Exponentially small eigenvalues of Witten Laplacians 4: the case of p-forms

Francis Nier, LAGA, Univ. Paris 13

Beijing 01/06/2017

Outline

- Result
- Extending the strategy used for $p=0$
- Restriction to f_{a}^{b}
- Quasimodes
- Final computation

Result

REF: Le Peutrec-N.-Viterbo(13)
(M, g) compact (oriented) manifold without boundary.
Consider $f^{\lambda}=\{x \in M, f(x)<\lambda\}$ and $f_{\lambda}=\{x \in M, f(x)>\lambda\}$.

$$
\Delta_{f, h}=\left(d_{f, h}+d_{f, h}^{*}\right)^{2}=d_{f, h}^{*} d_{f, h}+d_{f, h} d_{f, h}^{*}=\bigoplus_{p=0}^{\operatorname{dim} M} \Delta_{f, h}^{(p)}
$$

There is a one to one correspondance j_{p} between $\mathcal{U}^{(p)}$ and the set of eigenvalues (counted with multiplicities) of $\Delta_{f, h}^{(p)}$ lying in $\left[0, h^{3 / 2}\right.$) such that

$$
\begin{gathered}
j_{p}\left(U^{(p)}\right)=0 \quad \text { if } U^{(p)} \in \mathcal{U}_{H}^{(p)} \\
j_{p}\left(U^{(p)}\right)=\kappa^{2}\left(U^{(p+1)}\right) \frac{h}{\pi} \frac{\left|\lambda_{1}^{(p+1)} \ldots \lambda_{p+1}^{(p+1)}\right|}{\left|\lambda_{1}^{(p)} \ldots \lambda_{p}^{(p)}\right|} \frac{\left|\operatorname{Hess} f\left(U^{(p)}\right)\right|^{1 / 2}}{\left|\operatorname{Hess} f\left(U^{(p+1)}\right)\right|^{1 / 2}}(1+\mathcal{O}(h)) e^{-2 \frac{f\left(U^{(p+1)}\right)-f\left(U^{(p)}\right)}{h}} \\
\text { if } \partial_{B} U^{(p+1)}=U^{(p)} \\
j_{p}\left(U^{(p)}\right)=\kappa^{2}\left(U^{(p)}\right) \frac{h}{\pi} \frac{\left|\lambda_{1}^{(p)} \ldots \lambda_{p}^{(p)}\right|}{\left|\lambda_{1}^{(p-1)} \ldots \lambda_{p-1}^{(p-1)}\right|} \frac{\left|H e s s f\left(U^{(p-1)}\right)\right|^{1 / 2}}{\left|\operatorname{Hess} f\left(U^{(p)}\right)\right|^{1 / 2}}(1+\mathcal{O}(h)) e^{-2 \frac{f\left(U^{(p)}\right)-f\left(U^{(p-1)}\right)}{h}} \\
\text { if } \partial_{B} U^{(p)}=U^{(p-1)}
\end{gathered}
$$

Here the λ 's denote the negative eigenvalues of the Hessf at the corresponding points.

Extending the strategy used for $p=0$

Witten Laplacians: We know that the number of $\mathcal{O}\left(h^{3 / 2}\right)$-eigenvalues of $\Delta_{f, h}^{(p)}$ is $m_{p}=\sharp \mathcal{U}^{(p)}=\sharp \mathcal{C}^{(p)}$. Set $F^{(p)}=\operatorname{Ran}_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}^{(p)}\right), F=1_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}\right)$ and
$\beta_{f, h}^{(p)}=\left.d_{f, h}\right|_{F^{(p)}}: F^{(p)} \rightarrow F^{(p+1)}$, . Then
$\left.\Delta_{f, h}\right|_{F}=\left(\beta_{f, h}+\beta_{f, h}^{*}\right)^{2}=\beta_{f, h}^{*} \beta_{f, h}+\beta_{f, h} \beta_{f, h}^{*}$.
Singular values: When $\Delta_{f, h}^{(p)} u=\lambda u, u \in F^{(p)}$ there are three possibilities:

- $\lambda=0$ and $\beta_{f, h} u=0, \beta_{f, h}^{*} u=0$
- $\lambda \neq 0$ and $\beta_{f, h}^{*} u \neq 0$. Then $\beta_{f, h}^{*} u \in F^{(p-1)}$ and

$$
\Delta_{f, h}^{(p-1)}\left(\beta_{f, h}^{*} u\right)=\lambda\left(\beta_{f, h}^{*} u\right)=\left(\beta_{f, h}^{*} \beta_{f, h}\right)\left(\beta_{f, h}^{*} u\right)
$$

■ $\lambda \neq 0$ and $\beta_{f, h}^{*} u=0$. Then $\lambda u=\Delta_{f, h} u=\beta_{f, h}^{*} \beta_{f, h} u$.
In all cases λ is the square of a singular value of $\beta_{f, h}$.
The pairing of critical points is given by Barannikov complex: $\partial_{B} U^{(p)}=U^{(p-1)}$, $U^{(p)} \in \mathcal{U}_{U}^{(p)}, U^{(p-1)} \in \mathcal{U}_{L}^{(p-1)}$. Homological critical points $U \in \mathcal{U}_{H}^{(p)}$ will be associated with eigenvalues 0 of $\Delta_{f, h}^{(p)}$ and harmonic forms ($\operatorname{dim}=\beta_{p}=\sharp \mathcal{U}_{H}^{(p)}$).
In order to extend the strategy used for $p=0$ with singular values, we need to construct local quasimodes around upper critical points (WKB following Helffer-Sjöstrand) and global quasimodes for lower critical points. The explicit form $\psi_{k}^{(0)}(h)=\chi_{k} \exp \left[-\frac{f(x)-f\left(U_{k}^{(0)}\right)}{h}\right]$ which is no more possible for $U \in \mathcal{U}_{L}^{(p>0)}$, but $d_{f, h}(\chi \omega)=(h d \chi) \wedge \omega$ holds for any ω which satisifies $\Delta_{f, h} \omega=0$.

Extending the strategy used for $p=0$

Witten Laplacians: We know that the number of $\mathcal{O}\left(h^{3 / 2}\right)$-eigenvalues of $\Delta_{f, h}^{(p)}$ is $m_{p}=\sharp \mathcal{U}^{(p)}=\sharp \mathcal{C}^{(p)}$. Set $F^{(p)}=\operatorname{Ran} 1_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}^{(p)}\right), F=1_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}\right)$ and $\beta_{f, h}^{(p)}=\left.d_{f, h}\right|_{F^{(p)}}: F^{(p)} \rightarrow F^{(p+1)}$, . Then
$\left.\Delta_{f, h}\right|_{F}=\left(\beta_{f, h}+\beta_{f, h}^{*}\right)^{2}=\beta_{f, h}^{*} \beta_{f, h}+\beta_{f, h} \beta_{f, h}^{*}$.
Singular values: When $\Delta_{f, h}^{(p)} u=\lambda u, u \in F^{(p)}$ there are three possibilities:

- $\lambda=0$ and $\beta_{f, h} u=0, \beta_{f, h}^{*} u=0$
- $\lambda \neq 0$ and $\beta_{f, h}^{*} u \neq 0$. Then $\beta_{f, h}^{*} u \in F^{(p-1)}$ and $\Delta_{f, h}^{(p-1)}\left(\beta_{f, h}^{*} u\right)=\lambda\left(\beta_{f, h}^{*} u\right)=\left(\beta_{f, h}^{*} \beta_{f, h}\right)\left(\beta_{f, h}^{*} u\right)$.
- $\lambda \neq 0$ and $\beta_{f, h}^{*} u=0$. Then $\lambda u=\Delta_{f, h} u=\beta_{f, h}^{*} \beta_{f, h} u$.

