Minimization of $\|\varphi\|_{4} /\|\varphi\|_{2}$ for polarizations

Francis Nier,
LAGA, Univ. Paris 13

Semiclassical Analysis and Magnetic Fields,
Rennes may 22nd 2015

Outline

- Motivations
- Some ample line bundles
- Some critical points for a fixed τ
- Minimization w.r.t τ for principal polarizations
- 2-adic version

Motivations

Although experiments or numerical simulations, in Ginzburg-Landau or Gross-Pitaevski models (supraconductivity, superfluidity, rotating BEC), provide some evidence of the optimality of the Abrikosov (hexagonal) lattice, very little is known theoretically in this quantum sphere packing problem.
Solving a model problem, is important for the development of the analysis.

Figure: Experiments on Bose-Einstein condensates obtained a) in ENS (Dalibard et al.) b) in MIT (Ketterle et al.). Chevy-Dalibard, Europhysics News 2008

In this specific case the energy functional is

$$
\int_{\mathbb{C}}|z|^{2}|f(z)|^{2} e^{-\frac{|z|^{2}}{h}}+G|f(z)|^{4} e^{-\frac{2| || |^{2}}{h}} L(d z),
$$

under the constraint

$$
f \text { holomorphic } \quad \int_{\mathbb{C}}|f(z)|^{2} e^{-\frac{|z|^{2}}{h}} L(d z)=1 .
$$

Some remarks

- The physical plane is actually a phase-space if one considers the Bargmann transform

$$
\left(B_{h} \psi\right)(z)=\frac{1}{(\pi h)^{3 / 4}} e^{\frac{z^{2}}{h}} \int_{\mathbb{R}} e^{-\frac{(\sqrt{2} z-y)^{2}}{h}} \psi(y) d y
$$

which is a unitary transform from $L^{2}(\mathbb{R}, d y)$ to

$$
\mathcal{F}_{h}=\left\{f \text { entire on } \mathbb{C}, \int_{\mathbb{C}} e^{-\frac{|z|^{2}}{h}}|f(z)|^{2} L(d z)<+\infty\right\}
$$

Some remarks

- The physical plane is actually a phase-space if one considers the Bargmann transform

$$
\left(B_{h} \psi\right)(z)=\frac{1}{(\pi h)^{3 / 4}} e^{\frac{z^{2}}{h}} \int_{\mathbb{R}} e^{-\frac{(\sqrt{2} z-y)^{2}}{h}} \psi(y) d y,
$$

which is a unitary transform from $L^{2}(\mathbb{R}, d y)$ to

$$
\mathcal{F}_{h}=\left\{f \text { entire on } \mathbb{C}, \int_{\mathbb{C}} e^{-\frac{|z|^{2}}{h}}|f(z)|^{2} L(d z)<+\infty\right\}
$$

- $h>0$ is a semiclassical parameter. The repartition of zeroes is constrained by the uncertainty principle, $\Delta q \Delta p \geq h$ when $z=\frac{1}{\sqrt{2}}(q+i p): 1$ zero per box of volume h.
- The physical plane is actually a phase-space if one considers the Bargmann transform

$$
\left(B_{h} \psi\right)(z)=\frac{1}{(\pi h)^{3 / 4}} e^{\frac{z^{2}}{h}} \int_{\mathbb{R}} e^{-\frac{(\sqrt{2} z-y)^{2}}{h}} \psi(y) d y,
$$

which is a unitary transform from $L^{2}(\mathbb{R}, d y)$ to

$$
\mathcal{F}_{h}=\left\{f \text { entire on } \mathbb{C}, \int_{\mathbb{C}} e^{-\frac{|z|^{2}}{h}}|f(z)|^{2} L(d z)<+\infty\right\}
$$

- $h>0$ is a semiclassical parameter. The repartition of zeroes is constrained by the uncertainty principle, $\Delta q \Delta p \geq h$ when $z=\frac{1}{\sqrt{2}}(q+i p)$: 1 zero per box of volume h.
- Semiclassical (microlocal) analysis = cotangent geometry of amplitude and frequency modulations. Typically $\psi(q)=a(q) e^{i S(q) / h}, q \in \mathbb{R}^{d}$, encoded by $\mu=|a(q)|^{2} \delta(p-d S(q))$.
Model $e^{i\langle p, q\rangle / h}, q \in V, p \in V^{*}$ (or possibly $q \in V / \mathcal{L} \sim \mathbb{T}^{d}$ $\left.p \in(2 \pi \mathbb{Z})^{d}\right)$.

$$
\mathcal{F}_{h}=\left\{f \text { entire on } \mathbb{C}, \int_{\mathbb{C}} e^{-\frac{|z|^{2}}{h}}|f(z)|^{2} L(d z)<+\infty\right\}
$$

- Here the confining potential $|z|^{2}$ provides the compactness in the minimization of $\int_{\mathbb{C}}|z|^{2}|u(z)|^{2}+G|u(z)|^{4} L(d z)$ when $u(z)=e^{-\frac{|z|^{2}}{2 h}} f(z), f$ entire, $\int_{\mathbb{C}}|u(z)|^{2} L(d z)=1$.

$$
\mathcal{F}_{h}=\left\{f \text { entire on } \mathbb{C}, \int_{\mathbb{C}} e^{-\frac{|z|^{2}}{h}}|f(z)|^{2} L(d z)<+\infty\right\}
$$

- Here the confining potential $|z|^{2}$ provides the compactness in the minimization of $\int_{\mathbb{C}}|z|^{2}|u(z)|^{2}+G|u(z)|^{4} L(d z)$ when $u(z)=e^{-\frac{|z|^{2}}{2 h}} f(z), f$ entire, $\int_{\mathbb{C}}|u(z)|^{2} L(d z)=1$.
- Semiclassical Toeplitz operators:

$$
\begin{equation*}
\Pi_{h}\left(a(z, \bar{z}) \Pi_{h} \circ \Pi_{h}(b(z, \bar{z})) \Pi_{h}=\Pi_{h} a b(z, \bar{z}) \Pi_{h}+\mathcal{O}(h)\right. \tag{0.1}
\end{equation*}
$$

when $a, b \in \mathcal{C}_{b}^{\infty}(\mathbb{C})$ acts by multiplication and

$$
\Pi_{h}=\frac{1}{\pi h} \int_{\mathbb{C}} e^{-\frac{z z^{\prime}-\left|z^{\prime}\right|^{2}}{h}} f\left(z^{\prime}, \bar{z}^{\prime}\right) L\left(d z^{\prime}\right) .
$$

