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Semiclassical annihilation-creation operators:
Unit.eq. a; = \/E(Bl,j ‘) o, &= \/E(—&,,j +v) , veR?
For w € Z = CY set aw)=3,wja; , a*(w)=3wa;,

[a(w), a*(W')] =2h{w, W)z =e{w,w)z , e=2h
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Semiclassical annihilation-creation operators:

(QFT) aj=+e

auj+Vj
v2 oo

The Wick (resp. anti-Wick) quantization associates with the polynomial

b(z)

the operator bVick

= Z bOL’BEa

Bl =p

el =q

= Zbaﬁa*aaﬁ,
a,B

B = <z®q , [,Z®p>
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Semiclassical annihilation-creation operators:
auj + vj _ *auj + vj
N V2 ’

(QFT) aj=+/¢ veR?

The Wick (resp. anti-Wick) quantization associates with the polynomial

_ . L1
b(z) = > bapzt2’ =(z®9,b2%F) , b= mazﬂafb
1Bl =p
|l =gq
the operator bVick  — Z by pga**aP (Wick)
a,B
Example: N = (|z|?)Wick = 2 jataj=eNc—1 . Nopo = glafpa when @, is

the a-th Hermite function o € N9, |a| = 2. N=0(1) < |af = O(%)
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Finite dimensional semiclassical asymptotics

Semiclassical annihilation-creation operators:
auj + vj «

(QFT) aj=+e 7

V2

Weyl operator W (f):

O(F) = Lf;(ﬂ =V2Re (f, )Mk | w(f) =N,
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e a(f) + a*(f) Wick io(f)
O(F) = T2 = VERe(F, )M () = 00,

e If b(¢) = [ b(z)e=2mRe (C:2) dl z(z) then b(z) = [, b(¢)e* ™ Re (0:2) dLz(¢)

and bW = pW&Y (/) \/EDV):/ b(¢)W(V2r¢) d¢.
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Weyl-quantization: bWe¥' = pWe¥!(\/hv, +/hD,) unit. eq. b (v, hD,) .
Weyl-Hrmander classes of C°-symbols: S(1,|dz|?) = Cg°(R??) or

2
User S((2)°, l{;‘z ) (harmonic oscillator: —h?A + x? = (|z]2)"!(r, hD;))

Algebra of C°°-symbol classes, asymptotic expansion in h (or € = 2h).
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Finite dimensional semiclassical asymptotics

Phase-
space

aEsrf:;h Weyl-quantization: bWe¥' = pWe¥!(\/hv, +/hD,) unit. eq. b (v, hD,) .
et Weyl-Hdrmander classes of C*-symbols: S(1,|dz|?) = CEO(RM) or
s User S((2)°, 'g)‘f ) (harmonic oscillator: —R2A + x2 = (|z[2) %Y/ (7, hD))
rff“'“ Algebra of C°°-symbol classes, asymptotic expansion in h (or € = 2h).
[RIMAR Anti-Wick quantization: non-negative quantization, well defined for
; 1 (polynomially weighted) L°°-symbols. No obvious algebra of C°°-functions
w‘_ i Wick quantization: well defined for some classes of real analytic symbols
e (polynomials OK!). Algebra of polynomial symbols.
e In good cases bV = pA—Wick = pWick mod O(h) = O(e) .
. For 0 > 0 with Tr [o:] = 1, e.g. 02 = |the) (e with ||t | 2(gey = 1,
A o the asymptotic value of Tr [bQQE] indep of Q@ = Weyl, Wick, A-Wick.
H“ e Egorov theorem: When Uy is a Fourier integral operator associated with the
canonical transform x on (C9; Im ( , )ca) with amplitude 1, then
Semiclassicy
o mean U, Ya®(v, hDy)Up = (a0 x)?(v, hDy) mod O(h) = mod O(e).

By duality this provides the semiclassical propagation of . (semi-classical or
Wigner measures).
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Bosonic Fock space: Consider now the one particle (separable) complex Hilbert
space Z = L2(RP, dx; C).