In all cases λ is the square of a singular value of $\beta_{f, h}$.
The pairing of critical points is given by Barannikov complex: $\partial_{B} U^{(p)}=U^{(p-1)}$, $U^{(p)} \in \mathcal{U}_{U}^{(p)}, U^{(p-1)} \in \mathcal{U}_{L}^{(p-1)}$. Homological critical points $U \in \mathcal{U}_{H}^{(p)}$ will be associated with eigenvalues 0 of $\Delta_{f, h}^{(p)}$ and harmonic forms ($\operatorname{dim}=\beta_{p}=\sharp \mathcal{U}_{H}^{(p)}$).
In order to extend the strategy used for $p=0$ with singular values, we need to construct local quasimodes around upper critical points (WKB following Helffer-Sjöstrand) and global quasimodes for lower critical points. The explicit form $\psi_{k}^{(0)}(h)=\chi_{k} \exp \left[-\frac{f(x)-f\left(U_{k}^{(0)}\right)}{h}\right]$ which is no more possible for $U \in \mathcal{U}_{L}^{(p>0)}$, but $d_{f, h}(\chi \omega)=(h d \chi) \wedge \omega$ holds for any ω which satisifies $\Delta_{f, h} \omega=0$.

Extending the strategy used for $p=0$

Witten Laplacians: We know that the number of $\mathcal{O}\left(h^{3 / 2}\right)$-eigenvalues of $\Delta_{f, h}^{(p)}$ is $m_{p}=\sharp \mathcal{U}^{(p)}=\sharp \mathcal{C}^{(p)}$. Set $F^{(p)}=\operatorname{Ran}_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}^{(p)}\right), F=1_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}\right)$ and $\beta_{f, h}^{(p)}=\left.d_{f, h}\right|_{F(p)}: F^{(p)} \rightarrow F^{(p+1)}$, . Then
$\left.\Delta_{f, h}\right|_{F}=\left(\beta_{f, h}+\beta_{f, h}^{*}\right)^{2}=\beta_{f, h}^{*} \beta_{f, h}+\beta_{f, h} \beta_{f, h}^{*}$.
Singular values: When $\Delta_{f, h}^{(p)} u=\lambda u, u \in F^{(p)}$ there are three possibilities:
■ $\lambda=0$ and $\beta_{f, h} u=0, \beta_{f, h}^{*} u=0$

- $\lambda \neq 0$ and $\beta_{f, h}^{*} u \neq 0$. Then $\beta_{f, h}^{*} u \in F^{(p-1)}$ and

$$
\Delta_{f, h}^{(p-1)}\left(\beta_{f, h}^{*} u\right)=\lambda\left(\beta_{f, h}^{*} u\right)=\left(\beta_{f, h}^{*} \beta_{f, h}\right)\left(\beta_{f, h}^{*} u\right) .
$$

- $\lambda \neq 0$ and $\beta_{f, h}^{*} u=0$. Then $\lambda u=\Delta_{f, h} u=\beta_{f, h}^{*} \beta_{f, h} u$.

In all cases λ is the square of a singular value of $\beta_{f, h}$.

$$
F^{(p)}=\operatorname{Ran}\left(\beta_{f, h}^{(p-1)}\right) \stackrel{\perp}{\oplus} \operatorname{ker}\left(\Delta_{f, h}^{(p)}\right) \stackrel{\perp}{\oplus} \operatorname{Ran}\left(\beta_{f, h}^{(p), *}\right) \quad \text { Hodge decomposition. }
$$

The pairing of critical points is given by Barannikov complex: $\partial_{B} U^{(p)}=U^{(p-1)}$, $U^{(p)} \in \mathcal{U}_{U}^{(p)}, U^{(p-1)} \in \mathcal{U}_{L}^{(p-1)}$. Homological critical points $U \in \mathcal{U}_{H}^{(p)}$ will be associated with eigenvalues 0 of $\Delta_{f, h}^{(p)}$ and harmonic forms ($\operatorname{dim}=\beta_{p}=\sharp \mathcal{U}_{H}^{(p)}$). In order to extend the strategy used for $p=0$ with singular values, we need to construct local quasimodes around upper critical points (WKB following Helffer-Sjöstrand) and global quasimodes for lower critical points. The explicit form $\psi_{k}^{(0)}(h)=\chi_{k} \exp \left[-\frac{f(x)-f\left(U_{k}^{(0)}\right)}{h}\right]$ which is no more possible for $U \in \mathcal{U}_{L}^{(p>0)}$, but $d_{f, h}(\chi \omega)=(h d \chi) \wedge \omega$ holds for any ω which satisifies $\Delta_{f}, h_{\underline{\underline{h}}} \omega=0$.

Extending the strategy used for $p=0$

Witten Laplacians: We know that the number of $\mathcal{O}\left(h^{3 / 2}\right)$-eigenvalues of $\Delta_{f, h}^{(p)}$ is $m_{p}=\sharp \mathcal{U}^{(p)}=\sharp \mathcal{C}^{(p)}$. Set $F^{(p)}=\operatorname{Ran}_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}^{(p)}\right), F=1_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}\right)$ and
$\beta_{f, h}^{(p)}=\left.d_{f, h}\right|_{F^{(p)}}: F^{(p)} \rightarrow F^{(p+1)}$, . Then
$\left.\Delta_{f, h}\right|_{F}=\left(\beta_{f, h}+\beta_{f, h}^{*}\right)^{2}=\beta_{f, h}^{*} \beta_{f, h}+\beta_{f, h} \beta_{f, h}^{*}$.
Singular values: When $\Delta_{f, h}^{(p)} u=\lambda u, u \in F^{(p)}$ there are three possibilities:
■ $\lambda=0$ and $\beta_{f, h} u=0, \beta_{f, h}^{*} u=0$

- $\lambda \neq 0$ and $\beta_{f, h}^{*} u \neq 0$. Then $\beta_{f, h}^{*} u \in F^{(p-1)}$ and

$$
\Delta_{f, h}^{(p-1)}\left(\beta_{f, h}^{*} u\right)=\lambda\left(\beta_{f, h}^{*} u\right)=\left(\beta_{f, h}^{*} \beta_{f, h}\right)\left(\beta_{f, h}^{*} u\right) .
$$