Nonlinear pb studied in this way in (Aftalion-Blanc-N. JFA 2006), with other confining potentials (Correggi-Tanner-Yngvason JMP 2007, Aftalion-Blanc-Lerner JFA 2009, related works by Serfaty, Sandier, and Sigal-Tzaneteas 2011).

$$
\mathcal{F}_{h}=\left\{f \text { entire on } \mathbb{C}, \int_{\mathbb{C}} e^{-\frac{|z|^{2}}{h}}|f(z)|^{2} L(d z)<+\infty\right\}
$$

- Here the confining potential $|z|^{2}$ provides the compactness in the minimization of $\int_{\mathbb{C}}|z|^{2}|u(z)|^{2}+G|u(z)|^{4} L(d z)$ when $u(z)=e^{-\frac{|z|^{2}}{2 h}} f(z), f$ entire, $\int_{\mathbb{C}}|u(z)|^{2} L(d z)=1$.
- Semiclassical Toeplitz operators:

$$
\begin{equation*}
\Pi_{h}\left(a(z, \bar{z}) \Pi_{h} \circ \Pi_{h}(b(z, \bar{z})) \Pi_{h}=\Pi_{h} a b(z, \bar{z}) \Pi_{h}+\mathcal{O}(h)\right. \tag{0.1}
\end{equation*}
$$

when $a, b \in \mathcal{C}_{b}^{\infty}(\mathbb{C})$ acts by multiplication and

$$
\Pi_{h}=\frac{1}{\pi h} \int_{\mathbb{C}} e^{-\frac{z z^{\prime}-\left|z^{\prime}\right|^{2}}{h}} f\left(z^{\prime}, \bar{z}^{\prime}\right) L\left(d z^{\prime}\right) .
$$

(0.1) allows amplitude modulations and partitions of unity for the non linear problem. Geometrical deformations sjöstrand, Sjöstrand-Boutet de Monvel, Boutet de Monvel-Guillemin

$$
\mathcal{F}_{h}=\left\{f \text { entire on } \mathbb{C}, \int_{\mathbb{C}} e^{-\frac{|z|^{2}}{h}}|f(z)|^{2} L(d z)<+\infty\right\}
$$

- Here the confining potential $|z|^{2}$ provides the compactness in the minimization of $\int_{\mathbb{C}}|z|^{2}|u(z)|^{2}+G|u(z)|^{4} L(d z)$ when

$$
u(z)=e^{-\frac{|z|^{2}}{2 h}} f(z), f \text { entire, } \int_{\mathbb{C}}|u(z)|^{2} L(d z)=1
$$

- Semiclassical Toeplitz operators:

$$
\begin{equation*}
\Pi_{h}\left(a(z, \bar{z}) \Pi_{h} \circ \Pi_{h}(b(z, \bar{z})) \Pi_{h}=\Pi_{h} a b(z, \bar{z}) \Pi_{h}+\mathcal{O}(h)\right. \tag{0.1}
\end{equation*}
$$

- Model problem: minimize $\frac{f|u(z)|^{4}}{\left(f|u(z)|^{2}\right)^{2}}$ for f or φ entire on \mathbb{C} with

$$
\begin{aligned}
& u(z)=e^{-\frac{|z|^{2}}{2 h}} f(z)=e^{-\frac{|z|^{2}-z^{2}}{2 h}} \varphi(z) \\
& |u| \quad \mathcal{L} \text {-periodic }, \quad f F=\lim _{R \rightarrow \infty} \frac{\int_{|z|<R} F L(d z)}{\int_{|z|<R} 1 L(d z)} .
\end{aligned}
$$

Some ample line bundles

- Nondegenerate ample line bundles over complex tori are parametrized by $\tau={ }^{t} \tau \in \mathcal{M}_{g}(\mathbb{C})$, $\operatorname{Im} \tau>0$ and $d \in \mathcal{M}_{g}(\mathbb{Z})$, diagonal $d_{1}\left|d_{2} \cdots\right| d_{g} \rightarrow$ dimension of the set of sections $\prod_{i=1}^{g} d_{i}$ (ref e.g: Debarre, Lion-Vergne, Igusa, Beauville, Mumford, Bierkenhake-Lange)

Some ample line bundles

- Nondegenerate ample line bundles over complex tori are parametrized by $\tau={ }^{t} \tau \in \mathcal{M}_{g}(\mathbb{C})$, $\operatorname{Im} \tau>0$ and $d \in \mathcal{M}_{g}(\mathbb{Z})$, diagonal $d_{1}\left|d_{2} \cdots\right| d_{g} \rightarrow$ dimension of the set of sections $\prod_{i=1}^{g} d_{i}$ (ref e.g: Debarre, Lion-Vergne, Igusa, Beauville, Mumford, Bierkenhake-Lange)
- Fix the period matrix $\tau=x+i y$ and with φ entire on \mathbb{C}^{g} associate $u_{\varphi}(z)=e^{-\frac{\pi}{2}\left(y^{-1}\{z\}-y^{-1}[z]\right)} \varphi(z),\left|u_{\varphi}(z)\right|=e^{-\pi y^{-1}[\operatorname{Im} z]}|\varphi(z)|$
(Siegel's notations $A[B]={ }^{t} B A B$ and $A\{B\}={ }^{t} \bar{B} A B$).

