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Geometric Kramers-Fokker-Planck operators

In the euclidean space, the operator

—Ap + |P\2

Py = +(p.8g — 9qV(q).0p) + 5 , x=(q,p) € QA xR?

is associated with the Langevin process

dg=pdt , dp=—9,V(q)dt — pdt+ dW

Q= QUAQ riem. mfld with bdy, X = T*Q, X = T4, Q.
Metric g = g;(q)dq'de/ , g~ = (g¥)

o, D +1plG o
Pigg=HVe+ ———, Do =gi(a)p
R lplz  &Y(a)pip;

&(q,p) = > T,

Ve = 8"(a)Pidy — 5 048" ()PipiOp = 8" (a)Piej, & = Ogi + TjpeOp; -

acting on C>®(X;f). P+ @,g = scalar part of Bismut's hypoelliptic Laplacian.
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In the euclidean space, the operator

—Ap + ‘P‘Q

Py = +(p.0q ) + 5

x=(q,p) € Q2 x RY
is associated with the Langevin process

dq=pdt , dp

— pdt + dW

Q@ = QUOAQ riem. mfld with bdy, X = T*Q, 9X = T50@-
Metric g = g,j(q)dqidqj, gl =(g¥)
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S(Q:P):Tq: (2)IJ’

. 1 . .
Ve = g"(q)pidy — §8qu”(q)p.-pj@pk =gi(a)piej, & =0y +Tipedy; -

acting on C>®(X; ). P+ @,g = scalar part of Bismut's hypoelliptic Laplacian.



A simple case

Geometric
Kramers-
Fokker-
Planck 0D — : — 1y2
operators Take Q@ = (—o0,0] with g = (dg*)=.
with P1
boundary [
conditions —
—

The
problem

: —
aris 13 O’O
(0.0
<

oX

-
-

Specular reflection:u(0, —p1) = u(0, p1) for p1 > 0.
It can be written yogqu = 0 with vyogqu = w )
Absorption:u(0, p1) = 0 for p1 < 0.

. . . 0, 0,—
It can be written Yoqqu = sign(p1)Yevt with yeyu = %M .
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Metric locally on 8Q: (dg!)?> &+ m(q*,q’). Consider f-valued functions, f Hilbert
space.

Let j be a unitary involution in f and define along 0X = {ql = O}:

¥(q', p1,p") — (4, —p1,p')

Yodd = Moddy = > ;
/ / H / /
) ) + y — Py
e = Mgy = W9PLP) +2(d =P p)
2
Let the boundary condition on the trace yu = u‘dx e
Yodd U = isign(Pl)AWevU , MNeyA= Al .

Formal integration by part

2 2
HVPUHLE(X_dqu;D + H‘P‘CIUHLZ(qudP‘D I 1

= | |vul(d’,p)* prdq’dp
2 2 ./{)X

HVP HLZ (X,dqdp;f) + |Hp‘quHi2(X,dqdp,f)
2

Re (u, P+ g qu) =

+ Re (vevu, Avevu) 2 12(8X,|p1 |dg’ dpif) -

Assumptions:

m A= A(q,|plq) is local in g and |p|q (local elastic collision at the boundary);

m A(q, |plq) € E(LZ(S(*)QQ. |w1]dq’ dw; §)) with ||A(q, r)|| < C unif.
m Alle, = Tey
]

either Re A(q, r) > ca > 0 unif. or A(q,r) =0.
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Geometric Metric locally on 8Q: (dg!)?> &+ m(q*,q’). Consider f-valued functions, f Hilbert
Eoipll  space.

Planck ; ; ; ion in § : I — [l _ L.

ok Let j be a unitary involution in f and define along 0X = {q* =0} :

with .

boundary B _ (d',p1,p") = jv(d', —p1,p’)

conditions Yodd = ModdY = > )

Francis i

J e Pl = (4, p1,p") +jv(q', —p1,p’)

LA lev — ev | — N

Uni 2

Paris 13

Let the boundary condition on the trace yu = u‘aX be
Th
proeblem Yodd U = 1 sign(pl)Awevu N HEVA = Aﬂev .
Formal integration by part
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Metric locally on 8Q: (dg!)?> &+ m(q*,q’). Consider f-valued functions, f Hilbert
space.

