Higher Algebra with Operads

Bruno VALLETTE

University of Nice Sophia-Antipolis (Newton Institute, Cambridge)

British Mathematical Colloquium March 27, 2013

Homotopy Batalin–Vilkovisky algebras

Multicomplexes A_{∞} -algebras

Homotopy data and mixed complex structure

• Homotopy data: Deformation retract of chain complexes

$$h \stackrel{p}{\leftarrow} (A, d_A) \xrightarrow{p}_{\longleftarrow} (H, d_H) \qquad \qquad \boxed{\operatorname{id}_A - ip = d_A h + h d_A}.$$

- Algebraic data: $\Delta : A \to A$, $d_A \Delta + \Delta d_A = 0$, $\Delta^2 = 0$ mixed complex $|\Delta| = 1$ (or bicomplex).
- Transferred structure: δ_1

$$\delta_1 := p\Delta i$$

Does δ_1 square to zero?

$$(\delta_1)^2 = p\Delta \underbrace{ip}_{\sim_h \operatorname{id}_A} \Delta i \neq 0$$
 in general!

Idea: Introduce $\delta_2 := p\Delta h\Delta i$ Then, $\partial(\delta_2) = (\delta_1)^2$ in $(\text{Hom}(A, A), \partial := [d_A, -])$.

 $\implies \delta_2$ is a homotopy for the relation $(\delta_1)^2 = 0$.

Multicomplexes A_{∞} -algebras

Higher structure: multicomplex

Higher up, we consider:

$$\delta_n := p(\Delta h)^{n-1} \Delta i$$
, for $n \ge 1$.

Proposition

$$\partial(\delta_n) = \sum_{k=1}^{n-1} \delta_k \delta_{n-k}$$
 in $(\text{Hom}(A, A), \partial)$, for $n \ge 1$.

Definition (Multicomplex)

 $\begin{array}{l} (H, \delta_0 := -d_H, \delta_1, \delta_2, \ldots) \text{ graded vector space } H \text{ endowed with a} \\ \text{family of linear operators of degree } |\delta_n| = 2n - 1 \text{ satisfying} \\ \hline \\ \hline \\ \sum_{k=0}^n \delta_k \delta_{n-k} = 0 \\ , \quad \text{for } n \ge 0 \ . \end{array}$

Remark: A mixed complex = multicomplex s.t. $\delta_n = 0$, for $n \ge 2$.

Multicomplexes A_{∞} -algebras

Multicomplexes are homotopy stable

- Starting now from a multicomplex $(A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)$
- Consider the transferred operators

$$\left| \delta_n := \sum_{k_1 + \dots + k_l = n} p \Delta_{k_1} h \Delta_{k_2} h \dots h \Delta_{k_l} i \right|, \quad \text{for} \quad n \ge 1$$

Proposition

$$\partial(\delta_n) = \sum_{k=1}^{n-1} \delta_k \delta_{n-k}$$
 in $(\text{Hom}(A, A), \partial)$, for $n \ge 1$.

 \implies Again a multicomplex, **no need of further higher structure**.

Compatibility between Original and Transferred structures

$$\underbrace{(A,\Delta_0=-d_A,\Delta_1,\Delta_2,\ldots)}_{i}\xleftarrow{i}\underbrace{(H,\delta_0=-d_H,\delta_1,\delta_2,\ldots)}_{i}$$

Original structure

Transferred structure

• *i* chain map
$$\implies \Delta_0 i = i \delta_0$$

• **Question:** Does *i* commute with the Δ 's and the δ 's?

$$i\delta_1 = \underbrace{ip}_{\sim_h \operatorname{id}_A} \Delta_1 i \neq \Delta_1 i$$
 in general!

• Define $i_0 := i$ and consider $i_1 := h\Delta_1 i$. Then, $\partial(i_1) = \Delta_1 i_0 - i_0 \delta_1$ in $(\text{Hom}(H, A), \partial)$.

 \implies i_1 is a homotopy for the relation $\Delta_1 i_0 = i_0 \delta_1$.