H=Ty(2) = 03505025 =820\ 2, /2 = (B 0)
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Bosonic Fock space:

Consider now the one particle (separable) complex Hilbert

space Z = L2(RP, dx; C).

H=TpZ)=

Energy: &(z,Z) =

n
DS Z® =02, \/ 2, \/z_Lzy,,, RP)";C)

Jeo |Vx2()1? dx + 5 [frao V(x = y)|2(x)P|z(y) [ dxdy
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i H. = S(Z)W'Ck — (27 _AZ>Wrck 4 5<z®2 , V(X _ y)z®2>chk

S. Breteau

M e H. = /D Va*(x)Va(x) dx+1 [rap V(x — y)a*(x)a* (y)a(x)a(y) dxdy .
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o n-body evo‘h:tion: For Wy € Lsym (RPY,C)=V\"2Z2
R W(t) = e "eHewy = W(xq, ..., xn, t) solves
M zeri
_ . & 1 ) 1
b OV = — Z AU+ > Z V(i —x)V ife= -
field Jj=1 1<i,j<n
asymp:

Formally “mean field limit"="semiclassical limit" with ¢ = %

“Second quantization” (name given by Dirac in the 50's) understood as a
quantization of a possibly infinite dimensional phase-space since Wigner (32)
" Bogoliubov (47) Berezin (60's)
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Points of view on the bosonic Fock space:

1) Fock representation. Number operator, creation and annihilation
operators, combinatorics;

2) Phase-space without specifying position-momentum (Segal,Berezin).
Bargmann representation: complex variables z and z;

3) Schrédinger representation (position variable),
Functional integral (Glimm-Jaffe),
(gaussian) random fields on a Hilbert space (Skorohod) or a loc.

conv. vector space (Schwartz, Minlos).

Relationship with the bosonic mean field:
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Relationship with the bosonic mean field:

Phase-space geometry

Infinite dimensional WDO calculus
Séminaire Krée Paris (74-78)
Krée-Raczka (78) B. Lascar (77)
Hilbert-Schmidt condition on b

Projections

Stochastic processes, marginal of
probability measures
Functional Integral. Glimm-Jaffe
(70-80's)
self-adjointness for physical models
Euclidean case
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Phase-space geometry Projections
Stochastic processes, marginal of
Infinite dimensional WDO calculus probability measures
Séminaire Krée Paris (74-78) Functional Integral. Glimm-Jaffe
Krée-Raczka (78) B. Lascar (77) (70-80's)
Hilbert-Schmidt condition on b self-adjointness for physical models

Euclidean case

Large dimensional WDO calculus
Helffer-Sjéstrand (92), Nourrigat-
Amour-Cancelier-Kerdelhué-Lévy Bruhl
(00's)
Thermodynamic limit, inductive
exploration of the phase-space
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?ye::mf:id Phase-space geometry Projections
e Stochastic processes, marginal of
ier Infinite dimensional WDO calculus probability measures
s Séminaire Krée Paris (74-78) Functional Integral. Glimm-Jaffe
R Krée-Raczka (78) B. Lascar (77) (70-80's)
ey Hilbert-Schmidt condition on b self-adjointness for physical models
¢ *‘:"“‘“”‘ Euclidean case
~ with Large dimensional WDO calculus
> et Helffer-Sjéstrand (92), Nourrigat-
S Amour-Cancelier-Kerdelhué-Lévy Bruhl
B. Paw (00's) Reduced density matrices:
H“ e Thermodynamic limit, inductive Spohn(80)Adami-Bardos-Golse-
exploration of the phase-space Gottlieb-Mauser, Erdds-Yau-Schlein,
Hepp method- Coherent states: EIgar}—S_chIem, KIalnerman—Machedon,
. Frohlich-Graffi-Knowles-Schwarz,
Hepp(74) Ginibre-Velo(79) S, .
i . . Chen-Pavlovic, Pickl, Anapolitanos...
Rodnianski-Schlein (09) (00’s)
Phase- Coherent states . .
Hices mean field propagation Hermite states Wo = ™7,
e BBGKY hierarchy or other methods.
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t::s::f: Question 1: s it possible to make a synthesis between the phase-space geometry

?ye::;:id (Hamiltonian flow) and a projective point of view (marginals or moments of

a review probability measures<>reduced density matrices) ?

