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Abstract

Let p be an odd prime number. The classification of irreducible representations of GL2(Qp)
over Fp is known thanks to the works of Barthel-Livné [BL95] and Breuil [Bre03a]. In the
present paper we illustrate an exhaustive description of such irreducible representations,
through the study of certain functions on the Bruhat-Tits tree of GL2(Qp). In partic-
ular, we are able to detect the socle filtration for the KZ-restriction of supersingular
representations, principal series and special series.

1. Introduction

Let p be a prime number, F a non-Archimedean local field, OF its ring of integers and kF the
residue field, which will be assumed of characteristic p and cardinality q = pf . The `-adic Local
Langlands correspondence (for ` 6= p) provides us with a well understood dictionary between suitable
representation of Gal(Qp/F ), n dimensional over Q`, and suitable representations of GLn(F ) (two
independent proofs due to Harris and Taylor in [HT01] and Henniart in [Hen00]). Moreover, via a
process of reduction of coefficients modulo `, Vignéras deduces a semi-simple mod ` Local Langlands
correspondence, as it results from her study in [Vig].

The theory, in the p-adic case, is far more complicated: for instance Grothendieck’s `-adic mon-
odromy theorem collapses, there are not reasonable analogues of the Haar measure, there are no
Whittacker models, etc... After a first conjectural approach pointed out by Breuil in [Bre04] and
[Bre03b], we dispose nowadays of a p-adic local Langlands correspondence in the 2-dimensional
case for F = Qp by the works of many mathematicians (Berger [Ber], Berger-Breuil [BB], Colmez
[Col], Paskunas [Pas1], etc...). This correspondence is compatible with the reduction of coefficients
modulo p and enables us to establish a semi-simple mod p-Langlands correspondence for GL2(Qp)
(again, such a process has been conjectured and proved in few cases by Breuil in [Bre03b] and in
generality by Berger in [Ber]).

A major problem for a conjectural mod p-Langlands correspondence is represented by the lack
of a complete classification for smooth irreducible admissible GL2(Qp) representations over Fp. In
[BL94] and [BL95], Barthel and Livné detect four families of such irreducible objects: besides a
detailed study of principal and special series (and characters), the authors discover another class
of smooth irreducible admissible representations, referred to as “supersingular”, non-isomorphic to
the previous ones. Recalling the notion of compact induction (see the end of the Introduction for
the precise definition), a supersingular representation π is characterised up to twist as a subquotient
of the cokernel of a canonical Hecke operator

Tr ∈ End(c-ind
GL2(F )
GL2(OF )F×σr)
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for a GL2(OF )F× representation σr parametrised by an f -tuple of integers r (such an f -tuple
depending on π).

Their nature is still very mysterious. For instance, if F 6= Qp, the aforementioned cokernels
are not even admissible and the works of Paskunas [Pas], Breuil-Paskunas [BP] and Hu [Hu] show
the existence of a huge number of supersingular representations relative to the number of Galois
representations (whose classification is indeed well known).

The case F = Qp is far different. The cokernels of the Hecke operators, which depend here
on a single parameter r ∈ {0, . . . , p − 1}, are irreducible and we deduce a complete description
of supersingular representations for GL2(Qp). The first proof of this phenomenon, due to Breuil,
appears in [Bre03a]: the author is able to compute explicitly the space of I1-invariants studying
the behaviour of certain functions, denoted as X0

n and X1
n, on the Bruhat-Tits tree for GL2(Qp).

Here I1 denotes the pro-p-Iwahori of GL2(Zp). Nowadays others ways to prove the irreducibility of
coker(Tr) have been discovered: see for instance the papers of Ollivier ([Oll]), Emerton ([Eme08]),
Berger ([Ber1]).

In the present paper we describe completely, through a wide generalisation of the techniques of
[Bre03a], the cokernel of the Hecke operators Tr, giving their GL2(Zp)-socle filtration. We stress
out that the techniques of this paper can be generalised to unramified extensions of Qp, giving the
Iwahori structure for the canonical Hecke operators in terms of euclidean structures (see [Mo2]). As
a byproduct, we give the GL2(Zp)-socle filtration for unramified principal series.

Using the notations of §2.2 for the characters χsr and a and the formalism presented in the end
of this § concerning the socle filtration, the main result of the paper is the following:

Theorem 1.1 (Propositions 6.6, 7.1, 8.1, 9.1). Let r ∈ {0, . . . , p− 1}, p odd. Then the GL2(Zp)Q
×
p

restriction of the supersingular representation coker(Tr) consists of two direct summands of infinite
length, whose socle filtration is described by

SymrF
2
p—SocFil(Ind

GL2(Zp)
I χsra

r+1)—SocFil(Ind
GL2(Zp)
I χsra

r+2)—SocFil(Ind
GL2(Zp)
I χsra

r+3)— . . .

and

Symp−1−rF
2
p—SocFil(Ind

GL2(Zp)
I χsra)—SocFil(Ind

GL2(Zp)
I χsra

2)—SocFil(Ind
GL2(Zp)
I χsra

3)— . . .

respectively (and I denotes the Iwahori subgroup of GL2(Zp)).

With suitable restriction on the value of r, Theorem 1.1 shows that the socle filtration for
π(r, 0, 1)|GL2(Zp)Q

×
p

looks as follows:

SymrF
2
p Symp−3−rF

2
p ⊗ detr+1 Symr+2F

2
p ⊗ detp−2 Symp−5−rF

2
p ⊗ detr+2 . . .

⊕ ⊕ ⊕ ⊕
. . .

Symp−1−rF
2
p ⊗ detr Symr−2F

2
p ⊗ det Symp+1−rF

2
p ⊗ detr−1 Symr−4F

2
p ⊗ det2 . . .

If moreover we write unλ for the unramified character of Qp sending the arithmetic Frobenius
to λ ∈ Fp and ω1 for the cyclotomic character, we are able to prove:

Theorem 1.2 (Propositions 6.6, 10.4). For p an odd prime number, let λ ∈ F
×
p , r ∈ {0, . . . , p− 1}

and assume (r, λ) /∈ {(0,±1), (p− 1,±1)}. The socle filtration for the GL2(Zp)Q
×
p -restriction of the

GL2(Qp)-principal series Ind
GL2(Qp)
B(Qp)

(unλ ⊗ ωr1unλ) is described by

SocFil(Ind
GL2(Zp)
I χsr)—SocFil(Ind

GL2(zp)
I χsra)—SocFil(Ind

GL2(Zp)
I χsra

2)— . . .
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The socle filtration for the GL2(Zp)Q
×
p restriction of the Steinberg representation for GL2(Qp) is

Symp−1F
2
p—SocFil(Ind

GL2(Zp)
I a)—SocFil(Ind

GL2(Zp)
I a2)— . . .

The strategy of the proof of Theorems 1.1 and 1.2 has been inspired by Breuil’s notes [Bre]
and the keypoint relies on subtle and delicate manipulations on Witt vectors. Apart from these
elaborate computations, we can sum up the main ideas in the next paragraph.

Strategy of the proof 1. Fix r ∈ {0, . . . , p − 1} and consider the algebraic representation

σ
def
= SymrF

2
p of GL2(Fp), which will be seen as a representation of GL2(Zp)Q

×
p in the usual way. For

n ∈ N we consider the induction Rn+1
def
= Ind

GL2(Zp)

K0(pn+1)
σ where K0(p

n+1) is the subgroup of elements

of GL2(Zp) reducing to upper triangular matrices modulo pn+1. Thus the elements of Rn+1 are in a

natural (equivariant) bijection with the functions f ∈ c-ind
GL2(Qp)

GL2(Zp)Q
×
p
σ having support on the circle

of radius n+ 1 on the Bruhat-Tits tree of GL2(Qp):

Proposition 1.3 (Corollary 3.5). We have a GL2(Zp)Q
×
p equivariant isomorphism

c-ind
GL2(Qp)

GL2(Zp)Q
×
p
σ
∼→
⊕
n∈N

Rn

Therefore the canonical Hecke operator T = Tr acting on the compact induction c-ind
GL2(Qp)

GL2(Zp)Q
×
p
σ

induces a family of operators T±n on the representations Rn (§3.2):

Proposition 1.4 (Definitions 3.6, 3.7, Lemma 3.8). For all n > 1 we have an equivariant monomor-
phism T+

n and an equivariant epimorphism T−n :

T+
n : Rn ↪→ Rn+1, T−n : Rn � Rn−1.

For n = 0 we have an equivariant monomorphism T+
0 : R0 ↪→ R1.

In particular, Rn can be identified with a subrepresentation of Rn+1 via the monomorphism T+
n .

We will see (§4) that Propositions 1.3 and 1.4 let us deduce a natural equivariant filtration on
the restriction Coker(T )|GL2(Zp)Q

×
p

. More precisely,

Proposition 1.5 (Propositions 3.9, 4.1). We have an equivariant isomorphism

Coker(T )|GL2(Zp)Q
×
p

∼→ πr ⊕ πp−1−r

where πr,πp−1−r are convenient, explicit, representations of GL2(Zp)Q
×
p . Moreover πr (resp. πp−1−r)

is endowed with a natural equivariant filtration {Fil(r)n }n∈N (resp. {Fil(p−1−r)n }n∈N), the graded
pieces being of the form

Fil
(r)
n+1/F il

(r)
n
∼= R2n/R2n−1 (resp.Fil

(p−1−r)
n+1 /F il(p−1−r)n

∼= R2n+1/R2n).

We would like to emphasize that the previous results can be generalised without much effort to
any finite extension of Qp, see [Mo2].

Thanks to Proposition 1.5 we can first reduce to the study of the inductions Rn+1. Moreover,
the natural K0(p

n+1)-filtration on σ induces a natural filtration {Filt(Rn+1)}t∈{0,...,r} on Rn+1, the

graded pieces being isomorphic to an induction of the form IndKK0(pn+1)χ for a suitable (explicit)
character χ depending on t and r.

The inductions of the form Ind
K0(pm)
K0(pn+1)

χ, for 0 6 m 6 n, are studied in §5 and §6. The keypoints

of such study can be summed up as follows.

1in this paragraph, for the reader’s convenience, we decided to use lighter notations which differ slightly from the
notations used in the rest of the paper.
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1) For m 6 n we detect a family of functions Flm,...,ln ∈ Ind
K0(pm)
K0(pn+1)

χ, depending on parameters

lm, . . . , ln ∈ {0, . . . , p− 1}. Such functions are well behaved with respect to computations with
Witt vectors and to the induction functor.

2) The parameters lj appearing in 1) let us deduce a Fp-linear filtration, and the compatibility
with the induction functor lets us show that such filtration is equivariant, with graded pieces
of lenght one (if m > 1) or two (if m = 0).

3) Thanks to the compatibility with Witt vectors we check that the extensions between the graded
pieces of the filtration in 2) are nonsplit.

Part 3) relies crucially on some explicit manipulations2 on the ring of Witt vectors for Fp: if
µ, λj ∈ Fp then

[µ] +
n∑
j=0

pj [λj ] ≡
n∑
j=0

pj [λj + P...,λj−2
(λj−1)] mod pn+1

where P...,λj−2
(λj−1) is a polynomial of degree p − 1 in λj−1 and leading coefficient P...,λj−3

(λj−2)
(and [·] denotes the usual Teichmüller lift). Thus:

Proposition 1.6 (Proposition 5.10). Let 1 6 m 6 n be integers and χ a smooth character of

K0(p
n+1). Then the socle filtration for Ind

K0(pm)
K0(pn+1)

χ is described by

χ—χa—χa2—χa3— . . .

(see the end of this § for the definition of the character a).

We similarly deduce :

Proposition 1.7 (Proposition 6.10). Let χ be a smooth character of the group K0(p
n+1). The

representation Ind
GL2(Zp)

K0(pn+1)
χ has a natural equivariant filtration whose graded pieces are described

by

Ind
GL2(Zp)
K0(p)

χ—Ind
GL2(Zp)
K0(p)

χa—Ind
GL2(Zp)
K0(p)

χa2— . . .

the extensions being non-split.

Once the socle filtration for the representations Ind
GL2(Zp)

K0(pn+1)
χ has been established we have to

“glue” them together in order to obtain the socle filtration for the spaces Rn+1 and, more generally,
for the spaces πr and πp−1−r.

The gluening for the graded pieces Filt(Rn+1)/Filt−1(Rn+1) is worked out in §7; the arguments

are similar to those which led to the description of the socle filtration for Ind
GL2(Zp)

K0(pn+1)
χ.

The main result is

Proposition 1.8 (Proposition 7.1). Let 0 6 j < t 6 r and let Q 6 Filj(Rn+1) be a subrepresenta-
tion coming from the socle filtration for Filj(Rn+1). Then

soc(Filt−1(Rn+1)/Q) = soc(Filt(Rn+1)/Q).

In other words, the socle filtration of Rn+1 is compatible with the filtration {Filt(Rn+1)}t∈{0,...,r}
on Rn+1.

We are finally concerned with the socle filtration for the spaces πr, πp−1−r. As the reader will see
in §8 such filtration is obtained again, by glueing, from the socle filtration of the spaces Rn+1/Rn.

2the aforementioned “delicate manipulations on Witt vectors”.
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The keypoint is a compatibility of the functions3 Flm,...,ln with the Hecke operators T±n : we are then
able to adapt in a natural way the arguments of §7 to obtain the main result.

Proposition 1.9 (Proposition 8.1, 9.1). The socle filtration for the space πr (resp. πp−1−r) is

compatible with the filtration {Fil(r)n }n∈N (resp. {Fil(p−1−r)n }n∈N) and Theorem 1.1 holds true.

Hereafter we give the plan of the article.

In §2 we recall the structure of compact inductions ind
GL2(Qp)

GL2(Zp)Q
×
p

, their relations with the Bruhat-

Tits tree for GL2(Qp) and the structure of the Hecke algebra for compact inductions. We summarise
the main properties of the parabolic induction for the finite case in §2.2, recalling in particular the
description of their socle filtration.

Section 3 is devoted to the description of the GL2(Zp)Q
×
p -restriction of supersingular represen-

tations in terms of simpler objects, namely the representations Rn (§3.1) and their amalgamated
sums (cf. §4) by means of convenient Hecke operators T±n on Rn (defined in §3.2). Such objects will
be endowed with filtrations in §4.

Sections 5, 6, 7 and 8 are devoted to the study, and the glueing, of the socle filtations on the
representations introduced in 4; in particular, in §8, such glueing are made by means of the Hecke
operator T .

Finally, in §9, we make explicit how the right exactness of lim
−→

makes possible to deduce the socle

filtration for supersingular representations from the results in §8. The final section §10 shows how
we can deduce easily the socle filtration for principal and special series using the techniques in §6.

We wish to outline that such an explicit nature for the description of supersingular GL2(Qp)-
representations (as well as principal and special series) let us describe in greatest detail the Kt

and It invariant elements, where Kt (resp. It) denotes the kernel (resp. the inverse image of upper
unipotent matrices) of the reduction mod pt morphism of elements of K (resp. of elements of Kt−1).
Such a study has been pursued in [Mo1].

We introduce now the main notations, convention and structure of the paper.

We fix a prime number p. We write Qp (resp. Zp) for the p-adic completion of Q (resp. Z) and
Fp the field with p elements; Fp is a fixed algebraic closure of Fp. For any λ ∈ Fp (resp. x ∈ Zp)

we write [λ] (resp. x) for the Teichmüller lift (resp. for the reduction modulo p), defining [0]
def
= 0.

We write G
def
= GL2(Qp), K

def
= GL2(Zp) the maximal compact subgroup, I the Iwahori subgroup

of K (i.e. the elements of K whose reduction modulo p is upper triangular) and I1 for the pro-p-

iwahori (i.e. the elements of I whose reduction is unipotent). Moreover, let Z
def
= Z(G) ∼= Q×p be the

center of G and B(Qp) (resp. B(Fp)) the Borel subgroup of upper triangular matrices in GL2(Qp)
(resp. GL2(Fp)).

For r ∈ {0, . . . , p− 1} we denote by σr the algebraic representation SymrF
2
p (endowed with the

natural action of GL2(Fp)). Explicitly, if we consider the identification SymrF
2
p
∼= Fp[X,Y ]hr (where

Fp[X,Y ]hr means the graded component of degree r for the natural grading on Fp[X,Y ]) then

σr(

[
a b
c d

]
)Xr−iY i def

= (aX + cY )r−i(bX + dY )i

3more precisely, natural lifts inside πr, πp−1−r of the functions Flm,...,ln
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for any

[
a b
c d

]
∈ GL2(Fp), i ∈ {0, . . . , r}. We then endow σr with the action of K obtained

by inflation K � GL2(Fp) and, by imposing a trivial action of

[
p 0
0 p

]
, we get a smooth KZ-

representation. Such a representation is still denoted σr, not to overload the notations.

