Geometric Kramers-Fokker-Planck operators with boundary conditions

Francis Nier, IRMAR, Univ. Rennes 1

Beijing, april 30th 2014

Outline

Kramers-

Fokker-
Planck
operators with boundary conditions

Francis
Nier,
IRMAR.
Univ.
Rennes 1

- Presentation of the problem
- Main results
- Applications
- Elements of proofs

Geometric Kramers-Fokker-Planck operators

The

 problemIn the euclidean space, the operator

$$
P_{ \pm}= \pm\left(p . \partial_{q}-\partial_{q} V(q) \cdot \partial_{p}\right)+\frac{-\Delta_{p}+|p|^{2}}{2} \quad, \quad x=(q, p) \in \Omega \times \mathbb{R}^{d}
$$

is associated with the Langevin process

$$
d q=p d t \quad, \quad d p=-\partial_{q} V(q) d t-p d t+d W
$$

$\bar{Q}=Q \sqcup \partial Q$ riem. mfld with bdy, $X=T^{*} Q, \partial X=T_{\partial Q}^{*} Q$.
Metric $g=g_{i j}(q) d q^{i} d q^{j}, g^{-1}=\left(g^{i j}\right)$

$$
\begin{aligned}
& P_{ \pm, Q, g}= \pm \mathcal{Y}_{\mathcal{E}}+\frac{-\Delta_{p}+|p|_{q}^{2}}{2}, \quad \Delta_{p}=g_{i j}(q) \partial_{p_{i}} \partial_{p_{j}} \\
& \mathcal{E}(q, p)=\frac{|p|_{q}^{2}}{2}=\frac{g^{i j}(q) p_{i} p_{j}}{2}
\end{aligned}
$$

$$
\mathcal{Y}_{\mathcal{E}}=g^{i j}(q) p_{i} \partial_{q^{j}}-\frac{1}{2} \partial_{q^{k}} g^{i j}(q) p_{i} p_{j} \partial_{p_{k}}=g^{i j}(q) p_{i} e_{j}, \quad e_{j}=\partial_{q^{j}}+\Gamma_{i j}^{\ell} p_{\ell} \partial_{p_{j}} .
$$

acting on $\mathcal{C}^{\infty}(\bar{X} ; \mathfrak{f})$. $P_{ \pm, Q, g}=$ scalar part of Bismut's hypoelliptic Laplacian.

Geometric Kramers-Fokker-Planck operators

In the euclidean space, the operator

$$
P_{ \pm}= \pm\left(p \cdot \partial_{q}-\partial_{q} V(q) \cdot \partial_{p}\right)+\frac{-\Delta_{p}+|p|^{2}}{2} \quad, \quad x=(q, p) \in \Omega \times \mathbb{R}^{d}
$$

is associated with the Langevin process

$$
d q=p d t \quad, \quad d p=-\partial_{q} V(q) d t-p d t+d W
$$

$\bar{Q}=Q \sqcup \partial Q$ riem. mfld with bdy, $X=T^{*} Q, \partial X=T_{\partial Q}^{*} Q$.
Metric $g=g_{i j}(q) d q^{i} d q^{j}, g^{-1}=\left(g^{i j}\right)$

$$
\begin{aligned}
& P_{ \pm, Q, g}= \pm \mathcal{Y}_{\mathcal{E}}+\frac{-\Delta_{p}+|p|_{q}^{2}}{2}, \quad \Delta_{p}=g_{i j}(q) \partial_{p_{i}} \partial_{p_{j}} \\
& \mathcal{E}(q, p)=\frac{|p|_{q}^{2}}{2}=\frac{g^{i j}(q) p_{i} p_{j}}{2}
\end{aligned}
$$

$\mathcal{Y}_{\mathcal{E}}=g^{i j}(q) p_{i} \partial_{q^{j}}-\frac{1}{2} \partial_{q^{k}} g^{i j}(q) p_{i} p_{j} \partial_{p_{k}}=g^{i j}(q) p_{i} e_{j}, \quad e_{j}=\partial_{q^{j}}+\Gamma_{i j}^{\ell} p_{\ell} \partial_{p_{j}}$.
acting on $\mathcal{C}^{\infty}(\bar{X} ; \mathfrak{f})$. $P_{ \pm, Q, g}=$ scalar part of Bismut's hypoelliptic Laplacian.

A simple case

Geometric

 Kramers-FokkerPlanck operators with boundary conditionsFrancis
Nier,
IRMAR,
Univ.

```
Rennes 1
```

The problem

Take $\bar{Q}=(-\infty, 0]$ with $g=\left(d q^{1}\right)^{2}$.

Specular reflection: $u\left(0,-p_{1}\right)=u\left(0, p_{1}\right)$ for $p_{1}>0$.
It can be written $\gamma_{\text {odd }} u=0$ with $\gamma_{\text {odd }} u=\frac{u\left(0, p_{1}\right)-u\left(0,-p_{1}\right)}{2}$.
Absorption: $u\left(0, p_{1}\right)=0$ for $p_{1}<0$.
It can be written $\gamma_{\text {odd }} u=\operatorname{sign}\left(p_{1}\right) \gamma_{e v} u$ with $\gamma_{e v} u=\frac{u\left(0, p_{1}\right)+u\left(0,-p_{1}\right)}{2}$.

A simple case

Geometric

 Kramers-FokkerPlanck operators with boundary conditionsFrancis
Nier,
IRMAR,
Univ.

```
Rennes 1
```


The

 problemTake $\bar{Q}=(-\infty, 0]$ with $g=\left(d q^{1}\right)^{2}$.

Specular reflection: $u\left(0,-p_{1}\right)=u\left(0, p_{1}\right)$ for $p_{1}>0$.
It can be written $\gamma_{\text {odd }} u=0$ with $\gamma_{\text {odd }} u=\frac{u\left(0, p_{1}\right)-u\left(0,-p_{1}\right)}{2}$.
Absorption: $u\left(0, p_{1}\right)=0$ for $p_{1}<0$.
It can be written $\gamma_{o d d} u=\operatorname{sign}\left(p_{1}\right) \gamma_{e v} u$ with $\gamma_{e v} u=\frac{u\left(0, p_{1}\right)+u\left(0,-p_{1}\right)}{2}$.

General BC

Metric locally on $\partial Q:\left(d q^{1}\right)^{2} \oplus^{\perp} m\left(q^{1}, q^{\prime}\right)$. Consider \mathfrak{f}-valued functions, \mathfrak{f} Hilbert space.

Let j be a unitary involution in f and define along $\partial X=\left\{q^{1}=0\right\}$:

$$
\begin{aligned}
& \gamma_{o d d}=\Pi_{o d d} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)-j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2}, \\
& \gamma_{e v}=\Pi_{e v} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)+j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2} .
\end{aligned}
$$

Let the boundary condition on the trace $\gamma u=\left.u\right|_{\partial x}$ be

$$
\gamma_{\text {odd }} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u \quad, \quad \Pi_{e v} A=A \Pi_{e v}
$$

Formal integration by part

$$
\begin{array}{r}
\operatorname{Re}\left\langle u, P_{ \pm, Q, g} u\right\rangle=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\|\left.\left||p|_{q} u \|_{L^{2}(X, d q d p ; f)}^{2} \pm \frac{1}{2} \int_{\partial X}\right| \gamma u \right\rvert\,\left(q^{\prime}, p\right)^{2} p_{1} d q^{\prime} d p\right.}{2} \\
=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\|\left||p|_{q} u \|_{L^{2}(X, d q d p ; f)}^{2}\right.\right.}{2}+\underbrace{\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)}} .
\end{array}
$$

Assumptions:

- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; f\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

General BC

Metric locally on $\partial Q:\left(d q^{1}\right)^{2} \oplus^{\perp} m\left(q^{1}, q^{\prime}\right)$. Consider \mathfrak{f}-valued functions, \mathfrak{f} Hilbert space.

Let j be a unitary involution in f and define along $\partial X=\left\{q^{1}=0\right\}$:

$$
\begin{aligned}
& \gamma_{\text {odd }}=\Pi_{\text {odd }} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)-j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2}, \\
& \gamma_{e v}=\Pi_{e v} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)+j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2} .
\end{aligned}
$$

Let the boundary condition on the trace $\gamma u=\left.u\right|_{\partial X}$ be

$$
\gamma_{o d d} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u \quad, \quad \Pi_{e v} A=A \Pi_{e v}
$$

Formal integration by part

$$
\begin{array}{r}
\operatorname{Re}\left\langle u, P_{ \pm, Q, g} u\right\rangle=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2} \pm \frac{1}{2} \int_{\partial X}|\gamma u|\left(q^{\prime}, p\right)^{2} p_{1} d q^{\prime} d p}{2} \\
=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2}}{2}+\underbrace{\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)}} .
\end{array}
$$

Assumptions:

- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; f\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

General BC

Metric locally on $\partial Q:\left(d q^{1}\right)^{2} \oplus^{\perp} m\left(q^{1}, q^{\prime}\right)$. Consider \mathfrak{f}-valued functions, \mathfrak{f} Hilbert space.

