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Un souffle ouvre des brèches opéradiques
dans les cloisons, – brouille le pivotement
des toits rongés, – disperse les limites des
foyers, – éclipse les croisées.

Arthur Rimbaud
Nocturne vulgaire. Les Illuminations (1875)
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Preface

The first purpose of this work is to give an overall reference, starting from
scratch, on applications of methods of algebraic topology to the study of oper-
ads in topological spaces. Most definitions, notably fundamental concepts of the
theory of operads and of homotopy theory, are reviewed in this book in order to
make our account accessible to graduate students and to researchers coming from
the various fields of mathematics related to our subject. Then our ultimate objec-
tive is to give a homotopical interpretation of a deep relationship between operads
and Grothendieck–Teichmüller groups. This connection, which has emerged from
research on the deformation quantization process in mathematical physics, gives
a new approach to understanding internal symmetries of structures that occur in
various constructions of algebra and topology.

We review the definition of an operad at the beginning of this monograph.
Simply recall for the moment that an operad is a structure, formed by collections
of abstract operations, which is used to define a category of algebras. In our study,
we mainly consider the example of En-operads, n = 1, 2, . . . ,∞, which are used
to model a hierarchy of homotopy commutative structures, from fully homotopy
associative but not commutative (n = 1), up to fully homotopy associative and
commutative (n = ∞). Let us mention that the notion of an E1-operad is synony-
mous to that of an A∞-operad, which is used in the literature when one deals only
with purely homotopy associative structures.

The notion of an En-operad formally refers to a class of operads rather than
to a singled-out object. This class consists, in the initial definition, of topological
operads which are homotopically equivalent to a reference model, the Boardman–
Vogt operad of little n-discs Dn. The operad of little n-cubes, which is a simple
variant of the little n-discs operad, is also used in the literature to provide an equiv-
alent definition of the class of En-operads. We provide a detailed account of the
definition of these notions in this book. Nevertheless, as we soon explain, our ulti-
mate purpose is not to study En-operads themselves, but homotopy automorphism
groups attached to these structures.

Before explaining this goal, we survey some motivating applications of En-
operads which are not our main subject matter (we only give short introductions
to these topics) but illustrate our approach of the subject.

The operads of little n-discs Dn were initially introduced to collect operations
acting on iterated loop spaces. The first main application of these operads, which
has motivated their definition, is the Boardman–Vogt and May recognition theorems
of iterated loop spaces: any space Y equipped with an action of the operad Dn has
the homotopy type of an n-fold loop space ΩnX up to group-completion (see [27, 28]
and [140]). Recall that the set of connected components of an n-fold loop space
ΩnX is identified with the nth homotopy group πn(X) of the space X. (Recall also
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that this group is abelian as soon as n > 1.) The action of Dn on ΩnX includes
a product operation μ : ΩnX × ΩnX → ΩnX which, at the level of connected
components, gives the composition operation of the group πn(X) for any n > 0.
The operad Dn carries the homotopies that make this product associative (and
commutative for n > 1) and includes further operations, representing homotopy
constraints, which we need to form a faithful picture of the structure of the n-fold
loop space ΩnX.

This outline gives the initial topological interpretation of En-operads. But this
topological picture has also served as a guiding idea for a study of En-operads in
other domains. Indeed, new applications of En-operads, which have initiated a
complete renewal of the subject, have been discovered in the fields of algebra and
mathematical physics, mostly after the proof of the Deligne conjecture asserting
that the Hochschild cochain complex C∗(A,A) of an associative algebra A inherits
an action of an E2-operad. In this context, we deal with a chain version of the
previously considered topological little 2-discs operad D2.

The cohomology of the Hochschild cochain complex C∗(A,A) is identified in de-
gree 0 with the center Z(A) of the associative algebra A. In a sense, the Hochschild
cochain complex represents a derived version of this ordinary center Z(A). From
this point of view, the construction of an E2-structure on C∗(A,A) determines,
as in the study of iterated loop spaces, the level of homotopical commutativity of
the derived center which lies beyond the apparent commutativity of the ordinary
center. The first proofs of the Deligne conjecture have been given by Kontsevich-
Soibelman [109] and McClure-Smith [142]. The interpretation in terms of derived
centers has been emphasized by Kontsevich [108] in order to formulate a natural
extension of the conjecture for algebras over En-operads, where we now consider
any n ≥ 1 (we also refer to John Francis’s work [64] for a solution of this problem
in the framework of ∞-category theory).

The verification of the Deligne conjecture has yielded a second generation of
proofs, promoted by Tamarkin [173] and Kontsevich [108], of the Kontsevich formal-
ity theorem on Hochschild cochains. Recall that this result implies the existence of
deformation quantizations of arbitrary Poisson manifolds (we also refer to [38, 148]
for higher dimensional generalizations of the deformation quantization problem in-
volving the categories of algebras associated to En-operads for all n ≥ 1). The new
approaches of the Kontsevich formality theorem rely on the application of Drinfeld’s
associators to transport the E2-structure yielded by the Deligne conjecture on the
Hochschild cochain complex to the cohomology. In the final outcome, one obtains
that each associator gives rise to a deformation quantization functor. This result
has hinted the existence of a deep connection between the deformation quantiza-
tion problem and the program, initiated in Grothendieck’s famous “esquisse” [83],
which aims to understand Galois groups through geometric actions on curves. The
Grothendieck–Teichmüller groups are devices, introduced in this program, which
encode the information that can be captured through the actions considered by
Grothendieck. The correspondence between associators and deformation quantiza-
tions imply that a rational pro-unipotent version of the Grothendieck–Teichmüller
group GT (Q) acts on the moduli space of deformation quantizations. The initial
motivation of our work was the desire to understand this connection from a ho-
motopical viewpoint, in terms of homotopical structures associated to E2-operads.
The homotopy automorphisms of operads come into play at this point.
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Recently, it has also been discovered that mapping spaces of En-operads can be
used to compute the homotopy of the spaces of compactly supported embeddings of
Euclidean spaces modulo immersions Embc(R

m,Rn) (see notably the works of Dev
Sinha [162], Lambrechts-Turchin-Volić [112], Arone-Turchin [9], Dwyer-Hess [59],
and Boavida-Weiss [29] for various forms of this statement). We give more de-
tails on these developments in the concluding chapter of this book. In a related
field, it has been observed that algebras over En-operads can be used to define
multiplicative analogues of the classical singular homology theory for manifolds
(different but equivalent constructions of such multiplicative homology theories are
the “topological chiral homology”, studied by Jacob Lurie in [127, 128], and the
“factorization homology”, studied by John Francis in [64] and by Costello-Gwilliam
in [50]). These new developments give further motivations for the study of mapping
spaces and homotopy automorphism spaces of En-operads.

Recall again that an operad is a structure which governs a category of alge-
bras. The homotopy automorphisms of an operad P are transformations, defined
at the operad level, which encode natural homotopy equivalences on the category
of algebras associated to P . In this interpretation, the group of homotopy automor-
phism classes of an E2-operad, which we actually aim to determine, represents the
internal symmetries of the first level of homotopy commutative structures which
E2-operads serve to encode. To obtain our result, we mainly work in the set-
ting of rational homotopy theory and we consider a rational version of the notion of
an E2-operad in topological spaces. We precisely establish that the group of rational
homotopy automorphism classes of E2-operads is isomorphic to the pro-unipotent
Grothendieck–Teichmüller group GT (Q). This result is new and represents the
main outcome of our work.

In the conclusion of this monograph, we will give an overview of a sequel of this
research [67], where the author, Victor Turchin, and Thomas Willwacher tackle the
computation of the homotopy of the spaces of rational homotopy automorphisms
of En-operads in dimension n ≥ 2 (see § III.6). The main outcome of this study is
that these spaces of rational homotopy automorphisms of general En-operads can
be described in terms of the homology of a complex of graphs which, according
to an earlier work of Willwacher [184], reduces to the Grothendieck–Teichmüller
group in the case n = 2. (We have a similar description of the mapping spaces of
En-operads which occur in the study of embedding spaces.)

To reach all of these results, we have to set up a new rational homotopy theory
for topological operads beforehand and to give a sense to the rationalization of op-
erads in topological spaces. We actually define an analogue of the Sullivan model
of the rational homotopy of spaces for operads. We then consider cooperads, the
structures which are dual to operads in the categorical sense. We precisely show
that the rational homotopy of an operad in topological spaces is determined by an
associated cooperad in commutative dg-algebras (a Hopf dg-cooperad). We have a
small model of the operad of little 2-discs which is given by the Chevalley–Eilenberg
cochain complex of the Drinfeld–Kohno Lie algebras (the Lie algebras of infinitesi-
mal braids). We use this model in our proof that the group of rational homotopy
automorphism classes of E2-operads reduces to the pro-unipotent Grothendieck–
Teichmüller group. In the course of our study, we also define a cosimplicial analogue
of the Sullivan model of operads. This cosimplicial model remains well defined in
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the positive characteristic setting and gives, in this context, a model for the homo-
topy of the completion of topological operads at a prime.

