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1 Introduction.

This lecture is about the two problems :

1. The asymptotics as h→ 0 of the Schrödinger equation ih∂tu = [−h2∆+
V (x)]u, x ∈ Rd is related with the classical Hamiltonian dynamics
q̇ = 2p , ṗ = −∇qV (q) , (q, p) ∈ R2d ∼ Cd .

2. The mean field dynamics, that is the large N asymptotics, for

i∂tΨN =

[

−
N∑

j=1

∆xj +
1

N − 1

∑

1≤i<j≤N
V (xi − xj)

]

ΨN ,

ΨN ∈ L2(RdN ) , is related with the nonlinear mean field dynamics

i∂tψ = −∆ψ + (V ∗ |ψ|2)ψ , ψ ∈ L2(Rd;C) .

When dealing with bosonic particles, we shall see that 2) is exactly the infinite
dimensional version of 1). After recalling why semiclassical (or Wigner)
measures provide a very efficient and flexible tool to handle 1), we shall see
that they are also very convenient to study the bosonic mean field dynamics.

Notations: We shall work (the contrary will be specified) with complex
separable Hilbert spaces. The scalar product is left antilinear and right C-
linear. We shall simply write L2(M, dµ) for L2(M, dµ;C) and the scalar
product will be

〈u , v〉L2(µ) =

∫

M

u(x)v(x) dµ(x) .

We shall use the bracket notation of physicist: |v〉 will be the vector v while
〈u| is the form v → 〈u , v〉 . For a normalized vector u , |u〉〈u| is the orthog-
onal projection on Cu .
We shall work with a small parameter h > 0 or ε > 0 . The rule of semiclas-
sical analysis can be summarized as

• multiply any derivation by h , for any α ∈ Nd, (h∂x)
α = h|α|∂αx is an

O(1) operator ;

• put a 1
h
factor in any phase, ei

ϕ(x)
h or e

ϕ
h ;

• for integrations use the unit Lebesgue volume dx in the position variable
and use dξ

(2πh)d
in the frequency of momentum variable.

The Fourier transform on Rd is normalized as

[Fhu](ξ) =

∫

Rd

e−
iξ.x
h u(x) dx , [F−1

h v](x) =

∫

Rd

e
ix.ξ
h v(ξ)

dξ

(2πh)d
.
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(Even if there is no small paramater in the initial problem, putting a param-
eter h > 0 allows to switch easily from one to another normalization of the
Fourier transform).
The operator Dx is defined by Dx =

1
i
∂x and note the relations

Fh(u∗v) = (Fhu)(Fhv) , Fh(uv) = (Fhu)
2πh∗ (Fhv) , F−1

h (ξ×)Fh = hDx , .

The Schwartz space of rapidly decaying regular functions is denoted by S(Rd)
and its dual, the space of tempered distributions, by S ′(Rd) .
Variables in the phase space are denoted by capital letters: X , Y , will be
used for the variables X = (x, ξ), Y = (y, η) in R2d .
The symplectic form on R2d will be denoted by

σ(X, Y ) = ξ.y − x.η =

d∑

j=1

ξjyj − xjηj .

2 Finite dimensional calculus

2.1 Phase-translations, coherent states and Weyl quan-

tization

Set for X0 = (x0, ξ0) ∈ R2d ,

ϕ0(x) =
1

(πh)d/4
e−

x2

2h ∈ L2(Rd) ,

∀u ∈ L2(Rd) , [τhX0
u](x) = ei

ξ0.(x−x0/2)
h u(x− x0) ,

ϕX0(x) = τhX0
ϕ0 .

Definition 2.1. For X0 = (x0, ξ0) ∈ R2d , τhX0
is called the phase translation

of vector X0 .
The function ϕX0 is the coherent state centered at X0 .

Properties:

• For any X0 ∈ R
2d , τhX0

is a unitary operator in L2(Rd) and X0 → τhX0

is strongly continuous. For X1, X2 ∈ R2d the Weyl relation

τhX1
◦ τhX2

= ei
σ(X1 ,X2)

2h τhX1+X2

holds with σ(X1, X2) = ξ1.x2 − x1.ξ2 .

•
τhX0

= ei
ξ0.x−x0.(hDx)

h = ei
σ(X0,(x,hDx))

h .
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• If one denotes by (λ,X) ∈ (R/((2πh)Z))× R
2d the element e

i
h
λτhX , it

is a group with the law

(λ1, X1) ◦ (λ2, X2) = (λ1 + λ2 +
σ(X1, X2)

2
, X1 +X2) ,

(Heisenberg group).

• The Schwartz kernel of τhX0
is given by

τhX0
(x, y) =

∫

Rd

ei
ξ.(x−y)

h ei
ξ0.(

x+y
2 )−x0ξ

h
dξ

(2πh)d

Definition 2.2. For any b ∈ S ′(R2d
x,ξ) , the Weyl quantized operator bW (x, hDx) :

S(Rd)→ S ′(Rd) is given by its kernel

[bW (x, hDx)](x, y) =

∫

Rd

ei
ξ.(x−y)

h b(
x+ y

2
, ξ)

dξ

(2πh)d
.

Properties

• Any continuous operator B : S(Rd) → S ′(Rd) has a Weyl symbol,
B = bW (x, hDx) with

b(r, ξ) =

∫

e−i
ξ.s
h B(r +

s

2
, r − s

2
) ds .

• The formal adjoint of bW (x, hDx) is b
W
(x, hDx) .

• With the symplectic Fourier transform

Fhb(P ) =
∫

ei
σ(P,X)

h b(X)
dX

(2πh)d

the Weyl quantization is given by

bW (x, hDx) =

∫

R2d

Fhb(P )τhP
dP

(2πh)d

for any b ∈ FhL1(R2d) .

• When b ∈ L2(R2d), the operator bW (x, hDx) is a Hilbert-Schmidt op-
erator and

Tr
[
bW1 (x, hDx)

∗bW2 (x, hDx)
]
=

∫

R2d

b1(x, ξ)b2(x, ξ) dx
dξ

(2πh)d
.
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• The equality

τhX0
bW (x, hDx)τ

h
−X0

= [b(.−X0)]
W (x, hDx) ,

holds for any b ∈ S ′(R2d) and all X0 ∈ R2d .

• When u, v ∈ S(Rd) the Weyl symbol of |u〉〈v| belongs to S(R2d) .

Example: The Weyl-symbol of Πh
X0

= |ϕX0〉〈ϕX0| is 2de−
(X−X0)

2

h .
REF: [Fol][Rob][Mar][Per][Hep] [CoRo]

2.2 Anti-Wick quantization and Wick symbol

For X0 ∈ R2d set Πh
X0

= |ϕX0〉〈ϕX0| .
Proposition 2.3. For any b ∈ S ′(R2d) the operator

bA−Wick(x, hDx) =

∫

R2d

b(X0)Π
h
X0

dX0

(2πh)d
,

is well defined and continuous from S(Rd) to S ′(Rd) . The equality bA−Wick(x, hDx) =
cW (x, hDx) is equivalent to

c = b ∗
(

e−
| |2
h

(πh)d

)

.

The anti-Wick quantization is positive

(b ≥ 0)⇒
(
bA−Wick(x, hDx) ≥ 0

)
.

The equality IdL2 = 1A−Wick(x, hDx) says that the system of coherent
states (ϕX0)X0∈Rd is overcomplete:

IdL2 =

∫

R2d

|ϕX0〉〈ϕX0|
dX0

(2πh)d

means

∀u ∈ L2(Rd) , u =

∫

R2d

〈ϕX0 , u〉ϕX0

dX0

(2πh)d
.

Proposition 2.4. For any continuous operator B : S(Rd) → S ′(Rd) the
symbol

σWick(B)(X0) = 〈ϕX0 , BϕX0〉
is well-defined.
For B = bW (x, hDx) , one has

σWick(bW (x, hDx)) = b ∗
(

e−
| |2
h

(πh)d

)

.
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Positivity:
(B ≥ 0)⇒ (σWick(B) ≥ 0) .

When B is trace class then σWick(B) belongs to L1(R2d) and

Tr [B] =

∫

R2d

σWick(B)(X)
dX

(2πh)d
.

The symbols which can be Wick quantized are the ones which belong to
(

e−
| |2
h

(πh)d

)

∗ S ′(R2d) . It does not work for any symbol in S ′(R2d) but it works

for example for polynomials. When it makes sense

Tr
[
bA−WickC

]
=

∫

b(X)σWick(C)(X)
dX

(2πh)d
.

REF:[BeSh][Ler][UnUp]

2.3 Creation, annihilation, Wick quantization

Let (e1, . . . , ed) be the canonical orthonormal basis of Cd and set

a(ej) = aj = (h∂xj + xj) , a∗(ej) = a∗j = (−h∂xj + xj) ,

∀g =
∑

j

gjej ∈ C
d , a(g) =

∑

j

gjaj , a∗(g) =
∑

j

gja
∗
j .

Properties:

• Canonical Commutation relations:

∀g, f ∈ C
d , [a(g), a(f)] = [a∗(g), a∗(f)] = 0 ,

[a(g), a∗(f)] = ε〈g, f〉 , ε = 2h

• Hermite functions: The vector ϕ0(x) =
e−

|x|2
2h

(πh)d/4
is also denoted by |Ω〉 or

ψ0 and is called the vacuum. For α ∈ Nd , the α-th Hermite function
is normalized as

ψα =
1√
ε|α|α!

(a∗)α|Ω〉 ,

and the family (ψα)α∈Nd is a Hilbert basis of L2(Rd) . The multi-index
notations (α∗)α =

∏d
j=1 a

∗(ej)
αj is allowed because the a∗j = a∗(ej)

commute. Remember also α! =
∏d

j=1 αj! and |α| =
∑d

j=1 αj .