If H stands for the maximal torus of GL2(Fp) and χ : H → F
×
p is a multiplicative character

we will write χs for the conjugate character defined by χs(h)
def
= χ(

[
0 1
1 0

]
h

[
0 1
1 0

]
) for h ∈ H.

Characters of H will be seen as characters of B(Fp) or, by inflation, as characters of any subgroup
of K which reduces to B(Fp) modulo p, without any commentary.

By “representation” we always mean a smooth representation with central character with coeffi-
cients in F

×
p . If V is a K̃-representation, for K̃ a subgroup of K, and v ∈ V , we write 〈K̃ · v〉

to denote the sub-K̃ representation of V generated by v. For a K̃-representation V we write
soc

K̃
(V ) (or soc(V ), or soc1(V ) if K̃ is clear from the context) to denote the maximal semisimple

sub-representation of V . Inductively, the subrepresentation soci(V ) of V being defined, we define
soci+1(V ) as the inverse image of soc1(V/soci(V )) via the projection V � V/soci(V ). We there-
fore obtain an increasing filtration {socn(V )}n∈N> which will be referred to as the socle filtration
for V ; we will say that a subrepresentation W of V “comes from the socle filtration” if we have
W = socn(V ) for some n ∈ N> (with the convention that soc0(V )

def
= 0). The sequence of the graded

pieces of the socle filtration for V will be shortly denoted by

SocFil(V )
def
= soc1(V )—soc1(V )/soc0(V )— . . .—socn+1(V )/socn(V )— . . .

We finally recall the Kroneker delta: if S is any set, and s1, s2 ∈ S we define

δs1,s2
def
=

{
0 if s1 6= s2
1 if s1 = s2.

2. Preliminaries and definitions

The aim of this section is to recall some classical facts concerning compact inductions of p-adic
representations (§2.1 and §2.2), and to give some explicit computations in the ring of p-adic integers
Zp (§2.3): such computations will play a key role in the rest of the article.

2.1 Compact induction of KZ-representations

For the details and proofs, the reader is invited to see [Ser77] or ([Bre03a], §2).
We write T for the tree of GL2(Qp). It is well known that we have an explicit G-equivariant

bijection (with respect to the natural left G-action defined on the two sets) between the vertices V
of T and the right cosets of G/KZ. We define the following elements of G:

α
def
=

[
1 0
0 p

]
, w

def
=

[
0 1
1 0

]
and recall the Cartan decomposition

G =
∐
n∈N

KZα−nKZ;

then, for all n ∈ N, the classes in KZα−nKZ/KZ correspond to the vertices of the tree at distance
n from the central vertex.

6
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We set I0
def
= {0} and for n ∈ N> we define the following subset of Zp:

In
def
= {

n−1∑
j=0

pj [µj ] forµj ∈ Fp}.

For n > 1 we have a set-theoretic map

[·]n−1 : In → In−1
n−1∑
j=0

pj [µj ] 7→
n−2∑
j=0

pj [µj ].

Moreover for n ∈ N, µ ∈ In we put

g0n,µ
def
=

[
pn µ
0 1

]
g1n,µ

def
=

[
1 0
pµ pn+1

]
.

We have then the following family of representatives for G/KZ:

G =
∐

n∈N, µ∈In

g0n,µKZ
∐ ∐

n∈N, µ∈In

g1n,µKZ; (1)

more precisely, we have

KZα−nKZ =
∐
µ∈In

g0n,µKZ
∐ ∐

µ∈In−1

g1n−1,µKZ

for n ∈ N>. Heuristically, the g0n,µ’s correspond to the vertices at distance n from the central vertex,
located in the “positive part” of the tree, while the g1n−1,µ’s correspond to the vertices at distance
n from the central vertex, located in the “negative” part of the tree.

Let σ be a smooth KZ-representation over Fp, Vσ the underlying Fp-vector space. The induced
representation from σ, noted by

IndGKZσ,

is defined as the Fp-vector space of functions f : G → Vσ , compactly supported modulo Z and
verifying the condition f(κg) = σ(κ) · f(g) for any κ ∈ KZ, g ∈ G, this space being endowed with

a left G-action defined by right translation of functions (i.e. (g · f)(t)
def
= f(tg) for any g, t ∈ G). It

turns out that IndGKZσ is again a smooth representation of G over Fp. For g ∈ G, v ∈ Vσ , we define
the element [g, v] ∈ IndGKZσ as follows:

[g, v](t)
def
= σ(tg) · v if t ∈ KZg−1

[g, v](t)
def
= 0 if t /∈ KZg−1.

Then we have the equalities g1 · [g2, v] = [g1g2, v] and [gκ, v] = [g, σ(κ) · v] for g1, g2, g ∈ G and
κ ∈ KZ. Moreover:

Proposition 2.1. Let B an Fp-basis of Vσ , and G a system of representatives for the left cosets
of G/KZ. Then, the family

I
def
= {[g, v], for g ∈ G , v ∈ B}

is an Fp-basis for the induced representation IndGKZσ.

Proof: Omissis (cf. [BH06], Lemma 2.5 or [Bre], Lemma 3.5). ]
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If f ∈ IndGKZσ, the T −support (or simply the support) of f is defined as the set of vertices
gKZ of the tree T such that f(g−1) 6= 0; this notion does not depend on the chosen representative
g of the vertex gKZ. We define for n ∈ N the following subspace of IndGKZσ:

W (n)
def
= {f ∈ IndGKZσ, the support of f is contained inKZα−nKZ}.

We see (by Cartan decomposition) that the subspaces W (n) are KZ-stable, for all n ∈ N, and
therefore

Lemma 2.2. There exists a family {Ψn}n∈N of natural KZ-equivariant epimorphisms

Ψn : IndGKZσ �W (n)

inducing a natural KZ-equivariant isomorphism

IndGKZσ
∼→
⊕
n∈N

W (n).

Proof: Obvious.]

Some Hecke Operators. The Hecke algebra for the induced representation from σ is defined by

H def
= EndG(IndGKZσ).

It is an Fp algebra; moreover, there exists a canonical operator T ∈ H which induces an isomorphism
of Fp-algebras

H ∼→ Fp[T ]

(cf. [BL95], §3). If we specialise to the case σ = σr for 0 6 r 6 p− 1 we have the following explicit
description of the Hecke operator T :

Lemma 2.3. For n ∈ N>, µ ∈ In and 0 6 j 6 r we have:

T ([g0n,µ, X
r−jY j ]) =

∑
µn∈Fp

[g0n+1,µ+pn[µn]
, (−µn)jXr] + [g0n−1,[µ]n−1

, δj,r(µn−1X + Y )r]

T ([g1n,µ, X
r−jY j ]) =

∑
µn∈Fp

[g1n+1,µ+pn[µn]
, (−µn)r−jY r] + [g0n−1,[µ]n−1

, δj,0(X + µn−1Y )r].

For n = 0, 0 6 j 6 r we have

T ([1G, X
r−jY j ]) =

∑
µ0∈Fp

[g01,[µ0], (−µ0)
jXr] + [α, δj,rY

r]

T ([α,Xr−jY j ]) =
∑
µ1∈Fp

[g11,[µ1], (−µ1)
r−jY r] + [1G, δj,0X

r]

.

Proof: Cf. [Bre03a], §2.5 and lemme 3.1.1]

We are going to fix the notations for supersingular representations of GL2(Qp): if r ∈ {0, . . . , p−
1} we write

π(r, 0, 1)
def
= coker(T : IndGKZσr → IndGKZσr).

2.2 Induction of B(Fp)-representations

For details and proofs we invite the reader to see §1 and §2 in Breuil and Paskunas’s article [BP].
Let η be an Fp-character of the Borel subgroup B(Fp); it is by inflation a character of the
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Iwahori subgroup K0(p) of K and we have a natural isomorphism

IndKK0(p)
η
∼→ Ind

GL2(Fp)
B(Fp)

η.

For i ∈ N we define the following Fp-characters of the Borel subgroup B(Fp):

χsi : B(Fp)→ Fp[
a b
0 d

]
7→ di

and

a : B(Fp)→ Fp[
a b
0 d

]
7→ ad−1.

If eη is an Fp-basis of η, the element [1K , eη] is a K-generator of IndKK0(p)
η. The structure of the

induced representations IndKK0(p)
η is completely known, and the following proposition collects the

main results which will be needed in the rest of the paper. We introduce the following notation:
for any x ∈ Z, define dxe ∈ {1, . . . , p − 1} (resp. bxc ∈ {0, . . . , p − 2}) by x ≡ dxemod p − 1 (resp.
x ≡ bxcmod p− 1).

Proposition 2.4. Let i, j ∈ {0, . . . , p − 1}, χ def
= χsia

j . Then the induction IndKK0(p)
χ has length 2,

with components:

i) Symdi−2jeF
2
p⊗ detj , which is isomorphic to the K-subrepresentation generated by the element∑

µ0∈Fp

[
[µ0] 1
1 0

]
[1K , eχ];

ii) Symp−1−di−2jeF
2
p ⊗ deti−j .

Moreover

i′) if χ 6= χs the short exact sequence

0→ Symdi−2jeF
2
p ⊗ detj → IndKK0(p)

χ→ Symp−1−di−2jeF
2
p ⊗ deti−j → 0

is nonsplit;

ii′) if χ = χs (i.e. i−2j ≡ 0 mod [p−1]) then IndKK0(p)
χ is semisimple and Symp−1−di−2jeF

2
p⊗deti−j

(i.e. detj) is the K-subrepresentation of IndKK0(p)
χ generated by∑

µ0∈Fp

[
[µ0] 1
1 0

]
[1K , eχ] + (−1)j [1K , eχ].

Proof: It is a well known result about representations of GL2(Fp) over Fp. See also [BP],
Lemmas 2.2, 2.6, 2.7 ]

Remark 2.5. It is possible to detect an Fp basis of H-eigenvector for the irreducible fators of
the induction IndKK0(p)

χ described in Proposition 2.4 (see [BP], Lemmas 2.6 and 2.7). Indeed, an

Fp-basis of H-eigenvectors for the subrepresentation Symdi−2jeF
2
p ⊗ detj is given by the elements∑

µ0∈Fp

µl0

[
[µ0] 1
1 0

]
[1K , eχ] for 0 6 l < di− 2je

∑
µ0∈Fp

µl0

[
[µ0] 1
1 0

]
[1K , eχ] + (−1)i−j [1K , eχ] for l = di− 2je,

9
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while the homomorphic image of the elements∑
µ0∈Fp

µl0

[
[µ0] 1
1 0

]
[1K , eχ] for di− 2je 6 l 6 p− 1

describes an Fp-basis of H-eigenvectors in the quotient IndKK0(p)
χ/Symdi−2jeF

2
p ⊗ detj (which is

naturally isomorphic to Symp−1−di−2jeF
2
p ⊗ deti−j).

The next lemma will play a crucial role in the sequel.

Lemma 2.6. Let 0 6 r 6 p− 1, 0 6 t 6 p− 2 be integers, and consider the natural projection

IndKK0(p)
χsra

t π
� Symp−1−br−2tcF

2
p ⊗ detr−t.

If f ∈ IndKK0(p)
χsra

t is such that [
[a] 0
0 [d]

]
f = ar−(t+1)dt+1

for any a, d ∈ F×p then π(f) is of the following form (up to multiplication by a scalar multiple):

i) if r − 2t 6≡ 0, 1 [p− 1] then π(f) = 0;

ii) if r − 2t ≡ 1 [p− 1] then π(f) = Xp−2;

iii) if r − 2t ≡ 0 [p− 1] then π(f) = Xp−2Y . More precisely, the image of f via the isomorphism

IndKK0(p)
dett

∼→ dett ⊕ Symp−1F
2
p ⊗ dett

is (0, Xp−2Y ).

Proof: The H-eigencharacters of Symp−1−br−2tcF
2
p ⊗ detr−t are

ap−1−(r−2t)+r−t−jdr−t+j

for j ∈ {0, . . . , p − 1 − br − 2tc}, each of them corresponding respectively to the H-eigenvector
Xp−1−br−2tc−jY j . Therefore, the condition on π(f) to be an H-eigencharacter gives

at−jdr−t+j = ar−t−1dt+1

for a suitable j ∈ {0, . . . , p− 1− br − 2tc} and for all a, d ∈ F×p ; in other words

p− 1− br − 2tc ≡ j − 1 [p− 1]

for some j ∈ {0, . . . , p− 1− br − 2tc}. This is possible iff j = 0 and r − 2t ≡ 1 [p− 1] or j = 1 and
r − 2t ≡ 0 [p− 1]. ]

2.3 Computations on Witt vectors

In this section we are going to describe the p-adic expansion of some elements in Zp. The explicit
description of Lemmas 2.7 and 2.8 is one of the key arguments to describe the socle filtration for
the KZ-restriction of supersingular representations. The main reference for this section is [Ser63],
Ch. II.

For λ, µ ∈ Fp we define the following element of Fp:

−Pλ(µ)
def
=

p−1∑
j=1

(
p
j

)
p
λp−jµj .

Note that Pλ(µ) is a polynomial in µ, of degree p− 1 and whose leading coefficient is −λ. We have
the

10
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Lemma 2.7. Let λ, µ ∈ Fp. Then

i) the following equality holds in Zp:

[λ] + [µ] = [λ+ µ] + p[Pλ(µ)] + p2tλ,µ

where tλ,µ ∈ Zp is a suitable p-adic integer depending only on λ, µ;

ii) the following equality holds in Fp

Pλ(µ− λ) = −P−λ(µ).

Proof: Omissis.]

We can use Lemma 2.7 to deduce more general results.

Lemma 2.8. Let λ ∈ Fp,
∑n

j=0 p
j [µj ] ∈ In+1. Then the following equality holds in Zp/(p

n+1):

[λ] +
n∑
j=0

pj [µj ] ≡ [λ+ µ0] + p[µ1 + Pλ(µ0)] + · · ·+ pn[µn + Pλ,...,µn−2(µn−1)]

where, for all j = 1, . . . , n−2, the Pλ,...,µj (X)’s (resp. Pλ,µ0(X), resp. Pλ(X)) are suitable polynomials
in Fp[X], of degree p−1, depending only on λ, . . . , µj (resp. on λ, µ0, resp. on λ), and whose leading
coefficient is −Pλ,...,µj−1

(µj) (resp. −Pλ(µ0), resp. −λ).

Proof: It is an immediate induction using Lemma 2.7-i). ]

Lemma 2.9. Let λ ∈ Fp, z
def
=
∑n

j=1 p
j [µj ] and let k > 0. There exists a p-adic integer z′ =∑n

j=1 p
j [µ′j ] ∈ Zp such that

z ≡ z′(1 + zpk[λ]) mod pn+1.

Furthermore, for j = k + 3, . . . , n (resp. j = k + 2, resp. j 6 k + 1) we have the following equality
in Fp:

µj = µ′j + µj−k−1µ
′
1λ+ · · ·+ µ1µj−k−1λ+ Sj−2(µj−1)

(resp. µk+2 = µ′k+2 + µ′1µ1λ if j = k + 2, resp. µj = µ′j if j 6 k + 1) where Sj−2(X) ∈ Fp[X] is

a polynomial of degree p − 1, depending only on λ, . . . , µj−2 and leading coefficient −sλ,...,µj−2

def
=

µ′j−1 − µj−1.

Proof: Exercise on Witt vectors.]

To conclude this section we recall two elementary results which will be used in the rest of the
paper:

Lemma 2.10. i) For 0 6 j 6 p− 1 we have the equality in Fp:∑
µ∈Fp

µj = −δj,p−1.

ii) Let V be an Fp-vector space and let v0, . . . , vp−1 ∈ V be any p-tuple of elements of V . The sub

Fp-vector space of V generated by
∑p−1

j=0 µ
jvj for µ varying in Fp coincide with the Fp-subvector

space of V generated by the elements v0, . . . , vp−1.

Proof: The assertions are both elementary; the second comes from the fact that the Vander-

11
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monde matrix 
1 0 0 . . . 0
1 1 1 . . . 1
1 2 22 . . . 2p−1

...
...

...
. . .

...
1 p− 1 (p− 1)2 . . . (p− 1)p−1


is invertible modulo p. ]

3. Reinterpretation of the KZ-restriction of supersingular representations: the
KZ-representations Rn

The goal of this section is to give a precise description of the KZ-restriction of supersingular
representations π(r, 0, 1)|KZ ; the main result is then Proposition 3.9, whose formulation is due to
Breuil ([Bre], §4.2). To be more precise, the first step is to introduce, in §3.1, the K-representations
Rn, from which we get an alternative description of the compact induction IndGKZσ (cf. Proposition
3.5). Subsequently, we endow the Rn’s with suitable Hecke operators T±n : Rn → Rn±1 which let us
define the amalgamated sums (4); Proposition 3.9 will then be a formal consequence.