Let j be a unitary involution in f and define along $\partial X=\left\{q^{1}=0\right\}$:

$$
\begin{aligned}
& \gamma_{\text {odd }}=\Pi_{o d d} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)-j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2}, \\
& \gamma_{e v}=\Pi_{e v} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)+j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2} .
\end{aligned}
$$

Let the boundary condition on the trace $\gamma u=\left.u\right|_{\partial x}$ be

$$
\gamma_{o d d} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u \quad, \quad \Pi_{e v} A=A \Pi_{e v}
$$

Formal integration by part

$$
\begin{array}{r}
\operatorname{Re}\left\langle u, P_{ \pm, Q, g} u\right\rangle=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2} \pm \frac{1}{2} \int_{\partial X}|\gamma u|\left(q^{\prime}, p\right)^{2} p_{1} d q^{\prime} d p}{2} \\
=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2}}{2}+\underbrace{\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)}} .
\end{array}
$$

Assumptions:

- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; f\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

General BC

Metric locally on $\partial Q:\left(d q^{1}\right)^{2} \oplus^{\perp} m\left(q^{1}, q^{\prime}\right)$. Consider \mathfrak{f}-valued functions, \mathfrak{f} Hilbert space.

Let j be a unitary involution in f and define along $\partial X=\left\{q^{1}=0\right\}$:

$$
\begin{aligned}
& \gamma_{\text {odd }}=\Pi_{\text {odd }} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)-j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2}, \\
& \gamma_{e v}=\Pi_{e v} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)+j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2} .
\end{aligned}
$$

Let the boundary condition on the trace $\gamma u=\left.u\right|_{\partial x}$ be

$$
\gamma_{o d d} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u \quad, \quad \Pi_{e v} A=A \Pi_{e v}
$$

Formal integration by part

$$
\begin{array}{r}
\operatorname{Re}\left\langle u, P_{ \pm, Q, g} u\right\rangle=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2} \pm \frac{1}{2} \int_{\partial X}|\gamma u|\left(q^{\prime}, p\right)^{2} p_{1} d q^{\prime} d p}{2} \\
=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2}}{2}+\underbrace{\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)}} .
\end{array}
$$

Assumptions:

- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; \mathfrak{f}\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

General BC

Metric locally on $\partial Q:\left(d q^{1}\right)^{2} \oplus^{\perp} m\left(q^{1}, q^{\prime}\right)$. Consider \mathfrak{f}-valued functions, \mathfrak{f} Hilbert space.

Let j be a unitary involution in f and define along $\partial X=\left\{q^{1}=0\right\}$:

$$
\begin{aligned}
& \gamma_{\text {odd }}=\Pi_{\text {odd }} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)-j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2}, \\
& \gamma_{e v}=\Pi_{e v} \gamma=\frac{\gamma\left(q^{\prime}, p_{1}, p^{\prime}\right)+j \gamma\left(q^{\prime},-p_{1}, p^{\prime}\right)}{2} .
\end{aligned}
$$

Let the boundary condition on the trace $\gamma u=\left.u\right|_{\partial x}$ be

$$
\gamma_{o d d} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u \quad, \quad \Pi_{e v} A=A \Pi_{e v}
$$

Formal integration by part

$$
\begin{array}{r}
\operatorname{Re}\left\langle u, P_{ \pm, Q, g} u\right\rangle=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2} \pm \frac{1}{2} \int_{\partial X}|\gamma u|\left(q^{\prime}, p\right)^{2} p_{1} d q^{\prime} d p}{2} \\
=\frac{\left\|\nabla_{p} u\right\|_{L^{2}(X, d q d p ; f)}^{2}+\left\||p|_{q} u\right\|_{L^{2}(X, d q d p ; f)}^{2}}{2}+\underbrace{\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)}}_{\geq 0} .
\end{array}
$$

Assumptions:

- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; f\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

Questions

Do such boundary conditions with (A, j) define a maximal accretive realization $K_{ \pm, A, g}$ of $P_{ \pm, Q, g}$?
Can we specify the domain of $K_{ \pm, A, g}$ and the regularity (and decay in p) estimates for the resolvent ? Global subelliptic estimates ?
$K_{ \pm, A, g}$ "cuspidal" ?

Compactness of the resolvent? Discrete spectrum ? Exponential decay ppties of

$$
e^{-t K_{ \pm, A, g}}=\frac{1}{2 i \pi} \int_{\Gamma} e^{-t z}(z-K)^{-1} d z ?
$$

Questions

Geometric

Kramers-

FokkerPlanck operators with boundary conditions
Francis Nier, IRMAR, Univ. Rennes 1 problem

Do such boundary conditions with (A, j) define a maximal accretive realization $K_{ \pm, A, g}$ of $P_{ \pm, Q, g}$?
Can we specify the domain of $K_{ \pm, A, g}$ and the regularity (and decay in p) estimates for the resolvent ? Global subelliptic estimates ?
$K_{ \pm, A, g}$ "cuspidal" ?

Compactness of the resolvent? Discrete spectrum ? Exponential decay ppties of

$$
e^{-t K_{ \pm, A, g}}=\frac{1}{2 i \pi} \int_{\Gamma} e^{-t z}(z-K)^{-1} d z ?
$$

Questions

Geometric Kramers-FokkerPlanck operators with boundary conditions
Francis Nier, IRMAR, Univ. Rennes 1 problem

Do such boundary conditions with (A, j) define a maximal accretive realization $K_{ \pm, A, g}$ of $P_{ \pm, Q, g}$?
Can we specify the domain of $K_{ \pm, A, g}$ and the regularity (and decay in p) estimates for the resolvent ? Global subelliptic estimates ?
$K_{ \pm, A, g}$ "cuspidal" ?

Compactness of the resolvent? Discrete spectrum ? Exponential decay ppties of

$$
e^{-t K_{ \pm, A, g}}=\frac{1}{2 i \pi} \int_{\Gamma} e^{-t z}(z-K)^{-1} d z ?
$$

Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No information on the operator domain
SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy-Jabir (2011) specular reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results for the PDE interpretation
Quasi Stationary Distribution (\rightarrow molecular dynamics algorithms):
Le Bris-Lelièvre-Luskin-Perez (2012) and Lelièvre-N. (2013) Elliptic case, Witten Laplacian. But Langevin is a more natural model !
Exponentially small eigenvalues of Witten Laplacians on p-forms in the low temperature limit: Le Peutrec-Viterbo-N. (2013) Artificial boundary value problems are introduced.
Series of works by Bismut and Lebeau $(2004 \rightarrow 2011)$ about the hypoelliptic Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's deformation of Hodge theory.
Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation: Hérau-Hitrik-Sjöstrand (2011). In view of Le Peutrec-Viterbo-N. could be extended to the hypoelliptic Laplacian on p-forms.
Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck operator: Lebeau (2007). Used in the analysis of boundary value problems

Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No information on the operator domain
SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy-Jabir (2011) specular reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results for the PDE interpretation
Quasi Stationary Distribution (\rightarrow molecular dynamics algorithms):
Le Bris-Lelièvre-Luskin-Perez (2012) and Lelièvre-N. (2013) Elliptic case, Witten Laplacian. But Langevin is a more natural model !
Exponentially small eigenvalues of Witten Laplacians on p-forms in the low temperature limit: Le Peutrec-Viterbo-N. (2013) Artificial boundary value problems are introduced.
Series of works by Bismut and Lebeau $(2004 \rightarrow 2011)$ about the hypoelliptic Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's deformation of Hodge theory.
Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation: Hérau-Hitrik-Sjöstrand (2011). In view of Le Peutrec-Viterbo-N. could be extended to the hypoelliptic Laplacian on p-forms.
Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck operator: Lebeau (2007). Used in the analysis of boundary value problems

Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No information on the operator domain
SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy-Jabir (2011) specular reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results for the PDE interpretation
Quasi Stationary Distribution (\rightarrow molecular dynamics algorithms):
Le Bris-Lelièvre-Luskin-Perez (2012) and Lelièvre-N. (2013) Elliptic case, Witten Laplacian. But Langevin is a more natural model !
Exponentially small eigenvalues of Witten Laplacians on p-forms in the low temperature limit: Le Peutrec-Viterbo-N. (2013) Artificial boundary value problems are introduced.
Series of works by Bismut and Lebeau $(2004 \rightarrow 2011)$ about the hypoelliptic Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's deformation of Hodge theory.
Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation: Hérau-Hitrik-Sjöstrand (2011). In view of Le Peutrec-Viterbo-N. could be extended to the hypoelliptic Laplacian on p-forms.
Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck operator: Lebeau (2007). Used in the analysis of boundary value problems

Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No information on the operator domain
SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy-Jabir (2011) specular reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results for the PDE interpretation

Quasi Stationary Distribution (\rightarrow molecular dynamics algorithms):
Le Bris-Lelièvre-Luskin-Perez (2012) and Lelièvre-N. (2013) Elliptic case, Witten Laplacian. But Langevin is a more natural model !
Exponentially small eigenvalues of Witten Laplacians on p-forms in the low temperature limit: Le Peutrec-Viterbo-N. (2013) Artificial boundary value problems are introduced.
Series of works by Bismut and Lebeau $(2004 \rightarrow 2011)$ about the hypoelliptic Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's deformation of Hodge theory.
Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation: Hérau-Hitrik-Sjöstrand (2011). In view of Le Peutrec-Viterbo-N. could be extended to the hypoelliptic Laplacian on p-forms.
Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck operator: Lebeau (2007). Used in the analysis of boundary value problems

Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No information on the operator domain
SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy-Jabir (2011) specular reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results for the PDE interpretation

Quasi Stationary Distribution (\rightarrow molecular dynamics algorithms):
Le Bris-Lelièvre-Luskin-Perez (2012) and Lelièvre-N. (2013) Elliptic case, Witten Laplacian. But Langevin is a more natural model !
Exponentially small eigenvalues of Witten Laplacians on p-forms in the low temperature limit: Le Peutrec-Viterbo-N. (2013) Artificial boundary value problems are introduced.
Series of works by Bismut and Lebeau (2004 $\rightarrow 2011$) about the hypoelliptic Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's deformation of Hodge theory.
Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation: Hérau-Hitrik-Sjöstrand (2011). In view of Le Peutrec-Viterbo-N. could be extended to the hypoelliptic Laplacian on p-forms.
Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck operator: Lebeau (2007). Used in the analysis of boundary value problems

Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No information on the operator domain
SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy-Jabir (2011) specular reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results for the PDE interpretation
Quasi Stationary Distribution (\rightarrow molecular dynamics algorithms):
Le Bris-Lelièvre-Luskin-Perez (2012) and Lelièvre-N. (2013) Elliptic case, Witten Laplacian. But Langevin is a more natural model !
Exponentially small eigenvalues of Witten Laplacians on p-forms in the low temperature limit: Le Peutrec-Viterbo-N. (2013) Artificial boundary value problems are introduced.
Series of works by Bismut and Lebeau $(2004 \rightarrow 2011)$ about the hypoelliptic Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's deformation of Hodge theory.
Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation: Hérau-Hitrik-Sjöstrand (2011). In view of Le Peutrec-Viterbo-N. could be extended to the hypoelliptic Laplacian on p-forms.
Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck operator: Lebeau (2007). Used in the analysis of boundary value problems

Some related works and motivations

Kinetic theory: Carrillo (1998) and Lucquin (2002) weak formulations. No information on the operator domain
SDE's: B. Lapeyre (1990) 1D specular reflection, Bossy-Jabir (2011) specular reflection. Bertoin (2007) non-elastic 1D boundary conditions. Very few results for the PDE interpretation

Quasi Stationary Distribution (\rightarrow molecular dynamics algorithms):
Le Bris-Lelièvre-Luskin-Perez (2012) and Lelièvre-N. (2013) Elliptic case, Witten Laplacian. But Langevin is a more natural model !
Exponentially small eigenvalues of Witten Laplacians on p-forms in the low temperature limit: Le Peutrec-Viterbo-N. (2013) Artificial boundary value problems are introduced.
Series of works by Bismut and Lebeau $(2004 \rightarrow 2011)$ about the hypoelliptic Laplacian. Phase-space hypoelliptic and non self-adjoint version of Witten's deformation of Hodge theory.
Exponentially small eigenvalues for the scalar Kramer-Fokker-Planck equation: Hérau-Hitrik-Sjöstrand (2011). In view of Le Peutrec-Viterbo-N. could be extended to the hypoelliptic Laplacian on p-forms.
Maximal subelliptic estimates of the geometric (Kramers)-Fokker-Planck operator: Lebeau (2007). Used in the analysis of boundary value problems

Notations and first result

Call $\mathcal{O}_{Q, g}=\frac{-\Delta_{p}+|p|_{q}^{2}}{2}$ and set $\mathcal{H}^{s^{\prime}}(q)=\left(d / 2+\mathcal{O}_{Q, g}\right)^{-s^{\prime} / 2} L^{2}\left(T_{q}^{*} Q, d p ; \mathfrak{f}\right)$ and globally $\mathcal{H}^{s^{\prime}}=\left(d / 2+\mathcal{O}_{Q, g}\right)^{-s^{\prime} / 2} L^{2}(X, d q d p ; f) . H^{s}\left(Q ; \mathcal{H}^{s^{\prime}}\right)$ is the Sobolev space of H^{s}-sections of the hermitian fiber bundle $\pi_{\mathcal{H}^{s^{\prime}}}: \mathcal{H}^{s^{\prime}} \rightarrow Q$.
Remember the BC's $\gamma_{\text {odd }} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u$

- $A \Pi_{e v}=\Pi_{e v} A$;
- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; f\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

Theorem 1: With the domain $D\left(K_{ \pm, A, g}\right)$ characterized by

$$
\begin{aligned}
& u \in L^{2}\left(Q ; \mathcal{H}^{1}\right) \quad, \quad P_{ \pm, Q, g} u \in L^{2}(X, d q d p ; f) \\
& \gamma u \in L_{\text {loc }}^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right) \quad, \quad \gamma_{o d d} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u,
\end{aligned}
$$

the operator $K_{ \pm, A, g}-\frac{d}{2}$ is maximal accretive and
$\operatorname{Re}\left\langle u,\left(K_{ \pm, A, g}+\frac{d}{2}\right) u\right\rangle=\|u\|_{L^{2}\left(Q, d q ; \mathcal{H}^{1}\right)}^{2}+\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)}$.
The adjoint of $K_{ \pm, A, g}$ is $K_{\mp, A^{*}, g}$.

Notations and first result

The

 problemCall $\mathcal{O}_{Q, g}=\frac{-\Delta_{p}+|p|_{q}^{2}}{2}$ and set $\mathcal{H}^{s^{\prime}}(q)=\left(d / 2+\mathcal{O}_{Q, g}\right)^{-s^{\prime} / 2} L^{2}\left(T_{q}^{*} Q, d p ; f\right)$ and globally $\mathcal{H}^{s^{\prime}}=\left(d / 2+\mathcal{O}_{Q, g}\right)^{-s^{\prime} / 2} L^{2}(X, d q d p ; f) . H^{s}\left(Q ; \mathcal{H}^{s^{\prime}}\right)$ is the Sobolev space of H^{s}-sections of the hermitian fiber bundle $\pi_{\mathcal{H}^{s^{\prime}}}: \mathcal{H}^{s^{\prime}} \rightarrow Q$.
Remember the BC's $\gamma_{\text {odd }} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u$

- $A \Pi_{e v}=\Pi_{e v} A$;
- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; \mathfrak{f}\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

Theorem 1: With the domain $D\left(K_{ \pm, A, g}\right)$ characterized by

$$
\begin{aligned}
& u \in L^{2}\left(Q ; \mathcal{H}^{1}\right) \quad, \quad P_{ \pm, Q, g} u \in L^{2}(X, d q d p ; f) \\
& \gamma u \in L_{\text {loc }}^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right) \quad, \quad \gamma_{o d d} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u
\end{aligned}
$$

the operator $K_{ \pm, A, g}-\frac{d}{2}$ is maximal accretive and
$\operatorname{Re}\left\langle u,\left(K_{ \pm, A, g}+\frac{d}{2}\right) u\right\rangle=\|u\|_{L^{2}\left(Q, d q ; \mathcal{H}^{1}\right)}^{2}+\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p_{i} f\right)}$.
The adjoint of $K_{ \pm, A, g}$ is $K_{\mp, A^{*}, g}$.

Notations and first result

Call $\mathcal{O}_{Q, g}=\frac{-\Delta_{p}+|p|_{q}^{2}}{2}$ and set $\mathcal{H}^{s^{\prime}}(q)=\left(d / 2+\mathcal{O}_{Q, g}\right)^{-s^{\prime} / 2} L^{2}\left(T_{q}^{*} Q, d p ; f\right)$ and globally $\mathcal{H}^{s^{\prime}}=\left(d / 2+\mathcal{O}_{Q, g}\right)^{-s^{\prime} / 2} L^{2}(X, d q d p ; f) . H^{s}\left(Q ; \mathcal{H}^{s^{\prime}}\right)$ is the Sobolev space of H^{s}-sections of the hermitian fiber bundle $\pi_{\mathcal{H}^{s^{\prime}}}: \mathcal{H}^{s^{\prime}} \rightarrow Q$.
Remember the BC's $\gamma_{\text {odd }} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{\text {ev }} u$

- $A \Pi_{e v}=\Pi_{e v} A$;
- $A=A\left(q,|p|_{q}\right)$ is local in q and $|p|_{q}$ (local elastic collision at the boundary);
- $A\left(q,|p|_{q}\right) \in \mathcal{L}\left(L^{2}\left(S_{\partial Q}^{*} Q,\left|\omega_{1}\right| d q^{\prime} d \omega ; f\right)\right)$ with $\|A(q, r)\| \leq C$ unif.
- either $\operatorname{Re} A(q, r) \geq c_{A}>0$ unif. or $A(q, r) \equiv 0$.