$\square \lambda \neq 0$ and $\beta_{f, h}^{*} u=0$. Then $\lambda u=\Delta_{f, h} u=\beta_{f, h}^{*} \beta_{f, h} u$.
In all cases λ is the square of a singular value of $\beta_{f, h}$.
The pairing of critical points is given by Barannikov complex: $\partial_{B} U^{(p)}=U^{(p-1)}$, $U^{(p)} \in \mathcal{U}_{U}^{(p)}, U^{(p-1)} \in \mathcal{U}_{L}^{(p-1)}$. Homological critical points $U \in \mathcal{U}_{H}^{(p)}$ will be associated with eigenvalues 0 of $\Delta_{f, h}^{(p)}$ and harmonic forms ($\operatorname{dim}=\beta_{p}=\sharp \mathcal{U}_{H}^{(p)}$).
In order to extend the strategy used for $p=0$ with singular values, we need to construct local quasimodes around upper critical points (WKB following Helffer-Sjöstrand) and global quasimodes for lower critical points. The explicit form $\psi_{k}^{(0)}(h)=\chi_{k} \exp \left[-\frac{f(x)-f\left(U_{k}^{(0)}\right)}{h}\right]$ which is no more possible for $U \in \mathcal{U}_{L}^{(p>0)}$, but $d_{f, h}(\chi \omega)=(h d \chi) \wedge \omega$ holds for any ω which satisifies $\Delta_{f, h} \omega=0$.

Extending the strategy used for $p=0$

Witten Laplacians: We know that the number of $\mathcal{O}\left(h^{3 / 2}\right)$-eigenvalues of $\Delta_{f, h}^{(p)}$ is $m_{p}=\sharp \mathcal{U}^{(p)}=\sharp \mathcal{C}^{(p)}$. Set $F^{(p)}=\operatorname{Ran}_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}^{(p)}\right), F=1_{\left[0, h^{3 / 2}\right)}\left(\Delta_{f, h}\right)$ and
$\beta_{f, h}^{(p)}=\left.d_{f, h}\right|_{F^{(p)}}: F^{(p)} \rightarrow F^{(p+1)}$, . Then
$\left.\Delta_{f, h}\right|_{F}=\left(\beta_{f, h}+\beta_{f, h}^{*}\right)^{2}=\beta_{f, h}^{*} \beta_{f, h}+\beta_{f, h} \beta_{f, h}^{*}$.
Singular values: When $\Delta_{f, h}^{(p)} u=\lambda u, u \in F^{(p)}$ there are three possibilities:
■ $\lambda=0$ and $\beta_{f, h} u=0, \beta_{f, h}^{*} u=0$

- $\lambda \neq 0$ and $\beta_{f, h}^{*} u \neq 0$. Then $\beta_{f, h}^{*} u \in F^{(p-1)}$ and

$$
\Delta_{f, h}^{(p-1)}\left(\beta_{f, h}^{*} u\right)=\lambda\left(\beta_{f, h}^{*} u\right)=\left(\beta_{f, h}^{*} \beta_{f, h}\right)\left(\beta_{f, h}^{*} u\right)
$$

■ $\lambda \neq 0$ and $\beta_{f, h}^{*} u=0$. Then $\lambda u=\Delta_{f, h} u=\beta_{f, h}^{*} \beta_{f, h} u$.
In all cases λ is the square of a singular value of $\beta_{f, h}$.
The pairing of critical points is given by Barannikov complex: $\partial_{B} U^{(p)}=U^{(p-1)}$, $U^{(p)} \in \mathcal{U}_{U}^{(p)}, U^{(p-1)} \in \mathcal{U}_{L}^{(p-1)}$. Homological critical points $U \in \mathcal{U}_{H}^{(p)}$ will be associated with eigenvalues 0 of $\Delta_{f, h}^{(p)}$ and harmonic forms ($\operatorname{dim}=\beta_{p}=\sharp \mathcal{U}_{H}^{(p)}$).
In order to extend the strategy used for $p=0$ with singular values, we need to construct local quasimodes around upper critical points (WKB following Helffer-Sjöstrand) and global quasimodes for lower critical points. The explicit form $\psi_{k}^{(0)}(h)=\chi_{k} \exp \left[-\frac{f(x)-f\left(U_{k}^{(0)}\right)}{h}\right]$ which is no more possible for $U \in \mathcal{U}_{L}^{(p>0)}$, but $d_{f, h}(\chi \omega)=(h d \chi) \wedge \omega$ holds for any ω which satisifies $\Delta_{f, h} \omega=0$.

Restriction to f_{a}^{b}

The persistent homology (classification and pairing of critical points via ∂_{B}) for the Morse function f on M is a way to understand the homology groups $H_{*}(M)=H_{*}\left(f^{+\infty}, f^{-\infty}\right)$. Actually it is a particular case of the $H_{*}\left(f^{b}, f^{a}\right)$, $a<b, a, b \notin \mathcal{U}$, and those constructions have natural restriction properties.
When $a \leq a^{\prime}<b^{\prime} \leq b$, the definitions of $c \in \mathcal{C}_{U, L, H}$ and $\partial_{B} c=c^{\prime}$ yield:

- if $c \in \mathcal{C}_{H}\left(f^{b}, f^{a}\right)$ then $c \in \mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \subset\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \not \subset\left(a^{\prime}, b^{\prime}\right)$ the possible remaining c, c^{\prime} in $\left(a^{\prime}, b^{\prime}\right)$ belongs to $\mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
Translation in terms of Witten Laplacians on $f_{a}^{b}=\{x \in M, a<f(x)<b\}$: The Neumann boundary condition corresponds to the absolute homology and the Dirichlet boundary condition to the relative homology. So the BC realization of $\Delta_{f, h}$ to f_{a}^{b} which encodes $H_{*}\left(f^{b}, f^{a}\right)$ is the one with Dirichlet boundary condtions on $\{f=a\}$ ($f<a$ is replaced by $f=-\infty$) and Neumann boundary conditions on $\{f=b\}(f>b$ is replaced by $f=+\infty)$, denoted by $\Delta_{f, h}^{D N}$
Since $\partial_{n} f<0$ on $\{f=a\}$ and $\partial_{n} f>0$ on $\{f=b\}$ there will be no generalized critical points on the boundary ∂f_{a}^{b} and the critical points involved in the asymptotic analysis of $\Delta_{f, h}^{D N}$ are the critical points of f belonging to (a, b).