Francis Question 2: s it possible to identify general classes of n-body states for which

5 the mean field (n — oo) propagation holds (convergence at time t coherent with

Renn assumptions at time t = 0) ?

o Difficulty 1: Various asymptotics have to be considered:
e m the behaviour as |z| — oo handled with weights (z)°,s € R or s € N (polynomial
e functions);

. Breteau m the mean field limit, i.e. € = 0orn — oco;

M r“" m the behaviour w.r.t dimension (see e.g. Hilbert-Schmidt conditions).

S Difficulty 2: Weyl (or anti-Wick) quantization defined only for cylindrical

; observables (Fourier transform, Lebesgue measure), can be extended with

M gaussian integration (Hilbert-Schmidt condition).
What are the reasonable classes of Wick ((Z, z)-homogeneous) polynomials ?
Difficulty 3: All the natural classes of symbols are not preserved by physically
relevant nonlinear symplectic transforms. Cylindrical (obvious), polynomial

o (obvious). Hilbert-Schmidt condition: answered by L. Gross in 1960.

ase-
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N get propagation results for states ?
\
Q. Li
B. Pa
il i
M zeri
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B L Question 1: s it possible to make a synthesis between the phase-space geometry

Fra (Hamiltonian flow) and a projective point of view (marginals or moments of
IRMAR probability measures<>reduced density matrices) ?
Rennes Question 2: s it possible to identify general classes of n-body states for which
nt the mean field (n — oo) propagation holds (convergence at time t coherent with
nari assumptions at time t = 0) ?

ith Question 3: If it is not possible to propagate observables, is it still possible to

St get propagation results for states ?
a rd Semiclassical or Wigner measures studied in the 90’s: Schnirel’'man (74), Colin
b [ de Verdiere (85), Helffer-Martinez-Robert (87), Tartar (90), P. Gérard (91),

0. e Lions-Paul (93) Gérard-Markowich-Mauser-Poupaud (97), N. (96)
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Questions and known problems

Phase-
space

approach

to the
mi‘;";& Question 1: s it possible to make a synthesis between the phase-space geometry
dynamics (Hamiltonian flow) and a projective point of view (marginals or moments of

o v probability measures<>reduced density matrices) ?

DJ‘\T‘;‘ Question 2: s it possible to identify general classes of n-body states for which
AR the mean field (n — oo) propagation holds (convergence at time t coherent with

nes 1 assumptions at time t = 0) ?

ith Question 3: If it is not possible to propagate observables, is it still possible to
d get propagation results for states 7
Semiclassical or Wigner measures studied in the 90’s: Schnirel'man (74), Colin
M e de Verdiere (85), Helffer-Martinez-Robert (87), Tartar (90), P. Gérard (91),

d Lions-Paul (93) Gérard-Markowich-Mauser-Poupaud (97), N. (96)

The a priori estimates > 0, fz dp = 1 may be used to compensate the
limitations of a restricted WDO calculus.

Link with the probabilistic (projective) point of view.

Phase-
space
geome-
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Remember: Z is a separable complex Hilbert space (1 part. space)

H=Tp2Z)=&2 0\/2 , Nz®" = enz®n
a(f)z®" = Ven(f, 2)z%""1 | a*(£)z®" = /e(n + 1)Sna[f ® 7],

a(f) + a*(f) W(F) = /()

o(f) = T2
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Remember: Z is a separable complex Hilbert space (1 part. space)

H=Tu2Z)= ,,0\/2 . Nz®" = nz®n

a(f)z®" = en(f, 2)z®""t | a*(f)z®" = \/e(n + 1)Spa[f @ 227,
a(f) + a*(f) W) = e

V2
Consider a normal state in H, g € L}(H), 0 >0, Tr [o:] = 1.
Example: goc = |V ) (W], Ve € H,
Mean field coherent state W. = E(f) = W(g )|Q2)
Mean field Hermite (atomic coherent) state: W, = ©®" with ¢ = % .

o(f) =
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Definition of infinite dimensional Wigner measures

Remember: Z is a separable complex Hilbert space (1 part. space)

H=Tp2Z)=&2 0\/2 , Nz®" =enz®n
a(f)z®" = Ven(f, 2)z%""1 | a*(£)z®" = /e(n + 1)Sna[f ® 7],
a(f) + a*(f) jo(f
o(f) =222 W(Ff) =€)
(f) 7 (fl=e

Consider a normal state in H, o € LY(H), 0 >0, Tr [p:] =1.

