Higher Algebra with Operads

Bruno VALLETTE

University of Nice Sophia-Antipolis (Newton Institute, Cambridge)
British Mathematical Colloquium March 27, 2013

Plan

(1) Toy models
(2) Operadic homotopical algebra
(3) Homotopy Batalin-Vilkovisky algebras

Homotopy data and mixed complex structure

- Homotopy data: Deformation retract of chain complexes

$$
{ }_{h} C\left(A, d_{A}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right) \quad \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

- Algebraic data: $\Delta: A \rightarrow A, \quad d_{A} \Delta+\Delta d_{A}=0, \quad \Delta^{2}=0$ mixed complex $|\Delta|=1$ (or bicomplex).
- Transferred structure: $\quad \delta_{1}:=p \Delta i$

Does δ_{1} square to zero?

$$
\left(\delta_{1}\right)^{2}=p \Delta \underbrace{i p}_{\sim_{h} \text { id }_{A}} \Delta i \neq 0 \text { in general! }
$$

Idea: Introduce

$$
\delta_{2}:=p \Delta h \Delta i
$$

Then, $\quad \partial\left(\delta_{2}\right)=\left(\delta_{1}\right)^{2}$ in $\left(\operatorname{Hom}(A, A), \partial:=\left[d_{A},-\right]\right)$.
$\Longrightarrow \delta_{2}$ is a homotopy for the relation $\left(\delta_{1}\right)^{2}=0$.

Higher structure: multicomplex

Higher up, we consider:

$$
\delta_{n}:=p(\Delta h)^{n-1} \Delta i, \quad \text { for } n \geq 1
$$

Proposition

$$
\partial\left(\delta_{n}\right)=\sum_{k=1}^{n-1} \delta_{k} \delta_{n-k}
$$

in $(\operatorname{Hom}(A, A), \partial)$, for $n \geq 1$.

Definition (Multicomplex)

$\left(H, \delta_{0}:=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right)$ graded vector space H endowed with a family of linear operators of degree $\left|\delta_{n}\right|=2 n-1$ satisfying

$$
\sum_{k=0}^{n} \delta_{k} \delta_{n-k}=0, \quad \text { for } n \geq 0
$$

Remark: A mixed complex $=$ multicomplex s.t. $\delta_{n}=0$, for $n \geq 2$.

Multicomplexes are homotopy stable

- Starting now from a multicomplex $\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$
- Consider the transferred operators

$$
\delta_{n}:=\sum_{k_{1}+\cdots+k_{l}=n} p \Delta_{k_{1}} h \Delta_{k_{2}} h \ldots h \Delta_{k_{l}} i \quad \text { for } n \geq 1
$$

Proposition

$$
\partial\left(\delta_{n}\right)=\sum_{k=1}^{n-1} \delta_{k} \delta_{n-k}
$$

in $(\operatorname{Hom}(A, A), \partial)$, for $n \geq 1$.
\Longrightarrow Again a multicomplex, no need of further higher structure.

Compatibility between Original and Transferred structures

$$
\underbrace{\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)}_{\text {Original structure }} \underbrace{i}_{\text {Transferred structure }} \underbrace{\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right)}
$$

- i chain map $\Longrightarrow \quad \Delta_{0} i=i \delta_{0}$
- Question: Does i commute with the Δ 's and the δ 's?

$$
i \delta_{1}=\underbrace{i p}_{\sim_{h} \text { id }_{A}} \Delta_{1} i \neq \Delta_{1} i \quad \text { in general! }
$$

- Define $i_{0}:=i$ and consider $i_{1}:=h \Delta_{1} i$.

Then,

$$
\partial\left(i_{1}\right)=\Delta_{1} i_{0}-i_{0} \delta_{1} \text { in }(\operatorname{Hom}(H, A), \partial) .
$$

$\Longrightarrow i_{1}$ is a homotopy for the relation $\Delta_{1} i_{0}=i_{0} \delta_{1}$.

