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Finite dimensional semiclassical asymptotics

Semiclassical annihilation-creation operators:

(PDE) aj = h∂νj + νj , a∗j = − h∂νj + νj , ν ∈ Rd

For w ∈ Z = Cd set a(w) =
∑

j w j aj , a∗(w) =
∑

j wj a
∗
j ,[

a(w), a∗(w ′)
]

= 2h〈w , w ′〉Z = ε〈w , w ′〉Z , ε = 2h

The Wick (resp. anti-Wick) quantization associates with the polynomial

b(z) =
∑
|β| = p
|α| = q

bα,βzαzβ = 〈z⊗q , b̃z⊗p〉 , b̃ =
1

q!p!
∂q

z ∂
p
z b

the operator bWick =
∑
α,β

bα,βa∗αaβ , (Wick)

Weyl operator W (f ):

Φ(f ) =
a(f ) + a∗(f )
√

2
=
√

2Re 〈f , z〉Wick , W (f ) = e iΦ(f ) .
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∑
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ε
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If b̂(ζ) =
∫
Z b(z)e−2iπRe 〈ζ,z〉 dLZ(z) then b(z) =

∫
Z b̂(ζ)e2iπRe 〈ζ,z〉 dLZ(ζ)

and bWeyl = bWeyl (
√

hν,
√

hDν) =

∫
Z

b̂(ζ)W (
√

2πζ) dζ .
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Finite dimensional semiclassical asymptotics

Weyl-quantization: bWeyl = bWeyl (
√

hν,
√

hDν) unit. eq. bWeyl (ν, hDν) .
Weyl-Hörmander classes of C∞-symbols: S(1, |dz|2) = C∞b (R2d ) or

∪s∈R S(〈z〉s , |dz|2
〈z〉2 ) (harmonic oscillator: −h2∆ + x2 = (|z|2)Weyl (τ, hDτ ))

Algebra of C∞-symbol classes, asymptotic expansion in h (or ε = 2h).

Anti-Wick quantization: non-negative quantization, well defined for
(polynomially weighted) L∞-symbols. No obvious algebra of C∞-functions

Wick quantization: well defined for some classes of real analytic symbols
(polynomials OK!). Algebra of polynomial symbols.

In good cases bWeyl ≡ bA−Wick ≡ bWick mod O(h) = O(ε) .
For %ε ≥ 0 with Tr [%ε] = 1 , e.g. %ε = |ψε〉〈ψε| with ‖ψε‖L2(Rd ) = 1 ,

the asymptotic value of Tr [bQ%ε] indep of Q = Weyl, Wick, A-Wick.

Egorov theorem: When Uh is a Fourier integral operator associated with the
canonical transform χ on (Cd ; Im 〈 , 〉Cd ) with amplitude 1 , then

U−1
h aQ (ν , hDν)Uh ≡ (a ◦ χ)Q (ν, hDν) mod O(h) = mod O(ε) .

By duality this provides the semiclassical propagation of %ε (semi-classical or
Wigner measures).
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ε
HεΨ0 = Ψ(x1, . . . , xn, t) solves

Formally “mean field limit”=”semiclassical limit” with ε = 1
n

“Second quantization”(name given by Dirac in the 50’s) understood as a
quantization of a possibly infinite dimensional phase-space since Wigner (32)
Bogoliubov (47) Berezin (60’s)
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Points of view on the bosonic Fock space:

1) Fock representation. Number operator, creation and annihilation
operators, combinatorics ;

2) Phase-space without specifying position-momentum (Segal,Berezin).
Bargmann representation: complex variables z and z ;

3) Schrödinger representation (position variable),
Functional integral (Glimm-Jaffe),
(gaussian) random fields on a Hilbert space (Skorohod) or a loc.
conv. vector space (Schwartz, Minlos).

Relationship with the bosonic mean field:

Phase-space geometry Projections

Infinite dimensional ΨDO calculus
Séminaire Krée Paris (74-78)

Krée-Raczka (78) B. Lascar (77)
Hilbert-Schmidt condition on b̃

Stochastic processes, marginal of
probability measures

Functional Integral. Glimm-Jaffe
(70-80’s)

self-adjointness for physical models
Euclidean case

Large dimensional ΨDO calculus
Helffer-Sjöstrand (92), Nourrigat-

Amour-Cancelier-Kerdelhué-Lévy Bruhl
(00’s)

Thermodynamic limit, inductive
exploration of the phase-space

Hepp method- Coherent states:
Hepp(74) Ginibre-Velo(79)

Rodnianski-Schlein (09)
Coherent states

mean field propagation

Reduced density matrices:
Spohn(80)Adami-Bardos-Golse-

Gottlieb-Mauser, Erdös-Yau-Schlein,
Elgart-Schlein, Klainerman-Machedon,

Fröhlich-Graffi-Knowles-Schwarz,
Chen-Pavlovic, Pickl, Anapolitanos...