• Harmonic oscillator Hamiltonian: The operator N = (−h2∆ + x2 −
hd) =

∑d
j=1 a

∗
jaj is self-adjoint with eigenspaces Fn = ⊕|α|=nCψα and

N
∣
∣
Fn

= εn .
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• Weyl translations: Set for g ∈ C
d , Φ(g) = 1√

2
(a(g)+a∗(g)) is essentially

self-adjoint on
⊕alg

n∈N Fn . The operator W (f) = eiΦ(f) is nothing but

W (f) = τh
h
√
2X0

, X0 = (x0, ξ0) , f =
1

i
(x0 + iξ0) .

They satisfy

W (f1) ◦W (f2) = e−iε
Im 〈f1 , f2〉

2 W (f1 + f2) ,

W (−f)a(g)W (f) = a(g) +
iε√
2
〈g , f〉 ,

W (−f)a∗(g)W (f) = a∗(g)− iε√
2
〈f , g〉 ,

〈Ω ,W (f)Ω〉 = e−
ε|f |2

4 .

• Coherent states: For z ∈ Cd, the function W (
√
2
iε
z)|Ω〉 satisfies

W (

√
2

iε
z)|Ω〉 = e

a∗(z)−a(z)
ε |Ω〉 = τhz ϕ0 = ϕz , z = zR + izI = (zR, zI) ,

a(g)W (

√
2

iε
z)|Ω〉 = 〈g , z〉W (

√
2

iε
z)|Ω〉 .

Proposition 2.5. When P (z, z) =
∑

|α|+|β|≤n cα,βz
αzβ is a polynomial on

R
2d
x,ξ identified with C

d via z = x+ iξ , its Wick quantization is given

PWick(x, hDx) =
∑

|α|+|β|≤n
cα,β(a

∗)αaβ ,

i.e. by replacing z (resp. z) by a (resp. a∗) and keeping the annihilation
operators on the right-hand side.

2.4 Bargmann representation

The Bargmann transform is given by

[Bhu](z) =
1

(πh)d/4
e

z2

4h

∫

Rd

e−
(z−y)2

2h u(y) dy , y ∈ R
d, z ∈ C

d .

It can also be written

[Bhu](z) = e
|z|2
4h 〈ϕz , u〉 ,

with the identification Cd ∋ z = zR + izI = (zR, zI) ∈ R2d . The Lebesgue
measure on Cd will be denoted by L(dz) .
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Proposition 2.6. The Bargmann transform Bh is an isometry from L2(Rd, dx)

into L2(Cd, e−
|z|2
2h

L(dz)
(2πh)d

) , B∗
hBh = Id . Its range is the closed set of entire

functions

L2(Cd, e−
|z|2
2h

L(dz)

(2πh)d
) ∩ H(Cd) .

The operator BhB
∗
h is the orthogonal projection given by

[Πhf ](z) =

∫

Cd

e
z.z′−|z′|2

2h f(z′)
L(dz′)

(2πh)d
.

When aj = (h∂xj + xj) and a
∗
j = (−h∂xj + xj) one gets

Bh(a
∗
j )B

∗
h = zj× , Bh(aj)B

∗
h = ε∂zj = Πh(zj×)Πh ε = 2h .

Additional properties:

• For any α ∈ N
d the Hermite function ψα is transformed into Bhψα =

1√
ε|α|α!

zα .

• For any z0 = z0,R + iz0,I = (z0,R, z0,I) the coherent state ϕz0 is trans-
formed into

Bhϕz0 = e−
|z0|2
2ε e

〈z0 , z〉
ε .

• When P (z, z) =
∑

|α|+|β|≤n cα,βz
αzβ is a polynomial on R

2d
x,ξ identified

with Cd via z = x+ iξ , the anti-Wick quantization is given by

PA−Wick(x, hDx) = B∗
h(P×)Bh ,

andBhP
A−Wick(x, hDx)B

∗
h is nothing but the Toeplitz operator Πh(P×)Πh .

Final remarks: Instead of holomorphic function one could consider a space
of anti-holomorphic functions (simply replace z by z in the definition of Bh).
Then, the anti-Wick quantization of P (z, z) =

∑

|α|+|β|≤n cα,βz
αzβ is ob-

tained by replacing z (resp. z) by a (resp. by a∗) while keeping a on the
left-hand side (Wick or anti-Wick refers to the order of a and a∗ in the prod-
ucts, another not so widespread name is covariant or contravariant Berezin
quantization).
Another consequence that we will develop further is that an element of
BhL

2(Rd) as an (anti)-entire function is equal to its Taylor expansion

f(z) =

∞∑

k=0

1

k!
Dkzf(0).z⊗k =

∞∑

k:0

1

k!
〈z⊗k , Σk(f)〉(Cd)⊗k ,

where the differential Dkzf(0) (or Σk(f)) is a symmetric k-tensor. Hence
L2(Rd) can also be viewed as a Hilbert sum of symmetric tensor powers of
Cd . We shall come back to this picture later.
REF:[Fol][Mar]
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2.5 Weyl-Hörmander Calculus

We have already seen the Weyl quantization. Let us specify now sufficient
conditions so that symbol classes become algebras.
Examples: Functions b ∈ C∞(R2d) such that

∀α, β ∈ N
d , |∂αx∂βξ b(X)| ≤ Cα,β

can be described as functions which fulfill the N ∈ N-dependent estimates
(CN > 0 may depend on N): for any vector fields T1, . . . TN with g(Ti) ≤ 1,
g =

∑d
j=1 dx

2
j + dξ2j ,

|T1 . . . TNb(X)| ≤ CN .

The condition
|∂αx∂βξ b(X)| ≤ Cα,β〈ξ〉m−|β| ,

which is fulfilled by polynomials in ξ,
∑

|α|≤n cα(x)ξ
α, is equivalent to

|T1 . . . TNb(X)| ≤ CNM(X) g(Ti) ≤ 1 ,

with g = dx2 +
dξ2

〈ξ〉2 and M(X) = 〈ξ〉m .

Other examples g = dx2

〈x〉2 + dξ2, M(X) = 〈x〉s , g = dx2+dξ2

〈X〉2 , M(X) = 〈X〉m .

Definition 2.7. Let g be a riemannian metric on R2d and M > 0 be a
continuous function. The space S(M, g) is the subset of C∞(R2d) made of
functions b such that

∀N ∈ N, ∃CN > 0, sup
X∈R2d,g(Ti)≤1

|T1 . . . TNb(X)|
M(X)

≤ CN .

Endowed with the seminorms pN(b) = supX∈R2d,g(Ti)≤1
|T1...TN b(X)|

M(X)
it is a Fréchet-

space.

Definition 2.8. For a metric g on R
2d, the dual metric gσ is the dual metric

for the symplectic form

gσX(T ) = max
S 6=0

|σ(T, S)|2
gX(S)

and the gain function is given by

λ(X)2 = min
T 6=0

gσX(T )

gX(T )
.
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Example: When g =
∑d

j=1

dx2j
aj(X)2

+
dξ2j

bj(X)2
the dual metric is gσ =

∑d
j=1 bj(X)2dx2j+

aj(X)2dξ2j and the gain function λ(X) = minj={1,...,d} aj(X)bj(X) .
Hörmander’s conditions for the metric:

• Uncertainty principle: λ ≥ 1 .

• Slowness: There exists a constant CL > 0 such that

(

gX(X − Y ) ≤
1

CL

)

⇒
((

gX
gY

)±1

≤ CL

)

.

• Temperance: There exist two constant CT > 0 and NT > 0 such that

(
gX
gY

)±1

≤ CT (1 + gσX(X − Y ))NT .

Hörmander’s conditions for the weight:

• g-slowness:
(

gX(X − Y ) ≤
1

CML

)

⇒
((

M(X)

M(Y )

)±1

≤ CML

)

.

• g-temperance:

(
M(X)

M(Y )

)±1

≤ CMT (1 + gσX(X − Y ))NMT .

Proposition 2.9. When g is a Hörmander metric and M a g-weight, for
any b ∈ S(M, g) and any h ∈ (0, h0), b

W (x, hDx) is continuous from S(Rd)
(resp. S ′(Rd)) into itself.

When bj ∈ S(Mj , g), j = 1, 2, the operators bWj (x, hDx) can be composed.

Definition 2.10. For bj ∈ S(Mj, g) , g Hörmander metric, Mj g-weights,
j = 1, 2 , the Moyal product b1♯

hb2 is the Weyl symbol of bW1 (x, hDx) ◦
bW2 (x, hDx) .

Theorem 2.11. Assume that g is Hörmander metric, M1 and M2 are g-
weights and assume bj ∈ S(Mj, g), j = 1, 2 . Then the Moyal product b1♯

hb2

11



is given by

b1♯
hb2(X) = ei

σ(hDX1
,hDX2

)

2h b(X1)b(X2)
∣
∣
X1=X2=X

= e
ih
2
σ(DX1

,DX2
)b(X1)b(X2)

∣
∣
X1=X2=X

=

K∑

k=0

hk

k!

(
iσ(DX1 , DX2)

2

)k

b(X1)b(X2)
∣
∣
X1=X2=X

+hK+1

∫ 1

0

(1− t)K
K!

e
ith
2
σ(DX1

,DX2
) dt

(
iσ(DX1 , DX2)

2

)K+1

a1(X1)a2(X2)
∣
∣
X1=X2=X

=

K∑

k=0

hkTk(b1, b2) + hK+1RK+1(b1, b2, h) ,

where the bilinear mapping

Tk : S(M1, g)× S(M2, g)→ S(M1M2λ
−k, g) ,

and RK+1(h)S(M1, g)× S(M2, g)→ S(M1M2λ
−K−1, g)

are bilinear continuous, uniformly w.r.t h ∈ (0, h0) (the seminorm estimates
depend on the structural constants CL, CT , CMj ,L, CMj ,T the dimension and
the final seminorm).

