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Homotopy data and mixed complex structure

Homotopy data: Deformation retract of chain complexes

(A, dA)h
&& p // (H, dH)

i
oo idA − ip = dAh + hdA .

Algebraic data: ∆ : A→ A, dA∆ + ∆dA = 0, ∆2 = 0
mixed complex |∆| = 1 (or bicomplex).

Transferred structure: δ1 := p∆i

Does δ1 square to zero?

(δ1)2 = p∆ ip︸︷︷︸
∼h idA

∆i 6= 0 in general!

Idea: Introduce δ2 := p∆h∆i

Then, ∂
(
δ2

)
= (δ1)2 in (Hom(A,A), ∂ := [dA,−]).

=⇒ δ2 is a homotopy for the relation (δ1)2 = 0.
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Higher structure: multicomplex

Higher up, we consider: δn := p(∆h)n−1∆i , for n ≥ 1.

Proposition

∂
(
δn
)

=
n−1∑
k=1

δkδn−k in (Hom(A,A), ∂), for n ≥ 1 .

Definition (Multicomplex)

(H, δ0 := −dH , δ1, δ2, . . .) graded vector space H endowed with a
family of linear operators of degree |δn| = 2n − 1 satisfying

n∑
k=0

δkδn−k = 0 , for n ≥ 0 .

Remark: A mixed complex = multicomplex s.t. δn = 0, for n ≥ 2.
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Multicomplexes are homotopy stable

Starting now from a multicomplex (A,∆0 = −dA,∆1,∆2, . . .)

Consider the transferred operators

δn :=
∑

k1+···+kl=n

p∆k1h∆k2h . . . h∆kl i , for n ≥ 1

Proposition

∂
(
δn
)

=
n−1∑
k=1

δkδn−k in (Hom(A,A), ∂), for n ≥ 1 .

=⇒ Again a multicomplex, no need of further higher structure.
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Compatibility between Original and Transferred structures

(A,∆0 = −dA,∆1,∆2, . . .)︸ ︷︷ ︸
Original structure

i←− (H, δ0 = −dH , δ1, δ2, . . .)︸ ︷︷ ︸
Transferred structure

i chain map =⇒ ∆0i = iδ0

Question: Does i commute with the ∆’s and the δ’s?

iδ1 = ip︸︷︷︸
∼h idA

∆1i 6= ∆1i in general!

Define i0 := i and consider i1 := h∆1i .

Then, ∂(i1) = ∆1i0 − i0δ1 in (Hom(H,A), ∂).

=⇒ i1 is a homotopy for the relation ∆1i0 = i0δ1.
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∞-morphisms of multicomplexes

Higher up, we consider:

in :=
∑

k1+···+kl=n

h∆k1h∆k2h . . . h∆kl i , for n ≥ 1 .

⇒ ∂(in) =
n−1∑
k=0

∆n−k ik −
n−1∑
k=0

ikδn−k in (Hom(H,A), ∂), for n ≥ 1 .

Definition (∞-morphism)

i∞ : (H, δ0 = −dH , δ1, δ2, . . .) (A,∆0 = −dA,∆1,∆2, . . .)
collection of maps {in : H → A}n≥0 satisfying

n∑
k=0

∆n−k ik =
n∑

k=0

ikδn−k , for n ≥ 0 .

Bruno VALLETTE Higher Algebra with Operads



Toy models
Operadic homotopical algebra

Homotopy Batalin–Vilkovisky algebras

Multicomplexes
A∞-algebras

The category ∞-mutlicomp

Proposition (Composite of ∞-morphisms)

f : A B, g : B  C : two ∞-morphisms of multicomplexes.

(gf )n :=
n∑

k=0

gn−k fk , for n ≥ 0 ,

defines an associative and unital composite of ∞-morphisms.

Category: multicomplex with ∞-morphisms: ∞-multicomp.

Compact reformulation:
multicomplex = square-zero element

∆(z) = ∆0 + ∆1z + ∆2z2 + · · ·
in the algebra EndA[[z ]],
∞-morphism = i(z) ∈ Hom(H,A)[[z ]] s.t. i(z)δ(z) = ∆(z)i(z),
composite = g(z)f (z).
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Homotopy Transfer Theorem for multicomplexes

∞-quasi-isomorphism: i : H
∼
 A s.t. i0 : H

∼−→ A qi.