(00’s)
Hermite states Ψ0 = ϕ⊗n ,

BBGKY hierarchy or other methods.
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Questions and known problems

Question 1: Is it possible to make a synthesis between the phase-space geometry
(Hamiltonian flow) and a projective point of view (marginals or moments of
probability measures↔reduced density matrices) ?

Question 2: Is it possible to identify general classes of n-body states for which
the mean field (n→∞) propagation holds (convergence at time t coherent with
assumptions at time t = 0) ?

Difficulty 1: Various asymptotics have to be considered:
the behaviour as |z| → ∞ handled with weights 〈z〉s , s ∈ R or s ∈ N (polynomial
functions);
the mean field limit, i.e. ε→ 0 or n →∞ ;
the behaviour w.r.t dimension (see e.g. Hilbert-Schmidt conditions).

Difficulty 2: Weyl (or anti-Wick) quantization defined only for cylindrical
observables (Fourier transform, Lebesgue measure), can be extended with
gaussian integration (Hilbert-Schmidt condition).
What are the reasonable classes of Wick ((z, z)-homogeneous) polynomials ?

Difficulty 3: All the natural classes of symbols are not preserved by physically
relevant nonlinear symplectic transforms. Cylindrical (obvious), polynomial
(obvious). Hilbert-Schmidt condition: answered by L. Gross in 1960.
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Question 2: Is it possible to identify general classes of n-body states for which
the mean field (n→∞) propagation holds (convergence at time t coherent with
assumptions at time t = 0) ?

Question 3: If it is not possible to propagate observables, is it still possible to
get propagation results for states ?

Semiclassical or Wigner measures studied in the 90’s: Schnirel’man (74), Colin
de Verdière (85), Helffer-Martinez-Robert (87), Tartar (90), P. Gérard (91),
Lions-Paul (93) Gérard-Markowich-Mauser-Poupaud (97), N. (96)
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The a priori estimates µ ≥ 0 ,
∫
Z dµ = 1 may be used to compensate the

limitations of a restricted ΨDO calculus.

Link with the probabilistic (projective) point of view.
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Definition of infinite dimensional Wigner measures

Remember: Z is a separable complex Hilbert space (1 part. space)

H = Γb(Z) = ⊕∞n=0

n∨
Z , Nz⊗n = εnz⊗n ,

a(f )z⊗n =
√
εn〈f , z〉z⊗n−1 , a∗(f )z⊗n =

√
ε(n + 1)Sn+1[f ⊗ z⊗n] ,

Φ(f ) =
a(f ) + a∗(f )
√

2
, W (f ) = e iΦ(f ) .

Consider a normal state in H , %ε ∈ L1(H) , %ε ≥ 0 , Tr [%ε] = 1 .

Definition

For E ∈ (0,+∞) , 0 ∈ E , and a family (%ε)ε∈E of normal states in H , M(%ε, ε ∈ E)
is the set of Borel probability measures µ on Z for which there exists E ′ ⊂ E such that

0 ∈ E ′ ,

∀f ∈ Z , lim
ε→0 ,ε∈E′

Tr
[
%εW (

√
2πf )

]
=

∫
Z

e2iπRe 〈f , z〉 dµ(z)

When µ ∈M(%ε, ε ∈ E) , µ is called a Wigner measure of (%ε)ε∈E .
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√
ε(n + 1)Sn+1[f ⊗ z⊗n] ,

Φ(f ) =
a(f ) + a∗(f )
√

2
, W (f ) = e iΦ(f ) .

Consider a normal state in H , %ε ∈ L1(H) , %ε ≥ 0 , Tr [%ε] = 1 .
Example: %ε = |Ψε〉〈Ψε| , Ψε ∈ H ,

Mean field coherent state Ψε = E(f ) = W (
√

2
iε

f )|Ω〉
Mean field Hermite (atomic coherent) state: Ψε = ϕ⊗n with ε = 1

n
.
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Wigner measures:Existence

Th. (Ammari-N. AHP 08)

If there exists δ > 0 and Cδ > 0 s.t.