3.1 Defining the K-representations Rn

For all n ∈ N we define the following subgroup of K:

K0(p
n)

def
= {

[
a b
pnc d

]
∈ K, where c ∈ Zp}

(in particular, K0(p
0) = K and K0(p) is the Iwahori subgroup). For 0 6 r 6 p − 1 and n ∈ N

we define the following K0(p
n)-representation σnr over Fp: the associated Fp-vector space of σnr is

SymrF
2
p, while the left action of K0(p

n) is given by

σnr (

[
a b
pnc d

]
) ·Xr−jY j def

= σr(

[
d c
pnb a

]
) ·Xr−jY j

for any

[
a b
pnc d

]
∈ K0(p

n), 0 6 j 6 r; in particular, σ0r is isomorphic to σr. Finally, we define

Rnr
def
= IndKK0(pn)

σnr .

If r is clear from the context, we will write simply Rn instead of Rnr .

In order to establish the relation between the Rnr ’s and the compact induction IndGKZσr we need
the following elementary lemma:

Lemma 3.1. Fix n ∈ N. Right translation by αnw induces a bijection

K/K0(p
n)
∼→ KZα−nKZ/KZ.

Proof: Elementary, noticing that (

[
0 1
pn 0

]
KZ

[
0 1
pn 0

]
) ∩K = K0(p

n). ]

For any n ∈ N>, µ ∈ In and µ′ ∈ In−1 we see that

g0n,µ =

[
µ 1
1 0

]
αnw, g1n−1,µ′w =

[
1 0
pµ′ 1

]
αnw

from which we deduce the following corollaries.

12



Explicit description of irreducible GL2(Qp)-representations over Fp

Corollary 3.2. Let n ∈ N>. We have the following decomposition for K:

K =
∐
µ∈In

[
µ 1
1 0

]
K0(p

n)
∐ ∐

µ′∈In−1

[
1 0
pµ′ 1

]
K0(p

n).

Proof: Immediate from the decomposition given in (1). ]

Corollary 3.3. Let 0 6 r 6 p− 1, n ∈ N>. The family

Rnr
def
= {[

[
µ 1
1 0

]
, Xr−jY j ], [

[
1 0
pµ′ 1

]
, Xr−jY j ] forµ ∈ In, µ′ ∈ In−1, 0 6 j 6 r}

is an Fp-basis for the representations Rn. Moreover, the element

[1KZ , Y
r] ∈ Rnr

is a K-generator for the representation Rnr .

Proof: Immediate from Proposition 2.1 and Corollary 3.2. ]

The following result is the key to establish the relation between the compact induction IndGKZσr
and the Rn’s.

Proposition 3.4. Let 0 6 r 6 p−1, n ∈ N and let W (n) be the KZ subrepresentation of IndGKZσr
defined in §2.1. We have a KZ-equivariant isomorphism

Φn : W (n)
∼→ Rn

such that for all 0 6 j 6 r

Φn([g0n,µ, X
r−jY j ]) = [

[
µ 1
1 0

]
, Xr−jY j ]

Φn([g1n−1,µ′ , X
r−jY j ]) = [

[
1 0
pµ′ 1

]
, XjY r−j ]

if n > 0 and

Φ0([1G, X
r−jY j ]) = XjY r−j

if n = 0.

Proof: We fix an index n > 1 (the case n = 0 is immediately verified). Thanks to Proposition
2.1 it is clear that Φn is an Fp-linear isomorphism. Concerning the KZ-equivariance, we fix κ ∈ K,

l ∈ N and, for i ∈ {0, 1}, gin−i,µ and µ ∈ In−i. Then κplgin−i,µ = g
i(κ)
n−i(κ),µ(κ)κ1p

l1 for some κ1 ∈ K,

l1 ∈ N while i(κ) ∈ {0, 1} and µ(κ) ∈ In−i(κ) depend only on κ. If gi,µ (resp. gi(κ),µ(κ)) is the

representative of K/K0(p
n) corresponding to gin−i,µ (resp. g

i(κ)
n−i(κ),µ(κ)) via the bijection of Lemma

3.1 we get: {
κgi,µ = gi(κ),µ(κ)κ2
κplgin−i,µ = gi(κ),µ(κ)κ1p

l1

for some κ2 ∈ K0(p
n) and since gin−i,µ = gi,µ

[
0 1
pn 0

]
wi (and similarly for g

i(κ)
n−i(κ),µ(κ), gi(κ),µ(κ))

we conclude [
0 1
pn 0

]
κ2

[
0 1
pn 0

]
wi = wi(κ)κ1p

n+l1−l.

13
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We finally need the equality

σr(

[
0 1
pn 0

]
κ2

[
0 1
pn 0

]
) = σnr (κ2).

to see that

Φn(κpl · [gin,µ, v]) = κ · Φn([gi,n, w · v])

and the proof is complete. ]

We deduce immediately the main result of this section:

Corollary 3.5. Let r ∈ {0, . . . , p− 1}. We have a KZ equivariant isomorphism

IndGKZσr
∼→
⊕
n∈N

Rnr

3.2 Hecke operators on the Rn’s, description of π(r, 0, 1)|KZ
In this section we are going to define some Hecke operators T+

n , T−n on the representations Rn’s which
allow us to give a description of the KZ-restriction of a supersingular representation π(r, 0, 1)|KZ
in terms of the Rn, T+

n , T−n . The main result will be Proposition 3.9.

We start from the definition of the Hecke operators on the Rn’s.

Definition 3.6. Let n ∈ N>. We define the Fp-linear morphism T+
n : Rn → Rn+1 by the conditions

T+
n ([

[
µ 1
1 0

]
, Xr−jY j ])

def
=
∑
µn∈Fp

[

[
µ+ pn[µn] 1

1 0

]
, (−µn)jXr]

T+
n ([

[
1 0
pµ′ 1

]
, XjY r−j ])

def
=
∑
µn∈Fp

[

[
1 0

p(µ′ + [µn]pn−1) 1

]
, (−µn)r−jXr]

for µ ∈ In, µ′ ∈ In−1 and 0 6 j 6 r.
We define the Fp-linear morphism T+

0 : R0 → R1 by the condition:

T+
0 ([1K , X

r−jY j ])
def
=
∑
µ0∈Fp

[

[
[µ0] 1
1 0

]
, (−µ0)r−jXr] + [1K , δj,0X

r]

for 0 6 j 6 r.

Identifying Rn with W (n) via the isomorphism described in Proposition 3.4 and using the results
of §2.1 we see that

T+
n ([g, v]) = Ψn+1(T ([g, v])) (2)

for all g ∈ KZα−nKZ, v ∈ σr (i.e. T+
n ([g, v] is described as the projection of T ([g, v]) on the

W (n+ 1) component of the compact induction).
Similarly, we have

Definition 3.7. Let n ∈ N, n > 2. We define the Fp-linear morphism T−n : Rn → Rn−1 by the
conditions:

T−n ([

[
µ 1
1 0

]
, Xr−jY j ])

def
= [

[
[µ]n−1 1

1 0

]
, δj,r(µn−1X + Y )r]

T−n ([

[
1 0
pµ′ 1

]
, XjY r−j ])

def
= [

[
1 0

p[µ′]n−2 1

]
, δj,0(µn−2X + Y )r]

14
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for µ ∈ In, µ′ ∈ In−1 and 0 6 j 6 r.
For n = 1 we define T−1 : R1 → R0 by the conditions:

T−1 ([

[
[µ0] 1
1 0

]
, Xr−jY j ])

def
= δj,r(X + µ0Y )r

T−1 ([1K , X
jY r−j ])

def
= δj,0Y

r.

for µ0 ∈ Fp, 0 6 j 6 r.

Again, identifying Rn with W (n) via the isomorphism described in Proposition 3.4 and using
the results of §2.1 we see

T−n ([g, v]) = Ψn−1(T ([g, v])) (3)

for all g ∈ KZα−nKZ, v ∈ σr and n ∈ N> (i.e. T−n ([g, v] is described as the projection of T ([g, v])
on the W (n− 1) component of the compact induction).

Thanks to the isomorphism of Proposition 3.4, we deduce the following properties of the Hecke
operators T±n :

Lemma 3.8. The operators T±n enjoy the following properties:

1) For all n ∈ N>, the morphisms is T+
n , T

−
n are K-equivariant; for n = 0, the morphism T+

0 is
K-equivariant.

2) For all n > 0 the morphism T+
n is injective.

3) For all n > 1 the morphism T−n is surjective.

Proof: i). We recall that the KZ-action on the tree preserves the distances from the central
vertex. The assertion is then clear from the KZ-equivariance of T and the equalities (2), (3).

ii) and iii). We recall that the matrix
1 0 0 . . . 0
1 1 1 . . . 1
1 2 22 . . . 2r

...
...

...
. . .

...
1 r r2 . . . rr


is invertible modulo p. This implies, for any fixed i ∈ {0, 1}, the following facts:

-) by support reasons the condition T+
n ([gi,µ, v]) = 0 forces v = 0 for any choice µ ∈ In−i;

-) if n > 1+i and µ ∈ In−1−i the Fp-subvector space ofRn−1 generated by T−n ([gi,piµ+pn−1[µn−1], Y
r])

for µn−1 ∈ Fp coincide with the Fp-subvector space of Rn−1 generated by [gi,piµ, X
r−jY j ] for

j ∈ {0, . . . , r}.

This ends the proof. ]

From now onwards we will consider Rn as a K-subrepresentation of Rn+1 via the monomorphism
T+
n , for any n ∈ N, without any further comment.

We can use the Hecke operators T±n in order to construct a sequence of amalgamated sums of
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the Rn’s. We define R0 ⊕R1 R2 as the amalgamated sum

R1
� � T+

1 //

−T−1
����

R2

pr2

����
R0

// R0 ⊕R1 R2

where the second projection pr2 is epi by base change. For any odd integer n ∈ N> we define
inductively the amalgamated sum R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1 as:

Rn

−prn−1◦T−n

����

� � T+
n // Rn+1

prn+1

����
R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn Rn+1;

(4)

once again, the second projection prn+1 is epi by base change.
For any even positive integer m ∈ N> we define the amalgamated sum R1/R0⊕R2 · · ·⊕RmRm+1

in the evident similar way.

We are now ready to state the main result of this section

Proposition 3.9. Let 0 6 r 6 p− 1. We have a KZ equivariant isomorphism

π(r, 0, 1)|KZ
∼→ lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)⊕ lim
−→

m even

(R1/R0 ⊕R2 · · · ⊕Rm Rm+1).

Proof: We have the following commutative diagram, with KZ-equivariant arrows:

(IndGKZσr)|KZ
T |KZ //

o
��

(IndGKZσr)|KZ

o
��⊕

n∈N
Rn

T+
0 +

∑
n>1

(T+
n +T−n )

//
⊕
n∈N

Rn;

as the restriction functor is exact, we deduce that the isomorphism of corollary 3.5 induces an iso-
morphism π(r, 0, 1)|KZ ∼= coker(T+

0 +
∑
n>1

(T+
n + T−n )). We dispose of the evident inductive systems:

{ n∑
j=1, j odd

T+
j + T−j :

n⊕
j=1, j odd

Rj →
n+1⊕

i=0, i even

Ri

}
n∈N, n odd{

T+
0 +

n∑
j=1, j even

T+
j + T−j :

n⊕
j=0, j even

Rj →
n+1⊕

i=0, i odd

Ri

}
n∈N, n even

so that, by the right exactness of the functor lim
−→

, the isomorphism of corollary 3.5 gives

π(r, 0, 1)|KZ ∼= lim
−→
n, odd

(
coker

( ∑
j=1, j odd

T+
j + T−j

))
⊕ lim
−→

n, even

(
coker

(
T+
0 +

n∑
j=1, j even

T+
j + T−j

))
.
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It follows finally from the definitions of the amalgamated sum (and an immediate induction) that

(coker(
∑

j=1, j odd

T+
j + T−j )) = R0 ⊕R1 · · · ⊕Rn Rn+1

(coker(T+
0 +

n∑
j=1, j even

T+
j + T−j )) = R1/R0 ⊕R2 · · · ⊕Rn Rn+1

and the proof is complete. ]

4. Defining the filtrations on the spaces Rn, R0 ⊕R1 · · · ⊕Rn Rn+1

In this section, we fix once for all an integer r ∈ {0, . . . , p−1}. Our aim is to to point out, in definition
4.3, a filtration on lim

−→
n odd

R0 ⊕R1 · · · ⊕Rn Rn+1 (resp. lim
−→
n even

R1/R0 ⊕R2 · · · ⊕Rn Rn+1) which will let

us describe explicitly the socle filtration for the KZ-restriction of the supersingular representation
π(r, 0, 1)|KZ .

Proposition 4.1. For any odd integer n ∈ N> we have a natural commutative diagram

0 // Rn

−prn−1◦T−n����

T+
n // Rn+1

����

// Rn+1/Rn // 0

0 // R0 ⊕R1 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 · · · ⊕Rn Rn+1 // Rn+1/Rn // 0

with exact lines. We have an analogous result concerning the family

{R1/R0 ⊕R2 · · · ⊕Rn Rn+1}n∈2N\{0}.

Proof: The proof is by induction. We dispose of the commutative diagram:

Rn
� � T+

n //

−prn−1◦T−n
��

Rn+1

prn+1

��
R0 ⊕R1 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 ⊕RnRn+1

where the morphism −prn−1◦T−n is epi by the inductive hypothesis; it follows then from the universal
property of the amalgamated sum that the morphism prn+1 is epi too. Moreover, since the forgetful
functor For : RepK → VectFp

is right exact we deduce, by the injectivity of T+
n and base change in

the category VectFp
, that the morphism R0⊕R1 · · · ⊕Rn−2 Rn−1 → R0⊕R1 · · · ⊕Rn Rn+1 is injective

too.
From the universal property of the amalgamated sum we get the natural commutative diagram:

0 // Rn

����

// Rn+1
//

����

Rn+1/Rn // 0

R0 ⊕R1 · · · ⊕Rn−2 Rn−1
� � //

0

44
R0 ⊕R1 · · · ⊕Rn Rn+1

∃ ! // Rn+1/Rn

where the first line is exact. The exactness of the second line is then an immediate diagram chase. ]

From the proof of Proposition 4.1 we see that we have actually a much stronger result: if
0 6 j 6 n − 2 is odd and Qj+1 is any quotient of Rj+1 we can still define the amalgamated sums
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Qj+1 ⊕Rj+2 · · · ⊕Rn Rn+1 as in 4; then

Corollary 4.2. Let 0 6 j 6 n − 2 be odd, Qj+1 be a quotient of Rj+1. We have a natural
commutative diagram:

0 // Rn

����

T+
n // Rn+1

����

// Rn+1/Rn // 0

0 // Qj+1 ⊕Rj+2 · · · ⊕Rn−2 Rn−1 // Qj+1 ⊕Rj+2 · · · ⊕Rn Rn+1 // Rn+1/Rn // 0

with exact lines (and with the obvious convention Qj+1 ⊕Rj Rj+1
def
= Qj+1).

We have an analogous result concerning the family

{R1/R0 ⊕R2 · · · ⊕Rn Rn+1}n∈2N\{0}.

For each n ∈ N we look at a natural filtration on Rn+1. The definition is the following:

Definition 4.3. Let n ∈ N, 0 6 t 6 r. We define Filt(Rn+1) as the K-subrepresentation of Rn+1

generated by [1K , X
r−tY t]. For t = −1, we define Fil−1(Rn+1)

def
= 0.

We note that

Lemma 4.4. Let n ∈ N. The family

{Filt(Rn+1)}t=rt=−1

defines a separated and exhaustive decreasing filtration on Rn+1. Moreover, for each t ∈ {0, . . . , r},
the family

Bn+1,t
def
=

{
[

[
µ 1
1 0

]
, Xr−iY i], [

[
1 0
pµ′ 1

]
, Xr−iY i], µ ∈ In+1, µ

′ ∈ In, 0 6 i 6 t

}
is an Fp basis for Filt(Rn+1); in particular Filt(Rn+1) has dimension (p+ 1)pn(t+ 1) over Fp.

Proof: It is immediate from corollary 3.3 and the definition of the σn+1
r ’s. ]

By Frobenius reciprocity, we have an explicit description of the graded pieces of the filtration
defined in 4.3:

Lemma 4.5. Let n ∈ N, and fix −1 6 t 6 r. Then, we have a K-equivariant isomorphism:

Filt(Rn+1)/Filt−1(Rn+1)
∼→ IndKK0(pn+1)χ

s
ra
t.

where the characters χsr, a, defined in §2.2, are seen as characters onK0(p
n+1) by inflationK0(p

n+1)�
B(Fp).