Let j be a unitary involution in f and define along 90X = {q* =0} :
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Questions

o Do such boundary conditions with (A, j) define a maximal accretive realization
Fokker-
Planck Kiag of Prqg?
operators Can we specify the domain of K4 4, and the regularity (and decay in p)
bomtda,y estimates for the resolvent ? Global subelliptic estimates ?
diti u . n
conditions KiAg Cusp|da| 7
Imz
‘
!
o,
! .
The i
problem
.

Compactness of the resolvent 7 Discrete spectrum 7 Exponential decay ppties of

/e*fZ(zf K) ! dz?
.

e tKtag = =
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Some related works and motivations

Keamers.

Fokker Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No

operators information on the operator domain

ci‘)ﬂ“d':g?)'nvs SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy—Jabir (2011) specular
reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results
for the PDE interpretation
Quasi Stationary Distribution (— molecular dynamics algorithms):
Le Bris—Leliévre—Luskin—Perez (2012) and Lelievre-N. (2013) Elliptic case,

T Witten Laplacian. But Langevin is a more natural model !

problem

Exponentially small eigenvalues of Witten Laplacians on p-forms in the low
temperature limit: Le Peutrec—Viterbo—N. (2013) Artificial boundary value
problems are introduced.

Series of works by Bismut and Lebeau (2004—2011) about the hypoelliptic
Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's
deformation of Hodge theory.

Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation:
Hérau—Hitrik—Sjostrand (2011). In view of Le Peutrec—Viterbo—N. could be
extended to the hypoelliptic Laplacian on p-forms.

Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck
operator: Lebeau (2007). Used in the analysis of boundary value problems
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Notations and first result
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op;:foys Call Og ¢ = 5 and set H* (q) = (d/2+ Oq) L (Tq Q, dp;f) and
ot globally H5" = (d/2 + Oq )~ /2L2(X, dqdp; f) . H*(Q; Hsl,) is the Sobolev
TeERitTE space of H®-sections of the hermitian fiber bundle 7, : H® — Q.
Remember the BC's 7,q0u = £sign(p1)Avevu
m Alle, =T A
m A= A(q,|plq) is local in g and |p|q (local elastic collision at the boundary);
m A(q, |plq) € E(LZ(S;QQ. |w1]dq’ dw; §)) with ||A(q, r)|| < C unif.
m either Re A(q,r) > ca > 0 unif. or A(q,r) =0.
Vit Theorem 1: With the domain D(K4+ 4 ) characterized by
results
ue L2(QHY) , Piqgu€ L*(X,dqdp;f),
SRS L/20c(;)X* \pl\dq/dp; T) y YoddU = iSign(pl)AAﬁvaL

the operator Ky 4, % is maximal accretive and

dy 2
Re (u, (Kt a6 + E)u) = HuHZz(qu‘H]) + Re (yevu, Aﬁevu}szx_m dq’ dpif) -

The adjoint of Ky a5 is K ax ¢ -
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Subelliptic estimates when

Theorem 2: When A=0 there exists C > 0 and for all & € Cp°([0, +-00)) satisfying
®(0) = 0 a constant Cg such that

1 1
N & lull + A B llullz@upry + 1l /30y

1 _ .
+ N @+ [Ple) " vull 2(ox, |y | dardpry < Cll(Kx,0,6 — iNull

and
[®(dg(q,0Q))Oq,gull < Cl|®[[Lo [(K+,0,6 — iN)ull + Collull,

hold for all u € D(K+,0,¢) and all A € R.
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1 .
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Corollaries

Geometric

Kramers- The operator K4 4 . is cuspidal.

Fokker- —

Planck When Q is compact, K71 is compact — discrete spectrum.

operators

bom‘d"my The integration by parts |mp|y H“HLz Q.11 <I(K+,a,g — iN)ull||lull and a
conditions

potential term F94V/(q)dp with V L|psch|tz is a nice perturbation — All the
results are still valid with such a potential term.

PT-symmetry if UAU™ = A*, UKy A U* = Kz px g = K;A_’g when

Uu(q,p) = u(q,—p).

The results hold (with additional conditions for the PT-symmetry) when Q X § is
replaced by a hermitian bundle 7 : F — Q with a metric g© and a connection
Main VF. The pull-back bundle Fx = 7*F with 7 : X = T*Q — @ is then endowed
ezl with the metric gfx = n*gF and the connection

F, F F,
ve/X - v(’)[ﬂ ’ v()x =0.