∀ε ∈ E , Tr
[
%ε〈N〉δ

]
≤ Cδ (3.1)

then M(%ε , ε ∈ E) 6= ∅ and all µ ∈M(%ε , ε ∈ E) satisfies∫
Z

(1 + |z|2)δ dµ(z) ≤ Cδ .

Definition

b ∈ Scyl (Z) if there exist a finite rank orth. proj. p and a ∈ S(pZ) s.t. b = a ◦ p .

Corollary

Under the condition (3.1) with M(%ε , ε ∈ E) = {µ} ,

∀b ∈ Scyl (Z) , lim
ε→0 ,ε∈E

Tr
[
%εbWeyl

]
=

∫
Z

b(z) dµ(z) .
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Wigner measures:Existence

Th. (Ammari-N. AHP 08)

If there exists δ > 0 and Cδ > 0 s.t.

∀ε ∈ E , Tr
[
%ε〈N〉δ

]
≤ Cδ (3.1)

then M(%ε , ε ∈ E) 6= ∅ and all µ ∈M(%ε , ε ∈ E) satisfies∫
Z

(1 + |z|2)δ dµ(z) ≤ Cδ .

Main ideas of the proof:
1 Separation of variables:

Z = Z1

⊥
⊕ Z2

H = H1 ⊗ H2 , H∗ = Γb(Z∗)
W (f1 ⊕ f2) = W (f1) ⊗ W (f2) = W (f1)⊗ IdH2

if f2 = 0 .

2 Z is separable − > Borel σ-set and diagonal extraction.
3 Condition (3.1) is a tightness condition (see Prokhorov criterion)

Definition

b ∈ Scyl (Z) if there exist a finite rank orth. proj. p and a ∈ S(pZ) s.t. b = a ◦ p .

Corollary

Under the condition (3.1) with M(%ε , ε ∈ E) = {µ} ,

∀b ∈ Scyl (Z) , lim
ε→0 ,ε∈E

Tr
[
%εbWeyl

]
=

∫
Z

b(z) dµ(z) .
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Th. (Ammari-N. AHP 08)

If there exists δ > 0 and Cδ > 0 s.t.

∀ε ∈ E , Tr
[
%ε〈N〉δ

]
≤ Cδ (3.1)

then M(%ε , ε ∈ E) 6= ∅ and all µ ∈M(%ε , ε ∈ E) satisfies∫
Z

(1 + |z|2)δ dµ(z) ≤ Cδ .

Remark: After a subsequence extraction we can assume M(%ε , ε ∈ E) = {µ} .

Definition

b ∈ Scyl (Z) if there exist a finite rank orth. proj. p and a ∈ S(pZ) s.t. b = a ◦ p .

Corollary
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Corollary
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Tr
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Z

b(z) dµ(z) .

Examples

Coherent states: f ∈ Z , |f |Z = 1 , E(f ) = W (
√

2
iε

f )|Ω〉 = e
a∗(f )−a(f )

ε |Ω〉 ,

%C
ε (f ) = |E(f )〉〈E(f )| , Tr

[
%C
ε (f )bWick

]
= b(f ) , M(%C

ε (f ), ε ∈ E) = {δf } .

Hermite (atomic coherent) states: f ∈ Z , |f |Z = 1 ,
%H
ε (f ) = |f ⊗n〉〈f ⊗n| , ε = 1

n
, E =

{
1
n
, n ∈ N∗

}
,

M(%H
ε (f ) , ε ∈ E) =

{
δS

1

f = 1
2π

∫ 2π
0 δe iθ f dθ

}
.

mixed Hermite (twin Fock) states: f1, f2 ∈ Z , 〈fi , fj 〉 = δij ,

%H
ε (f1, f2) = |f ⊗n

1 〉〈f ⊗n
1 | ⊗ |f ⊗n

2 〉〈f ⊗n
2 | , ε = 1

2n
, E =

{
1

2n
, n ∈ N∗

}
,

M
{
%H
ε (f1, f2) , ε ∈ E

}
=
{
δS

1

2−1/2f1
⊗ δS1

2−1/2f2

}
.
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Definition

Fixed degrees: we say that b(z) = 〈z⊗q , b̃z⊗p〉 belongs to Pp,q(Z) , if

b̃ =
1

q!