∞-morphisms of multicomplexes

Higher up, we consider:

$$
\begin{aligned}
& i_{n}:=\sum_{k_{1}+\cdots+k_{l}=n} h \Delta_{k_{1}} h \Delta_{k_{2}} h \ldots h \Delta_{k_{l}} i \\
\Rightarrow & \partial\left(i_{n}\right)=\sum_{k=0}^{n-1} \Delta_{n-k} i_{k}-\sum_{k=0}^{n-1} i_{k} \delta_{n-k} \text { in }(\operatorname{Hom}(H, A), \partial), \text { for } n \geq 1 .
\end{aligned}
$$

Definition (∞-morphism)

$i_{\infty}:\left(H, \delta_{0}=-d_{H}, \delta_{1}, \delta_{2}, \ldots\right) \rightsquigarrow\left(A, \Delta_{0}=-d_{A}, \Delta_{1}, \Delta_{2}, \ldots\right)$ collection of maps $\left\{i_{n}: H \rightarrow A\right\}_{n \geq 0}$ satisfying

$$
\sum_{k=0}^{n} \Delta_{n-k} i_{k}=\sum_{k=0}^{n} i_{k} \delta_{n-k}, \quad \text { for } n \geq 0
$$

The category ∞-mutlicomp

Proposition (Composite of ∞-morphisms)

$f: A \rightsquigarrow B, g: B \rightsquigarrow C:$ two ∞-morphisms of multicomplexes.

$$
(g f)_{n}:=\sum_{k=0}^{n} g_{n-k} f_{k}, \quad \text { for } n \geq 0
$$

defines an associative and unital composite of ∞-morphisms.
Category: multicomplex with ∞-morphisms: ∞-multicomp.
Compact reformulation:
multicomplex $=$ square-zero element

$$
\Delta(z)=\Delta_{0}+\Delta_{1} z+\Delta_{2} z^{2}+\cdots
$$

in the algebra $\operatorname{End}_{A}[[z]]$,
∞-morphism $=i(z) \in \operatorname{Hom}(H, A)[[z]]$ s.t. $i(z) \delta(z)=\Delta(z) i(z)$, composite $=g(z) f(z)$.

Homotopy Transfer Theorem for multicomplexes

∞-quasi-isomorphism: $i: H \leadsto A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ qi.

Theorem (HTT for multicomplexes, Lapin '01)

Given any deformation retract

$$
{ }_{h} C\left(A, d_{A}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right) \quad \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any multicomplex structure on A, there exists a multicomplex structure on H such that i extends to an ∞-quasi-isomorphism.

Application 1: \mathbb{K} field, (A, d, Δ) bicomplex, $(H(A, d), 0)=E^{1}$ deformation retract
\Longrightarrow multicomplex structure on $H(A, d)=$ lift of the spectral sequence, i.e. $\delta^{r} \Rightarrow d^{r}$.
Application 2: Equivalence between the various definitions of cyclic homology [Loday-Quillen, Kassel].

Homotopy theory of mixed complexes

Definition (Homotopy category)

Localisation with respect to quasi-isomorphisms $\mathrm{Ho}($ mixed cx$):=$ mixed $\mathrm{cx}\left[q i^{-1}\right]$

$$
\operatorname{Hom}_{\mathrm{Ho}}(A, B):=\{A \rightarrow \bullet " \leftarrow " \bullet \rightarrow \bullet \ldots \bullet " \sim " \bullet \rightarrow B\} / \sim
$$

Theorem (?)

- Every ∞-qi of multicomplexes admits a homotopy inverse.
$\mathrm{Ho}($ mixed cx$) \cong \infty$-mixed cx / \sim_{h}.

Proof.

[...] +Rectification:
$\exists \operatorname{Rect}: \infty$-multicomp \rightarrow mixed $c x$, s.t. $H \approx \operatorname{Rect}(H)$.

Associative algebra and homotopy data

- Initial structure: an associative product on A

$$
\nu: A^{\otimes 2} \rightarrow A, \quad \text { s.t. } \quad \nu(\nu(a, b), c)=\nu(a, \nu(b, c)) .
$$

- Transferred structure: the binary product on H

$$
\mu_{2}:=p \nu i^{\otimes 2}: H^{\otimes 2} \rightarrow H .
$$

First homotopy for the associativity relation

- Is the transferred μ_{2} associative? Anwser: in general, no!
- Introduce μ_{3} :

- In $\operatorname{Hom}\left(A^{\otimes 3}, A\right)$, it satisfies

$$
\partial(Y)=
$$

$\Longrightarrow \mu_{3}$ is a homotopy for the associativity relation of μ_{2}.