Main terms:
At order 0:

b1♯
hb2 ∼ b1b2 .

At order 1:

b1♯
hb2 ∼ b1b2 +

h

2i
{b1, b2}

and the commutator
[
bW1 (x, hDx), b

W
2 (x, hDx)

]
has the Weyl symbol

h

i
{b1, b2}+O(h2) .

Theorem 2.12. (Calderon-Vaillancourt) When g is a Hörmander met-
ric there exist C,N > 0 such that

‖bW (x, hDx)‖L(L2) ≤ CpN(b)

for all b ∈ S(1, g) and all h ∈ (0, h0) . When g = dx2 + dξ2, the constants C
and N depend on the dimension d (and h0) .

Proposition 2.13. When limX→∞M(X) = 0 and b ∈ S(M, g), bW (x, hDx)
is a compact operator on L2(Rd) .
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Proposition 2.14. If b ∈ S(1, dx2 + dξ2) and χ ∈ C∞0 (R2d) satisfies χ ≡ 1
in a neighborhood of 0, then

s-lim
n→∞

(bχ(n−1.))W (x, hDx) = bW (x, hDx) ,

where the limit holds in the strong operator topology in L(L2(Rd)) . For
b ∈ S(1, dx2 + dξ2)

‖bW (x, hDx)− bA−Wick(x, hDx)‖L(L2) = O(h) .

REF: [Hor]-Chap XVIII, [Ler], [BoLe], [BoCh], [NaNi], [HeNi].

2.6 Semiclassical measures

We have already seen that when ̺h is a non negative trace class operator with
Tr [̺h] = 1 (a normal state) then 1

(2πh)d
σWick(̺h) is a(n absolutely continuous)

probability measure on R
2d . Let Mb(R

2d) be the set of bounded Radon
measures on Rd . It is the dual of the separable space of C0 functions with
limit 0 at infinity. Therefore bounded subsets are relatively sequentially
compact for the weak-∗ topology.

Definition 2.15. For a family (̺h)h∈(0,h0) of normal states the semiclassical
measure (or Wigner measures) are the weak-∗ limit points of 1

(2πh)d
σWick(̺h)

inMb(R
2d) .

The set of semiclassical measures associated with (̺h)h∈(0,h0) is denoted by
M(̺h, h ∈ (0, h0)) .
The family (̺h)h∈(0,h0) is said pure ifM(̺h, h ∈ (0, h0)) is reduced to a single
element.
The same definitions can be used for general bounded family (̺h)h∈(0,h0) in
L1(L2(Rd)) with possibly complex valued measures.

First properties:

• When (̺h)h∈(0,h0) is a family of states any µ ∈ M(̺h, h ∈ (0, h0))
satisfies

0 ≤ µ and

∫

R2d

dµ ≤ 1 .

• The element µ ofM(̺h, h ∈ (0, h0)) are characterized by: There exists
a sequence (hn)n∈N, limn→∞ hn = 0 such that

∀b ∈ D , lim
n→∞

Tr [b•(x, hnDx)̺hn] =

∫

R2d

b(X) dµ(X) , (2.1)

where D is any dense subset of C∞0 (R2d) and • stands for W or A −
Wick .
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• For any χ ∈ C∞0 (R2d) and any bounded family (̺h)h∈(0,h0) in L1(L2(Rd))
one has

M (χ•(x, hDx)̺h, h ∈ (0, h0)) = M (̺hχ
•(x, hDx), h ∈ (0, h0))

= {χµ , µ ∈ M(̺h, h ∈ (0, h0))} .

• When (̺h)h∈(0,h0) is a family of states such that

∀h ∈ (0, h0) , Tr [χ•
R(x, hDx)̺h] ≥ 1− δR ,

for some χ ∈ C∞0 (R2d), 0 ≤ χ ≤ 1 , χR(X) = χ(R−1X) , with limR→∞ δR =
0 , then any µ ∈M(̺h, h ∈ (0, h0)) is a probability measure. Moreover
µ ∈M(̺h, h ∈ (0, h0)), is characterized by

lim
n→∞

Tr

[

W (
1

i
√
2
X0)̺h

]

=

∫

R2d

eiσ(X0,X) dµ(X0) .

A sufficient condition is Tr [Nν̺h] ≤ Cν for some ν > 0 .

• Assume that the family of states (̺h)h∈(0,h0) satisfies Tr [N
ν̺h] ≤ Cν for

all ν > 0 , then the convergence (2.1) holds for any b ∈ S(〈X〉k, dX2) ,
in particular for any polynomial symbol b . Moreover in (2.1), • stands
for W , A−Wick or Wick .

• When ̺h = χW (x, hDx)̺hχ
W (x, hDx) for some compactly supported

χ, then any µ ∈ M(̺h, h ∈ (0, h0)) has a compact support, supp µ ⊂
suppχ , and it is characterized by (2.1) when D is the set of polynomial
functions on R2d (Hamburger moment problem) .

• Assume that ̺h = ̺1h ⊗ ̺2h in the decomposition L2(Rd) = L2(Rd1) ⊗
L2(Rd2) , with Tr

[
Nδ̺h

]
≤ Cδ for some δ > 0 , then

M(̺h, h ∈ (0, h0)) =
{
µ1 ⊗ µ2 , µi ∈M(̺ih, h ∈ (0, h0))

}
.

Theorem 2.16. Assume V (x) ∈ S(1, dx2;R) and consider the Hamiltonian
Hh = p(x, hDx) = −h2∆ + V (x) . Let (̺h)h∈(0,h0) be a family of states such
that M(̺h, h ∈ (0, h0)) = {µ0} , then for any t ∈ R the family (̺h(t) =

e−
itHh

h ̺he
it
h
Hh, h ∈ (0, h0)) is pure with:

M(̺h(t), h ∈ (0, h0)) = {µt} with µt = Φ(t)∗µ0 ,

where Φ(t) is the classical hamiltonian flow

(x(t), ξ(t)) = Φ(t)(x0, ξ0) ,

{
ẋ = 2ξ = ∂ξp

ξ̇ = −∂xV = −∂xp .
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Remember that with the complex notation z = x+ iξ and ∂z̄ =
1
2
(∂x + i∂ξ) ,

the Hamilton equations can be written

i∂tz = 2∂z̄p .

Examples:

• When ̺h = |ϕX0〉〈ϕX0| , thenM(̺h, h ∈ (0, h0)) = {δX0} .

• Any probability measure on R2d is a semiclassical measure.

• When d = 1 and ̺h = |ψα〉〈ψα| with α =
[
c1
h

]
then

µ =
1

2π

∫ 2π

0

δeiθ√c1 dθ = δS
1√
c1 .

• In dimension d ≥ 2, with ̺h = |ψα〉〈ψα| with α = (
[
c1
h

]
,
[
c2
h

]
, 0, . . . , 0)

then
µ = δS

1

c1 (X1)× δS
1

c2 (X2)× δ0(X3, . . . , Xd) .

Proposition 2.17. Assume ‖ujh‖L2 = 1 for j = 1, 2 and h ∈ (0, h0) with

M(|uhj 〉〈uhj |, h ∈ (0, h0)) = {µj}

where µ1 ⊥ µ2 . Then the scalar product 〈uh1 , uh2〉 tends to 0 as h→ 0 .

REF: [HMR][Ger][LiPa][Bur][GMMP][AmNi1].

2.7 Remarks

In this presentation, we focused on observables scaled as a•(x, hDx), which
is the standard way for semiclassical analysis. A simple change of scale

b•(hx,Dx) = Dil−1
h ◦ b•(x, hDx) ◦Dilh

with (Diltu)(x) = t−d/2u(t−1x) ,

allows to translate the definition of semiclassical measures according to

Tr
[
bW (hx,Dx)̺h

] h′→0→
∫

b(X) dµ′(X) .

In this scaling thing are measured at O(1) frequencies (or momentum) and
at a macroscopic scale x = O( 1

h
) for the position.

In order to keep a symmetric role of the position x and frequency ξ variables,
another possible scaling is

b•(
√
hx,
√
hDx) = Dil−1√

h
◦ b•(x, hDx) ◦Dil√h
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with the definition of semiclassical measures as

Tr
[

bW (
√
hx,
√
hDx)̺h

]
h′→0→

∫

b(X) dµ′′(X) .

Note that with this last scaling, the creation and annihilation operators (and
consequently the Wick calculus) are given by

Dil−1√
h
◦ a(ej) ◦Dil√h =

√
2h

(∂xj + xj)√
2

= aε(ej) =
√
εaε=1(ej) ,

Dil−1√
h
◦ a(ej) ◦Dil√h =

√
2h

(−∂xj + xj)√
2

= a∗ε(ej) =
√
εa∗ε=1(ej) ,

(Dilλu)(x) = λ−d/2u(λ−1x) .

For the number operator Nε = εNε=1 and for a general homogeneous poly-
nomial P (z, z) =

∑

|α|+|β|=m cα,βz
αzβ , PWick

ε = ε
m
2 PWick

ε=1 .

