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Result

REF: Le Peutrec-N.-Viterbo(13)

(M, g) compact (oriented) manifold without boundary.
Consider f λ = {x ∈ M, f (x) < λ} and fλ = {x ∈ M, f (x) > λ} .

∆f ,h = (df ,h + d∗f ,h)2 = d∗f ,hdf ,h + df ,hd
∗
f ,h =

dimM⊕
p=0

∆
(p)
f ,h .

There is a one to one correspondance jp between U (p) and the set of eigenvalues

(counted with multiplicities) of ∆
(p)
f ,h lying in [0, h3/2) such that

jp(U(p)) = 0 if U(p) ∈ U (p)
H

jp(U(p)) = κ2(U(p+1))
h

π

|λ(p+1)
1 . . . λ

(p+1)
p+1 |

|λ(p)
1 . . . λ

(p)
p |

|Hessf (U(p))|1/2

|Hessf (U(p+1))|1/2
(1 +O(h))e−2

f (U(p+1))−f (U(p))
h

if ∂BU
(p+1) = U(p)

jp(U(p)) = κ2(U(p))
h

π

|λ(p)
1 . . . λ

(p)
p |

|λ(p−1)
1 . . . λ

(p−1)
p−1 |

|Hessf (U(p−1))|1/2

|Hessf (U(p))|1/2
(1 +O(h))e−2

f (U(p))−f (U(p−1))
h

if ∂BU
(p) = U(p−1)

Here the λ’s denote the negative eigenvalues of the Hessf at the corresponding points.
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Extending the strategy used for p = 0

Witten Laplacians: We know that the number of O(h3/2)-eigenvalues of ∆
(p)
f ,his

mp = ]U (p) = ] C(p) . Set F (p) = Ran1[0,h3/2)(∆
(p)
f ,h) , F = 1[0,h3/2)(∆f ,h) and

β
(p)
f ,h = df ,h

∣∣
F (p) : F (p) → F (p+1) ,. Then

∆f ,h

∣∣
F

= (βf ,h + β∗f ,h)2 = β∗f ,hβf ,h + βf ,hβ
∗
f ,h .

Singular values: When ∆
(p)
f ,hu = λu , u ∈ F (p) there are three possibilities:

λ = 0 and βf ,hu = 0 , β∗f ,hu = 0

λ 6= 0 and β∗f ,hu 6= 0 . Then β∗f ,hu ∈ F (p−1) and

∆
(p−1)
f ,h (β∗f ,hu) = λ(β∗f ,hu) = (β∗f ,hβf ,h)(β∗f ,hu) .

λ 6= 0 and β∗f ,hu = 0 . Then λu = ∆f ,hu = β∗f ,hβf ,hu .

In all cases λ is the square of a singular value of βf ,h .

The pairing of critical points is given by Barannikov complex: ∂BU
(p) = U(p−1) ,

U(p) ∈ U (p)
U , U(p−1) ∈ U (p−1)

L . Homological critical points U ∈ U (p)
H will be

associated with eigenvalues 0 of ∆
(p)
f ,h and harmonic forms (dim = βp = ]U (p)

H ).

In order to extend the strategy used for p = 0 with singular values, we need to
construct local quasimodes around upper critical points (WKB following
Helffer-Sjöstrand) and global quasimodes for lower critical points. The explicit

form ψ
(0)
k (h) = χk exp[− f (x)−f (U

(0)
k

)

h
] which is no more possible for U ∈ U (p>0)

L ,
but df ,h(χω) = (hdχ) ∧ ω holds for any ω which satisifies ∆f ,hω = 0 .
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(p−1)
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Restriction to f ba

The persistent homology (classification and pairing of critical points via ∂B) for
the Morse function f on M is a way to understand the homology groups
H∗(M) = H∗(f +∞, f −∞) . Actually it is a particular case of the H∗(f b, f a) ,
a < b , a, b 6∈ U , and those constructions have natural restriction properties.

When a ≤ a′ < b′ ≤ b, the definitions of c ∈ CU,L,H and ∂Bc = c ′ yield:

if c ∈ CH (f b, f a) then c ∈ CH (f b
′
, f a
′
) .

if (c′, c) is a bar code for H∗(f b, f a) such that (c′, c) ⊂ (a′, b′), (c′, c) is a bar code

for H∗(f b
′
, f a
′
) .

if (c′, c) is a bar code for H∗(f b, f a) such that (c′, c) 6⊂ (a′, b′) the possible

remaining c, c′ in (a′, b′) belongs to CH (f b
′
, f a
′
) .

Translation in terms of Witten Laplacians on f ba = {x ∈ M, a < f (x) < b}: The
Neumann boundary condition corresponds to the absolute homology and the
Dirichlet boundary condition to the relative homology. So the BC realization of
∆f ,h to f ba which encodes H∗(f b, f a) is the one with Dirichlet boundary
condtions on {f = a} (f < a is replaced by f = −∞) and Neumann boundary
conditions on {f = b} (f > b is replaced by f = +∞) , denoted by ∆DN

f ,h .