Some ample line bundles

- Nondegenerate ample line bundles over complex tori are parametrized by $\tau={ }^{t} \tau \in \mathcal{M}_{g}(\mathbb{C})$, $\operatorname{Im} \tau>0$ and $d \in \mathcal{M}_{g}(\mathbb{Z})$, diagonal $d_{1}\left|d_{2} \cdots\right| d_{g} \rightarrow$ dimension of the set of sections $\prod_{i=1}^{g} d_{i}$ (ref e.g: Debarre, Lion-Vergne, Igusa, Beauville, Mumford, Bierkenhake-Lange)
- Fix the period matrix $\tau=x+i y$ and with φ entire on \mathbb{C}^{g} associate $u_{\varphi}(z)=e^{-\frac{\pi}{2}\left(y^{-1}\{z\}-y^{-1}[z]\right)} \varphi(z),\left|u_{\varphi}(z)\right|=e^{-\pi y^{-1}[\operatorname{Im} z]}|\varphi(z)|$
(Siegel's notations $A[B]={ }^{t} B A B$ and $A\{B\}={ }^{t} \bar{B} A B$).
- Phase translations: For $z_{0} \in \mathbb{C}^{g}$ and $\lambda \in S^{1}$, $\left(z_{0}, \lambda\right) \cdot \varphi(z)=\lambda e^{-i \pi^{t}\left(\operatorname{Im} z_{0}\right) y^{-1}\left(2 z-z_{0}\right)} \varphi\left(z-z_{0}\right)$.

Some ample line bundles

- Nondegenerate ample line bundles over complex tori are parametrized by $\tau={ }^{t} \tau \in \mathcal{M}_{g}(\mathbb{C}), \operatorname{Im} \tau>0$ and $d \in \mathcal{M}_{g}(\mathbb{Z})$, diagonal $d_{1}\left|d_{2} \cdots\right| d_{g} \rightarrow$ dimension of the set of sections $\prod_{i=1}^{g} d_{i}$ (ref e.g: Debarre, Lion-Vergne, Igusa, Beauville, Mumford, Bierkenhake-Lange)
- Fix the period matrix $\tau=x+i y$ and with φ entire on \mathbb{C}^{g} associate $u_{\varphi}(z)=e^{-\frac{\pi}{2}\left(y^{-1}\{z\}-y^{-1}[z]\right)} \varphi(z),\left|u_{\varphi}(z)\right|=e^{-\pi y^{-1}[\operatorname{Im} z]}|\varphi(z)|$
(Siegel's notations $A[B]={ }^{t} B A B$ and $A\{B\}={ }^{t} \bar{B} A B$).
- Phase translations: For $z_{0} \in \mathbb{C}^{g}$ and $\lambda \in S^{1}$, $\left(z_{0}, \lambda\right) \cdot \varphi(z)=\lambda e^{-i \pi^{t}\left(\operatorname{Im} z_{0}\right) y^{-1}\left(2 z-z_{0}\right)} \varphi\left(z-z_{0}\right)^{\prime}$.
- Weyl relations: $\left(z_{1}, \lambda_{1}\right) \circ\left(z_{2}, \lambda_{2}\right)=\left(z_{1}+z_{2}, e^{i \pi \operatorname{Im}\left({ }^{t} \bar{z}_{1} y^{-1} z_{2}\right)} \lambda_{1} \lambda_{2}\right)$.

$$
\left|u_{\left(z_{0}, \lambda\right) \cdot \varphi}\right|(z)=\left|u_{\varphi}\right|\left(z-z_{0}\right)
$$

Particular case (Mumford's notations): $a, b \in \mathbb{R}^{g}$,

$$
S_{b} \varphi=(-b, 0) \cdot \varphi=\varphi(z+b) \quad T_{a} \varphi=(-\tau a, 0) \cdot \varphi=e^{i \pi \tau[a]+2 i \pi^{t} a z} \varphi(z+\tau a)
$$

Some ample line bundles

- Model problem: Fix the period matrix $\tau=x+i y$ and consider the set of entire functions φ such that $\left|u_{\varphi}(z)\right|=e^{-\pi y^{-1}[\operatorname{Im} z]}|\varphi(z)|$ is $\ell\left(\mathbb{Z}^{g}+\tau \mathbb{Z}^{g}\right)$-periodic, $\ell \in \mathbb{N}$. The limit $h \rightarrow 0$ corresponds to $\ell \rightarrow \infty$.

Some ample line bundles

- Model problem: Fix the period matrix $\tau=x+i y$ and consider the set of entire functions φ such that $\left|u_{\varphi}(z)\right|=e^{-\pi y^{-1}[\operatorname{Im} z]}|\varphi(z)|$ is $\ell\left(\mathbb{Z}^{g}+\tau \mathbb{Z}^{g}\right)$-periodic, $\ell \in \mathbb{N}$. The limit $h \rightarrow 0$ corresponds to $\ell \rightarrow \infty$.
- If $\left(e_{1}, \ldots, e_{g}\right)$ be the canonical basis of \mathbb{R}^{g} then $\frac{S_{e_{i} \varphi}}{\varphi}$ and $\frac{T_{e_{e} \varphi}}{\varphi}$ are holomorphic functions of modulus 1 :

$$
\begin{gathered}
S_{\ell e_{i}} \varphi=e^{2 i \pi \phi_{i}} g \quad, \quad T_{\ell e_{i}} \varphi=e^{2 i \pi \psi_{i}} \varphi . \\
S_{\ell e_{i}} \varphi^{\prime}=\varphi^{\prime} \quad, \quad T_{\ell e_{i}} \varphi^{\prime}=\varphi^{\prime} \quad\left(\varphi=\left(\frac{1}{\ell}(-\psi+\tau \phi), 0\right) \cdot \varphi^{\prime}\right) .
\end{gathered}
$$