Proof: As the image of the element [1K , X
r−tY t] is aK-generator of the graded piece Filt(Rn+1)/Filt−1(Rn+1),

and K0(p
n+1) acts on it by the character χsra

t we deduce by Frobenius reciprocity a K-equivariant
epimorphism:

IndKK0(pn+1)χ
s
ra
t � Filt(Rn+1)/Filt−1(Rn+1).

As the two spaces have the same Fp-dimension, the latter is indeed an isomorphism. ]

We then see that the first step to understand the nature of π(r, 0, 1)|KZ consists in the study of
the induced representations IndKK0(pn+1)χ

s
ra
t for n ∈ N, 0 6 t 6 r; such a study will be the object

of the following two sections (§5, §6).

18
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5. Study of an Induction-I

In this section, we will fix two integers 1 6 m 6 n + 1 and η a character of B(Fp) (which will be
considered as a continuous character of K0(p

n+1) by inflation), and we will fix a basis {eη} for η.
The object of this section is then (cf. Proposition 5.10) to describe explicitly the socle filtration for

Ind
K0(pm)
K0(pn+1)

η

and the proof will be essentially an induction on the length n+ 1−m (§5.1, §5.2).
For 1 6 m 6 n+ 1 define a subset In+1/Im of Zp:

In+1/Im
def
= {

n∑
j=m

pj [µj ], µj ∈ Fp}.

We have the following elementary lemmas.

Lemma 5.1. For 1 6 m 6 n+ 1 we have the decomposition

K0(p
m)/K0(p

n+1) =
∐

x∈In+1/Im

[
1 0
x 1

]
K0(p

n+1).

In particular, the family

Im,n+1
def
= {[

[
1 0
x 1

]
, eη], x ∈ In+1/Im}

is an Fp-basis for Ind
K0(pm)
K0(pn+1)

η and dimFp

(
Ind

K0(pm)
K0(pn+1)

η
)

= pn+1−m.

Proof: Immediate from corollary 3.3. ]

Lemma 5.2. Let 1 6 m 6 n + 1 be integers and η a character of B(Fp). Then we have a K0(p
m)-

equivariant canonical isomorphism:

Ind
K0(pm)
K0(pn+1)

η
∼→ (Ind

K0(pm)
K0(pn+1)

1)⊗ η

where η is seen (by inflation) as a character of K0(p
n+1) and K0(p

m) in the left hand side and in
the right hand side respectively.

Proof: The assignment, for x ∈ In+1/Im,

[

[
1 0
x 1

]
, eη] 7→ [

[
1 0
x 1

]
, e1]⊗ eη

defines an Fp-isomorphism which is actually K0(p
m)-equivariant, as

[
1 0
x 1

]
∈ K1 for all x ∈

In+1/Im. ]

In particular, by Lemma 5.2, we can assume η = 1.

5.1 The case m = n

We establish here the first step concerning the inductive description of the socle filtration for

Ind
K0(pm)
K0(pn+1)

1; fix once for all an Fp-basis {e} for the underlying vector space of the trivial char-

acter 1. We introduce the objects:

Definition 5.3. Let n ∈ N> and 0 6 ln 6 p− 1. Then:
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i) we define the following element of Ind
K0(pn)
K0(pn+1)

1:

F
(n)
ln

def
=
∑
µn∈Fp

µlnn [

[
1 0

pn[µn] 1

]
, e];

we define formally F
(n)
−1 , F

(n)
p

def
= 0;

ii) we define the following quotient of Ind
K0(pn)
K0(pn+1)

1:

Q
(n,n+1)
ln

def
= Ind

K0(pn)
K0(pn+1)

1/〈F (n)
0 , . . . , F

(n)
ln−1〉Fp

;

we define formally Q
(n,n+1)
p

def
= 0.

For any 0 6 ln, l′n 6 p− 1 we will often commit the abuse to use the same notation for F
(n)
ln

and

its image in the quotient Q
(n,n+1)
l′n

. The meaning will be clear according to the context.

The next computation is the main tool to describe the socle filtration for Ind
K0(pn)
K0(pn+1)

1.

Lemma 5.4. Let g ∈ K0(p
n+1), λ ∈ Fp and 0 6 ln 6 p − 1. Then we have the equalities in

Ind
K0(pn)
K0(pn+1)

1:

i) g · F (n)
ln

= aln(g)F
(n)
ln

;

ii)

[
1 0

pn[λ] 1

]
F

(n)
ln

=
∑ln

j=0

(
ln
j

)
(−λ)jF

(n)
ln−j .

Proof: i). If g =

[
a b

pn+1c d

]
, then we can write

g

[
1 0

pn[µn] 1

]
=

[
1 0

pn[µna
−1d] 1

] [
a′ b

pn+1c′ d′

]
where a′, c′, d′ ∈ Zp and a′ ≡ a [p], d′ ≡ d [p]. Thus,

gF
(n)
ln

=
∑
µn∈Fp

µlnn [

[
1 0

pn[µna
−1d] 1

]
, e] = (ad

−1
)lnF

(n)
ln
.

Since [λ] + [µn] ≡ [λ+ µn] modulo p, we deduce[
1 0

pn[λ] 1

]
F

(n)
ln

=
∑
µn∈Fp

µlnn [

[
1 0

pn[µn + λ] 1

]
, e].

The result follows. ]

As a consequence, we get the corollaries:

Corollary 5.5. For any 0 6 ln 6 p − 1, the sub-K0(p
n) representation of Q

(n,n+1)
l generated by

F
(n)
ln

is isomorphic to aln .

Proof: For any g ∈ K0(p
n) we can write g =

[
1 0

pn[λ] 1

]
κ with suitable elements λ ∈ Fp,

κ ∈ K0(p
n+1) (Lemma 5.1). The result comes from Lemma 5.4 and the definition of Q

(n,n+1)
ln

. ]

Corollary 5.6. For any 0 6 ln 6 p− 1 we have K0(p
n)-equivariant exact sequence

0→ 〈F (n)
ln
〉 → Q

(n,n+1)
ln

→ Q
(n,n+1)
ln+1 → 0

20



Explicit description of irreducible GL2(Qp)-representations over Fp

which is nonsplit if ln 6 p− 2. Moreover,

dimFp
(Q

(n,n+1)
ln

) = p− ln.

Proof: The exact sequence is clear. Furthermore, if φ : Q
(n,n+1)
ln

→ 〈F (n)
ln
〉 is any K0(p

n)-
equivariant morphism, we see that

φ(F
(n)
ln

) =
∑
µn∈Fp

µlnn

[
1 0

pn[µn] 1

]
φ([1K0(pn), e]) = φ([1K0(pn), e])

∑
µn∈Fp

µlnn .

Thus, there cannot be any K0(p
n) equivariant sections for 〈F (n)

ln
〉 → Q

(n,n+1)
ln

if 0 6 ln 6 p− 2. The
assertion concerning the dimension is immediate by induction.]

Corollary 5.7. Let 0 6 ln 6 p− 1. Then the socle of Q
(n,n+1)
ln

is given by:

soc(Q
(n,n+1)
ln

) = 〈F (n)
ln
〉.

Proof: We have Q
(n,n+1)
p−1

∼= 〈F (n)
p−1〉, as the two spaces are 1-dimensional. By a decreasing induc-

tion, assume soc(Q
(n,n+1)
ln+1 ) = 〈F (n)

ln+1〉 for ln 6 p− 2 and consider the exact sequence

0→ 〈F (n)
ln
〉 → Q

(n,n+1)
ln

→ Q
(n,n+1)
ln+1 → 0.

If τ is an irreducible K0(p
n)-subrepresentation of Q

(n,n+1)
ln

such that τ ∩ 〈F (n)
ln
〉 = 0, we deduce that

F
(n)
ln+1 + c1F

(n)
ln
∈ τ for a suitable c1 ∈ Fp. From the equality[

1 0
pn[λ] 1

]
(F

(n)
ln+1 + c1F

(n)
ln

) = F
(n)
ln+1 − (ln + 1)λF

(n)
ln

+ c1F
(n)
ln

in Q
(n,n+1)
ln

(where λ ∈ F×p ), we find F
(n)
ln
∈ τ , contradiction. ]

5.2 The general case

Fix two integers 1 6 m 6 n+1. In this section we establish the inductive step which lets us describe

the socle filtration for the representation Ind
K0(pm)
K0(pn+1)

1. We recall the following result:

Proposition 5.8. Let 1 6 m 6 n+ 1. For any m 6 j 6 n+ 1 we have a canonical isomorphism:

Ind
K0(pm)
K0(pn+1)

1
∼→ Ind

K0(pm)

K0(pj)
Ind

K0(pj)
K0(pn+1)

1.

For any two (n+ 1−m)-tuples (jm, . . . , jn), (lm, . . . , ln) ∈ {0, . . . , p− 1}n−m+1 we define induc-
tively

(jm, . . . , jn) ≺ (lm, . . . , ln)

if either (jm+1, . . . , jn) ≺ (lm+1, . . . , ln) or (jm+1, . . . , jn) = (lm+1, . . . , ln) and jm < lm. We can
therefore introduce the objects:

Definition 5.9. Let (lm, . . . , ln) ∈ {0, . . . , p− 1}n−m+1 be an (n+ 1−m)-tuples. Then:

i) we define inductively the following element of Ind
K0(pm)
K0(pn+1)

1:

F
(m)
lm
∗ · · · ∗ F (n)

ln

def
=

∑
µm∈Fp

µlmm

[
1 0

pm[µm] 1

]
[1K0(pm), F

(m+1)
lm+1

∗ · · · ∗ F (n)
ln

]

where we adopt the convention F
(m)
lm+1 ∗ · · · ∗ F

(n)
ln

def
= F

(m)
0 ∗ F (m+1)

lm+1+1 ∗ · · · ∗ F
(n)
ln

if lm = p− 1.
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ii) We define the following quotient of Ind
K0(pm)
K0(pn+1)

1:

Q
(m,n+1)
lm,...,ln

def
= Ind

K0(pm)
K0(pn+1)

1/〈F (m)
jm
∗ · · · ∗ F (n)

jn
for (jm, . . . , jn) ≺ (lm, . . . , ln)〉Fp

where we adopt the convention Q
(m,n+1)
lm+1,...,ln

def
= Q

(m,n+1)
0,lm+1+1,...,ln

if lm = p− 1.

We give here the statement of the main result.

Proposition 5.10. Let 1 6 m 6 n + 1 be integers, and (lm, . . . , ln) ∈ {0, . . . , p − 1}n−m+1 a
(n−m+ 1)-tuple. Then

i) The K0(p
m)-subrepresentation of Q

(m,n+1)
lm,...,ln

generated by F
(m)
lm
∗ · · · ∗ F (n)

ln
is isomorphic to 4

alm ⊗ · · · ⊗ aln = alm+···+ln ;

ii) we have a K0(p
m)-equivariant exact sequence:

0→ 〈F (m)
lm
∗ · · · ∗ F (n)

ln
〉 → Q

(m,n+1)
lm,...,ln

→ Q
(m,n+1)
lm+1,...,ln

→ 0 (5)

which is nonsplit if (lm, . . . , ln) 6= (p− 1, . . . , p− 1). Moreover

Q
(m,n+1)
0,lm+1,...,ln

= Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1,...,ln

and

dimFp
(Q

(m,n+1)
lm,...,ln

) = pn−m+1 −
n−m∑
j=0

pn−m−jln−j .

iii) The socle of Q
(m,n+1)
lm,...,ln

is given by

soc(Q
(m,n+1)
lm,...,ln

) = 〈F (m)
lm
∗ · · · ∗ F (n)

ln
〉.

As we said, the proof is an induction on the length n + 1 −m, the case m = n being proved
in the previous section; in what follows, we will therefore assume Proposition 5.10 for any length l
with l < n+ 1−m. We first need the following tools.

Lemma 5.11. Let (lm, . . . , ln) ∈ {0, . . . , p−1}n−m+1 be an (n−m+1)-tuple. The following diagrams
are commutative with exact lines

i)

0 // 〈F (m)
lm
∗ · · · ∗ F (n−1)

ln−1
〉 ⊗ aln

o
��

// Q
(m,n)
lm,...,ln−1

⊗ aln
� _

��

// Q
(m,n)
lm+1,...,ln−1

⊗ aln //
� _

��

0

0 // 〈F (m)
lm
∗ · · · ∗ F (n)

ln
〉 // Q

(m,n+1)
lm,...,ln

// Q
(m,n+1)
lm+1,...,ln

// 0;

ii)

0 // Ind
K0(pm)
K0(pm+1)

F
(m+1)
lm+1

∗ · · · ∗ F (n)
ln

����

// Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1,...,ln

����

// Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1+1,...,ln

// 0

0 // Q
(m,m+1)
lm

⊗ alm+1 ⊗ · · · ⊗ aln // Q
(m,n+1)
lm,...,ln

// Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1+1,...,ln

// 0.

4as remarked by the referee, the notation with the tensor product may be confusing as it can be interpreted as a
character of (n + 1 − m) copies of K0(pm). As stressed in the statement of Proposition 5.10, the tensor product
alm ⊗ · · · ⊗ aln we mean here is the classical tensor product of K0(pm)-representation, see for instance [Alp], II §5.
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Proof: The proof will be an induction on the (n+1−m)-tuple (lm, . . . , ln) ∈ {0, . . . , p−1}n+1−m.
i) From corollary 5.6 and the exactness of the induction functor we dispose of the following exact

sequence for any 0 6 ln 6 p− 1:

0→ Ind
K0(pm)
K0(pn)

〈F (n)
ln
〉 → Ind

K0(pm)
K0(pn)

Q
(n,n+1)
ln

→ Ind
K0(pm)
K0(pn)

Q
(n,n+1)
ln+1 → 0

and 〈F (n)
ln
〉 ∼= aln . We assume, inductively, to have the commutative diagram with exact lines:

0 // Ind
K0(pm)
K0(pn)

1⊗ aln

����

// Ind
K0(pm)
K0(pn)

Q
(n,n+1)
ln

����

// Ind
K0(pm)
K0(pn)

Q
(n,n+1)
ln+1

// 0

0 // Q
(m,n)
lm,...,ln−1

⊗ aln // Q
(m,n+1)
lm,...,ln

// Ind
K0(pm)
K0(pn)

Q
(n,n+1)
ln+1

// 0.

We can invoke Proposition 5.10 for Ind
K0(pm)
K0(pn)

1⊗ aln deducing the diagram:

0

��

0

��

〈F (m)
lm
∗ · · · ∗ F (n−1)

ln−1
〉 ⊗ aln

o
��

� � // Q
(m,n)
lm,...,ln−1

⊗ aln

��

〈F (m)
lm
∗ · · · ∗ F (n)

ln
〉

��

� � // Q
(m,n+1)
lm,...,ln

��

0

��

// Ind
K0(pm)
K0(pn)

Q
(n,n+1)
ln+1

��
0 0

and we are left to use the snake lemma to conclude the induction (notice that if (lm, . . . , ln−1) =

(p− 1, . . . , p− 1) we just deduce the isomorphism Ind
K0(pm)
K0(pn)

Q
(n,n+1)
ln+1

∼= Q
(m,n+1)
0,...,0,ln+1).

ii). It is similar to i). The details are left to the reader. ]

Lemma 5.12. Fix two integers 1 6 m 6 n+1, let (lm, . . . , ln) ∈ {0, . . . , p−1}n−m+1 be an (n−m+1)-
tuple and assume (lm, . . . , ln) ≺ (p − 1, . . . , p − 1). Moreover, let λ ∈ Fp and t =

∑
j∈N pj [tj ] ∈ Zp

be a p-adic integer.

Then, the action of

[
1 0

pm[λ] + pm+1t 1

]
on F

(m)
lm+1 ∗F

(m+1)
lm+1

∗ · · · ∗Fnln inside Q
(m,n+1)
lm,...,ln

is described

by [
1 0

pm[λ] + pm+1t 1

]
· F (m)

lm+1 ∗ · · · ∗ F
(n)
ln

=

= F
(m)
lm+1 ∗ · · · ∗ F

(n)
ln

+ (lj + 1)(−1)j−m+1λF
(m)
lm
∗ · · · ∗ F (n)

ln

where j ∈ {m, . . . , n} is minimal with respect to the property that lj + 1 6≡ 0 mod p.

Proof: The case m = n is an immediate computation, and it is left to the reader. In order to
establish the general step, we need to distinguish two cases:

SituationA). Assume lm 6 p− 2. It follows from Proposition 5.10 applied to Ind
K0(pm+1)
K0(pn+1)

1 that[
1 0

pm+1Zp 1

]
acts trivially on F

(m+1)
lm+1

∗ · · · ∗ F (n)
ln

in Q
(m+1,n+1)
lm+1,...,ln

, and we deduce the following
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equalities in Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1,...,ln

:[
1 0

pm[λ] + pm+1t 1

] ∑
µm∈Fp

µlm+1
m

[
1 0

pm[µm] 1

]
[1, F

(m+1)
lm+1

∗ · · · ∗ F (n)
ln

] =

=
∑

µm∈Fp

µlm+1
m

[
1 0

pm[λ+ µm] 1

]
[1, F

(m+1)
lm+1

∗ · · · ∗ F (n)
ln

] =

=

lm+1∑
j=0

(
lm + 1

j

)
(−λ)j [1, F

(m+1)
lm+1

∗ · · · ∗ F (n)
ln

].

