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Geometric Kramers-Fokker-Planck operators

In the euclidean space, the operator

P± = ±(p.∂q − ∂qV (q).∂p) +
−∆p + |p|2

2
, x = (q, p) ∈ Ω× Rd

is associated with the Langevin process

dq = pdt , dp = −∂qV (q)dt − pdt + dW

Q = Q t ∂Q riem. mfld with bdy , X = T∗Q , ∂X = T∗∂QQ .

Metric g = gij (q)dqidqj , g−1 = (g ij )

P±,Q,g = ±YE +
−∆p + |p|2q

2
, ∆p = gij (q)∂pi ∂pj

E(q, p) =
|p|2q

2
=

g ij (q)pipj

2
,

YE = g ij (q)pi∂qj −
1

2
∂qk g

ij (q)pipj∂pk = g ij (q)piej , ej = ∂qj + Γ`ijp`∂pj .

acting on C∞(X ; f) . P±,Q,g = scalar part of Bismut’s hypoelliptic Laplacian.
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A simple case

Take Q = (−∞, 0] with g = (dq1)2 .

q1(0, 0)

p1

X
∂X

Specular reflection:u(0,−p1) = u(0, p1) for p1 > 0 .

It can be written γoddu = 0 with γoddu = u(0,p1)−u(0,−p1)
2

.

Absorption:u(0, p1) = 0 for p1 < 0 .

It can be written γoddu = sign(p1)γevu with γevu = u(0,p1)+u(0,−p1)
2

.
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General BC

Metric locally on ∂Q: (dq1)2 ⊕⊥ m(q1, q′) . Consider f-valued functions, f Hilbert
space.

Let j be a unitary involution in f and define along ∂X =
{
q1 = 0

}
:

γodd = Πoddγ =
γ(q′, p1, p′)− jγ(q′,−p1, p′)

2
,

γev = Πevγ =
γ(q′, p1, p′) + jγ(q′,−p1, p′)

2
.

Let the boundary condition on the trace γu = u
∣∣
∂X

be

γoddu = ±sign(p1)Aγevu , ΠevA = AΠev .

Formal integration by part

Re 〈u , P±,Q,gu〉 =
‖∇pu‖2

L2(X ,dqdp;f)
+ ‖|p|qu‖2

L2(X ,dqdp;f)

2
±

1

2

∫
∂X
|γu|(q′, p)2 p1dq

′dp

=
‖∇pu‖2

L2(X ,dqdp;f)
+ ‖|p|qu‖2

L2(X ,dqdp;f)

2
+ Re 〈γevu , Aγevu〉L2(∂X ,|p1|dq′dp;f)︸ ︷︷ ︸ .

Assumptions:
A = A(q, |p|q) is local in q and |p|q (local elastic collision at the boundary);

A(q, |p|q) ∈ L(L2(S∗∂QQ, |ω1|dq′dω; f)) with ‖A(q, r)‖ ≤ C unif.
AΠev = ΠevA
either Re A(q, r) ≥ cA > 0 unif. or A(q, r) ≡ 0 .
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Questions

Do such boundary conditions with (A, j) define a maximal accretive realization
K±,A,g of P±,Q,g ?

Can we specify the domain of K±,A,g and the regularity (and decay in p)
estimates for the resolvent ? Global subelliptic estimates ?

K±,A,g “cuspidal” ?

Compactness of the resolvent ? Discrete spectrum ? Exponential decay ppties of

e−tK±,A,g =
1

2iπ

∫
Γ
e−tz (z − K)−1 dz ?
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Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No
information on the operator domain

SDE’s: B. Lapeyre (1990) 1D specular reflection, Bossy–Jabir (2011) specular
reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results
for the PDE interpretation

Quasi Stationary Distribution (→ molecular dynamics algorithms):
Le Bris–Lelièvre–Luskin–Perez (2012) and Lelièvre–N. (2013) Elliptic case,
Witten Laplacian. But Langevin is a more natural model !

Exponentially small eigenvalues of Witten Laplacians on p-forms in the low
temperature limit: Le Peutrec–Viterbo–N. (2013) Artificial boundary value
problems are introduced.

Series of works by Bismut and Lebeau (2004→2011) about the hypoelliptic
Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten’s
deformation of Hodge theory.

Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation:
Hérau–Hitrik–Sjöstrand (2011). In view of Le Peutrec–Viterbo–N. could be
extended to the hypoelliptic Laplacian on p-forms.

Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck
operator: Lebeau (2007). Used in the analysis of boundary value problems
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Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten’s
deformation of Hodge theory.

Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation:
Hérau–Hitrik–Sjöstrand (2011). In view of Le Peutrec–Viterbo–N. could be
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Notations and first result

Call OQ,g =
−∆p+|p|2q

2
and set Hs′ (q) = (d/2 +OQ,g )−s′/2L2(T∗q Q, dp; f) and

globally Hs′ = (d/2 +OQ,g )−s′/2L2(X , dqdp; f) . Hs(Q;Hs′ ) is the Sobolev

space of Hs -sections of the hermitian fiber bundle πHs′ : Hs′ → Q .

Remember the BC’s γoddu = ±sign(p1)Aγevu
AΠev = ΠevA;
A = A(q, |p|q) is local in q and |p|q (local elastic collision at the boundary);

A(q, |p|q) ∈ L(L2(S∗∂QQ, |ω1|dq′dω; f)) with ‖A(q, r)‖ ≤ C unif.
either Re A(q, r) ≥ cA > 0 unif. or A(q, r) ≡ 0 .

Theorem 1: With the domain D(K±,A,g ) characterized by

u ∈ L2(Q;H1) , P±,Q,gu ∈ L2(X , dqdp; f) ,

γu ∈ L2
loc (∂X , |p1|dq′dp; f) , γoddu = ±sign(p1)Aγevu ,

the operator K±,A,g − d
2

is maximal accretive and

Re 〈u , (K±,A,g +
d

2
)u〉 = ‖u‖2

L2(Q,dq;H1)
+ Re 〈γevu , Aγevu〉L2(∂X ,|p1|dq′dp;f) .

The adjoint of K±,A,g is K∓,A∗,g .
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Subelliptic estimates when A = 0

Theorem 2: When A=0 there exists C > 0 and for all Φ ∈ C∞b ([0,+∞)) satisfying
Φ(0) = 0 a constant CΦ such that

〈λ〉
1
4 ‖u‖+ 〈λ〉

1
8 ‖u‖L2(Q;H1) + ‖u‖H1/3(Q;H0)

+ 〈λ〉
1
4 ‖(1 + |p|q)−1γu‖L2(∂X ,|p1|dq′dp;f) ≤ C‖(K±,0,g − iλ)u‖ ,

and
‖Φ(dg (q, ∂Q))OQ,gu‖ ≤ C‖Φ‖L∞‖(K±,0,g − iλ)u‖+ CΦ‖u‖ ,

hold for all u ∈ D(K±,0,g ) and all λ ∈ R .
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Subelliptic estimates when Re A ≥ cA > 0

Theorem 3: Assume Re A(q, |p|q) ≥ cA > 0 uniformly. There exists C > 0 , for all
t ∈ [0, 1

18
) a constant Ct > 0 and for all Φ ∈ C∞b ([0,+∞)) satisfying Φ(0) = 0 a

constant CΦ such that

〈λ〉
1
4 ‖u‖+ 〈λ〉

1
8 ‖u‖L2(Q;H1) + C−1

t ‖u‖Ht (Q;H0)

+ 〈λ〉
1
8 ‖γu‖L2(∂X ,|p1|dq′dp;f) ≤ C‖(K±,A,g − iλ)u‖ ,
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Corollaries

The operator K±,A,g is cuspidal.

When Q is compact, K−1
±,A,g is compact → discrete spectrum.

The integration by parts imply ‖u‖2
L2(Q,H1)

≤ ‖(K±,A,g − iλ)u‖‖u‖ and a

potential term ∓∂qV (q)∂p with V Lipschitz is a nice perturbation → All the
results are still valid with such a potential term.

PT-symmetry if UAU∗ = A∗ , UK±,A,gU
∗ = K∓,A∗,g = K∗±,A,g when

Uu(q, p) = u(q,−p) .

The results hold (with additional conditions for the PT-symmetry) when Q × f is
replaced by a hermitian bundle πF : F → Q with a metric gF and a connection
∇F . The pull-back bundle FX = π∗F with π : X = T∗Q → Q is then endowed
with the metric gFX = π∗gF and the connection

∇FX
ej = ∇F

∂
qj

, ∇FX
∂pj

= 0 .

Covariant derivative ∇̃FX
T (sk (x)fk ) = Tsk (x)fk + sk (x)∇FX

T fk . x = (q, p) .

DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic
Laplacian)

±g ij (q)pi ∇̃
FX
ej +OQ,g + M0

j (q, p)∇̃FX
∂pj

+ M1(q, p) ,

where Mµ
∗ denotes symbols of order µ in p : |∂βq ∂αp Mµ

∗ (q, p)| ≤ Cα,β〈p〉µ−|α| .
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Scalar case: f = C

Specular reflection: j = 1 , A = 0 .