∞ -morphisms of multicomplexes

Higher up, we consider:

$$i_n := \sum_{k_1 + \dots + k_l = n} h \Delta_{k_1} h \Delta_{k_2} h \dots h \Delta_{k_l} i , \quad \text{for} \quad n \ge 1 .$$
$$\Rightarrow \boxed{\partial(i_n) = \sum_{k=0}^{n-1} \Delta_{n-k} i_k - \sum_{k=0}^{n-1} i_k \delta_{n-k}} \text{ in } (\text{Hom}(H, A), \partial), \text{ for } n \ge 1$$

Definition (∞ -morphism)

 $i_{\infty}: (H, \delta_0 = -d_H, \delta_1, \delta_2, \ldots) \rightsquigarrow (A, \Delta_0 = -d_A, \Delta_1, \Delta_2, \ldots)$ collection of maps $\{i_n: H \to A\}_{n \ge 0}$ satisfying

$$\sum_{k=0}^{n} \Delta_{n-k} i_k = \sum_{k=0}^{n} i_k \delta_{n-k} \quad \text{for} \quad n \ge 0 \; .$$

Multicomplexes A_{∞} -algebras

The category ∞ -mutlicomp

Proposition (Composite of ∞ -morphisms)

 $f: A \rightsquigarrow B, g: B \rightsquigarrow C: two \infty$ -morphisms of multicomplexes.

$$(gf)_n := \sum_{k=0}^n g_{n-k} f_k \bigg|, \quad \text{for } n \ge 0 ,$$

defines an associative and unital composite of ∞ -morphisms.

Category: multicomplex with ∞ -morphisms: ∞ -multicomp.

Compact reformulation:

multicomplex = square-zero element

$$\Delta(z) = \Delta_0 + \Delta_1 z + \Delta_2 z^2 + \cdots$$

in the algebra $\operatorname{End}_{A}[[z]]$, ∞ -morphism = $i(z) \in \operatorname{Hom}(H, A)[[z]]$ s.t. $i(z)\delta(z) = \Delta(z)i(z)$, composite = g(z)f(z).

Homotopy Transfer Theorem for multicomplexes

 ∞ -quasi-isomorphism: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ qi.

Theorem (HTT for multicomplexes, Lapin '01)

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i} (H, d_H) \qquad \text{id}_A - ip = d_A h + h d_A$$

and any multicomplex structure on A, there exists a multicomplex structure on H such that i extends to an ∞ -quasi-isomorphism.

Application 1: \mathbb{K} field, (A, d, Δ) bicomplex, $(H(A, d), 0) = E^1$ deformation retract

 \implies multicomplex structure on H(A, d) = lift of the spectral sequence, i.e. $\delta^r \Rightarrow d^r$.

Application 2: Equivalence between the various definitions of cyclic homology [Loday-Quillen, Kassel].

Multicomplexes A_{∞} -algebras

Homotopy theory of mixed complexes

Definition (Homotopy category)

Localisation with respect to quasi-isomorphisms

Ho(mixed cx) := mixed cx $[qi^{-1}]$

 $\mathsf{Hom}_{\mathsf{Ho}}(A,B) := \{A \to \bullet `` \xleftarrow{\sim} " \bullet \to \bullet \cdots \bullet " \xleftarrow{\sim} " \bullet \to B\} / \sim$

Theorem (?)

• Every ∞ -qi of multicomplexes admits a homotopy inverse.

Ho(mixed cx) $\cong \infty$ -mixed cx/ \sim_h .

Proof.

۲

[...] +Rectification:

 $\exists \textit{Rect} : \infty \text{-multicomp} \rightarrow \mathsf{mixed} \mathsf{ cx, s.t. } H \xrightarrow{\sim} \textit{Rect}(H) .$

Multicomplexes A_{∞} -algebras

Associative algebra and homotopy data

• Initial structure: an associative product on A

$$\nu: A^{\otimes 2} \to A, \quad \text{s.t.} \quad \nu(\nu(a, b), c) = \nu(a, \nu(b, c)) \ .$$

• Transferred structure: the binary product on H

Multicomplexes A_∞ -algebras

First homotopy for the associativity relation

- Is the transferred μ_2 associative? Anwser: in general, no!
- Introduce μ_3 :

• In Hom $(A^{\otimes 3}, A)$, it satisfies

 $\implies \mu_3$ is a homotopy for the associativity relation of μ_2 .

Multicomplexes A_{∞} -algebras

Higher structure

Higher up, in Hom $(H^{\otimes n}, H)$, we consider:

Proposition

 A_∞ -algebra

Definition (A_{∞} -algebra, Stasheff '63)

An A_{∞} -algebra is a chain complex $(H, d_H, \mu_2, \mu_3, ...)$ endowed with a family of multinear maps of degree $|\mu_n| = n - 2$ satisfying

 A_{∞} -algebras

Remark: A dga algebra = A_{∞} -algebra s.t. $\mu_n = 0$, for $n \ge 3$.