The other main topics considered in our study include the application of ho-
motopy spectral sequences and of Koszul duality techniques for the computation of
mapping spaces attached to operads. We aim to give a detailed and comprehensive
introduction to the applications of these methods for the study of operads from
the point of view of homotopy theory. Besides, we thoroughly review the appli-
cations of Hopf algebras to the Malcev completion (the rationalization) of general
groups. For the applications to operads, we actually consider an extension of the
classical Malcev completion of groups to groupoids. Indeed, we will explain that
the pro-unipotent Grothendieck–Teichmüller group can be defined as the group of
automorphisms of the Malcev completion of a certain operad in groupoids which
governs operations acting on braided monoidal categories. We use this observa-
tion and classical constructions of homotopy theory to define our correspondence
between the Grothendieck–Teichmüller group and the space of homotopy auto-
morphisms of E2-operads. The previously mentioned homotopy spectral sequence
techniques are used to check that this correspondence induces a bijection in homo-
topy. This first volume of this monograph is mainly devoted to the fundamental
and algebraic aspects of our subject, from the definition of the notion of an op-
erad to the definition of the Grothendieck–Teichmüller group. The applications of
homotopy theory to operads and the proof of our isomorphism statement between
the Grothendieck–Teichmüller group and the group of homotopy automorphisms
classes of E2-operads are explained in the second volume.

I am grateful for numerous supports which I received from colleagues and from
institutions during the writing of this book. I especially thank Christine Vespa,
Darij Grinberg, Emily Burgunder, Michaël Mienné, and Hadrien Espic for reading
significant parts of the manuscript and for their helpful observations. I am also
grateful to Damien Calaque and to Bill Dwyer for pointing out a mistake in an
early version of this project.

I also thank my colleagues and the students of the topology group at the Uni-
versité de Lille for the nice and motivating working atmosphere which greatly eased
my work on this project. Parts of this book have also been written during stays at
the École Normale Supérieure de Paris, at Northwestern University, at the Max-
Planck-Institut für Mathematik in Bonn, at Penn State University, at the Institut
Mathématique Jussieu, at the Isaac Newton Institute in Cambridge, and at the
Mathematical Science Research Institute in Berkeley. I am grateful to these insti-
tutions for the outstanding working conditions from which I benefited during these
visits. I thank the colleagues who provided me these opportunities to disseminate
my work and who warmly welcomed me at these occasions. I am also grateful to
the participants of the course “Operads 2012”, at the Université de Lille and at the
Institut Henri Poincaré, for invaluable feedbacks on the matter of this book.

Lastly, I thank Sergei Gelfand and Christine Thivierge for their support and for
their patience during the final steps of the preparation of this book, Becky Rivard
for the final layout work, and the anonymous reviewers for their helpful advices on
my project.

This research has been supported in part by grant ANR-11-BS01-002 “HOGT”
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Mathematical Objectives

The ultimate goal of this work, as we explain in the general introduction, is to
prove that the Grothendieck–Teichmüller group represents, in the rational setting at
least, the group of homotopy automorphism classes of E2-operads. This objective
can be taken as a motivation to read this book or as a guiding example of an
application of our methods.

The definition of an operad is recalled with full details in the first part of this
volume. In this introductory section, we only aim to give an idea of our main results.
Let us simply recall that an operad P basically consists of a collection P(r), r ∈ N,
where each object P(r) parameterizes operations with r inputs p = p(x1, . . . , xr),
together with a multiplicative structure which models the composition of such oper-
ations. We can define operads in any category equipped with a symmetric monoidal
structure M. We then assume P(r) ∈ M, and we use the tensor product operation,
given with this category M, to define the composition structure attached to our op-
erad. The operads in a base symmetric monoidal category form a category, which
we denote by MOp, or more simply, by Op = MOp, when this ambient category
M is fixed by the context. An operad morphism f : P → Q naturally consists
of a collection of morphisms in the base category f : P(r) → Q(r), r ∈ N, which
preserve the composition structure of our operads.

For technical reasons, we have to consider operads P+ equipped with a dis-
tinguished element ∗ ∈ P+(0) (whenever the notion of an element makes sense),
which represents an operation with zero input (a unitary operation in our termi-
nology). In the context of sets, we moreover assume that P+(0) is a one-point set
reduced to this element. In the module context, we assume that P+(0) is a one
dimensional module over the ground ring. In a general setting, we assume that
P+(0) is the unit object given with the symmetric monoidal structure of our base
category. We then say that P+ forms a unitary operad. We use the notation Op∗ to
refer to the category of unitary operads. The subscript ∗ indicates the fixed arity
zero component which we assign to the objects of this category of operads. We
usually consider together both a non-unitary operad P, which has no term in arity
0, and an associated unitary operad P+, where the arity zero term, spanned by the
distinguished operation ∗ ∈ P+(0), is added. We therefore follow the convention
to use a subscript +, marking the addition of this term, for the notation of the
unitary operad P+. We also say that the operad P+ arises as a unitary extension
of the non-unitary operad P. We often perform constructions on the non-unitary
operad P first, and on the unitary operad P+ afterwards, by assuming that the ad-
ditional distinguished element (or unit term) of P+ is preserved by the operations
involved in our construction.

In topology, an E2-operad is usually defined as an operad in the category of
spaces which is equivalent to Boardman–Vogt’s operad of little 2-discs D2 in the
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homotopy category of operads. The spaces D2(r) underlying this operad have a
trivial homotopy in dimension ∗ �= 1, and for ∗ = 1, we have π1 D2(r) = Pr,
where Pr denotes the pure braid group on r strands. Thus, the space D2(r) is an
Eilenberg-MacLane space K(Pr, 1) associated to the pure braid group Pr. For our
purpose, we consider a rationalization of the little 2-discs operad D 2̂, for which we

have π1D 2̂(r) = P̂r, where P̂r denotes the Malcev completion of the group Pr. We
give a general definition of the rationalization for operads in topological spaces in
the second volume of this book. In the case of the little 2-discs operad D2, we have
a simple model of the rationalization D 2̂ which relies on the Eilenberg-MacLane
space interpretation of the little 2-discs spaces. We give a brief outline of this
approach soon.

Homotopy automorphisms can be defined in the general setting of model cate-
gories which provides a suitable axiomatic framework for the application of homo-
topy theory concepts to operads. In order to introduce our subject, we first explain
a basic interpretation of the general definition of a homotopy automorphism in the
context of topological operads.

We have a natural notion of homotopy ∼ for morphisms of operads in topolog-
ical spaces. To a topological operad Q, we associate the collection of path spaces

QΔ1

(r) = MapTop([0, 1],Q(r)), which inherits an operad structure from Q and de-
fines a path-object associated to Q in the category of topological operads. We
explicitly define a homotopy between operad morphisms f, g : P → Q as an operad

morphism h : P → QΔ1

which satisfies d0h = f , d1h = g, where d0, d1 : QΔ1

→ Q
are the natural structure morphisms (evaluation at the origin and at the end point)

associated with our path-object QΔ1

. This homotopy h is intuitively equivalent to
a continuous family of operad morphisms ht : P → Q going from h0 = f to h1 = g.

In a first approximation, we take the sets of homotopy classes of operad mor-
phisms as the morphism sets of the homotopy category Ho(Top Op) which we asso-
ciate to the category of topological operads Top Op. In principle, we have to deal
with a suitable notion of cofibrant object in the category of operads and to replace
any operad by a cofibrant resolution in order to use this definition of morphism
set. But we will explain this issue later on. We focus on the basic definition of the
morphism sets of the homotopy category for the moment.

The groups of homotopy automorphism classes, which we aim to determine, are
the groups of automorphisms of the homotopy category Ho(Top Op). The automor-
phism group AutHo(Top Op)(P) associated to a given operad P ∈ Top Op accordingly
consists of homotopy classes of morphisms f : P → P , which have a homotopy
inverse g : P → P such that fg ∼ id and gf ∼ id . We consider the operadic
homotopy relation at each step of this definition.

Note that a topological operad P gives rise to an operad object in the ho-
motopy category of topological spaces Ho(Top), and we could also study the au-
tomorphism group AutHo(Top)Op(P) formed in this naive category of homotopy
operads Ho(Top)Op. But these automorphism groups differ from our groups of
homotopy automorphisms and do not give the appropriate structure for the homo-
topy version of usual constructions of group theory (like homotopy fixed points).
Indeed, an automorphism of the operad P in the homotopy category of spaces
Ho(Top) is just a collection of homotopy classes of maps f ∈ [P(r),P(r)], in-
vertible in the homotopy category of spaces, and which preserve the operadic
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structures up to homotopy, unlike our homotopy automorphisms that preserve op-
eradic structures strictly. Moreover, actual operad morphisms f, g : P → Q define
the same morphism of operads in the homotopy category of spaces Ho(Top) as
soon as we have a homotopy between the individual maps f : P(r) → P(r) and
g : P(r) → P(r), for all r ∈ N (regardless of operad structures). Thus, operad
morphisms which are homotopic in the strong operadic sense determine the same
morphism of operads in the homotopy category of spaces Ho(Top), but the converse
implication does not hold. By associating the collection of homotopy classes of maps
f : P(r) → P(r) to a homotopy automorphism f ∈ AutHo(Top Op)(P), we obtain a
mapping AutHo(Top Op)(P) → AutHo(Top)Op(P), from the group of homotopy classes
of homotopy automorphisms towards the group of automorphisms of the operad in
the homotopy category of spaces, but this mapping is neither an injection nor a
surjection in general.

To apply methods of algebraic topology, we associate to any operad P a whole
simplicial set of homotopy automorphisms AuthTop Op(P) rather than a single group

of homotopy automorphism classes. To be more precise, this group AutHo(Top Op)(P),
which we primarily aim to determine, is identified with the set of connected com-
ponents of our homotopy automorphism space π0(Aut

h
Top Op(P)). In the second

volume of this work, we explain the definition of these homotopy automorphism
spaces in the general context of simplicial model categories. For the moment, we
simply give a short outline of the definition in the context of topological operads.