Restriction to f_{a}^{b}

The persistent homology (classification and pairing of critical points via ∂_{B}) for the Morse function f on M is a way to understand the homology groups $H_{*}(M)=H_{*}\left(f^{+\infty}, f^{-\infty}\right)$. Actually it is a particular case of the $H_{*}\left(f^{b}, f^{a}\right)$, $a<b, a, b \notin \mathcal{U}$, and those constructions have natural restriction properties. When $a \leq a^{\prime}<b^{\prime} \leq b$, the definitions of $c \in \mathcal{C}_{U, L, H}$ and $\partial_{B} c=c^{\prime}$ yield:

- if $c \in \mathcal{C}_{H}\left(f^{b}, f^{a}\right)$ then $c \in \mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \subset\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \not \subset\left(a^{\prime}, b^{\prime}\right)$ the possible remaining c, c^{\prime} in $\left(a^{\prime}, b^{\prime}\right)$ belongs to $\mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
Translation in terms of Witten Laplacians on $f_{a}^{b}=\{x \in M, a<f(x)<b\}$: The Neumann boundary condition corresponds to the absolute homology and the Dirichlet boundary condition to the relative homology. So the BC realization of $\Delta_{f, h}$ to f_{a}^{b} which encodes $H_{*}\left(f^{b}, f^{a}\right)$ is the one with Dirichlet boundary condtions on $\{f=a\}$ ($f<a$ is replaced by $f=-\infty$) and Neumann boundary conditions on $\{f=b\}(f>b$ is replaced by $f=+\infty)$, denoted by $\Delta_{f, h}^{D N}$.
Since $\partial_{n} f<0$ on $\{f=a\}$ and $\partial_{n} f>0$ on $\{f=b\}$ there will be no generalized critical points on the boundary ∂f_{a}^{b} and the critical points involved in the asymptotic analysis of $\Delta_{f, h}^{D N}$ are the critical points of f belonging to (a, b).

Restriction to f_{a}^{b}

The persistent homology (classification and pairing of critical points via ∂_{B}) for the Morse function f on M is a way to understand the homology groups $H_{*}(M)=H_{*}\left(f^{+\infty}, f^{-\infty}\right)$. Actually it is a particular case of the $H_{*}\left(f^{b}, f^{a}\right)$, $a<b, a, b \notin \mathcal{U}$, and those constructions have natural restriction properties.
When $a \leq a^{\prime}<b^{\prime} \leq b$, the definitions of $c \in \mathcal{C}_{U, L, H}$ and $\partial_{B} c=c^{\prime}$ yield:

- if $c \in \mathcal{C}_{H}\left(f^{b}, f^{a}\right)$ then $c \in \mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \subset\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \not \subset\left(a^{\prime}, b^{\prime}\right)$ the possible remaining c, c^{\prime} in $\left(a^{\prime}, b^{\prime}\right)$ belongs to $\mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
This can be formulated by saying that the sheaf $I \rightarrow H_{*}\left(f^{\text {sup } I}, f^{\text {inf } I}\right)$ of vector spaces is a sum of one dimensional sheaves (bar codes).
Translation in terms of Witten Laplacians on $f_{a}^{b}=\{x \in M, a<f(x)<b\}$: The Neumann boundary condition corresponds to the absolute homology and the Dirichlet boundary condition to the relative homology. So the BC realization of $\Delta_{f, h}$ to f_{a}^{b} which encodes $H_{*}\left(f^{b}, f^{a}\right)$ is the one with Dirichlet boundary condtions on $\{f=a\}$ ($f<a$ is replaced by $f=-\infty$) and Neumann boundary conditions on $\{f=b\}(f>b$ is replaced by $f=+\infty)$, denoted by $\Delta_{f, h}^{D N}$.
Since $\partial_{n} f<0$ on $\{f=a\}$ and $\partial_{n} f>0$ on $\{f=b\}$ there will be no generalized critical points on the boundary ∂f_{a}^{b} and the critical points involved in the asymptotic analysis of $\Delta_{f, h}^{D N}$ are the critical points of f belonging to (a, b).

Restriction to f_{a}^{b}

The persistent homology (classification and pairing of critical points via ∂_{B}) for the Morse function f on M is a way to understand the homology groups $H_{*}(M)=H_{*}\left(f^{+\infty}, f^{-\infty}\right)$. Actually it is a particular case of the $H_{*}\left(f^{b}, f^{a}\right)$, $a<b, a, b \notin \mathcal{U}$, and those constructions have natural restriction properties.
When $a \leq a^{\prime}<b^{\prime} \leq b$, the definitions of $c \in \mathcal{C}_{U, L, H}$ and $\partial_{B} c=c^{\prime}$ yield:

- if $c \in \mathcal{C}_{H}\left(f^{b}, f^{a}\right)$ then $c \in \mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \subset\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \not \subset\left(a^{\prime}, b^{\prime}\right)$ the possible remaining c, c^{\prime} in $\left(a^{\prime}, b^{\prime}\right)$ belongs to $\mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
Translation in terms of Witten Laplacians on $f_{a}^{b}=\{x \in M, a<f(x)<b\}$: The Neumann boundary condition corresponds to the absolute homology and the Dirichlet boundary condition to the relative homology. So the BC realization of $\Delta_{f, h}$ to f_{a}^{b} which encodes $H_{*}\left(f^{b}, f^{a}\right)$ is the one with Dirichlet boundary condtions on $\{f=a\}$ ($f<a$ is replaced by $f=-\infty$) and Neumann boundary conditions on $\{f=b\}(f>b$ is replaced by $f=+\infty)$, denoted by $\Delta_{f, h}^{D N}$.
Since $\partial_{n} f<0$ on $\{f=a\}$ and $\partial_{n} f>0$ on $\{f=b\}$ there will be no generalized critical points on the boundary ∂f_{a}^{b} and the critical points involved in the asymptotic analysis of $\Delta_{f, h}^{D N}$ are the critical points of f belonging to (a, b).

Restriction to f_{a}^{b}

The persistent homology (classification and pairing of critical points via ∂_{B}) for the Morse function f on M is a way to understand the homology groups $H_{*}(M)=H_{*}\left(f^{+\infty}, f^{-\infty}\right)$. Actually it is a particular case of the $H_{*}\left(f^{b}, f^{a}\right)$, $a<b, a, b \notin \mathcal{U}$, and those constructions have natural restriction properties.
When $a \leq a^{\prime}<b^{\prime} \leq b$, the definitions of $c \in \mathcal{C}_{U, L, H}$ and $\partial_{B} c=c^{\prime}$ yield:

- if $c \in \mathcal{C}_{H}\left(f^{b}, f^{a}\right)$ then $c \in \mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \subset\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
- if $\left(c^{\prime}, c\right)$ is a bar code for $H_{*}\left(f^{b}, f^{a}\right)$ such that $\left(c^{\prime}, c\right) \not \subset\left(a^{\prime}, b^{\prime}\right)$ the possible remaining c, c^{\prime} in $\left(a^{\prime}, b^{\prime}\right)$ belongs to $\mathcal{C}_{H}\left(f^{b^{\prime}}, f^{a^{\prime}}\right)$.
Translation in terms of Witten Laplacians on $f_{a}^{b}=\{x \in M, a<f(x)<b\}$: The Neumann boundary condition corresponds to the absolute homology and the Dirichlet boundary condition to the relative homology. So the BC realization of $\Delta_{f, h}$ to f_{a}^{b} which encodes $H_{*}\left(f^{b}, f^{a}\right)$ is the one with Dirichlet boundary condtions on $\{f=a\}$ ($f<a$ is replaced by $f=-\infty$) and Neumann boundary conditions on $\{f=b\}(f>b$ is replaced by $f=+\infty)$, denoted by $\Delta_{f, h}^{D N}$.
Since $\partial_{n} f<0$ on $\{f=a\}$ and $\partial_{n} f>0$ on $\{f=b\}$ there will be no generalized critical points on the boundary ∂f_{a}^{b} and the critical points involved in the asymptotic analysis of $\Delta_{f, h}^{D N}$ are the critical points of f belonging to (a, b).