 A_{∞} -algebras

A_{∞} -algebras are homotopy stable

- Starting from an A_{∞} -algebra $(A, d_A, \nu_2, \nu_3, \ldots)$

Proposition

 \implies Again an A_{∞} -algebra, **no need of further higher structure**.

Compatibility between Original and Transferred structures

$$\underbrace{(A, d_A, \nu_2, \nu_3, \ldots)}_{O, i \neq i} \xleftarrow{i} \underbrace{(H, d_H, \mu_2, \mu_3, \ldots)}_{O, i \neq i}$$

Original structure

Transferred structure

- *i* chain map \implies $d_A i = i d_H$
- Question: Does *i* commutes with the ν 's and the μ 's? Anwser: not in general!

• Define $i_1 := i$ and consider in Hom $(H^{\otimes n}, A)$, for $n \ge 2$:

Multicomplexes A_{∞} -algebras

A_{∞} -morphism

Definition (A_{∞} -morphism)

 $(H, d_H, \{\mu_n\}_{n \ge 2}) \rightsquigarrow (A, d_A, \{\nu_n\}_{n \ge 2})$ is a collection of linear maps

$$\{f_n : H^{\otimes n} \to A\}_{n \ge 1}$$

of degree $|f_n| = n - 1$ satisfying

Example: The aforementioned $\{i_n : H^{\otimes n} \to A\}_{n \ge 1}$.

Multicomplexes A_∞ -algebras

Homotopy Transfer Theorem for A_{∞} -algebras

 ∞ -quasi-isomorphism: $i: H \xrightarrow{\sim} A$ s.t. $i_0: H \xrightarrow{\sim} A$ qi.

Theorem (HTT for A_{∞} -algebras, Kadeshvili '82)

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i \to i} (H, d_H) \qquad \text{id}_A - ip = d_A h + h d_A$$

and any A_{∞} -algebra structure on A, there exists an A_{∞} -algebra structure on H such that i extends to an ∞ -quasi-isomorphism.

Application: $A = (C^{\bullet}_{Sing}(X), \cup)$, transferred A_{∞} -algebra on $H^{\bullet}_{Sing}(X) =$ lifting of the (higher) Massey products.

Multicomplexes A_{∞} -algebras

The category ∞ - A_{∞} -Alg

Compact reformulation:

 A_{∞} -algebra = square-zero coderivation in the coalgebra $T^{c}(sA)$, A_{∞} -morphism = morphism of dg coalgebras $T^{c}(sA) \rightarrow T^{c}(sB)$. composite [?] = composite of morphisms of dg coalgebras.

Category: A_{∞} -algebras with ∞ -morphisms: ∞ - A_{∞} -Alg.

Homotopy theory of dg associative algebras

Theorem (Munkholm '78, Lefèvre-Hasegawa '03)

• Every ∞ -qi of A_{∞} -algebras admits a homotopy inverse.

$$ullet$$
 $ig|$ Ho(dga alg) := dga alg $[qi^{-1}]\cong\infty$ -dga alg $/\sim_h$

Proof. Use

Multicomplexes A_{∞} -algebras

Exercise

Exercise: Consider your favorite category of algebras "of type \mathcal{P} " (eg. Lie algebras, associative algebras+unary operator Δ , etc.).

- Find the good notions of \mathcal{P}_{∞} -algebras and ∞ -morphisms.
- Fill the diagram

- to prove the Homotopy Transfer Theorem
- and the equivalence of categories

$$\mathsf{Ho}(\mathsf{dg}\;\mathcal{P}\operatorname{-alg}):=\mathsf{dg}\;\mathcal{P}\operatorname{-alg}[qi^{-1}]\cong\operatorname{\infty-dg}\;\mathcal{P}\operatorname{-alg}/\sim_{\pmb{h}}$$

Operad Koszul duality theory Operadic higher structure

Plan

3 Homotopy Batalin–Vilkovisky algebras

Operad Koszul duality theory Operadic higher structure

Operad

Multilinear Operations: $End_A(n) := Hom(A^{\otimes n}, A)$ **Composition:**

 $\mathsf{End}_{\mathcal{A}}(k) \otimes \mathsf{End}_{\mathcal{A}}(i_1) \otimes \cdots \otimes \mathsf{End}_{\mathcal{A}}(i_k) \to \mathsf{End}_{\mathcal{A}}(i_1 + \cdots + i_k)$ $g \otimes f_1 \otimes \cdots \otimes f_k \mapsto g(f_1, \dots, f_k)$