First, we extend the definition of our path object and we consider, for each

n ∈ N, an operad PΔn

which is defined by the collection of function spaces

PΔn

(r) = MapTop(Δ
n,P(r)) on the n-simplex Δn. This operad sequence PΔn

in-
herits a simplicial structure from the topological simplices Δn. In particular, since

we obviously have P = PΔ0

, we have a morphism v∗ : PΔn

→ P associated to each
vertex v of the n-simplex Δn. The simplicial set AuthTop Op(P) precisely consists, in

dimension n ∈ N, of the morphisms of topological operads f : P → PΔn

such that

the composite v∗f defines a homotopy equivalence of the operad P = PΔ0

, for each
vertex v ∈ Δn. From this definition, we immediately see that the 0-simplices of
the simplicial set AuthTop Op(P) are the homotopy equivalences of the operad P , the

1-simplices are the operadic homotopies h : P → PΔ1

between homotopy equiva-
lences, and therefore, we have a formal identity AutHo(Top Op)(P) = π0 Aut

h
Top Op(P)

between our group of homotopy automorphism classes AutHo(Top Op)(P) and the set

of connected components of AuthTop Op(P).
In what follows, we often consider simplicial sets as combinatorial models of

topological spaces. In this situation, we adopt a common usage of homotopy theory
to use the name ‘space’ for a simplicial set. Therefore we refer to the simplicial
set AuthTop Op(P) as the homotopy automorphism space associated to the operad P .

Besides homotopy equivalences, we consider a class of morphisms, called weak-
equivalences, which are included in the definition of a model structure on the cate-
gory of operads. We adopt the standard notation of the theory of model categories
∼−→ to refer to this class of distinguished morphisms. The notion of a model cate-
gory also includes the definition of a class of cofibrant objects, generalizing the cell
complexes of topology, and which are well suited for the homotopy constructions
we aim to address.
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To be more specific, recall that a map of topological spaces f : X → Y is
a weak-equivalence when this map induces a bijection on connected components

f∗ : π0(X)
�−→ π0(Y ) and an isomorphism on homotopy groups f∗ : π∗(X, x)

�−→
π∗(Y, f(x)), for all ∗ > 0 and for any choice of base point x ∈ X. We define a weak-
equivalence of operads as an operad morphism f : P → Q of which underlying
maps f : P(r) → Q(r) are weak-equivalences of topological spaces. In the context
of topological spaces, a classical result asserts that any weak-equivalence between
cell complexes is homotopically invertible as a map of topological spaces. In the con-
text of topological operads, we similarly obtain that any weak-equivalence between
cofibrant operads f : P

∼−→ Q is homotopically invertible as an operad morphism:
we have an operad morphism g : Q → P in the converse direction as our weak-
equivalence f : P

∼−→ Q such that fg ∼ id and gf ∼ id , where we now consider the
operadic homotopy relation (as in the definition of a homotopy automorphism for
operads).

The proof of the model category axioms for operads includes the construc-
tion of a cofibrant resolution functor, which assigns a cofibrant operad R equipped
with a weak-equivalence R

∼−→ P to any given operad P . The definition of the
homotopy category of topological operads in terms of homotopy class sets of mor-
phisms is actually the right one when we replace each operad P by such a cofibrant
model R

∼−→ P. In particular, when we form the group of homotopy automorphism
classes of an operad AutHo(Top Op)(P), we have to assume that P is cofibrant as an
operad, otherwise we tacitely assume that we apply our construction to a cofibrant
resolution of P . The general theory of model categories ensures that the obtained
group AutHo(Top Op)(P) does not depend, up to isomorphism, on the choice of this
cofibrant resolution. We have similar results and we apply similar conventions for
the homotopy automorphism spaces AuthTop Op(P). To be precise, in the general
context of the theory of model categories, we have a notion of fibrant object, which
is dual to the notion of a cofibrant object, and we actually have to consider objects
which are both cofibrant and fibrant when we use the above definition of the group
of homotopy automorphism classes of an object. We have a similar observation for
the definition of homotopy automorphism spaces. But we can neglect this issue for
the moment, because all objects of our model category of topological operads are
fibrant.

We go back to the case of the little 2-discs operad. We aim to determine the
homotopy groups of the homotopy automorphism space AuthTop Op(D 2̂+) associated
to the rationalization of D2 and in the unitary operad context, which we mark
by the addition of the subscript + in our notation. Recall that the connected
components of this space AuthTop Op(D 2̂+) correspond to homotopy classes of operad

homotopy equivalences f : R̂2+
∼−→ R̂2+, where R̂2 denotes a cofibrant model of the

rationalized little 2-discs operad D 2̂. Our result reads:

Theorem A. The homotopy automorphism space of the rationalization of the
little 2-discs operad D 2̂+ satisfies

π∗ Aut
h
Top Op(D 2̂+) =

⎧⎪⎨⎪⎩
GT (Q), for ∗ = 0,

Q, for ∗ = 1,

0, otherwise,
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where GT (Q) denotes the rational pro-unipotent version of the Grothendieck–Teich-
müller group, such as defined by V. Drinfeld in [57].

The identity established in this theorem is a new result. The ultimate goal of
this work precisely consists in proving this statement. In fact, we will more precisely
prove that the homotopy automorphism space AuthTop Op(D 2̂+) is weakly-equivalent

(as a monoid) to a semi-direct product GT (Q) � SO(2) ,̂ where we regard the
Grothendieck–Teichmüller group GT (Q) as a discrete group in topological spaces
and SO(2)̂denotes a rationalization of the space of rotations of the plane SO(2)
which naturally acts on the little 2-discs spaces by operad automorphisms. We
have π1 SO(2) = Z ⇒ π1 SO(2)̂ = Q and the module Q in the above theorem
comes from this factor SO(2)̂ of our semi-direct product decomposition of the
homotopy automorphism space AuthTop Op(D 2̂+).

We mentioned, at the beginning of this survey, that the operad of little 2-discs
D2 consists of Eilenberg-MacLane spaces K(Pr, 1), where Pr denotes the pure braid
group on r strands, and the associated rationalized operad D 2̂ consists of Eilenberg-

MacLane spaces K(P̂r, 1), where we now consider the Malcev completion of the
group Pr. We have standard models of the Eilenberg-MacLane spaces K(Pr, 1)
which are given by the classifying spaces of the groups Pr. But these spaces do
not form an operad. Nevertheless, we can adapt this classifying space approach to
give a simple model of E2-operad. Instead of the pure braid group Pr, we consider
the classifying space of a groupoid of parenthesized braids PaB(r). The morphisms
of this groupoid are braids on r strands indexed by elements of the set {1, . . . , r}.
The parenthesization refers to an extra structure, added to the contact points of the
braids, which define the object sets of our groupoid. Unlike the pure braid groups
Pr, the collection of groupoids PaB(r) forms an operad in the category of groupoids,
and the associated collection of classifying spaces B(PaB)(r) = B(PaB(r)) forms an
operad in topological spaces. We check, by relying on an argument of Zbigniew
Fiedorowicz, that this operad B(PaB) is weakly-equivalent to the operad of little
2-discs D2 and, hence, forms an E2-operad.

We can perform the Malcev completion of the groupoids PaB(r) underlying the
parenthesized braid operad PaB . We get an operad in groupoids PaB .̂ We will see
that the collection of classifying spaces B(PaB )̂(r) = B(PaB(r) )̂ associated to this
operad PaB̂ forms an operad in topological spaces which defines a model for the
rationalization of the operad of little 2-discs D 2̂.

The Grothendieck–Teichmüller group GT (Q) can actually be identified with
a group of automorphisms associated to the (unitary) operad in groupoids PaB+̂

and an automorphism of topological operads B(φ) : B(PaB+̂)
∼−→ B(PaB+̂) can be

associated to any element of this group φ ∈ GT (Q) by functoriality of the classifying
space construction. We can lift any such automorphism to any chosen cofibrant
model R 2̂+ of the rationalization of the operad of little 2-discs D 2̂+. We accordingly
associate a well-defined rational homotopy automorphism of the E2-operad R 2̂+ to
our element of the Grothendieck–Teichmüller group φ ∈ GT (Q). Our main theorem
asserts that, when we work in the rational setting, this construction gives exactly
all homotopy automorphism classes of E2-operads.

We consider a pro-unipotent version of the Grothendieck–Teichmüller group
in our theorem. We mostly study this group for the applications in the ratio-
nal homotopy theory of operads, but we also have a pro-finite version of the
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Grothendieck–Teichmüller group which is better suited for the purposes of the orig-
inal Grothendieck’s program in Galois theory. In fact, a pro-finite analogue of our
result, which relates this pro-finite Grothendieck–Teichmüller group to a pro-finite
completion of E2-operads, has been obtained by Horel [90] during the writing of
this monograph. We will give more explanations on this statement and on other
generalizations of the result of Theorem A in the concluding chapter of the second
volume of this monograph (§ III.6).

The (rational) homology of the little 2-discs spaces H∗(D2(r)) = H∗(D2(r),Q),
r ∈ N, forms an operad in graded modules H∗(D2). We will see that this homology
operad H∗(D2) is identified with an operad, defined in terms of generating operations
and relations, and which we can associate to the category of Gerstenhaber algebras
(a graded version of the notion of a Poisson algebra). We therefore use the notation
Gerst2 for this operad such that Gerst2 = H∗(D2). In what follows, we consider the
(rational) cohomology of the little 2-discs spaces H∗(D2(r)) = H∗(D2(r),Q) rather
than the homology H∗(D2(r)). We use that the cohomology of a space inherits a
unitary commutative algebra structure and that the collection of the cohomology
algebras H∗(D2(r)) associated to the little 2-discs spaces D2(r) forms a cooperad in
the category of unitary commutative algebras in graded modules, where the name
cooperad obviously refers to the structure dual to an operad in the categorical
sense (we go back to this concept later on). We also use the phrase ‘(graded) Hopf
cooperad’ to refer to this particular case of the structure defined by a cooperad in
the category of unitary commutative algebras (in graded modules).