Quasimodes

If $U \in \mathcal{U}_{H}^{(p)}$, there exists $\psi U=\tilde{v}_{U} \in \operatorname{ker} \Delta_{f, h}^{(p)}$ localized near U.
If $U \in \mathcal{U}_{U}^{(p)}$, take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} localizes in the neighborhood of U and \tilde{v}_{U} is an eigenmode on $f(U)-\varepsilon<f<f(U)+\varepsilon$.
If $U \in \mathcal{U}_{L}^{(p)}$ take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} and \tilde{v}_{U} correspond to a local truncation just below U^{\prime} such that $\partial_{B} U^{\prime}=U$.
By Helffer-Sjöstrand WKB techniques, we have a local approximation of \tilde{v}_{U} in $B\left(U, \varepsilon_{1}\right)$ for all $U \in \mathcal{U}$ and therefore can compute the normalisation constants for ψ_{U} as h-power asymptotic expansion by Laplace methods in term of Hess $f(U)$ like in the case $p=0$ or $p=1$.
Nevertheless we have no explicit form of ψ_{U} near $U^{\prime} \in \mathcal{U}_{U}^{(p+1)}$ when $U \in \mathcal{U}_{L}^{(p)}$. In all cases $d_{f, h} \tilde{v}_{U}=d_{f, h}^{*} \tilde{v}_{U}=0$. In particular when $U \in \mathcal{U}_{L}$, this property valid near $U^{\prime}, \partial_{B} U^{\prime}=U$, combined with Stokes formula allows to bypass the explicit approximation of ψ_{U} near U^{\prime}.

Quasimodes

If $U \in \mathcal{U}_{H}^{(p)}$, there exists $\psi_{U}=\tilde{v}_{U} \in \operatorname{ker} \Delta_{f, h}^{(p)}$ localized near U.
If $U \in \mathcal{U}_{U}^{(p)}$, take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} localizes in the neighborhood of U and \tilde{v}_{U} is an eigenmode on $f(U)-\varepsilon<f<f(U)+\varepsilon$.
If $U \in \mathcal{U}_{L}^{(p)}$ take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} and \tilde{v}_{U} correspond to a local truncation just below U^{\prime} such that $\partial_{B} U^{\prime}=U$. By Helffer-Sjöstrand WKB techniques, we have a local approximation of \tilde{v}_{U} in $B\left(U, \varepsilon_{1}\right)$ for all $U \in \mathcal{U}$ and therefore can compute the normalisation constants for ψ_{U} as h-power asymptotic expansion by Laplace methods in term of Hess $f(U)$ like in the case $p=0$ or $p=1$.
Nevertheless we have no explicit form of ψ_{U} near $U^{\prime} \in \mathcal{U}_{U}^{(p+1)}$ when $U \in \mathcal{U}_{L}^{(p)}$. In all cases $d_{f, h} \tilde{v}_{U}=d_{f, h}^{*} \tilde{v}_{U}=0$. In particular when $U \in \mathcal{U}_{L}$, this property valid near $U^{\prime}, \partial_{B} U^{\prime}=U$, combined with Stokes formula allows to bypass the explicit approximation of ψ_{U} near U^{\prime}.

Quasimodes

If $U \in \mathcal{U}_{H}^{(p)}$, there exists $\psi_{U}=\tilde{v}_{U} \in \operatorname{ker} \Delta_{f, h}^{(p)}$ localized near U.
If $U \in \mathcal{U}_{U}^{(p)}$, take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} localizes in the neighborhood of U and \tilde{v}_{U} is an eigenmode on $f(U)-\varepsilon<f<f(U)+\varepsilon$.
If $U \in \mathcal{U}_{L}^{(p)}$ take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} and \tilde{v}_{U} correspond to a local truncation Paris 13 just below U^{\prime} such that $\partial_{B} U^{\prime}=U$.
By Helffer-Sjöstrand WKB techniques, we have a local approximation of \tilde{v}_{U} in $B\left(U, \varepsilon_{1}\right)$ for all $U \in \mathcal{U}$ and therefore can compute the normalisation constants for ψ_{U} as h-power asymptotic expansion by Laplace methods in term of Hess $f(U)$ like in the case $p=0$ or $p=1$.
Nevertheless we have no explicit form of ψ_{U} near $U^{\prime} \in \mathcal{U}_{U}^{(p+1)}$ when $U \in \mathcal{U}_{L}^{(p)}$. In all cases $d_{f, h} \tilde{v}_{U}=d_{f, h}^{*} \tilde{v}_{U}=0$. In particular when $U \in \mathcal{U}_{L}$, this property valid near $U^{\prime}, \partial_{B} U^{\prime}=U$, combined with Stokes formula allows to bypass the explicit approximation of ψ_{U} near U^{\prime}.

Quasimodes

small
eigenvalues of Witten Laplacians 4: the case of p-forms

If $U \in \mathcal{U}_{H}^{(p)}$, there exists $\psi U=\tilde{v}_{U} \in \operatorname{ker} \Delta_{f, h}^{(p)}$ localized near U.
If $U \in \mathcal{U}_{U}^{(p)}$, take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} localizes in the neighborhood of U and \tilde{v}_{U} is an eigenmode on $f(U)-\varepsilon<f<f(U)+\varepsilon$.
If $U \in \mathcal{U}_{L}^{(p)}$ take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} and \tilde{v}_{U} correspond to a local truncation just below U^{\prime} such that $\partial_{B} U^{\prime}=U$.
By Helffer-Sjöstrand WKB techniques, we have a local approximation of \tilde{v}_{U} in $B\left(U, \varepsilon_{1}\right)$ for all $U \in \mathcal{U}$ and therefore can compute the normalisation constants for ψ_{U} as h-power asymptotic expansion by Laplace methods in term of Hess $f(U)$ like in the case $p=0$ or $p=1$.
Nevertheless we have no explicit form of ψU near $U^{\prime} \in \mathcal{U}_{U}^{(p+1)}$ when $U \in \mathcal{U}_{L}^{(p)}$. In all cases $d_{f, h} \tilde{v}_{U}=d_{f, h}^{*} \tilde{V}_{U}=0$. In particular when $U \in \mathcal{U}_{L}$, this property valid near $U^{\prime}, \partial_{B} U^{\prime}=U$, combined with Stokes formula allows to bypass the explicit approximation of ψ_{U} near U^{\prime}.