We conclude using the projection Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1,...,ln

� Q
(m,n+1)
lm,...,ln

.

SituationB). Assume lm = p − 1; therefore F
(m)
lm+1 ∗ · · · ∗ F

(n)
ln

= F
(m)
0 ∗ F (m+1)

lm+1+1 ∗ · · · ∗ F
(n)
ln

.

Lemma 2.7 and the inductive hypothesis applied to F
(m+1)
lm+1+1 ∗ · · · ∗ F

(n)
ln
∈ Q(m+1,n+1)

lm+1,...,ln
let us deduce

the following equalities inside Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1,...,ln

:[
1 0

pm[λ] + pm+1t 1

] ∑
µm∈Fp

[
1 0

pm[µm] 1

]
[1, F

(m+1)
lm+1+1 ∗ · · · ∗ F

(n)
ln

] =

=
∑

µm∈Fp

[
1 0

pm[µm + λ] 1

]
[1, F

(m+1)
lm+1+1 ∗ · · · ∗ F

(n)
ln

] +

+(lj + 1)(−1)j−m
∑

µm∈Fp

(Pλ(µm) + t0)

[
1 0

pm[λ+ µm] 1

]
[1, F

(m+1)
lm+1+1 ∗ · · · ∗ F

(n)
ln

]

= F
(m)
lm+1 ∗ · · · ∗ F

(n)
ln

+ (lj + 1)(−1)j−m(t0F
(m)
0 ∗ F (m+1)

lm+1
∗ · · · ∗ F (n)

ln
+

+

p−1∑
s=1

(
p
s

)
p

(−λ)p−sF (m)
s ∗ F (m+1)

lm+1
∗ · · · ∗ F (n)

ln
)

where j ∈ {m + 1, . . . , n} is minimal with respect to the property that lj < p − 1. The conclusion

comes using the projection Ind
K0(pm)
K0(pm+1)

Q
(m+1,n+1)
lm+1,...,ln

� Q
(m,n+1)
lm,...,ln

. ]

We are now able to deduce easily Proposition 5.10.

Proof of Proposition 5.10:

i) From Lemma 5.11-i) we have an isomorphism 〈F (m)
lm
∗ · · · ∗F (n−1)

ln−1
〉 ⊗ aln

∼→ 〈F (m)
lm
∗ · · · ∗F (n)

ln
〉

and we have 〈F (m)
lm
∗ · · · ∗ F (n−1)

ln−1
〉 ∼= alm ⊗ · · · ⊗ aln−1 by the inductive hypothesis.

ii) As in corollary 5.6, we see that for any K0(p
m)-equivariant morphism φ : Q

(m,n+1)
lm,...,ln

→
〈F (m)

lm
∗ · · · ∗ F (n)

ln
〉 we have

φ(F
(m)
lm
∗ · · · ∗ F (n)

ln
) = (−δp−1,lm) . . . (−δp−1,ln)φ([1K0(pn), e])

so that there cannot be any splitting for 〈F (m)
lm
∗· · ·∗F (n)

ln
〉 → Q

(m,n+1)
lm,...,ln

if (lm, . . . , ln) ≺ (p−1, . . . , p−
1). The identity

dimFp
(Q

(m,n+1)
lm,...,ln

) = pn−m+1 −
n−m∑
j=0

pn−m−jln−j

is now an immediate induction.
iii) The case (lm, . . . , ln) = (p − 1, . . . , p − 1) is trivial. We will prove the general case by a

24



Explicit description of irreducible GL2(Qp)-representations over Fp

descending induction on the (n+ 1−m)-tuple (lm, . . . , ln). Consider the exact sequence

0→ 〈F (m)
lm
∗ · · · ∗ F (n)

ln
〉 → Q

(m,n+1)
lm,...,ln

→ Q
(m,n+1)
lm+1,...,ln

→ 0

and let τ 6 Q(m,n+1)
lm,...,ln

be an irreducible subrepresentation such that τ ∩ 〈F (m)
lm
∗ · · · ∗ F (n)

ln
〉 = 0. The

inductive hypothesis soc(Q
(m,n+1)
lm+1,...,ln

) = 〈F (m)
lm+1 ∗ · · · ∗ F

(n)
ln
〉 lets us conclude that

τ = 〈F (m)
lm+1 ∗ · · · ∗ F

(n)
ln

+ c1F
(m)
lm
∗ · · · ∗ F (n)

ln
〉 ∼= alm+1 ⊗ . . . aln

for a suitable c1 ∈ Fp. But by Lemma 5.12 we have the equalities in Q
(m,n+1)
lm,...,ln

:[
1 0

pm[λ] 1

]
(F

(m)
lm+1 ∗ · · · ∗ F

(n)
ln

+ c1F
(m)
lm
∗ · · · ∗ F (n)

ln
) =

= (F
(m)
lm+1 ∗ · · · ∗ F

(n)
ln

+ c1F
(m)
lm
∗ · · · ∗ F (n)

ln
) +

+λ(lj + 1)(−1)j−m+1F
(m)
lm
∗ · · · ∗ F (n)

ln

(where j ∈ {m, . . . , n} is defined as in Lemma 5.12) from which F
(m)
lm
∗ · · · ∗ F (n)

ln
∈ τ if λ 6= 0,

contradiction. ].

6. Study of an Induction -II

Throughout this section we consider integers r, t with 0 6 r 6 p − 1, 0 6 t 6 p − 2 and n ∈ N>.
Our aim is to describe the socle filtration of the induction

IndKK0(pn+1)χ
s
ra
t

using the results of section §5; the main result is then Proposition 6.6.
We start by fixing the following elements of IndKK0(pn+1)χ

s
ra
t.

Definition 6.1. Let (l1, . . . , ln) ∈ {0, . . . , p− 1}n be an n-tuple, and let t′
def
=
∑n

i=1 li. We define

F
(0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln

def
=



∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1K , F

(1)
l1
∗ · · · ∗ F (n)

ln
]

if r − 2(t+ t′) 6≡ 0 [p− 1];

∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1K , F

(1)
l1
∗ · · · ∗ F (n)

ln
] + (−1)t+t

′
[1K , F

(1)
l1
∗ · · · ∗ F (n)

ln
]

if r − 2(t+ t′) ≡ 0 [p− 1]

F
(0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln

def
=



[1K , F
(1)
l1
∗ · · · ∗ F (n)

ln
]

if r − 2(t+ t′) 6≡ 0 [p− 1];

∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1K , F

(1)
l1
∗ · · · ∗ F (n)

ln
]

if r − 2(t+ t′) ≡ 0 [p− 1].

If (j1, . . . , jn), (j′1, . . . , j
′
n) ∈ {0, . . . , p− 1}n are two n-tuples and i, i′ ∈ {0, 1} we define

(i, j1, . . . , jn) ≺ (i′, j′1, . . . , j
′
n)
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iff either (j1, . . . , jn) ≺ (j′1, . . . , j
′
n) or (j1, . . . , jn) = (j′1, . . . , j

′
n) and i < i′. Finally

Definition 6.2. Let (l1, . . . , ln) ∈ {0, . . . , p− 1}n be an n-tuple, i ∈ {0, 1} and let t′
def
=
∑n

j=1 lj . We

define the quotient Q
(0,n+1)
i,l1,...,ln

of IndKK0(pn+1)χ
s
ra
t as

Q
(0,n+1)
i,l1,...,ln

def
= IndKK0(pn+1)χ

s
ra
t/(

∑
(j,j1,...,jn)≺(i,l1,...,ln)

〈K · F (0)
j ∗ . . . F (n)

jn
〉)

where ∑
(j,j1,...,jn)≺(i,l1,...,ln)

〈K · F (0)
j ∗ . . . F (n)

jn
〉

denotes the sub-K-representation of IndKK0(pn+1)χ
s
ra
t generated by the elements F

(0)
j ∗ . . . F (n)

jn
for

(j, j1, . . . , jn) ≺ (i, l1, . . . , ln).

As usual, we adopt the convention

Q
(0,n+1)
i+1,l1,...,ln

def
= Q

(0,n+1)
0,l1+1,...,ln

if i = 1. We remark that in the previous definitions we do not keep track of the integers r, t: we
adopted this choice in order not to overload the notations. We believe the values of r, t will be clear
from the context (cf. §7, §8).

The study of the socle filtration starts from the following elementary lemma:

Lemma 6.3. If (l1, . . . , ln) ∈ {0, . . . , p − 1}n is an n-tuple, we have the following commutative
diagrams with exact rows:

i)

0 // 〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 // IndKK0(p)

〈F (1)
l1
∗ · · · ∗ F (n)

ln
〉

� _

��

// 〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 //

� _

��

0

0 // 〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 // Q

(0,n+1)
0,l1,...,ln

// Q
(0,n+1)
1,l1,...,ln

// 0;

ii)

0 // IndKK0(p)
〈F (1)

l1
∗ · · · ∗ F (n)

ln
〉

����

// Q
(0,n+1)
0,l1,...,ln

����

// Q
(0,n+1)
0,l1+1,...,ln

// 0

0 // 〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 // Q

(0,n+1)
1,l1,...,ln

// Q
(0,n+1)
0,l1+1,...,ln

// 0.

Proof: It is an induction on the n-tuple (l1, . . . , ln). By Proposition 5.10 and the exactness of
the induction functor we have the exact sequence

0→ IndKK0(p)
〈F (1)

l1
∗ · · · ∗ F (n)

ln
〉 → IndKK0(p)

Q
(1,n+1)
l1,...,ln

→ IndKK0(p)
Q

(1,n+1)
l1+1,...,ln

→ 0

and we dispose of the exact sequence (cf. Lemma 2.4)

0→ 〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 → IndKK0(p)

〈F (1)
l1
∗ · · · ∗ F (n)

ln
〉 → 〈K · F (0)

1 ∗ F (1)
l1
∗ · · · ∗ F (n)

ln
〉 → 0.
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The conclusion comes applying the snake lemma to the diagram

0

��

0

��

〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 �

� // IndKK0(p)
〈F (1)

l1
∗ · · · ∗ F (n)

ln
〉

��

〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉

��

� � // IndKK0(p)
Q

(1,n+1)
l1,...,ln

��

0

��

// IndKK0(p)
Q

(1,n+1)
l1+1,...,ln

��
0 0

assuming inductively that IndKK0(p)
Q

(1,n+1)
l1,...,ln

= Q
(0,n+1)
0,l1,...,ln

. ]

We deduce the following two corollaries:

Corollary 6.4. Let (l1, . . . , ln) ∈ {0, . . . , p− 1}n be an n-tuple. Then:

i) The K-subrepresentation of Q
(0,n+1)
0,l1,...,ln

generated by F
(0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
is isomorphic to

〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 ∼→ Symbr−2(t+t

′)cF
2
p ⊗ dett+t

′

F
(0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
7→ Xbr−2(t+t

′)c.

If, moreover, r − 2(t + t′) ≡ 0[p − 1], then the K-subrepresentation of Q
(0,n+1)
0,l1,...,ln

generated by

F
(0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
is isomorphic to

〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 ∼→ Symp−1F

2
p ⊗ dett+t

′

F
(0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
7→ Xp−1.

ii) The K-subrepresentation of Q
(0,n+1)
1,l1,...,ln

generated by F
(0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
is isomorphic to

〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 ∼→ Symp−1−br−2(t+t′)cF

2
p ⊗ detr−(t+t

′)

F
(0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
7→ Xp−1−br−2(t+t′)c.

Proof: As 〈F (1)
l1
∗ · · · ∗ F (n)

ln
〉 ∼= χsra

t+t′ the statement is an immediate consequence of Lemma
6.3 and Proposition 2.4. ]

Corollary 6.5. Let (l1, . . . , ln) ∈ {0, . . . , p− 1}n be an n-tuple. Then:

i) If (l1, . . . , ln) 6= (p− 1, . . . , p− 1) the exact sequences:

0→ 〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 → Q

(0,n+1)
0,l1,...,ln

→ Q
(0,n+1)
1,l1,...,ln

→ 0;

0→ 〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 → Q

(0,n+1)
1,l1,...,ln

→ Q
(0,n+1)
0,l1+1,...,ln

→ 0

are non split.
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ii) If (l1, . . . , ln) = (p− 1, . . . , p− 1) the exact sequence

0→ 〈K · F (0)
0 ∗ F (1)

p−1 ∗ · · · ∗ F
(n)
p−1〉 → Q

(0,n+1)
0,p−1,...,p−1 → Q

(0,n+1)
1,p−1,...,p−1 → 0

is nonsplit iff r − 2t ≡ 0[p− 1].

iii) The dimension of the quotients Q
(0,n+1)
i,l1,...,ln

for i ∈ {0, 1} is:

dimFp
(Q

(0,n+1)
0,l1,...,ln

) = (p+ 1)pn − (p+ 1)(
n∑
j=1

pj−1lj)

dimFp
(Q

(0,n+1)
1,l1,...,ln

) = (p+ 1)pn − (p+ 1)(
n∑
j=1

pj−1lj)− (br − 2(t+ t′)c+ 1).

Proof: i) and ii). As the action of K1 on 〈K · F (0)
i ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 is trivial (for i ∈ {0, 1}),

we deduce as in Proposition 5.10-ii) that

φ(F
(0)
i ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
) = 0

for any K-equivariant morphism Q
(0,n+1)
i,l1,...,ln

→ 〈K · F (0)
i ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 and for any (n+ 1)-tuple

(i, l1, . . . , ln) ∈ {0, 1} × {0, . . . , p − 1}n such that (l1, . . . , ln) ≺ (p − 1, . . . , p − 1). The assertion ii)
is then immediate from Proposition 2.4.

The proof on iii) is finally an obvious induction. ]

6.2 Study of the socle filtration

The present section is devoted to the proof of the following result:

Proposition 6.6. Assume p is odd; let (l1, . . . , ln) ∈ {0, . . . , p − 1}n be an n-tuple, and let t′
def
=∑n

i=1 li. Then

i) the socle of Q
(0,n+1)
1,l1,...,ln

is described by

soc(Q
(0,n+1)
1,l1,...,ln

) = 〈KF (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉

ii) the socle of Q
(0,n+1)
0,l1,...,ln

is described by

soc(Q
(0,n+1)
0,l1,...,ln

) =


〈K · F (0)

0 ∗ F (1)
l1
∗ · · · ∗ F (n)

ln
〉 if r − 2(t+ t′) 6≡ 0[p− 1];

〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 ⊕ 〈K · F (0)

1 ∗ F (1)
l1
∗ · · · ∗ F (n)

ln
〉

if r − 2(t+ t′) ≡ 0[p− 1].

The proof is a descending induction on the n-tuple (l1, . . . , ln), the statement being clear if
(l1, . . . , ln) = (p− 1, . . . , p− 1).

We prove the result for a fixed n-tuple (l1, . . . , ln), assuming it true for Q
(0,n+1)
0,l1+1,...,ln

(resp. for

Q
(0,n+1)
1,l1,...,ln

).
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Study of soc(Q
(0,n+1)
1,l1+1,...,ln

). We dispose of the following commutative diagram with exact lines (cf.
Lemma 6.3):

0 // IndKK0(p)
〈F (1)

l1
∗ · · · ∗ F (n)

ln
〉

pr1
����

// Q
(0,n+1)
0,l1,...,ln

pr2
����

// Q
(0,n+1)
0,l1+1,...,ln

// 0

0 // 〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 // Q

(0,n+1)
1,l1,...,ln

// Q
(0,n+1)
0,l1+1,...,ln

// 0.

We define the elements of Q
(0,n+1)
0,l1,...,ln

:

x
def
=
∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1K , F

(1)
l1+1 ∗ · · · ∗ F

(n)
ln

]

x′
def
= [1K , F

(1)
l1+1 ∗ · · · ∗ F

(n)
ln

]

y
def
= x+ (−1)t+t

′+1x′;

the behaviour of the elements x, x′ in Q
(0,n+1)
0,l1,...,ln

is the object of the next

Lemma 6.7. We have the following equalities in Q
(0,n+1)
0,l1,...,ln

for p odd 5:

i) if a, d ∈ F×p then [
[a] 0
0 [d]

]
x = ar−(t+t

′+1)dt+t
′+1x;[

[a] 0
0 [d]

]
x′ = at+t

′+1dr−(t+t
′+1)x′.

ii) Let j ∈ {1, . . . , n} be minimal with respect to the property that lj 6 p − 2 and let λ ∈ Fp.
Then [

1 [λ]
0 1

]
x = x+ (lj + 1)(−1)j

∑
µ0∈Fp

− P−λ(µ0)

[
[µ0] 1
1 0

]
[1K , F

(1)
l1
∗ · · · ∗ F (n)

ln
];

[
1 [λ]
0 1

]
x′ = x′ + (lj + 1)(−1)jδp,3(1− δ1,j)λ[1K , F

(1)
l1
∗ · · · ∗ F (n)

ln
].