Higher structure

Higher up, in $\operatorname{Hom}\left(H^{\otimes n}, H\right)$, we consider:

$$
\mu_{n}:=\underbrace{12 \cdots \sum_{P B T_{n}}^{n}}
$$

Proposition

A_{∞}-algebra

Definition (A_{∞}-algebra, Stasheff '63)

An A_{∞}-algebra is a chain complex $\left(H, d_{H}, \mu_{2}, \mu_{3}, \ldots\right)$ endowed with a family of multlinear maps of degree $\left|\mu_{n}\right|=n-2$ satisfying

$$
2(\underbrace{1}_{\substack{k+1=n+1 \\ 1 \leq j \leq k}}
$$

Remark: A dga algebra $=A_{\infty}$-algebra s.t. $\mu_{n}=0$, for $n \geq 3$.

A_{∞}-algebras are homotopy stable

- Starting from an A_{∞}-algebra $\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)$

Proposition

$$
\underbrace{\Psi^{2}})=\sum_{\substack{k+1=n+1 \\ 1 \leq j \leq k}}^{1} \underbrace{1} \cdots \underbrace{\prime}
$$

\Longrightarrow Again an A_{∞}-algebra, no need of further higher structure.

Compatibility between Original and Transferred structures

$$
\underbrace{\left(A, d_{A}, \nu_{2}, \nu_{3}, \ldots\right)}_{\text {Original structure }} \stackrel{i}{i}_{\leftarrow}^{\left(H, d_{H}, \mu_{2}, \mu_{3}, \ldots\right)}
$$

- i chain map $\Longrightarrow \quad d_{A} i=i d_{H}$
- Question: Does i commutes with the ν 's and the μ 's? Anwser: not in general!
- Define $i_{1}:=i$ and consider in $\operatorname{Hom}\left(H^{\otimes n}, A\right)$, for $n \geq 2$:

A_{∞}-morphism

Definition (A_{∞}-morphism)

$\left(H, d_{H},\left\{\mu_{n}\right\}_{n \geq 2}\right) \rightsquigarrow\left(A, d_{A},\left\{\nu_{n}\right\}_{n \geq 2}\right)$ is a collection of linear maps

$$
\left\{f_{n}: H^{\otimes n} \rightarrow A\right\}_{n \geq 1}
$$

of degree $\left|f_{n}\right|=n-1$ satisfying

Example: The aforementioned $\left\{i_{n}: H^{\otimes n} \rightarrow A\right\}_{n \geq 1}$.

Homotopy Transfer Theorem for A_{∞}-algebras

∞-quasi-isomorphism: $i: H \cong A$ s.t. $i_{0}: H \xrightarrow{\sim} A$ qi.

Theorem (HTT for A_{∞}-algebras, Kadeshvili '82)

Given any deformation retract

$$
{ }_{h} C\left(A, d_{A}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right) \quad \quad \mathrm{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any A_{∞}-algebra structure on A, there exists an A_{∞}-algebra structure on H such that i extends to an ∞-quasi-isomorphism.

Application: $A=\left(C_{\text {sing }}^{\bullet}(X), \cup\right)$, transferred A_{∞}-algebra on $H_{\text {Sing }}^{\bullet}(X)=$ lifting of the (higher) Massey products.

The category $\infty-A_{\infty}$-Alg

Compact reformulation:

A_{∞}-algebra $=$ square-zero coderivation in the coalgebra $T^{c}(s A)$, A_{∞}-morphism $=$ morphism of dg coalgebras $T^{c}(s A) \rightarrow T^{c}(s B)$. composite [?] = composite of morphisms of dg coalgebras.

Category: A_{∞}-algebras with ∞-morphisms: $\infty-A_{\infty}$-Alg.