Some ample line bundles

- Model problem: Fix the period matrix $\tau=x+i y$ and consider the set of entire functions φ such that $\left|u_{\varphi}(z)\right|=e^{-\pi y^{-1}[\operatorname{Im} z]}|\varphi(z)|$ is $\ell\left(\mathbb{Z}^{g}+\tau \mathbb{Z}^{g}\right)$-periodic, $\ell \in \mathbb{N}$. The limit $h \rightarrow 0$ corresponds to $\ell \rightarrow \infty$.
- If $\left(e_{1}, \ldots, e_{g}\right)$ be the canonical basis of \mathbb{R}^{g} then $\frac{S_{e_{i} \varphi}}{\varphi}$ and $\frac{T_{e_{e} \varphi}}{\varphi}$ are holomorphic functions of modulus 1 :

$$
\begin{gathered}
S_{\ell e_{i}} \varphi=e^{2 i \pi \phi_{i}} g \quad, \quad T_{\ell e_{i}} \varphi=e^{2 i \pi \psi_{i}} \varphi . \\
S_{\ell e_{i}} \varphi^{\prime}=\varphi^{\prime} \quad, \quad T_{\ell e_{i}} \varphi^{\prime}=\varphi^{\prime} \quad\left(\varphi=\left(\frac{1}{\ell}(-\psi+\tau \phi), 0\right) \cdot \varphi^{\prime}\right) .
\end{gathered}
$$

$$
V_{\ell}=\left\{\varphi \text { entire }, S_{\ell e_{i}} \varphi=\varphi, T_{\ell e_{i}} \varphi=\varphi\right\}
$$

Irreducible representation of

$$
\left\{(-b-\tau a, \lambda),(a, b) \in\left(\ell^{-1} \mathbb{Z}\right)^{2 g}, \lambda \in \exp \left(2 i \pi \ell^{-2} \mathbb{Z}\right)\right\}
$$

Some ample line bundles

- For $\varphi \in V_{\ell}$ the condition $S_{\ell e_{i}} \varphi(z)=\varphi\left(z+\ell e_{i}\right)=\varphi(z)$ implies $\varphi(z)=\sum_{n \in\left(\ell^{-1} \mathbb{Z}\right)^{s}} c_{n} e^{i \pi \tau[n]} e^{2 i \pi^{t} n z}$ while the condition $T_{\ell e_{i}} \varphi=\varphi$ implies $c_{m}=c_{n}$ when $m-n \in(\ell \mathbb{Z})^{g}$. Hence

$$
V_{\ell}=\underset{\omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g}}{\oplus} \mathbb{C} e_{\omega}, \quad e_{\omega}=\ell^{g / 2} \sum_{n \in(\ell \mathbb{Z})^{g}} e^{i \pi \tau[n+\omega]} e^{2 i \pi^{t}(n+\omega) z} .
$$

Take a scalar product \langle,$\rangle on V_{\ell}$ such that $\left(e_{\omega}\right)_{\omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g}}$ is orthornomal.

Some ample line bundles

- For $\varphi \in V_{\ell}$ the condition $S_{\ell e_{i}} \varphi(z)=\varphi\left(z+\ell e_{i}\right)=\varphi(z)$ implies $\varphi(z)=\sum_{n \in\left(\ell^{-1} \mathbb{Z}\right)^{s}} c_{n} e^{i \pi \tau[n]} e^{2 i \pi^{t} n z}$ while the condition $T_{\ell e_{i}} \varphi=\varphi$ implies $c_{m}=c_{n}$ when $m-n \in(\ell \mathbb{Z})^{g}$. Hence

$$
V_{\ell}=\underset{\omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g}}{\oplus} \mathbb{C} e_{\omega}, \quad e_{\omega}=\ell^{g / 2} \sum_{n \in(\ell \mathbb{Z})^{g}} e^{i \pi \tau[n+\omega]} e^{2 i \pi^{t}(n+\omega) z} .
$$

Take a scalar product \langle,$\rangle on V_{\ell}$ such that $\left(e_{\omega}\right)_{\omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g}}$ is orthornomal.

- Combining $S_{b} e_{\omega}=e^{2 i \pi^{t} b \omega} e_{\omega}$ and $T_{a} e_{\omega}=e_{\omega+a}$ with the Poisson formula leads to

$$
\operatorname{det}(2 y)^{1 / 2}\left|u_{\varphi}\right|^{2}(q+\tau p)=\sum_{k_{1}, k_{2} \in\left(\ell^{-1} \mathbb{Z}\right)^{g}} \hat{U}_{k_{1}, k_{2}} e^{2 i \pi\left({ }^{t} k_{1} q+^{t} k_{2} p\right)}
$$

with

$$
\hat{U}_{k_{1}, k_{2}}=\left\langle\varphi, S_{k_{2}} T_{-k_{1}} \varphi\right\rangle e^{i \pi^{t} k_{1} k_{2}} e^{-\frac{\pi}{2} y^{-1}\left\{k_{2}-\tau k_{1}\right\}}
$$

Some ample line bundles

- For $\varphi \in V_{\ell}$ the condition $S_{\ell e_{i}} \varphi(z)=\varphi\left(z+\ell e_{i}\right)=\varphi(z)$ implies $\varphi(z)=\sum_{n \in\left(\ell^{-1} \mathbb{Z}\right)^{s}} c_{n} e^{i \pi \tau[n]} e^{2 i \pi^{t} n z}$ while the condition $T_{\ell e_{i}} \varphi=\varphi$ implies $c_{m}=c_{n}$ when $m-n \in(\ell \mathbb{Z})^{g}$. Hence

$$
V_{\ell}=\underset{\omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g}}{\oplus} \mathbb{C} e_{\omega}, \quad e_{\omega}=\ell^{g / 2} \sum_{n \in(\ell \mathbb{Z})^{g}} e^{i \pi \tau[n+\omega]} e^{2 i \pi^{t}(n+\omega) z} .
$$

Take a scalar product \langle,$\rangle on V_{\ell}$ such that $\left(e_{\omega}\right)_{\omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g}}$ is orthornomal.