For our purpose, we actually need a counterpart, in the category of graded Hopf
cooperads, of the category of unitary operads. We have to adapt the definition of a
cooperad in this case, because the consideration of an arity zero term in the context
of a cooperad creates convergence difficulties in the definition of cofree objects. We
work out this problem by integrating this part of the composition structure of our
cooperads into a diagram structure. We will be more precise later on. For the
moment, we just use the notation gr Hopf Opc

∗, with our distinguishing ∗ mark, for
this category of (graded) Hopf cooperads which we associate to unitary operads.
We will adopt another notation as soon as we will be able to make the definition
of this category more precise.

We have a general approach to compute the homotopy of mapping spaces in
the category of operads MapTop Op(P,Q). In short, the idea is to determine the ho-
motopy of mapping spaces on free simplicial resolutions of our objects P ,Q in the
category of operads in topological spaces Top Op. We then get a spectral sequence
whose second page reduces to the cohomology of a deformation complex associated
to the cohomology cooperads H∗(P), H∗(Q) ∈ gr Hopf Opc

∗. The definition of this
deformation complex involves both the commutative algebra structure and the co-
operad structure of these graded Hopf cooperads H∗(P), H∗(Q) ∈ gr Hopf Opc

∗. To
be explicit, at the deformation complex level, we deal with a free resolution of the
Hopf cooperad H∗(Q) in the commutative algebra direction and with a cofree reso-
lution of the object H∗(P) in the cooperad direction. Then our deformation complex
precisely consists of modules of biderivations associated to these resolutions in the
category of graded Hopf cooperads.

In fact, we only use this general approach in a follow-up (see [68]) as we can
use a simplification of the free commutative algebra resolution when we establish
our result about the homotopy automorphism space of the operad of little 2-discs.
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To be explicit, instead of a resolution in the category of commutative algebras, we
use a counterpart, for operads, of the classical Postnikov decomposition of spaces.
To ease the definition of this Postnikov decomposition for the rationalization of the
operad of little 2-discs D 2̂, we actually consider a classifying space B(CD )̂ on an
operad of chord diagrams CD̂which is equivalent to the (Malcev completion of
the) operad of parenthesized braids PaB .̂

To perform our computation, we moreover decompose the general homotopy
spectral sequences of operadic mapping spaces in two intermediate spectral se-
quences, where we deal with the resolution in the operad direction in a first step
and with the obstruction problems associated to the Postnikov decomposition of
our target object in the second step. We will see that these spectral sequences
vanish in degree ∗ > 1, reduce to the module of rank one Q in degree ∗ = 1, and re-
duce to a graded Lie algebra grt associated to the Grothendieck–Teichmüller group
GT (Q) in degree ∗ = 0. We use this correspondence to check that all classes of
degree ∗ = 0 in the second page of our spectral sequence are hit by homotopy au-
tomorphisms of our operad which come from the Grothendieck–Teichmüller group.
We conclude from this result that our mapping from the Grothendieck–Teichmüller
group GT (Q) to the space of homotopy automorphisms of the operad D 2̂+ induces
a bijection in homotopy.

We tackle this verification in the third part of this work, in the second vol-
ume of this monograph. We review Drinfeld’s definition of the pro-unipotent
Grothendieck–Teichmüller group first. We explain that the pro-unipotent Grothen-
dieck–Teichmüller group can be defined as a group of automorphisms associated to
the Malcev completion of the parenthesized braid operad PaB .̂ We then develop
a new rational homotopy theory of operads before tackling the computation of the
homotopy of the homotopy automorphism space of rational E2-operads.

For this purpose, we notably define an analogue of the Sullivan model for the
rational homotopy of operads in topological spaces. Briefly recall that the classical
Sullivan model of a simplicial set X is defined by a commutative cochain differ-
ential graded algebra Ω∗(X) (a cochain commutative dg-algebra for short), which
consists of piecewise linear differential forms on X. We consider cooperads in com-
mutative cochain dg-algebras to define the Sullivan model of operads in topological
spaces. We use the notation dg∗ Hopf Opc

∗ for this category of cooperads and, for
short, we also call ‘Hopf cochain dg-cooperads’ the objects of this category. We
also adopt the notation dg∗ Com+ for the category of unitary commutative cochain
dg-algebras in what follows. We already mentioned that a cooperad is a structure
dual to an operad in the categorical sense. Briefly say for the moment that a co-
operad C in a category M essentially consists of a collection of objects C (r) ∈ M

together with a comultiplicative structure of a form opposite to the composition
operations of an operad. We simply take M = dg∗ Com+ in this general definition
when we form our category of Hopf cochain dg-cooperads. Recall that we tem-
porarily use the subscript mark ∗ in our notation of the category of Hopf cochain
dg-cooperads dg∗ Hopf Opc

∗ in order to indicate that we actually consider a coun-
terpart, in the cooperad context, of our category of unitary operads.

The Sullivan dg-algebra Ω∗(X) does not preserve operad structures, but we
will explain in the second volume of this monograph that we can define an operadic
enhancement of the Sullivan functor in order to assign a well-defined Hopf cochain
dg-cooperad Ω∗� (P) to any operad in simplicial sets P . We will prove that the
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commutative cochain dg-algebras Ω∗� (P)(r) which define the components of this

Hopf cochain dg-cooperad Ω∗� (P) are weakly-equivalent (quasi-isomorphic) to the

Sullivan dg-algebras Ω∗(P(r)) associated to the spaces P(r) which underlie our
operad P . We use this observation to check that this Hopf dg-cooperad Ω∗� (P)
determines the operad in simplicial sets P up to rational equivalence.

We will also see that our functor Ω∗� : P → Ω∗(P), from the category of op-
erads in simplicial sets to the category of Hopf cochain dg-cooperads, admits a
left adjoint G•(−) : K → G•(K ), which assigns an operad in simplicial sets G•(K )
to any Hopf cochain dg-cooperad K . We consider the image of the Hopf cochain
dg-cooperad K = Ω∗� (P) associated to an operad in simplicial sets P under a left

derived functor of this left adjoint L G• : K → L G•(K ). We will prove that this
operad in simplicial sets P̂= L G(Ω∗� (P)) forms, under mild finiteness assumptions,
a suitable model for the rationalization of the operad P in the sense that the com-
ponents of this operad P (̂r) are equivalent, in the homotopy category of spaces, to
the Sullivan rationalization X̂= P(r)̂of the simplicial sets X = P(r).

The Sullivan dg-algebra functor (and our operadic enhancement of this functor
similarly) is defined on the category of simplicial sets sSet . But we can use the
classical singular complex functor Sing•(−), from topological spaces to simplicial
sets, and the geometric realization functor which goes the other way round, in order
to prolong our constructions on operads in simplicial sets to operads in topological
spaces.

The category dg∗ Hopf Opc
∗ inherits a model structure, like the category of

topological operads, and we can therefore apply the general theory of model cate-
gories to associate homotopy automorphism groups AutHo(dg∗ Hopf Opc

∗)
(A), as well

as homotopy automorphisms spaces Authdg∗ Hopf Opc
∗
(A), to any object of the cate-

gory of Hopf cochain dg-cooperads A ∈ dg∗ Hopf Opc
∗. In the case of topological

operads, we already mentioned that homotopy automorphisms spaces are well de-
fined for cofibrant objects only. In the case of Hopf cochain dg-cooperads, we have
to perform both cofibrant and fibrant resolutions before applying the homotopy
automorphism construction.

The results obtained in our study of the rational homotopy of operads imply
that the group of homotopy automorphisms attached to the model Ω∗� (P) of an
operad in spaces P is isomorphic to the group of homotopy automorphisms attached
to the rational completion of this operad P .̂ Theorem A is therefore equivalent to
the following statement:

Theorem B. Let E2 be a (cofibrant) model of E2-operad in the category of
topological space. Let K2 = Ω∗� (E 2) be the Hopf cochain dg-cooperad associated to
this operad E 2. The homotopy automorphism space of this object in the category of
Hopf cochain dg-cooperads Authdg∗ Hopf Opc

∗
(K2) has trivial homotopy groups

π∗(Aut
h
dg∗ Hopf Opc

∗
(K2)) = 0

in dimension ∗ > 1, the Q-module of rank one as homotopy group

π1(Aut
h
dg∗ Hopf Opc

∗
(K2)) = Q

in dimension ∗ = 1, and we have an isomorphism of groups

GT (Q)op
�−→ π0(Aut

h
dg∗ Hopf Opc

∗
(K2))

in dimension ∗ = 0.
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The assertions of this theorem have been foreseen by M. Kontsevich in [108].
First results in the direction of Theorem B also occur in articles of D. Tamarkin [174]
and T. Willwacher [184]. But these authors deal with operads within the category of
differential graded modules, after forgetting about commutative algebra structures,
and their results actually give a stable version (in the sense of homotopy theory)
of our statements. The definition of a setting, where we can combine a model for
operadic structures and a commutative algebra model for the topology underlying
our objects, is a new contribution of this monograph. The proof of Theorem B in
this context is also a new outcome of our work, like the result of Theorem A.