Theorem 1: With the domain $D\left(K_{ \pm, A, g}\right)$ characterized by

$$
\begin{aligned}
& u \in L^{2}\left(Q ; \mathcal{H}^{1}\right) \quad, \quad P_{ \pm, Q, g} u \in L^{2}(X, d q d p ; \mathfrak{f}) \\
& \gamma u \in L_{\text {loc }}^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; \mathfrak{f}\right) \quad, \quad \gamma_{\text {odd }} u= \pm \operatorname{sign}\left(p_{1}\right) A \gamma_{e v} u
\end{aligned}
$$

the operator $K_{ \pm, A, g}-\frac{d}{2}$ is maximal accretive and

$$
\operatorname{Re}\left\langle u,\left(K_{ \pm, A, g}+\frac{d}{2}\right) u\right\rangle=\|u\|_{L^{2}\left(Q, d q ; \mathcal{H}^{1}\right)}^{2}+\operatorname{Re}\left\langle\gamma_{e v} u, A \gamma_{e v} u\right\rangle_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)}
$$

The adjoint of $K_{ \pm, A, g}$ is $K_{\mp, A^{*}, g}$.

Subelliptic estimates when $A=0$

Theorem 2: When $A=0$ there exists $C>0$ and for all $\Phi \in \mathcal{C}_{b}^{\infty}([0,+\infty))$ satisfying $\Phi(0)=0$ a constant C_{Φ} such that

$$
\begin{aligned}
\langle\lambda\rangle^{\frac{1}{4}}\|u\|+\langle\lambda\rangle^{\frac{1}{8}} & \|u\|_{L^{2}\left(Q ; \mathcal{H}^{1}\right)}+\|u\|_{H^{1 / 3}\left(Q ; \mathcal{H}^{0}\right)} \\
& +\langle\lambda\rangle^{\frac{1}{4}}\left\|\left(1+|p|_{q}\right)^{-1} \gamma u\right\|_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; f\right)} \leq C\left\|\left(K_{ \pm, 0, g}-i \lambda\right) u\right\|
\end{aligned}
$$

and

$$
\left\|\Phi\left(d_{g}(q, \partial Q)\right) \mathcal{O}_{Q, g} u\right\| \leq C\|\Phi\|_{L \infty}\left\|\left(K_{ \pm, 0, g}-i \lambda\right) u\right\|+C_{\Phi}\|u\|,
$$

hold for all $u \in D\left(K_{ \pm, 0, g}\right)$ and all $\lambda \in \mathbb{R}$.

Subelliptic estimates when $\operatorname{Re} A \geq c_{A}>0$

Theorem 3: Assume $\operatorname{Re} A\left(q,|p|_{q}\right) \geq c_{A}>0$ uniformly. There exists $C>0$, for all $t \in\left[0, \frac{1}{18}\right)$ a constant $C_{t}>0$ and for all $\Phi \in \mathcal{C}_{b}^{\infty}([0,+\infty))$ satisfying $\Phi(0)=0$ a constant C_{Φ} such that

$$
\begin{aligned}
\langle\lambda\rangle^{\frac{1}{4}}\|u\|+\langle\lambda\rangle^{\frac{1}{8}}\|u\|_{L^{2}\left(Q ; \mathcal{H}^{1}\right)} & \left.+C_{t}^{-1}\|u\|_{H^{t}(Q ; \mathcal{H}}{ }^{0}\right) \\
& +\langle\lambda\rangle^{\frac{1}{8}}\|\gamma u\|_{L^{2}\left(\partial X,\left|p_{1}\right| d q^{\prime} d p ; \mathfrak{f}\right)} \leq C\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|
\end{aligned}
$$

and

$$
\left\|\Phi\left(d_{g}(q, \partial Q)\right) \mathcal{O}_{Q, g} u\right\| \leq C\|\Phi\|_{L \infty}\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|+C_{\Phi}\|u\|,
$$

hold for all $u \in D\left(K_{ \pm, A, g}\right)$ and all $\lambda \in \mathbb{R}$.

Corollaries

Geometric

Kramers-

Fokker-
Planck

operators

 with boundary conditionsFrancis Nier, IRMAR, Univ. Rennes 1

The problem

The operator $K_{ \pm, A, g}$ is cuspidal.
When \bar{Q} is compact, $K_{ \pm, A, g}^{-1}$ is compact \rightarrow discrete spectrum.
The integration by parts imply $\|u\|_{L^{2}\left(Q, \mathcal{H}^{1}\right)}^{2} \leq\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|\|u\|$ and a potential term $\mp \partial_{q} V(q) \partial_{p}$ with V Lipschitz is a nice perturbation \rightarrow All the results are still valid with such a potential term.
PT-symmetry if $U A U^{*}=A^{*}, U K_{ \pm, A, g} U^{*}=K_{\mp, A^{*}, g}=K_{ \pm, A, g}^{*}$ when $U u(q, p)=u(q,-p)$.
The results hold (with additional conditions for the $P T$-symmetry) when $Q \times f$ is replaced by a hermitian bundle $\pi_{F}: F \rightarrow Q$ with a metric g^{F} and a connection ∇^{F}. The pull-back bundle $F_{X}=\pi^{*} F$ with $\pi: \bar{X}=\overline{T^{*} Q} \rightarrow \bar{Q}$ is then endowed with the metric $g^{F_{X}}=\pi^{*} g^{F}$ and the connection

$$
\nabla_{e_{j}}^{F_{X}}=\nabla_{\partial_{q j}}^{F} \quad, \quad \nabla_{\partial_{p_{j}}}^{F_{X}}=0
$$

Covariant derivative $\tilde{\nabla}_{T}^{F_{X}}\left(s^{k}(x) f_{k}\right)=T s^{k}(x) f_{k}+s^{k}(x) \nabla_{T}^{F_{X}} f_{k} . \quad x=(q, p)$.
DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic Laplacian)

$$
\pm g^{i j}(q) p_{i} \tilde{\nabla}_{e_{j}}^{F_{X}}+\mathcal{O}_{Q, g}+M_{j}^{0}(q, p) \tilde{\nabla}_{\partial_{p_{j}}}^{F_{X}}+M^{1}(q, p)
$$

where M_{*}^{μ} denotes symbols of order μ in $p:\left|\partial_{q}^{\beta} \partial_{p}^{\alpha} M_{*}^{\mu}(q, p)\right| \leq C_{\alpha, \beta}\langle p\rangle^{\mu-|\alpha|}$.

Corollaries

Geometric

Kramers-

Fokker-
Planck operators with boundary conditions
Francis Nier, IRMAR, Univ. Rennes 1

The problem

The operator $K_{ \pm, A, g}$ is cuspidal.

When \bar{Q} is compact, $K_{ \pm, A, g}^{-1}$ is compact \rightarrow discrete spectrum.

The integration by parts imply $\|u\|_{L^{2}\left(Q, \mathcal{H}^{1}\right)}^{2} \leq\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|\|u\|$ and a potential term $\mp \partial_{q} V(q) \partial_{p}$ with V Lipschitz is a nice perturbation \rightarrow All the results are still valid with such a potential term.
PT-symmetry if $U A U^{*}=A^{*}, U K_{ \pm, A, g} U^{*}=K_{\mp, A^{*}, g}=K_{ \pm, A, g}^{*}$ when $U u(q, p)=u(q,-p)$.
The results hold (with additional conditions for the PT-symmetry) when $Q \times f$ is replaced by a hermitian bundle $\pi_{F}: F \rightarrow Q$ with a metric g^{F} and a connection ∇^{F}. The pull-back bundle $F_{X}=\pi^{*} F$ with $\pi: \bar{X}=\overline{T^{*} Q} \rightarrow \bar{Q}$ is then endowed with the metric $g^{F_{X}}=\pi^{*} g^{F}$ and the connection

$$
\nabla_{e_{j}}^{F_{X}}=\nabla_{\partial_{q j}}^{F}, \quad \nabla_{\partial_{p_{j}}}^{F_{X}}=0
$$

Covariant derivative $\tilde{\nabla}_{T}^{F_{X}}\left(s^{k}(x) f_{k}\right)=T s^{k}(x) f_{k}+s^{k}(x) \nabla_{T}^{F_{X}} f_{k} . \quad x=(q, p)$.
DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic Laplacian)

$$
\pm g^{i j}(q) p_{i} \tilde{\nabla}_{e_{j}}^{F_{X}}+\mathcal{O}_{Q, g}+M_{j}^{0}(q, p) \tilde{\nabla}_{\partial_{p_{j}}}^{F_{X}}+M^{1}(q, p)
$$

where M_{*}^{μ} denotes symbols of order μ in $p:\left|\partial_{q}^{\beta} \partial_{p}^{\alpha} M_{*}^{\mu}(q, p)\right| \leq C_{\alpha, \beta}\langle p\rangle^{\mu-|\alpha|}$.