Definition (Operad)

- Collection: $\{\mathcal{P}(n)\}_{n\in\mathbb{N}}$ of \mathbb{S}_n -modules
- Composition: $\mathcal{P}_k \otimes \mathcal{P}_{i_1} \otimes \cdots \otimes \mathcal{P}_{i_k} \to \mathcal{P}_{i_1+\cdots+i_k}$

Operad Koszul duality theory Operadic higher structure

Examples of Operads

Definition (Algebra over an Operad)

Structure of \mathcal{P} -algebra on A: morphism of operads $\mathcal{P} \to \mathsf{End}_A$

Examples:

- $D = T(\Delta)/(\Delta^2)$ -algebras (modules) = mixed complexes.
- $As = \mathcal{T}(\bigvee_{l}) / (\bigvee_{l} \bigvee_{l})$ -algebras = associative algebras.
- Little discs D_2 : D_2 -algebras \cong double loop spaces $\Omega^2(X)$

Operad Koszul duality theory Operadic higher structure

Example in Geometry

Deligne–Mumford moduli space of stable curves: $\overline{\mathcal{M}}_{g,n+1}$

Definition (Frobenius manifold, aka Hypercommutative algebras)

Algebra over $H_{\bullet}(\overline{\mathcal{M}}_{0,n+1})$, i.e. $H_{\bullet}(\overline{\mathcal{M}}_{0,n+1}) \to \operatorname{End}_{H_{\bullet}(A)} \iff$ totally symmetric *n*-ary operation (x_1, \ldots, x_n) of degree 2(n-2),

$$\sum_{S_1\sqcup S_2=\{1,\ldots,n\}} ((a,b,x_{S_1}),c,x_{S_2}) = \sum_{S_1\sqcup S_2=\{1,\ldots,n\}} \pm (a,(b,x_{S_1},c),x_{S_2}).$$

Operad Koszul duality theory Operadic higher structure

Homotopy algebra and operads

operad
$$\mathcal{P} \xleftarrow{} \mathcal{P}_{\infty}$$
: quasi-free replacement (cofibrant)
category of \mathcal{P} -algebras \hookrightarrow category of homotopy \mathcal{P} -algebras
Examples:
• $\mathcal{P} = D : D_{\infty}$ -algebras = multicomplexes

$$D = \underbrace{T(\Delta)/(\Delta^2)}_{\text{quotient}} \stackrel{\sim}{\leftarrow} D_{\infty} := \underbrace{\left(T(\delta \oplus \delta^2 \oplus \delta^3 \oplus \cdots), d_2\right)}_{\text{quasi-free}}.$$

•
$$\mathcal{P} = Ass: Ass_{\infty}$$
-algebras = A_{∞} -algebras

$$As = \underbrace{\mathcal{T}(\widecheck{\uparrow}) / \left(\widecheck{\uparrow} - \operatornamewithlimits{\overleftarrow{\uparrow}}\right)}_{\text{quotient}} \stackrel{\sim}{\leftarrow} A_{\infty} := \underbrace{\left(\mathcal{T}(\overleftarrow{\uparrow} \oplus \overleftarrow{\downarrow} \oplus \cdots), d_{2}\right)}_{\text{quasi-free}}.$$

Operad Koszul duality theory Operadic higher structure

Koszul duality theory

$$\mathcal{P}_{\infty} = \mathcal{T}(\mathsf{operadic syzygies}) \xrightarrow{?\sim?} \mathcal{P}$$

• Quadratic presentation: $\mathcal{P} = \mathcal{T}(V)/(R)$, where

$$R \subset \underbrace{\mathcal{T}^{(2)}(V)}_{\text{title 2 southing}}$$

trees with 2 vertices

- Koszul dual cooperad: quadratic cooperad $\mathcal{P}^{i} := \mathcal{C}(sV, s^{2}R)$, i.e. defined by a (dual) universal property.
- Candidate: $\mathcal{P}_{\infty} = \Omega \mathcal{P}^{i} = \mathcal{T}(\mathcal{P}^{i}) \xrightarrow{? \sim ?} \mathcal{P}.$
- Criterion: Quasi-isomorphism iff the Koszul complex $\mathcal{P} \circ_{\kappa} \mathcal{P}^{i}$ is acyclic.
- Examples: D, Ass, Com, Lie, etc.