For £ € (0,+0c0), 0 € &€, and a family (g:)-ce of normal states in H, M(o:,c € £)
is the set of Borel probability measures p on Z for which there exists £’ C € such that

0eé,
vieZ, lm T [o-W(v2rr)] :/ 2mRe (F12) ()
e— ’ 2

0,e€€

When p € M(ge,e € E), p is called a Wigner measure of (gc)-cs -



Wigner measures:Existence

Phase-
space
approach

to the Th. (Ammari-N. AHP 08)
bosonic

mean field If there exists § > 0 and C5 > 0 s.t.
dynamics:
a review

— Vee&, Tr [95<N)5] < Gs (3.1)
N

then M(oe ,e € E) # 0 and all p € M(oe , € € E) satisfies
Rennes 1

/ (1+2%)° du(z) < Cs.
nt'd zZ

Wigner



Wigner measures:Existence

ee I Th. (Ammari-N. AHP 08)
approach
bm the If there exists 6 > 0 and Cs5 > 0 s.t.
mean field
it veeE, T [e(N)?] <G (31)
N then M(oe ,e € E) # 0 and all p € M(oe , € € E) satisfies
Un

Rennes 1

/(1+ 12P2)° du(z) < C.

: z
o Main ideas of the proof:
M. Fal- Separation of variables:
1

Pa zZ = Z b 2

y H = M ® Ho, Ha =Tp(Z2)
sibe Wheh) = WH) @ W(HhH) =W(h)®1dw, iffh=0.

Z is separable — > Borel o-set and diagonal extraction.
Condition (3.1) is a tightness condition (see Prokhorov criterion)

Wigner



Wigner measures:Existence

Phase-
apanch Th. (Ammari-N. AHP 08)
o the
besanic If there exists § > 0 and Cs > 0 s.t.
mean field
dynarr_ﬁcs: 5
a review Vee&, Tr [gE<N) ] <G (3.1)
Fra s
IRMAR, then M(os,e € E) # 0 and all u € M(oe, € € E) satisfies
V)
F es 1
[ a1z dutz) < Gs.
mmari Z
nt'd
) ith
> Jreteau Remark: After a subsequence extraction we can assume M(o., ¢ € &) = {u}.

Wigner



Wigner measures:Existence

Phase-
space
R Th. (Ammari-N. AHP 08)
mbecasno:ilecld If there exists > 0 and Cs > 0 s.t.
dynamics:
Ve, Tr[e=(N)’] <G (31)
N
a9 then M(os,e € E) # 0 and all u € M(o:, € € E) satisfies
Rennes 1

[+ 1P dutz) < 5.

M. Fal-
% [ Definition

b € S(Z) if there exist a finite rank orth. proj. p and a € S(pZ) s.t. b=aop.

Corollary

Under the condition (3.1) with M(¢e, € € €) = {u},

VbeSqi(2), _lim v [ocbM] = /z 52) dlE).

Wigner



Wigner measures: Examples

Phase-
a;g:f:ch Corollary
to the
bosonic Assume M(oc , € € ) = {u} and
dynamics:
a review Vke N, 3C, >0, ,Vee &, Tr [gst]ng7
Francis
N
TG then for any cylindrical polynomial and with Q =Weyl, Wick or anti-Wick
Re s1
Joint .
. lim Tr[bo]:/bzdz.
“‘:‘ e—0,e€€ oe = ( ) M( )
ont'd
ith
S. Breteau
M. Fal

Wigner
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Wigner measures: Examples

Corollary

Assume M(pe , € € £) = {u} and
VkeN,3C >0,,Ve€ &, Tr [ggNk] < G,

then for any cylindrical polynomial and with @ =Weyl,Wick or anti-Wick

lim Tr [gebo] :/Zb(Z) du(z).