Proof: i) Follows easily from the definition of the elements x, x′ and the equalities[
[a] 0
0 [d]

] [
z 1
1 0

]
=

[
z[ad−1] 1

1 0

] [
[d] 0
0 [a]

]
[

[a] 0
0 [d]

] [
1 0
z 1

]
=

[
1 0

z[a−1d] 1

] [
[a] 0
0 [d]

]
for z ∈ Zp, a, d ∈ F×p

ii) The first equality is immediately deduced from Lemma 5.12 and the relation:[
1 [λ]
0 1

] [
[µ0] 1
1 0

]
=

[
[λ+ µ0] 1

1 0

] [
1 0

p[Pλ(µ0)] + p2h 1

]
for λ, µ0 ∈ Fp and h ∈ Zp a suitable p-adic integer.

The second equality is more delicate. From Lemma 2.9 we deduce[
1 [λ]
0 1

] [
1 0

p[µ1] + · · ·+ pn[µn] 1

]
=

[
1 0

p[µ′1] + · · ·+ pn[µ′n] 1

]
Λ

5this is required only for the equality concerning x′ in ii)
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where Λ ∈ K0(p
n+1) is upper unipotent modulo p and, for i > 3 we have

µi = µ′i + µ′i−1µ1λ+ · · ·+ µ′1µi−1λ+ Si−2(µi−1)

where Si−2 ∈ Fp[X] is a polynomial of degree p − 1 and leading coefficient −si−2
def
= µ′i−1 − µi−1,

while, for i ∈ {1, 2} we have

µ2 = µ′2 + µ1µ
′
1λ, µ1 = µ′1.

If j ∈ {1, . . . , n} is as in the statement we can write

F
(1)
l1+1 ∗ · · · ∗ F

(n)
ln

= F
(1)
0 ∗ · · · ∗ F (j−1)

0 ∗ F (j)
lj+1 ∗ · · · ∗ F

(n)
ln
.

(with the obvious convention if j = 1) and a direct computation in Ind
K0(p)
K0(pn)

χsra
t gives:

v
def
=

[
1 [λ]
0 1

]
F

(1)
l1+1 ∗ · · · ∗ F

(n)
ln

=
∑
µ1∈Fp

[
1 0

p[µ′1] 1

]
. . .

∑
µj−1∈Fp

[
1 0

pj−1[µ′j−1] 1

] ∑
µj∈Fp

µ
lj+1
j

[
1 0

pj [µ′j ] 1

]
. . .

. . .
∑
µn∈Fp

µlnn

[
1 0

pn[µ′n] 1

]
[1, e].

If j < n we can now use the recursive property of the si−1’s for i = j, . . . , n − 1 and project v
successively via the epimorphisms

Ind
K0(p)
K0(pn+1)

χsra
t � Ind

K0(p)
K0(pn)

Q
(n,n+1)
ln

� · · ·� Ind
K0(p)

K0(pj+1)
Q

(j+1,n+1)
lj+1,...,ln

.

We see that v is sent to the following element ṽ of Ind
K0(p)

K0(pj+1)
Q

(j+1,n+1)
lj+1,...,ln

(with the convention that

if j = n, we just have v = ṽ and Q
(j+1,n+1)
lj+1,...,ln

def
= χsra

t):

ṽ =
∑
µ1∈Fp

[
1 0

p[µ′1] 1

]
. . .

. . .
∑

µj−1∈Fp

[
1 0

pj−1[µ′j−1] 1

] ∑
µj∈Fp

(µ′j + sj−1)
lj+1

[
1 0

pj [µ′j ] 1

] ∑
µj+1∈Fp

µ
lj+1

j+1

[
1 0

pj+1[µj+1] 1

]
. . .

. . .
∑
µn∈Fp

µlnn

[
1 0

pn[µn] 1

]
[1, e].

This lets us deduce the statement if j = 1, while, if j > 2 we map ṽ in Ind
K0(p)

K0(pj)
Q

(j,n+1)
lj ,...,ln

via the

epimorphism Ind
K0(p)

K0(pj+1)
Q

(j+1,n+1)
lj+1,...,ln

� Ind
K0(p)

K0(pj)
Q

(j,n+1)
lj ,...,ln

to get:

F
(1)
l1+1 ∗ · · · ∗ F

(n)
ln

+ (lj + 1)
∑
µ1∈Fp

[
1 0

p[µ′1] 1

]
. . .

. . .
∑

µj−1∈Fp

[
1 0

pj−1[µ′j−1] 1

]
sj−1

∑
µj∈Fp

µ
lj
j

[
1 0

pj [µj ] 1

]
. . .

. . .
∑
µn∈Fp

µlnn

[
1 0

pn[µn] 1

]
[1, e].

We use again the recursive property of the si−1’s for i = 2, . . . , j and the chain of epimorphisms

Ind
K0(p)

K0(pj)
Q

(j,n+1)
lj ,...,ln

� Ind
K0(p)

K0(pj−1)
Q

(j−1,n+1)
p−1,...,ln � · · ·� Q

(1,n+1)
l1,...,ln
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to see that the image of v in Q
(1,n+1)
l1,...,ln

is

F
(1)
l1+1 ∗ · · · ∗ F

(n)
ln

+ (lj + 1)(−1)jλδp,3F
(1)
l1
∗ · · · ∗ F (n)

ln
.

This let us conclude the proof. ]

We can now prove the main result of this paragraph (i.e. the proof of i) of Proposition 6.6)

Lemma 6.8. Assume p is odd. Let (l1, . . . , ln) ∈ {0, . . . , p− 1}n be an n-tuple and assume that the
statement of Proposition 6.6-ii) holds true for the n-tuple (l1 + 1, . . . , ln).

Then

soc(Q
(0,n+1)
1,l1,...,ln

) = 〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉.

Proof: Assume false. Let τ be an irreducible K-subrepresentation of Q
(0,n+1)
1,l1,...,ln

such that τ ∩
〈K · F (0)

1 ∗ F (1)
l1
∗ · · · ∗ F (n)

ln
〉 = 0. Therefore the natural projection Q

(0,n+1)
1,l1,...,ln

� Q
(0,n+1)
0,l1+1,...,ln

induces

an isomorphism of τ onto an irreducible summand of soc(Q
(0,n+1)
0,l1+1,...,ln

). Assuming that Proposition
6.6-ii) holds true for the n-tuple (l1 + 1, . . . , ln) we can distinguish the situations:

A) the subrepresentation τ maps isomorphically into the K-subrepresentation of Q
(0,n+1)
0,l1+1,...,ln

gen-
erated by (the image of) x.

B) We have r− 2(t+ t′ + 1) ≡ 0 [p− 1] and the subrepresentation τ maps isomorphically into the

K-subrepresentation of Q
(0,n+1)
0,l1+1,...,ln

generated by (the image of) y.

Study of case A. Let f ∈ IndKK0(p)
F

(1)
l1
∗ · · · ∗ F (n)

ln
be such that pr2(x + f) ∈ τ . The induced

isomorphism τ
∼→ 〈K · x〉 and the behaviour of x in soc(Q

(0,n+1)
0,l1+1,...,ln

) let us deduce the necessary
conditions:

1) for all a, d ∈ F×p , [
[a] 0
0 [d]

]
(x+ f)− ar−(t+t′+1)dt+t

′+1(x+ f) ∈ ker(pr2);

2) for all λ ∈ Fp [
1 [λ]
0 1

]
(f + x)− (f + x) ∈ ker(pr2).

Condition 1) and Lemma 6.7-i) give

[
[a] 0
0 [d]

]
f−ar−(t+t′+1)dt+t

′+1f ∈ ker pr1 so that, by Lemma

2.6, we deduce

[
1 [λ]
0 1

]
pr1(f)− pr1(f) =


0 if r − 2(t+ t′) 6≡ 0 [p− 1]

c1λ
∑

µ0∈Fp

[
[µ0] 1
1 0

]
[1, F

(1)
l1
∗ · · · ∗ F (n)

ln
]

if r − 2(t+ t′) ≡ 0 [p− 1]

for some c1 ∈ Fp. Thus, condition 2) and Lemma 6.7-ii) let us conclude that

(lj + 1)(−1)j
p−1∑
i=1

(
p
i

)
p

(−λ)p−i
∑
µ0∈Fp

µi0

[
[µ0] 1
1 0

]
[1, F

(1)
l1
∗ · · · ∗ F (n)

ln
] +

+c1δ0,r−2(t+t′)λ
∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1, F

(1)
l1
∗ · · · ∗ F (n)

ln
] ∈ ker pr1
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for any λ ∈ Fp, and by Lemma 2.10-ii) we can deduce in particular∑
µ0∈Fp

µp−10

[
[µ0] 1
1 0

]
[1, F

(1)
l1
∗ · · · ∗ F (n)

ln
] ∈ ker pr1 for r − 2(t+ t′) 6≡ 0,

∑
µ0∈Fp

µ0

[
[µ0] 1
1 0

]
[1, F

(1)
l1
∗ · · · ∗ F (n)

ln
] ∈ ker pr1 for r − 2(t+ t′) ≡ 0.

Thanks to Remark 2.5 we see that both conditions are absurd, for the case r − 2(t+ t′) 6≡ 0 [p− 1]
and r − 2(t+ t′) ≡ 0 [p− 1] respectively. ]

Study of case B. Let f ∈ IndKK0(p)
F

(1)
l1
∗ · · · ∗ F (n)

ln
be such that pr2(y + f) ∈ τ . The induced

isomorphism τ
∼→ 〈K · y〉 and the behaviour of y in soc(Q

(0,n+1)
0,l1+1,...,ln

) let us deduce the necessary
conditions:

1) for all a, d ∈ F×p , [
[a] 0
0 [d]

]
(y + f)− (ad)t+t

′+1(y + f) ∈ ker(pr2);

2) for all λ ∈ Fp [
1 [λ]
0 1

]
(f + y)− (f + y) ∈ ker(pr2).

We deduce from condition 1) and Lemma 6.7-i) that pr1(f) is an H-eigenvector for 〈K ·F 0
1 ∗F

(1)
l1
∗

· · · ∗ F (n)
ln
〉 with associated eigencharacter ar−(t+t

′+1)dt+t
′+1. Thus, by Lemma 2.10, we have

[
1 [λ]
0 1

]
pr1(f) =


0 if r − 2(t+ t′) 6≡ 0 [p− 1] i.e. p 6= 3

c1λ
∑

µ0∈Fp

[
[µ0] 1
1 0

]
[1, F

(1)
l1
∗ · · · ∗ F (n)

ln
]

if r − 2(t+ t′) ≡ 0 [p− 1] i.e. p = 3.

for some c1 ∈ Fp. The conclusion follows again from Lemma 6.7-ii), similarly to case A). ]

The proof of Lemma 6.8 is therefore complete. ]

Study of soc(Q
(0,n+1)
0,l1,...,ln

). We have the following commutative diagram with exact lines (cf. Lemma
6.3):

0 // 〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 // IndKK0(p)

〈F (1)
l1
∗ · · · ∗ F (n)

ln
〉

� _

��

// 〈K · F (0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 //

� _

��

0

0 // 〈K · F (0)
0 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
〉 // Q

(0,n+1)
0,l1,...,ln

// Q
(0,n+1)
1,l1,...,ln

// 0.

Lemma 6.9. Assume p is odd. Let (l1, . . . , ln) ∈ {0, . . . , p− 1}n be an n-tuple and assume that the

statement of Proposition 6.6-i) holds true for the representation Q
(0,n+1)
1,l1,...,ln

.
Then

soc(Q
(0,n+1)
0,l1,...,ln

) = soc(IndKK0(p)
〈F (1)

l1
∗ · · · ∗ F (n)

ln
〉).

Proof: Assume false. Let τ be an irreducible K-subrepresentation of Q
(0,n+1)
0,l1,...,ln

and assume

τ ∩ IndKK0(p)
〈F (1)

l1
∗ · · · ∗ F (n)

ln
〉 = 0.
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In particular, the natural projectionQ
(0,n+1)
0,l1,...,ln

� Q
(0,n+1)
1,l1,...,ln

induces an isomorphism τ
∼→ soc(Q

(0,n+1)
1,l1,...,ln

).

Assuming Proposition 6.6-i) for the representation Q
(0,n+1)
1,l1,...,ln

, we deduce that it exists f ∈ 〈K ·F (0)
0 ∗

F
(1)
l1
∗ · · · ∗ F (n)

ln
〉 such that

f + F
(0)
1 ∗ F (1)

l1
∗ · · · ∗ F (n)

ln
∈ τ

is a K-generator of τ , contradiction. ]

End of the proof of Proposition 6.6. The statement of Proposition 6.6 is trivially true for the
n-tuple (l1, . . . , ln) = (p− 1, . . . , p− 1), since

Q
(0,n+1)
0,p−1,...,p−1

∼= IndKK0(p)
〈F (1)

p−1 ∗ · · · ∗ F
(n)
p−1〉 ∼= IndKK0(p)

χsra
t.

The general case follows then from a descending induction, using Lemmas 6.8 and 6.9. ]

A weaker result. We can state a similar, although weaker, result concerning the structure of
IndKK0(pn+1)χ

s
ra
t. Indeed, by exactness of the functor IndKK0(p)

and Proposition 5.10 we have a natu-

ral equivariant filtration on IndKK0(pn+1)χ
s
ra
t, whose graded pieces are isomorphic to finite inductions

of characters, depending explicitely on χsra
t and on the graded piece. The fact that the exten-

sions between the graded pieces are non split can be deduced with the same techniques used for
Proposition 6.6 and we get

Proposition 6.10. Let r ∈ {0, . . . , p − 1}, t ∈ {0, . . . , p − 2} and n ∈ N. The representation

Ind
GL2(Zp)

K0(pn+1)
χsra

t has a natural equivariant filtration whose graded pieces are described by

Ind
GL2(Zp)
K0(p)

χsra
t—Ind

GL2(Zp)
K0(p)

χsra
t+1—Ind

GL2(Zp)
K0(p)

χsra
t+2— . . .—Ind

GL2(Zp)
K0(p)

χsra
t−1—Ind

GL2(Zp)
K0(p)

χsra
t

the extensions being non-split. Moreover, the number of finite parabolic inductions is pn.

Proof. Left to the reader.

7. Socle filtration for the spaces Rn

In this section we will use the results of §6 to give an exhaustive description of the socle filtration
for the Rn’s, for any n ∈ N. The precise statement is the following:

Proposition 7.1. Assume p odd; let 1 6 r 6 p− 1, n ∈ N> and 1 6 t 6 r be integers. Then

soc(Filt−1(Rn+1)) = soc(Filt(Rn+1)).

More generally, we have

soc(Filt−1(Rn+1)/Q) = soc(Filt(Rn+1)/Q)

for any subrepresentation Q of Filj(Rn+1), 0 6 j 6 t − 1 coming from the socle filtration of
Filj(Rn+1).

The rest of the paragraph is devoted to its proof, which is very similar to the proof of Propo-
sition 6.6. For a notational convenience, we will prove the result concerning the representations
Filt−1(Rn+1), Filt(Rn+1). In order to obtain the general result we just have repeat the same ar-
guments replacing Filt−1(Rn+1) and Filt(Rn+1) by Filt−1(Rn+1)/Q and Filt(Rn+1)/Q respectively
(and other similar formal adjustments which will be clear to the reader).
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We fix integers 0 6 r 6 p− 1, n ∈ N, 1 6 t 6 r, and we define the elements of Filt(Rn+1):

x
def
=
∑
µ0∈Fp

[
[µ0] 1
1 0

]
. . .

∑
µn∈Fp

[
1 0

pn[µn] 1

]
[1K , X

r−tY t] ∈ Filt(Rn+1);

x′
def
=
∑
µ1∈Fp

[
1 0

p[µ1] 1

]
. . .

∑
µn∈Fp

[
1 0

pn[µn] 1

]
[1K , X

r−tY t] ∈ Filt(Rn+1);

y
def
= x+ (−1)tx′.

Moreover, we consider the map

pr : Filt−1(Rn+1)� IndKK0(pn+1)χ
s
ra
t−1 � Q

(0,n+1)
0,p−1,...,p−1

∼→ IndKK0(p)
χsra

t−1

where the first arrow is the natural projection given by the reduction modulo Filt−2(Rn+1) and the
second arrow is more precisely described by the commutative diagram (cf. also Lemma 5.11)

IndKK0(pn+1)χ
s
ra
t−1

����

// Q
(0,n+1)
0,p−1,...,p−1

Q
(0,n+1)
0,...,0,p−1

∼= IndKK0(pn)
χsra

t−1

����
...