Quasimodes

If $U \in \mathcal{U}_{H}^{(p)}$, there exists $\psi U=\tilde{v}_{U} \in \operatorname{ker} \Delta_{f, h}^{(p)}$ localized near U.
If $U \in \mathcal{U}_{U}^{(p)}$, take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} localizes in the neighborhood of U and \tilde{v}_{U} is an eigenmode on $f(U)-\varepsilon<f<f(U)+\varepsilon$.
If $U \in \mathcal{U}_{L}^{(p)}$ take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} and \tilde{v}_{U} correspond to a local truncation just below U^{\prime} such that $\partial_{B} U^{\prime}=U$.
By Helffer-Sjöstrand WKB techniques, we have a local approximation of \tilde{v}_{U} in $B\left(U, \varepsilon_{1}\right)$ for all $U \in \mathcal{U}$ and therefore can compute the normalisation constants for ψ_{U} as h-power asymptotic expansion by Laplace methods in term of Hess $f(U)$ like in the case $p=0$ or $p=1$.
Nevertheless we have no explicit form of ψ_{U} near $U^{\prime} \in \mathcal{U}_{U}^{(p+1)}$ when $U \in \mathcal{U}_{L}^{(p)}$. In all cases $d_{f, h} \tilde{v}_{U}=d_{f, h}^{*} \tilde{V}_{U}=0$. In particular when $U \in \mathcal{U}_{L}$, this property valid near $U^{\prime}, \partial_{B} U^{\prime}=U$, combined with Stokes formula allows to bypass the explicit approximation of ψ_{U} near U^{\prime}.

Quasimodes

If $U \in \mathcal{U}_{H}^{(p)}$, there exists $\psi U=\tilde{v}_{U} \in \operatorname{ker} \Delta_{f, h}^{(p)}$ localized near U.
If $U \in \mathcal{U}_{U}^{(p)}$, take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} localizes in the neighborhood of U and \tilde{v}_{U} is an eigenmode on $f(U)-\varepsilon<f<f(U)+\varepsilon$.
If $U \in \mathcal{U}_{L}^{(p)}$ take $\psi_{U}=\chi_{U} \tilde{v}_{U}$ where χ_{U} and \tilde{v}_{U} correspond to a local truncation just below U^{\prime} such that $\partial_{B} U^{\prime}=U$.
By Helffer-Sjöstrand WKB techniques, we have a local approximation of \tilde{v}_{U} in $B\left(U, \varepsilon_{1}\right)$ for all $U \in \mathcal{U}$ and therefore can compute the normalisation constants for ψ_{U} as h-power asymptotic expansion by Laplace methods in term of Hess $f(U)$ like in the case $p=0$ or $p=1$.
Nevertheless we have no explicit form of ψ_{U} near $U^{\prime} \in \mathcal{U}_{U}^{(p+1)}$ when $U \in \mathcal{U}_{L}^{(p)}$. In all cases $d_{f, h} \tilde{v}_{U}=d_{f, h}^{*} \tilde{v}_{U}=0$. In particular when $U \in \mathcal{U}_{L}$, this property valid near $U^{\prime}, \partial_{B} U^{\prime}=U$, combined with Stokes formula allows to bypass the explicit approximation of ψ_{U} near U^{\prime}.

Final computation (simplified version)

small eigenvalues of Witten Laplacians 4: the case of p-forms

The essential element to be computed is $\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle$ when $\partial_{B} U^{\prime}=U \in \mathcal{U}_{L}^{(p)}$. This will provide like for $p=0$ the singular values of $\beta_{f, h}$ up to exponentially small relative errors.
Remember $\psi_{U^{\prime}}=\chi_{U^{\prime}} \tilde{v}_{U^{\prime}}$ and $\psi_{U}=\chi_{U} \tilde{v}_{U}$ with

- χ_{u} global cut-off, $\chi_{U^{\prime}}$ local cut-off.
- $d_{f, h} \tilde{v}_{U}=0, d_{f, h} \tilde{v}_{U^{\prime}}=0$.

Simplified version: euclidean metric around U^{\prime} in Morse coordinates $y=\left(y^{\prime}, y^{\prime \prime}\right), y^{\prime}=\left(y_{1}, \ldots, y_{p+1}\right)$.

$$
\begin{aligned}
& \tilde{v}_{U^{\prime}} \sim C\left(U^{\prime}, h\right) e^{-\frac{\Phi_{U^{\prime}}(y)}{h} \star\left(d y_{p+2} \wedge \ldots d y_{n}\right) \text { around } U^{\prime}} \\
& \left(f(y)-f\left(U^{\prime}\right)\right)=\frac{-\lambda_{1} y_{1}^{2} \cdots-\lambda_{p+1} y^{p+1}+\lambda_{p+2} y_{p+2}^{2}+\cdots \lambda_{n} y_{n}^{2}}{2} \\
& \Phi_{U^{\prime}}(y)=\frac{\sum_{j=0}^{n} \lambda_{j} y_{j}^{2}}{2} \\
& d\left(e^{\frac{f(y)-f(U)}{h}} \tilde{v}_{U}\right)=0
\end{aligned}
$$

Final computation (simplified version)

The essential element to be computed is $\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle$ when $\partial_{B} U^{\prime}=U \in \mathcal{U}_{L}^{(p)}$. This will provide like for $p=0$ the singular values of $\beta_{f, h}$ up to exponentially small relative errors.
Remember $\psi_{U^{\prime}}=\chi_{U^{\prime}} \tilde{v}_{U^{\prime}}$ and $\psi_{U}=\chi_{U} \tilde{v}_{U}$ with

- χ_{u} global cut-off, $\chi_{U^{\prime}}$ local cut-off.
- $d_{f, h} \tilde{v}_{U}=0, d_{f, h} \tilde{v}_{U^{\prime}}=0$.