Theorem (HTT for multicomplexes, Lapin ’01)

Given any deformation retract

(A, dA)h
&& p // (H, dH)

i
oo idA − ip = dAh + hdA

and any multicomplex structure on A, there exists a multicomplex
structure on H such that i extends to an ∞-quasi-isomorphism.

Application 1: K field, (A, d ,∆) bicomplex, (H(A, d), 0) = E 1

deformation retract
=⇒ multicomplex structure on H(A, d) =lift of the spectral
sequence, i.e. δr ⇒ d r .

Application 2: Equivalence between the various definitions of
cyclic homology [Loday-Quillen, Kassel].
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Homotopy theory of mixed complexes

Definition (Homotopy category)

Localisation with respect to quasi-isomorphisms

Ho(mixed cx) := mixed cx [qi−1]

HomHo(A,B) := {A→ •“ ∼←− ”• → • · · · • ”
∼←− ”• → B}/ ∼

Theorem (?)

Every ∞-qi of multicomplexes admits a homotopy inverse.

Ho(mixed cx) ∼=∞-mixed cx/ ∼h .

Proof.
[...] +Rectification:

∃ Rect :∞-multicomp→ mixed cx, s.t. H
∼
 Rect(H) .

�
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Associative algebra and homotopy data

Initial structure: an associative product on A

ν : A⊗2 → A, s.t. ν(ν(a, b), c) = ν(a, ν(b, c)) .

Transferred structure: the binary product on H

µ2 := pνi⊗2 : H⊗2 → H.
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First homotopy for the associativity relation

Is the transferred µ2 associative? Anwser: in general, no!

Introduce µ3:

In Hom(A⊗3,A), it satisfies

=⇒ µ3 is a homotopy for the associativity relation of µ2.
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Higher structure

Higher up, in Hom(H⊗n,H), we consider:

µn :=

Proposition
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A∞-algebra

Definition (A∞-algebra, Stasheff ’63)

An A∞-algebra is a chain complex (H, dH , µ2, µ3, . . .) endowed
with a family of multlinear maps of degree |µn| = n − 2 satisfying

Remark: A dga algebra = A∞-algebra s.t. µn = 0, for n ≥ 3.
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A∞-algebras

A∞-algebras are homotopy stable

Starting from an A∞-algebra (A, dA, ν2, ν3, . . .)

Consider µn =

Proposition

=⇒ Again an A∞-algebra, no need of further higher structure.
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Toy models
Operadic homotopical algebra

Homotopy Batalin–Vilkovisky algebras

Multicomplexes
A∞-algebras

Compatibility between Original and Transferred structures

(A, dA, ν2, ν3, . . .)︸ ︷︷ ︸
Original structure

i←− (H, dH , µ2, µ3, . . .)︸ ︷︷ ︸
Transferred structure

i chain map =⇒ dAi = idH

Question: Does i commutes with the ν’s and the µ’s?
Anwser: not in general!
Define i1 := i and consider in Hom(H⊗n,A), for n ≥ 2:

in :=
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A∞-morphism

Definition (A∞-morphism)

(H, dH , {µn}n≥2) (A, dA, {νn}n≥2) is a collection of linear maps

{fn : H⊗n → A}n≥1

of degree |fn| = n − 1 satisfying

Example: The aforementioned {in : H⊗n → A}n≥1.
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Homotopy Transfer Theorem for A∞-algebras

∞-quasi-isomorphism: i : H
∼
 A s.t. i0 : H

∼−→ A qi.

Theorem (HTT for A∞-algebras, Kadeshvili ’82)

Given any deformation retract

(A, dA)h
&& p // (H, dH)

i
oo idA − ip = dAh + hdA

and any A∞-algebra structure on A, there exists an A∞-algebra
structure on H such that i extends to an ∞-quasi-isomorphism.

Application: A = (C •Sing(X ),∪), transferred A∞-algebra on
H•Sing(X )= lifting of the (higher) Massey products.
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The category ∞-A∞-Alg

Compact reformulation:

A∞-algebra = square-zero coderivation in the coalgebra T c(sA),
A∞-morphism = morphism of dg coalgebras T c(sA)→ T c(sB).
composite [?] = composite of morphisms of dg coalgebras.