Operad Koszul duality theory Operadic higher structure

Operadic higher structure

For any Koszul operad \mathcal{P}

• \exists a notion of composable ∞ -morphisms: ∞ - \mathcal{P}_{∞} -Alg.

 \mathcal{P}_{∞} -algebra = square-zero coderivation in the coalgebra $\mathcal{P}^{i}(A)$, ∞ -morphism = morphism of dg coalgebras $\mathcal{P}^{i}(A) \rightarrow \mathcal{P}^{i}(B)$.

Theorem (HTT for P_{∞} -algebras, Galvez–Tonks-V.)

Given any deformation retract

$$h \stackrel{p}{\frown} (A, d_A) \xrightarrow{p}_{i \to i} (H, d_H) \qquad \text{id}_A - ip = d_A h + h d_A$$

and any \mathcal{P}_{∞} -algebra structure on A, there exists a \mathcal{P}_{∞} -algebra structure on H such that i extends to an ∞ -quasi-isomorphism.

"Application": [wheeled properads, Merkulov '10] perturbation theory in QFT = HTT for unimodular Lie bialgebras: Feynman diagrams = Graphs formulae for transferred structure.

Operad Koszul duality theory Operadic higher structure

Homotopy theory of dg \mathcal{P} -algebras

Theorem (V.)

• Every ∞ -qi of \mathcal{P}_{∞} -algebras admits a homotopy inverse.

Proof. Use

- + Model Category on (conil) dg \mathcal{P}^{i} -coalg: we \subsetneq qi
- + Rectification:

$$\exists \textit{ Rect}: \infty \text{-} \mathcal{P}_{\infty} \text{-} \textsf{Alg} \rightarrow \textsf{dg } \mathcal{P} \text{-} \textsf{alg, s.t. } H \xrightarrow{\sim} \textit{Rect}(H)$$

Batalin–Vilkovisky algebras Homotopy BV-algebras Applications in Geometry, Topology and Mathematical Physics

Plan

Toy models

Operadic homotopical algebra

Homotopy Batalin–Vilkovisky algebras

Batalin–Vilkovisky algebras Homotopy BV-algebras Applications in Geometry, Topology and Mathematical Physics

Batalin–Vilkovisky algebras

Definition (Batalin–Vilkovisky algebra)

Graded commutative algebra (A, d_A, \cdot) endowed with a linear operator $\Delta^2 = 0$, $d_A \Delta + d_A \Delta = 0$, of order 2:

 $\Delta(abc) = \Delta(ab)c + \Delta(bc)a + \Delta(ca)b - \Delta(a)bc - \Delta(b)ca - \Delta(c)ab$.

Examples : $H_{\bullet}(TCFT)$, $\mathbb{H}_{\bullet}(\mathcal{L}X)$ (string topology), Dolbeault complex of Calabi-Yau manifolds, the bar construction BA, etc. **Operadic topological interpretation:** $H_{\bullet}(fD_2) = BV$.

Batalin–Vilkovisky algebras Homotopy BV-algebras Applications in Geometry, Topology and Mathematical Physics

Homotopy BV-algebras

Theorem (Galvez–Tonks–V.)

The inhomogeneous Koszul duality theory provides us with a quasi-free resolution $BV_{\infty} := \Omega BV^{i} \xrightarrow{\sim} BV$.

Proof. <u>Problem:</u> $BV \cong \mathcal{T}(\cdot, \Delta)/(\text{homogeneous quadratic and cubical relations})$ <u>Solution:</u> Introduce $[-,-] := \Delta \circ (-\cdot-) - (\Delta(-) \cdot -) - (-\cdot \Delta(-))$ a degree 1 Lie bracket \Longrightarrow new presentation of the operad BV:

 $BV \cong \mathcal{T}(\cdot, \Delta, [\,,\,])/(inhomogeneous \ \mathsf{quadratic} \ \mathrm{relations})$.

Application: BV_{∞} -algebras & ∞ -morphisms.Corollary:HTT & Ho(dg BV-alg) $\cong \infty$ -dg BV-alg/ \sim_h .

Applications in Mathematical Physics

Application: Lian–Zuckerman conjecture for Topological Vertex Operator Algebra.

Theorem (Lian–Zuckerman '93)

 $H^{\bullet}_{BRST}(TVOA)$: BV-algebra.