- Combining $S_{b} e_{\omega}=e^{2 i \pi^{t} b \omega} e_{\omega}$ and $T_{a} e_{\omega}=e_{\omega+a}$ with the Poisson formula leads to

$$
\operatorname{det}(2 y)^{1 / 2}\left|u_{\varphi}\right|^{2}(q+\tau p)=\sum_{k_{1}, k_{2} \in\left(\ell^{-1} \mathbb{Z}\right)^{g}} \hat{U}_{k_{1}, k_{2}} e^{2 i \pi\left(t^{t} k_{1} q+{ }^{t} k_{2} p\right)}
$$

$$
\text { with } \quad \hat{U}_{k_{1}, k_{2}}=\left\langle\varphi, S_{k_{2}} T_{-k_{1}} \varphi\right\rangle e^{i \pi^{t} k_{1} k_{2}} e^{-\frac{\pi}{2} y^{-1}\left\{k_{2}-\tau k_{1}\right\}} .
$$

- Consequence: Set $\|\varphi\|_{r}=\operatorname{det}(2 y)^{1 / 4}\left(f\left|u_{\varphi}\right|^{r}\right)^{1 / r}$,

$$
\frac{f\left|u_{\varphi}\right|^{4}}{\left(f\left|u_{\varphi}\right|^{2}\right)^{2}}=\frac{\|\varphi\|_{4}^{4}}{\|\varphi\|_{2}^{4}}=\sum_{k_{1}, k_{2} \in\left(\ell^{-1} \mathbb{Z}\right)^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \frac{\left|\left\langle\varphi, S_{k_{2}} T_{-k_{1}} \varphi\right\rangle\right|^{2}}{\|\varphi\|_{2}^{4}} .
$$

Remarks:

- For $\ell=1$ one gets $\frac{\|\varphi\|_{4}^{4}}{\|\varphi\|_{2}^{4}}=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{\mathfrak{s}}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \stackrel{\text { def }}{=} \gamma(\tau)$.

Remarks:

- For $\ell=1$ one gets $\frac{\|\varphi\|_{4}^{4}}{\|\varphi\|_{2}^{4}}=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \stackrel{\text { def }}{=} \gamma(\tau)$.
- The minimization problem $\min _{\tau} \gamma(\tau)$ is well-posed. When $g=1$ the minimum is achieved for $\tau=e^{2 i \pi / 3}$ with $\gamma\left(e^{2 i \pi / 3}\right) \sim 1.1596$ while $\gamma(i) \sim 1.18$.

Remarks:

- For $\ell=1$ one gets $\frac{\|\varphi\|_{4}^{4}}{\|\varphi\|_{2}^{4}}=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \stackrel{\text { def }}{=} \gamma(\tau)$.
- The minimization problem $\min _{\tau} \gamma(\tau)$ is well-posed. When $g=1$ the minimum is achieved for $\tau=e^{2 i \pi / 3}$ with $\gamma\left(e^{2 i \pi / 3}\right) \sim 1.1596$ while $\gamma(i) \sim 1.18$.
- The matrix of the quadratic form $(q, p) \rightarrow y^{-1}\{q-\tau p\}$ is nothing but $s_{\tau}=\left(\begin{array}{cc}y^{-1} & 0 \\ 0 & y\end{array}\right)\left[\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right]$ and $\tau \rightarrow s_{\tau}$ is the homeomorphism between Siegel's upper half plane and the set of symplectic positive definite matrices. ref: Siegel, Freitag, Klingen

Remarks:

- For $\ell=1$ one gets $\frac{\|\varphi\|_{4}^{4}}{\|\varphi\|_{2}^{4}}=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \stackrel{\text { def }}{=} \gamma(\tau)$.
- The minimization problem $\min _{\tau} \gamma(\tau)$ is well-posed. When $g=1$ the minimum is achieved for $\tau=e^{2 i \pi / 3}$ with $\gamma\left(e^{2 i \pi / 3}\right) \sim 1.1596$ while $\gamma(i) \sim 1.18$.
- The matrix of the quadratic form $(q, p) \rightarrow y^{-1}\{q-\tau p\}$ is nothing but $s_{\tau}=\left(\begin{array}{cc}y^{-1} & 0 \\ 0 & y\end{array}\right)\left[\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right]$ and $\tau \rightarrow s_{\tau}$ is the homeomorphism between Siegel's upper half plane and the set of symplectic positive definite matrices. ref: Siegel, Freitag, Klingen
- Splitting of the general minimization problem:
(1) minimize w.r.t τ for $\ell=1$;
(c) fix $\tau=\tau_{\text {min }}$ and minimize the ratio for any $\ell \in \mathbb{N}$.

Remarks:

- For $\ell=1$ one gets $\frac{\|\varphi\|_{4}^{4}}{\|\varphi\|_{2}^{4}}=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{\mathfrak{g}}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \stackrel{\text { def }}{=} \gamma(\tau)$.
- The minimization problem $\min _{\tau} \gamma(\tau)$ is well-posed. When $g=1$ the minimum is achieved for $\tau=e^{2 i \pi / 3}$ with $\gamma\left(e^{2 i \pi / 3}\right) \sim 1.1596$ while $\gamma(i) \sim 1.18$.
- The matrix of the quadratic form $(q, p) \rightarrow y^{-1}\{q-\tau p\}$ is nothing but $s_{\tau}=\left(\begin{array}{cc}y^{-1} & 0 \\ 0 & y\end{array}\right)\left[\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right]$ and $\tau \rightarrow s_{\tau}$ is the homeomorphism between Siegel's upper half plane and the set of symplectic positive definite matrices. ref: Siegel, Freitag, Klingen
- Splitting of the general minimization problem:
(1) minimize w.r.t τ for $\ell=1$;
(2) fix $\tau=\tau_{\text {min }}$ and minimize the ratio for any $\ell \in \mathbb{N}$.
- Extending to higher $(g=2)$ dimension has been motivated by the corresponding works of Beckner, Brascamp-Lieb and Lieb about the maximality of gaussian functions in $L^{p} \rightarrow L^{q}$ estimates for gaussian kernels.