Homotopy theory of dg associative algebras

Theorem (Munkholm '78, Lefèvre-Hasegawa '03)

- Every ∞-qi of A_{∞}-algebras admits a homotopy inverse.
- Ho (dga alg) $:=$ dga $\operatorname{alg}\left[q i^{-1}\right] \cong \infty$-dga $\operatorname{alg} / \sim_{h}$

Proof. Use

$+[\ldots]+$ Rectification:
$\exists \operatorname{Rect}: \infty-A_{\infty}$-Alg \rightarrow dga alg, s.t. $H \leadsto \operatorname{Rect}(H)$

Exercise

Exercise: Consider your favorite category of algebras "of type \mathcal{P} " (eg. Lie algebras, associative algebras+unary operator Δ, etc.).

- Find the good notions of \mathcal{P}_{∞}-algebras and ∞-morphisms.
- Fill the diagram

- to prove the Homotopy Transfer Theorem
- and the equivalence of categories

$$
\mathrm{Ho}(\mathrm{dg} \mathcal{P} \text {-alg }):=\operatorname{dg} \mathcal{P} \text {-alg }\left[q i^{-1}\right] \cong \infty-\mathrm{dg} \mathcal{P} \text {-alg } / \sim_{h} .
$$

Plan

(1) Toy models

(2) Operadic homotopical algebra

3 Homotopy Batalin-Vilkovisky algebras

Operad

Multilinear Operations: $\quad \operatorname{End}_{A}(n):=\operatorname{Hom}\left(A^{\otimes n}, A\right)$
Composition:

$$
\begin{aligned}
\operatorname{End}_{A}(k) \otimes \operatorname{End}_{A}\left(i_{1}\right) \otimes \cdots \otimes \operatorname{End}_{A}\left(i_{k}\right) & \rightarrow \operatorname{End}_{A}\left(i_{1}+\cdots+i_{k}\right) \\
g \otimes f_{1} \otimes \cdots \otimes f_{k} & \mapsto g\left(f_{1}, \ldots, f_{k}\right)
\end{aligned}
$$

Definition (Operad)

- Collection: $\{\mathcal{P}(n)\}_{n \in \mathbb{N}}$ of \mathbb{S}_{n}-modules
- Composition: $\mathcal{P}_{k} \otimes \mathcal{P}_{i_{1}} \otimes \cdots \otimes \mathcal{P} i_{k} \rightarrow \mathcal{P}_{i_{1}+\cdots+i_{k}}$

Examples of Operads

Definition (Algebra over an Operad)

Structure of \mathcal{P}-algebra on A : morphism of operads $\mathcal{P} \rightarrow \operatorname{End}_{A}$

Examples:

- $D=T(\Delta) /\left(\Delta^{2}\right)$-algebras (modules) $=$ mixed complexes.
- $A s=\mathcal{T}(Y) /\left(Y_{Y}-Y\right)$-algebras $=$ associative algebras.
- Little discs $\mathrm{D}_{2}: \mathrm{D}_{2}$-algebras \cong double loop spaces $\Omega^{2}(X)$

Example in Geometry

Deligne-Mumford moduli space of stable curves: $\overline{\mathcal{M}}_{g, n+1}$

Definition (Frobenius manifold, aka Hypercommutative algebras)
Algebra over $H_{\bullet}\left(\overline{\mathcal{M}}_{0, n+1}\right)$, i.e. $H_{\bullet}\left(\overline{\mathcal{M}}_{0, n+1}\right) \rightarrow$ End $_{H_{\bullet}(A)}$ totally symmetric n-ary operation $\left(x_{1}, \ldots, x_{n}\right)$ of degree $2(n-2)$,
$\sum_{S_{1} \sqcup S_{2}=\{1, \ldots, n\}}\left(\left(a, b, x_{S_{1}}\right), c, x_{S_{2}}\right)=\sum_{S_{1} \sqcup S_{2}=\{1, \ldots, n\}} \pm\left(a,\left(b, x_{S_{1}}, c\right), x_{S_{2}}\right)$.