3 Infinite dimensional Wigner measures

3.1 Bosonic quantum field theory

3.1.1 Bosonic Fock space

Let Z be a separable complex Hilbert space with scalar product 〈z1 , z2〉 , the
real Hilbert space structure associated with the real scalar product S(z1 , z2) =
Re 〈z1 , z2〉 , and the natural symplectic form Im 〈z1 , z2〉 . The norm of
z ∈ Z with simply be denoted by |z| (or possibly |z|Z) , with |z|2 = 〈z , z〉 .
Example: Z = Cd , z = x + iξ =

∑d
j=1 z

jej =
∑d

j=1 x
jej + i

∑d
j=1 ξ

jej ∈
C
d ∼ R

2d ,

〈z1 , z2〉 =
d∑

j=1

zj1z
j
2 ,

S(z1 , z2) =

d∑

j=1

xj1x
j
2 + ξj1ξ

j
2

Im 〈z1 , z2〉 =
d∑

j=1

−ξj1xj2 + xj1ξ
j
2 = −σ(X1 , X2) .

The symmetric tensor power of Z is denoted by
∨k Z and spanned as a

Hilbert space by the elements

z1 ∨ . . . ∨ zk =
1

k!

∑

σ∈Sk

zσ(1) ⊗ · · · ⊗ zσ(k) = Π+(z1 ⊗ · · · ⊗ zk) , zj ∈ Z .
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Another possible definition is
∨k Z = Π+Z

⊗k , where Z⊗k is the Hilbert
tensor power of Z and Π+ is the orthogonal projection given by the above
formula.
Example: When Z = L2(Rd, dx;C),

∨k Z is the set of symmetric L2 func-
tions on Rdk .
The bosonic Fock space is given as the Hilbert direct sum

Γ+(Z) = ⊕∞
k=0

k∨

Z .

Remark 3.1. When it is not specified, direct sums and tensor products are
considered as their Hilbert completion. For the algebraic direct sums or tensor
product a alg exponent will be written. For example if H = Γ+(Z), we shall
often use the set Hfin = ⊕algk∈N

∨k Z .

3.1.2 Basic operations

• Polarization identity

z1 ∨ . . . ∨ zk =
1

2kk!

∑

εj=±1

ε1 . . . εk

(
k∑

j=1

εjzj

)⊗k

.

Consequence:
∨k Z = Vect(z⊗k , z ∈ Z)

and H = Γ+(Z) = Vect(z⊗k , z ∈ Z , k ∈ N) .

• For any f ∈ Z , the operator a(f) is defined on Hfin =
⊕alg

k∈N
∨k Z by

a(f)z⊗k =
√
εk〈f, z〉z⊗(k−1)

or a(f)z1 ∨ . . . ∨ zk =
√
εk

k!

∑

σ∈Sk

〈f , zσ(1)〉zσ(2) ⊗ · · · ⊗ zσ(k) .

Properties:

– [a(f1), a(f2)] = 0 ;

– ‖a(f)
∣
∣∨k Z‖ =

√
εk|f |Z ;

– f → a(f) is C-antilinear;

– when Z = L2(Rd, dx;C) , one can define in the distributional sense
a(x) by

a(f) =

∫

Rd

f(x)a(x) dx , ∀f ∈ S(Rd)

meaning also a(x)z⊗k =
√
εkz(x)z⊗(k−1) , ∀z ∈ S(Rd) .
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• The formal adjoint of a(f) for f ∈ Z is defined on Hfin by

a∗(f)z⊗k = Π+

(√

ε(k + 1)f ⊗ z⊗k
)

.

Properties:

– [a∗(f1), a
∗(f2)] = 0 ;

– [a(g), a∗(f)] = ε〈g , f〉 ;
– ‖a∗(f)

∣
∣∨k Z‖ =

√

ε(k + 1)|z| ;
– The mapping f → a∗(f) is C-linear;

– When Z = L2(Rd) , a∗(x) is defined by

a∗(f) =

∫

Rd

f(x)a∗(x) dx ,

and one has [a(x), a∗(x′)] = εδ(x− x′) .

• Set
∨0Z = C|Ω〉 where |Ω〉 is called the vacuum. For any Hilbert basis

(ej)j∈N the family (ψα)α∈N[X] given by

ψα =
1√
εαα!

(a∗)α|Ω〉

with α! =
∏∞

j=0 αj ! and (a∗)α =
∏∞

j=0 a
∗(ej)

αj , is a Hilbert basis of H .

• When C ∈ L(Z) is a contraction, ‖C‖ ≤ 1 , the operator Γ+(C) is the
contraction of H defined by

Γ+(C)(z1 ∨ . . . ∨ zk) = (Cz1) ∨ . . . ∨ (Czk)

or Γ+(C) = Π+(C ⊗ · · · ⊗ C)Π+ = C ⊗ · · · ⊗ C)
∣
∣
Γ+(Z)

.

When C is unitary, Γ+(C) is unitary.

• A particular case is when C = eitA where (A,D(A)) (resp. (A,D)) is
self-adjoint (resp. essentially self-adjoint) in Z . Then

dΓ+(A) = iε∂tΓ+(e
−itA)

= εΠ+ (A⊗ IdZ · · · ⊗ IdZ + · · ·+ IdZ · · · ⊗ IdZ ⊗ A) Π+

= ε (A⊗ IdZ · · · ⊗ IdZ + · · ·+ IdZ · · · ⊗ IdZ ⊗ A)
∣
∣
Γ+(Z)

is essentially self-adjoint on ⊕algk∈N
∨alg,kD(A) (resp. ⊕algk∈N

∨alg,kD).
When A = IdZ one finds

N = dΓ+(Id) , Nψα = ε|α|ψα ,
N =

∑

j∈N
a∗(ej)a(ej) ,

N =

∫

Rd

a∗(x)a(x) dx when Z = L2(Rd, dx;C) .

18



When Z = L2(Rd, dx;C) and the self-adjoint operator has the Schwartz
kernel A(x, y), the operator dΓ(A) can be written

dΓ(A) =

∫

R2d

A(x, y)a∗(x)a(y) dxdy .

3.1.3 Separation of variables

Proposition 3.2.
(

Z = Z1

⊥
⊕ Z2

)

⇒ (Γ+(Z) = Γ+(Z1)⊗ Γ+(Z2)) .

In this decomposition we have:

• |Ω〉 = |Ω1〉 ⊗ |Ω2〉 .

• For zj ∈ Zj , j = 1, 2,

a(z1) = a1(z1)⊗ IdΓ+(Z2) , a∗(z1) = a∗1(z1)⊗ IdΓ+(Z2
) ,

a(z2) = IdΓ+(Z1) ⊗ a2(z2) , a∗(z2) = IdΓ+(Z1) ⊗ a∗2(z2) ,
N = N1 ⊗ IdΓ+(Z2) + IdΓ+(Z1) ⊗N2 .

More generally when (Aj , D(Aj)), j = 1, 2, are self-adjoint operators
in Zj ,

dΓ(A1 ⊕A2) = dΓ+(A1)⊗ IdΓ+(Z2) + IdΓ+(Z1) ⊗ dΓ+(A2) .

Examples:

• Cd1+d2 = Cd1
⊥
⊕ Cd2 and L2(Rd1+d2 , dx) = L2(Rd1 , dx1) ⊗ L2(Rd2, dx2)

(separation of variables).

• When Ω = Ω1 ⊔ Ω2 , L
2(Ω) = L2(Ω1)⊕ L2(Ω2) and when (Aj , D(Aj)),

j = 1, 2, are self-adjoint operators with Schwartz kernels Aj(x, y), one
gets

dΓ(A) =

∫

Ω1×Ω1

A1(x1, y1)a
∗
1(x1)a(y1) dx1dy1

+

∫

Ω1×Ω2

A2(x2, y2)a
∗
2(x2)a(y2) dx2dy2 .

• When Z is a Hilbert space and p is a finite rank orthogonal projection

Γ+(Z) = Γ+(pZ)⊗ Γ+((1− p)Z)

and pZ (resp. Γ+(pZ)) is isomorphic to Crk p (resp. to L2(Rrk p, dx)).
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Definition 3.3. The set of finite rank orthogonal projections in Z will be
denoted by P .

Remember the non commutative Fubini rule: When ̺j ∈ L1(Hj),
j = 1, 2, then ̺1 ⊗ ̺2 ∈ L1(H1 ⊗H2) with

TrH1⊗H2 [̺1 ⊗ ̺2] = TrH1 [̺1]× TrH2 [̺2] ,

and that reciprocally when ̺ ∈ L1(H) the partial traces define trace class
operators

TrH1 [̺] ∈ L1(H2) , TrH2 [̺] ∈ L1(H1) ,

with Tr [̺] = TrH2 [TrH1 [̺]] = TrH1 [TrH2 [̺]] .

REF: [ReSi][Ber][BSZ]

3.2 Weyl translation, coherent states

Definition 3.4. For z ∈ Z , the field operator is defined by

Φ(z) =
1√
2
(a(z) + a∗(z)) ,

the Weyl translations by
W (z) = eiΦ(z) ,

and the coherent state by

E(z) =W (

√
2

iε
z)|Ω〉 .

Properties:

• When Z = Z1 ⊕ Z2 then for any z = z1 ⊕ z2 ,

WZ(z) =WZ1(z1)⊗WZ2(z2) .

• All the formulas of the finite dimensional case carry over to Z (e.g. for
W (−z2)a(z1)W (z2) write Z = pZ ⊕ (pZ)⊥ with z1, z2 ∈ pZ and use

the result in pZ). Note that aj =
√
h(∂xj + xj) =

√
ε
(∂xj+xj)√

2
according

to Section 2.7.

• Application: By writing Z = (Cz)
⊥
⊕ (Cz)⊥ and using a(z)E(z) =

|z|2E(z) in dimension 1 one gets

E(z) = e−
|z|2
2ε

∞∑

k=0

1√
εkk!

z⊗k .
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From the above decomposition we can Weyl-quantize some symbols.