Some critical points for a fixed τ

- Remember

$$
\begin{aligned}
& \gamma(\tau)=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \\
& \text { and } \quad e_{\omega}=\ell^{g / 2} \sum_{n \in(\ell \mathbb{Z})^{g}} e^{i \pi \tau[n+\omega]} e^{2 i \pi^{t}(n+\omega) z}, \quad \omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g} .
\end{aligned}
$$

Some critical points for a fixed τ

- Remember

$$
\begin{gathered}
\gamma(\tau)=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}} \\
\text { and } \quad e_{\omega}=\ell^{g / 2} \sum_{n \in(\ell \mathbb{Z})^{g}} e^{i \pi \tau[n+\omega]} e^{2 i \pi^{t}(n+\omega) z}, \quad \omega \in\left(\ell^{-1} \mathbb{Z} / \ell \mathbb{Z}\right)^{g} .
\end{gathered}
$$

- Theta function with characteristics: $a, b \in\left\{0, \ldots, \frac{\ell-1}{\ell}\right\}^{g}$.

$$
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \tau)=\ell^{-g / 2} \sum_{\omega \in(\mathbb{Z} / \ell \mathbb{Z})^{g}} e^{2 i \pi^{t} b(a+\omega)} e_{a+\omega}=\sum_{n \in \mathbb{Z}^{g}} e^{i \pi \tau[n+a]} e^{2 i \pi^{t}(n+a)(z+b)}
$$

form an orthormal basis of V_{ℓ}. For $k \in\left(\ell^{-1} \mathbb{Z}\right)^{g}$:

$$
T_{k} \theta\left[\begin{array}{l}
a \\
b
\end{array}\right]=e^{-2 i \pi^{t} b\lfloor a+k\rfloor} \theta\left[\begin{array}{c}
\{a+k\} \\
b
\end{array}\right] \quad S_{k} \theta\left[\begin{array}{l}
a \\
b
\end{array}\right]=e^{2 i \pi^{t}\lfloor b+k\rfloor a} \theta\left[\begin{array}{c}
a \\
\{b+k\}
\end{array}\right]
$$

Some critical points for a fixed τ

Fig 1. Zeroes of $\theta_{00}(\bullet)$ and of $\theta_{a, b}(\circ)$, for $a, b \in\left\{0, \frac{1}{\ell}, \ldots, \frac{\ell-1}{\ell}\right\}$.

$$
\left\|\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|_{4}^{4} /\left\|\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|_{2}^{4}=\gamma(\tau)=\sum_{k_{1}, k_{2} \in \mathbb{Z} \boldsymbol{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}}
$$

Some critical points for a fixed τ

Fig 1. Zeroes of $\theta_{00}(\bullet)$ and of $\theta_{a, b}(\circ)$, for $a, b \in\left\{0, \frac{1}{\ell}, \ldots, \frac{\ell-1}{\ell}\right\}$.

$$
\left\|\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|_{4}^{4} /\left\|\theta\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|_{2}^{4}=\gamma(\tau)=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}}
$$

The theta functions with characteristics are critical points of the functional $\Phi_{\tau}(\varphi)=\|\varphi\|_{4}^{4}-\gamma(\tau)\|\varphi\|_{2}^{2} \quad$ on $\left\{\varphi \in V_{\ell},\|\varphi\|_{2}=1\right\}$. Consider $\Phi_{\tau}\left(\theta\left[\begin{array}{l}0 \\ 0\end{array}\right]+\varphi^{\prime}\right)$ for $\varphi^{\prime} \in\left(\theta\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)^{\perp}$

Some critical points for a fixed τ

- When $g=1$ and $\tau=e^{2 i \pi / 3}$, the theta functions with characterisitics are local minima for $\left.\Phi_{\tau}\right|_{\|g\|_{2}=1}$. Actually the eigenvalues of Hess $\left.\Phi_{\tau}\left(\theta\left[\begin{array}{l}0 \\ 0\end{array}\right]+g^{\prime}\right)\right|_{g^{\prime}=0}$ are:

$$
2 \theta\left[\begin{array}{l}
a \\
b \\
0 \\
0
\end{array}\right](0 ; \Omega)-\theta\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right](0 ; \Omega)-\left|\theta\left[\begin{array}{c}
a \\
b \\
b \\
-a
\end{array}\right](0 ; \Omega)\right| \underbrace{\geq 0}_{\text {numerically }}
$$

with $\Omega=\frac{i}{\sqrt{3}}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right),(0,0) \neq(a, b) \in\left\{0, \ldots, \frac{\ell-1}{\ell}\right\}^{2}$.

Some critical points for a fixed τ

- When $g=1$ and $\tau=e^{2 i \pi / 3}$, the theta functions with characterisitics are local minima for $\left.\Phi_{\tau}\right|_{\|g\|_{2}=1}$. Actually the eigenvalues of Hess $\left.\Phi_{\tau}\left(\theta\left[\begin{array}{l}0 \\ 0\end{array}\right]+g^{\prime}\right)\right|_{g^{\prime}=0}$ are:

$$
2 \theta\left[\begin{array}{l}
a \\
b \\
0 \\
0
\end{array}\right](0 ; \Omega)-\theta\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right](0 ; \Omega)-\left|\theta\left[\begin{array}{c}
a \\
b \\
b \\
-a
\end{array}\right](0 ; \Omega)\right| \underbrace{>0}_{\text {numerically }}
$$

with $\Omega=\frac{i}{\sqrt{3}}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right),(0,0) \neq(a, b) \in\left\{0, \ldots, \frac{\ell-1}{\ell}\right\}^{2}$.

