)
in the evident, similar

way.

The structure of R+
n+1 is then given by

Proposition 4.11. Let n ∈ N, F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1 and let a, b, c, d ∈ OF be such that g

def
=[

a b
pc d

]
∈ K0(p). Define finally the integer N

def
= N0,n+1(l0, . . . , ln+1). We then have

gF
(0,n)
l0,...,ln

(ln+1) = (a−1)e(l0,...,ln+1)χr(g)(F
(0,n)
l0,...,ln

(ln+1)−
f−1∑
s=0

(bd
−1

)p
s
l
bs+a0(s)c
a0(s)

(−1)δa0(s),n+1F
(0,n)
l0,...,ln

(ln+1) + y)

where y ∈ (R+
n+1)N−1.

In particular, the K0(p)-filtration, as well as the extensions between two consecutive pieces, is
described by the associated lattice R+

n+1.

Proof. The proof is analogous to the proof of Proposition 4.2, using this time Lemma 6.17 and
Proposition 7.5. The details are left as an exercise to the reader.
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4.2.1 On some other K0(p)-representations. As announced in the introduction, we define
and study some K0(p)-representations (denoted as (IndKK0(pn+1)χ)+) which naturally appear when
dealing with the Iwahori structure of principal and special series. The reader will realize soon that
the behaviour of the representations (IndKK0(pn+1)χ)+ can be treated with the same methods of §4.2
and 4.1; the proofs will be therefore omitted.

Fix an integer n ∈ N, a smooth character χ : K0(p
n+1) → F

×
p and an Fp-basis {e} for the

underlying vector space of χ. The K0(p)-representation (IndKK0(pn+1)χ)+ is defined as the K0(p)-

subrepresentation induced by IndKK0(pn+1)χ on the Fp-subspace

〈
[ [ [z] 1

1 0

]
, e
]
∈ IndKK0(pn+1)χ, z ∈ In+1〉Fp

(the K0(p)-stability of such Fp-linear space is immediately verified). Again, we have the

Definition 4.12. Let j ∈ {0, . . . , n} and let lj ∈ {0, . . . , p−1}f be a f -tuple. We define the following

element of (IndKK0(pn+1)χ)+:

F
(0,n)
l0,...,ln

def
=
∑
λ0∈Fq

λ
l0
0

[
[λ0] 1
1 0

] n∑
j=1

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1, e
]
.

The family

B+ def
=
{
F

(0,n)
l0,...,ln

∈ (IndKK0(pn+1)χ)+, lj ∈ {0, . . . , p− 1}f for all j ∈ {0, . . . , n}
}

is an Fp-basis for (IndKK0(pn+1)χ)+.

Exactly as we did for R+
n+1, each given element F

(0,n)
l0,...,ln

of B+ will be read as a point in a

convenient lattice R of Rf and the integers a0(s) (for s ∈ {0, . . . , f − 1}) can be assigned. More-
over, if N ∈ N, the subspaces ((IndKK0(pn+1)χ)+)N are defined in the similar, evident way (see the

introduction of §4.2 for details).

The structure of the representations (IndKK0(pn+1)χ)+ is then described in the next

Proposition 4.13. Let r ∈ {0, . . . , p− 1}f be an f -tuple, n ∈ N an integer and let a, b, c, d ∈ OF

be such that g
def
=

[
a b
pc d

]
∈ K0(p). Fix an element F

(0,n)
l0,...,ln

∈ B+ and set N
def
= N0,n(l0, . . . , ln).

Then

g · F (0,n)
l0,...,ln

= (a−1)e(l0,...,ln)χr(g)(F
(0,n)
l0,...,ln

−
f−1∑
s=0

(bd
−1

)p
s
l
bs+a0(s)c
a0(s)

F 0,n
(l0,...,ln)−es

+ y)

where y ∈ (IndKK0(pn+1)χ
s
r
+

)N−1.

In particular the K0(p)-socle filtration of (IndKK0(pn+1)χ
s
r)

+, as well as the extensions of two
consecutive graded pieces, are described by the associated lattice R.

Proof. Omissis.

4.3 The Iwahori structure of Principal and Special Series

We are now able to describe easily the Iwahori-structure of principal and special series for GL2(F ).
Such result is essentially a formal consequence of the previous sections §4.1 and §4.2.1.
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For λ ∈ F
×
p and r ∈ {0, . . . , p− 1}f we consider the smooth parabolic induction

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1

where ω denotes the mod p cyclotomic character and µλ the unramified character verifying µλ(p) =
λ. It is well known that for (r, λ) /∈ {(0,±1), (p− 1,±1)} such inductions are irreducible, while, if
(r, λ) ∈ {(0,±1), (p− 1,±1)} they have length 2 and a unique infinite dimensional factor, the Stein-
berg representation (see also [BL94]). Thanks to the Iwahori decomposition and Mackey theorem
we have

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1 |K

∼−→ Ind
GL2(OF )
B(OF )

χsr

and, since the elements f ∈ Ind
GL2(F )
B(F ) µλ⊗ωrµλ−1 are locally constant functions andB(OF )\GL2(OF )

is compact we have a natural isomorphism

Ind
GL2(OF )
B(OF )

χsr
∼−→ lim

−→
n∈N

IndKK0(pn+1)χ
s
r.

Again, we can use Mackey decomposition to deduce

IndKK0(pn+1)χ
s
r|K0(p)

∼−→ Ind
K0(p)
K0(pn+1)

χsr ⊕ (IndKK0(pn+1)χ
s
r)

+

so that, by the exactness property of filtrant inductive limit, we get

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1 |K0(p)

∼−→ ( lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr)⊕ ( lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+). (12)

The isomorphism (12) lets us reduce to the case of the finite inductions Ind
K0(p)
K0(pn+1)

χsr, (IndKK0(pn+1)χ
s
r)

+,

whose structure is completely described in Propositions 4.2 and 4.13. Therefore

Theorem 4.14. Let λ ∈ F
×
p and r ∈ {0, . . . , p− 1}f an f -tuple. For any m ∈ N> we write

F
(m,∞)
0,...,0,... ∈ Ind

GL2(F )
B(F ) µλ ⊗ ωrµλ−1

to denote the characteristic function of K0(p
m).

The K0(p)-restriction of the parabolic induction admits a natural splitting

Ind
GL2(F )
B(F ) µλ ⊗ ωrµλ−1 |K0(p)

∼−→ ( lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr)⊕ ( lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+).

Moreover an Fp-basis B− for lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr (risp. B+ for lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+) is described by

the elements

F
(1,∞)
l1,...,ln,...,

def
=
∑
λ1∈Fq

(λ
1
p

1 )l1

[
1 0

p[λ
1
p

1 ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )ln

[
1 0

pn[λ
1
pn

n ] 1

]
. . .

(risp. the elements

F
(0,∞)
l0,...,ln,...,

def
=
∑
λ0∈Fq

λ
l0
0

[
[λ1] 1
1 0

]
. . .

∑
λn∈Fq

(λ
1
pn

n )l1

[
1 0

pn[λ
1
pn

n ] 1

]
. . . )

for a varying sequence (ln)n∈N> ∈ {0, . . . , p− 1}(N>) (resp. (ln)n∈N ∈ {0, . . . , p− 1}(N)).
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If we associate the elements of such basis to points in Rf according to the law

F
(1,∞)
l1,...,ln,...,

7→ (
∞∑
i=1

pi−1l
bs+i−1c
i )s∈{0,...,f−1}

F
(0,∞)
l,...,ln,...,

7→ (
∞∑
i=0

pil
bs+ic
i )s∈{0,...,f−1}

and write R− (resp R+) to denote the image of B− (resp. B+) by this map, then the K0(p)-socle

filtration for lim
−→
n∈N

Ind
K0(p)
K0(pn+1)

χsr (resp. for lim
−→
n∈N

(IndKK0(pn+1)χ
s
r)

+), as well as the extentions between

two graded pieces, is described by the associated lattice R− (risp. R+).

The Iwahori structure of irreducible principal series follows.
As far as the Steinberg representation is concerned, we just need to notice the following fact:

Lemma 4.15. Assume r ∈ {0, p− 1} and let n ∈ N. We have a K0(p)-equivariant exact sequence

0→ 〈(F (0)
0 , F

(1,0)
∅ )〉 → IndKK0(pn+1)χ

s
r
+ ⊕ Ind

K0(p)
K0(pn+1)

χsr → (IndKK0(pn+1)χ
s
r/〈1〉)|K0(p) → 0.

Proof. The proof is an induction on n, the case n = 0 being well known (cf. [Br-Pa], Lemma 2.6).
For the general case, we leave to the reader the easy task to check that we have a natural

commutative diagram with exact lines

0

��
(IndKK0(pn)

χsr/〈1〉)

��
(IndKK0(pn+1)χ

s
r/〈1〉)

��
IndKK0(pn+1)χ

s
r/IndKK0(pn)

χsr

��
0

0

��

Ind
K0(p)
K0(pn)

χsr ⊕ IndKK0(pn)
χsr

+

��

// //

Ind
K0(p)
K0(pn+1)

χsr ⊕ IndKK0(pn+1)χ
s
r
+

��

// //

(Ind
K0(p)
K0(pn+1)

χsr/Ind
K0(p)
K0(pn)

χsr)⊕
(
(IndKK0(pn+1)χ

s
r)

+/(IndKK0(pn)
χsr)

+
)

��

∼= // //

0

and the snake Lemma together with the inductive hypothesis gives us the exact sequence

0→ 〈(F (0)
0 , F

(1,0)
∅ )〉 → IndKK0(pn+1)χ

s
r
+ ⊕ Ind

K0(p)
K0(pn+1)

χsr → (IndKK0(pn+1)χ
s
r/〈1〉)|K0(p) → 0.

This ends the proof.

5. The structure of the universal representation

In this section we show how the technical results of §4 concerning the representations R±n+1 and
the formalism of §3 let us describe the Iwahori structure for the universal representation π(r, 0, 1).
Again, we develop an Euclidean dictionary which enable us to handle the involved combinatorics
of π(r, 0, 1)|K0(p): the conclusion is then Proposition 5.18, which loosely speaking shows that the

required structure is obtained by a juxtaposition of the blocks R±n+1 in a fractal way. As a byproduct,

35



Stefano Morra

Figure 5: Euclidean structure for R±n+1/R
±
n in the case f = 2, p = 5, r = (2, 1). It is obtained as

the set theoretic difference of the stuctures associated to R±n+1 and R±n .

we will exhibit a natural injective map

c−IndGKZV ↪→ π(r, 0, 1)

where V 6 π(r, 0, 1)|KZ is a convenient KZ-subrepresentation of π(r, 0, 1)|KZ . We remark that a
similar injective map has been detected independently by Paskunas in an unpublished draft.

We give here a more precise description of this section. Thanks to Proposition 3.5 we can content
ourselves to the study of the representations lim

−→
n odd

R+
0 ⊕R+

1
· · ·⊕R+

n
R+
n+1 and lim

−→
n odd

R−0 ⊕R−1 · · ·⊕R−n R
−
n+1.

As seen in Proposition 3.4, such K0(p)-representations have a natural filtration whose graded pieces
are isomorphic to the quotients R+

n+1/R
+
n , R−n+1/R

−
n respectively.

Such quotients are studied in §5.1. As we did in sections §4.1.3 and §4.2 -concerning the K0(p)-
structure of R+

n+1 and R−n+1- we introduce a natural correspondence between a “canonical” Fp-base
B±n+1/n for R±n+1/R

±
n and a convenient lattice (denoted as R±n+1/n) in Rf . Thanks to the behaviour

of the canonical Hecke operator (T+
n )pos,neg with respect to the elements of B±n+1/n we see that such

a lattice is in fact the set-theoretic difference of the lattices R±n+1 and R±n (cf. Lemma 5.1): Figure
5 shows this phenomenon for f = 2.

As we did in §4, we need to check that the Euclidean structure R±n+1/n describes the Iwahori

structure of the quotient R±n+1/R
±
n in the sense of Definition 1.7. Unfortunately, we can not use

directly the results of section 4 to concude that the K0(p)-structure of R±n+1/R
±
n is predicted by the

lattice R±n+1/n. For instance, if v ∈ B+
n+1 lies on the antidiagonal X0 + · · ·+Xf−1 = N , Proposition

4.11 describes the K0(p)-representation generated by v modulo the subspace X0+· · ·+Xf−1 6 N−2,
while the combinatorics of the lattice R+

n+1/n shows that we need of a much finer knowledge of

〈K0(p) · v〉: loosely speaking, the socle filtration of R±n+1/R
±
n should be obtained from suitable
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simultaneous cuttings 7 by the f hyperplanes X0 + · · · + Xf−1 = pn(ri + 1) + constant, for i ∈
{0, . . . , f − 1}.

It is therefore necessary to perfect the estimates made in the proofs of Propositions 4.10, 4.11:
this is the object of §5.1.1 and Proposition 5.3, where we show that the socle filtration of R+

n+1/R
+
n

is described by the associated Euclidean datum R+
n+1/n. Again, we rely on some delicate arguments

on Witt vectors contained in §6.4. We remark that the behaviour of (R1/R0)
+ (resp. R−0 ⊕R−1 R

−
2 )

is slighty different from that of R+
n+1/R

+
n for n > 1 (resp. R−n+1/R

−
n for n > 2) if the Serre weight

is non-regular (see §5.1.2).

In section §5.2 we determine the structure of the amalgamated sums · · ·⊕R±n R
±
n+1: their structure

can be easily determined from the results concerning of R±n+1/R
±
n .

First of all, we detect a “natural” linear base B±al,n for the amalgamated sums · · · ⊕R±n R
±
n+1

(Lemmas 5.13, 5.14): this can be done thanks to the compatibility of the elements of B±n ⊂ R±n
with respect to the Hecke operators (T−n )pos,neg. In particular, the natural projection on R±n+1/R

±
n

let us let us identify the elements of the canonical basis B±n+1/n of R±n+1/R
±
n with suitable elements

of B±al,n.

Again, the elements of B±al,n admit a natural parametrisation in terms of a convenient lattice

· · ·⊕R±n
R±n+1 in Zf (see the paragraph following Lemma 5.14 for a precise realisation of the Euclidean

data associated to B±al,n). As we will see (§5.2), each Euclidean datum · · · ⊕R±n
R±n+1 is obtained by

a convenient “glueing” of the Euclidean datum R±n+1/n of R±n+1/R
±
n with the Euclidean datum of

· · · ⊕R±n−2
R±n−1: this give raise to a complicate fractal picture (see Figure 6).