Definition 3.5. A function f on Z is said to be cylindrical if there exists
p ∈ P and a function g on pZ such that

∀z ∈ Z , f(z) = g(pz) .

For a finite dimensional functional space usually denoted by A we shall use
the notation Acyl(Z) for the set of its cylindrical version. For example, f ∈
Scyl(Z) means that there exists p ∈ P and g ∈ S(pZ) such that f = g ◦ p .
If f = g ◦ p, one says that f is based on pZ .
The Lebesgue measure on pZ , associated with the norm |z|pZ = |z|Z for
z ∈ pZ , is denoted by LpZ(dz) .

Remark: In general Acyl(Z) is not an algebra nor a vector space. It is the
case if one takes A = C0b the set of bounded continuous functions. With
many examples of algebras, the Stone-Weierstrass theorem, says that Acyl is
dense in the set of continuous function on the ball {z ∈ Z, |z| ≤ R}) endowed
with weak topology of Z . The measurable version of Stone-Weierstrass
theorem is also useful (see e.g. [Cou]) and provides a way to identify a
bounded Borel probability measure on Z carried by a ball {|z| ≤ R} by test-
ing with a “small” set of test functions . A convenient subalgebra of C0b,cyl(Z)
is ∪p∈PF−1(Mb(pZ)) , which can be denoted by (F−1Mb)cyl . Symbol classes
are associated with metrics on finite dimensional phase-spaces, e.g.:

Ssν(pZ) = S(〈z〉spZ ,
d|z|2pZ
〈z〉2νpZ

) s ∈ R, ν ∈ [0, 1] , 〈z〉2pZ = 1 + |z|2pZ .

One defines as above Ssν,cyl = ∪p∈PSsν(pZ) and the case s = 0, ν = 0, provides
another example of algebra.

Definition 3.6. When b ∈ Scyl(Z) is based on pZ, one defines

(Fb)(z) =
∫

pZ
b(ξ)e−2iπS(z,ξ) LpZ(dξ) ,

and bW =

∫

pZ
(Fb)(z)W (

√
2πz) LpZ(dz) .

This definition can be extended to b ∈ (F−1Mb)cyl or to b ∈ Ssν,cyl with s ∈ R ,
ν ∈ [0, 1] .

REF:[Ber][BSZ][BrRo][Cou][AmNi1]
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3.3 Wick calculus

Let us specify first what is a polynomial function of z, z with z ∈ Z .

Definition 3.7. For p, q ∈ N, Pp,q(Z) denotes the set of (p, q)-homogeneous
polynomial functions on Z which fulfill :

b(z) =
〈

z⊗q , b̃z⊗p
〉

with b̃ ∈ L(
∨

pZ,
∨

qZ) .

The subspace of Pp,q(Z) made of polynomials b such that b̃ is a compact
operator b̃ ∈ L∞(

∨pZ,
∨q Z) (resp. b ∈ Lr(

∨pZ,
∨q Z)), is denoted by

P∞
p,q(Z) (resp. Prp,q(Z)).

On those spaces, the natural norms are

|b|Pp,q = ‖b̃‖L(∨p Z,
∨q Z) and |b|Pr

p,q
= ‖b̃‖Lr(

∨p Z,
∨q Z) , 1 ≤ r .

The set of non homogeneous polynomials, the algebraic direct sum ⊕algp,q∈N
Pp,q(Z) (resp. ⊕algp,q∈NPrp,q(Z) with 1 ≤ r ≤ ∞), will be denoted by Palg(Z)
(resp. Pralg(Z)) .

Owing to the condition b̃ ∈ L(
∨pZ,

∨q Z) for b ∈ Pp,q(Z), this definition
implies that any Gâteaux differential ∂jz∂

k
z b(z) at the point z ∈ Z belongs to

L(
∨

kZ,
∨

jZ) with

〈ϕ, ∂jz∂kz b(z)ψ〉 =
p!

(p− k)!
q!

(q − j)!〈z
⊗q−j ∨ ϕ, b̃ z⊗p−k ∨ ψ〉 .

In particular b̃ equals 1
p!

1
q!
∂pz∂

q
zb(z) .

With any ”symbol” b ∈ Pp,q(Z), a linear operator bWick called Wick mono-
mial can be associated, according to:

bWick : Hfin →Hfin,

bWick∨n = 0 for n < p

bWick
|
∨n+p Z =

√

(n + p)!(n+ q)!

n!
ε

p+q
2

(

b̃
∨

I∨n Z

)

︸ ︷︷ ︸

∈L(
∨

n+pZ,
∨

n+qZ)

, (3.1)

with b̃ = (p!)−1(q!)−1∂pz∂
q
zb(z) .

The basic symbol-operator correspondence is:

〈z, ξ〉 ←→ a∗(ξ)
〈ξ, z〉 ←→ a(ξ)

√
2S(ξ, z) ←→ Φ(ξ)√
2σ(ξ, z) ←→ Π(ξ)

〈z, Az〉 ←→ dΓ(A)

|z|2 ←→ N ,

and more generally
(

p
∏

i=1

〈z, ηi〉 ×
q
∏

j=1

〈ξj, z〉
)Wick

= a∗(η1) · · · a∗(ηp)a(ξ1) · · · a(ξq).

We have the following properties.

22



Proposition 3.8. The following identities hold true on Hfin for every b ∈
Pp,q(Z):
(i)
(
bWick

)∗
= b̄Wick.

(ii)
(
C(z)b(z)A(z)

)Wick
= CWickbWickAWick, if A ∈ Pα,0(Z), C ∈ P0,β(Z).

(iii) ei
t
ε
dΓ(A)bWicke−i

t
ε
dΓ(A) =

(
b(e−itAz)

)Wick
, if A is a self-adjoint operator

on Z.

A consequence of i) says that bWick is symmetric when q = p and b̃∗ = b̃.
Moreover the definition (3.1) gives

(

q = p and b̃ ≥ 0
)

⇒
(
bWick ≥ 0 on Hfin

)
, (3.2)

which is false for general non negative polynomial symbols1. For an increasing
net of non negative operators (b̃α)α, b̃α ∈ L(

∨pZ) (again q = p), it also gives

(

b̃ = sup
α

b̃α in L(
∨

pZ)
)

⇒ (3.3)

(

∀ϕ ∈ Hfin , 〈ϕ , bWickϕ〉 = sup
α
〈ϕ , bWick

α ϕ〉
)

.

When Z = L2(Rd, dx), the general formula for bWick with b ∈ Pp,q(Z) is
simply

bWick =

∫

Rd(p+q)

b̃(y1, . . . , yq, x1, . . . , xp) a
∗(y1) . . . a

∗(yq)

a(x1) . . . a(xp) dx1 · · · dxp dy1 · · · dyq ,

where b̃(y, x) is the Schwartz kernel of b̃ which has to be understood as

〈zn+q1 , bWickzn+p2 〉 =
√

(n+ q)!(n+ p)!

n!
〈z1 , z2〉nε

p+q
2

×
∫

Rd(p+q)

z⊗q1 (y)z⊗p2 (x)b(y, x) dxdy

for z1, z2 ∈ S(Rd) . Such a weak formulation makes sense for b ∈ S ′ only for
the Wick order.

Proposition 3.9. For b ∈ Pp,q(Z), the following number estimate holds

∥
∥
∥〈N〉−

q
2 bWick 〈N〉−

p
2

∥
∥
∥
L(H)
≤ |b|Pp,q

. (3.4)

1This property should not be confused with the positivity of the finite dimensional

Anti-Wick quantization which associates a non negative operator to any non negative

symbol.
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An important property of our class of Wick polynomials is that a compo-
sition of bWick

1 ◦ bWick
2 with b1, b2 ∈ Palg(Z) is a Wick polynomial with symbol

in Palg(Z). For b1 ∈ Pp1,q1(Z), b2 ∈ Pp2,q2(Z), k ∈ N and any fixed z ∈ Z,
∂kz b1(z) ∈ L(

∨k Z;C) while ∂kz̄ b2(z) ∈
∨k Z. The C-bilinear duality product

∂kz b1(z).∂
k
z̄ b2(z) defines a function of z ∈ Z simply denoted by ∂kz b1.∂

k
z̄ b2 . We

also use the following notation for multiple Poisson brackets:

{b1, b2}(k) = ∂kz b1.∂
k
z̄ b2 − ∂kz b2.∂

k
z̄ b1, k ∈ N ,

{b1, b2} = {b1, b2}(1).
Proposition 3.10. Let b1 ∈ Pp1,q1(Z) and b2 ∈ Pp2,q2(Z) .
For any k ∈ {0, . . . ,min {p1, q2}}, ∂kz b1.∂kz̄ b2 belongs to Pp1+p2−k,q1+q2−k(Z)
with the estimate

|∂kz b1.∂kz̄ b2|Pp1+p2,q1+q2
≤ p1!

(p1 − k)!
q2!

(q2 − k)!
|b1|Pp1,q1

|b2|Pp2,q2
.

The formulas

(i) bWick
1 ◦ bWick

2 =





min{p1,q2}∑

k=0

εk

k!
∂kz b1.∂

k
z̄ b2





Wick

=
(
eε〈∂z ,∂ω̄〉b1(z)b2(ω) |z=ω

)Wick
,

(ii) [bWick
1 , bWick

2 ] =





max{min{p1,q2} ,min{p2,q1}}∑

k=1

εk

k!
{b1, b2}(k)





Wick

,

hold as identities on Hfin.

REF:[ReSi][DeGe][AmNi1][AmNi3][FGS][FKP] [KrRa][Las]

3.4 Wigner measures

The Wigner measures are defined after the next result proved in [AmNi1,
Theorem 6.2].