Corollaries

The operator $K_{ \pm, A, g}$ is cuspidal.
When \bar{Q} is compact, $K_{ \pm, A, g}^{-1}$ is compact \rightarrow discrete spectrum.
The integration by parts imply $\|u\|_{L^{2}\left(Q, \mathcal{H}^{1}\right)}^{2} \leq\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|\|u\|$ and a potential term $\mp \partial_{q} V(q) \partial_{p}$ with V Lipschitz is a nice perturbation \rightarrow All the results are still valid with such a potential term.
PT-symmetry if $U A U^{*}=A^{*}, U K_{ \pm, A, g} U^{*}=K_{\mp, A^{*}, g}=K_{ \pm, A, g}^{*}$ when $U u(q, p)=u(q,-p)$.
The results hold (with additional conditions for the PT-symmetry) when $Q \times f$ is replaced by a hermitian bundle $\pi_{F}: F \rightarrow Q$ with a metric g^{F} and a connection ∇^{F}. The pull-back bundle $F_{X}=\pi^{*} F$ with $\pi: \bar{X}=\overline{T^{*} Q} \rightarrow \bar{Q}$ is then endowed with the metric $g^{F_{X}}=\pi^{*} g^{F}$ and the connection

$$
\nabla_{e_{j}}^{F X}=\nabla_{\partial_{q j}}^{F}, \quad \nabla_{\partial_{p_{j}}}^{F X}=0 .
$$

Covariant derivative $\tilde{\nabla}_{T}^{F_{X}}\left(s^{k}(x) f_{k}\right)=T s^{k}(x) f_{k}+s^{k}(x) \nabla_{T}^{F_{X}} f_{k} . \quad x=(q, p)$.
DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic Laplacian)

$$
\pm g^{i j}(q) p_{i} \tilde{\nabla}_{e_{j}}^{F_{X}}+\mathcal{O}_{Q, g}+M_{j}^{0}(q, p) \tilde{\nabla}_{\partial_{p_{j}}}^{F_{X}}+M^{1}(q, p)
$$

where M_{*}^{μ} denotes symbols of order μ in $p:\left|\partial_{q}^{\beta} \partial_{p}^{\alpha} M_{*}^{\mu}(q, p)\right| \leq C_{\alpha, \beta}\langle p\rangle^{\mu-|\alpha|}$.

Corollaries

Geometric

Kramers-

Fokker-
Planck operators with boundary conditions

Francis Nier, IRMAR, Univ. Rennes 1

The problem

The operator $K_{ \pm, A, g}$ is cuspidal.
When \bar{Q} is compact, $K_{ \pm, A, g}^{-1}$ is compact \rightarrow discrete spectrum.
The integration by parts imply $\|u\|_{L^{2}\left(Q, \mathcal{H}^{1}\right)}^{2} \leq\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|\|u\|$ and a potential term $\mp \partial_{q} V(q) \partial_{p}$ with V Lipschitz is a nice perturbation \rightarrow All the results are still valid with such a potential term.
PT-symmetry if $U A U^{*}=A^{*}, U K_{ \pm, A, g} U^{*}=K_{\mp, A^{*}, g}=K_{ \pm, A, g}^{*}$ when $U u(q, p)=u(q,-p)$.
The results hold (with additional conditions for the PT-symmetry) when $Q \times f$ is replaced by a hermitian bundle $\pi_{F}: F \rightarrow Q$ with a metric g^{F} and a connection ∇^{F}. The pull-back bundle $F_{X}=\pi^{*} F$ with $\pi: \bar{X}=\overline{T^{*} Q} \rightarrow \bar{Q}$ is then endowed with the metric $g^{F_{X}}=\pi^{*} g^{F}$ and the connection

$$
\nabla_{e_{j}}^{F_{X}}=\nabla_{\partial_{q j}}^{F} \quad, \quad \nabla_{\partial_{p_{j}}}^{F_{X}}=0
$$

Covariant derivative $\tilde{\nabla}_{T}^{F_{X}}\left(s^{k}(x) f_{k}\right)=T s^{k}(x) f_{k}+s^{k}(x) \nabla_{T}^{F_{X}} f_{k} . \quad x=(q, p)$.
DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic Laplacian)

$$
\pm g^{i j}(q) p_{i} \tilde{\nabla}_{e_{j}}^{F_{X}}+\mathcal{O}_{Q, g}+M_{j}^{0}(q, p) \tilde{\nabla}_{\partial_{p_{j}}}^{F_{X}}+M^{1}(q, p)
$$

where M_{*}^{μ} denotes symbols of order μ in $p:\left|\partial_{q}^{\beta} \partial_{p}^{\alpha} M_{*}^{\mu}(q, p)\right| \leq C_{\alpha, \beta}\langle p\rangle^{\mu-|\alpha|}$.

Corollaries

The operator $K_{ \pm, A, g}$ is cuspidal.
When \bar{Q} is compact, $K_{ \pm, A, g}^{-1}$ is compact \rightarrow discrete spectrum.
The integration by parts imply $\|u\|_{L^{2}\left(Q, \mathcal{H}^{1}\right)}^{2} \leq\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|\|u\|$ and a potential term $\mp \partial_{q} V(q) \partial_{p}$ with V Lipschitz is a nice perturbation \rightarrow All the results are still valid with such a potential term.
PT-symmetry if $U A U^{*}=A^{*}, U K_{ \pm, A, g} U^{*}=K_{\mp, A^{*}, g}=K_{ \pm, A, g}^{*}$ when
$U u(q, p)=u(q,-p)$.
The results hold (with additional conditions for the PT-symmetry) when $Q \times f$ is replaced by a hermitian bundle $\pi_{F}: F \rightarrow Q$ with a metric g^{F} and a connection ∇^{F}. The pull-back bundle $F_{X}=\pi^{*} F$ with $\pi: \bar{X}=\overline{T^{*} Q} \rightarrow \bar{Q}$ is then endowed with the metric $g^{F_{X}}=\pi^{*} g^{F}$ and the connection

$$
\nabla_{e_{j}}^{F_{X}}=\nabla_{\partial_{q^{j}}}^{F} \quad, \quad \nabla_{\partial_{p_{j}}}^{F_{X}}=0
$$

Covariant derivative $\tilde{\nabla}_{T}^{F_{X}}\left(s^{k}(x) f_{k}\right)=T s^{k}(x) f_{k}+s^{k}(x) \nabla_{T}^{F_{X}} f_{k} . \quad x=(q, p)$. DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic Laplacian)

$$
\pm g^{i j}(q) p_{i} \tilde{\nabla}_{e_{j}}^{F_{X}}+\mathcal{O}_{Q, g}+M_{j}^{0}(q, p) \tilde{\nabla}_{\partial_{p_{j}}}^{F_{X}}+M^{1}(q, p)
$$

where M_{*}^{μ} denotes symbols of order μ in $p:\left|\partial_{q}^{\beta} \partial_{p}^{\alpha} M_{*}^{\mu}(q, p)\right| \leq C_{\alpha, \beta}\langle p\rangle^{\mu-|\alpha|}$.