1

p!
∂q

z ∂
p
z b ∈ L(

p∨
Z;

q∨
Z) ,

Polynomials: P(Z) = ⊕alg
p,q∈N Pp,q(Z)

For b ∈ Pp,q(Z) , and n ≥ 0 ,

bWick
∣∣∨n+p Z =

√
(n+p)!(n+p)!

n!
ε

p+q
2 Sn+q(b̃ ⊗ Id∨n Z) .

Properties of P(Z):

1 bWick : Hfin = ⊕alg
n∈N

∨n Z → Hfin ;

2 number estimates: ‖〈N〉−q/2bWick〈N〉−p/2‖ ≤ C‖b̃‖ = C |b|Pp,q for all

b ∈ Pp,q(Z) ;

3 Wick ordering: The Wick symbol b1]
Wick b2 of bWick

1 ◦ bWick
2 satisfies

b1]
Wick b2 = eε∂ω.∂z b1(ω)b2(z)

∣∣
ω=z

=

min(p2,q1)∑
k=0

(ε∂ω.∂z )k

k!
b1(ω)b2(z)

∣∣
ω=z

in P(Z)

Symbol of the commutator 1
ε

[
bWick

1 , bWick
2

]
= {b1, b2}(1) +O(ε) .

4 With coherent states: 〈E(f ) , bWick E(f )〉 = 〈f⊗q , b̃f⊗p〉 = b(f ) for all b ∈ Pp,q(Z) .
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Corollary

Assume M(%ε , ε ∈ E) = {µ} and

∀k ∈ N , ∃Ck > 0 , ∀ε ∈ E , Tr
[
%εN

k
]
≤ Ck ,

then limε→0 , ε∈E Tr
[
%εbWick

]
=
∫
Z b(z) dµ(z) for all b ∈ P∞(Z) .

A counter-example with b̃ not compact: Take ε = 1
n

, E =
{

1
n
, n ∈ N∗

}
and

consider a normalized sequence (fn)n∈N∗ converging weakly to 0 . Then

M(%C
ε (fn), ε ∈ E) = {δ0} ,

Tr
[
%C
ε (fn)(|z|2p)Wick

]
= |fn|2p = 1 6= 0 =

∫
Z
|z|2p δ0(z) .

Polynomial-Identity: The failure of the convergence when b̃ = Id∨p Z is the sole

obstruction to the convergence with a general b̃ ∈ P(Z) .
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M(%C
ε (fn), ε ∈ E) = {δ0} ,

Tr
[
%C
ε (fn)(|z|2p)Wick

]
= |fn|2p = 1 6= 0 =

∫
Z
|z|2p δ0(z) .

Polynomial-Identity: The failure of the convergence when b̃ = Id∨p Z is the sole

obstruction to the convergence with a general b̃ ∈ P(Z) .
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Remember (|z|2p)Wick =
(
〈z⊗p , Id z⊗p〉

)Wick
= N(N− ε) · · · (N− ε(p − 1)) ∼ Np

Theorem Ammari-N. (JMPA 11)

Assume M(%ε , ε ∈ E) = {µ} , with

∀k ∈ N , lim
ε→0,ε∈E

Tr
[
%εN

k
]

=

∫
Z
|z|2k dµ(z) . (PI )

Then

1 limε→0,ε∈E Tr
[
%εbWick

]
=
∫
Z b(z) dµ(z) for all b ∈ P(Z) ;

2 limε→0,ε∈E ‖γp
ε − γp

0 ‖L1(
∨p Z) = 0 , for all p ∈ N

with (assuming µ 6= δ0)

Tr
[
γp
ε b̃
]

=
Tr
[
%εbWick

]
Tr
[
%ε(|z|2p)Wick

] , γp
0 =

∫
Z |z
⊗p〉〈z⊗p | dµ(z)∫
Z |z|2p dµ(z)

.
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Wick calculus, (PI) condition, reduced density matrices

Remember (|z|2p)Wick =
(
〈z⊗p , Id z⊗p〉

)Wick
= N(N− ε) · · · (N− ε(p − 1)) ∼ Np

Theorem Ammari-N. (JMPA 11)

Assume M(%ε , ε ∈ E) = {µ} , with

∀k ∈ N , lim
ε→0,ε∈E

Tr
[
%εN

k
]

=

∫
Z
|z|2k dµ(z) . (PI )

Then

1 limε→0,ε∈E Tr
[
%εbWick

]
=
∫
Z b(z) dµ(z) for all b ∈ P(Z) ;

2 limε→0,ε∈E ‖γp
ε − γp

0 ‖L1(
∨p Z) = 0 , for all p ∈ N

with (assuming µ 6= δ0)

Tr
[
γp
ε b̃
]

=
Tr
[
%εbWick

]
Tr
[
%ε(|z|2p)Wick

] , γp
0 =

∫
Z |z
⊗p〉〈z⊗p | dµ(z)∫
Z |z|2p dµ(z)

.