- $\theta\left[\begin{array}{l}a \\ b\end{array}\right]$ global minima when $\ell=2$.
- When $g=1$ and $\tau=e^{2 i \pi / 3}$, the theta functions with characterisitics are local minima for $\left.\Phi_{\tau}\right|_{\|g\|_{2}=1}$.
Actually the eigenvalues of Hess $\left.\Phi_{\tau}\left(\theta\left[\begin{array}{l}0 \\ 0\end{array}\right]+g^{\prime}\right)\right|_{g^{\prime}=0}$ are:

$$
2 \theta\left[\begin{array}{l}
a \\
b \\
0 \\
0
\end{array}\right](0 ; \Omega)-\theta\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right](0 ; \Omega)-\left|\theta\left[\begin{array}{c}
a \\
b \\
b \\
-a
\end{array}\right](0 ; \Omega)\right| \underbrace{>0}_{\text {numerically }}
$$

with $\Omega=\frac{i}{\sqrt{3}}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right),(0,0) \neq(a, b) \in\left\{0, \ldots, \frac{\ell-1}{\ell}\right\}^{2}$.

- $\theta\left[\begin{array}{l}a \\ b\end{array}\right]$ global minima when $\ell=2$.
- Main Question: Are the $\theta\left[\begin{array}{l}a \\ b\end{array}\right]$ the only global minima for any ℓ, when $\tau=e^{2 i \pi / 3}$? (e.g. it is not true for $\tau=i$ and $\ell=2$).

Minimization w.r.t τ for principal polarizations

- Now $\ell=1$ and the problem is

$$
\min _{\tau \in \mathfrak{H}_{g}} \gamma(\tau) \quad, \quad \gamma(\tau)=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}}
$$

Although not holomorphic nor meromorphic, this function has the modular $+\tau \mapsto-\bar{\tau}$ invariance on \mathfrak{H}_{g}.

Minimization w.r.t τ for principal polarizations

- Now $\ell=1$ and the problem is

$$
\min _{\tau \in \mathfrak{H}_{g}} \gamma(\tau) \quad, \quad \gamma(\tau)=\sum_{k_{1}, k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left\{k_{2}-\tau k_{1}\right\}}
$$

Although not holomorphic nor meromorphic, this function has the modular $+\tau \mapsto-\bar{\tau}$ invariance on \mathfrak{H}_{g}.

- The mimimization problem is well posed:

$$
\gamma(\tau) \geq \sum_{k_{2} \in \mathbb{Z}^{g}} e^{-\pi y^{-1}\left[k_{2}\right]}=\operatorname{det}(y)^{1 / 2} \sum_{k_{2} \in \mathbb{Z}^{g}} e^{-\pi y\left[k_{2}\right]} \stackrel{\operatorname{det}(y) \rightarrow \infty}{\rightarrow}+\infty
$$

Siegel fundamental domain F_{g} :

- $|\operatorname{det}(c \tau+d)| \geq 1$ for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S p_{2 g}(\mathbb{Z})$ (or finite subset).
- y is Minkowski reduced
- $\left|x_{i j}\right| \leq \frac{1}{2}$
$g=1$: well-known ; when $g=2$: 28 inequations in $\mathcal{H}_{2} \subset \mathbb{C}^{3} \sim \mathbb{R}^{6}$ specified by Gottschling (50's).
Subsets of F_{g} with bounded height $(|\operatorname{det}(y)| \leq C)$ are compact.

Minimization w.r.t τ for principal polarizations

- Case $g=1$: Dutour 99, Nonnemacher-Voros 89, Montgomery 87. Improvement: Up to symmetries (or in F_{1}) $e^{2 i \pi / 3}$ and i are the only critical points.

Minimization w.r.t τ for principal polarizations

- Case $g=1$: Dutour 99, Nonnemacher-Voros 89, Montgomery 87. Improvement: Up to symmetries (or in F_{1}) $e^{2 i \pi / 3}$ and i are the only critical points.

- When $g=2$ (done with A. Grigis): Combinatorics of Gottschling's (non flat) polytope understood: More than 28 faces (faces associated with some inequations are not connected), 182 vertices, like a 5 -dimensional hypercube at infinity (real geometry). Not a face to face tesselation of \mathcal{H}_{2}. F_{2} has many (not clear up to now) neighbouring domains. Among the 182 vertices, some of them satisfy more than 6 equations, some edges satisfy more than 5 equations.

Minimization w.r.t τ for principal polarizations

Case $g=2$, critical points (with A. Grigis):

- Among the vertices, only 20 of them are critical points of $\gamma(\tau)$, some other critical points lie on $\tau=-\bar{\tau}$, like $\tau=\left(\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right)$ with index 4 (maximal value ~ 1.3932039 among all the found points).

Minimization w.r.t τ for principal polarizations

Case $g=2$, critical points (with A. Grigis):

- Among the vertices, only 20 of them are critical points of $\gamma(\tau)$, some other critical points lie on $\tau=-\bar{\tau}$, like $\tau=\left(\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right)$ with index 4 (maximal value ~ 1.3932039 among all the found points).
- Minimum achieved only (not proved) for $\tau=\tau_{D_{4}}$ or $\tau=-\overline{\tau_{D_{4}}}$, index 0 and Gottschling's 28 inequations checked numerically:
$\tau_{D 4}=\frac{1}{3}\left(\begin{array}{cc}-1+i 2 \sqrt{2} & 1+i \sqrt{2} \\ 1+i \sqrt{2} & -1+i 2 \sqrt{2}\end{array}\right), \quad \gamma\left(\tau_{D 4}\right) \sim 1.2858<1.34 \sim \gamma\left(e^{2 i \pi / 3}\right)^{2}$.
Related works: finite group acting on hyperelliptic curves $y^{2}=P(x)$, $\operatorname{deg} P \in\{5,6\}$, Klein-Kokotov-Korotkin, Silhol-et-al.