e—0,c€E
Remark: Cylindrical polynomial and Schrodinger representation (gaussian
processes): related to Malliavin calculus



Wigner measures: Examples

Phase-
space
approach Corollary

to the

bosonic Assume M(oe , € € £) = {u} and
dynamics:

a review VkeN,3C >0,,Ve€ &, Tr [gst]gck,

Francis

N

R then for any cylindrical polynomial and with @ =Weyl,Wick or anti-Wick
Ren 1

int . Q _
o im T [e:69] = /Z b(z) du(z).
Examples

S. Breteau N 2 () =alh)
M. Fal- Coherent states: f € Z,|f|z =1, E(f) = W) =e = |Q),

oS (F) = |[E(F))E(F)|, Tr [oS(F)bYiK] = b(F), M (oS (), € €) = {ér}.

Wigner



Wigner measures: Examples

Phase-
=
to the

bosonic Assume M(oe , € € £) = {u} and
dynamics:

a review VkeN,3C >0,,Ve€ &, Tr [gst]gck,

Francis

N

R then for any cylindrical polynomial and with @ =Weyl,Wick or anti-Wick

Ren 1

Wu”h‘ a—)IOi':nEES Tr [ero] = /Z b(z) dp(z).
‘ Examples

3, Eiaiezn N a*(f)—a(f)

M. Fal- Coherent states: f € Z,|f|z =1, E(f) = W(Zf)|Q) = 1),

d S (F) = [E(F)(E(F)|, Tr [of(FBYH] = b(f), M(c gc( ),e€&)={o}.
Hermite (atomic coherent) states: f € Z, |f|z =1,
M. Zerze Qg(f):‘f®"><f®"|,a:%,Sz{l,nEN*},

M(H(f) e € €) {5@ = L e e,yfde}

Wigner



Wigner measures: Examples

Phase-
=
to the

bosonic Assume M(oe , € € £) = {u} and
dynamics:

a review VkeN,3C >0,,Ve€ &, Tr [gst]gck,

Francis

N

R then for any cylindrical polynomial and with @ =Weyl,Wick or anti-Wick

Ren 1

Wu”h‘ a—)IOi':nEES Tr [ero] = /Z b(z) dp(z).
Examples

3, Eiaiezn N a*(f)—a(f)

M. Fal- Coherent states: f € Z,|f|z =1, E(f) = W(Zf)|Q) = 1),

Lo o€ (F) = [E(FHYE(F)], Tr [o€(F)bWik] = b(f), M(c g( )oe € €)= {57}
Hermite (atomic coherent) states: f € Z, |f|z =1,
M. Zerze Qg(f):‘f®"><f®"|,a:%,Sz{l,nEN*},

M(H(f) e € €) {5 27 5o s de}.

mixed Hermite (twin Fock) states: fi,f € Z, (f, , 6) =0y,
o (i &) = IR NPT @ IR N6 e = 5, €= {5, ,neN"},

st
bns M{Qf (f,h), ’:65} {52 12 ®52 1/2,—2}'

Wigner
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dynamics:

a review o 11
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v Polynomials: P(Z) = :ngeN Pp,q(Z)
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Wick calculus, (Pl)-condition, reduced density matrices

Fixed degrees: we say that b(z) = (z®9, bz®P) belongs to P, ,(Z), if

oLl
| |

o2oPb e L' (\/Z \/Z) 1 < r < oo Schatten classes

. Y/ YOO [ - alg oo [ -
Polynomials: P(Z) = @28 .y Pp,a(Z) P2(Z) = &3¢ Pey(2)



Wick calculus, (Pl)-condition, reduced density matrices

Phase
space

approach Definition

£ Fixed degrees: we say that b(z) = (%9, EZ®P> belongs to Pp,q(Z)' i

bosonic
mean field
dynam‘ics 1 1
a review ~_77 o
: b= o 8b€£(\/Z\/Z)

Fra

. Polynomials: P(Z) = :’gqu Pp,q(2)