The last step is then to prove that such fractal lattice describes the Iwahori structure of the
amalgamated sum · · · ⊕R±n R

±
n+1 in the sense of Definition 1.7. This is the content of Theorem 5.18.

Let us consider for instancethe “positive sums”. We see that Proposition 5.3 together with a
simple Euclidean argument implies that the linear space VJ , generated by

i) a linear basis for the J-th composition factor of · · · ⊕R+
n−2

R+
n−1,

ii) a linear basis BJ for the J-th composition factor of R+
n+1/R

+
n (seen as a subset of B+

al,n via
the above identification),

is K0(p)-stable and the filtration obtained this way has semisimple layers8. As · · · ⊕R+
n−2

R+
n−1 is

a subrepresentation, the K0(p)-stability is verified once we check that the f cutting hyperplanes
X0 + · · · + Xf−1 = pn(ri + 1) + J for R+

n+1/R
+
n lie strictly below the cutting hyperplanes for the

(J − 1)-th composition factor of · · · ⊕R+
n−2

R+
n−1: indeed the structure Theorem for R+

n+1/R
+
n let us

conclude that the K0(p)-subrepresentation generated by an element v ∈ BJ lives in VJ−1 + 〈v〉 (we
invite the reader to the discussion after Remark 5.15 for more details). In particular Proposition
4.11 let us conclude that the linear space VJ , deduced from the Euclidean datum in the usual sense,
is actually the J-th composition factor for the socle filtration of · · · ⊕R+

n
R+
n+1.

In Figure 6 an example of the glueing of blocks 9 and their fractal stucture.

As annonced, we can combine Lemma 5.1 and Proposition 3.4 to exhibit a natural injective

7see Figure 5 and Figure 7 for an example or the discussion after Proposition 5.3 for a precise formalism about the
simultaneous cuttings of the Euclidean data R+

n+1/n by the f hyperplanes X0 + · · ·+Xf−1 = pn(ri + 1) + constant.
8Thus it is easier to treat the glueing of the quotients R+

n+1/R
+
n than the quotients themselves.

9Strictly speaking, the figure gives the glueing of blocks R+
n−1/R

+
n−2 and R+

n+1/R
+
n , i.e. the structure of

R+
n−1/R

+
n−2 ⊕R+

n
R+
n+1. If we want to get the picture of the whole amalgamated sum · · · ⊕

R+
n
R+
n+1 we should insert

a “even smaller” structure inside the point (1, 2) of the rectangle drawn on the left in Figure 6.
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Figure 6: The glueing and the fractal structure in the case f = 2, p = 5, r = (2, 1). On the right
side we have the particular of the

[
1, Xr

]
-block for R+

n−1 ⊕R+
n
R+
n+1. Notice the glueing of R+

n−1

inside the F
(n)
r (0)-block of R+

n+1/R
+
n (Lemma 5.13). For the structure of R+

n+1 ⊕R+
n
R+
n−1/R

+
n−2 we

should further consider the F
(n−1,n)
p−1−r,r(0)-block and its magnification (left hand side). Repeating this

process, we reveal the fractal nature of the structure associated to R+
0 ⊕R+

1
· · · ⊕R+

n
R+
n+1.38
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morphism -whose existence was known by an unpublished work of Paskunas-

c−IndGKZV ↪→ π(r, 0, 1)|KZ
where V 6 π(r, 0, 1)|KZ is a convenient KZ-subrepresentation of π(r, 0, 1)|KZ : this is the object of
Proposition 5.10.

As the cutting hyperplanes are fixed by the linear transformation es 7→ ebs+1c of Rf the results

of §5.1 and §5.2 do not depend on the immersion τ : Fq ↪→ Fp (remark 4.9).

5.1 The structure of the quotients R•n+1/R
•
n

In the flavour of §4.1.3 and §4.2 we start by describing a suitable Fp-basis for the quotients R•n+1/R
•
n.

Lemma 5.1. Let n ∈ N>1.

1) An Fp-basis B+
n+1/n for R+

n+1/R
+
n is described as the homomorphic image (via the natural

projection R+
n+1 � R+

n+1/R
+
n ) of the elements

F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1

such that ln 66 r if ln+1 = 0.

2) An Fp-basis B−n+1/n for R−n+1/R
−
n is described as the homomorphic image (via the natural

projection R−n+1 � R−n+1/R
−
n ) of the elements

F
(1,n)
l1,...,ln

(ln+1) ∈ B−n+1

such that ln 66 r if ln+1 = 0.

If n = 0 then an Fp-basis for (R1/R0)
+ is described as the homomorphic image (via the natural

projection R+
1 � (R1/R0)

+) of the elements

F
(0)
l0

(l1)

such that l1 66 r if l1 = 0 and of the element F
(0)
r (0).

Proof. The result follows immediately from the definition of the operators (T+
n )pos,neg. Indeed, for

n > 1 we have (with the obvious conventions if n = 1):

(T+
n )pos(F

(0,n−1)
l0,...,ln−1

(ln)) = (−1)lnF
(0,n)
l0,...,ln

(0);

(T+
n )neg(F

(1,n−1)
l1,...,ln−1

(ln)) = (−1)lnF
(1,n)
l1,...,ln

(0)

while, for n = 0 we have

T0(F
(0,−1)
∅ (l0)) = F

(0)
l0

(0) + (−1)rδl0,0F
(1,0)
∅ (0).

As usual the elements of the basis B±n+1/n will be read as the elements of a convenient lattice

R±n+1/n of Rf .

Interpretation in terms of Euclidean data. Exactly as we did in sections §4.1.3 and §4.2 we
have natural injections B±n+1/n ↪→ Rf which let us interpret the elements of B±n+1/n as points in a

convenient lattice R±n+1/n of Rf : the details can safely be left to the reader.

The Euclidean interpretation of Lemma 5.1 is therefore clear: for n > 1 the lattice R+
n+1/n (resp.
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R−n+1/n) of Rf , is obtained from the lattice of R+
n+1 (resp. R−n+1) by removing the simplex

{(x0, . . . , xf−1) ∈ R+
n+1 s.t. xs < pn(rbn+sc + 1) for all s = 0, . . . , f − 1}

(resp.

{(x0, . . . , xf−1) ∈ R−n+1 s.t. xs < pn−1(rbn+s−1c + 1) for all s = 0, . . . , f − 1})

(i.e. R±n+1/n is obtained as the set-theoretical difference of R±n+1 \R±n ).

As usual, we have to prove that the Euclidean datum R±n+1/n describes the Iwahori structure of

R±n+1/R
±
n in the sense of Definition 1.7. This is the content of Proposition 5.3.

We refer the reader to Figure 5 for an example in residual degree f = 2.

The lattice R+
1/0 associated to (R1/R0)

+ is similarly obtained from the lattice associated to R+
1 ,

by removing the subset{
(x0, . . . , xf−1) ∈ R+

n+1 s.t. xs < (rbn+sc + 1) for alls = 0, . . . , f − 1
}
\
{

(r0, . . . , rf−1)
}
.

We will see that the lattice R+
1/0 (resp. the lattice naturally associated to R−0 ⊕R−1 R−2 ) does not

describe the K0(p)-structure of (R1/R0)
+ (resp. R−0 ⊕R−1 R

−
2 ) sic et simpliciter, unless the f -tuple r

is sufficiently regular. A harmless modification of the formalism used for R+
n+1/n when n > 1 (resp.

R−n+1/n when n > 2) lets us detect their K0(p)-socle filtration also for (R1/R0)
+ (resp. R−0 ⊕R−1 R

−
2 )

in the non generic case: see section §5.1.2 and Propositions 5.6, 5.7 and 5.8 for details.

We will describe in detail the K0(p)-structure of R+
n+1/R

+
n for n > 1; as annonced, the negative

case (for n > 2) will be left to the reader.

Preliminaries: partitioning the lattice. As annonced in the introduction to §5, the mere
knowledge of the K0(p)-socle filtration for R+

n+1 does not allow us determine the structure of the
quotient R+

n+1/R
+
n , as for v ∈ B+

n+1 lying on the antidiagonal X0 + · · · + Xf−1 = N , Proposition
4.11 describes 〈K0(p) · v〉 modulo the subspace X0 + · · ·+Xf−1 6 N − 2.

For instance, if we pick two points v0, v1 ∈ R+
n+1/n with empty antecedent it is not clear that

the K0(p)-representation generated by {v0, v1} is 2-dimensional and semisimple: consider v0 =

F
(0,n)
l0,...,ln

(ln+1), v1 = F
(0,n)

l′0,...,l
′
n
(l′n+1) with lj = l′j = 0 for all j 6= n, ln = (0, . . . , 0, rs + 1, 0, . . . , 0),

ln = (0, . . . , 0, rs′ + 1, 0, . . . , 0) and rs > rs′ ; by Proposition 4.11 we only know that v1 may lie in
the K0(p) representation generated by v0 (Figure 7).

Notice that this phenomena happens only if F 6= Qp: if F = Qp the structure of the quotients
is immediate from the structure of R+

n+1.

We modify the strategy of section 4.2. We show that the K0(p)-strucure of R+
n+1 is again pre-

dicted by R+
n+1 but each cutting antidiagonal X0 + · · · + Xf−1 = constant of section §4.2 is now

replaced by f -antidiagonals of the form X0 + · · · + Xf−1 = pn(rbn+sc + 1) + constant: we will say

that X0 + · · ·+Xf−1 = pn(rbn+sc + 1) + constant is the s-th cutting hyperplane of R+
n+1/R

+
n . This

means that we divide the lattice R+
n+1/n into sub-blocks Vs, for s ∈ {0, . . . , f − 1}, of increasing

size (cf. definition 5.2); the J-th composition factor for the K0(p)-socle filtration of R+
n+1/R

+
n is

then obtained as the sum of the f subspaces determined by the intersection of the block Vs with
the antidiagonal X0 + · · ·+Xf−1 = pn(rs + 1) + constant, for varying s ∈ {0, . . . , f − 1}: it is the
content of Proposition 5.3. In Figure 8, an example of how the increasing blocks (and successive
cuttings) look like.
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Figure 7: With the only Proposition 4.11 we can not exclude a priori some non trivial extensions,
inside the quotient R+

n+1/R
+
n , between elements lying on hyperplanes at a distance greater than

1. In the example of the picture (again, given for f = 2, p = 5, r = (2, 1)), we could have a non
trivial extension between the elements F 0,n

0,...,0,(3,0)(0) and F 0,n
0,...,0,(0,2)(0): Proposition 4.11 tells only

that the subrepresentation generated by F 0,n
0,...,0,(3,0)(0) lives in a linear space generated by a family

which may contain the element F 0,n
0,...,0,(0,2)(0), as this element lies strictly below the hyperplane

X0 + · · ·+Xf−1 = 3pn − 1 as soon as n > 0.
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Figure 8: Euclidean interpretation of the filtration of R+
n+1/R

+
n by means of the subspaces (or

“blocks”) Vsm ⊆ Vsm+1 , in the case f = 2, p = 5, r = (2, 1). The socle of R+
n+1/R

+
n is then obtained

as the sum of the points of Vsm lying below X0 + X1 = pn(rbsm+nc + 1) and the points of Vsm+1

lying below X0 +X1 = pn(rbsm+1+nc + 1) (by construction, rbsm+nc > rbsm+1+nc).
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We determine the decomposition of R+
n+1/n into increasing blocks. Fix n > 0 and define sm ∈

{0, . . . , f − 1} by the condition

rbsm+nc = max
{
rbs+nc, s ∈ {0, . . . , f − 1}

}
.

We fix an ordering

p− 1 > rbsm+nc > rbsm+1+nc > · · · > rbsm+f−1+nc > 0 (13)

and define the following Fp-subspaces of R+
n+1/R

+
n :

Definition 5.2. For k ∈ {0, . . . , f − 1} define Vsm+k
as the Fp-subspace of R+

n+1/R
+
n generated by

the elements F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1/n verifying the properties:

i) for s /∈ {sm, . . . , sm+k} we have

lbs+ncn 6 rbs+nc;

ii) for s /∈ {sm, . . . , sm+k} we have

l
bs+n+1c
n+1 = 0.

By abuse of notation, we will also write Vsm+k
to denote the image of the canonical basis (in the

obvious sense) of Vsm+k
in the lattice R+

n+1/n. The geometric meaning of the previous definition is
the following: the block Vsm+k

is described as the intersection of the subset

{Xsm+k+1
< pn(rbsm+k+1+nc + 1)} ∩ · · · ∩ {Xsm+f−1

< pn(rbsm+f−1+nc + 1)}

with the lattice R+
n+1/n: in other words, we give restrictions on the coordinates xsm+k+1

, . . . , xsm+f−1

of a point (x0, . . . , xf−1) ∈ R+
n+1/n to lie in the block Vsm+k

.

Notice that in order to detect if a function F
(0,n)
l0,...,ln

(ln+1) ∈ B+
n+1/n belongs to the subspace

Vsm+k
we only need to study the last two f -tuples ln, ln+1.

Obviously, the subspaces Vsm+k
describe (for n > 1) an exhaustive increasing filtration on

R+
n+1/R

+
n as a Fp-vector space.

The following crucial result shows that the lattice R+
n+1/n lets us detect the required K0(p)-

structure for n > 1.

Proposition 5.3. Assume n ∈ N>1. Let a, b, c, d ∈ OF , g
def
=

[
1 + pa b
pc 1 + pd

]
∈ K0(p), fix

an element F
(0,n)
l0,...,ln

(ln+1) ∈ Vsm+k
for some k ∈ {0, . . . , f − 1} and write N0,n+1(l0, . . . , ln+1) =

pn(rbsm+k+nc + 1) + J for some J ∈ N. Finally, consider the linear development

gF
(0,n)
l0,...,ln

(ln+1) =
∑
i∈I

β(i)F
(0,n)
l0(i),...,ln(i)

(ln+1(i))

(where I is a suitable set of indices and β(i) ∈ F
×
p are scalars).

Fix an index i0 ∈ I and assume there exists k′ ∈ {k+ 1, . . . , f − 1}, minimal with respect to the

property F
(0,n)
l0(i0),...,ln(i0)

(ln+1(i0)) ∈ Vsm+k′ \Vsm+k
.