Theorem 3.11. Let (̺ε)ε∈(0,ε̄) be a family of normal states onH parametrized

by ε. Assume Tr[̺εN
δ] ≤ Cδ uniformly w.r.t. ε ∈ (0, ε) for some fixed δ > 0

and Cδ ∈ (0,+∞). Then for every sequence (εn)n∈N with limn→∞ εn = 0
there exists a subsequence (εnk

)k∈N and a Borel probability measure µ on Z
such that

lim
k→∞

Tr [̺εnk
bW ] =

∫

Z
b(z) dµ(z) ,

for all b ∈ (F−1Mb)cyl.

Moreover this probability measure µ satisfies

∫

Z
|z|2δ dµ(z) <∞.

24



Definition 3.12.
The set of Wigner measures associated with a family (̺ε)ε∈(0,ε̄) (resp. a
sequence (̺εn)n∈N) which satisfies the assumptions of Theorem 3.11 is denoted
by

M(̺ε, ε ∈ (0, ε̄)) , (resp.M(̺εn, n ∈ N)) .

WhenM(̺ε, ε ∈ (0, ε̄)) = {µ} , the family (̺̺)ε∈(0,ε̄) is said pure.
By linearity, this definition can be extended to any family of trace-class op-
erators (̺ε)ε∈(0,ε̄) such that the uniform estimate ‖〈N〉δ̺ε〈N〉δ‖L1(H) ≤ Cδ
holds for some δ > 0 .

Examples:

• When ̺ε = Π0 = |Ω〉〈Ω| for all ε ∈ (0, ε̄) , then M(̺ε, ε ∈ (0, ε̄)) =
{δ0} .

• When ̺ε = ̺ε,1 ⊗ ̺ε,2 in the decomposition Γ+(Z1

⊥
⊕ Z2) = Γ1(Z1) ⊗

Γ+(Z2) with

Tr
[
Nδ
j̺ε,j

]
≤ Cδ ,

and M(̺ε,j, ε ∈ (0, ε̄)) = {µj} for j = 1, 2,

thenM(̺ε, ε ∈ (0, ε̄)) = {µ1 ⊗ µ2} .

• For ̺ε = Πz0 = |E(z0)〉〈E(z0)| = Πz0 ⊗ Π0 in the decomposition Z =

(Cz0)
⊥
⊕ (Cz0)

⊥ and the finite dimensional result gives

M(Πz0 , ε ∈ (0, ε̄)) = {δz0} .

The same argument for the Hermite state |ψ(z0, n)〉〈ψ(z0, n)| with ψ(z0, n) =
1√
εnn!

[a∗(z0)]
n|Ω〉 limε→0 nε = 1 and now |z0| = 1 , gives

M(|ψz0,n〉〈ψz0,n|, ε ∈ (0, ε̄)) = δS
1

z0
=

1

2π

∫ 2π

0

δeiθz0 dθ .

This can be tensorized according to ψ(z1, z2, n1, n2), 〈z1 , z2〉 = 0 , |z1| =
|z2| = 1 and limε→0 njε =

1
2
:

M(|ψ(z1, z2, n1, n2)〉〈ψ(z1, z2, n1, n2), ε ∈ (0, ε̄)) = δS
1

√
2

2
z1
⊗ δS1

√
2

2
z2
.

• Any Borel probability measure on Z can be realized as a semiclassical
measure: Take ̺ε =

∫

Z |E(z)〉〈E(z)| dµ(z) .

• Let (en)n∈N be a Hilbert basis of Z and consider ̺ε = |E(en)〉〈E(en)|
with n = [ε−1] then

M(̺ε, ε ∈ (0, ε̄)) = {δ0}
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• The free Bose gas on a torus: Take Z = L2(Rd/Zd) and consider the
asymptotic behaviour as ε→ 0 of the Gibbs state

̺ε =
1

Tr
[
Γ(e−β(−ε2/d∆−µε))

]Γ(e−β(−ε
2/d∆−µε)) .

The Bose-Einstein condensation occurs when d ≥ 3 and when the chem-
ical potential satisfies µε = εµ with µ < µ(β) . Depending on the case:

µ > µ(β): M(̺ε, ε ∈ (0, ε̄)) = {δ0} .
µ < µ(β): M(̺ε, ε ∈ (0, ε̄)) = {γµ ⊗ δ0} in the decomposition Z =

(C1)⊕ (C1)⊥ with γν(z1) =
e
−|z1|2

cµ

(πcµ)
L(dz1) .

REF: [Sko] [AmNi1]

3.5 Wigner measures and BBGKY hierarchy

We consider a family of states (̺ε)ε∈(0,ε̄) such that

∀k ∈ N , ∃Ck > 0 , ∀ε ∈ (0, ε̄) , Tr
[
Nk̺ε

]
≤ Ck , (3.5)

M (̺ε, ε ∈ (0, ε̄)) = {µ} . (3.6)

Then the probability measure µ satisfies

∀k ∈ N, ∀p ∈ P,

∫

Z
〈pz〉2k dµ(z) ≤

∫

Z
〈z〉2k dµ(z) ≤ lim inf

ε→0
Tr
[
〈N〉k̺ε

]
≤ C ′

k ,

and the convergence

lim
ε→0

Tr
[
bW̺ε

]
=

∫

Z
b(z) dµ(z)

holds for any cylindrical b(z) = g(pz) with g ∈ S(〈z〉npZ , dz2

〈z〉2pZ
) and there-

fore when g is a polynomial function on pZ, p ∈ P . Moreover the fi-
nite dimensional case says that bW can be replaced by bWick . A monomial
b(z) = 〈z⊗q , b̃z⊗p〉 is cylindrical when b̃ ∈ L(

∨pZ;
∨q Z) has a finite rank.

The number estimates (3.4) and (3.5) lead to the uniform estimate to
∣
∣Tr

[
(b− b′)Wick̺ε

]∣
∣ ≤ Cp,q|b− b′|Pp,q = Cp,q‖b̃− b̃′‖ ,

so that the convergence can be extended to any b̃ compact.

Proposition 3.13. Under the conditions (3.5)(3.6), the convergence

lim
ε→0

Tr
[
bWick̺ε

]
=

∫

Z
b(z) dµ(z) ,

holds for any b ∈ P∞(Z) .
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Then, the question is whether it holds for any b ∈ P(Z) without the
compactness of b̃ .
The answer is: NO. In [AmNi1], we called the corresponding phenomenon
the infinite dimensional defect of compactness (because it is due to the infinite
dimension of the phase-space and may occur while remaining in finite ball of
the phase-space).
Examples:

• When ̺ε = |E(en)〉〈E(en)| with n = [ε−1] and (en)n∈N is a Hilbert basis
of Z , take b(z) = |z|2 , b̃ = Id and computed

lim
ε→0

Tr [N̺ε] = lim
n→∞

|en|2 = 1 6= 0 =

∫

Z
|z|2 δ0(z) .

• The free Bose gas presented above provides another example.

In [AmNi2] we introduced the condition

(PI) ∀k ∈ N, lim
ε→0

Tr
[
Nk̺ε

]
=

∫

Z
|z|2k dµ(z)

and proved

Proposition 3.14. When the conditions (3.6) and (PI) are satisfied the
convergence

lim
ε→0

Tr
[
bWick̺ε

]
=

∫

Z
b(z) dµ(z) ,

holds for any b ∈ P(Z) .
When Z = L2(Rd, dx1) and ̺ε = |ψN〉〈ψN | with ψN ∈

∨N Z , N ∼ 1
ε
,

the reduced density matrix of order k ∈ [0, N ] is defined by

γ(k)ε (x1, . . . , xk, y1, . . . , yk) =

∫

Rd(N−k)

ψN(x1, . . . , xk, X)ψ(y1, . . . , yk, X) dX ,

or ∀b ∈ Pkk(Z) , εk
N !

(N − k)!Tr
[

b̃γkε

]

= Tr
[
bWick̺ε

]
.

After noticing εk N !
(N−k)! = Tr

[
(|z|2k)Wickvarrhoε

]
, with

(
(|z|2k)Wick

Nk

)±1

= 1 +O(ε) in L(H) ,

the general definition is the following.

Definition 3.15. For ̺ε ∈ L1(H), ̺ε ≥ 0, Tr [̺ε] = 1 , the reduced density
matrix γkε of order k ∈ N∗ is defined by

∀b ∈ Pkk(Z) , Tr
[

b̃γkε

]

=

{
Tr [bWick̺ε]

Tr [(|z|2k)Wick̺ε]
if Tr

[
(|z|2k)Wick̺ε

]
6= 0 ,

0 else .
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This allows to compute the asymptotic values of the reduced density
matrices under condition (PI) .

Proposition 3.16. Assume the conditions (3.6) and (PI) with
∫

Z |z|2k dµ 6=
0 then the convergence

lim
ε→0

γkε =
1

∫

Z |z|2k dµ(z)

∫

Z
|z⊗k〉〈z⊗k| dµ(z) ,

holds in the norm topology of L1(
∨k Z) .

REF: [Spo][BGM] [ESY][KlMa][AmNi2][AmNi3]

4 Mean field dynamics and Wigner measures

4.1 The mean field problem

Consider Z = L2(Rd;C) as the set of 1-particle wave functions and
∨N Z =

L2
s(R

dN ;C) the set of symmetric (bosonic) N -particles wave functions. The
N -body Hamiltonian is for example

HN =

N∑

j=1

−∆xj

︸ ︷︷ ︸

kinetic energy

+
1

2(N − 1)

∑

i 6=j
V (xi − xj)

︸ ︷︷ ︸

pair interaction potential

, V (−x) = V (x) ,

and the problem of mean field dynamics consists in describing by a one
particle flow in the limit N →∞ , the solution to

i∂tΨN = HNΨN , ΨN(t = 0) = ΨN,0 ∈
N∨

Z . (4.1)

The N -particles Hamiltonian HN preserves the symmetry and the number
of particles. By setting

ε =
1

N
and ̺ε(t) = |ΨN(t)〉〈ΨN(t)| , ̺ε = |ΨN,0〉〈ΨN,0| ,

and dividing (4.1) by N , the problem becomes

̺ε(t) = e−i
t
ε
( 1
N
HN )̺εe

−i t
ε
( 1
N
HN ) .