����

Q
(0,2)
0,p−1

∼= IndKK0(p)
χsra

t−1.

== =={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

We finally set

prtot : Filt−1(Rn+1)
pr
� IndKK0(p)

χsra
t−1 π
� Symp−1−br−2(t−1)cF

2
p ⊗ detr−(t−1)

where π is the natural projection defined in Lemma 2.6. We start from the following computational
lemma.

Lemma 7.2. We have the following equalities in Filt(Rn+1) for p odd 6:

i) For all a, d ∈ F×p , [
[a] 0
0 [d]

]
x = ar−tdtx[

[a] 0
0 [d]

]
x′ = atdr−tx′.

ii) For all λ ∈ Fp then

[
1 [λ]
0 1

]
x− x and

[
1 [λ]
0 1

]
x′ − x′ are in Filt−1(Rn+1) and

pr(

[
1 [λ]
0 1

]
x− x) = t(−1)n

∑
µ0∈Fp

[
[µ0] 1
1 0

]
(−P−λ,(µ0))[1K , Xr−(t−1)Y t−1]

pr(

[
1 [λ]
0 1

]
x′ − x′) = t(−1)nλδp,3[1K , X

r−(t−1)Y t−1]

(where P−λ(µ0) has been defined in §2.3)

6the requirement p odd is used for the equality concerning x′ in ii)
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Proof: i) It is analogous to the proof of Proposition 6.6-i).
ii) From Lemma 2.8 we deduce[

1 [λ]
0 1

]
x =

=
∑
µ0∈Fp

[
[λ+ µ0] 1

1 0

]
. . .

. . .
∑
µn∈Fp

[
1 0

pn[µn + Pλ,...,µn−2(µn−1)] 1

]
[1, Xr−t(Pλ,...,µn−1(µn)X + Y )t] =

= x+ t
∑
µ0∈Fp

[
[λ+ µ0] 1

1 0

]
. . .

. . .
∑
µn∈Fp

[
1 0

pn[µn + Pλ,...,µn−2(µn−1)] 1

]
Pλ,...,µn−1(µn)[1, Xr−(t−1)Y t−1] + q

for a suitable q ∈ Filt−2(Rn+1) and where the elements Pλ,...,µj−1
(µj) for j ∈ {1, . . . , n} (resp. Pλ(µ0))

are defined in Lemma 2.8. We are now left to map the element

[
1 [λ]
0 1

]
x− x ∈ Filt−1(Rn+1) in

IndKK0(pn+1)χ
s
ra
t−1 to get

t
∑
µ0∈Fp

[
[λ+ µ0] 1

1 0

]
. . .

. . .
∑
µn∈Fp

[
1 0

pn[µn + Pλ,...,µn−2 ] 1

]
(µn−1)Pλ,...,µn−1(µn)[1, Xr−(t−1)Y t−1]

and the result follows using the chain of epimorphisms

IndKK0(pn+1)χ
s
ra
t−1 � Q

(0,n+1)
0,...,0,p−1 � · · ·� Q

(0,n+1)
0,p−1,...,p−1

and the recursive property of the polynomials Pλ,...,µj−1
(X) ∈ Fp[X] for j ∈ {1, . . . , n}.

Similarly, from Lemma 2.9 we deduce the following equality in Filt(Rn+1):[
1 [λ]
0 1

]
x′ =

= x′ + t
∑
µ1∈Fp

[
1 0

p[µ1] 1

]
. . .

∑
µn∈Fp

[
1 0

pn[µn] 1

]
(−sλ,...,µn)[1, Xr−(t−1)Y t−1] + q′

for some q′ ∈ Filt−2(Rn+1). We map the element

[
1 [λ]
0 1

]
x′−x′ ∈ Filt−1(Rn+1) in IndKK0(pn+1)χ

s
ra
t−1

to get

t
∑
µ1∈Fp

[
1 0

p[µ′1] 1

]
. . .

∑
µn∈Fp

[
1 0

pn[µ′n] 1

]
(−sλ,...,µn)[1, Xr−(t−1)Y t−1]

and the result follows using the chain of epimorphisms

IndKK0(pn+1)χ
s
ra
t−1 � Q

(0,n+1)
0,...,0,p−1 � · · ·� Q

(0,n+1)
0,p−1,...,p−1

and the recursive property of the si for i ∈ {1, . . . , n} (here we need p > 3). ]

End of the proof of Proposition 7.1. Let now τ be an irreducible K-subrepresentation of
Filt(Rn+1), and assume τ ∩ Filt−1(Rn+1) = 0. Therefore the natural projection Filt(Rn+1) �
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IndKK0(pn+1)χ
s
ra
t induces an isomorphism of τ onto an irreducible factor of soc(IndKK0(pn+1)χ

s
ra
t).

As

soc(IndKK0(pn+1)χ
s
ra
t) = soc(Q

(0,n+1)
0,...,0 ) = soc(IndKK0(p)

〈x′〉)
by Proposition 6.6, we distinguish two situations:

A) the subrepresentation τ maps isomorphically into the K-subrepresentation of IndKK0(pn+1)χ
s
ra
t

generated by (the image of) x.

B) We have r − 2t ≡ 0 [p − 1] and the subrepresentation τ maps isomorphically into the K-
subrepresentation of IndKK0(pn+1)χ

s
ra
t generated by (the image of) y.

Study of case A. Let f ∈ Filt−1(Rn+1) be such that x+ f ∈ τ . From the induced isomorphism
τ
∼→ 〈K · x〉 and the behaviour of x in soc(IndKK0(pn+1)χ

s
ra
t) we deduce the following necessary

conditions:

1) for all a, d ∈ F×p we have [
[a] 0
0 [d]

]
(x+ f)− ar−tdt(x+ f) = 0

inside Filt(Rn+1);

2) for all λ ∈ Fp we have [
1 [λ]
0 1

]
(x+ f)− (x+ f) = 0

inside Filt(Rn+1).

Condition 1) and Lemma 7.2-i) imply in particular that prtot(f) is an H-eigenvector of

Symp−1−br−2(t−1)cF
2
p ⊗ detr−(t−1) ∼= IndKK0(p)

χsra
t−1/Symbr−2(t−1)cF

2
p ⊗ dett−1

of associated eigencharacter ar−tdt. It follows then from Lemma 2.6 that

[
1 [λ]
0 1

]
prtot(f)− prtot(f) =


0 if r − 2(t− 1) 6≡ 0 [p− 1]

c1
∑

µ0∈Fp

[
[µ0] 1
1 0

]
[1, Xr−(t−1)Y t−1]

if r − 2(t− 1) ≡ 0 [p− 1]

for a suitable c1 ∈ Fp. We conclude from condition 2) and Lemma 7.2-ii)

t(−1)n
p−1∑
j=1

(
p
j

)
p

(−λ)p−j
∑
µ0∈Fp

µj0

[
[µ0] 1
1 0

]
[1, Xr−(t−1)Y t−1] +

+δ0,r−2(t−1)c1λ
∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1, Xr−(t−1)Y t−1] = 0

inside Symp−1−br−2(t−1)cF
2
p⊗detr−(t−1), and this is clearly impossible: by Lemma 2.10-ii) we would

get in particular ∑
µ0∈Fp

µp−10

[
[µ0] 1
1 0

]
[1, Xr−(t−1)Y t−1] = 0 for r − 2(t− 1) 6≡ 0

∑
µ0∈Fp

µ0

[
[µ0] 1
1 0

]
[1, Xr−(t−1)Y t−1] = 0 for r − 2(t− 1) ≡ 0
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which gives an absurd for r−2(t−1) 6≡ 0 [p−1] and r−2(t−1) ≡ 0 [p−1] respectively (cf. Remark
2.5). ]

Study of case B. Let f ∈ Filt−1(Rn+1) be such that y + f ∈ τ . From the induced isomor-
phism τ

∼→ 〈Ky〉 and the behaviour of y in soc(IndKK0(pn+1)χ
s
ra
t) we deduce the following necessary

conditions:

1) for all a, d ∈ F×p we have [
[a] 0
0 [d]

]
(y + f)− ar−tdt(y + f) = 0

inside Filt(Rn+1);

2) for all λ ∈ Fp we have [
1 [λ]
0 1

]
(y + f)− (y + f) = 0

inside Filt(Rn+1).

We deduce from condition 1) and Lemma 7.2 that prtot(f) is an H-eigenvector of

Symp−1−br−2(t−1)cF
2
p ⊗ detr−(t−1) ∼= IndKK0(p)

χsra
t−1/Symbr−2(t−1)cF

2
p ⊗ dett−1

of associated eigencharacter ar−tdt and therefore, by Lemma 2.6

[
1 [λ]
0 1

]
prtot(f)− prtot(f) =


0 if r − 2(t− 1) 6≡ 0 [p− 1] (i.e. p 6= 3)

c1
∑

µ0∈Fp

[
[µ0] 1
1 0

]
[1, Xr−(t−1)Y t−1]

if r − 2(t− 1) ≡ 0 [p− 1] (i.e. p = 3)

for a suitable c1 ∈ Fp. The conclusion follows from Lemma 7.2, similarly to the previous case. ]

The proof of Proposition 7.1 is therefore complete. ]

8. Socle filtration for the spaces R0 ⊕R1 · · · ⊕Rn Rn+1

We are finally ready to describe the socle filtration for the K-representations

lim
−→
n even

(R0 ⊕R1 · · · ⊕Rn Rn+1), lim
−→
m odd

(R1/R0 ⊕R2 · · · ⊕Rm Rm+1).

The main statement is the following:

Proposition 8.1. Assume p is odd; let n ∈ N> (resp. m ∈ N>) be an odd (resp. even) integer,
0 6 r 6 p− 2. Then :

i)

soc(R0 ⊕R1 · · · ⊕Rn−2 Rn−1) = soc(R0 ⊕R1 · · · ⊕Rn Rn+1)

(resp. soc(R1/R0 ⊕R2 · · · ⊕Rm−2 Rm−1) = soc(R1/R0 ⊕R2 · · · ⊕Rm Rm+1))

where we formally define R0 ⊕R−1 R0
def
= R0 (resp. R1/R0 ⊕R0 R1

def
= R1/R0).

ii) More generally, if 0 6 j 6 n − 1 is even (resp. 1 6 j′ 6 m − 1 is odd) and Q is a K-
subrepresentation of Rj/Rj−1 (resp. Rj′/Rj′−1) coming from the socle filtration of Rj/Rj−1

37



Stefano Morra

(resp. Rj′/Rj′−1), then

soc((Rj/Q)⊕Rj+1 · · · ⊕Rn−2 Rn−1) = soc((Rj/Q)⊕Rj+1 · · · ⊕Rn Rn+1)

(resp. soc((Rj′/Q)⊕Rj′+1
· · · ⊕Rm−2 Rm−1) = soc((Rj′/Q)⊕Rj′+1

· · · ⊕Rm Rm+1))

where we formally define (Rj/Q)⊕Rn−2Rn−1
def
= (Rj/Q) if j = n−1 (resp. (Rj′/Q)⊕Rm−2Rm−1

if j′ = m− 1).

The rest of the paragraph is devoted to its proof, starting with the following lemmas.

Lemma 8.2. Let n > 2 be an integer and 0 6 r 6 p−1. The composite map T−2 ◦· · ·◦T−n : Rn � R1

induces an isomorphism:

Rn

����

T−2 ◦···◦T
−
n // // R1/Filr−1(R1)

Rn/Filr−1(Rn) ∼= IndKK0(pn)
χr

����

Q
(0,n)
0,p−1,...,p−1

∼= IndKK0(p)
χr

∼=

88ppppppppppppppppppppppppppppp

Moreover, if r 6= 0, p− 1 the composite map T−1 ◦ · · · ◦ T−n : Rn � R0 induces an isomorphism:

Rn

����

T−1 ◦···◦T
−
n // // R0

Rn/Filr−1(Rn) ∼= IndKK0(pn)
χr

����

Q
(0,n)
1,p−1,...,p−1

∼= SymrF
2
p

∼=

99ttttttttttttttttttttttttttt

Proof: First of all, notice that for any m > 1 we have a factorisation:

Rm

����

T−m // // Rm−1

Rm/Filr−1(Rm)

77 77

Thus, by the very definition of the operators T−j ’s and Lemma 2.10-i) we deduce

Rn/Filr−1(Rn)� R1/Filr−1(R1)

[1, F
(1)
l1
∗ · · · ∗ F (n)

ln
] 7→ (−δp−1,l1) . . . (−δp−1,ln)

∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1, Y r]

(where we put

[1, F
(1)
l1
∗ · · · ∗ F (n)

ln
]

def
=
∑
µ1∈Fp

µl11

[
1 0

p[µ1] 1

]
. . .

∑
µn∈Fp

µlnn

[
1 0

pn[µn] 1

]
[1, Y r] ).

The previous epimorphism factors then through

Rn/Filr−1(Rn) ∼= IndKK0(pn)
χr � Q

(0,n)
0,p−1,...,p−1
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and such a factorisation is indeed an isomorphism as the spaces Q
(0,n)
0,p−1,...,p−1 and R1/Filr−1(R1)

have the same dimension.
Moreover, if r 6= 0, p− 1, we see that

T−1 (
∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1, Y r]) = 0

and therefore the morphism

Rn/Filr−1(Rn)� R1/Filr−1(R1)
T−1
� R0

factors through

Rn/Filr−1(Rn) ∼= IndKK0(pn)
χr � Q

(0,n)
1,p−1,...,p−1;

again such a factorisation is an isomorphism by dimensional reasons. ]

Lemma 8.3. Let n > 1 (resp. n = 0), and 0 6 r 6 p − 2. Then the natural map Fil0(Rn+1)
∼→

IndKK0(pn+1)χ
s
r induces an isomorphism

Fil0(Rn+1)/Rn
∼→ Q

(0,n+1)
0,...,0,r+1

(Fil0(R1)/R0
∼→ Symp−1−brcF

2
p resp.)

Proof: Assume n > 1. For any (n − 1)-tuple (l1, . . . , ln−1) ∈ {0, . . . , p − 1}n−1 and any j ∈
{0, . . . , r} we have

T+
n (

∑
µ1∈Fp

[
1 0

p[µ1] 1

]
. . .

∑
µn−1∈Fp

µ
ln−1

n−1

[
1 0

pn−1[µn−1] 1

]
[1, Xr−jY j ]) =

(−1)j
∑
µ1∈Fp

[
1 0

p[µ1] 1

]
. . .

∑
µn−1∈Fp

µ
ln−1

n−1

[
1 0

pn−1[µn−1] 1

] ∑
µn∈Fp

µjn

[
1 0

pn[µn] 1

]
[1, Xr].

We thus conclude that the natural map

IndKK0(pn+1)χ
r
r � Fil0(Rn+1)/Rn

factors through IndKK0(pn+1)χ
s
r � Q

(0,n+1)
0,...,0,r+1. Such a factorisation is indeed an isomorphism by di-

mensional reasons. The case n = 0 is similar and left to the reader. ]

We are now ready to prove Proposition 8.1 and the strategy will be analogous to the one used in
the proof of Proposition 7.1. Once again, we will give a detailed proof for statement i). Statement
ii) is obtained exactly in the same way, with formal adjustments which will be clear to the reader
(e.g. replace R0⊕R1 · · · ⊕Rn Rn+1 with (Rj/Q)⊕Rj+1 · · · ⊕Rn Rn+1, adjustment of the source of the
morphism πn−1 below according to Q, etc...).

Let us fix integers n > 3, n odd, 0 6 r 6 p− 2; the case n = 1 or m > 2, m even will be treated
exactly in the same manner and will be left to the reader. We recall the commutative diagram with
exact lines (cf. Proposition 4.1):

0 // Rn

−T−n����

T+
n // Rn+1

prn+1

����

// Rn+1/Rn // 0

Rn−1
prn−1����

0 // R0 ⊕R1 · · · ⊕Rn−2 Rn−1 // R0 ⊕R1 · · · ⊕Rn Rn+1 // Rn+1/Rn // 0.
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We write πn−1 for the natural epimorphism

πn−1 : Rn−1 � Rn−1/Filr−1(Rn−1)� Q
(0,n−1)
0,p−1,...,p−1

∼→ R1/Filr−1(R1)

where the last isomorphism is the one described in Lemma 8.2. As we did in §7 we define the
following elements in Rn+1:

x
def
=
∑
µ0∈Fp

[
[µ0] 1
1 0

]
. . .