Category: A∞-algebras with ∞-morphisms: ∞-A∞-Alg.

dga alg
� _

�
∞-A∞-alg oo

∼= // quasi-free dga coalg
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Homotopy theory of dg associative algebras

Theorem (Munkholm ’78, Lefèvre-Hasegawa ’03)

Every ∞-qi of A∞-algebras admits a homotopy inverse.

Ho(dga alg) := dga alg [qi−1] ∼=∞-dga alg/ ∼h .

Proof. Use

dga alg
� _

�

B
/ (conil) dga coalg

Ωo

∞-A∞-alg oo
∼= //

Rect

>

quasi-free dga coalg
?�

OO

+ [...] + Rectification:

∃ Rect :∞-A∞-Alg→ dga alg, s.t. H
∼
 Rect(H)

�Bruno VALLETTE Higher Algebra with Operads



Toy models
Operadic homotopical algebra

Homotopy Batalin–Vilkovisky algebras

Multicomplexes
A∞-algebras

Exercise

Exercise: Consider your favorite category of algebras “of type P”
(eg. Lie algebras, associative algebras+unary operator ∆, etc.).

Find the good notions of P∞-algebras and ∞-morphisms.

Fill the diagram

dg P-alg
� _

�

???
/ ???

???o

∞-P∞-alg [?] oo
∼= //

Rect

=

???
?�

OO

to prove the Homotopy Transfer Theorem

and the equivalence of categories

Ho(dg P-alg) := dg P-alg [qi−1] ∼=∞-dg P-alg/∼h .
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Operad

Multilinear Operations: EndA(n) := Hom(A⊗n,A)
Composition:

EndA(k)⊗ EndA(i1)⊗ · · · ⊗ EndA(ik) → EndA(i1 + · · ·+ ik)

g ⊗ f1 ⊗ · · · ⊗ fk 7→ g(f1, . . . , fk)

Definition (Operad)

Collection: {P(n)}n∈N of Sn-modules

Composition: Pk ⊗ Pi1 ⊗ · · · ⊗ P ik → Pi1+···+ik
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Examples of Operads

Definition (Algebra over an Operad)

Structure of P-algebra on A: morphism of operads P → EndA

Examples:

D = T (∆)/(∆2)-algebras (modules) = mixed complexes.

As = T
( )

/
(

−
)

-algebras = associative algebras.

Little discs D2: D2-algebras ∼= double loop spaces Ω2(X )

◦1 =
Bruno VALLETTE Higher Algebra with Operads
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Example in Geometry

Deligne–Mumford moduli space of stable curves: Mg ,n+1

Definition (Frobenius manifold, aka Hypercommutative algebras)

Algebra over H•(M0,n+1), i.e. H•(M0,n+1)→ EndH•(A) ⇐⇒
totally symmetric n-ary operation (x1, . . . , xn) of degree 2(n − 2),∑
S1tS2={1,...,n}

((a, b, xS1), c, xS2) =
∑

S1tS2={1,...,n}

±(a, (b, xS1 , c), xS2) .

Bruno VALLETTE Higher Algebra with Operads
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Homotopy algebra and operads

operad P

��

P∞ : quasi-free replacement (cofibrant)
∼oo

��
category of P-algebras �

� // category of homotopy P-algebras

Examples:

P = D : D∞-algebras = multicomplexes

D = T (∆)/(∆2)︸ ︷︷ ︸
quotient

∼←− D∞ :=
(
T (δ ⊕ δ2 ⊕ δ3 ⊕ · · · ), d2

)︸ ︷︷ ︸
quasi−free

.

P = Ass: Ass∞-algebras = A∞-algebras

As = T
( )

/
(

−
)

︸ ︷︷ ︸
quotient

∼←− A∞ :=
(
T
(
• ⊕ • ⊕ · · ·

)
, d2

)
︸ ︷︷ ︸

quasi−free

.
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Koszul duality theory

P∞ = T (operadic syzygies)
?∼?−→ P

Quadratic presentation: P = T (V )/(R), where

R ⊂ T (2)(V )︸ ︷︷ ︸
trees with 2 vertices

.

Koszul dual cooperad: quadratic cooperad
P ¡ := C(sV , s2R), i.e. defined by a (dual) universal property.

Candidate: P∞ = ΩP ¡ = T (P ¡)
?∼?−→ P.