Minimization w.r.t τ for principal polarizations

Case $g=2$, critical points (with A. Grigis):

- Among the vertices, only 20 of them are critical points of $\gamma(\tau)$, some other critical points lie on $\tau=-\bar{\tau}$, like $\tau=\left(\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right)$ with index 4 (maximal value ~ 1.3932039 among all the found points).
- Minimum achieved only (not proved) for $\tau=\tau_{D_{4}}$ or $\tau=-\overline{\tau_{D_{4}}}$, index 0 and Gottschling's 28 inequations checked numerically:
$\tau_{D 4}=\frac{1}{3}\left(\begin{array}{cc}-1+i 2 \sqrt{2} & 1+i \sqrt{2} \\ 1+i \sqrt{2} & -1+i 2 \sqrt{2}\end{array}\right), \quad \gamma\left(\tau_{D 4}\right) \sim 1.2858<1.34 \sim \gamma\left(e^{2 i \pi / 3}\right)^{2}$.
Related works: finite group acting on hyperelliptic curves $y^{2}=P(x)$, $\operatorname{deg} P \in\{5,6\}$, Klein-Kokotov-Korotkin, Silhol-et-al.
- Among index 1 critical points $\tau_{3}=\left(\begin{array}{cc}i & -1 / 2+i / 2 \\ -1 / 2+i / 2 & i\end{array}\right)$
geodesic midpoint between $\tau_{D_{4}}$ and $-\overline{\tau_{D_{4}}}-\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Questions: When $g=2$, is it possible to prove that D4 the minimum for γ ? Can we find algebraically all the critical points of γ ? For a general g ? Can we find a Morse stratification, with unstable manifolds of $\nabla \gamma$, of a finite covering of Siegel's fundamental domain? Is it related with the riemannian structure of the rank g globally symmetric space \mathcal{H}_{g} (ref: Helgason) ?

2-adic version

After Mumford "On the equations defining abelian varieties II-III":

$$
\begin{gathered}
\theta\left[\begin{array}{l}
0 \\
0
\end{array}\right](z)=\sum_{n \in \mathbb{Z}^{g}} e^{i \pi \tau[n]} e^{2 i \pi^{t} n z} \quad, \quad u=e^{\frac{\pi}{2}\left(y^{-1}[z]-y^{-1}\{z\}\right)} \theta\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
u_{0}(z)=u(\ell z)=e^{\frac{\pi}{2}\left(\left(\ell^{-2} y\right)^{-1}[z]-\left(\ell^{-2} y\right)^{-1}\{z\}\right)} \sum_{n \in(\ell \mathbb{Z})^{\varepsilon}} e^{i \pi\left(\ell^{-2} \tau\right)[n]} e^{2 i \pi^{t} n z} .
\end{gathered}
$$

For $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Q}_{2}^{g}, u_{0}\left(\alpha_{1}+\left(\ell^{-2} \tau\right) \alpha_{2}\right)$ is the algebraic theta function (analytic version) associated with $\tau^{\prime}=\ell^{-2} \tau$.

$$
\begin{aligned}
f F & =\int_{[0,1]^{2 g}} F(\ell(q+\tau p)) d q d p=\ell^{-2 g} \int_{\left([0,1] \times\left[0, \ell^{2}\right]\right)^{g}} F\left(\ell q+\ell^{-1} \tau p\right) d q d p \\
& =\lim _{K \rightarrow \infty} 2^{-4 g K} \sum_{\left(q_{j}, p_{j}\right) \in\left(2^{\left.-\kappa \mathbb{Z} / 2^{\kappa} \mathbb{Z}\right)^{2 g}}\right.} F\left(\ell\left(q_{j}+\tau^{\prime} p_{j}\right)\right), \quad\left(\ell=2^{N_{0}}\right) .
\end{aligned}
$$

The minimization of $\|\varphi\|_{4}^{4} /\|\varphi\|_{2}^{4}=\frac{f\left|u_{\varphi}\right|^{4}}{\left.\left(f \mid u_{\varphi}\right)^{2}\right)^{2}}$ can be transformed into a similar problem for algebraic theta functions on $\mathbb{Q}_{2_{a}}^{2 g}$:

2-adic version

- The function $u_{0}\left(\alpha_{1}+\tau^{\prime} \alpha_{2}\right)$ now denoted $\theta_{\text {an }}\left[\begin{array}{l}0 \\ 0\end{array}\right](\alpha)$ is a complex valued locally constant function on \mathbb{Q}_{2}^{g}, (condition $\ell=2^{N_{0}}$). More generally the same holds for $\theta_{a n}\left[\begin{array}{l}a \\ b\end{array}\right]\left(\alpha_{1}, \alpha_{2}\right)$.

$$
\theta_{a n}\left[\begin{array}{l}
a \\
b
\end{array}\right]\left(\alpha_{1}, \alpha_{2}\right)=e^{-i \pi^{t} \alpha_{1} \alpha_{2}} \mathcal{F}_{\mathbb{Q}_{2}^{g}}\left[1_{a+\alpha_{2}+\mathbb{Z}_{2}^{g}} \times \mu\right]\left(b+\alpha_{1}\right),
$$

where μ is a finitely additive measure on \mathbb{Q}_{2}^{g} and a compactly supported distribution.

2-adic version

- The function $u_{0}\left(\alpha_{1}+\tau^{\prime} \alpha_{2}\right)$ now denoted $\theta_{\text {an }}\left[\begin{array}{l}0 \\ 0\end{array}\right](\alpha)$ is a complex valued locally constant function on \mathbb{Q}_{2}^{g}, (condition $\ell=2^{N_{0}}$). More generally the same holds for $\theta_{a n}\left[\begin{array}{l}a \\ b\end{array}\right]\left(\alpha_{1}, \alpha_{2}\right)$.

$$
\theta_{a n}\left[\begin{array}{l}
a \\
b
\end{array}\right]\left(\alpha_{1}, \alpha_{2}\right)=e^{-i \pi^{t} \alpha_{1} \alpha_{2}} \mathcal{F}_{\mathbb{Q}_{2}^{g}}\left[1_{a+\alpha_{2}+\mathbb{Z}_{2}^{g}} \times \mu\right]\left(b+\alpha_{1}\right),
$$

where μ is a finitely additive measure on \mathbb{Q}_{2}^{g} and a compactly supported distribution.

- Even measures μ associated with even theta functions which satisy Riemann's relations are gaussian measures: There exists another measure ν

$$
(\mu \times \mu)(U)=(\nu \times \nu)(\xi(U))
$$

with $\xi\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)$.
Analogy with the works of Lieb.