Simplified version: euclidean metric around U^{\prime} in Morse coordinates $y=\left(y^{\prime}, y^{\prime \prime}\right), y^{\prime}=\left(y_{1}, \ldots, y_{p+1}\right)$.

$$
\begin{aligned}
& \tilde{v}_{U^{\prime}} \sim C\left(U^{\prime}, h\right) e^{-\frac{\Phi_{U^{\prime}}(y)}{h}} \star\left(d y_{p+2} \wedge \ldots d y_{n}\right) \text { around } U^{\prime} \\
& \left(f(y)-f\left(U^{\prime}\right)\right)=\frac{-\lambda_{1} y_{1}^{2} \cdots-\lambda_{p+1} y^{p+1}+\lambda_{p+2} y_{p+2}^{2}+\cdots \lambda_{n} y_{n}^{2}}{2} \\
& \Phi_{U^{\prime}}(y)=\frac{\sum_{j=0}^{n} \lambda_{j} y_{j}^{2}}{2} \\
& d\left(e^{\frac{f(y)-f(U)}{h}} \tilde{v}_{U}\right)=0
\end{aligned}
$$

Final computation (simplified version)

The essential element to be computed is $\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle$ when $\partial_{B} U^{\prime}=U \in \mathcal{U}_{L}^{(p)}$. This will provide like for $p=0$ the singular values of $\beta_{f, h}$ up to exponentially small relative errors.
Remember $\psi_{U^{\prime}}=\chi_{U^{\prime}} \tilde{v}_{U^{\prime}}$ and $\psi_{U}=\chi_{U} \tilde{v}_{U}$ with

- χ_{u} global cut-off, $\chi_{U^{\prime}}$ local cut-off.
- $d_{f, h} \tilde{v}_{U}=0, d_{f, h \tilde{v}_{U^{\prime}}}=0$.

Simplified version: euclidean metric around U^{\prime} in Morse coordinates $y=\left(y^{\prime}, y^{\prime \prime}\right), y^{\prime}=\left(y_{1}, \ldots, y_{p+1}\right)$.

$$
\begin{aligned}
& \tilde{v}_{U^{\prime}} \sim C\left(U^{\prime}, h\right) e^{-\frac{\Phi_{U^{\prime}}(y)}{h}} \star\left(d y_{p+2} \wedge \ldots d y_{n}\right) \quad \text { around } U^{\prime} \\
& \left(f(y)-f\left(U^{\prime}\right)\right)=\frac{-\lambda_{1} y_{1}^{2} \cdots-\lambda_{p+1} y^{p+1}+\lambda_{p+2} y_{p+2}^{2}+\cdots \lambda_{n} y_{n}^{2}}{2} \\
& \Phi_{U^{\prime}}(y)=\frac{\sum_{j=0}^{n} \lambda_{j} y_{j}^{2}}{2} \\
& d\left(e^{\frac{f(y)-f(U)}{h}} \tilde{v}_{U}\right)=0 .
\end{aligned}
$$

Final computation (simplified version)

Let us compute the asymptotic expression for

$$
\begin{gathered}
I_{U^{\prime}, U}(h)=\frac{\left\langle\psi_{U^{\prime}}, d_{f, h} \psi U\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}}=\frac{\left\langle\chi_{U^{\prime}} \tilde{v}_{U^{\prime}}, d_{f, h}\left(\chi_{U} \tilde{v}_{U}\right)\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}} . \\
I_{U^{\prime}, U}(h) \\
\sim \int_{\omega\left(U^{\prime}\right)} e^{-\frac{f-f\left(U^{\prime}\right)}{h}} e^{-\frac{\Phi_{U^{\prime}}}{h}} d y_{p+2} \wedge \ldots d y_{n} \wedge\left(h d \chi_{U}\right) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) \\
\sim \int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| \underbrace{\int_{B_{y^{\prime \prime}}^{p+1}}\left(h d \chi_{U}\right) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)}_{\text {Stokes } d_{f, h} \tilde{v}_{U}=0}
\end{gathered}
$$

The last line equals

$$
\int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| h \int_{\partial B_{y^{\prime \prime}}^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

Applying again Stokes with $\partial B_{y^{\prime}, r}^{p+1}$ homologous to $\partial B_{0, r}^{p+1}=\partial e^{p+1}, e^{p+1}$ the stable cell of ∇f at U^{\prime}, we obtain

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) .
$$

Final computation (simplified version)

Let us compute the asymptotic expression for

$$
\begin{gathered}
I_{U^{\prime}, U}(h)=\frac{\left\langle\psi_{U^{\prime}}, d_{f, h} \psi U\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}}=\frac{\left\langle\chi_{U^{\prime}} \tilde{v}_{U^{\prime}}, d_{f, h}\left(\chi_{U} \tilde{v}_{U}\right)\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}} . \\
I_{U^{\prime}, U}(h) \\
\sim \int_{\omega\left(U^{\prime}\right)} e^{-\frac{f-f\left(U^{\prime}\right)}{h}} e^{-\frac{\Phi_{U^{\prime}}}{h}} d y_{p+2} \wedge \ldots d y_{n} \wedge(h d \chi U) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) \\
\sim \int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| \underbrace{\int_{B_{y^{\prime \prime}}^{p+1}}\left(h d \chi_{U}\right) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)}_{\text {Stokes } d_{f, h} \tilde{v}_{U}=0}
\end{gathered}
$$

The last line equals

$$
\int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| h \int_{\partial B_{y^{\prime \prime}}^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

Applying again Stokes with $\partial B_{y^{\prime}, r}^{p+1}$ homologous to $\partial B_{0, r}^{p+1}=\partial e^{p+1}, e^{p+1}$ the stable cell of ∇f at U^{\prime}, we obtain

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) .
$$

Final computation (simplified version)

Let us compute the asymptotic expression for

$$
\begin{gathered}
I_{U^{\prime}, U}(h)=\frac{\left\langle\psi_{U^{\prime}}, d_{f, h} \psi U\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}}=\frac{\left\langle\chi_{U^{\prime}} \tilde{v}_{U^{\prime}}, d_{f, h}\left(\chi_{U} \tilde{v}_{U}\right)\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}} . \\
I_{U^{\prime}, U}(h) \quad \sim \int_{\omega\left(U^{\prime}\right)} e^{-\frac{f-f\left(U^{\prime}\right)}{h}} e^{-\frac{\Phi_{U^{\prime}}}{h}} d y_{p+2} \wedge \ldots d y_{n} \wedge\left(h d \chi_{U}\right) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) \\
\sim \int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| \underbrace{}_{\text {Stokes } d_{f, h \tilde{v}_{U}=0}^{\int_{B_{y^{\prime \prime}}^{p+1}}\left(h d \chi_{U}\right) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)}} .
\end{gathered}
$$

The last line equals

$$
\int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| h \int_{\partial B_{y^{\prime \prime}}^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

Applying again Stokes with $\partial B_{y^{\prime}, r}^{p+1}$ homologous to $\partial B_{0, r}^{p+1}=\partial e^{p+1}, e^{p+1}$ the stable cell of ∇f at U^{\prime}, we obtain

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) .
$$

Final computation (simplified version)