Recall that E2-operads only give the second layer of a full sequence of homotopy
structures, ranging from E1, fully homotopy associative but non-commutative, up to
E∞, fully homotopy associative and commutative. In a follow-up [67], the author,
Victor Turchin and Thomas Willwacher give a computation, in terms of graph
complexes, of the homotopy of the homotopy automorphism spaces of En-operads
for 2 < n < ∞. We give an overview of these results in the concluding chapter of
the second volume of this monograph. Let us mention that the group of homotopy
automorphism classes of E1-operads can easily be determined, but the result is
trivial in this case. The group of homotopy automorphisms of an E∞-operad is
trivial too.

The proof of our result requires the elaboration of new theories, like the defini-
tion of a model for the rational homotopy of topological operads, and the first aim
of this monograph is to work out such general problems. The purpose of this book
is also to give a comprehensive introduction to our subject, heading to our main
theorems as straight as possible and with minimal background, for mathematicians
coming from other domains and for graduate students.

We heavily use the formalism of Quillen’s model categories [152] which we
apply to operads in order to form our model for the rational homotopy of topo-
logical operads. We rely on the modern reference books by Hirschhorn [89] and
by Hovey [91] for the subject of Quillen’s model categories. We also refer to the
book [61] for a comprehensive introduction to the rational homotopy theory and
to Bousfield-Gugenheim’s memoir [36] for an interpretation of the Sullivan model
in the formalism of model categories. We also refer to Sullivan’s article [170] for
the applications of rational homotopy theory to the study of homotopy automor-
phisms of spaces. We review these subjects thoroughly before tackling our own
constructions.

We first explain the connections between little 2-discs operads and braided
structures, as well as the definition of the Grothendieck–Teichmüller group in terms
of automorphisms of operads in groupoids. We give a comprehensive account of
these topics in the first volume of this monograph, after an introduction to the
general theory of operads. We notably give an operadic formulation of the classical
coherence theorems of monoidal categories, of braided monoidal categories, and
of symmetric monoidal categories. We will explain that the previously considered
operad of parenthesized braids PaB, which we define by using the fundamental
groupoid of the little 2-discs operad, actually governs the structure of a braided
monoidal category.

We also review the applications of the theory of Hopf algebras to the Mal-
cev completion of groups with the aim of extending this completion process to
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groupoids and to operads. We focus on the study of a pro-unipotent Grothendieck–
Teichmüller group in this work and we actually rely on the operadic Malcev com-
pletion construction in our definition of the Grothendieck–Teichmüller group. In
passing, we will explain an operadic interpretation of the notion of a Drinfeld as-
sociator which was used by Tamarkin in order to prove the rational formality of
E2-operads.

We address the definition of our model for the rational homotopy of operads
in the second volume of this monograph, after a survey of the general theory of
model categories and of the rational homotopy theory of spaces. We mentioned in
the introduction of this work that the Chevalley–Eilenberg cochain complex of the
Drinfeld–Kohno Lie algebras (the Lie algebras of infinitesimal braids) can be used
to define a small model of a rational E2-operad. We also explain this construction
in the second volume of this monograph. We review the already alluded proof of
the rational formality of E2-operads in the second volume too. We actually explain
the definition of small models of En-operads for all n ≥ 2 by using a graded version
of the Drinfeld–Kohno Lie algebras. We tackle the computation of the homotopy
automorphism space of rational E2-operads afterwards, in the concluding part of
the second volume.



Foundations and Conventions

The reader is assumed to be familiar with the language of category theory and
to have basic knowledge about fundamental concepts like adjoint and representable
functors, colimits and limits, categorical duality, which we freely use throughout
this work. The reader is also assumed to be aware on the applications of colim-
its and limits in basic examples of categories (including sets, topological spaces,
and modules). Nonetheless, we will review some specialized topics, like reflexive
coequalizers and filtered colimits, which are considered in applications of category
theory to operads.

We use single script letters (like C, M, . . . ) as general notation for abstract cat-
egories. We use script expressions (like Mod , As, Op, . . . ) for particular instances
of categories which we consider in this work (like modules, associative algebras,
operads, . . . ). We are going to explain that the formal definition of many algebraic
structures remains the same in any instance of base category M and essentially
depends on a symmetric monoidal structure given with this category M. We usu-
ally assume that the category M, to which we assign the role of a base category,
is equipped with enriched hom-bifunctors HomM(−,−). We give a more detailed
reminder on this notion in §§0.12-0.13.

In practice, we take our base category M among the category of sets Set , the
category of simplicial sets sSet , the category of topological spaces Top, a category of
k-modules Mod (where k refers to a fixed ground ring), or among a variant of these
categories. To be precise, besides plain k-modules, we have to consider categories
formed by differential graded modules dg Mod (we usually speak about dg-modules
for short), graded modules gr Mod , simplicial modules sMod , and cosimplicial
modules cMod . The first purpose of this preliminary chapter is to quickly recall
the definition of these categories (at least, in order to fix our conventions). By the
way, we also recall the definition of the category of simplicial sets sSet , which we
use along with the familiar category of topological spaces Top.

To complete our account, we recall the general definition of a symmetric monoi-
dal category and we explain some general constructions which we associate to this
notion. But we postpone our reminder on the definition of the monoidal structure
of the category of dg-modules, simplicial modules and cosimplicial modules until
the moment where we tackle the applications of these base categories.

In the module context, we assume that a ground ring k is given and is fixed
once and for all. In certain constructions, we have to assume that this ground ring
k is a field of characteristic 0.

0.1. Graded and differential graded modules. The category of differential graded
modules dg Mod (dg-modules for short) consists of k-modules equipped with a de-
composition C =

⊕
n∈Z Cn, which ranges over Z, and with a morphism δ : C → C

(the differential) such that we have δ2 = 0 and δ(Cn) ⊂ Cn−1, for all n ∈ Z. We

xxvii
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obviously define a morphism of dg-modules as a morphism of k-modules f : C → D
which intertwines differentials and which satisfies the relation f(Cn) ⊂ Dn, for all
n ∈ Z.

In textbooks of homological algebra (like [181]), authors mostly deal with an
equivalent notion of chain complex, of which components are split off into a sequence
of k-modules Cn linked by the differentials δ : Cn → Cn−1 rather than being put
together in a single object. The idea of a dg-module (used for instance in [129])
is more natural for our purpose and is also more widely used in homotopy theory.
In what follows, we rather reserve the phrase ‘chain complex’ for certain specific
constructions of dg-modules.

The category of graded modules gr Mod consists of k-modules equipped with
a decomposition C =

⊕
n∈Z Cn, which ranges over Z, but where we have no dif-

ferential. We obviously define a morphism of graded modules as a morphism of
k-modules f : C → D which satisfies the relation f(Cn) ⊂ Dn, for all n ∈ Z.

We have an obvious functor (−)� : dg Mod → gr Mod defined by retaining the
underlying graded structure of a dg-module and by forgetting about the differen-
tial. We notably consider the underlying graded module of dg-modules, which this
forgetful process formalizes, when we define the notion of a quasi-free object (in the
category of commutative algebras, in the category of operads, . . . ). The other way
round, we can embed the category of graded modules gr Mod into the category of
dg-modules dg Mod by viewing a graded module as a dg-module equipped with a
trivial differential δ = 0. We use this identification at various places.

Recall that the homology of a dg-module C is defined by the quotient k-module
H∗(C) = ker δ/ im δ which inherits a natural grading from C. The homology defines
a functor H∗(−) : dg Mod → gr Mod . In most references of homological algebra, au-
thors use the phrase ‘quasi-isomorphism’ for the class of morphisms of dg-modules
which induce an isomorphism in homology. In what follows, we rather use the name
‘weak-equivalence’ which we borrow from the general formalism of model categories
(see §II.1 for this notion).

We generally use the mark
∼−→ to refer to the class of weak-equivalences in a

model category (see §II.1) and we naturally use the same notation in the dg-module
context. We mostly use the notions introduced in this paragraph in the second part
of this book and we review these definitions with full details in §II.5.

0.2. Degrees and signs of dg-algebra. The component Cn of a dg-module (re-
spectively, graded module) C defines the homogeneous component of degree n of C.
To specify the degree of a homogeneous element x ∈ Cn, we use the expression
deg(x) = n. We adopt the standard convention of dg-algebra to associate a sign
(−1)deg(x) deg(y) to each transposition of homogeneous elements (x, y). We do not
specify such a sign in general and we simply use the notation ± to refer to it.
We will see that the introduction of these signs is forced by the definition of the
symmetry isomorphism of the tensor product of dg-modules (see §II.5.2).

We usually consider lower graded dg-modules, but we also have a standard
notion of dg-module equipped with a decomposition in upper graded components
C =
⊕

n∈Z Cn such that the differential satisfies δ(Cn) ⊂ Cn+1. Certain construc-
tions (like the duality of k-modules and the conormalized complex of cosimplicial
spaces) naturally produce upper graded dg-modules. In what follows, we apply the
relation C−n = Cn to identify an upper graded with a lower graded dg-module.
We also review these concepts in §II.5.