Corollaries

The operator $K_{ \pm, A, g}$ is cuspidal.
When \bar{Q} is compact, $K_{ \pm, A, g}^{-1}$ is compact \rightarrow discrete spectrum.
The integration by parts imply $\|u\|_{L^{2}\left(Q, \mathcal{H}^{1}\right)}^{2} \leq\left\|\left(K_{ \pm, A, g}-i \lambda\right) u\right\|\|u\|$ and a potential term $\mp \partial_{q} V(q) \partial_{p}$ with V Lipschitz is a nice perturbation \rightarrow All the results are still valid with such a potential term.
PT-symmetry if $U A U^{*}=A^{*}, U K_{ \pm, A, g} U^{*}=K_{\mp, A^{*}, g}=K_{ \pm, A, g}^{*}$ when $U u(q, p)=u(q,-p)$.
The results hold (with additional conditions for the PT-symmetry) when $Q \times f$ is replaced by a hermitian bundle $\pi_{F}: F \rightarrow Q$ with a metric g^{F} and a connection ∇^{F}. The pull-back bundle $F_{X}=\pi^{*} F$ with $\pi: \bar{X}=\overline{T^{*} Q} \rightarrow \bar{Q}$ is then endowed with the metric $g^{F_{X}}=\pi^{*} g^{F}$ and the connection

$$
\nabla_{e_{j}}^{F X}=\nabla_{\partial_{q^{j}}}^{F}, \quad \nabla_{\partial_{p_{j}}}^{F_{X}}=0
$$

Covariant derivative $\tilde{\nabla}_{T}^{F_{X}}\left(s^{k}(x) f_{k}\right)=T s^{k}(x) f_{k}+s^{k}(x) \nabla_{T}^{F_{X}} f_{k} . \quad x=(q, p)$.
DEF: General geometric Kramers-Fokker-Planck operator (including hypoelliptic Laplacian)

$$
\pm g^{i j}(q) p_{i} \tilde{\nabla}_{e_{j}}^{F_{X}}+\mathcal{O}_{Q, g}+M_{j}^{0}(q, p) \tilde{\nabla}_{\partial_{p_{j}}}^{F_{X}}+M^{1}(q, p)
$$

where M_{*}^{μ} denotes symbols of order μ in $p:\left|\partial_{q}^{\beta} \partial_{p}^{\alpha} M_{*}^{\mu}(q, p)\right| \leq C_{\alpha, \beta}\langle p\rangle^{\mu-|\alpha|}$.

Scalar case: $\mathfrak{f}=\mathbb{C}$

Geometric

Kramers-

Fokker-
Planck
operators with
boundary conditions

Francis
Nier,
IRMAR.
Univ.
Rennes 1

The
problem

Specular reflection: $j=1, A=0$.
Absorption: $j=1, A=\mathrm{Id}$.
The two above cases can be interpreted in terms of stochastic processes by completing the Langevin process with a jump process when $X(t)$ hits the boundary:

- For specular reflection the jump changes the velocity (p_{1}, p^{\prime}) with $p_{1}>0$ into ($-p_{1}, p^{\prime}$);
- For the absorption, the particle is sent to an external stationary point e when the particle hits the boundary.
More general jump processes: Set $\partial X_{ \pm}=\left\{\left(0, q^{\prime}, p_{1}, p^{\prime}\right), \pm p_{1}>0\right\}$. More general Markov kernel from ∂X_{+}to $\partial X_{-} \sqcup\{\mathfrak{e}\}$ can be considered. $\operatorname{Re} A \geq c_{A}$ means that a positive fraction is sent to \mathfrak{e}
Doubling the manifold: In the position variable the Neumann and Dirichlet boundary value problems for $-\Delta_{q}$ can be introduced by considering even and odd solutions after the extension by reflection $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$.
Here the extension by reflection is $\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)$.
- Even case=specular reflection: $j=1$ and $A=0$.
- Odd case: $j=-1$ and $A=0 \rightarrow$ does not preserve the positivity.

Scalar case: $\mathfrak{f}=\mathbb{C}$

Geometric

Kramers-

Fokker-
Planck

operators

 withboundary conditions

Francis
Nier,
IRMAR.
Univ.
Rennes 1

The
problem

Specular reflection: $j=1, A=0$.
Absorption: $j=1, A=\mathrm{Id}$.
The two above cases can be interpreted in terms of stochastic processes by completing the Langevin process with a jump process when $X(t)$ hits the boundary:

- For specular reflection the jump changes the velocity $\left(p_{1}, p^{\prime}\right)$ with $p_{1}>0$ into ($-p_{1}, p^{\prime}$);
- For the absorption, the particle is sent to an external stationary point \mathfrak{e} when the particle hits the boundary.
More general jump processes: Set $\partial X_{ \pm}=\left\{\left(0, q^{\prime}, p_{1}, p^{\prime}\right), \pm p_{1}>0\right\}$. More general Markov kernel from ∂X_{+}to $\partial X_{-} \sqcup\{\mathfrak{e}\}$ can be considered. Re $A \geq c_{A}$ means that a positive fraction is sent to \mathfrak{e}
Doubling the manifold: In the position variable the Neumann and Dirichlet boundary value problems for $-\Delta_{q}$ can be introduced by considering even and odd solutions after the extension by reflection $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$.
Here the extension by reflection is $\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)$.
- Even case=specular reflection: $j=1$ and $A=0$.
- Odd case: $j=-1$ and $A=0 \rightarrow$ does not preserve the positivity.

Scalar case: $\mathfrak{f}=\mathbb{C}$

Specular reflection: $j=1, A=0$.
Absorption: $j=1, A=\mathrm{Id}$.
The two above cases can be interpreted in terms of stochastic processes by completing the Langevin process with a jump process when $X(t)$ hits the boundary:

- For specular reflection the jump changes the velocity $\left(p_{1}, p^{\prime}\right)$ with $p_{1}>0$ into ($-p_{1}, p^{\prime}$);
- For the absorption, the particle is sent to an external stationary point \mathfrak{e} when the particle hits the boundary.
More general jump processes: Set $\partial X_{ \pm}=\left\{\left(0, q^{\prime}, p_{1}, p^{\prime}\right), \pm p_{1}>0\right\}$. More general Markov kernel from ∂X_{+}to $\partial X_{-} \sqcup\{\mathfrak{e}\}$ can be considered. $\operatorname{Re} A \geq c_{A}$ means that a positive fraction is sent to \mathfrak{e}

Doubling the manifold: In the position variable the Neumann and Dirichlet boundary value problems for $-\Delta_{q}$ can be introduced by considering even and odd solutions after the extension by reflection $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$.
Here the extension by reflection is $\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)$.

- Even case=specular reflection: $j=1$ and $A=0$.
- Odd case: $j=-1$ and $A=0 \rightarrow$ does not preserve the positivity.

Scalar case: $\mathfrak{f}=\mathbb{C}$

Geometric

Kramers-Fokker-

Specular reflection: $j=1, A=0$.
Absorption: $j=1, A=\mathrm{Id}$.
The two above cases can be interpreted in terms of stochastic processes by completing the Langevin process with a jump process when $X(t)$ hits the boundary:

- For specular reflection the jump changes the velocity (p_{1}, p^{\prime}) with $p_{1}>0$ into ($-p_{1}, p^{\prime}$);
- For the absorption, the particle is sent to an external stationary point \mathfrak{e} when the particle hits the boundary.
More general jump processes: Set $\partial X_{ \pm}=\left\{\left(0, q^{\prime}, p_{1}, p^{\prime}\right), \pm p_{1}>0\right\}$. More general Markov kernel from ∂X_{+}to $\partial X_{-} \sqcup\{\mathfrak{e}\}$ can be considered. $\operatorname{Re} A \geq c_{A}$ means that a positive fraction is sent to \mathfrak{e}

Doubling the manifold: In the position variable the Neumann and Dirichlet boundary value problems for $-\Delta_{q}$ can be introduced by considering even and odd solutions after the extension by reflection $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$.
Here the extension by reflection is $\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)$.

- Even case=specular reflection: $j=1$ and $A=0$.
- Odd case: $j=-1$ and $A=0 \rightarrow$ does not preserve the positivity.

Scalar case: $\mathfrak{f}=\mathbb{C}$

Specular reflection: $j=1, A=0$.
Absorption: $j=1, A=\mathrm{Id}$.
The two above cases can be interpreted in terms of stochastic processes by completing the Langevin process with a jump process when $X(t)$ hits the boundary:

- For specular reflection the jump changes the velocity $\left(p_{1}, p^{\prime}\right)$ with $p_{1}>0$ into ($-p_{1}, p^{\prime}$);
- For the absorption, the particle is sent to an external stationary point \mathfrak{e} when the particle hits the boundary.
More general jump processes: Set $\partial X_{ \pm}=\left\{\left(0, q^{\prime}, p_{1}, p^{\prime}\right), \pm p_{1}>0\right\}$. More general Markov kernel from ∂X_{+}to $\partial X_{-} \sqcup\{\mathfrak{e}\}$ can be considered. $\operatorname{Re} A \geq c_{A}$ means that a positive fraction is sent to \mathfrak{e}
Doubling the manifold: In the position variable the Neumann and Dirichlet boundary value problems for $-\Delta_{q}$ can be introduced by considering even and odd solutions after the extension by reflection $\left(q^{1}, q^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime}\right)$. Here the extension by reflection is $\left(q^{1}, q^{\prime}, p_{1}, p^{\prime}\right) \rightarrow\left(-q^{1}, q^{\prime},-p_{1}, p^{\prime}\right)$.
- Even case $=$ specular reflection: $j=1$ and $A=0$.
- Odd case: $j=-1$ and $A=0 \rightarrow$ does not preserve the positivity.