Covariant derivative @?X(sk(x)fk) = Tsk(x)f, + sk(x)v? fi. x=1(q,p).
(including hypoelliptic
Laplacian)

+g7(a)piVe + Og + M (q,P)V i +M'(a.p),
J

where M} denotes symbols of order p in p: \(’)J(‘)ﬁMi’(q.p)\ < Cy pp)yrlel,
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Scalar case: f=C

Geometric
Kramers-
Fokker-
osﬁ:ff,s Specular reflection: j=1, A=0.
bomzha,y Absorption: j =1, A=1d.
conditions The two above cases can be interpreted in terms of stochastic processes by
completing the Langevin process with a jump process when X(t) hits the
boundary:
m For specular reflection the jump changes the velocity (p1, p’) with p; > 0 into
(=p1,P);
m For the absorption, the particle is sent to an external stationary point ¢ when the
particle hits the boundary.
More general jump processes: Set X+ = {(0,q’, p1,p’),xp1 > 0}. More
general Markov kernel from Xy to 9X_ U {e} can be considered. Re A > ca
Application:

means that a positive fraction is sent to ¢

Doubling the manifold: In the position variable the Neumann and Dirichlet
boundary value problems for —Ag can be introduced by considering even and
odd solutions after the extension by reflection (¢',q’) — (—q',q’).
Here the extension by reflection is (¢, q’, p1,p') — (=g, q’, —p1,p’) .

m Even case=specular reflection: j =1and A=0.

m Odd case: j = —1 and A = 0 — does not preserve the positivity. In the elliptic case,
considered recently by K.T. Sturm via the stochastic dynamics of signed particles.
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Hypoelliptic Laplacian, a p-form version

Geometric
Kramers-
Fokker-
Planck
operators
boﬂ‘d“m A proposal for “Dirichlet” and “Neumann” realizations of the hypoelliptic Laplacian.
Conditions Position space @ = QU IQ 3 q, phase-space X = T*Q,
X =XUdX3x=(q,p), X = {q' =0}.
Hypoelliptic Laplacian: partial differential operator acting on differential forms=
sections of A T*X, of which the main part is a scalar geometric KFP operator.
(REF Bismut and Lebeau).
With the basis (eley =el A e A el Ag AL A &) of ATIX, x € 0X,
e'=dq', & =dp; — ng/dq’ , the involution j is defined pointwise by
Application:

in(e'&y) = (—1)F(—nltHnIFNlele,

(unitary involution for k =0 or k = 1)
“Neumann” realization: Take k =0, j =jo and A=0.
“Dirichlet” realization: Take k=1, j=j; and A=0.
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Strategy

Geometric
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Planck
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conditions

It is a very classical one for boundary value problems (see for example
Hérmander-Chap 20 or Boutet de Montvel (1970))

Have a good understanding of the simplest 1D-problem.
Use some separation of variables for straight half-spaces.

Look at the general local problem by sending it to the straight half-space
problem with a change of variables and try to absorb the corresponding
perturbative terms.

Elements
of proof
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Problems

Pb 1 The simplest 1D problem is actually a
2D-problem with p-dependent coefficients.
Moreover it looks like a corner problem.

P

(0.0,

Rt (26

Fig.1: The boundary 0X = {¢' = 0} and the vector field p;d,: are
represented. For the absorl s
~u(p;) = 0 for p; < 0 and corresponds to the case (_/ —tland A=1).

Pb 2 For a general boundary one has to
face the pb of glancing rays.

aQ

Fig.2: The left picture show a (approximately) gliding ray and
the right one a grazing ray.

Pb 1 solved by introducing adapted Fourier series and a quantization of the function

sign(p1) -

Pb 2 solved by introducing a dyadic partition of unity in the p-variable and by using
the 2nd resolvent formula for the corresponding semiclassical problems (h=27/).
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Conclusion

This solves only the basic functional analysis.
There are still a lot of things to be investigated:

Non self-adjoint spectral problems.

Boundary value problems.

Parameter dependent asymptotics (large friction, small
temperature=semiclassical).

Multiple wells and tunnel effect...
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