= For b€ Py q(Z),and n >0,
bWick{V"H’Z = w Sn+q(b®ldvnz)

Wigner



Wick calculus, (Pl)-condition, reduced density matrices

Phase-
space

approach Definition

o the Fixed degrees: we say that b(z) = (z®9, bz®P) belongs to Ppq(Z), if

bosonic
mean field
dynamics:

a review = 11
s | |

b= qapbez:(\/z \/Z)

Fra

Polynomials: P(Z) = :ngeN Pp,q(2)

M e Properties of P(Z):
rd pWick 3y, :EN V" Z = Hin:
number estimates: ||(N)~%/2p"(N)=P/2|| < C||b|| = C|b|p, , for all
b e Ppq(2); ) ) .
Wick ordering: The Wick symbol by "V b, of b{’v’c“ o b;'/’c“ satisfies

min(p2,q1) k

2 - €0y, .05

b1ﬂWCkb2: O - Zbl(w)bz(z)‘ — Z %
k=0 :

bi(w)ba(2)| ,_, in P(Z)

Symbol of the commutator % [bi’w‘:k s bz‘/V[Ck] = {b1, bz}(l) + O(e).

With coherent states: (E(f), b E(f)) = (f®9, bf®P) = b(f) for all b € Pp 4(Z).
Wigner
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Wick calculus, (Pl)-condition, reduced density matrices

Corollary

Assume M(pe , € € £) = {u} and

VkeN,3IC, >0,Vec &, Tr [gst] < Gk,

then lim. 0, cce Tr [0:bWiK] = [ b(z) du(z) for all b € P°(Z).
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Wick calculus, (Pl)-condition, reduced density matrices

Corollary

Assume M(pe , € € £) = {u} and

VkeN,3IC, >0,Vec &, Tr [gst] < Gk,

then lim. 0, cce Tr [0:bWiK] = [ b(z) du(z) for all b € P°(Z).

A counter-example with b not compact: Take ¢ = % ,E= {% ,n e N*} and
consider a normalized sequence (f),en* converging weakly to 0. Then

M(ef (), € €) = {60} ,
v [o€(£)(1212P)Wick] = |£, 2P = _ 22 2.
T [of(6)(1=P9)"4] = 6P =170 [ |27 so(2)
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Wick calculus, (Pl)-condition, reduced density matrices

Corollary

Assume M(pe , € € £) = {u} and

VkeN,3IC, >0,Vec &, Tr [gst] < Gk,

then lim. 0, cce Tr [0:bWiK] = [ b(z) du(z) for all b € P°(Z).

A counter-example with b not compact: Take ¢ = % ,E= {% ,n e N*} and
consider a normalized sequence (f),en* converging weakly to 0. Then

M(ef (), € €) = {60} ,
v [o€(£)(1212P)Wick] = |£, 2P = _ 22 2.
T [of(6)(1=P9)"4] = 6P =170 [ |27 so(2)

Polynomial-ldentity: The failure of the convergence when b= Idyse z is the sole

obstruction to the convergence with a general b € P(Z).
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Remember (|z|2P)Wick = ((z®P , 1d z®P))WiCk =N(N—-¢)---(N—¢g(p—1)) ~ NP

Theorem Ammari-N. (JMPA 11)
Assume M(pe , € € £) = {u}, with

VkeN, lim Tr [gENk] :/ 121 du(z). (PI)
e—0,e€€& Z

Then
limeo,cce Tr [0ebWik] = [ b(z) du(z) for all b € P(Z);
limes0,cce 1N — ’Yg”cl(\/p z)=0, forallpeN
with (assuming p # 6o)
Tr [0eb"ik] p_ Jz12%P)(z%P| du(2)
Tr [e- (W] 70T T PR du(z)

] -
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Remember (|z|2P)Wick = ((z®P  1d z®P))WiCk =N(N—-¢)---(N—¢g(p—1)) ~ NP

Theorem Ammari-N. (JMPA 11)
Assume M(oe , € € £) = {u}, with

VkeN, lim Tr [gst] :/ 1z1% du(z). (PI)
0 & =z

e—0,e€

Then
limeso,cce Tr [0ebWik] = [ b(z) du(z) for all b € P(Z);
limes0,cce 1N — ’Yé’”gl(\/p z)=0, forallpeN

with (assuming p # 6o)