Hypoelliptic Laplacian

Set $\eta(U, V)=\left\langle\pi_{*} U, \pi_{*} V\right\rangle_{g}-\omega(U, V)$ for $U, V \in T X=T\left(T^{*} Q\right)$ where $\omega=d p \wedge d q$ is the symplectic form on X. The non degenerate form η^{*} is defined by duality and then extended to $\wedge T_{x}^{*} X, x=(q, p)$.
Call d^{X} the differential on X and \bar{d}_{η}^{X} the "codifferential" defined by

$$
\int_{X}\left\langle\left(d^{X} s\right)(x), s^{\prime}(x)\right\rangle_{\eta} d q d p=\int_{X}\left\langle s(x),\left(\bar{d}_{\eta}^{X} s^{\prime}\right)(x)\right\rangle_{\eta} d q d p
$$

Deformation à la Witten: For $\mathcal{H}(q, p)=\frac{|p|_{q}^{2}}{2}+V(q)$, the deformed differential and codifferential are defined by

$$
d_{\mathcal{H}}^{X}=e^{-\mathcal{H}} d^{X} e^{\mathcal{H}} \quad, \quad \bar{d}_{\eta, \mathcal{H}}^{X}=e^{\mathcal{H}} \bar{d}_{\mathcal{H}}^{X} e^{-\mathcal{H}} .
$$

Hypoelliptic Laplacian

$$
\mathcal{U}_{\mathcal{H}}^{2}=\left(d_{\mathcal{H}}^{X}+\bar{d}_{\eta, \mathcal{H}}^{X}\right)^{2}
$$

With the basis $\left(e^{l} \hat{e}_{J}=e^{i_{1}} \wedge \ldots \wedge e^{i| | \mid} \wedge \hat{e}_{j_{1}} \wedge \ldots \wedge \hat{e}_{j_{|J|}}\right)$ with $e^{i}=d q^{i}$, $\hat{e}_{j}=d p_{j}-\Gamma_{i j}^{\ell} p_{\ell} d q^{i}$, consider the weight operator

$$
\langle p\rangle^{ \pm \widehat{\operatorname{deg}}}\left(\omega_{l}^{J} e^{\prime} \hat{e}_{J}\right)=\langle p\rangle^{ \pm|J|} \omega_{l}^{J} e^{\prime} \hat{e}_{J} .
$$

Then $\langle p\rangle^{-\widehat{d e g}} \circ \mathcal{U}_{\mathcal{H}}^{2} \circ\langle p\rangle^{+\widehat{d e g}}$ is a geometric Kramers-Fokker-Planck operator.
$\left(\right.$ Note $\left.e^{i}=\pi^{*}\left(d q^{i}\right), \hat{e}_{j}=\pi^{*}\left(d p_{j}\right)=\pi^{*}\left(\partial_{q^{j}}\right).\right)$

Hypoelliptic Laplacian

Set $\eta(U, V)=\left\langle\pi_{*} U, \pi_{*} V\right\rangle_{g}-\omega(U, V)$ for $U, V \in T X=T\left(T^{*} Q\right)$ where $\omega=d p \wedge d q$ is the symplectic form on X. The non degenerate form η^{*} is defined by duality and then extended to $\Lambda T_{x}^{*} X, x=(q, p)$.
Call d^{X} the differential on X and \bar{d}_{η}^{X} the "codifferential" defined by

$$
\int_{X}\left\langle\left(d^{x} s\right)(x), s^{\prime}(x)\right\rangle_{\eta} d q d p=\int_{X}\left\langle s(x),\left(\bar{d}_{\eta}^{x} s^{\prime}\right)(x)\right\rangle_{\eta} d q d p
$$

Deformation à la Witten: For $\mathcal{H}(q, p)=\frac{|p|_{q}^{2}}{2}+V(q)$, the deformed differential and codifferential are defined by

$$
d_{\mathcal{H}}^{X}=e^{-\mathcal{H}} d^{X} e^{\mathcal{H}} \quad, \quad \bar{d}_{\eta, \mathcal{H}}^{X}=e^{\mathcal{H}} \bar{d}_{\mathcal{H}}^{X} e^{-\mathcal{H}}
$$

Hypoelliptic Laplacian

$$
\mathcal{U}_{\mathcal{H}}^{2}=\left(d_{\mathcal{H}}^{X}+\bar{d}_{\eta, \mathcal{H}}^{X}\right)^{2}
$$

With the basis $\left(e^{l} \hat{e}_{J}=e^{i_{1}} \wedge \ldots \wedge e^{i|l|} \wedge \hat{e}_{j_{1}} \wedge \ldots \wedge \hat{e}_{j_{|J|}}\right)$ with $e^{i}=d q^{i}$, $\hat{e}_{j}=d p_{j}-\Gamma_{i j}^{\ell} p_{\ell} d q^{i}$, consider the weight operator

$$
\langle p\rangle^{ \pm \widehat{\operatorname{deg}}}\left(\omega_{l}^{J} e^{I} \hat{e}_{J}\right)=\langle p\rangle^{ \pm|J|} \omega_{J}^{J} e^{l} \hat{e}_{J}
$$

Then $\langle p\rangle^{-\widehat{d e g}} \circ \mathcal{U}_{\mathcal{H}}^{2} \circ\langle p\rangle^{+\widehat{d e g}}$ is a geometric Kramers-Fokker-Planck operator.
$\left(\right.$ Note $\left.e^{i}=\pi^{*}\left(d q^{i}\right), \hat{e}_{j}=\pi^{*}\left(d p_{j}\right)=\pi^{*}\left(\partial_{q^{j}}\right).\right)$

Hypoelliptic Laplacian

Set $\eta(U, V)=\left\langle\pi_{*} U, \pi_{*} V\right\rangle_{g}-\omega(U, V)$ for $U, V \in T X=T\left(T^{*} Q\right)$ where $\omega=d p \wedge d q$ is the symplectic form on X. The non degenerate form η^{*} is defined by duality and then extended to $\Lambda T_{x}^{*} X, x=(q, p)$.
Call d^{X} the differential on X and \bar{d}_{η}^{X} the "codifferential" defined by

$$
\int_{X}\left\langle\left(d^{X} s\right)(x), s^{\prime}(x)\right\rangle_{\eta} d q d p=\int_{X}\left\langle s(x),\left(\bar{d}_{\eta}^{X} s^{\prime}\right)(x)\right\rangle_{\eta} d q d p
$$

Deformation à la Witten: For $\mathcal{H}(q, p)=\frac{|p|_{q}^{2}}{2}+V(q)$, the deformed differential and codifferential are defined by

$$
d_{\mathcal{H}}^{X}=e^{-\mathcal{H}} d^{X} e^{\mathcal{H}} \quad, \quad \bar{d}_{\eta, \mathcal{H}}^{X}=e^{\mathcal{H}} \bar{d}_{\mathcal{H}}^{X} e^{-\mathcal{H}} .
$$

Hypoelliptic Laplacian $\quad \mathcal{U}_{\mathcal{H}}^{2}=\left(d_{\mathcal{H}}^{X}+\bar{d}_{\eta, \mathcal{H}}^{X}\right)^{2}$.
With the basis $\left(e^{l} \hat{e}_{J}=e^{i_{1}} \wedge \ldots \wedge e^{i| | \mid} \wedge \hat{e}_{j_{1}} \wedge \ldots \wedge \hat{e}_{j_{|J|}}\right)$ with $e^{i}=d q^{i}$, $\hat{e}_{j}=d p_{j}-\Gamma_{i j}^{\ell} p_{\ell} d q^{i}$, consider the weight operator

$$
\langle p\rangle^{ \pm \widehat{\operatorname{deg}}}\left(\omega_{l}^{J} e^{\prime} \hat{e}_{J}\right)=\langle p\rangle^{ \pm|J|} \omega_{l}^{J} e^{\prime} \hat{e}_{J}
$$

Then $\langle p\rangle^{-\widehat{d e g}} \circ \mathcal{U}_{\mathcal{M}}^{2} \circ\langle p\rangle^{+\widehat{d e g}}$ is a geometric Kramers-Fokker-Planck operator.
$\left(\right.$ Note $\left.e^{i}=\pi^{*}\left(d q^{i}\right), \hat{e}_{j}=\pi^{*}\left(d p_{j}\right)=\pi^{*}\left(\partial_{q^{j}}\right).\right)$

Hypoelliptic Laplacian

A proposal for "Dirichlet" and "Neumann" realization of the hypoelliptic Laplacian. Remember $g^{X}=g \oplus g^{-1}$ with $g\left(e^{i}, e^{j}\right)=g^{i j}, g\left(\hat{e}_{i}, \hat{e}_{j}\right)=g_{i j}$ and $g\left(e^{i}, \hat{e}_{j}\right)=0$ and the natural extension to $\wedge T_{x}^{*} X$. The mapping j_{k} locally defined by

$$
\mathbf{j}_{k}\left(e^{l} \hat{e}_{J}\right)=(-1)^{k}(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} e^{\prime} \hat{e}_{J},
$$

defines a unitary involution on $F^{X}=\pi^{*} F$ for $k=0$ and $k=1$.
"Neumann" realization: Take $k=0, j=j_{0}$ and $A=0$.
"Dirichlet" realization: Take $k=1, j=\mathbf{j}_{1}$ and $A=0$.
Starting from $\mathcal{D}=\left\{u \in \mathcal{C}_{0}^{\infty}\left(\bar{X} ; \wedge T^{*} X\right), \gamma_{\text {odd }} u=0\right\}$, the closure of $C+\langle p\rangle^{-\widehat{d e g}} \circ \mathcal{U}_{\mathcal{H}}^{2} \circ\langle p\rangle^{+\widehat{d e g}}$ is maximal accretive. The fiber bundle version of Theorem 1 and its corollaries are valid.