Let us compute the asymptotic expression for

$$
\begin{gathered}
I_{U^{\prime}, U}(h)=\frac{\left\langle\psi U^{\prime}, d_{f, h} \psi U\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}}=\frac{\left\langle\chi_{U^{\prime}} \tilde{v}_{U^{\prime}}, d_{f, h}\left(\chi_{U} \tilde{v}_{U}\right)\right\rangle}{C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}} . \\
I_{U^{\prime}, U}(h) \\
\sim \int_{\omega\left(U^{\prime}\right)} e^{-\frac{f-f\left(U^{\prime}\right)}{h}} e^{-\frac{\Phi_{U^{\prime}}}{h}} d y_{p+2} \wedge \ldots d y_{n} \wedge\left(h d \chi_{U}\right) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) \\
\sim \int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| \underbrace{\int_{B_{y^{\prime \prime}}^{p+1}}\left(h d \chi_{U}\right) \wedge\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)}_{\text {Stokes } d_{f, h} \tilde{v}_{U}=0}
\end{gathered}
$$

The last line equals

$$
\int_{\left|y^{\prime \prime}\right| \leq r} e^{-\frac{\sum_{j=p+2}^{n} \lambda_{j} y_{j}^{2}}{h}}\left|d y^{\prime \prime}\right| h \int_{\partial B_{y^{\prime \prime}}^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

Applying again Stokes with $\partial B_{y^{\prime}, r}^{p+1}$ homologous to $\partial B_{0, r}^{p+1}=\partial e^{p+1}, e^{p+1}$ the stable cell of ∇f at U^{\prime}, we obtain

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) .
$$

Final computation (simplified version)

small eigenvalues of Witten Laplacians

4: the case of p-forms

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

e^{p+1} stable cell of ∇f at U^{\prime}, e^{p} same for U
A byproduct of Barannikov says that there exists a constant $\kappa\left(U^{\prime}\right) \in \mathbb{R}$ such that $\partial e^{p+1}-\kappa\left(U^{\prime}\right) e^{p}$ is a boundary (relatively to $\{f=f(U)-\varepsilon\}$)

We use again Stokes to get

$$
I_{U^{\prime}, U}(h) \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) \int_{e^{p}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

integration localized around U

$$
\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) C_{2}(U, h) C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}
$$

$C(U, h), C_{1}\left(U^{\prime}, h\right), C_{2}(U, h)$: by Laplace method \rightarrow power of h and Hessians of f at U and U^{\prime} in the prefactor.

Final computation (simplified version)

small eigenvalues of Witten Laplacians

4: the case of p-forms

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) .
$$

e^{p+1} stable cell of ∇f at U^{\prime}, e^{p} same for U
A byproduct of Barannikov says that there exists a constant $\kappa\left(U^{\prime}\right) \in \mathbb{R}$ such that $\partial e^{p+1}-\kappa\left(U^{\prime}\right) e^{p}$ is a boundary (relatively to $\{f=f(U)-\varepsilon\}$)

We use again Stokes to get

$$
I_{U^{\prime}, U}(h) \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) \int_{e^{p}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

integration localized around U

$$
\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) C_{2}(U, h) C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}
$$

$C(U, h), C_{1}\left(U^{\prime}, h\right), C_{2}(U, h)$: by Laplace method \rightarrow power of h and Hessians of f at U and U^{\prime} in the prefactor.

Final computation (simplified version)

small eigenvalues of Witten Laplacians

4: the case of p-forms

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

e^{p+1} stable cell of ∇f at U^{\prime}, e^{p} same for U
A byproduct of Barannikov says that there exists a constant $\kappa\left(U^{\prime}\right) \in \mathbb{R}$ such that $\partial e^{p+1}-\kappa\left(U^{\prime}\right) e^{p}$ is a boundary (relatively to $\{f=f(U)-\varepsilon\}$)

We use again Stokes to get

$$
I_{U^{\prime}, U}(h) \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) \int_{e^{p}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

integration localized around U

$$
\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) C_{2}(U, h) C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}
$$

$C(U, h), C_{1}\left(U^{\prime}, h\right), C_{2}(U, h)$: by Laplace method \rightarrow power of h and Hessians of f at U and U^{\prime} in the prefactor.

Final computation (simplified version)

small eigenvalues of Witten Laplacians 4: the case of p-forms

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

e^{p+1} stable cell of ∇f at U^{\prime}, e^{p} same for U
A byproduct of Barannikov says that there exists a constant $\kappa\left(U^{\prime}\right) \in \mathbb{R}$ such that $\partial e^{p+1}-\kappa\left(U^{\prime}\right) e^{p}$ is a boundary (relatively to $\{f=f(U)-\varepsilon\}$)

We use again Stokes to get

$$
I_{U^{\prime}, U}(h) \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) \int_{e^{p}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right) \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) C_{2}(U, h)
$$

integration localized around $U \rightarrow$ WKB approx of \tilde{v}_{U}.

$$
\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) C_{2}(U, h) C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}
$$

$C(U, h), C_{1}\left(U^{\prime}, h\right), C_{2}(U, h)$: by Laplace method \rightarrow power of h and Hessians of f at U and U^{\prime} in the prefactor.

Final computation (simplified version)

small eigenvalues of Witten Laplacians

4: the case of p-forms

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

e^{p+1} stable cell of ∇f at U^{\prime}, e^{p} same for U
A byproduct of Barannikov says that there exists a constant $\kappa\left(U^{\prime}\right) \in \mathbb{R}$ such that $\partial e^{p+1}-\kappa\left(U^{\prime}\right) e^{p}$ is a boundary (relatively to $\{f=f(U)-\varepsilon\}$)

We use again Stokes to get

$$
I_{U^{\prime}, U}(h) \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) \int_{e^{p}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

integration localized around U

$$
\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) C_{2}(U, h) C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}
$$

$C(U, h), C_{1}\left(U^{\prime}, h\right), C_{2}(U, h)$: by Laplace method \rightarrow power of h and Hessians of f at U and U^{\prime} in the prefactor.

Final computation (simplified version)

small eigenvalues of Witten Laplacians

4: the case of p-forms

$$
I_{U^{\prime}, U}(h) \sim C_{1}\left(U^{\prime}, h\right) \int_{\partial e^{p+1}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

e^{p+1} stable cell of ∇f at U^{\prime}, e^{p} same for U
A byproduct of Barannikov says that there exists a constant $\kappa\left(U^{\prime}\right) \in \mathbb{R}$ such that $\partial e^{p+1}-\kappa\left(U^{\prime}\right) e^{p}$ is a boundary (relatively to $\{f=f(U)-\varepsilon\}$)

We use again Stokes to get

$$
I_{U^{\prime}, U}(h) \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) \int_{e^{p}}\left(e^{\frac{f-f(U)}{h}} \tilde{v}_{U}\right)
$$

integration localized around U

$$
\left\langle\psi_{U^{\prime}}, d_{f, h} \psi_{U}\right\rangle \sim \kappa\left(U^{\prime}\right) C_{1}\left(U^{\prime}, h\right) C_{2}(U, h) C\left(U^{\prime}, h\right) e^{-\frac{f\left(U^{\prime}\right)-f(U)}{h}}
$$

$C(U, h), C_{1}\left(U^{\prime}, h\right), C_{2}(U, h)$: by Laplace method \rightarrow power of h and Hessians of f at U and U^{\prime} in the prefactor.