. Tr pWick Zz®P)(z®P| dp(z
“[ng]:% | o= L2 )
Tr [o(|2z[2P)Wick] [= |2 du(z)
Remark: When o, € £1(L§ym (RPYM), e = % .
7£(X1,~-,Xp;y1,~-~,yp):/ 0c(X1; -y Xp, Xiy1, -, ¥p, X) dX
(RD)N—p
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Mean field propagation of Wigner measures

Phase-
space
approach

to the Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial

bosonic . . . .
= symbols) do not remain cylindrical (resp. polynomials).

e Take £(z) = (z, Az) + Q(z) with A self-adjoint and Q € P(Z) and set

a review
Fre H. = EWick while @ is the hamiltonian flow associated with &£ .

Wigner
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Mean field propagation of Wigner measures

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).

Take £(z) = (z, Az) + Q(z) with A self-adjoint and Q € P(Z) and set

H. = EWick while @ is the hamiltonian flow associated with £ .

Theo Ammari-N. (JMPA 11)
Assume M(oe , € € ) = {u} and the condition (Pl), then

M(e eHegelete e € £) = {O(t)up}

and the condition (PI) holds for all times.
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Mean field propagation of Wigner measures

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).

Take £(z) = (z, Az) + Q(z) with A self-adjoint and Q € P(Z) and set

H. = EWick while @ is the hamiltonian flow associated with &£ .

Theorem Ammari-N. (JMPA 11)
Assume M(oe , € € ) = {u} and the condition (Pl), then

M(e™ /2 geel Mo ¢ € £) = {O(t)ent}
and the condition (PI) holds for all times.

Method: Truncated Dyson expansion after (Frohlich-Graffi-Schwarz 07 and
Frohlich-Knowles-Schwarz 09) combined with a priori information on p(t).
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[ Theorem Liard-Pawilowski arXiv 14
Assume M(pe , € € ) = {u} and Q € P>(Z), then

./\/((ef"é""’E Qae’%HE ,e€E)={P(t)su}
and ((PI) at t = 0) < ((PI) at any t)

Wigner
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Theorem Liard-Pawilowski arXiv 14
Assume M(oe, € € ) = {p} and Q € P>*°(Z), then

M(e et g eicte o e €)= {O(t)upu}
and ((PI) at t =0) < ((PI) at any t)

Method: Like in Ammari-N. to appear in Ann. Sci. Pisa for the pair
3D-Coulombic interaction. Measure transportation adapted from
Ambrosio-Gigli-Savaré (book 05).

Wigner
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Theorem Liard-Pawilowski arXiv 14
, Assume M(os, € € ) = {u} and Q € P>*°(Z), then

M(e"éHE oee’tHe e E) = {P(t)xp}
and ((PI) at t = 0) < ((PI) at any t)

Some compactness is needed either on the interaction or on the initial data. In
| the 3D-Coulombic case, we used the compactness of (1 —A)~1/2-1 (1 - A)~1/2,

[x]
Wigner



Related works

Phase-
space

approach
to the
bosonic
mean field
dynamics:
a review S. Breteaux (phD 11, to appear in Ann. Inst. Fourier): 1 particle in a gaussian
Fv}m is random potential=1 particle coupled to a bosonic field — random
A homogenization. Distinguishing stochastic processes from phase-space geometry
o is a matter of scaling; see e.g. W(f) versus W(é)
L Z. Ammari-M. Zerzeri 12: coherent-state propagation with Pauli-Fierz

nari Hamiltonians.

d
~ with Q. Liard (phD in progress): Singular interactions with possibly confining
S rstea potentials.

B. Pawilowski (phD in progress Rennes-Wien): — >Numerics.
Z. Ammari-M. Falconi (arXiv 14): Nelson model.

Z. Ammari-M. Falconi-B. Pawilowski (in progress): order of convergence
(extends Lewin-Rougerie arXiv 13)

B @ B8
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Thank you for your attention !
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