Criterion: Quasi-isomorphism iff the Koszul complex P ◦κ P ¡

is acyclic.

Examples: D, Ass, Com, Lie, etc.

Bruno VALLETTE Higher Algebra with Operads
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Operadic higher structure

For any Koszul operad P

∃ a notion of composable ∞-morphisms: ∞-P∞-Alg.

P∞-algebra = square-zero coderivation in the coalgebra P ¡(A),
∞-morphism = morphism of dg coalgebras P ¡(A)→ P ¡(B).

Theorem (HTT for P∞-algebras, Galvez–Tonks-V.)

Given any deformation retract

(A, dA)h
&& p // (H, dH)

i
oo idA − ip = dAh + hdA

and any P∞-algebra structure on A, there exists a P∞-algebra
structure on H such that i extends to an ∞-quasi-isomorphism.

“Application”: [wheeled properads, Merkulov ’10]
perturbation theory in QFT = HTT for unimodular Lie bialgebras:
Feynman diagrams = Graphs formulae for transferred structure.
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Homotopy theory of dg P-algebras

Theorem (V.)

Every ∞-qi of P∞-algebras admits a homotopy inverse.

Ho(dg P-alg) := dg P-alg [qi−1] ∼=∞-dg P-alg/ ∼h .

Proof. Use

dg P-alg
� _

�

Bκ

/ (conil) dg P ¡-coalg
Ωκo

∞-P∞-alg oo
∼= //

Rect

=

quasi-free P ¡-coalg
?�

OO

+ Model Category on (conil) dg P ¡-coalg: we ( qi
+ Rectification:

∃ Rect :∞-P∞-Alg→ dg P-alg, s.t. H
∼
 Rect(H)

�Bruno VALLETTE Higher Algebra with Operads
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Batalin–Vilkovisky algebras

Definition (Batalin–Vilkovisky algebra)

Graded commutative algebra (A, dA, ·) endowed with a linear
operator ∆2 = 0, dA∆ + dA∆ = 0, of order 2:

∆(abc) = ∆(ab)c+∆(bc)a+∆(ca)b−∆(a)bc−∆(b)ca−∆(c)ab .

Examples : H•(TCFT ), H•(LX ) (string topology), Dolbeault
complex of Calabi-Yau manifolds, the bar construction BA, etc.
Operadic topological interpretation: H•(fD2) = BV .
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Homotopy BV-algebras

Theorem (Galvez–Tonks–V.)

The inhomogeneous Koszul duality theory provides us with a
quasi-free resolution BV∞ := ΩBV ¡ ∼−→ BV .

Proof. Problem:
BV ∼= T (·,∆)/(homogeneous quadratic and cubical relations)

Solution: Introduce
[ -, - ] := ∆ ◦ (- · -) − (∆(-) · -) − (- ·∆(-))

a degree 1 Lie bracket =⇒ new presentation of the operad BV :

BV ∼= T (·,∆, [ , ])/(inhomogeneous quadratic relations) .

�

Application: BV∞-algebras & ∞-morphisms.
Corollary: HTT & Ho(dg BV -alg) ∼=∞-dg BV-alg/ ∼h.

Bruno VALLETTE Higher Algebra with Operads
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Applications in Mathematical Physics

Application: Lian–Zuckerman conjecture for Topological Vertex
Operator Algebra.

Theorem (Lian–Zuckerman ’93)

H•BRST (TVOA) : BV -algebra.

Theorem (Lian–Zuckerman conjecture, Galvez–Tonks–V)

C •BRST (TVOA) = TVOA : explicit BV∞-algebra, which lifts the
Lian–Zuckerman operations.

Remarks:

Lian–Zuckerman conjecture similar to the Deligne conjecture.

Conjecture: some converse should be true, i.e. BV∞ ∼= TVOA.

Bruno VALLETTE Higher Algebra with Operads
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Application in Geometry

Theorem (Barannikov–Kontsevich–Manin)

(A, d , ·,∆) dg BV -algebra satisfying the d∆-lemma

ker d ∩ ker ∆ ∩ (Imd + Im∆) = Im(d∆) = Im(∆d)

=⇒ H•(A, d) carries a Frobenius manifold structure, which extends
the transferred commutative product.