Homotopy algebra and operads

$$
\text { operad } \mathcal{P} \longleftarrow \sim \mathcal{P}_{\infty}: \text { quasi-free replacement (cofibrant) }
$$

category of \mathcal{P}-algebras \hookrightarrow category of homotopy \mathcal{P}-algebras

Examples:

- $\mathcal{P}=D: D_{\infty}$-algebras $=$ multicomplexes

$$
D=\underbrace{T(\Delta) /\left(\Delta^{2}\right)}_{\text {quotient }} \tilde{\sim} D_{\infty}:=\underbrace{\left(T\left(\delta \oplus \delta^{2} \oplus \delta^{3} \oplus \cdots\right), d_{2}\right)}_{\text {quasi-free }} .
$$

- $\mathcal{P}=$ Ass: $A s s_{\infty}$-algebras $=A_{\infty}$-algebras

$$
A s=\underbrace{\mathcal{T}(Y) /\left(Y_{Y}-Y^{\prime}\right)}_{\text {quotient }} \leftarrow A_{\infty}:=\underbrace{\left(\mathcal{T}\left(\curlyvee_{i}^{\prime} \oplus \dagger_{i}^{\prime} \oplus \cdots\right), d_{2}\right)}_{\text {quasi-free }} .
$$

Koszul duality theory

$$
\mathcal{P}_{\infty}=\mathcal{T} \text { (operadic syzygies) } \xrightarrow{? \sim ?} \mathcal{P}
$$

- Quadratic presentation: $\mathcal{P}=\mathcal{T}(V) /(R)$, where

$$
R \subset \underbrace{\mathcal{T}^{(2)}(V)}
$$

trees with 2 vertices

- Koszul dual cooperad: quadratic cooperad $\mathcal{P}^{i}:=\mathcal{C}\left(s V, s^{2} R\right)$, i.e. defined by a (dual) universal property.
- Candidate: $\mathcal{P}_{\infty}=\Omega \mathcal{P}^{\mathrm{i}}=\mathcal{T}(\mathcal{P} \mathrm{i}) \xrightarrow{? \sim ?} \mathcal{P}$.
- Criterion: Quasi-isomorphism iff the Koszul complex $\mathcal{P} \circ_{\kappa} \mathcal{P}^{\mathrm{i}}$ is acyclic.
- Examples: D, Ass, Com, Lie, etc.

Operadic higher structure

For any Koszul operad \mathcal{P}

- \exists a notion of composable ∞-morphisms: $\infty-\mathcal{P}_{\infty}$-Alg.
\mathcal{P}_{∞}-algebra $=$ square-zero coderivation in the coalgebra $\mathcal{P}(A)$, ∞-morphism $=$ morphism of dg coalgebras $\mathcal{P}^{\mathrm{i}}(A) \rightarrow \mathcal{P}^{\mathrm{i}}(B)$.

Theorem (HTT for P_{∞}-algebras, Galvez-Tonks-V.)

Given any deformation retract

$$
{ }_{h} C\left(A, d_{A}\right) \underset{i}{\stackrel{p}{\rightleftarrows}}\left(H, d_{H}\right) \quad \quad \operatorname{id}_{A}-i p=d_{A} h+h d_{A}
$$

and any \mathcal{P}_{∞}-algebra structure on A, there exists a \mathcal{P}_{∞}-algebra structure on H such that i extends to an ∞-quasi-isomorphism.
"Application": [wheeled properads, Merkulov '10] perturbation theory in QFT $=$ HTT for unimodular Lie bialgebras: Feynman diagrams $=$ Graphs formulae for transferred structure.

Homotopy theory of $\mathrm{dg} \mathcal{P}$-algebras

Theorem (V.)

- Every ∞-qi of \mathcal{P}_{∞}-algebras admits a homotopy inverse.
- $\mathrm{Ho}(\mathrm{dg} \mathcal{P}$-alg $):=\operatorname{dg} \mathcal{P}$-alg $\left[q i^{-1}\right] \cong \infty-\operatorname{dg} \mathcal{P}$-alg $/ \sim_{h}$.