Then we have

N0,n+1(l0(i0), . . . , ln+1(i0)) 6 p
n(rbsm+k′+nc + 1) + J − 2. (14)

In particular, the lattice R+
n+1/n describes the K0(p)-socle filtration, as well as the extensions

between two consecutive graded pieces, of R+
n+1/R

+
n .
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We explain here the geometric meaning of Proposition 5.3: we pick a function in the k-th

block F
(0,n)
l0,...,ln

(ln+1) ∈ Vsm+k
, liyng on the antidiagnal X0 + · · · + Xf−1 = pn(rbsm+k+nc + 1) +

J and F
(0,n)
l0(i0),...,ln(i0)

(ln+1(i0)) a function appearing (with nonzero linear coefficient) in the linear

development of (g − 1)F
(0,n)
l0,...,ln

(ln+1). A priori F
(0,n)
l0(i0),...,ln(i0)

(ln+1(i0)) belongs to the linear space

generated by the points of R+
n+1/n lying below the antidiagonal X0 + · · ·+Xf−1 = pn(rbsm+k+nc +

1) + J − 1.

But, if F
(0,n)
l0(i0),...,ln(i0)

(ln+1(i0)) happens to belong to a strictly bigger block, say Vsm+k′ with k′ > k

and minimal with respect to this property, then it lies strictly below the antidiagonal X0 + · · · +
Xf−1 = pn(rbsm+k′+nc + 1) + J − 1. In other words, the K0(p)-subrepresentation generated by

F
(0,n)
l0,...,ln

(ln+1) lives in the linear space generated by

{
x ∈ Vsm+k

,
∑
i

xi 6 p
n(rbsm+k+nc+1)+J

}⊔ f−1∐
j=k+1

{
x ∈ Vsm+j ,

∑
i

xi 6 p
n(rbsm+j+nc+1)+J−2

}
.

As rbsm+j+nc 6 rbsm+k+nc for j > k (by the choosen ordering (13)) we see that this is a refinement
of Proposition 4.11.

Thanks to this phenomenon, we can invoke Proposition 4.11 to deduce the K0(p)-structure for
R+
n+1/R

+
n from the associated lattice R+

n+1/n. More precisely, we see that

i) the linear space VJ generated by the f -subspaces〈{
x ∈ Vsm+k

,
∑
i

xi < pn(rsm+k
+ 1) + J

}〉
(i.e. the points of the k-th block Vsm+k

lying strictly below the antidiagonal X0 + · · ·+Xf−1 =
pn(rsm+k

+ 1) + J)) is stable under the action of K0(p) (Proposition 5.3);

ii) the points of a k-block Vsm+k
lying on the antidiagonal X0 + · · ·+Xf−1 = pn(rsm+k

+ 1) + J
are fixed under the action of the pro-p-Iwahori inside the quotient (R+

n+1/R
+
n )/VJ (Proposition

5.3; note that such points may be equal to zero in the quotient);

iii) if x ∈ Vsm+k
lies on the antidiagonal X0 + · · · + Xf−1 = pn(rsm+k

+ 1) + J then the K0(p)-
subrepresentation generated by x inside the quotient (R+

n+1/R
+
n )/VJ−1 is either zero or gener-

ated by x and the x− ei for i = 0, . . . , f − 1 (Propositions 4.11, 5.3).

We deduce that VJ = socJ(R+
n+1/R

+
n ), i.e. the Iwahori structure of the quotient R+

n+1/R
+
n is

obtained from the Euclidean datum R+
n+1/n as well as the extensions between two consecutive

graded pieces.

Notice moreover that the statement of Proposition 5.3 is empty if f = 1: in the rest of §5.1 we
will assume f > 2.

5.1.1 Proof of Proposition 5.3. The rest of this section is devoted to the proof of Proposition
5.3. Thanks to the decomposition (8) we can study separately the actions of lower unipotent,
diagonal and upper unipotent matrices on the elements of R+

n+1: this will be the object of the next
three paragraphs. The proofs are similar to the proofs of Propositions 4.4, 4.5 and 4.7, but need a
delicate extra argument due to the irregular structure of the lattice R+

n+1/n. In particular, in order
to control the action of lower unipotent matrices, we will need the estimates of Appendix A, §??.
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The action of upper unipotent matrices. We study here the case where g ∈
[

1 OF

0 1

]
, and

again we assume g =

[
1 [µ]
0 1

]
for µ ∈ Fq. As in Proposition 4.4 we write

gF
(0,n)
l0,...,ln

(ln+1) =

=

n+1∑
j=1

∑
ij6lj

(
lj
ij

)∑
i06l0

(
l0
i0

)
(T0)

i0
∑
λj∈Fq

(λ
1

pj

j )lj−ij (T
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, fln+1−in+1

]

where for notational convenience, we commit the abuse of writing

[
1 0

p0[λ0] 1

]
instead of

[
[λ0] 1
1 0

]
and where we have set

fln+1−in+1

def
= (−1)in+1Xr−(ln+1−in+1)Y ln+1−in+1 ,

T0
def
= −s0(S̃0), Tj+1

def
= −sj(S̃j+1) for j ∈ {0, . . . , n}.

Developing the polynomials Tj+1 we write

gF
(0,n)
l0,...,ln

(ln+1) =
∑
i∈I

β(i)F
(0,n)
l0(i),...,ln(i)

(ln+1(i))

for a suitable set of indices I and scalars β(i) ∈ F
×
p We pick a vector v appearing in the linear

development of gF
(0,n)
l0,...,ln

(ln+1):

v
def
= F

(0,n)
dκ0e,...,dκne

(dκn+1e);

where, as in Proposition 7.3, we write for 0 6 a 6 n+ 1

κa = la − ia +
n+1∑
b=a+1

pba−bcκ(b)a

and, for a+ 1 6 b 6 n+ 1 we have

κ(b)a =

f−1∑
s=0

psκ(b),sa

where κ
(b),s
a is the exponent of λa in (Tb)

i
(s)
b . By the definition of the subspace Vsm+k

we see that

κn = ln − in + pb−1cκ(n+1)
n =

=

k∑
h=0

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n + κ
(n+1),bsm+h+n+1c
n ) +

f−1∑
h=k+1

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n )

If v /∈ Vsm+k
then we define

k′
def
= min

{
c ∈ {k + 1, . . . f − 1}, s.t. dκ(bsm+c+nc)

n e > rbsm+c+nc
}

Observe that k′ > k by construction and we necessarily have κn 6= 0 and the equality

s(ln − in + pb−1cκ(n+1)
n ) =

f−1∑
s=0

l(s)n − i(s)n + κ(n+1),bs+1c
n − j̃(p− 1)

for a suitable j̃ > 1. Following the inequalities (26), (27), (28) of Proposition 7.3 (i.e. using the
subadditivity of the function s and the fact that the polynomials Tj are homogeneous of degree pj
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if λi is defined to have degree pi) we get

s(κ0) + · · ·+ pn+1s(κn+1) 6 p
n(rbsm+k+nc + 1) + J − s(i0) + pn(p− 1)j̃.

As n > 1 the inequality

pn(rbsm+k+nc − rbsm+k′+nc) 6 j̃p
n(p− 1) + s(i0)− 2

is then obvious if either j̃ > 2 or rbsm+k′+nc > 0.

Assume finally j̃ = 1 and rbsm+k′+nc = 0. Therefore the p-adic development of dκne has the form

(l(0)n − i(0)n + κ(n+1),1
n , . . . , l(s)n − i(s)n + κ(n+1),s+1

n − p, l(s+1)
n − i(s+1)

n + κ(n+1),s+2
n + 1, . . . )

for a unique s ∈ {sm, . . . , sm+k}. The condition x /∈ Vsm+k
imposes bs + 1c /∈ {sm, . . . , sm+k}

and the minimality condition on k′ imposes bsm+k′ + nc = bs + 1c, in particular rbs+1c = 0. As

κ
(n+1),s+1
n is the coefficient of λ

1
pn

n in the fixed monomial of s(S̃n+1)
i
bs+1c
n+1 and i

bs+1c
n 6 rbs+1c we get

a contradiction.

The action of diagonal matrices. The next step is to study the action of an element g ∈[
1 + pOF 0

0 1 + pOF

]
; again we can assume g =

[
1 + pα 0

0 1

]
. The arguments are completely

analogous to those of the previous paragraph, in this case using the fact that the polynomials
qj−1(Q̃j) of §6.3 are homogeneous of degree pj . The details are left to the reader.

The action of lower unipotent matrices. In this section we deal with the action of an element

g ∈
[

1 0
pOF 1

]
; again, we assume g =

[
1 0
p[µ] 1

]
. This case is more delicate than the previous

and we need to recall and carry on the accurate estimates seen in the appendix A §6.4.2.

As for Proposition 4.7, we write

gF
(0,n)
l0,...,ln

(ln+1) =
n∑
j=0

∑
ij+16lj+1

i0=0

(
lj+1

ij+1

) ∑
λj∈Fq

(λ
1

pj

j )lj−ij (V
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, fln+1−in+1

]

where for notational convenience, we commit the abuse of writing

[
1 0

p0[λ0] 1

]
instead of

[
[λ0] 1
1 0

]
and where we have set

fln+1−in+1

def
= (−1)in+1Xr−(ln+1+in+1)Y ln+1−in+1

and Vj+1
def
= −uj(Ũj+1) for j ∈ {0, . . . , n}. We develop the polynomials V

ij+1

j+1 , recognizing again a

sum of elements of the basis B+
n+1/n. We pick a vector

v
def
= F

(0,n)
dκ0e,...,dκne(dκn+1e);

as in the previous paragraph we write for 0 6 a 6 n+ 1

κa = la − ia +

n+1∑
b=a+1

pba−bcκ(b)a

and, for a+ 1 6 b 6 n+ 1 we have

κ(b)a =

f−1∑
s=0

psκ(b),sa
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where κ
(b),s
a is the exponent of λa in (Vb)

i
(s)
b . Again, using the notations of Lemmas 6.19 and 6.20,

we focus our attention on

κn = ln − in + pb−1cκ(n+1)
n =

=
k∑

h=0

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n +B
bsm+h+1+nc
n (0) + pB

bsm+h+1+nc
n+1 (1)) +

+

f−1∑
h=k+1

pbsm+h+nc(l
(bsm+h+nc)
n − i(bsm+h+nc)

n )

(where we can again assume κn 6= 0) and we distinguish the following four possibilities.

I). Assume
∑k

h=0B
bsm+h+1+nc
n+1 (1) = 0. The condition v /∈ Vsm+k

imposes that

s(κn) =

f−1∑
s=0

l(s)n − i(s)n +Bbs+1c
n (0)− j̃(p− 1)

for j̃ ∈ N, j̃ > 1. We recall that for each j ∈ {0, . . . , n−1} the polynomial Vj is pseudohomogeneous
of degree pj − (p− 2) (see Definition 6.11) so that the subadditivity of s and Lemma 6.20 give

n+1∑
j=0

pjs(κj) 6
n+1∑
j=0

pjs(lj)− (p− 2)(
n+1∑
j=0

s(ij))− pnj̃(p− 1)

and the conclusion follows.
II). Assume

∑k
h=0B

bsm+h+1+nc
n+1 (1) > 2. Then we have

f−1∑
s=0

n∑
j=0

pjs(κ
(n+1),s
j ) 6 pn+1s(in+1)− 2pn(p− 2).

The conclusion is now easy and left to the reader.

III). Assume 1 =
∑k

h=0A
bsm+h+1+nc
n+1 (1) =

∑k
h=0B

bsm+h+1+nc
n+1 (1) = 1 (see Lemma 6.20 for the

quantities Asn+1(1)). Let h1 ∈ {0, . . . , k} the unique integer such that B
bsm+h1

+1+nc
n+1 (1) = 1. We can

again distinguish the following two subcases:

III)A Assume

s(κn) =

f−1∑
s=0

(l(s)n − i(s)n +B(s+1)
n (0) +B

(s)
n+1(1))− j̃(p− 1)

for j̃ ∈ N, j̃ > 1. In this case the reader can check that

n+1∑
j=0

pjs(κj) 6
n+1∑
j=0

pjs(lj)− (p− 2)(
n∑
j=0

s(ij))− pnj̃(p− 1)− (p− 2)pn

and the conclusion follows.

III)B Assume finally

s(κn) =

f−1∑
s=0

(l(s)n − i(s)n +B(s+1)
n (0) +B

(s)
n+1(1)).

Such condition, together with v /∈ Vsm+k
imposes that bsm+h1 + 1c /∈ {sm, . . . , sm+k}; by

minimality of k′ we conclude that bsm+h1 + 1c = sm+k′ ; in particular rbsm+k′+nc > 0 (Lemma
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6.20-3)). We deduce that the choosen monomial of un(Ũ
1

pn+1

n+1 )in+1 is of the form

λ
α′0
0 · · · · · λ

α′n
n (λ0λ

1
pn

n )p
bsm+h1

+1+nc

where the integers α′j verify

n∑
j=0

pjs(α′j) 6 (pn+1 − (p− 2))(s(in+1 − 1)).

By subadditivity of the function s we find finally

n+1∑
j=0

pjs(κj) 6
n+1∑
j=0

pjs(lj)− (p− 2)(
n∑
j=0

s(ij)) + (pn+1 − (p− 2))(s(in+1)− 1) +

+(1 + pn)− pn+1s(in+1)

(where the integer 1 + pn is deduced from the monomial λ0λ
1
pn

n ) and the conclusion follows
easily noticing that

∑n+1
j=0 s(ij) > 1.

The proof of Proposition 5.3 is therefore complete.

Remark 5.4. The reader has noticed that if we assume rs 6 p − 2 for all s ∈ {0, . . . , f − 1} then
the inequality (14) in the statement can be replaced by the following, stronger, inequality

N0,n+1(l0(i0), . . . , ln+1(i0)) 6 p
n + J − 2.

5.1.2 The case n = 0. In this section we study the K0(p)-structure of (R1/R0)
+; the negative

counterpart, i.e. the K0(p)-structure of R−0 ⊕R−1 R
−
2 is left to the reader.

We see that if the Serre weight σ happens not to be regular, the associated lattice R+
1/0 needs

not describe the Iwahori structure of (R1/R0)
+ in the sense of Definition 1.7 and we need a slight

modification of our methods according to the combinatorics of r (see Proposition 5.8).

This is due to technical reasons: raughly speaking, for n = 0 the f cutting hyperplanes X0 +
· · ·+ Xf−1 = (rs + 1) + J are “very close” to each other and, in the non regular case, we may get
some extra extensions between functions lying on different hyperplanes.