FOUNDATIONS AND CONVENTIONS xxix

0.3. Simplicial objects and cosimplicial objects in a category. The simplicial
category Δ, which models the structure of simplicial and cosimplicial objects in
a category, is defined by the collection of finite ordinals n = {0 < · · · < n} as
objects together with the non-decreasing maps between finite ordinals u : {0 <
· · · < m} → {0 < · · · < n} as morphisms. We define a simplicial object X in
a category C as a contravariant functor X : Δop → C which assigns an object
Xn ∈ C to each n ∈ N and a morphism u∗ : Xn → Xm to each non-decreasing
map u : {0 < · · · < m} → {0 < · · · < n}. We similarly define a cosimplicial
object in C as a covariant functor X : Δ → C which assigns an object Xn ∈ C

to each n ∈ N and a morphism u∗ : Xm → Xn to each non-decreasing map
u : {0 < · · · < m} → {0 < · · · < n}. Naturally, we define a morphism of simplicial
objects f : X → Y (and a morphism of cosimplicial object similarly) as a sequence
of morphisms f : Xn → Yn in the ambient category C which intertwine the action
of the simplicial operators u∗ on our objects X and Y .

We use the notation s C for the category of simplicial objects in a given ambient
category C and the notation c C for the category of cosimplicial objects. The cate-
gory of simplicial sets sSet , for instance, formally consists of the simplicial objects
in the category of sets X : Δop → Set .

The simplices Δn, n ∈ N, are the fundamental examples of simplicial sets
which are given by the representable functors MorΔ(−, n) : Δop → Set , where
we use the notation MorΔ(m,n) to refer to the morphism sets of the simplicial
category Δ. The collection of the n-simplices Δn, n ∈ N, forms a cosimplicial
object in the category of simplicial sets itself, with the covariant action of non-
decreasing maps u∗ : Δm → Δn defined by the composition on the target in these
morphism sets Δn = MorΔ(−, n).

In the case of a simplicial set X, an element σ ∈ Xn is called an n-dimensional
simplex (or more simply an n-simplex ) in X. The definition of the n-simplex
Δn as a representable functor Δn = MorΔ(−, n) implies that we have the rela-
tion MorsSet (Δ

n, X) = Xn, for any simplicial set X ∈ sSet , where we use the
notation MorsSet (−,−) for the morphism set of the category sSet . To make this
correspondence explicit, we consider the n-simplex, denoted by ιn ∈ (Δn)n, which
corresponds to the identity of the object n in the simplicial category Δ. The mor-
phism σ∗ : Δn → X, associated to any n-simplex σ ∈ Xn, is characterized by the
relation σ∗(ιn) = σ.

The topological simplices Δn = {(t0, . . . , tn)|0 ≤ ti ≤ 1, t0 + · · ·+ tn = 1} form
another fundamental instance of a cosimplicial object which is defined in the cat-
egory of topological spaces. The cosimplicial structure map u∗ : Δm → Δn as-
sociated to a morphism of the simplicial category u ∈ MorΔ(m,n) sends any ele-
ment (s0, . . . , sm) ∈ Δm to the point (t0, . . . , tn) ∈ Δn such that ti =

∑
u(k)=i sk.

We mainly use simplicial objects and cosimplicial objects in the second volume
of this book and we go back to the definitions of this paragraph in §§II.1-3. We
also study simplicial and cosimplicial modules (simplicial and cosimplicial objects
in module categories) in depth in §II.5.

0.4. Faces and degeneracies in a simplicial object. The maps di : {0 < · · · <
n− 1} → {0 < · · · < n}, i = 0, . . . , n, such that

(1) di(x) =

{
x, for x < i,

x+ 1, for x ≥ i,
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and the maps sj : {0 < · · · < n+ 1} → {0 < · · · < n}, j = 0, . . . , n, such that

(2) sj(x) =

{
x, for x ≤ j,

x− 1, for x > j,

generate the simplicial category in the sense that any non-decreasing map u : {0 <
· · · < m} → {0 < · · · < n} can be written as a composite of maps of that form.
Moreover, any relation between these generating morphisms can be deduced from
the following generating relations:

(3)

djdi = didj−1, for i < j,

sjdi =

⎧⎪⎨⎪⎩
disj−1, for i < j,

id , for i = j, j + 1,

di−1sj , for i > j + 1,

sjsi = sisj+1, for i ≤ j.

The structure of a cosimplicial object is, as a consequence, fully determined by a
sequence of objectsXn ∈ C together with morphisms di : Xn−1 → Xn, i = 0, . . . , n,
and sj : Xn+1 → Xn, j = 0, . . . , n, for which these relations (3) hold. The
morphisms di : Xn−1 → Xn, i = 0, . . . , n, which represent the image of the maps
di under the functor defined by X, are the coface operators of the cosimplicial
object X (we may also speak about the cofaces of X for short). The morphisms
sj : Xn+1 → Xn, j = 0, . . . , n, which represent the image of the maps sj are the
codegeneracy operators of X (or, more simply, the codegeneracies of X).

Dually, the structure of a simplicial object is fully determined by a sequence
of objects Xn ∈ C together with morphisms di : Xn → Xn−1, i = 0, . . . , n, and
sj : Xn → Xn+1, j = 0, . . . , n, for which relations

(4)

didj = dj−1di, for i < j,

disj =

⎧⎪⎨⎪⎩
sj−1di, for i < j,

id , for i = j, j + 1,

sjdi−1, for i > j + 1,

sisj = sj+1si, for i ≤ j,

opposite to (3), hold. The morphisms di : Xn → Xn−1, i = 0, . . . , n, which
represent the image of the maps di under the contravariant functor defined byX, are
the face operators of the simplicial object X, and the morphisms sj : Xn → Xn+1,
j = 0, . . . , n, which represent the image of the maps sj , are the degeneracy operators
of X. We also recall the definition of these operators in the course of our study
(in §§II.1-3).

0.5. Geometric realization of simplicial sets and singular complex of topological
spaces. Recall that a topological space |K|, traditionally called the geometric real-
ization of K, is naturally associated to each simplicial set K ∈ sSet . This space is
defined by the coend

|K| =
∫ n∈Δ

Kn × Δn .

where each set Kn is viewed as a discrete space and we consider the topological n-
simplices Δn (of which definition is recalled in §0.3). The coend which we consider in
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this construction is equivalent to the quotient object of the coproduct
∐

n Kn×Δn =∐
n

{∐
σ∈Kn

{σ} × Δn} under the relations

(u∗(σ), (t0, . . . , tm)) ≡ (σ, u∗(t0, . . . , tm)),

for u ∈ MorΔ(m,n), σ ∈ Kn, and (t0, . . . , tm) ∈ Δm. The definition of the map u∗ :
Δm → Δn associated to each u ∈ MorΔ(m,n) involves the cosimplicial structure
of the topological n-simplices Δn. One easily checks that the realization of the
n-simplex Δn = MorΔ(−, n) is identified with the topological n-simplex Δn.

In the converse direction, we can use the singular complex construction to
associate a simplicial set Sing•(X) to any topological space X. This simplicial set
Sing•(X) consists in dimension n of the set of continuous maps σ : Δn → X going
from the topological n-simplex Δn to X. The composition of simplices σ : Δn → X
with the cosimplicial operator u∗ : Δm → Δn associated to any u ∈ MorΔ(m,n)
yields a map u∗ : Singn(X) → Singm(X) so that the collection of sets Singn(X) =
MorTop(Δ

n, X), n ∈ N, inherits a natural simplicial structure.
The geometric realization obviously gives a functor | − | : sSet → Top. The

singular complex construction gives a functor in the converse direction Sing• :
Top → sSet , which is actually a right adjoint of the geometric realization functor
(see [79, §I.2]). We study generalizations of these constructions in §II.3.

0.6. Simplicial modules, cosimplicial modules, and homology. The category of
simplicial modules s Mod is the category of simplicial objects in the category of k-
modules Mod . Thus, a simplicial module K can be defined either as a contravariant
functor from the simplicial category Δ to the category of k-modules Mod , or,
equivalently, as a collection of k-modules Kn, n ∈ N equipped with face operators
di : Kn → Kn−1, i = 0, . . . , n, and degeneracy operators sj : Kn → Kn+1, j =
0, . . . , n, which satisfy the simplicial relations.

The category of cosimplicial modules cMod similarly consists of the cosimplicial
objects in the category of k-modules.

To any simplicial module K, we associate a dg-module N∗(K), called the nor-
malized complex of K, and defined by the quotient Nn(K) = Kn/s0Kn−1 + · · · +
sn−1Kn−1 in degree n, together with the differential δ : Nn(K) → Nn−1(K) such
that δ =

∑n
i=0(−1)idi. This normalized chain complex construction naturally gives

a functor N∗ : sMod → dg Mod . The homology of a simplicial module K is de-
fined as the homology of the associated normalized complex N∗(K). For simplicity,
we use the same notation for the homology functor on simplicial modules and on
dg-modules. Hence, we set H∗(K) = H∗(N∗(K)), for any K ∈ sMod . We study
simplicial and cosimplicial modules in depth in §II.5 and we recall the definition of
the normalized complex construction at this moment.

0.7. Normalized complex and homology of simplicial sets. We will consider the
functor k[−] : sSet → sMod which maps a simplicial set X to the simplicial module
k[X] generated by the set Xn in dimension n, for any n ∈ N, and which inherits
an obvious simplicial structure. We also have a contravariant functor A : sSetop →
cMod which maps a simplicial set X to the cosimplicial module A(X) = kX , dual
to k[X], and defined in dimension n by the k-module of functions u : Xn → k on
the set Xn ∈ Set .

We use the notation N∗(X) for the normalized complex of the simplicial k-
module k[X] associated to a simplicial set X. We retrieve the classical homology
of simplicial sets by considering the homology of these simplicial modules. We also
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use the notation H∗(−) for the homology functor on simplicial sets. We accordingly
have the formula H∗(X) = H∗(N∗(X)), for any X ∈ sSet .