Absorption: j = 1 , A = Id .

The two above cases can be interpreted in terms of stochastic processes by
completing the Langevin process with a jump process when X (t) hits the
boundary:

For specular reflection the jump changes the velocity (p1, p
′) with p1 > 0 into

(−p1, p
′);

For the absorption, the particle is sent to an external stationary point e when the
particle hits the boundary.

More general jump processes: Set ∂X± = {(0, q′, p1, p′) ,±p1 > 0} . More
general Markov kernel from ∂X+ to ∂X− t {e} can be considered. Re A ≥ cA
means that a positive fraction is sent to e

Doubling the manifold: In the position variable the Neumann and Dirichlet
boundary value problems for −∆q can be introduced by considering even and
odd solutions after the extension by reflection (q1, q′)→ (−q1, q′) .
Here the extension by reflection is (q1, q′, p1, p′)→ (−q1, q′,−p1, p′) .

Even case=specular reflection: j = 1 and A = 0 .
Odd case: j = −1 and A = 0 → does not preserve the positivity. In the elliptic case,
considered recently by K.T. Sturm via the stochastic dynamics of signed particles.
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Odd case: j = −1 and A = 0 → does not preserve the positivity. In the elliptic case,
considered recently by K.T. Sturm via the stochastic dynamics of signed particles.
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Hypoelliptic Laplacian, a p-form version

A proposal for “Dirichlet” and “Neumann” realizations of the hypoelliptic Laplacian.

Position space Q = Q t ∂Q 3 q , phase-space X = T∗Q ,
X = X t ∂X 3 x = (q, p) , ∂X =

{
q1 = 0

}
.

Hypoelliptic Laplacian: partial differential operator acting on differential forms=
sections of

∧
T∗X , of which the main part is a scalar geometric KFP operator.

(REF Bismut and Lebeau).

With the basis (e I êJ = e i1 ∧ . . . ∧ e i|I| ∧ êj1 ∧ . . . ∧ êj|J| ) of
∧

T∗x X , x ∈ ∂X ,

e i = dqi , êj = dpj − Γ`ijp`dq
i , the involution jk is defined pointwise by

jk (e I êJ) = (−1)k (−1)|{1}∩I |+|{1}∩J|e I êJ .

(unitary involution for k = 0 or k = 1)

“Neumann” realization: Take k = 0 , j = j0 and A = 0 .

“Dirichlet” realization: Take k = 1 , j = j1 and A = 0 .
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e i = dqi , êj = dpj − Γ`ijp`dq
i , the involution jk is defined pointwise by

jk (e I êJ) = (−1)k (−1)|{1}∩I |+|{1}∩J|e I êJ .
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Strategy

It is a very classical one for boundary value problems (see for example
Hörmander-Chap 20 or Boutet de Montvel (1970))

Have a good understanding of the simplest 1D-problem.

Use some separation of variables for straight half-spaces.

Look at the general local problem by sending it to the straight half-space
problem with a change of variables and try to absorb the corresponding
perturbative terms.



Geometric
Kramers-
Fokker-
Planck

operators
with

boundary
conditions

Francis
Nier,

LAGA,
Univ.

Paris 13

The
problem

Main
results

Applications

Elements
of proof

Strategy

It is a very classical one for boundary value problems (see for example
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Problems

Pb 1 The simplest 1D problem is actually a
2D-problem with p-dependent coefficients.
Moreover it looks like a corner problem.
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Problems

Pb 1 The simplest 1D problem is actually a
2D-problem with p-dependent coefficients.
Moreover it looks like a corner problem.

Pb 2 For a general boundary one has to
face the pb of glancing rays.
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Problems

Pb 1 The simplest 1D problem is actually a
2D-problem with p-dependent coefficients.
Moreover it looks like a corner problem.

Pb 2 For a general boundary one has to
face the pb of glancing rays.

Pb 1 solved by introducing adapted Fourier series and a quantization of the function
sign(p1) .
Pb 2 solved by introducing a dyadic partition of unity in the p-variable and by using
the 2nd resolvent formula for the corresponding semiclassical problems (h = 2−j ) .
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Conclusion

This solves only the basic functional analysis.
There are still a lot of things to be investigated:

Non self-adjoint spectral problems.

Boundary value problems.

Parameter dependent asymptotics (large friction, small
temperature=semiclassical).

Multiple wells and tunnel effect...
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