Otherwise, in the regular case, we see that the lattice R+
1/0 describes the Iwahori structure of

(R1/R0)
+ in the usual sense (Proposition 5.6, 5.7).

In what follows, we fix k ∈ {0, . . . , f − 1} and an element F
(0)
l0

(l1) ∈ Vsm+k
\ 〈F (0)

r (0)〉Fp . Let

g ∈ K0(p). We fix an element v = F
(0)
dκ0e

(dκ1e) appearing (with a nonzero linear coefficient) in the

Fp-linear development of gF
(0)
l0

(l1), for suitable integers κ0, κ1 ∈ N.

We assume there exists an integer k′ ∈ {k + 1, . . . , f − 1} such that v /∈ Vsm+k′ \Vsm+k
and k′

is minimal with respect to this property.

The next lemma can be verified by an easy computation on the ring W1(Fq):

Lemma 5.5. In the previous hypothesis we have

N0,1(κ0, κ1) = N0,1(l0, l1)− ε

where

1) if g ∈
[

1 OF

0 1

]
then ε = s(i0) + s(i1) + j̃(p− 1) where j̃ > 1 and s(i0) + s(i1) > 1;
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2) if g ∈
[

1 + pOF 0
0 1 + pOF

]
then ε = s(i1)(p− 1) + j̃(p− 1) where s(i1) > 1 and j̃ ∈ N;

3) if g ∈
[

1 0
pOF 1

]
then ε = s(i1)(p− 2) + j̃(p− 1) where s(i1) > 1 and j̃ ∈ N.

Moreover:

1A) if in case 1) we have j̃ = 1 then we necessarly have sm+k′ = bs + 1c for an index s verifying
s ∈ {sm, . . . , sm+k} and bs+ 1c /∈ {sm, . . . , sm+k}; moreover rsm+k′ > 0;

2B) if in case 2) we have j̃ = 0 and s(i1) = 1 then we have

dκ0e = (l
(0)
0 , . . . , l

(s)
0 , l

bs+1c
0 + 1, l

bs+2c
0 , . . . , l

(f−1)
0 )

where the index s verify s ∈ {sm, . . . , sm+k} and bs + 1c /∈ {sm, . . . , sm+k}. Furthermore
rbs+1c = rsm+k′ > 0.

3B) if in case 3) we have j̃ = 0 and s(i1) = 1 then we have

dκ0e = (l
(0)
0 , . . . , l

(s)
0 , l

bs+1c
0 + 2, l

bs+2c
0 , . . . , l

(f−1)
0 )

where the index s verify s ∈ {sm, . . . , sm+k} and bs + 1c /∈ {sm, . . . , sm+k}. Furthermore
rbs+1c = rsm+k′ > 0.

Proof. The proof, a direct computation, is left to the reader.

Thanks to its explicit nature, the description of the socle filtration for (R1/R0)
+ can be easily

deduced from Lemma 5.5. We have to distinguish three cases, according to the combinatorics of the
f -tuple r; the proofs are left as an exercie to the reader (see [Mo1] for details).

Proposition 5.6. Assume that the f -tuple verifies one of the following hypotheses:

IA). For each s ∈ {0, . . . , f − 1} the condition{
rs > rbs+1c > 1

rs − rbs+1c ∈ {p− 2, p− 3}
is false.

IB). The f -tuple is of the form (0, . . . , 0, rsm , 0, . . . , 0).

Then the socle filtration of (R1/R0)
+, together with the extensions between two consecutive graded

pieces, is described by the associated lattice R+
1/0.

Proof. Omissis. See [Mo1], Proposition 5.8.

Proposition 5.7. Assume that for all s ∈ {0, . . . , f − 1} we have
∑f−1

s=0 (rs) > rs + 1 and that the
condition {

rs > rbs+1c > 1

rs − rbs+1c = p− 2

is false.
Then the socle filtration for (R1/R0)

+ is described by the lattice R+
1/0.

Proof. Omissis. See [Mo1], Proposition 5.9.

We finally deal with the remaining case -the socle filtration is here slightly more complicated:
in Euclidean terms, the blocks Vsm+k

for rsm+k
= p − 1 should be cut by the hyperplanes X0 +

· · ·+Xf−1 = (rsm+k
+ 1) + J or X0 + · · ·+Xf−1 = (rsm+k

+ 1) + J − 1 according to a condition on
rsm+k+1.
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Proposition 5.8. Assume there exist an index s ∈ {0, . . . , f − 1} such that rs = p − 1 and
rbs+1c = 1. Up to reordering, we assume there exists integers 0 6 k1 6 k0 such that rsm+j = p − 1
for all j ∈ {0, . . . , k0} and {

rbsm+j+1c 6= 1 if 0 6 j 6 k1 − 1,

rbsm+j+1c = 1 if k1 6 j 6 k0.

Then the J-th factor for the socle filtration of (R1/R0)
+ is described by the subspace

VJ
def
= 〈F (0)

r (0)〉Fp +

f−1∑
k=0

〈Fl0(l1) ∈ Vsm+k
, N(0,1)(l0, l1) 6 (rsm+k

+ 1) + J − δk16k6k0〉Fp .

In particular, the socle filtration is deduced from the lattice R+
1/0 by cutting the k-th block by the

hyperplane X0 + · · ·+Xf−1 = (rsm+k
+ 1) + J − δk16k6k0 .

Proof. Omissis. See [Mo1], Proposition 5.10.

5.1.3 Application: the universal representation contains infinitely many compact in-
ductions. As annonced in the introduction of §5 we are able to describe a G-equivariant natural
injection

c−IndGKZV ↪→ π(r, 0, 1)

for r /∈ {0, p− 1} where V is a convenient KZ-subrepresentation of π(r, 0, 1)|KZ . An analogous
result has been discovered by Paskunas in an unpublished draft.

The proof can be outlined as follow. Via the isomorphism of Proposition 2.9 we define the repre-
sentation V as a suitable subrepresentation of R1/R0: by Frobenius reciprocity we get a morphism
φ : c−IndGKZV → π(r, 0, 1). From a basis of V we construct a convenient Fp-basis for the compact
induction c−IndGKZV and therefore we only have to check that φ maps such basis into a linearly
independent family of π(r, 0, 1).

This can be easily verified combining Proposition 3.4, Lemma 5.1 and Proposition 3.5.

We start from the following elementary fact:

Lemma 5.9. The K subrepresentation Fil0(R1) of R1 generated by
[
1, Xr

]
is naturally isomorphic

to the finite principal series IndKK0(p)
χsr and soc(Fil0(R1)) ∼= R0 via the monomorphism R0 ↪→ R1.

Proof. Omissis.

Let Ṽ denote the kernel of the natural map

Fil0(R1)/R0 � cosoc(Fil0(R1));

we define V 6 π(r, 0, 1)|KZ as the homomorphic image of Ṽ via the isomorphism given in Proposition
2.9. Therefore, by Frobenius reciprocity, we get a morphism

φ : c−IndGKZV → π(r, 0, 1).

We claim that

Theorem 5.10. Assume r /∈ {0, p− 1}. Then φ is a monomorphism.

Proof. We show that the composite morphism of φ with the isomorphism (4)

c−IndGKZV
φ→ π(r, 0, 1)

∼→ lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)⊕ lim
−→
n even

(R1/R0 ⊕R2 · · · ⊕Rn Rn+1)
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maps an Fp-basis of c−IndGKZV onto a linearly independent family of the amalgamated sums on
the right hand side.

By the well known results concerning the structure of finite principal series for GL2(Fq) we have

Lemma 5.11. Assume r /∈ {0, p− 1}. For an f -tuple t ∈ {0, . . . , p − 1}f such that t 66 r and r 66 t
the element vt ∈ V is defined as

vt
def
=
∑
µ0∈Fq

µ
t
0

[
p [µ0]
0 1

] [
1, Xr

]
.

An Fp-basis V for the compact induction c−IndGKZV is described by the elements

G
(0,−1)
∅ (t)

def
=
[
1, vt

]
G

(1,n)
l0,...,ln

(t)
def
=
∑
λ1∈Fq

(λ
1
p

1 )l1

[
1 0

p[λ
1
p

1 ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )ln

[
1 0

pn[λ
1
pn

n ] 1

] [
0 1

pn+1 0

] [
1, vt

]
G

(0,n)
l0,...,ln

(t)
def
=
∑
λ0∈Fq

λ
l0
0

[
[λ0] 1
1 0

] [
1, G

(1,n)
l0,...,ln

(t)
]

where n ∈ N, lj ∈ {0, . . . , p− 1}f for all j ∈ {0, . . . , n}, and t ∈ {0, . . . , p− 1}f verify the conditions
t 66 r and r 66 t.

Proof. It is elementary and left to the reader. See [Mo1], Lemma 5.13 for details.

We recall that the morphism φ is G-equivariant and the isomorphism (4) is KZ-equivariant. We
deduce the equalities

φ(G
(0,n)
l0,...,ln

(t)) = pr(F
(0,n+1)
l0,...,ln,t

(0))

φ(G
(1,n)
l1,...,ln

(t)) = pr(F
(1,n+1)
l1,...,ln,t

(0))

φ(G
(0,−1)
∅ (t)) = pr(F

(0)
t (0))

where we wrote pr to denote the natural epimorphisms of Proposition 3.5.
As the kernel of the epimorphism pr is known and we dispose of a suitable Fp-basis of the

inductive limits lim
−→
n odd

R±0 ⊕R±1 · · · ⊕R±n R
±
n+1, lim

−→
n even

(R1/R0)
± ⊕R±2 · · · ⊕R±n R

±
n+1 we check that the

elements pr(F
(0,n+1)
l0,...,ln,t

(0)), pr(F
(1,n+1)
l1,...,ln,t

(0)) and pr(F
(0)
t (0)) of the inductive limits lim

−→
n odd

R0⊕R1 · · ·⊕Rn

Rn+1, lim
−→
n even

(R1/R0)⊕R2 · · · ⊕Rn Rn+1 are linearly independent, as required.

Remark 5.12. Let V the image of the composite map obtained by φ and the isomorphism (4). By
the proof of Proposition 5.10 the reader can easily describe, in terms of the lattices · · · ⊕R±n

R±n+1,
the inverse image of V by the natural epimorphism pr of Proposition 3.5.

5.2 The structure of the amalgamated sums

We are now ready to describe how two blocks R•n+1/R
•
n and R•n−1/R

•
n−2 should be glued together.

We will see that such glueing is more or less a formal consequence of the geometric interpretation
of the amalgamated sums, as announced in the introduction of §5.

As for section 5.1 we will give the detailed proofs for the positive case: the negative part is
deduced analogously.
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First, we want to understand the image of an element F
(0,n)
l0,...,ln

(ln+1) ∈ R+
n+1 (resp. F

(1,n)
l1,...,ln

(ln+1) ∈
R−n+1) via the projection (prn+1)

pos (resp. (prn+1)
neg) of Lemma 3.4.

Lemma 5.13. Let n ∈ N>1. The image of the element F
(0,n)
l0,...,ln

(ln+1) ∈ R+
n+1 via the projection

prposn+1 is described as follow:

1) If either ln+1 6= 0 or ln+1 = 0 and ln 66 r then

πn+1(prn+1)
pos(F

(0,n)
l0,...,ln

(ln+1)) = πn+1(F
(0,n)
l0,...,ln

(ln+1));

2) If ln+1 = 0, ln = r and ln−1 > p− 1− r then

(−1)r(prn+1)
pos(F

(0,n)
l0,...,ln

(ln+1)) = ιposn−1(F
(0,n−2)
l0,...,ln−2

(ln−1−p− 1− r))+δr,p−1δln−1,p−1ι
pos
n−1(F

(0,n−2)
l0,...,ln−2

(0));

3) If either ln+1 = 0, ln = r and ln−1 6> p− 1− r or ln+1 = 0 and ln � r then

(prn+1)
pos(F

(0,n)
l0,...,ln

(ln+1)) = 0.

Proof. Assertion 1) is clear by Lemma 5.1. We assume now that ln+1 = 0 and ln 6 r. Thus,

F
(0,n)
l0,...,ln

(0) = (−1)ln(T+
n )pos(F

(0,n−1)
l0,...,ln−1

(ln))

so that we get the following equality in the amalgamated sum · · · ⊕R+
n
R+
n+1:

(prn+1)
pos(F

(0,n)
l0,...,ln

(0)) = ι+n−1 ◦ pr
+
n−1 ◦ (−T−n )pos((−1)ln(F

(0,n−1)
l0,...,ln−1

(ln))).

In order to get the statement, we are now left to describe

(T−n )pos((F
(0,n−1)
l0,...,ln−1

(ln))).

Let assume n > 2 (the case n = 1 is treated in an analogous way and is left to the reader). By the
characterisation of the operator T−n we have

(T−n )pos((F
(0,n−1)
l0,...,ln−1

(ln))) = 0

if ln 6= r, while, for ln = r, we have

(T−n )pos((F
(0,n−1)
l0,...,ln−1

(ln)))) =

=
n−2∑
j=0

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1,

∑
λn−1∈Fq

(λ
1

pn−1

n−1 )ln−1(λ
1

pn−1

n−1 X + Y )r
]

=

=
∑
i6r

(
r

i

) n−2∑
j=0

∑
λj∈Fq

(λ
1

pj

j )lj

[
1 0

pj [λ
1

pj

j ] 1

] [
1, Xr−iY i

∑
λn−1∈Fq

(λ
1

pn−1

n−1 )ln−1+r−i
]
.

By Lemma 3.1, the quantity ∑
λn−1∈Fq

(λ
1

pn−1

n−1 )ln−1+r−i

is non zero (indeed assuming the value −1) if and only if ln+1+r−i ≡ 0 mod q−1 and ln+1+r−i 6= 0.
The result follows.

The result concerning the negative part is similar

Lemma 5.14. Let n ∈ N>1. The image of the element F
(1,n)
l1,...,ln

(ln+1) ∈ R−n+1 via the projection

prnegn+1 is described as follow:
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1) If either ln+1 6= 0 or ln+1 = 0 and ln 66 r then

πn+1(prn+1)
neg(F

(1,n)
l1,...,ln

(ln+1)) = πn+1(F
(1,n)
l1,...,ln

(ln+1));

2) If ln+1 = 0, ln = r and ln−1 > p− 1− r (the latter condition being empty if n = 1) then

(−1)r(prn+1)
neg(F

(1,n)
l1,...,ln

(ln+1)) = ιnegn−1(F
(1,n−2)
l1,...,ln−2

(ln−1−p− 1− r))+δr,p−1δln−1,p−1ι
pos
n−1(F

(1,n−2)
l1,...,ln−2

(0));

3) If either ln+1 = 0, ln = r and ln−1 6> p− 1− r (the latter condition being empty if n = 1) or
ln+1 = 0 and ln � r then

(prn+1)
pos(F

(1,n)
l1,...,ln

(ln+1)) = 0.