Proof. Use

+ Model Category on (conil) dg \mathcal{P}^{i}-coalg: we \subsetneq qi
+ Rectification:
$\exists \operatorname{Rect}: \infty-\mathcal{P}_{\infty}$-Alg \rightarrow dg \mathcal{P}-alg, s.t. $H \approx \operatorname{Rect}(H)$

Plan

(1) Toy models

(2) Operadic homotopical algebra

(3) Homotopy Batalin-Vilkovisky algebras

Batalin-Vilkovisky algebras

Definition (Batalin-Vilkovisky algebra)

Graded commutative algebra $\left(A, d_{A}, \cdot\right)$ endowed with a linear operator $\Delta^{2}=0, d_{A} \Delta+d_{A} \Delta=0$, of order 2 :
$\Delta(a b c)=\Delta(a b) c+\Delta(b c) a+\Delta(c a) b-\Delta(a) b c-\Delta(b) c a-\Delta(c) a b$.
Examples: $H_{\bullet}(T C F T), \mathbb{H}_{\bullet}(\mathcal{L} X)$ (string topology), Dolbeault complex of Calabi-Yau manifolds, the bar construction $B A$, etc. Operadic topological interpretation: $H_{\bullet}\left(f D_{2}\right)=B V$.

Homotopy BV-algebras

Theorem (Galvez-Tonks-V.)

The inhomogeneous Koszul duality theory provides us with a quasi-free resolution $B V_{\infty}:=\Omega B V^{i} \xrightarrow{\sim} B V$.

Proof. Problem:
$B V \cong \mathcal{T}(\cdot, \Delta) /($ homogeneous quadratic and cubical relations)
Solution: Introduce

$$
[-,-]:=\Delta \circ(-\cdot-)-(\Delta(-) \cdot-)-(-\cdot \Delta(-))
$$

a degree 1 Lie bracket \Longrightarrow new presentation of the operad $B V$:

$$
B V \cong \mathcal{T}(\cdot, \Delta,[,]) /(\text { inhomogeneous quadratic relations) } .
$$

Application: $B V_{\infty}$-algebras \& ∞-morphisms.
Corollary: HTT \& Ho(dg BV-alg $) \cong \infty-\mathrm{dg} \mathrm{BV}$-alg $/ \sim_{h}$.

Applications in Mathematical Physics

Application: Lian-Zuckerman conjecture for Topological Vertex Operator Algebra.

Theorem (Lian-Zuckerman '93)

$$
H_{B R S T}^{\bullet}(T V O A): B V \text {-algebra. }
$$

Theorem (Lian-Zuckerman conjecture, Galvez-Tonks-V)

$C_{B R S T}^{\bullet}(T V O A)=T V O A$: explicit $B V_{\infty-a l g e b r a, ~ w h i c h ~ l i f t s ~ t h e ~}^{\text {a }}$ Lian-Zuckerman operations.

Remarks:

- Lian-Zuckerman conjecture similar to the Deligne conjecture.
- Conjecture: some converse should be true, i.e. $B V_{\infty} \cong T V O A$.

Application in Geometry

Theorem (Barannikov-Kontsevich-Manin)

$(A, d, \cdot, \Delta) d g B V$-algebra satisfying the $d \Delta$-lemma

$$
\text { ker } d \cap \operatorname{ker} \Delta \cap(\operatorname{Im} d+\operatorname{Im} \Delta)=\operatorname{Im}(d \Delta)=\operatorname{Im}(\Delta d)
$$

$\Longrightarrow H_{\bullet}(A, d)$ carries a Frobenius manifold structure, which extends the transferred commutative product.

Application: B-side of the Mirror Symmetry Conjecture.
Question: Application of the HTT for $B V_{\infty}$-algebras???

$$
B V^{i} \cong T^{c}(\delta) \otimes \operatorname{Com}_{1}^{*} \circ L i e^{*} \stackrel{? ? ?}{\longrightarrow} H_{\bullet}\left(\overline{\mathcal{M}}_{0, n+1}\right) \text {, so, not yet! }
$$