The normalized complexes of the simplices Δn, n ∈ N, naturally form a simpli-
cial object in the category of dg-modules N∗(Δ

•). For a given simplicial module K,
we have a coend formula

N∗(K) =

∫ n∈Δ

Kn ⊗ N∗(Δ
n),

and the normalized complex construction of §0.6 can be regarded as a dg-module
version of the geometric realization of simplicial sets (we explain this idea in §5.0.11).

0.8. Symmetric monoidal categories and the structure of base categories. In
the introduction of this chapter, we briefly mentioned that our base categories, let
M = Set ,Top,Mod , . . . , are all instances of symmetric monoidal categories.

By definition, a symmetric monoidal category is a category M equipped with
a tensor product ⊗ : M×M → M that satisfies natural unit, associativity and
symmetry relations which we express as follows:

(a) We have a unit object 1 ∈ M such that we have a natural isomorphism
A⊗ 1 � A � 1⊗A, for A ∈ M.

(b) We have a natural isomorphism (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C), for ev-
ery triple of objects A,B,C ∈ M, which satisfies a pentagonal coherence
relation (Mac Lane’s pentagon relation) when we put together the associa-
tivity isomorphisms associated to a 4-fold tensor product, and additional
triangular coherence relations with respect to the unit isomorphism when
we assume that one of our objects is the unit object of our category (we
refer to [130, §XI.1] for the expression of these constraints).

(c) We have a natural symmetry isomorphism A ⊗ B � B ⊗ A, associated
to every pair of objects A,B ∈ M, which satisfies hexagonal coherence
relations (Drinfeld’s hexagon relation) when we apply the symmetry iso-
morphism to a 3-fold tensor product, and additional triangular coherence
relations with respect to the unit isomorphism when we assume that one
of our objects is the unit object (see again [130, §XI.1] for details).

In the case of k-modules Mod , the monoidal structure is given by the usual ten-
sor product of k-modules, taken over the ground ring, together with the ground ring
itself as unit object. The definition of the tensor product of dg-modules, simplicial
modules, cosimplicial modules is reviewed later on, when we tackle applications of
these base categories. In the category of sets Set (respectively, topological spaces
Top, simplicial sets sSet), the tensor product is simply given by the cartesian prod-
uct ⊗ = × together with the one-point set 1 = pt as unit object. In what follows,
we also use the general notation ∗ for the terminal object of a category, and we may
write pt = ∗ when we want to stress that the one point-set actually represents the
terminal object of the category of sets (respectively, topological spaces, simplicial
sets).

The unit object and the isomorphisms that come with the unit, associativity
and commutativity relations of a symmetric monoidal category are part of the
structure. Therefore, these morphisms have, in principle, to be given with the
definition. But, in our examples, we can assume that the unit and associativity
relations are identities, and in general, we just make explicit the definition of the

symmetry isomorphism c = c(A,B) : A⊗B
�−→ B ⊗A.
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We make explicit the coherence constraints for the unit, associativity, and sym-
metry isomorphisms of symmetric monoidal categories in §I.6 (we use a braided
analogue of the structure of a symmetric monoidal category in our definition of the
Grothendieck–Teichmüller group). We also review the definition of several notions
of structure preserving functors between symmetric monoidal categories in §I.3.

0.9. Tensor products and colimits. In many constructions, we consider sym-
metric monoidal categories M equipped with colimits and limits and whose the
tensor product distributes over colimits in the sense that:

(a) The canonical morphism colimα∈I(Aα ⊗ B) → (colimα∈I Aα) ⊗ B asso-
ciated to a diagram Aα ∈ M, α ∈ I, is an isomorphism for all B ∈ M,
and similarly as regards the canonical morphism colimβ∈J(A ⊗ Bβ) →
A⊗ (colimβ∈J Bβ) associated to a diagram Bβ ∈ M, β ∈ J, where we now
fix the object A ∈ M.

This requirement is fulfilled by all categories which we take as base symmetric
monoidal categories M = Set ,Top,Mod , . . . and is required for the application of
categorical constructions to operads and to algebras over operads. On the other
hand, we will also consider instances of symmetric monoidal categories which do
not satisfy this distribution relation. One simple example is given by taking the
direct sum ⊕ : Mod ×Mod → Mod (instead of the ordinary tensor product) as
the tensor product operation of a symmetric monoidal structure on the category of
k-modules. We use this additive monoidal structure when we study a counterpart
of the Postnikov decomposition of spaces in the category of operads.

0.10. Symmetric groups and tensor permutations. We use the notation Σr for
the group of permutations of {1, . . . , r}. Depending on the context, we regard a
permutation s ∈ Σr as a bijection s : {1, . . . , r} → {1, . . . , r} or as a sequence
s = (s(1), . . . , s(r)) equivalent to an ordering of the set {1, . . . , r}. In any case, we
will use the notation id = idr for the identity permutation in Σr. We omit the
subscript r which indicates the cardinal of our permutation when we do not need
to specify this information.

In a symmetric monoidal category equipped with a strictly associative tensor
product, we can form r-fold tensor products T = X1 ⊗ · · · ⊗Xr without care and
omit unnecessary bracketing. Then we also have a natural isomorphism

X1 ⊗ · · · ⊗Xr
s∗−→ Xs(1) ⊗ · · · ⊗Xs(r),

associated to each permutation s ∈ Σr, and such that the standard unit and asso-
ciativity relations id∗ = id and t∗s∗ = (st)∗ hold. To construct this action, we use
the classical presentation of Σr with the transpositions ti = (i i+ 1) as generating
elements and the identities

t2i = id , for i = 1, . . . , r − 1,(1)

titj = tjti, for i, j = 1, . . . , r − 1, with |i− j| ≥ 2,(2)

titi+1ti = ti+1titi+1, for i = 1, . . . , r − 2,(3)

as generating relations. We assign the morphism

X1 ⊗ · · · ⊗Xi ⊗Xi+1 ⊗ · · · ⊗Xr
�−→ X1 ⊗ · · · ⊗Xi+1 ⊗Xi ⊗ · · · ⊗Xr,

induced by the symmetry isomorphism c(Xi, Xi+1) : Xi ⊗ Xi+1
�−→ Xi+1 ⊗ Xi,

to the transposition ti = (i i + 1). The axioms of symmetric monoidal categories
imply that these morphisms satisfy the relations (1-3) attached to the elementary
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transpositions in Σr. Hence, we can use the presentation of Σr to coherently extend
the action of the transpositions ti ∈ Σr on tensor powers to the whole symmetric
group.

0.11. Tensor products over arbitrary finite sets. In our constructions, we often
deal with tensor products

⊗
i∈r Xi that range over an arbitrary set r = {i1, . . . , ir}

(not necessarily equipped with a canonical ordering). In fact, we effectively realize
such a tensor product

⊗
i∈r Xi as an ordered tensor product Xu(1) ⊗ · · · ⊗ Xu(r),

which we associate to the choice of a bijection u : {1 < · · · < r} �−→ r. The tensor

products associated to different bijection choices u, v : {1 < · · · < r} �−→ r differ by

a canonical isomorphism s∗ : Xu(1) ⊗ · · · ⊗Xu(r)
�−→ Xv(1) ⊗ · · · ⊗Xv(r) which we

determine from the permutation s ∈ Σr such that v = us by using the just defined
action of symmetric groups on tensors.

In principle, the tensor product
⊗

ik∈r Xik is only defined up to these canonical

isomorphisms. However, we can adapt the general Kan extension process to make
this construction more rigid. Formally, we define the unordered tensor product as
the colimit

⊗
ik∈r Xik = colim

u:{1<···<r}
�−→r

Xu(1)⊗· · ·⊗Xu(r) that ranges over the

category formed by the bijections u : {1 < · · · < r} �−→ r as objects and the permu-
tations s ∈ Σr such that v = us as morphisms. The colimit process automatically
performs the identification of the tensors associated to different bijection choices.

This construction can be regarded as an instance of a Kan extension process
which we will apply to structures, called symmetric sequences, underlying operads
(see §I.2.5).

0.12. Enriched category structure of base categories. The morphism sets of a
category C will always be denoted by MorC(A,B). But many categories which we
consider come equipped with a hom-bifunctor HomC(−,−) : Cop ×C → M with
values in one of our base symmetric monoidal categories M = Set ,Top,Mod , . . . ,
and which provides C with an enriched category structure.

The structure of an enriched category includes operations that extend the clas-
sical composition operations attached to the morphism sets of ordinary categories.
In the usual setting, the units of the composition are given by identity morphisms
idA ∈ MorC(A,A) associated to all objects A ∈ C. In the case of an enriched
category, the units of the composition are morphisms

(1) idA : 1 → HomC(A,A),

given for all objects A ∈ C, and defined on the tensor unit of the base category 1.
The composition products are morphisms

(2) ◦ : HomC(B,C)⊗ HomC(A,B) → HomC(A,C),

given for all A,B,C ∈ C, and where we consider the tensor product of hom-objects
in the base category instead of the cartesian product of morphism sets. These
composition products are assumed to satisfy obvious analogues, now expressed in
terms of commutative diagrams, of the unit and associativity relations of the com-
position in ordinary categories. Each of our base categories M = Set ,Top,Mod , . . .
is enriched over itself. In the case of sets Set , we trivially take HomSet (−,−) =
MorSet (−,−). In the case of topological spaces Top, the hom-objects HomTop(A,B)
are given by the morphism sets MorTop(A,B) equipped with the usual compact-open
topology. In the case of modules Mod , the hom-objects HomMod (A,B) are similarly
given by the morphism sets of the category HomMod(A,B) = MorMod (A,B), which
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come naturally equipped with a module structure (the usual one). In our remaining
fundamental examples M = sSet , dg Mod , . . . , the hom-objects HomM(A,B) consist
of maps which are given by an extension of the definition of the morphisms of our
category M. (We give the explicit definition of these hom-objects later on, when
we begin to use these categories.)