Proof. It is analogous to the proof of Proposition 5.13 and it is left to the reader.

Interpretation in terms of Euclidean data. We dispose of a canonical Fp-basis for the rep-
resentation · · · ⊕R±n R

±
n+1, which is obtained in the obvious way by an induction from Proposition

3.4 and Lemma 5.1.
Exactly as we did in §5.1 we have a natural way to associate an element of such canonical basis

to a point in Rf : again, we obtain a lattice, which we will denote by · · · ⊕R±n
R±n+1.

In such Euclidean setting Proposition 5.13 is clear: it tells that lattice · · ·⊕R+
n

R+
n+1 is obtained as

the union of the lattice R+
n+1/n associated to R+

n+1/R
+
n and the image of the lattice · · · ⊕R+

n−2
R+
n−1

associated to the amalgamated sum · · · ⊕R+
n−2

R+
n−1 (which, inductively, can be assumed to be

known) under the translation

Rf → Rf (15)

(xi)i 7→ (xi + pn−1(p− 1− rbi+n−1c) + pnrbi+nc).

Notice that in particular the lattice · · · ⊕R+
n−2

R+
n−1 is glued inside the Fnr (0)-block of R+

n+1.

We stress again in Figure 9 the glueing and the fractal structure for f = 2 (noticing the glueing

of · · · ⊕R+
n−2

R+
n−1 inside the F

(n)
r (0)-block of R+

n+1/n).

The evident analogous considerations for the negative part · · · ⊕R−n
R−n+1 are left to the reader.

Remark 5.15. Notice that if f = 1 then it follows directly from Propositions 5.13 and 5.14 that the
K0(p)-structure (and the extensions between two consecutive graded pieces) of the representations
. . .R•n R

•
n+1 are given by the associated lattices · · · ⊕R•n R•n+1. In particular, we deduce that each

of these representations has a space of I1 invariants of dimension 1, recovering [Bre03], Théorème
3.2.4.

By remark 5.15 we can assume from now on that f > 2.

Structure of the Universal representation and Euclidean datum. We are now left to prove
that the socle filtration (and the extension between two consecutive graded pieces) of the K0(p)-
representation · · ·⊕R+

n
R+
n+1 is described by the associated Euclidean datum in the sense of Definition

1.7. As we have seen for R+
n+1/R

+
n , the main task is to show that the “natural” linear filtration on

· · · ⊕R+
n
R+
n+1 deduced from the Euclidean structure · · · ⊕R+

n
R+
n+1 is indeed K0(p)-equivariant with

semisimple layers. By proposition 4.11, it follows then that such natural linear filtration is the socle
filtration.

We need therefore a precise control on the K0(p) representation generated by an element of the
canonical base of · · · ⊕R+

n
R+
n+1; as · · · ⊕R+

n−2
R+
n−1 is a K0(p)-subrepresentation we will see, by a

simple Euclidean argument, that the statement of proposition 5.3 will be sufficient.
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Figure 9: This picture shows how to glue together the datum of R+
n+1/R

+
n and R+

n−1/R
+
n−2 (Lemma

5.13). Repeating this process for all R+
n+1−2i, i ∈ N, i 6 n+1

2 gives rise to a complicate fractal
structure.
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Let B+
al,n be the canonical basis of · · · ⊕R+

n
R+
n+1; its description in terms of the canonical basis

of · · · ⊕R+
n−2

R+
n−1 and R+

n+1/R
+
n is clear, as well as the relations between B+

al,n and the canonical

basis of R+
n+1 (Lemma 5.13). In particular, the projection πn+1 of Lemma 3.4 let us identify the

canonical base B+
n+1/n of R+

n+1/R
+
n with a convenient subset of B+

al,n; in Euclidean terms we are

considering the Euclidean datum R+
n+1/n embedded in · · · ⊕R+

n
R+
n+1.

For N ∈ N we consider the following subsets of B+
al,n:

i) a linear basis BN,sub for the N -th composition factor of the socle filtration for · · · ⊕R+
n−2

R+
n−1;

ii) A linear basis BN,qt for the N -th composition factor of R+
n+1/R

+
n (such basis is seen as a subset

of B+
al,n via the previous identification).

The result below gives us the desired control of the action of K0(p) in Euclidean terms:

Proposition 5.16. Let N ∈ N, v ∈ BN,2 and g ∈ K0(p). Assume moreover that if n = 1 and
f = 2 then (r0, r1) /∈ {(p− 2, 0), (0, p− 2)}.

Then the element (g−1) ·v is contained in the linear space generated by BN−1,qt and BN−2,sub.

In particular,

i) the linear space VN generated by BN,sub, BN,qt is K0(p) stable;

ii) the filtration {VN}N∈N has semisimple layers;

iii) modulo VN−2 there are no extensions between the elements of BN,qt and BN−1,sub.

Proof. Define, for any n > 1,

Mn
def
=

f−1∑
s=0

(pn−1(p− 1− rbs+n−1c) + pnrbs+nc);

in particular the hyperplane X0 + · · · + Xf−1 = Mn contains the image of the point 0 via the
translation (15). Except in the case where f = 2 and (r0, r1) ∈ {(p−1, 0), (0, p−1), (p−2, 0), (0, p−
2)}, we have

Mn > pn(rs0 + 1) (16)

for any s0 ∈ {0, . . . , f − 1} (and we actually have an equality if and only if f = 2, (r0, r1) ∈
{(p− 2, 0), (0, p− 2)} and rs0 = p− 2).

By the Euclidean interpretation, Proposition 5.3 and an immediate induction 10 on n, the state-
ment is proved if we show the following:

1) if n > 3, that an hyperplane of the form X0 + · · · + Xf−1 = pn(rbn+sc + 1) + N lies strictly
below an hyperplane of the form X0 + · · ·+Xf−1 = Mn + pn−2(rbn+sc+ 1) +N for any choice
of indices s0, s1 ∈ {0, . . . , f − 1}, i.e.

pn(rs0 + 1) < Mn + pn−2(rs1 + 1);

2) similarly, if n = 2, that for any choice of inices s0, s1 ∈ {0, . . . , f − 1} we have

p2(rs0 + 1) < M2 + (rs1 + 1)− δ

where δ ∈ {0, 1} is nonzero if and only if either the f -tuple r verifies the hypothesis IB) of
Proposition 5.6 and s1 = sm (see the introduction of §5.1 for the definition of sm) or the the
f -tuple r verifies the hypothesis of Proposition 5.8 and s1 ∈ {sm+k1 , . . . , sm+k0}.

10if f = 2 and (r0, r1) ∈ {(p− 2, 0), (0, p− 2)} then induction works as well thanks to Remark 5.17.
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3) if n = 1, that

p(rs0 + 1) < M1.

The three conditions follow from (16) if f > 3. If f = 2 and (r0, r1) ∈ {(p− 1, 0), (0, p− 1)} we have
Vsm = {0} so that the three conditions should be checked only for rs0 = 0 (we have no cutting
hyperplane of the form X0 + · · ·+Xf−1 = pn(brsm + nc+ 1) in this case!).

Remark 5.17. Notice that for n = 1, f = 2 and (r0, r1) ∈ {(p − 2, 0), (0, p − 2)} the statement of
Proposition 5.16 holds true if we replace BN−2,sub by BN−1,sub. Indeed, in this situation the cutting
hyperplanes for R+

0 and Vsm coincides.

Theorem 5.18. Let n > 1 and consider the K0(p)-representation · · · ⊕R+
n
R+
n+1.

The socle filtration and the extensions between two consecutive graded pieces are described by
the associated lattice · · ·⊕R+

n
R+
n+1, with the conventions of section §5.1.2 and Propositions 5.6, 5.7

and 5.8 concerning the lattice associated to the K0(p)-structure of (R1/R0)
+.

Proof. It is a formal consequence of Proposition 5.16, Remark 5.17 and Proposition 4.11.

6. Appendix A: Some remarks on Witt polynomials

The aim of this appendix is to collect some technical results concerning Witt polynomials. After
a section of general reminders (§6.1), we will treat in detail the case of the universal polynomials
for the sum and the product (§6.2 and §6.3). In section §6.4 we study the Witt polinomials of a
certain power series in the ring W (Fq): in this situation it is more complicate to keep track of
the exponents of such polynomials and we are therefore led to introduce the notion of “pseudo
homogeneity” (definition 6.11).

6.1 Reminder on Witt polynomials

The description of the socle filtration for the aforementioned representations of GL2(F ) relies cru-
cially on the behaviour of the universal Witt polynomials. After some generalities, we focus on
specific situations related to the study of the action of lower unipotent, diagonal and upper unipo-
tent matrices in GL2(OF ). The interested reader is referred to [Ser], [Bou] or [Bos] for more details
concerning the formalism of Witt polynomials.

For n ∈ N the n-th Witt polynomial Wn(X) ∈ Z[X0, . . . , Xn] is defined by

Wn(X)
def
=

n∑
i=0

Xpn−i

i pi.

As the ring endomorphism

Z[
1

p
][X0, . . . , Xn]

ωn−→ Z[
1

p
][X0, . . . , Xn]

Xj 7−→Wj(X0, . . . , Xj)

is bijective, we get a family of polynomials M0(X0), . . . ,Mn(X0, . . . , Xn) ∈ Z[1p ][X0, . . . , Xn] which
are uniquely determined by the condition:

Mj(W0(X), . . . ,Wn(X)) = Xj .

They are of course described inductively by

Mn =
1

pn
(Xn − pn−1Mn−1(X)p − · · · − pM1(X0, X1)

pn−1 −M0(X0)
pn).
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The following Lemma lets us deduce the universal Witt polynomials describing the ring structure
of W (Fq):

Proposition 6.1. Let Φ ∈ Z[ζ, ξ] be a polynomial in the variables ζ, ξ. For all n ∈ N there exist
polynomials φn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn], uniquely determied by the conditions

Wn(φ0, . . . , φn) = Φ(Wn(X0, . . . , Xn),Wn(Y0, . . . , Yn)).

Sketch of the proof. The proof is constructive: we considering the commutative diagram

Z[1p ][X0, . . . , Xn]
ωn
∼

//

f

��

Z[1p ][X0, . . . , Xn]

��
Z[1p ][X0, . . . , Xn, Y0, . . . , Yn]

ωn⊗ωn
∼

// Z[1p ][X0, . . . , Xn, Y0, . . . , Yn]

where f : Z[1p ][X] → Z[1p ][X,Y ] is defined by f(Xj)
def
= Φ(Xj , Yj) for any j ∈ {0, . . . , n}; the

polynomial φn is then given by

φn(X,Y )
def
= (ωn ⊗ ωn) ◦ f ◦ ω−1n (Xn).

The fact that such φn have integer coefficients is an induction on n.

We apply Proposition 6.1 to the polynomials

Φ(ζ, ξ) = ζ + ξ, Φ(ζ, ξ) = ζξ

to get the universal polynomials for the sum and the product respectively. They will be denoted as
Sn, P rodn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn] and are described inductively by

Sn(X,Y ) =
1

pn
(Wn(X) +Wn(Y )− pn−1Sn−1(X,Y )p − · · · − pS1(X,Y )p

n−1 − S0(X,Y )p
n
)

Prodn(X,Y ) =
1

pn
(Wn(X)Wn(Y )− pn−1Prodn−1(X,Y )p − · · · − pProd1(X,Y )p

n−1 − Prod0(X,Y )p
n
).

In section 4 we are interested in such operations as rise to the N -th power or the alternate sum∑N
j=1(−1)j+1X(j) of N elements. We can of course adapt the arguments of Proposition 6.1 (or, use

an induction on N) to determine the universal Witt polynomials associated to such operations. We
will write PotNn (X) ∈ Z[X0, . . . , Xn], SNn (X(1), . . . , X(N)) ∈ Z[X(1)0, . . . , X(1)n, . . . , X(N)0, . . . , X(N)n]
for the n-th Witt polinomial associated to the rise to the N -th power and the alternate sum of N
elements respectively. We have then the recursive relations:

PotNn (X) =
1

pn
(Wn(X)N − pn−1PotNn−1(X)p −

· · · − pPotN1 (X)p
n−1 − PotN0 (X)p

n
)

SNn (X(1), . . . , X(N)) =
1

pn
(
N∑
j=1

(−1)j+1Wn(X(j))− pn−1SNn−1(X(1), . . . , X(N))p −

· · · − pSN1 (X(1), . . . , X(N))p
n−1 − SN0 (X(1), . . . , X(N))p

n
).

6.2 Some special polynomials-I

In this paragraph we collect some thechnical results concerning some Witt polynomials which appear

naturally in the study of the action of

[
1 0

pOF 1

]
(resp.

[
1 OF

0 1

]
) for the representations of §4.1

(resp. of §4.2), see also the proof of Proposition 4.4.
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For n ∈ N we define Sn(X,Y0) ∈ Z[X0, . . . , Xn, Y0] as the specialisation of Sn(X,Y ) at Y =
(Y0, 0, . . . , 0, . . . ). We recall

Lemma 6.2. For n ∈ N the polynomial Sn(X,Y ) is an homogeneous polynomial in X,Y , of degree
pn if we define the elemets Xj , Yj to be homogeneous of degree pj .

Proof. Omissis.

Thus, if we set

S̃n(X,Y0)
def
= Sn(X,Y0)−Xn

we see that S̃j(X,Y0) is a polynomial in Z[X0, . . . , Xn−1, Y0], homogeneous of degree pn. Moreover,

as S̃n(X, 0) = 0 we see that S̃n(X,Y0) belongs to the ideal generated by Y0.
We define inductively the following family of automorphisms: we put

s0 : Z[X0, Y0]→ Z[X0, Y0]

X0 7→ X0 − Y0
Y0 7→ Y0

and, assuming sj−1 : Z[X0, . . . , Xj−1, Y0]→ Z[X0, . . . , Xj−1, Y0] being constructed, we define

sj : Z[X0, . . . , Xj , Y0]→ Z[X0, . . . , Xj , Y0]

Xj 7→ Xj − sj−1(S̃j)

By their very construction, the sj are graded homomorphisms; in particular sj(S̃j) is homoge-
neous of degree pj , and belongs to the ideal (Y0) inside Z[X0, . . . , Xj , Y0]. We can actually prove
the following result

Lemma 6.3. For any n > 1 we have

sn−1(Sn(X,Y0)−Xn) = −(Sn(X,−Y0)−Xn).