Remark: When %ε ∈ L1(L2
sym((RD )n)) , ε = 1

n
,

γp
ε(x1, . . . , xp ; y1, . . . , yp) =

∫
(RD )N−p

%ε(x1, . . . , xp ,X ; y1, . . . , yp ,X ) dX
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Mean field propagation of Wigner measures

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).

Take E(z) = 〈z , Az〉+ Q(z) with A self-adjoint and Q ∈ P(Z) and set
Hε = EWick while Φ is the hamiltonian flow associated with E .

Theorem Ammari-N. (JMPA 11)

Assume M(%ε , ε ∈ E) = {µ} and the condition (PI ) , then

M(e−i t
ε

Hε%εe i t
ε

Hε , ε ∈ E) = {Φ(t)∗µ}

and the condition (PI ) holds for all times.

Theorem Liard-Pawilowski arXiv 14

Assume M(%ε , ε ∈ E) = {µ} and Q ∈ P∞(Z) , then

M(e−i t
ε

Hε%εe i t
ε

Hε , ε ∈ E) = {Φ(t)∗µ}
and ((PI) at t = 0)⇔ ((PI) at any t)
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Mean field propagation of Wigner measures

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).

Take E(z) = 〈z , Az〉+ Q(z) with A self-adjoint and Q ∈ P(Z) and set
Hε = EWick while Φ is the hamiltonian flow associated with E .

Theorem Ammari-N. (JMPA 11)

Assume M(%ε , ε ∈ E) = {µ} and the condition (PI ) , then

M(e−i t
ε

Hε%εe i t
ε

Hε , ε ∈ E) = {Φ(t)∗µ}

and the condition (PI ) holds for all times.

Method: Truncated Dyson expansion after (Fröhlich-Graffi-Schwarz 07 and
Fröhlich-Knowles-Schwarz 09) combined with a priori information on µ(t) .
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Theorem Liard-Pawilowski arXiv 14

Assume M(%ε , ε ∈ E) = {µ} and Q ∈ P∞(Z) , then

M(e−i t
ε

Hε%εe i t
ε

Hε , ε ∈ E) = {Φ(t)∗µ}
and ((PI) at t = 0)⇔ ((PI) at any t)

Method: Like in Ammari-N. to appear in Ann. Sci. Pisa for the pair
3D-Coulombic interaction. Measure transportation adapted from
Ambrosio-Gigli-Savaré (book 05).
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Assume M(%ε , ε ∈ E) = {µ} and Q ∈ P∞(Z) , then

M(e−i t
ε

Hε%εe i t
ε

Hε , ε ∈ E) = {Φ(t)∗µ}
and ((PI) at t = 0)⇔ ((PI) at any t)

Some compactness is needed either on the interaction or on the initial data. In
the 3D-Coulombic case, we used the compactness of (1−∆)−1/2 1

|x| (1−∆)−1/2 .
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Related works

1 S. Breteaux (phD 11, to appear in Ann. Inst. Fourier): 1 particle in a gaussian
random potential=1 particle coupled to a bosonic field → random
homogenization. Distinguishing stochastic processes from phase-space geometry
is a matter of scaling; see e.g. W (f ) versus W ( f

ε
) .

2 Z. Ammari-M. Zerzeri 12: coherent-state propagation with Pauli-Fierz
Hamiltonians.

3 Q. Liard (phD in progress): Singular interactions with possibly confining
potentials.

4 B. Pawilowski (phD in progress Rennes-Wien): − >Numerics.

5 Z. Ammari-M. Falconi (arXiv 14): Nelson model.

6 Z. Ammari-M. Falconi-B. Pawilowski (in progress): order of convergence
(extends Lewin-Rougerie arXiv 13)
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Thank you for your attention !
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