Up to the constant 1
2N
V (0), which vanishes in the above expression (we shall

consider also singular potentials), the Hamiltonian 1
N
HN is nothing but the

restriction to
∨N Z of

Hε = dΓ(−∆) +
1

2
〈z⊗2 , V (x− y)z⊗2〉Wick = h(z)Wick
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with

h(z) = 〈z, (−∆)z〉 + 1

2
〈z⊗2 , V (x− y)z⊗2〉

=

∫

Rd

|∇xz(x)|2 dx+
1

2

∫

R2d

V (x− y)|z(x)|2|z(y)|2 dxdy .

and the previous normalization

[a(g), a∗(f)] = ε〈g , f〉 .

The mean field flow, Φ(t), is given by the nonlinear Hamiltonian dynamics,
formally written:

i∂tz = ∂z̄h(z) = −∆z + (V ∗ |z|2)z .

The option followed in [AmNi1][AmNi2][AmNi3] consists in proving that

M(̺ε(t), ε ∈ (0, ε̄)) = {µt} with µt = Φ(t− s)∗µs ,

and possibly deduce the evolution of the reduced density matrices. While
doing this, we have been especially careful with the invariance w.r.t the
quantum and mean field flows of the assumptions.
More standard approaches are

• Hepp method (see [Hep][GiVe1][GiVe2]): It consists in analyzing the
evolution of a coherent state by proving Ψε(t) ∼ E(ϕt) when

iε∂tΨt = HεΨt , Ψt=0 ∼ E(ϕ0) =W (

√
2

iε
z0)|Ω〉 .

• BBGKY approach (see e.g. [Spo][BGM][FKP][ESY]): It consists in
studying directly the evolution of the BBGKY hierarchy by assuming
γ
(1)
ε (0)→ |ϕ〉〈ϕ|.

With these two methods, the assumptions are not always dynamically in-
variant but those more specific assumptions sometimes allow more refined
results.
We shall show in the last section how the Wigner measure point of view
allows to understand the dynamics of non trivial mean field correlations.

4.2 Two kinds of results

Two results were obtained in [AmNi3] and [AmNi4] with different assump-
tions and different approaches.
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4.2.1 Case of bounded interactions

Consider the general Hamiltonian

Hε = dΓ(A) +QWick = hWick , h(z) = 〈z , Az〉 +Q(z) ,

with (A,D(A)) self-ajoint in Z and Q ∈ ⊕algp∈NPp,p(Z) , Q real-valued ,

Q =
m∑

j=0

Qj , Qj(z) = 〈z⊗j , Q̃jz
⊗j〉 , Q̃j = Q̃∗

j ∈ L(
j
∨

Z) .

Under those assumptions the equation

i∂tz = ∂z̄h(z) (4.2)

defines a Hamiltonian flow on the phase-space (Z, Im 〈 , 〉) .

Theorem 4.1. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H with a single
Wigner measure µ0 and such that

(PI) ∀α ∈ N, lim
ε→0

Tr[̺εN
α] =

∫

Z
|z|2α dµ0(z) < +∞ . (4.3)

Then for all t ∈ R, the family (̺ε(t) = e−i
t
ε
Hε̺εe

i t
ε
Hε)ε∈(0,ε̄) has a unique

Wigner measure µt = (Φt)∗µ0, which is the initial measure µ0 pushed forward
by the flow associated with (4.2).
Moreover the convergence

lim
ε→0

Tr
[
̺ε(t)b

Wick
]
=

∫

Z
b ◦ Φt(z) dµ0(z)

holds for any b ∈ Palg(Z) = ⊕algp,q∈NPp,q(Z) .
Finally when µ0 6= δ0 , the convergence of the reduced density matrices

lim
ε→0

γ(p)ε (t) =
1

∫

Z |z|2p dµt(z)

∫

Z
|z⊗p〉〈z⊗p| dµt(z) =: γ

(p)
0 (t) ,

holds in the L1(
∨pZ)-norm for all p ∈ N .

REF:[AmNi3]

4.2.2 Case of unbounded interactions

The unbounded case considers the more specific Hamiltonian

Hε = dΓ(−∆) +
1

2
〈z⊗2 , V (x− y)z⊗2〉
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with the assumptions

V (−x) = V (x) ∈ R ,

V (1−∆)−1/2 ∈ L(L2(Rd)) ,

and (1−∆)−1/2V (1−∆)−1/2 ∈ L∞(L2(Rd)) .

We shall use the notation
H0
ε = dΓ(−∆) .

Those assumptions include the attractive or repulsive Coulombic case in di-
mension d = 3 . They also ensure that the Hartree equation

i∂tz = −∆z + (V ∗ |z|2)z
defined a flow on H1(Rd) . Since the flow is not well defined on L2(Rd;C) ,
it is necessary to consider to the two phase-spaces

Z0 = L2(Rd;C) and Z1 = H1(Rd) ,

endowed with the symplectic form Im 〈 , 〉Z0 .

Theorem 4.2. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H with a single
Wigner measure µ0 such that the bound

Tr[(N+H0
ε )
δ̺ε] ≤ Cδ < +∞ , (4.4)

holds uniformly w.r.t ε ∈ (0, ε̄) for some δ > 0 .
Then for all t ∈ R, the family (e−i

t
ε
Hε̺εe

i t
ε
Hε)ε∈(0,ε̄) has a unique Wigner

measure µt which is a Borel measure on Z1 = H1(Rd) . This measure µt =
Φ(t)∗µ0 is the push forward of the initial measure µ0 by the Hartree flow, well
defined on Z1 .

Proposition 4.3. Let (̺ε)ε∈(0,ε̄) be a family of normal states on H, satisfying
the hypothesis of Theorem 4.2, with a single Wigner measure µ0 such that

∀α ∈ N, lim
ε→0

Tr[̺εN
α] =

∫

Z0

|z|2α dµ0(z) < +∞ . (4.5)

Then for all t ∈ R, the convergence

lim
ε→0

Tr
[
̺ε(t)b

Wick
]
=

∫

Z0

b(Φ(t)z) dµ0(z) =

∫

Z0

b(z) dµt(z)

holds for any b ∈ Palg(Z0) = ⊕algp,q∈NPp,q(Z0) , with µt = Φ(t)∗µ0 .
Finally when µ0 6= δ0 , the convergence of the reduced density matrices

lim
ε→0

γ(p)ε (t) =
1

∫

Z0
|z|2p dµt(z)

∫

Z0

|z⊗p〉〈z⊗p| dµt(z) ,

holds in the L1(L2
s(R

dp))-norm for all p ∈ N .

REF:[AmNi4]
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4.3 Strategy of the proof(s)

Contrary to the finite dimensional case, the nonlinear flow does not preserve
the algebra of observables, ε-quantized symbols. Wigner measures are now
identified after measuring the state with Weyl-quantized cylindrical functions
or possibly Wick-quantized polynomial functions. In general, neither cylin-
drical nor polynomial functions keep their property after composing with a
nonlinear flow. The propagation of Wigner measures has to be tackled with
a different approach, which can be summarized in two steps:

• Ascoli type argument: Even whenM(̺ε, ε ∈ (0, ε̄)) = {µ0} , it is a pri-
ori neither known whether the family (̺ε(t))ε∈(0,ε̄) has a single measure
µt for t 6= 0 , nor whether the extraction of a subsequence involved in
the definition of Wigner measures can be performed simultaneously for
all t ∈ [−T, T ] . Actually this requires some equicontinuity estimate
w.r.t t ∈ [−T, T ] in order to apply some diagonal extraction process.
It is more convenient to work with ˜̺ε(t) = ei

t
ε
dΓ(A)̺ε(t)e

−i t
ε
dΓ(A) with

A = −∆ in the singular case.
In the polynomial bounded case, it is provided by

|Tr [[ ˜̺ε(t)− ˜̺ε(s)]W (ξ)]| ≥ C|t− s|(1 + |ξ|Z)2m ,
when Tr [Nm̺ε] ≤ C . In the singular case, it is provided by

|Tr [[ ˜̺ε(t)− ˜̺ε(s)]W (ξ)]| ≥ C|t− s|(1 + |ξ|Z1)
4 ,

when Tr [(1 +Hε +N3)̺ε] ≤ C . This last additional condition is then
removed by a uniform approximation of ̺ε , leading to uniform errors
for the Wigner measures.