∑
µn−1∈Fp

[
1 0

pn−1[µn−1] 1

] ∑
µn∈Fp

µr+1
n

[
1 0

pn[µn] 1

]
[1K , X

r]

x′
def
=
∑
µ1∈Fp

[
1 0

p[µ1] 1

]
. . .

∑
µn−1∈Fp

[
1 0

pn−1[µn−1] 1

] ∑
µn∈Fp

µr+1
n

[
1 0

pn[µn] 1

]
[1K , X

r]

y
def
= x+ (−1)r+1x′.

A direct computation gives the key result:

Lemma 8.4. Assume p is odd 7; let a, d ∈ F×p , λ ∈ Fp. Then:

i) we have the following equalities in Rn+1:[
[a] 0
0 [d]

]
x = a−1dr+1x[

[a] 0
0 [d]

]
x′ = ar+1d−1x′

ii) the elements

[
1 [λ]
0 1

]
x− x and

[
1 [λ]
0 1

]
x′ − x′ are in Rn and we have:

πn−1 ◦ (−T−n )(

[
1 [λ]
0 1

]
x− x) = (r + 1)(−1)r+1

∑
µ0∈Fp

P−λ(µ0)

[
[µ0] 1
1 0

]
[1K , Y

r]

πn−1 ◦ (−T−n )(

[
1 [λ]
0 1

]
x′ − x′) = (r + 1)(−1)r+1(−λ)δp,3[1K , Y

r]

(where P−λ(µ0) has been defined in §2.3).

Proof: i) It is analogous to the proof of Lemma 7.2-i).

ii). First of all, we study the action of

[
1 [λ]
0 1

]
on x inside Rn+1. As

[
1 0

pn+1Zp 1

]
acts

trivially on [1, Xr] ∈ Rn+1 we deduce from Lemma 2.8:[
1 [λ]
0 1

]
x =

=
r+1∑
j=0

(
r + 1

j

) ∑
µ0∈Fp

[
[µ0 + λ] 1

1 0

]
. . .

. . .
∑

µn−1∈Fp

[
1 0

pn−1[µn−1 + Pλ,...,µn−3(µn−2)] 1

]
(−Pλ,...,µn−2(µn−1))

j ·

·
∑
µn∈Fp

µr−(j−1)n

[
1 0

pn[µn] 1

]
[1K , X

r]

7such a requirement is needed for the equality concerning x′ in ii)
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and therefore [
1 [λ]
0 1

]
x− x = T+

n (v)

where v ∈ Rn is defined as

v
def
=

r+1∑
j=1

(
r + 1

j

)
(−1)r+(j−1)

∑
µ0∈Fp

[
[µ0 + λ] 1

1 0

]
. . .

. . .
∑

µn−1∈Fp

(−Pλ,...,µn−2(µn−1))
j

[
1 0

pn−1[µn−1 + Pλ,...,µn−3(µn−2)] 1

]
[1K , X

j−1Y r−(j−1)].

We are now left to study the image of −T−n (v) ∈ Rn−1 via the epimorphism πn−1: a direct computa-
tion using the recursive property of the Witt polynomials Pλ,...,µj−2

(X) ∈ Fp[X] (for j ∈ {2, . . . , n})
together with Lemma 2.10-i) yields finally the result.

The behaviour of the element x′ ∈ Rn+1 can be described in a similar way, using now Lemma
2.9 and the recursive property of the sλ,...,µj−1

’s for j ∈ {2, . . . , n}. The details are left to the reader.
]

End of the proof of Proposition 8.1. Fix an irreducibleK-subrepresentation τ ofR0⊕R1 · · ·⊕Rn

Rn+1 such that τ∩R0⊕R1 · · ·⊕Rn−2Rn−1 = 0; therefore the natural projection R0⊕R1 · · ·⊕RnRn+1 �
Rn+1/Rn induces an isomorphism of τ onto an irreducible factor of soc(Rn+1/Rn). Thanks to
Proposition 7.1, Lemma 8.3 and Proposition 6.6 we distinguish two situations:

A) the subrepresentation τ maps isomorphically into the K-subrepresentation of Rn+1/Rn gener-
ated by (the image of) x.

B) We have r = p−3 and the subrepresentation τ maps isomorphically into theK-subrepresentation
of Rn+1/Rn generated by (the image of) y.

Study of case A. Let f ∈ Rn be such that prn+1(x+T+
n (f)) ∈ τ . From the induced isomorphism

τ
∼→ 〈K · x〉 and the behaviour of x in Rn+1/Rn we deduce the following necessary conditions:

1) for all a, d ∈ F×p we have[
[a] 0
0 [d]

]
(x+ T+

n (f))− a−1dr+1(x+ T+
n (f)) ∈ ker(prn+1)

2) for all λ ∈ Fp we have[
1 [λ]
0 1

]
(x+ T+

n (f))− (x+ T+
n (f)) ∈ ker(prn+1).

From condition 1) and Lemma 8.4-ii) we see that πn−1◦(−T−n )(f) is anH-eigenvector ofR1/Filr−1(R1) ∼=
IndKK0(p)

χsra
r of associated eigencharacter a−1dr+1. We then deduce from Lemma 2.6 that

- if r 6= 0 the image of πn−1 ◦ (−T−n )(f) through the epimorphism

IndKK0(p)
χsra

r π
� SymrF

2
p

is

[
1 [λ]
0 1

]
-invariant;

- if r = 0, then[
1 [λ]
0 1

]
πn−1 ◦ (−T−n )(f)− πn−1 ◦ (−T−n )(f) = c1λ

∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1, e]
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inside IndKK0(p)
1, for a suitable c1 ∈ Fp.

It follows then from condition 2) and Lemma 8.4 that for any λ ∈ Fp the element

p−1∑
j=1

(
p
j

)
p

(−λ)p−j
∑
µ0∈Fp

µj0

[
[µ0] 1
1 0

]
[1, Y r] +

+δ0,rc1λ
∑
µ0∈Fp

[
[µ0] 1
1 0

]
[1, Y r] ∈ R1/Filr−1(R1)

maps to zero via

IndKK0(p)
χsra

r π
� SymdreF

2
p.

Thus, Lemma 2.10-ii) implies in particular that∑
µ0∈Fp

µp−10

[
[µ0] 1
1 0

]
[1, Y r] ∈ ker(π) for r 6= 0

∑
µ0∈Fp

µ0

[
[µ0] 1
1 0

]
[1, Y r] ∈ ker(π) for r = 0

giving an absurd for r 6= 0 and r = 0 respectively (cf. Remark 2.5). ]

Study of case B. Let f ∈ Rn be such that prn+1(y+T+
n (f)) ∈ τ . From the induced isomorphism

τ
∼→ 〈K · y〉(∼= det−1) and the behaviour of y in Rn+1/Rn we deduce the following necessary

conditions:

1) for all a, d ∈ F×p we have[
[a] 0
0 [d]

]
(y + T+

n (f))− (ad)−1(y + T+
n (f)) ∈ ker(prn+1)

2) for all λ ∈ Fp we have[
1 [λ]
0 1

]
(y + T+

n (f))− (y + T+
n (f)) ∈ ker(prn+1).

We then argue as in the previous case to get an absurd. The details are left to the reader. ]

This acheives the proof of Proposition 8.1 for n > 3, n odd, and we leave it to the reader to
check (by the explicit description of T−1 ) that the same procedure applies also for n = 1. It is then
obvious that the same proof applies to the case m ∈ N> even and, with formal adjustments, to part
ii) of Proposition 8.1 (as remarked after the proof of Lemma 8.3).

9. Conclusion

We are now ready to describe the socle filtration for the KZ-restriction of supersingular representa-
tions of GL2(Qp): it will be a formal consequence of the explicit computations given in paragraphs
6, 7, 8.

Proposition 9.1. Assume p is odd; let r be an integer, with 0 6 r 6 p− 2. The socle filtration for
lim
−→
n odd

(R0 ⊕R1 · · · ⊕Rn Rn+1) is described by

R0—SocFil(R2/R1)— . . .—SocFil(Rn+1/Rn)— . . .
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while the socle filtration for lim
−→

m even

(R1/R0 ⊕R2 · · · ⊕Rm Rm+1) is described by

SocFil(R1/R0)—SocFil(R3/R2)— . . .—SocFil(Rm+1/Rm)— . . .

Proof: The proof is by induction; we will treat the case n odd (the other is analogous). Fix
an odd integer n ∈ N>1 and let Q be a quotient coming from the socle filtration of Rn−1/Rn−2.
Assume (by inductive hypothesis) we dispose of an inductive system

{Q⊕Rn Rn+1 · · · ⊕Rm Rm+1}m>n−2,m odd

(with the convention Q ⊕Rn−2 Rn−1
def
= Q) and where the amalgamated sums are defined through

the Hecke operators T±j for j > n as in §3.2, as well as natural exact sequences:

0→ Q⊕Rn · · · ⊕Rm−2 Rm−1 → Q⊕Rn · · · ⊕Rm Rm+1 → Rm+1/Rm → 0

for m > n, m odd. If we set

τ
def
= soc(Q)

we formally verify that for τ 6= Q

Q/τ ⊕Q (Q⊕Rn · · · ⊕Rm Rm+1) = coker(τ → Q⊕Rn · · · ⊕Rm Rm+1)

for any m > n, m odd, while, if τ = Q,

Rn+1/Rn ⊕τ⊕RnRn+1 (τ ⊕Rn · · · ⊕Rm Rm+1) = coker(τ → Q⊕Rn · · · ⊕Rm Rm+1)

for any m > n, m odd. We therefore get an inductive system:

{Q/τ ⊕Rn · · · ⊕Rm Rm+1}m>n−2,m odd

and natural exact sequences

0→ Q/τ ⊕Rn · · · ⊕Rm−2 Rm−1 → Q/τ ⊕Rn · · · ⊕Rm Rm+1 → Rm+1/Rm → 0

for m > n, m odd (where we write Rn+1 instead of Q/τ ⊕Rn Rn+1 in the case τ = Q). As lim
−→

is

right exact, we deduce that

coker(τ → lim
−→

m>n,m odd

(Q⊕Rn · · · ⊕Rm Rm+1)) = lim
−→

m>n,m odd

(Q/τ ⊕Rn · · · ⊕Rm Rm+1)

and the statement is now clear from Proposition 8.1 ]

The socle filtration for π(r, 0, 1)|KZ , with 0 6 r 6 p − 1 and p odd is then immediate from
Proposition 3.9 and from the isomorphism π(0, 0, 1) ∼= π(p− 1, 0, 1).

We give now the idea of the socle filtration for lim
−→
n, odd

(R0 ⊕R1 · · · ⊕Rn Rn+1):

SocFil( lim
−→
n, odd

(R0 ⊕R1 · · · ⊕Rn Rn+1)) =

= R0—SocFil(R2/R1)—SocFil(R4/R3)— . . .

which gives, developing the socle filtration of the quotients Rn+1/Rn,

R0—SocFil(Fil0(R2/R1))—SocFil(Fil1(R2)/Fil0(R2))—SocFil(Fil2(R2)/Fil1(R2))— . . .

and, using Proposition 7.1,

R0—SocFil(IndKK0(p)
χsra

r+1)—SocFil(IndKK0(p)
χsra

r+2)—SocFil(IndKK0(p)
χsra

r+3)— . . .
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To be even more explicit, if we suppose 1 6 r 6 p − 6 the beginning of the socle filtration for
lim
−→
n, odd

(R0 ⊕R1 · · · ⊕Rn Rn+1) looks as follows:

SymrF
2
p—Symp−3−rF

2
p ⊗ detr+1—Symr+2F

2
p ⊗ detp−2—Symp−5−rF

2
p ⊗ detr+2— . . .

10. The principal series and the Steinberg

In this section we want to describe the socle filtration for the K-restriction of principal series and
the Steinberg representation for GL2(Qp). The techniques are very close to those of §6 and therefore

will be mainly left to the reader. If λ ∈ F
×
p and r ∈ {0, . . . , p− 1} we recall the parabolic induction

IndGB(unλ ⊗ ωrunλ−1). (6)

If Vλ,r is the underlying vector space associated to the B-representation unλ⊗ωrunλ−1 , the induction
(6) is the Fp-vector space of locally constant functions f : G → Vλ,r such that f(bg) = b · f(g) for
any b ∈ B, g ∈ G; the left G-action defined by right translation of functions gives (6) a structure of
smooth G-representation.

We recall also that, for (λ, r) /∈ {(0,±1), (p − 1,±1)}, the representations (6) are irreducible
(referred to as principal series), otherwise they fit into a short exact sequence

0→ 1→ IndGB1→ St→ 0

and the quotient St is referred to as the “Steinberg” representation.

We turn our attention to the K-restriction of the inductions given by (6).

Lemma 10.1. For any λ ∈ F
×
p and r ∈ {0, . . . , p− 1} we have a K-equivariant isomorphism

(IndGB(unλ ⊗ ωrunλ−1))|K ∼= IndKK∩Bχ
s
r

where χsr, which is a character of B(Fp), is seen as a smooth character of B ∩K by inflation.

Proof: It is an immediate consequence of Mackey theorem and the Iwasawa decomposition
G = KB.]

We have a natural homeomorphism

K/K ∩B ∼−→ P1
Zp

(coming from the natural left action of K on [1 : 0] ∈ P1
Zp

) and the decomposition of corollary 3.2

let us deduce an open disjoint covering of P1
Zp

with balls of radius (1p)n (for the normalised norm

on Zp: |p|
def
= 1

p). The following result is then clear

Lemma 10.2. Let n ∈ N, r ∈ {0, . . . , p− 2}; we fix a basis {e} of the underlying vector space of χsr.
We have K-equivariant monomorphisms

IndKK0(pn+1)χ
s
r

ιn+1
↪→ IndKK∩Bχ

s
r, IndKK0(pn+1)χ

s
r

ιn+1,n+2
↪→ IndKK0(pn+2)χ

s
r

characterzed by

i) ιn+1([1, e]) is the unique function f ∈ IndKK∩Bχ
s
r such that Supp(f) = K0(p

n+1) and f(1) = e;

ii)

ιn+1,n+2([1, e]) =
∑

µn+1∈Fp

[
1 0

pn+1[µn+1] 1

]
[1, e]
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Proof: It is a standard verification that the conditions in i) and ii) define K-equivariant mor-
phisms ιn+1, ιn+1,n+2. Such morphisms are then injective by support reasons. ]

From the monomorphisms defined in Lemma 10.2 we deduce then a natural monomorphism:

lim
−→
n∈N

(IndKK0(pn+1)χ
s
r) ↪→ IndKK∩Bχ

s
r. (7)

As K is compact and all functions f ∈ IndKK∩Bχ
s
r are locally constant, we conclude that (7) is

actually an isomorphism. Moreover:

Lemma 10.3. Let n ∈ N, r ∈ {0, . . . , p− 2}. Then

coker(ιn+1,n+2) = Q
(0,n+2)
0,...,0,1 .

Proof: From the definitions ofQ
(0,n+2)
0,...,0,1 and ιn+1,n+2 we deduce a natural epimorphism coker(ιn+1,n+2)�

Q
(0,n+2)
0,...,0,1 . The result follows, as the two spaces have the same dimension.]

We dispose now of K-equivariant exact sequences, where n ∈ N:

0→ IndKK0(pn+1)χ
s
r → IndKK0(pn+2)χ

s
r → Q

(0,n+2)
0,...,0,1 → 0.

Thanks to the explicit description of soc(Q0,n+2
(0,...,0,1)) we deduce, with arguments which are very

similar to those of Proposition 8.1, the following result

Proposition 10.4. Let n ∈ N, r ∈ {0, . . . , p− 2}. Then

soc(IndKK0(pn+1)χ
s
r) = soc(IndKK0(pn+2)χ

s
r).

More generally, if Q 6 IndKK0(pn+1)χ
s
r is a K-subrepresentation coming from the socle filtration of

IndKK0(pn+1)χ
s
r, we have

soc(IndKK0(pn+1)χ
s
r/Q) = soc(IndKK0(pn+2)χ

s
r/ιn+1,n+2(Q)).

Proof: It suffices to use the same arguments of the proof of Proposition 8.1, and similar explicit
computations. The details are left to the reader. ]

Once again, we can use Proposition 10.4 to describe the behaviour of the socle filtration for
IndKK∩Bχ

s
r. The graded pieces of such a filtration look as follows:

SocFil(IndKK∩Bχ
s
r) = SocFil(IndKK0(p)

χsr)—SocFil(Q
(0,2)
0,1 )—SocFil(Q

(0,3)
0,0,1)— . . .

and, developing the socle filtration of Q
(0,n+2)
0,...,0,1 ,

SocFil(IndKK0(p)
χsra)—SocFil(IndKK0(p)

χsra
2)—SocFil(IndKK0(p)

χsra
3)— . . .

References

Alp J.L. Alperin, Local representation theory, Cambridge studies in advanced mathematics 11, 1986.
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