Topological interpretation: homotopy trivialization of S^{1}

Conjecture: [Costello-Kontsevich] $f D_{2} / \mathrm{h} S^{1} \cong \overline{\mathcal{M}}_{0, n+1}$.
Theorem (Drummond-Cole - V.)
Minimal model of $B V: \mathcal{T}\left(T^{c}(\delta) \oplus H^{\bullet+1}\left(\mathcal{M}_{0, n+1}\right)\right) \xrightarrow{\sim} B V$.
Application: New notion of $B V_{\infty}$-algebras.
Homotopy trivialization of the circle \Longleftrightarrow trivial action of $T^{c}(\delta)$

$$
H_{\bullet}\left(\overline{\mathcal{M}}_{0, n+1}\right)^{\mathrm{i}}=H^{\bullet+1}\left(\mathcal{M}_{0, n+1}\right) \& \text { Koszul [Getzler '95] }
$$

Solution of the conjecture over \mathbb{Q}

$$
B V_{\infty} /{ }_{h} \Delta=\underbrace{\mathcal{T}\left(H^{\bullet+1}\left(\mathcal{M}_{0, n+1}\right)\right)}_{\text {homotopy Frobenius manifold }} \stackrel{\sim}{\sim} \underbrace{H_{\bullet}\left(\overline{\mathcal{M}}_{0, n+1}\right)}_{\text {Frobenius manifold }}
$$

HTT for homotopy BV-algebras with Δ trivialization

$[\mathrm{BKM}]:(A, d, \cdot, \Delta) \operatorname{dg} B V$-algebra satisfying the $d \Delta$-lemma \Longrightarrow $H_{\bullet}(A, d)$ carries a Frobenius manifold structure.

Theorem (Drummond-Cole - V.)

$(A, d, \cdot, \Delta) d g B V$-algebra satisfying the Hodge-de Rham condition $\Longrightarrow H_{\bullet}(A, d)$ carries a homotopy Frobenius manifold structure, which extends the Frobenius manifold structure and

$$
\operatorname{Rect}\left(H_{\bullet}(A), d\right) \sim(A, d, \cdot, \Delta) \text { in } \mathrm{Ho}(d g B V \text {-alg })
$$

$$
\begin{gathered}
H_{\bullet}\left(\overline{\mathcal{M}}_{0, n+1}\right) \xrightarrow{[B K M]} \rightarrow \text { End }_{H_{\bullet}(A)} \\
H^{\bullet+1}\left(\mathcal{M}_{0, n+1}\right)
\end{gathered}
$$

De Rham cohomology of Poisson manifolds

Theorem (Koszul '85)

(M, π) Poisson manifold \Longrightarrow De Rham complex

$$
\left(\Omega^{\bullet} M, d_{D R}, \wedge, \Delta:=\left[i_{\pi}, d_{D R}\right]\right): B V \text {-algebra. }
$$

Theorem (Merkulov '98): M symplectic manifold satisfying the Hard Lefschetz condition $\Longrightarrow H_{D R}^{\circ}(M)$: Frobenius manifold.

Theorem (Dotsenko-Shadrin-V.)

For any Poisson manifold $M \Longrightarrow H_{D R}^{\bullet}(M)$: homotopy Frobenius manifold, s.t.

$$
\operatorname{Rect}\left(H_{\bullet}^{D R}(M)\right) \sim\left(\Omega^{\bullet} M, d_{D R}, \wedge, \Delta\right) \text { in } \mathrm{Ho}(\operatorname{dg} B V \text {-alg }) .
$$

Generalization: (M, π, E) Jacobi manifold (eg contact),
$\left(\Omega^{\bullet} \mathcal{M}, d_{D R}, \wedge, \Delta_{1}:=\left[i_{\pi}, d_{D R}\right], \Delta_{2}:=i_{\pi} i_{E}\right): B V_{\infty}$-algebra.

http://math.unice.fr/~brunov/Operads.html

Grundlehren der mathematischen Wissenschaften 346
A Series of Comprehensive Studies in Mathematics

Jean-Louis Loday
Bruno Vallette

Algebraic Operads

(2) Springer

Thank you!

http://math.unice.fr/~brunov/Operads.pdf

Grundlehren der mathematischen Wissenschaften 346
A Series of Comprehensive Studies in Mathematics

Jean-Louis Loday
Bruno Vallette

Algebraic Operads

(2) Springer

Thank you!