Proof. The case n = 1 is elementary:

s0(S1(X0, X1, Y0)−X1) = s0(
1

p
(Xp

0+Y p
0 −(X0+Y0)

p)) =
1

p
((X0−Y0)p+Y p

0 −X
p
0 ) = −(S1(X0, X1, Y0)−X1).

Concerning the general case, we write

Sn(X0, . . . , Xn, Y0)−Xn =
1

pn
[
Xpn

0 + Y pn

0 − pn−1(Sn−1(X,Y0)p −Xp
n−1)− . . . (17)

· · · − p(S1(X0, X1, Y0)
pn−1 −Xpn−1

1 )− (X0 + Y0)
pn
]
.

For j ∈ {1, . . . , n− 1} we have

sj(Sj(X0, . . . , Xj , Y0)
pn−j −Xpn−1

j ) = (sj−1(Sj(X0, . . . , Xj , Y0)−Xj) + sj(Xj))
pn−j − (sj(Xj))

pn−j

= Xpn−j

j − (Xj − sj−1(Sj(X0, . . . , Xj , Y0)−Xj))
pn−j

= Xpn−j

j − (Xj + Sj(X0, . . . , Xj ,−Y0)−Xj))
pn−j

= −(Sj(X0, . . . , Xj ,−Y0)p
n−j −Xpn−j

j ).
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As sn−1(Sn(X0, . . . , Xn, Y0)−Xn) = sn(Sn(X0, . . . , Xn, Y0)−Xn) we are left to compute

sn

(
1

pn

(
Xpn

0 + Y pn

0 − pn−1(Sn−1(X,Y0)p −Xp
n−1)− . . .

· · · − p(S1(X0, X1, Y0)
pn−1 −Xpn−1

1 )− (X0 + Y0)
pn
))

=

=
1

pn

(
(X0 − Y0)p

n
+ Y pn

0 − pn−1sn−1(Sn−1(X,Y0)p −Xp
n−1)− . . .

· · · − ps1(S1(X0, X1, Y0)
pn−1 −Xpn−1

1 )− (X0)
pn
)

and the result follows as sj(Sj(X0, . . . , Xj , Y0)
pn−j −Xpn−1

j ) = −(Sj(X0, . . . , Xj ,−Y0)p
n−j −Xpn−j

j )
for all j ∈ {1, . . . n− 1}.

We will also need a cleaner statement concerning the monomials of Sn(X0, . . . , Xn, Y0):

Lemma 6.4. For all n > 1 the coefficient of the monomial Xp−1
0 . . . Xp−1

n−1Y0 appearing in the devel-
opment of the universal Witt polynomial Sn(X0, . . . , Xn, Y0) is 1, up to sign.

Proof. The proof is again an induction on n: the case n = 1 is evident.
For the general case, consider

Sn(X,Y0) =
1

pn
(Wn(X) + Y pn

0 − pn−1Sn−1(X,Y0)p − · · · − pS1(X,Y0)p
n−1 − S0(X,Y0)p

n
).

A monomial of the form Xp−1
0 . . . Xp−1

n−1Y0 lies therefore inside

−1

p
(Sn−1(X0, . . . , Xn−1, Y0)

p −Xp−1
n−1)

and the inductive hypothesis yields

Sn−1(X0, . . . , Xn−1, Y0) = Xn−1 +Xp−1
0 . . . Xp−1

n−2Y0 + x(X0, . . . , Xn−2, Y0)

where x(X0, . . . , Xn−2, Y0) ∈ Z[X0, . . . , Xn−2, Y0] doesn’t contains the monomial Xp−1
0 . . . Xp−1

n−2Y0.
Finally, we have

(Sn−1(X0, . . . , Xn−1, Y0))
p =

∑
i+j+k=p

06i,j,k

p!

i!j!k!
Xi
n−1(X

p−1
0 . . . Xp−1

n−2Y0)
j(x(X0, . . . , Xn−2, Y0))

k

and the conclusion follows.

6.3 Some special polynomials -II

In this section we deal with some Witt polynomials which appear naturally when we study the

action of the diagonal matrices

[
1 + pOF 0

0 1 + OF

]
, see in particular the proof of Proposition

4.5. Recall that

Lemma 6.5. Let n ∈ N. The n-th universal Witt polynomial of the product Prodn(X,Y ) is an
homogeneous element of (Z[Y ])[X] (resp. (Z[X])[Y ]) provided that Xj (resp. Yj) is homogeneous
of degree pj for any 0 6 j 6 n.

Proof. Elementary.
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Remark 6.6. In the present paragraph, we will be concerned with the image in Fp[X,Y ] of
the universal Witt polynomials Sn(X,Y ), P rodn(X,Y ). Such images will be denoted again by
Sn(X,Y ), P rodn(X,Y ), in order not to overload notations. As p · 1 = 0 multiplication by p is
the composite of Frobenius and Verschiebung.

For N ∈ N, let z′ = (λ′0, . . . , λ
′
N , 0 . . . , 0, . . . ) ∈ W (Fq) and let α = (α0, α1, . . . ) ∈ W (Fq); we

need to describe

z′ + pα · z′ mod pN+1 (18)

in terms of the universal Witt polynomials.

Lemma 6.7. For 0 6 j 6 N , the j-th Witt polynomial of the development of (18) is an homogeneous
element Qj(λ

′, α) of degree pj in (Fp[α0, . . . , αj−1])[λ
′
0, . . . , λ

′
j ] if we define, for 0 6 s 6 j, λ′s to be

homogeneous of degree ps.

Proof. It is a strightforward consequence of Lemmas 6.2 and 6.5. More precisely, from 6.5 we see
that

p · z′ · α = (0, P rod0(λ
′p
0, α

p
0), . . . , P rodj−1(λ

′p
0, . . . , λ

′p
j−1, α

p
0, . . . , α

p
j−1)︸ ︷︷ ︸

j th entry

. . . )

where each Prodj−1(λ
′, α)p is homogeneous of degree pj (provided that λ′s is homogeneous of degree

ps for 0 6 s 6 j−1). Furthermore, Qj(λ
′, α) is the specialisation of Sj(X,Y ) at X = z′, Y = p ·z′ ·α

and we use Lemma 6.2 to get the desired result.

As we did in §6.2 we define (for 0 6 j 6 N)

Q̃j
def
= Qj(λ

′, α)− λ′j .

For j 6= 0 it is a polynomial in (Fp[α0, . . . , αj−1])[λ
′
0, . . . , λ

′
j−1], homogeneous of degree pj .

We can finally define, inductively, a family of ring homomorphisms: we let

q0 : Fp[λ
′
0]→ Fp[λ

′
0]

be the identity map, and, assuming qj−1 being constructed for j > 1, we define

qj : Fp[λ
′
0, . . . , λj , α0, . . . , αj−1]→ Fp[λ

′
0, . . . , λ

′
j , α0, . . . , αj−1]

by the condition

λ′j 7→ λ′j − qj−1(Q̃j)
αj−1 7→ αj−1

qj |Fp[λ′0,...,λj−1,α0,...,αj−2] = qj−1

(and the obvious formalism: if j = 1 we just forget αj−2 from the formulas).

We deduce:

Lemma 6.8. For 0 6 j 6 N , the polynomial qj−1(Q̃j) is homogeneous of degree pj in λ′0, . . . , λ
′
j−1.

Proof. The morphism qj−1 is a graded ring homomorphism.

6.4 Some special Witt polynomials -III

In this paragraph we study some Witt polynomials giving the action of

[
1 OF

0 1

]
(resp.

[
1 0

pOF 1

]
)

for the representations of §4.1 (resp. of §4.2). A tipycal example is the proof of Proposition 4.7 Such
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study is more delicate than the previous sections (§6.2 and §6.3) and relies crucially on the fact that
we deal with Witt vectors x ∈W (Fq) which are NOT invertible.

We start with a general remark

Lemma 6.9. Let N,n ∈ N.

i) The n-th universal Witt polynomial of the rise to the N -th power PotNn (X) is an homogeneous
element of degree Npn in Z[X0, . . . , Xn] provided that Xj is homogeneous of degree pj for any
0 6 j 6 n.

ii) The n-th universal Witt polynomial associated to the alternate sum ofN elements SNn (X(1), . . . , X(N))
is an homogeneous element of degree pn in Z[X(1)0, . . . , X(1)n, . . . , X(N)0, . . . , X(N)n] if we
define X(l)j to be homogeneous of degree pj , for any l ∈ {1, . . . , N}.

Proof. The result is elementary once we notice that, for p > 3, the universal Witt polynomials
Invn(X) of the additive inverse of X is simply Invn(X) = −Xn.

As in §6.3 we have the following

Remark 6.10. In the present paragraph, we will be concerned with polynomials with coefficients
in Fp obtained by reducing modulo p the coefficients of the universal Witt polynomials SNn (X,Y ),
PotNn (X), Sn(X,Y ), Prodn(X,Y ). In order not to overload notations, such images will be denoted
again by SNn (X,Y ), . . . . As p · 1 = 0, the multiplication by p is the composite of Frobenius and
Verschiebung.

Fix 0 6 m 6 n and consider the ring Fp[λm, . . . , λn].

Definition 6.11. Let M ∈ N. A monomial λαmm . . . λαnn ∈ Fp[λm, . . . , λn] is said to be pseudo-
homogeneous of degree M if the following holds:

there exist an integer L ∈ N and integers βl(j) ∈ N for j ∈ {1, . . . , L}, l ∈ {m, . . . , n} such that

i) for all l ∈ {m . . . , n} we have

αl =
L∑
j=1

pj−1βl(j)

ii) we have

pm(

L∑
j=1

βm(j)) + · · ·+ pn(

L∑
j=1

βn(j)) 6M.

A polynomial in Fp[λm, . . . , λn] is said to be pseudo-homogeneous of degree M if it is a sum of
pseudo-homogeneous monomials of degree M .

Notice that a monomial λαmm . . . λαnn can be pseudo-homogeneous of several degrees (for instance,

λp0): such notion let us consider any p-th power λp
k

j as pseudo-homogeneous of degree pj+k
′
, with

0 6 k′ 6 k. Definition 6.11 is flexible enough to handle information on the exponents of some
complicate Witt polynomials, yet strong enough to make these informations interesting for our
aims11.

The following result is imediate

Lemma 6.12. Fix m,n as above. Then:

11We suggest the reader to make some example of pseudo homogeneous polynomials of low degree (p − 1, p, p + 1,
etc...).
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i) If P1, P2 ∈ Fp[λm, . . . , λn] are pseudo-homogeneous of degree M1,M2 respectively, then P1P2

is pseudo-homogeneous of degree M1 +M2.

ii) if P1 ∈ Fp[λm, . . . , λn] is pseudo-homogeneous of degree M1 then P p1 is again pseudohomoge-
neous of degree M1.

Proof. Omissis.

Remark 6.13. If P ∈ Fp[λm, . . . , λn] is pseudo-homogeneous and we specialise P on an element of
Fn−m+1
q , we see that the integer L in definition 6.11 can be assumed to verify L 6 f .

We are now ready to focus our attention on some Witt vectors in W (Fq).

6.4.1 The negative case. For 1 6 m 6 n, let z
def
= (0, . . . , 0, λm, . . . , λn, 0, . . . ) and [µ]

def
=

(µ, 0, . . . ) be elements of W (Fq). We are interested in the Witt development of

N∑
j=0

(−1)jzj+1[µj ] mod pn+1 (19)

where N
def
= bn+1

m c. For j ∈ {m, . . . , n} write finally Uj(λ, µ) ∈ Fp[λm, . . . , λj , µ] for the j-th poly-
nomial of the Witt development of (19) and put

Ũj(λ, µ)
def
= Uj − λj .

We notice that Ũj = 0 if m 6 j 6 2m− 1 and Ũ2m = −λ2p
m

m .

We have a rough estimate for the degree of the Ũh

Lemma 6.14. Let h ∈ {2m, . . . , n}. Then Ũh ∈ Fp[λm, . . . , λh−1, µ] and is pseudo homogeneous of
degree ph − pm(pm − 2).

Proof. If z̃
def
= (λ

1
pm

m , . . . , λ
1
pm

n , 0, . . . ) then we recall that Potj+1
l (z̃) is homogeneous of degree (j+1)pl

(if λs is homogeneous of degree ps). Thus the Witt development of zj+1[µ]j has the form

zj+1[µ]j = (0, . . . , 0, Potj+1
0 (λp

mj

m )(µj)
pm(j+1)︸ ︷︷ ︸

positionm(j+1)

, . . . , Potj+1
l (λp

mj

m , . . . , λp
mj

m+l)(µ
j)
pm(j+1)+l︸ ︷︷ ︸

positionm(j+1)+l

, . . . )

and Potj+1
l (λp

mj

m , . . . , λp
mj

m+l)(µ
j)
pm(j+1)+l

is homogeneous of degree (j + 1)pl+m(j+1) and actually is

pseudo-homogeneous of degree (j + 1)pl+m.
Thus, if a(j+1)m(j), . . . , ah(j) is an (h− (j + 1)m+ 1)-tuple of integers, the polynomial

h−(j+1)m∏
l=0

(Potj+1
l (λp

mj

m , . . . , λp
mj

m+l)(µ
j)
pm(j+1)+l

)a(j+1)m+l(j)

is pseudo-homogeneous of degree

(j + 1)(pma(j+1)m(j) + · · ·+ ph−mjah(j)).

By Lemma 6.9 we see that a monomial of SN+1
h (X(1), . . . , X(N + 1)) has the following form:

X
def
=

h∏
l0=0

Xl0(1)al0 (0) · · ·
h∏

lN=0

XlN (N + 1)alN (N)
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where
h∑

l0=0

pl0al0(0) + · · ·+
h∑

lN=0

plNalN (N) = ph.