• Writing and solving a transport equation for µt: At this level the two
cases differ.
In the bounded polynomial case, writing and solving the transport
equation is done in the same time: One uses a truncated Dyson expan-
sion in the spirit of [FGS][FKP] in order to write

ei
t
ε
Hεe−i

t
ε
dΓ(A)bWickei

t
ε
dΓ(A)e−i

t
ε
Hε ≃

K∑

k=0

bk(t)
Wick +Rk(t), ,

where the bk’s are time-dependent polynomials (with some explicit ex-
pression) and the estimate Tr [Rk(t)̺ε] = o(1) as K → ∞ uniformly
w.r.t ε ∈ (0, ε̄) . By using the existence of µt or µ̃t = (eitA)∗µt for
˜̺ε(t) = e−i

t
ε
dΓ(A)̺εe

i t
ε
dΓ(A) and the condition (PI) for ̺ε (the b̃k are not

compact) , one obtains

∫

b(z) dµ̃t(z) =
K∑

k=0

∫

bk(z, t) dµ0 + lim
ε→0

Tr [Rk(t)̺ε] ,
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for b ∈ P∞(Z) . As a second step the uniform estimate of Tr [RK(t)̺ε]
allows to take the limit as K → ∞ . The explicit expressions of the
bk’s allows to identify the series

∑∞
k=0 bk(e

itAz) = b(Φ(t)z) and µt =
Φ(t)∗µ0 . The actual proof is a bit more involved and we refer the
reader to [AmNi3].
In the singular case, the assumed compactness of the operator (1 −
∆)−1/2V (1−∆)−1/2 , allows to take the limit in the equation

i∂tTr [˜̺ε(t)W (ξ)]− 1

ε
Tr
[
[V Wick
t , ˜̺ε(t)]W (ξ)

]

with Vt(z) = 〈(eit∆z)⊗2 , V (x − y)(eit∆z)⊗2〉 defined for z ∈ Z1 . By
assuming

∀α ∈ N, Tr
[
(1 +H0

ε +N3)̺ε(1 +H0
ε +N3)Nα

]
≤ Cα ,

one can prove that the measure µ̃t satisfies

∀t ∈ [−T, T ],
∫

Z0

|z|4Z1
|z|2Z0

dµ(z) ≤ CT

and that for any cylindrical function f ∈ C∞0,cyl(Z1 × R)

∫

R

∫

Z1

(∂tf + i(∂zVt.∂z̄f − ∂zf.∂z̄Vt)) dµt(z)dt = 0 .

The above equation is a weak form of the time-dependent Liouville
equation

∂tµ+ i {Vt, µ} = 0 .

Another property coming from taking the limit as ε→ 0 of the original
quantities, says that the measure µ̃t is Lipschitz-continuous for the
Wasserstein distance

W (µ1, µ2) = inf
ν∈Γ(µ1,µ2)

∫

Z2
1

|z1 − z2|2 dν(z1, z2)

where Γ(µ1, µ2) is the set of Borel probability measures on Z2
1 with

marginals µ1 and µ2 . We conclude by an adaptation of a result of
[AGS], which can be seen as an extension of the characteristic method
for transport equations in the infinite dimensional setting. Again de-
tails may be found in [AmNi4].

REF: [FGS][FKP][AGS][AmNi1][AmNi2][AmNi3][AmNi4]
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4.4 A example of the dynamics of mean field correla-
tions

For two elements ψ1, ψ2 ∈ Z1 ⊂ Z0 such that |ψ1| = |ψ2| = 1 and 〈ψ1 , ψ2〉 =
0, the space Z0 can be decomposed into

Z0 = Cψ1

⊥
⊕ Cψ2

⊥
⊕ ψ⊥ .

This decomposition is second-quantized into the Hilbert tensor product

H = Γs(Z0) = Γs(Cψ1)⊗ Γs(Cψ2)⊗ Γs(ψ
⊥) ,

which allows an analysis by separating the variables. The number observable
is now

N = (N1 ⊗ Id⊗ Id)⊕ (Id⊗N2 ⊗ Id)⊕ (Id⊗ Id⊗N′) ,

simply written asN = N1+N2+N′ and whereN1,N2 andN′ are respectively
the number operators on Γs(Cψ1), Γs(Cψ2) and Γs(ψ

⊥) . Consider in this
decomposition, the state

̺ε = ̺1ε ⊗ ̺2ε ⊗ (|Ω′〉〈Ω′|)

where |Ω′〉 is the vacuum state of Γs(ψ
⊥) and

̺1ε = |ψ⊗n1
1 〉〈ψ⊗n1

1 | , ̺2ε = |ψ⊗n2
2 〉〈ψ⊗n2

2 | ,

with lim
ε→0

εn1 = lim
ε→0

εn2 =
1

2
.

In H = Γs(Z0), this state is explicitly written (see [AmNi3]) as

̺ε = |ψ∨(n1,n2)〉〈ψ∨(n1,n2)| (4.6)

with ψ∨(n1,n2) =
1√

εn1+n2n1!n2!

n1 times
︷ ︸︸ ︷

a∗(ψ1) . . . a
∗(ψ1)

n2 times
︷ ︸︸ ︷

a∗(ψ2) . . . a
∗(ψ2) |Ω〉 .(4.7)

The state satisfies

lim
ε→0

Tr
[
Nk̺ε

]
= (

1

2
+

1

2
)k = 1 ,

owing to N = N1+N2+N′ . Moreover, with (4.6)(4.7), N+H0
ε = dΓ(1−∆)

and the help of Wick calculus, it also fulfills

lim
ε→0

Tr
[
(N+H0

ε )̺ε
]
=
|ψ1|2Z1

+ |ψ2|2Z1

2
.
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Meanwhile the separation of variables allows to compute explicitly the (it is
unique) Wigner measure of (̺ε)ε∈(0,ε̄)

µ0 = δS
1

√
2

2
ψ1
⊗ δS1

√
2

2
ψ2
⊗ δ0 on Z1 = (Cψ1)× (Cψ2)× ψ⊥ ,

with δS
1

u =
1

2π

∫ 2π

0

δeiθu dθ .

We get
∫

Z1

|z|2k dµ0(z) =

∫

Z1

(
|z1|2 + |z2|2 + |z′|2

)k
dµ0(z) = 1 = lim

ε→∞
Tr
[
Nk̺ε

]
.

Hence all the assumptions of Theorem 4.2 and Proposition 4.3 are fulfilled.
This measure is carried by a torus in Z1 better described by using an other
orthonormal basis of Cψ1 ⊕ Cψ2:

ψ0 =

√
2

2
(ψ1 + ψ2) , ψπ

2
= i

√
2

2
(ψ1 − ψ2) ,

ψϕ = cos(ϕ)ψ0 + sin(ϕ)ψπ
2
,

√
2

2
(eiθψ1 + eiθ

′
ψ2) = ei

θ+θ′
2 ψ θ−θ′

2
,

µ0 =
1

2π

∫ 2π

0

δS
1

ψϕ
dϕ .

Two elements eiθψϕ and eiθ
′
ψϕ′ in the support of µ0 are equal when

(θ′ = θ and ϕ′ = ϕ) or (θ′ = θ + π and ϕ′ = ϕ+ π) .

Hence a one to one parametrization of the torus can be done by ϕ ∈ [0, 2π)
and θ ∈ [ϕ, ϕ+ π) .

Let ψϕ(t) = Φ(t, 0)ψϕ, be the solution to the Hartree equation
{
i∂tψϕ(t) = −∆ψϕ(t) + (V ∗ |ψϕ(t)|2)ψϕ(t)
ψϕ(t = 0) = ψϕ = ei

π
4 cos(ϕ)ψ1 + e−i

π
4 sin(ϕ)ψ2

,

The gauge invariance of the equation says that for any θ ∈ [0, 2π], eiθψϕ(t) =
Φ(t, 0)

[
eiθψϕ

]
. By applying the result of Theorem 4.2 and Proposition 4.3

we get

µt =
1

2π

∫ 2π

0

δS
1

ψϕ(t) dϕ =
1

4π2

∫ 2π

0

∫ 2π

0

δeiθψϕ(t) dϕdθ

∀p ∈ N, lim
ε→0

γ(p)ε (t) =
1

2π

∫ 2π

0

|[ψϕ(t)]⊗p〉〈[ψϕ(t)]⊗p| dϕ .

Since the Hartree flow is non linear, the complete hierarchy of reduced density
matrices have to be taken into account if one wants to write an evolution
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equation for them. More simply, they can be computed after solving an
autonomous equation for the Wigner measure. Due to the nonlinear term
the dynamics of correlations is by far nontrivial. This can also be thought
geometrically: The initial measure is initially carried by a torus which lies
in a 2-dimensional complex vector space (think of the circle in the plane
Rψ0 ⊕ Rψπ

2
); along the time evolution, the measure µt is still carried by

a torus in Z1 , which nevertheless, is a priori not embedded in any finite
dimensional subspace .

0.
Rψ0

.
Rψ0

.0.

. Rψπ
2

.Rψπ
2

× .
.×.

ψϕ(t)
ψϕ.

.ψ⊥

Fig.1: Evolution of the measure initially carried by a torus in
Cψ0 ⊕ Cψπ

2
.

The complex gauge parameter eiθ is represented by the small
circle.

In Figure 1, the deformed torus for time t 6= 0, has to be imagined in the
infinite-dimensional phase-space Z1 ⊂ Z0 . Contrary to the picture, there
might be no intersection with the real plane Rψ0 ⊕ Rψπ

2
.

This discussion can also be extended to higher dimensional tori after taking
a finite (or countable) orthonormal family (ψn)1≤n≤N for building the initial
states ̺ε with a measure

∏N
j=1 δ

S1

λjψj
(see [AmNi3]) .

REF:[AmNi4]
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[CoRo] M. Combescure, D. Robert. Coherent states and Applications in
Mathematical Physics. Theoretical and Mathematical Physics, Springer,
2011.

[Cou] Y. Coudène. Une version mesurable du théorème de Stone-Weierstrass.
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[Sko] A.V. Skorohod. Integration in Hilbert space. Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Band 79. Springer-Verlag, New York-
Heidelberg, 1974.

[Spo] H. Spohn. Kinetic equations from Hamiltonian dynamics. Rev. Mod.
Phys. 52, No. 3 (1980), 569-615.

[UnUp] A. Unterberger, H. Upmeier. The Berezin transform and invariant
differential operators. Comm. Math. Phys. 164 (1994), no. 3, 563–597.

39