Since ∂nf < 0 on {f = a} and ∂nf > 0 on {f = b} there will be no generalized
critical points on the boundary ∂f ba and the critical points involved in the
asymptotic analysis of ∆DN

f ,h are the critical points of f belonging to (a, b) .
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Quasimodes

If U ∈ U (p)
H , there exists ψU = ṽU ∈ ker ∆

(p)
f ,h localized near U .

If U ∈ U (p)
U , take ψU = χU ṽU where χU localizes in the neighborhood of U and

ṽU is an eigenmode on f (U)− ε < f < f (U) + ε .

If U ∈ U (p)
L take ψU = χU ṽU where χU and ṽU correspond to a local truncation

just below U′ such that ∂BU
′ = U .

By Helffer-Sjöstrand WKB techniques, we have a local approximation of ṽU in
B(U, ε1) for all U ∈ U and therefore can compute the normalisation constants
for ψU as h-power asymptotic expansion by Laplace methods in term of
Hess f (U) like in the case p = 0 or p = 1 .

Nevertheless we have no explicit form of ψU near U′ ∈ U (p+1)
U when U ∈ U (p)

L .

In all cases df ,h ṽU = d∗f ,h ṽU = 0 . In particular when U ∈ UL , this property valid

near U′ , ∂BU
′ = U , combined with Stokes formula allows to bypass the explicit

approximation of ψU near U′ .
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U , take ψU = χU ṽU where χU localizes in the neighborhood of U and
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Final computation (simplified version)

The essential element to be computed is 〈ψU′ , df ,hψU〉 when ∂BU
′ = U ∈ U (p)

L .
This will provide like for p = 0 the singular values of βf ,h up to exponentially
small relative errors.
Remember ψU′ = χU′ ṽU′ and ψU = χU ṽU with

χU global cut-off, χU′ local cut-off.
df ,h ṽU = 0 , df ,h ṽU′ = 0 .

Simplified version: euclidean metric around U′ in Morse coordinates
y = (y ′, y ′′), y ′ = (y1, . . . , yp+1) .

ṽU′ ∼ C(U′, h)e−
Φ
U′ (y)

h ? (dyp+2 ∧ . . . dyn) around U′

(f (y)− f (U′)) =
−λ1y2

1 · · · − λp+1yp+1 + λp+2y2
p+2 + · · ·λny2

n

2

ΦU′ (y) =

∑n
j=0 λjy

2
j

2

d(e
f (y)−f (U)

h ṽU) = 0 .
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χU global cut-off, χU′ local cut-off.
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Final computation (simplified version)

Let us compute the asymptotic expression for

IU′,U(h) =
〈ψU′ , df ,hψU〉

C(U′, h)e−
f (U′)−f (U)

h

=
〈χU′ ṽU′ , df ,h(χU ṽU)〉

C(U′, h)e−
f (U′)−f (U)

h

.

IU′,U(h) ∼
∫
ω(U′)

e−
f−f (U′)

h e−
Φ
U′
h dyp+2 ∧ . . . dyn ∧ (hdχU) ∧ (e

f−f (U)
h ṽU)

∼
∫
|y′′|≤r

e−
∑n

j=p+2 λj y
2
j

h |dy ′′|
∫
B
p+1

y′′

(hdχU) ∧ (e
f−f (U)

h ṽU)

︸ ︷︷ ︸
Stokes df ,h ṽU=0

The last line equals∫
|y′′|≤r

e−
∑n

j=p+2 λj y
2
j

h |dy ′′|h
∫
∂B

p+1

y′′

(e
f−f (U)

h ṽU)

Applying again Stokes with ∂Bp+1
y′,r homologous to ∂Bp+1

0,r = ∂ep+1 , ep+1 the

stable cell of ∇f at U′ , we obtain

IU′,U(h) ∼ C1(U′, h)

∫
∂ep+1

(e
f−f (U)

h ṽU) .
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The last line equals∫
|y′′|≤r

e−
∑n

j=p+2 λj y
2
j

h |dy ′′|h
∫
∂B

p+1

y′′

(e
f−f (U)

h ṽU)
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IU′,U(h) ∼ C1(U′, h)

∫
∂ep+1

(e
f−f (U)

h ṽU) .

ep+1 stable cell of ∇f at U′ , ep same for U
A byproduct of Barannikov says that there exists a constant κ(U′) ∈ R such that
∂ep+1 − κ(U′)ep is a boundary (relatively to {f = f (U)− ε})

[ep]

[∂ep+1]

U ′

f = c′− ε
U

f = c− ε

We use again Stokes to get

IU′,U(h) ∼ κ(U′)C1(U′, h)

∫
ep

(e
f−f (U)

h ṽU)

integration localized around U

〈ψU′ , df ,hψU〉 ∼ κ(U′)C1(U′, h)C2(U, h)C(U′, h)e−
f (U′)−f (U)

h

C(U, h) , C1(U′, h) , C2(U, h): by Laplace method → power of h and Hessians of
f at U and U′ in the prefactor.
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