As Uh is the specialisation of S
(N+1)
h at

(X(j + 1))j∈{0,...,N} = (zj+1[µj ])j∈{0,...,N}

we see in particular that Ũh ∈ Fp[λm, . . . , λh−1, µ].
Assume now that

1) if j verifies h > (j + 1)m we have alj (j) = 0 for all lj < (j + 1)m;

2) if j verifies h < (j + 1)m we have alj (j) = 0.

Then Lemma 6.12 shows that the specialisation of X is pseudo-homogeneous of degree

d
def
=

N∑
j=0

(j + 1)(
h∑

i=(j+1)m

pi−jmai(j)).

Letting

xj+1
def
=

h∑
i=(j+1)m

pi−mjai(j)

for j ∈ {0, . . . , h} we get

d = ph −
N∑
j=0

(pjm − (j + 1))xj

and the conclusion follows from Lemma 6.15 below.

Lemma 6.15. Let j ∈ {0, . . . , N} and let

X
def
=

h∏
l0=0

Xl0(1)al0 (0) · · ·
h∏

lN=0

XlN (N + 1)alN (N)

be a monomial of S
(N+1)
h (X(1), . . . , X(N + 1)).

If ali(i) = 0 for all i 6= j and li ∈ {0, . . . , h} then

X = (−1)j+1Xh(j).

Proof. An immediate induction on h shows that if we specialise S
(N+1)
h at

(X0(i), . . . , Xh(i)) = (0, . . . , 0)

for i 6= j we get

S
(N+1)
h (0, . . . , 0, X(j), 0, . . . , 0) = (−1)j+1Xh(j)

and the claim follows.

We finally introduce a family of ring homomorphisms, for m 6 j 6 n,

uj : Fp[λm, . . . , λj , µ]→ Fp[λm, . . . , λj , µ]

defined inductively as follow: um is the identity map and, assuming uj−1 being constructed, we
define uj as the unique extension of uj−1 to Fp[λm, . . . , λj , µ] such that

λj 7→ λj − uj−1(Ũj).

We have the
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Lemma 6.16. Let h ∈ {2m, . . . , n}. Then uh(Ũh) is pseudo-homogeneous of degree ph−pm(pm−2).

Proof. Arguing by induction, we can assume that ul(λl) is pseudo-homogeneous of degree pl for all
l ∈ {m, . . . , h − 1}. As Ũh is pseudo-homogeneous of degree ph − pm(pm − 2) by Lemma 6.14, the
claim follows from Lemma 6.12.

6.4.2 The positive case This section is essentially a re-edition of §6.4.1, where we take m = 0.
The results presented here will be used in 4.2, precidely for the proofs of Propositions 4.11, 4.13
where we give a description of the K0(p)-representations R+

n+1.
Let (λ0, . . . , λn, 0, . . . ) ∈W(Fq).

We are interested in the Witt development (U0(λ0, µ), U1(λ0, λ1, µ), . . . , Un+1(λ0, . . . , λn+1, µ), 0, . . . )
of

z(1 + p[µ]z)−1 ≡
n+1∑
j=0

pj [µ](−1)jzj+1 mod pn+2.

We check immediately that U0 = λ0 and U1 = λ1 − λ2p0 µ.

We define, for h = 0, . . . , n+ 1, Ũh
def
= Uh − λh. The following result is the analogous of Lemma

6.14

Lemma 6.17. Let h ∈ {1, . . . , n+1}. Then Ũh ∈ Fp[λ0, . . . , λh−1, µ] is pseudohomogeneous of degree
ph − (p− 2).

Proof. The proof is completely analogous to the proof of Lemma 6.14 and left to the reader (see
[Mo1], Lemma 6.17 for details).

As in section §6.4.1 we define inductively, for h = 0, . . . , n+ 1, the ring morphisms

uh : Fp[λ0, . . . , λh, µ]→ Fp[λ0, . . . , λh, µ]

by the condition uh(λh)
def
= λh − uh−1(Ũh) for h > 1 and u0

def
= id. Then

Lemma 6.18. Let 1 6 h 6 n+ 1. Then uh(Ũh) is pseudo-homogeneous of degree ph − (p− 2).

Proof. As for Lemma 6.16 it is a consequence of Lemma 6.12 and Lemma 6.17.

Still others remarks on some universal Witt polynomials. In this paragraph we pursue
the technical computations of §6.4.2; the results here will be used in §5.1, Proposition 5.3. Indeed,
the structure of the quotients R•n+1/R

•
n is more complicate than for R•n+1, and it can not be deduced

from Lemmas 6.16, 6.18; we therefore need to look more closely to the structure of the polynomial
Ũn+1 and un(Ũn + 1) (the notations being the same as for §6.4.2).

The following description is deduced as in the proof of Lemma 6.14. Let z = (λ0, . . . , λn, 0) ∈
Wn+1(Fq) and write

n+1∑
j=0

pj [µ](−1)jzj+1 = (U0, . . . , Un+1).

for Uj ∈ Fp[λ0, . . . , λj , µ]. We recall that Uh is obtained by specializing the universal polynomial
Sn+2
h (X(1), . . . , X(n+ 2)) at

X(j + 1) = (0, . . . , 0, (Potj+1
0 (λ))p

j
(µj)p

j︸ ︷︷ ︸
position j

, . . . , (Potj+1
l (λ))p

j
(µj)p

j+l︸ ︷︷ ︸
position j+l

, . . . ).
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We recall moreover that a monomial X of Sn+2
h (X(1), . . . , X(n+ 2)) has the form

X =
h∏

l0=0

Xl0(1)al0 (0) · · ·
h∏

ln+1=0

Xln+1(n+ 2)aln+1
(n+1) (20)

where the integers ali(i) verify

h∑
l0=0

pl0al0(0) + · · ·+
h∑

ln+1

pln+1aln+1(n+ 1) = ph;

Therefore a monomial λα0
0 · · · · · λ

αh
h issued from Uh verifies

h∑
j=0

pjs(αj) 6
h∑
j=0

(j + 1)(
h∑
i=j

pi−jai(j)) = ph −
h∑
j=1

(pj − (j + 1))xj

where we have set

xj
def
=

h∑
i=j

pi−jai(j).

We focus our attention for the case h = n+ 1, obtaining thus the following

Lemma 6.19. A monomial of Ũn+1 has the following form

λan(0)+pan+1(1)
n · λαn−1

n−1 · · · · · λ
α0
0

where the exponents verify the following properties:

1) we have an(0) ∈ {0, . . . , p− 1} and an+1(1) ∈ {0, 1},
2) letting xj

def
=
∑n+1

i=j p
i−jai(j) we have

n−1∑
j=0

pjs(αj) + pn(an(0) + an+1(1)) 6 pn+1 −
n+1∑
j=1

(pj − (j + 1))xj

3) if an+1(1) = 1 then the monomial has the form

λp
n+1

0 λpn.

Proof. The fact that an(0) 6= p follows from the fact that in the polynomial Sn+2
n+1 the coefficient

of Xn(1)p is zero (the proof is the usual one: see Lemma 6.15). Assertion 2) is deduced from 1)

(and the fact that f > 2). Assertion 3) follows noticing that (Pot2n(z))p = 2λp
n+1

0 λpn + x where
x ∈ Fp[λ0, . . . , λn−1].

We recall the ring morphism un : Fp[λ0, . . . , λn, µ] → Fp[λ0, . . . , λn, µ] (cf. 6.4.2). If i
(s)
n+1 ∈ N

deduce the following

Lemma 6.20. In the preceding notations, a monomial issued from un(Ũn+1)
i
(s)
n+1 has the following

form

(λp
n+1

0 λpn)B
(s)
n+1(1)λB

(s)
n (0)

n λ
βn−1

n−1 · . . . λ
β0
0

and there exists convenient integers Ai(j) > 0 (depending on the choosen monomial) such that

1) we have

s(β0 + pn+1B
(s)
n+1(1)) +

n−1∑
j=1

pjs(βj) + pn(B(s)
n (0) +B

(s)
n+1(1)) 6 pn+1i

(s)
n+1 −

n+1∑
j=1

n+1∑
i=j

(pj − (j + 1))pi−jAi(j);
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2) we have Ai(j) = 0 for all couples (i, j) if and only if i
(s)
n+1 = 0;

3) we have 0 6 B(s)
n+1(1) 6 A(s)

n+1(1) 6 i(s)n+1.

Proof. Lemma 6.19 shows that a monomial λα
def
= λ

an(0)+pan+1(1)
n · λαn−1

n−1 · · · · · λ
α0
0 issued from Ũn+1

is pseudo homogeneous of degree

d0
def
= pn+1 −

n+1∑
j=1

n+1∑
i=j

(pj − (j + 1))pi−jai(j).

A monomial issued from un(λα) is of the form

λβ
′ def

= (λp
n+1

0 λpn)b
(s)
n+1(1)λb

(s)
n (0)
n λ

β′n−1

n−1 · . . . λ
β′0
0 (21)

where 0 6 bn(0) 6 an(0) and 0 6 bn+1(1) 6 an+1(1). Moreover, as λα is pseudo-homogeneous of
degree d0, so it is for λβ and in particular we have

s(β′0 + pn+1bn+1(1)) +

n−1∑
j=1

pjs(β′j) + pn(bn(0) + bn+1(1)) 6 d0.

(as s(bn(0) + pbn+1(1)) = bn(0) + bn+1(1)!).

A monomial issued from un(Ũn+1)
i
(s)
n+1 is the product of i

(s)
n+1 monomials of the form λβ

′
, and

thus of the form

(λp
n+1

0 λpn)B
(s)
n+1(1)λB

(s)
n (0)

n λ
βn−1

n−1 · . . . λ
β0
0

where B
(s)
n+1(1), B

(s)
n (0) is the sum of i

(s)
n+1 terms of the form b

(s)
n+1(1), b

(s)
n (0).

If each of the monomials λβ
′

comes from un(λα), the statement follows easily from the subaddi-
tivity of the function s and the additivity of the pseudo-homogeneous degree, once we define each

integer Ai(j) to be the sum of i
(s)
n+1 terms of the form ai(j), one for each monomial λα (the integers

ai(j) being defined as for Lemma 6.19).

7. Appendix B: Two rough estimates

The aim of this appendix is to estimate the behaviour of some “discrete Fourier transforms” which

appear naturally in the study of the socle filtration for the representations R±n+1, Ind
K0(p)
K0(pn+1)

1, etc...

According to the Euclidean vocabulary developped in Sections 4 and 5 such behaviour is related to
the reduction mod pf − 1 of the exponents of some (pseudo-)homogeneous polynomials.

The first tool is discussed in §7.1: it is an elementary description of the function s giving the
digit sum of the reduction modulo pf −1 of a natural number. In §7.2 the properties of the function
s and the results on Witt polynomials stated in §6 will be used to describe in detail some explicit
vectors of the aforementioned representations (Propositions 7.3, 7.4 and 7.5).

7.1 Remark on the proof of Stickelberger’s Theorem

In this section we recall the construction and the properties of a certain function s : Z→ N which
appears in the proof of Stickelberger’s theorem.

If p is a prime of Q(ζq−1) lying above p, the reduction modulo p, Z[ζq−1] → Fq admits a
multiplicative section

ωp : F×p → Z[ζq−1]
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which induces an isomorphisms on the group µq−1 of q − 1-th roots of unity. If P is the prime of
Q(ζq−1, ζp) lying above p, we define a function s : Z→ N by

s(n)
def
= valP(g(ω−np ))

where valP denotes the P-adic valuation and g(ω−np ) denotes the Gauss sum of the character
ω−np : F×q → µq−1 (see [Was], §6.1 for the definition of the Gauss sum g(ω−np )).

We need to modify slightly this function as follow:

s : N→ N

n 7→
{
s(n) if eithern 6≡ 0 mod q − 1 orn = 0
f(p− 1) otherwise

The following lemma is then easily deduced from the well known properties of the function s (cf.
[Was], §6.2):

Lemma 7.1. Let n,m ∈ N. Then:

a) s(0) = 0 and s(1) = 1;

b) 0 6 s(m+ n) 6 s(n) + s(m);

c) s(pn) = s(n);

d) if 0 6 n 6 q − 1 and (a0, . . . , af−1) are the digits of the p-adic development of n, we have

s(n) = a0 + a1 + · · ·+ af−1.

In particular, s(n) 6 n for any n ∈ N, with equality if and only if n ∈ {0, . . . , p− 1}.

We can improve the statement of b):

Lemma 7.2. Let b0, . . . , bf−1 ∈ N be integers.
Then there exist integers ms, ns, where s ∈ {0, . . . , f − 1} such that:

1) for all s ∈ {0, . . . , f − 1}

cs
def
= bs − pms + nbs−1c ∈ {0, . . . , p− 1};

2) we have

j̃
def
=

f−1∑
s=0

ms =

f−1∑
s=0

ns;

3) we have
f−1∑
s=0

psbs ≡
f−1∑
s=0

pscs mod pf − 1;

4) we have the equality

s(

f−1∑
s=0

psbs) =

f−1∑
s=0

bs − j̃(p− 1).

Proof. Assume first that bs ∈ {0, . . . , p− 1} for all s > 1 and b0 > p. There exist (unique) integers
ms, for s = 0, . . . , f − 1 such that

i) bs +ms−1 − pms ∈ {0, . . . , p− 1} for all s > 1 and b0 − pm0 ∈ {0, . . . , p− 1};
ii) we have the equality

f−1∑
s=0

bsp
s = (b0 − pm0) +

f−1∑
s=0

ps(bs +ms−1 − pms) + pf−1mf−1. (22)
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As we work modulo q − 1 the equality (22) reads

f−1∑
s=0

bsp
s ≡ (b0 − pm0 +mf−1) +

f−1∑
s=0

ps(bs +ms−1 − pms) mod q − 1.

If b0 − pm0 + mf−1 ∈ {0, . . . , p − 1} we get the result. If not, we only have to check that 0 6
b0 − pm0 + mf−1 < b0 (so that the iteration of the preceding procedure eventually stops). As

−pm1 + b1 +m0 > 0 and b1 6 p−1 we get m1 6
p−1+m0

p and, inductively, ms+1 6
ps+1−1+m0

ps+1 . Thus

−pm0 +mf−1 6 −pm0 +
pf−1 − 1 +m0

pf−1
< 0

if m0 > 1.
For the general case, we notice that there exists unique integers m′s such that bs+m′s−1−pm′s ∈

{0, . . . , p− 1} for all s > 1 and b0 −m′0 ∈ {0, . . . , p− 1}. As we work modulo q − 1 we get

f−1∑
s=0

bsp
s ≡ (b0 − pm′0 +m′f−1) +

f−1∑
s=0

ps(bs +m′s−1 − pm′s) mod q − 1.

and we are in the previous case.