Hypoelliptic Laplacian

A proposal for "Dirichlet" and "Neumann" realization of the hypoelliptic Laplacian. Remember $g^{X}=g \oplus g^{-1}$ with $g\left(e^{i}, e^{j}\right)=g^{i j}, g\left(\hat{e}_{i}, \hat{e}_{j}\right)=g_{i j}$ and $g\left(e^{i}, \hat{e}_{j}\right)=0$ and the natural extension to $\wedge T_{x}^{*} X$. The mapping j_{k} locally defined by

$$
\mathbf{j}_{k}\left(e^{l} \hat{e}_{J}\right)=(-1)^{k}(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} e^{\prime} \hat{e}_{J},
$$

defines a unitary involution on $F^{X}=\pi^{*} F$ for $k=0$ and $k=1$.
"Neumann" realization: Take $k=0, j=\mathbf{j}_{0}$ and $A=0$.
"Dirichlet" realization: Take $k=1, j=\mathbf{j}_{1}$ and $A=0$.
Starting from $\mathcal{D}=\left\{u \in \mathcal{C}_{0}^{\infty}\left(\bar{X} ; \wedge T^{*} X\right), \gamma_{\text {odd }} u=0\right\}$, the closure of
 Theorem 1 and its corollaries are valid.

Hypoelliptic Laplacian

A proposal for "Dirichlet" and "Neumann" realization of the hypoelliptic Laplacian. Remember $g^{X}=g \oplus g^{-1}$ with $g\left(e^{i}, e^{j}\right)=g^{i j}, g\left(\hat{e}_{i}, \hat{e}_{j}\right)=g_{i j}$ and $g\left(e^{i}, \hat{e}_{j}\right)=0$ and the natural extension to $\wedge T_{x}^{*} X$. The mapping j_{k} locally defined by

$$
\mathbf{j}_{k}\left(e^{l} \hat{e}_{J}\right)=(-1)^{k}(-1)^{|\{1\} \cap I|+|\{1\} \cap J|} e^{\prime} \hat{e}_{J},
$$

defines a unitary involution on $F^{X}=\pi^{*} F$ for $k=0$ and $k=1$.
"Neumann" realization: Take $k=0, j=j_{0}$ and $A=0$.
"Dirichlet" realization: Take $k=1, j=\mathbf{j}_{1}$ and $A=0$.
Starting from $\mathcal{D}=\left\{u \in \mathcal{C}_{0}^{\infty}\left(\bar{X} ; \wedge T^{*} X\right), \gamma_{\text {odd }} u=0\right\}$, the closure of $C+\langle p\rangle^{-\widehat{d e g}} \circ \mathcal{U}_{\mathcal{H}}^{2} \circ\langle p\rangle^{+\widehat{d e g}}$ is maximal accretive. The fiber bundle version of Theorem 1 and its corollaries are valid.

Hypoelliptic Laplacian

A proposal for "Dirichlet" and "Neumann" realization of the hypoelliptic Laplacian. Remember $g^{X}=g \oplus g^{-1}$ with $g\left(e^{i}, e^{j}\right)=g^{i j}, g\left(\hat{e}_{i}, \hat{e}_{j}\right)=g_{i j}$ and $g\left(e^{i}, \hat{e}_{j}\right)=0$ and the natural extension to $\wedge T_{x}^{*} X$.
The mapping j_{k} locally defined by

$$
\mathbf{j}_{k}\left(e^{\prime} \hat{e}_{J}\right)=(-1)^{k}(-1)^{|\{1\} \cap /|+|\{1\} \cap J|} e^{\prime} \hat{e}_{J},
$$

defines a unitary involution on $F^{X}=\pi^{*} F$ for $k=0$ and $k=1$.
"Neumann" realization: Take $k=0, j=\mathbf{j}_{0}$ and $A=0$.
"Dirichlet" realization: Take $k=1, j=\mathbf{j}_{1}$ and $A=0$.
Starting from $\mathcal{D}=\left\{u \in \mathcal{C}_{0}^{\infty}\left(\bar{X} ; \Lambda T^{*} X\right), \gamma_{\text {odd }} u=0\right\}$, the closure of $C+\langle p\rangle^{-\widehat{d e g}} \circ \mathcal{U}_{\mathcal{H}}^{2} \circ\langle p\rangle^{+\widehat{d e g}}$ is maximal accretive. The fiber bundle version of Theorem 1 and its corollaries are valid.

Strategy

It is a very classical one for boundary value problems (see for example Hörmander-Chap 20 or Boutet de Montvel (1970))

Have a good understanding of the simplest $1 D$-problem.
Use some separation of variables for straight half-spaces.
Look at the general local problem by sending it to the straight half-space problem with a change of variables and try to absorb the corresponding perturbative terms.

Strategy

Kramers-

Fokker-
Planck operators with
boundary conditions

Francis
Nier,
IRMAR,
Univ.
Rennes 1

The
problem
Main results

Application
Elements of proof

It is a very classical one for boundary value problems (see for example Hörmander-Chap 20 or Boutet de Montvel (1970))

Have a good understanding of the simplest $1 D$-problem.
Use some separation of variables for straight half-spaces.
Look at the general local problem by sending it to the straight half-space problem with a change of variables and try to absorb the corresponding perturbative terms.

Strategy

It is a very classical one for boundary value problems (see for example Hörmander-Chap 20 or Boutet de Montvel (1970))

Have a good understanding of the simplest $1 D$-problem.
Use some separation of variables for straight half-spaces.
Look at the general local problem by sending it to the straight half-space problem with a change of variables and try to absorb the corresponding perturbative terms.

Pb 1 The simplest $1 D$ problem is actually a $2 D$-problem with p-dependent coefficients. Moreover it looks like a corner problem.

Fig.1: The boundary $\partial X=\left\{q^{1}=0\right\}$ and the vector field $p_{1} \partial_{q^{1}}$ are represented. For the absorbing case, the boundary condition says $\gamma u\left(p_{1}\right)=0$ for $p_{1}<0$ and corresponds to the case ($j=1$ and $A=1$).

Problems

Kramers-

Fokker-
Planck
operators with
boundary conditions

Francis
Nier,
IRMAR,
Univ.
Rennes 1

The
problem
Main
results
Application
Elements of proof

Pb 1 The simplest $1 D$ problem is actually a $2 D$-problem with p-dependent coefficients. Moreover it looks like a corner problem.

Fig.1: The boundary $\partial X=\left\{q^{1}=0\right\}$ and the vector field $p_{1} \partial_{q^{1}}$ are represented. For the absorbing case, the boundary condition says $\gamma u\left(p_{1}\right)=0$ for $p_{1}<0$ and corresponds to the case ($j=1$ and $A=1$).

Pb 2 For a general boundary one has to face the pb of glancing rays.

Fig.2: The left picture show a (approximately) gliding ray and the right one a grazing ray.

Problems

Pb 1 The simplest $1 D$ problem is actually a $2 D$-problem with p-dependent coefficients. Moreover it looks like a corner problem.

Fig.1: The boundary $\partial X=\left\{q^{1}=0\right\}$ and the vector field $p_{1} \partial_{q^{1}}$ are represented. For the absorbing case, the boundary condition says $\gamma u\left(p_{1}\right)=0$ for $p_{1}<0$ and corresponds to the case $(j=1$ and $A=1)$.

Pb 2 For a general boundary one has to face the pb of glancing rays.

Fig.2: The left picture show a (approximately) gliding ray and the right one a grazing ray.

Pb 1 solved by introducing adapted Fourier series and a quantization of the function $\operatorname{sign}\left(p_{1}\right)$.
Pb 2 solved by introducing a dyadic partition of unity in the p-variable and by using the 2nd resolvent formula for the corresponding semiclassical problems ($h=2^{-j}$).

Conclusion

Geometric

Kramers-

Fokker-
Planck
operators with
boundary
conditions
Francis
Nier,
IRMAR,
Univ.
Rennes 1

The

problem
Main results

Application
Elements of proof

This solves only the basic functional analysis.
There are still a lot of things to be investigated:
Non self-adjoint spectral problems.
Boundary value problems.
Parameter dependent asymptotics (large friction, small temperature=semiclassical).
Multiple wells and tunnel effect...