Theorem (Lian–Zuckerman conjecture, Galvez–Tonks–V)

 $C_{BRST}^{\bullet}(TVOA) = TVOA$: explicit BV_{∞} -algebra, which lifts the Lian–Zuckerman operations.

Remarks:

- Lian-Zuckerman conjecture similar to the Deligne conjecture.
- Conjecture: some converse should be true, i.e. $BV_{\infty} \cong TVOA$.

Batalin–Vilkovisky algebras Homotopy BV-algebras Applications in Geometry, Topology and Mathematical Physics

Application in Geometry

Theorem (Barannikov–Kontsevich–Manin)

 (A, d, \cdot, Δ) dg BV-algebra satisfying the d Δ -lemma

 $\ker d \cap \ker \Delta \cap (\operatorname{Im} d + \operatorname{Im} \Delta) = \operatorname{Im}(d\Delta) = \operatorname{Im}(\Delta d)$

 \implies $H_{\bullet}(A, d)$ carries a Frobenius manifold structure, which extends the transferred commutative product.

Application: B-side of the Mirror Symmetry Conjecture.

Question: Application of the HTT for BV_{∞} -algebras???

$$\mathsf{BV^i}\cong \mathsf{T^c}(\delta)\otimes \mathit{Com}_1^*\circ \mathit{Lie}^* \xleftarrow{???} \mathsf{H_{\bullet}}(\overline{\mathcal{M}}_{0,n+1}), extsf{so, not yet!}$$

Batalin–Vilkovisky algebras Homotopy BV-algebras Applications in Geometry, Topology and Mathematical Physics

Topological interpretation: homotopy trivialization of S^1

Conjecture: [Costello–Kontsevich] $fD_2 /_h S^1 \cong \overline{\mathcal{M}}_{0,n+1}$.

Theorem (Drummond-Cole – V.)

Minimal model of $BV : \mathcal{T}(T^{c}(\delta) \oplus H^{\bullet+1}(\mathcal{M}_{0,n+1})) \xrightarrow{\sim} BV.$

Application: New notion of BV_{∞} -algebras.

Homotopy trivialization of the circle \iff trivial action of $T^{c}(\delta)$

$$H_{ullet}(\overline{\mathcal{M}}_{0,n+1})^{i} = H^{ullet+1}(\mathcal{M}_{0,n+1})$$
 & Koszul [Getzler '95]

HTT for homotopy BV-algebras with Δ trivialization

[BKM]: (A, d, \cdot, Δ) dg *BV*-algebra satisfying the $d\Delta$ -lemma \implies $H_{\bullet}(A, d)$ carries a Frobenius manifold structure.

Theorem (Drummond-Cole – V.)

 (A, d, \cdot, Δ) dg BV-algebra satisfying the Hodge-de Rham condition \implies $H_{\bullet}(A, d)$ carries a homotopy Frobenius manifold structure , which extends the Frobenius manifold structure and

 $Rect(H_{\bullet}(A), d) \sim (A, d, \cdot, \Delta)$ in Ho(dg BV-alg)

De Rham cohomology of Poisson manifolds

Theorem (Koszul '85)

 (M,π) Poisson manifold \implies De Rham complex

 $(\Omega^{\bullet}M, d_{DR}, \wedge, \Delta := [i_{\pi}, d_{DR}])$: BV-algebra.

Theorem (Merkulov '98): M symplectic manifold satisfying the Hard Lefschetz condition $\implies H^{\bullet}_{DR}(M)$: Frobenius manifold.

Theorem (Dotsenko-Shadrin-V.)

For any Poisson manifold $M \Longrightarrow H^{\bullet}_{DR}(M)$: homotopy Frobenius manifold , s.t.

 $Rect(H^{DR}_{\bullet}(M)) \sim (\Omega^{\bullet}M, d_{DR}, \wedge, \Delta)$ in Ho(dg BV-alg).

Generalization: (M, π, E) Jacobi manifold (eg contact),

$$(\Omega^{\bullet}\mathcal{M}, d_{DR}, \wedge, \Delta_1 := [i_{\pi}, d_{DR}], \Delta_2 := i_{\pi}i_E)$$
: BV_{∞} -algebra.

Batalin–Vilkovisky algebras Homotopy BV-algebras Applications in Geometry, Topology and Mathematical Physics

http://math.unice.fr/~brunov/Operads.html

Thank you!

Batalin–Vilkovisky algebras Homotopy BV-algebras Applications in Geometry, Topology and Mathematical Physics

http://math.unice.fr/~brunov/Operads.pdf

Thank you!