7.2 Two rough estimates

In this section we study some elements of Ind
K0(pm)
K0(pn+1)

1 which appear naturally in the study of the

socle filtration for Ind
K0(pm)
K0(pn+1)

1 (but the results adapt immediately for the representations R±n+1).

In particular, we will be able to have a partial control of the action of K0(p
m) on Ind

K0(pm)
K0(pn+1)

1.

The following proposition holds for a fixed pair (m,n) of integers such that 0 6 m 6 n; if m = 0

we just have to replace the matrix

[
1 0

pm[λm] 1

]
with

[
[λ0] 1
1 0

]
in the expressions (23) and

(24). Finally we recall the definition of the Fp-linear subspace W(lm,...,ln)
of Ind

K0(pm)
K0(pn+1)

1 for a given

(n+ 1−m)f -tuple (lm, . . . , ln) ∈
{
{0, . . . , p− 1}f

}n+1−m
, given in §4.1.2.

Proposition 7.3. Let Fm,nlm,...,ln
∈ B, and N

def
= Nm,n(lm, . . . , ln). For m 6 j 6 n let Tj ∈

Fp[λm, . . . , λj−1] be a polynomial of degree deg(Tj) 6 pj−m (where, for j ∈ {0, . . . , n − 1}, we
define λj+m to be homogeneous of degree pj), and ij be a f -tuple such that ij 6 lj . Finally, fix

M < pf − 1 and define the element

x
def
=

n−1∑
j=m

∑
λj∈Fq

(λ
1

pj

j )lj−ij (T
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] ∑
λn∈Fq

(λ
1
pn

n )ln−in

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]
. (23)

Then the image of x under the projection

Ind
K0(pm)
K0(pn+1)

1� Ind
K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−M

is contained in the image of the subspace W(lm,...,ln)
.

Proof. The technique of the proof is very simple: we fix 0 6 t 6M and k ∈ N such that k(p− 1) 6

t < (k+ 1)(p−1). If we write x as a suitable sum of elements F
(m,n)

l′m,...,l
′
n
, the statement is proved if we

check that any such element lying in the antidiagonal X0+ · · ·+Xf−1 = N−t verifies x′j 6 xj+k for

all j = 0, . . . , f − 1 (where, as usual, (x0, . . . , xf−1), (x′0, . . . , x
′
f−1) are the coordinates of F

(m,n)
lm,...,ln

,

F
(m,n)

l′m,...,l
′
n

via the map (7)).
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This is a long computation. If we expand each of the polynomials T
im+1

m+1 , . . . , T
in
n , we obtain:∑

i∈I
βi
∑

λm∈Fq

(λ
1
pm

m )κm(i)

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn(i)

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

(24)

where I is a suitable set of indices, βi ∈ Fp, and the exponents κj(i) (for j ∈ {m, . . . , n}) admit the
following explicit description: 12

κa = pb−1cκ(a+1)
a + · · ·+ pb−(n−a)cκ(n)a + la − ia

and (for a+ 1 6 b 6 n)

κ(b)a = κ(b),0a + pκ(b),1a + · · ·+ pf−1κ(b),f−1a

where each κ
(b),s
a is the exponent of λa apperaring in a fixed monomial of (Tb)

i
(s)
b .

Recall that, by the hypothesis on the Tb, we have

κ(b),sm + pκ
(b),s
m+1 + · · ·+ pb−1−mκ

(b),s
b−1 6 p

b−mi
(s)
b . (25)

Thanks to Lemma 7.1, we have the following inequalities:

s(κm) + p s(κm+1) + · · ·+ pn−m s(κn) 6 (26)

6(s(lm − im) + s(pb−1cκ(m+1)
m ) + · · ·+ s(pb−(n−m)cκ(n)m )) +

+p(s(lm+1 − im+1) + s(pb−1cκ
(m+2)
m+1 ) + · · ·+ s(pb−(n−m−1)cκ

(n)
m+1)) + . . .

· · ·+ pn−m−1(s(ln−1 − in−1) + s(pb−1cκ
(n)
n−1)) + pn−m(s(ln − in)) 6 (27)

6 s(lm − im) +

f−1∑
s=0

s(κ(m+1),s
m ) +

p(s(lm+1 − im−1)) + (

f−1∑
s=0

(s(κ(m+2),s
m + p s(κ

(m+2),s
m+1 )) + . . .

· · ·+ (

f−1∑
s=0

(s(κ(n),sm ) + p s(κ
(n),s
m+1) + · · ·+ pn−m−1 s(κ

(n),s
n−1 ))) + pn−m s(ln − in) 6 (28)

6 s(lm − im) + p s(im+1) + p s(lm+1 − im+1) + · · ·+ pn−m s(in) + pn−m s(ln − in)

where the inequality (28) is deduced from (25) and Lemma 7.1-d).
If we impose our function to lie on the hyperplane X0 + · · · + Xf−1 = t we get a “control” on

the exponents κ
(b),s
a . More precisely,

i) the inequality (26) give rise to the conditions:

s(κa) = s(la − ia) + s(κ(a+1)
a ) + · · ·+ s(κ(n)a )− ua(p− 1)

for a ∈ {m, . . . , n− 1} and some ua ∈ N;

ii) the inequality (27) give rise to the conditions:

s(κ(b)a ) = s(κ(b),0a ) + · · ·+ s(κ(b),f−1a )− w(b)
a (p− 1)

12From now on, we fix an index i ∈ I, and we put κj
def
= κj(i)
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where a ∈ {m, . . . , n− 1}, b ∈ {a+ 1, . . . , n} and some w
(b)
a ∈ N;

iii) the inequality (28) give rise to the conditions

s(κ(b),sa ) = κ(b),sa − v(b),ca (p− 1)

where a ∈ {m, . . . , n− 1}, b ∈ {a+ 1, . . . , n}, s ∈ {0, . . . , f − 1} and some v
(b),s
a ∈ N;

iv) condition t < (k + 1)(p− 1) imposes finally

n−1∑
a=m

pa−mua +
n−1∑
a=m

pa−m(
n∑

b=a+1

w(b)
a ) +

n−1∑
a=m

pa−m(
n∑

b=a+1

f−1∑
s=0

v(b),sa ) 6 k.

First, notice that the condition k(p− 1) < pf − 1 implies κ
(b),s
a 6 pf − 1 for all possible choices

of a, b, s (as s(κ
(b),s
a ) 6 dκ(b),sa e). If κ

(b),s
a (i), for i ∈ {0, . . . , f − 1}, are the cyphers of the p-adic

development of κ
(b),s
a , we then see that iii) gives the necessary condition

f−1∑
i=1

κ(b),sa (i) 6 v(b),sa

(indeed, v
(b),s
a can uniquely written as v

(b),s
a = αa,b,s(1) + (p+ 1)αa,b,s(2) + · · ·+αa,b,s(f − 1)(1 + p+

· · ·+ pf−1) for suitable integers αa,b,s(j)).
Fix now a ∈ {m, . . . , n− 1}, b ∈ {a+ 1, . . . , n}. Working in Z/(pf − 1), we see that

κ(b),0a + · · ·+ pf−1κ(b),f−1a ≡
f−1∑
j=0

pj(κ(b),0a (j) + κ(b),1a (bj − 1c) + · · ·+ κ(b),f−1a (bj − (f − 1)c)).

Using Lemma 7.2 we see that condition ii) lets us deduce the p-adic expansion of κ
(b)
a :

κ(b)a (j) = κ(b),0a (j) + · · ·+ κ(b),f−1a (bj − (f − 1)c)− pα(b)
a (j) + β(b)a (j) (29)

= κ(b),ja (0) + ρ(b)a (j)− pα(b)
a (j)

where the integers α
(b)
a (j), β

(b)
a (j) verify

f−1∑
j=0

α(b)
a (j) =

f−1∑
j=0

β(b)a (j) = w(b)
a

and

ρ(b)a (j) =
∑

s∈{0 ...,f−1}\{j}

κ(b),sa (bj − sc) + β(b)a (j) 6
f−1∑
s=0

v(b),sa + w(b)
a .

Similarly, condition i) lets us deduce the p-adic development of κa:

κa(j) = l(j)a − i(j)a +

n∑
b=a+1

κ(b)a (bj + b− ac)− pAa(j) +Ba(j)

= l(j)a − i(j)a +

n∑
b=a+1

κ(b),bj+b−aca (0) + Ra(j)− p(
n∑

b=a+1

α(b)
a (bj + b− ac) +Aa(j))

where the integers Aa(j), Ba(j),Ra(j) verify

f−1∑
j=0

Aa(j) =

f−1∑
j=0

Ba(j) = ua

70



On some representations of the Iwahori subgroup

and

Ra(j) =
n∑

b=a+1

ρ(b)a (bj + b− ac) +Ba(j) 6 ua +
n∑

b=a+1

(

f−1∑
s=0

v(b),sa + w(b)
a ).

We finally have all the ingredients to give the rough estimate of the statement. We fix a “coor-
dinate” j. A strightforward but tedious computation gives

n∑
a=m

pa−mκa(j) =
n∑

a=m

pa−m(l(j)a − i(j)a +
n∑

b=a+1

κ(b),bj+b−aca (0) + Ra(j)− pAa(j)) =

= xj −
n∑

a=m

pa−mibj+a−mca +

n∑
b=m+1

b−1∑
a=m

pa−mκ(b),bj+b−mca (0) +

+

n−1∑
a=m

pa−mRa(j)− p(
n∑

a=m

pa−mAa(j))

where Aa(j) ∈ N are convenient integers (and notice that Rn(j) = 0!). The conclusion follows as

n−1∑
a=m

pa−mRa(j) 6
n−1∑
a=m

pa−m(ua +
n∑

b=a+1

w(b)
a +

n∑
b=a+1

f−1∑
s=0

v(b),sa ) 6 k

and
b−1∑
a=m

κ(b),sa (0) 6 pb−mi(s)b

for any b ∈ {m+ 1, . . . , n} and s ∈ {0, . . . , f − 1}.

The following rough estimate will help us understand the action of

[
1 OF

0 1

]
(resp. of

[
1 0

pOF 1

]
)

on the representations in §4.1 (resp. §4.2) and it will be used in the proof of Proposition 4.7. Appar-
ently, the result is unsatisfactory if we want to describe the K-socle filtration for the representations
π(r, λ, 1), unless we impose some conditions, depending on p, on the residue degree f (we expect a
condition of the form f 6 p+1

2 , [Mo2]).

Proposition 7.4. Let 1 6 m 6 n be integers and consider F
(m,n)
lm,...,ln

∈ B; let N
def
= Nm,n(lm, . . . , ln).

For 2m 6 j 6 n let Vj ∈ Fp[λm, . . . , λj−1] be a pseudo-homogeneous polynomial of degree deg(Vj) 6

pj−pm(pm−2) and ij be a f -tuple such that ij 6 lj . Finally, fix M < pm−2 and define Vj
def
= 1, ij = 0

for m 6 j 6 2m− 1.
The element x defined as

x
def
=

n−1∑
j=m

∑
λj∈Fq

(λ
1

pj

j )lj−ij (V
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] ∑
λn∈Fq

(λ
1
pn

n )ln−in

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]

and the element F
(m,n)
lm,...,ln

have the same image under the projection

Ind
K0(pm)
K0(pn+1)

1� Ind
K0(pm)
K0(pn+1)

1/(Ind
K0(pm)
K0(pn+1)

1)N−M .

Proof. The idea of the proof is completely analogous of that of Proposition 7.3 the main difference
being that here we are not able to give an estimate of the coordinates of the points appearing in
the development of x.
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As in 7.3 we consider an element appearing in the development of x:∑
λm∈Fq

(λ
1
pm

m )κm(i)

[
1 0

pm[λ
1
pm

m ] 1

]
. . .

∑
λn∈Fq

(λ
1
pn

n )κn(i)

[
1 0

pn[λ
1
pn

n ] 1

] [
1, e
]
.

The exponents κa (for a ∈ {m, . . . , n}) admit the following explicit description:

κa = pb−1cκ(a+1)
a + · · ·+ pbn−acκ(n)a + la − ia

and (for a+ 1 6 b 6 n)

κ(b)a = κ(b),0a + pκ(b),1a + · · ·+ pf−1κ(b),f−1a

where each κ
(b),s
a is the exponent of λa apperaring in a fixed monomial of (Vb)

i
(s)
b .

As each Vb is pseudo-homogeneous, for each triple (a, b, s) we have

κ(b),sa = β(b),sa (1) + · · ·+ pf−1β(b),sa (f)

where the integers β
(b),s
a (j) verify

f∑
j=1

β(b),sm (j) + p(

f∑
j=1

β
(b),s
m+1(j)) + · · ·+ pb−m−1

f∑
j=1

(β
(b),s
b−1 (j)) 6 (pb−m − (pm − 2))i

(s)
b .

As for the inequalities (26), (27), (28), we use Lemma 7.1 to obtain

n∑
a=m

pa−ms(κa) 6 N − (pm − 2)(
n∑

a=2m

s(ia))

and the conclusion follows.

We state an analogous result in the case m = 0.

Proposition 7.5. Let n > 0 and F
(0,n)
l0,...,ln+1

∈ B+
n+1; let N

def
= N0,n+1(l0, . . . , ln+1). For 1 6 h 6 n+1

let Vh ∈ Fp[λ0, . . . , λh−1] be a pseudo homogeneous polynomial of degree ph − (p − 2) and ih 6 lh
be an f -tuple. We finally fix M ∈ {0, . . . , p− 3} and put i0

def
= 0, Vn+2

def
= 1.

The element

x
def
=
∑
λ0∈Fq

λ
l0−i0
0 (V

1
p

1 )i1
[

[λ0] 1
1 0

] n+1∑
j=1

∑
λj∈Fq

(λ
1

pj

j )lj−ij (V
1

pj+1

j+1 )ij+1

[
1 0

pj [λ
1

pj

j ] 1

] [
1, e
]

and the element F
(0,n)
l0,...,ln+1

have the same image under the projection

IndKK0(pn+2)1)+ � (IndKK0(pn+2)1)+/((IndKK0(pn+2)1)+)N−M

Proof. The proof is completely analogous to the proof of Proposition 7.4 and is left to the reader
(see [Mo1], Proposition 7.5 for details).
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