Application: B-side of the Mirror Symmetry Conjecture.

Question: Application of the HTT for BV∞-algebras???

BV ¡ ∼= T c(δ)⊗ Com∗1 ◦ Lie∗
???←→ H•(M0,n+1), so, not yet!
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Topological interpretation: homotopy trivialization of S1

Conjecture: [Costello–Kontsevich] fD2 /h S1 ∼=M0,n+1.

Theorem (Drummond-Cole – V.)

Minimal model of BV : T
(
T c(δ)⊕ H•+1(M0,n+1)

) ∼−→ BV .

Application: New notion of BV∞-algebras.

Homotopy trivialization of the circle ⇐⇒ trivial action of T c(δ)

H•(M0,n+1)¡ = H•+1(M0,n+1) & Koszul [Getzler ’95]

Solution of the conjecture over Q

BV∞ /h ∆ = T (H•+1(M0,n+1))︸ ︷︷ ︸
homotopy Frobenius manifold

∼−→ H•(M0,n+1)︸ ︷︷ ︸
Frobenius manifold

.
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HTT for homotopy BV-algebras with ∆ trivialization

[BKM]: (A, d , ·,∆) dg BV -algebra satisfying the d∆-lemma =⇒
H•(A, d) carries a Frobenius manifold structure.

Theorem (Drummond-Cole – V.)

(A, d , ·,∆) dg BV -algebra satisfying the Hodge–de Rham
condition =⇒ H•(A, d) carries a homotopy Frobenius manifold
structure , which extends the Frobenius manifold structure and

Rect(H•(A), d) ∼ (A, d , ·,∆) in Ho(dg BV -alg)

H•(M0,n+1)
[BKM] // EndH•(A)

H•+1(M0,n+1)

κ

OO

[DCV ]

66
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De Rham cohomology of Poisson manifolds

Theorem (Koszul ’85)

(M, π) Poisson manifold =⇒ De Rham complex

(Ω•M, dDR ,∧,∆ := [iπ, dDR ]): BV -algebra.

Theorem (Merkulov ’98): M symplectic manifold satisfying the
Hard Lefschetz condition =⇒ H•DR(M): Frobenius manifold.

Theorem (Dotsenko–Shadrin–V.)

For any Poisson manifold M =⇒ H•DR(M): homotopy Frobenius
manifold , s.t.

Rect
(
HDR
• (M)

)
∼ (Ω•M, dDR ,∧,∆) in Ho(dg BV -alg).

Generalization: (M, π,E ) Jacobi manifold (eg contact),

(Ω•M, dDR ,∧,∆1 := [iπ, dDR ],∆2 := iπ iE ): BV∞-algebra.
Bruno VALLETTE Higher Algebra with Operads
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In many areas of mathematics some “higher operations” are arising. ! ese have become 
so important that several research projects refer to such expressions. Higher operations 
form new types of algebras. ! e key to understanding and comparing them, to creating 
invariants of their action is operad theory. ! is is a point of view that is 40 years old in 
algebraic topology, but the new trend is its appearance in several other areas, such as 
algebraic geometry, mathematical physics, di$ erential geometry, and combinatorics. 
! e present volume is the % rst comprehensive and systematic approach to algebraic 
operads. An operad is an algebraic device that serves to study all kinds of algebras 
(associative, commutative, Lie, Poisson, A-in% nity, etc.) from a conceptual point of 
view. ! e book presents this topic with an emphasis on Koszul duality theory. A& er 
a modern treatment of Koszul duality for associative algebras, the theory is extended 
to operads. Applications to homotopy algebra are given, for instance the Homotopy 
Transfer ! eorem. Although the necessary notions of algebra are recalled, readers are 
expected to be familiar with elementary homological algebra. Each chapter ends with 
a helpful summary and exercises. A full chapter is devoted to examples, and numerous 
% gures are included.
A& er a low-level chapter on Algebra, accessible to (advanced) undergraduate students, 
the level increases gradually through the book. However, the authors have done their 
best to make it suitable for graduate students: three appendices review the basic results 
needed in order to understand the various chapters. Since higher algebra is becoming 
essential in several research areas like deformation theory, algebraic geometry, rep-
resentation theory, di$ erential geometry, algebraic combinatorics, and mathematical 
physics, the book can also be used as a reference work by researchers.
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