In all these examples, we actually take hom-objects which fit an adjunction re-
lation with respect to the symmetric monoidal structure (authors say that our base
categories are instances of closed monoidal categories). We review this connection
in a next paragraph.

0.13. The general notion of an enriched category, morphisms and homomor-
phisms. In what follows, we actually use enriched categories both as a natural
framework to perform constructions on objects and as examples of structured ob-
jects. The base categories M = Set ,Mod , sSet , dg Mod , . . . correspond to the first
usage of enriched category structures, while the Hopf categories, which we consider
in our definition of the Malcev completion of groupoids (see §I.9.0), correspond to
the second form of applications of enriched categories.

In the first case, an enriched category structure is often given as an extra struc-
ture associated with an ordinary category C. Then we deal with both morphism
sets MorC(−,−) and with hom-objects HomC(−,−) with values in a given symmetric
monoidal category M (not necessarily a base category). We say that our category C

is enriched over M when we need to specify this category where our hom-objects are
defined. We assume that the hom-objects are equipped with unit and composition
morphisms §0.12(1-2) formed within our symmetric monoidal category M.

In this context, where enriched categories arise as extra-structures associated
with an underlying ordinary category C, we also naturally assume that the hom-
objects form a bifunctor HomC(−,−) : Cop ×C → M so that we have morphisms

(1) f∗ : HomC(−, A) → HomC(−, B) and f∗ : HomC(B,−) → HomC(A,−),

for every f ∈ MorC(A,B). The unit morphisms and the composition operations
§0.12(1-2) have to be invariant under these actions of morphisms on hom-objects.

In our basic examples, where hom-objects are made from point-sets, we can
identify the actual morphisms of the category f ∈ MorC(A,B) with particular el-
ements of the hom-objects HomC(A,B). The general elements u ∈ HomC(A,B) are
conversely identified with maps u : A → B which satisfy some mild requirements,
and these hom-objects HomC(A,B) are generally given by an extension of the mor-
phism sets of our category MorC(A,B). In this setting, we use the name ‘homomor-
phism’ to refer to the general elements of the hom-objects HomC(A,B) as opposed
to the ‘morphisms ’, which refer to the elements of the morphism sets MorC(A,B).
We may however use the arrow notation u : A → B when we want to regard
such a homomorphism u ∈ HomC(A,B) as a map. In this case, the belonging cat-
egory of the arrow u is specified by the context. The composition on hom-objects
also usually extends the composition on morphisms, and the morphisms (1), which
make the hom-objects into a bifunctor, are generally identified with the left (re-
spectively, right) composition with the homomorphism which we associate to any
morphism f ∈ MorC(A,B).

In a general setting, we can define a correspondence between morphisms and
homomorphisms by using a natural transformation

(2) ι� : 1[MorC(A,B)] → HomC(A,B),
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where the expression 1[MorC(A,B)] denotes the coproduct, ranging over the set of
morphisms f ∈ MorC(A,B), of copies of the unit object 1.

0.14. Closed symmetric monoidal categories. In the case of our base categories
M = Set ,Top,Mod , . . . , we actually take hom-bifunctors that fit in an adjunction
relation MorM(A ⊗ B,C) � MorM(A, HomM(B,C)) with respect to the symmetric
monoidal structure of the category1. The bijection which gives this adjunction
relation is also assumed to be natural in A,B,C ∈ M.

We generally say that a symmetric monoidal category M is closed when the
tensor product ⊗ : M×M → M has a right adjoint HomM(−,−) : Mop ×M → M

so that we have an isomorphism

(1) MorM(A⊗B,C) � MorM(A, HomM(B,C)),

for any A,B,C ∈ M. Note that the existence of this adjoint implies that our tensor
product distributes over colimits as we require in §0.9. The other way round, the
hom-object bifunctor HomM(−,−), which we define by an adjunction relation of
this form (1), automatically satisfies the same distribution relations with respect
to colimits and limits as the general morphism set bifunctor of our base category.
Namely, we have the identity HomM(colimα Aα, B) = limα HomM(Aα, B), when we
take a colimit on the source of our hom-object A = colimα Aα, and the identity
HomM(A, limβ Bβ) = limβ HomM(A,Bβ), when we consider a limit on the target
B = limβ Bβ .

The hom-objects HomM(A,B) defined by an internal hom-functor naturally in-
herit an evaluation morphism

(2) ε : HomM(A,B)⊗A → B

which represents the augmentation of the adjunction (1) and which generalizes the
usual evaluation of maps in the category of sets. The unit of our adjunction is given
by a morphism

(3) ι : A → HomM(B,A⊗B)

associated to each pair of objects in our category A,B ∈ M.
The hom-objects of a closed symmetric monoidal category automatically in-

herit composition units idA : 1 → HomC(A,A), given by the right adjoint of the unit

isomorphisms 1⊗A
�−→ A of the symmetric monoidal structure, as well as compo-

sition operations ◦ : HomC(B,C) ⊗ HomC(A,B) → HomC(A,C), given by the right

adjoint of the composite evaluation morphisms HomM(B,C)⊗HomM(A,B)⊗A
id ⊗ε−−−→

HomM(B,C)⊗B
ε−→ C. Thus, any closed symmetric monoidal category is automat-

ically enriched in the sense of §0.12.
Besides, we have tensor product operations HomM(A,B) ⊗ HomM(C,D)

⊗−→
HomM(A ⊗ C,B ⊗ D), which are given by the right adjoint of the composites

HomM(A,B)⊗HomM(C,D)⊗A⊗C � HomM(A,B)⊗A⊗HomM(C,D)⊗C
ε⊗ε−−→ B⊗D

where we apply the symmetry operator of M and we form the tensor product of the
evaluation morphisms associated to the hom-objects. This tensor product opera-
tion gives an extension, at the level of enriched hom-objects, of the tensor product
of morphisms and satisfies the same unit, associativity, and symmetry relations.

1In the case M = Top, we just need to restrict ourselves to a good category of topological
spaces, such as the usual category of compactly generated spaces, in order to ensure that such an
adjunction relation holds (see for instance [130, §VII.8] for an overview of this subject).
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The existence of the hom-object bifunctor HomM(−,−) is notably useful for the
study of algebras over operads and we give a short account of these applications
in the first chapter of this book §I.1. In this book, we mostly study operad them-
selves and we mainly deal with the usual internal hom-objects associated to our
fundamental examples of base model categories. To be specific, we use simplicial
hom-objects, which we deduce from the standard internal hom-objects of the cat-
egory of simplicial sets, when we study mapping spaces of operads in the second
part of this work and we use hom-objects of dg-modules as an auxiliary device to
compute the homotopy of these mapping spaces on the category of operads.

0.15. Concrete (symmetric monoidal) categories. Recall that a category C is
concrete when we have a faithful functor U : C → Set from this category C to the
category of sets Set . Most usual categories, which are defined in terms of point
sets equipped with extra structures, are naturally equipped with the structure of a
concrete category.

In what follows, we will say that a base symmetric monoidal category M is
concrete (as a symmetric monoidal category) when such a faithful functor U :
M → Set is given by the representable functor U = MorM(1,−) associated to the
unit object of our category 1 ∈ M. The category of sets M = Set , the category
of topological spaces M = Top, the category of modules M = Mod , . . . are
examples of concrete symmetric monoidal categories. In this situation, we regard
the morphism set U(X) = MorM(1, X) as a set of points, which we faithfully
associate to any object of our category X ∈ C, and we have a natural pointwise
tensor product operation x ⊗ y ∈ U(X ⊗ Y ), which we define by the obvious

composition operation 1
�−→ 1⊗ 1

x⊗y−−−→ X ⊗ Y , for any x ∈ U(X) and y ∈ U(Y ),
where we consider the unit isomorphism 1 � 1⊗ 1 of our category M. We just have
x ⊗ y = (x, y) ∈ X × Y in the case M = Set ,Top, and we retrieve the standard
notion of a tensor product of elements in the case M = Mod .

We mainly use the concept of a concrete symmetric monoidal category infor-
mally, in order to give a sense to set-theoretic tensor products which we define to
illustrate some constructions of the theory. Let us mention that we can still form
such set-theoretic tensor products (with some restriction) in the category of dg-
modules, in the category of graded modules, in the category of simplicial modules
and in the category of cosimplicial modules though these categories do not form
concrete symmetric monoidal categories in the sense of our definition.

0.16. The notation of colimits, limits and universal objects. We adopt the fol-
lowing conventions for the notation of colimits, limits, and universal objects in
categories. We generally use the unbased set notation ∅ for the initial object of a
base category, the notation � for coproducts, and the notation ∗ for the terminal
object. In certain situations, we use the empty set notation and we write A = ∅

to assert that an object A is undefined.
We use additive category notation when we deal with additive structures, or

when our base category consists of modules. We then write 0 for the initial object
of the category (the zero object). We also use ⊕ as a generic notation for the
coproduct in the additive case.

When we deal with a category of objects equipped with a multiplicative struc-
ture (algebras, operads, . . . ), we generally adopt the base set notation ∨ for the
coproduct, but we do not have any general convention for the notation of the initial
object in this setting. In fact, we usually keep the notation of a particular object
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of the base category which we use to effectively realize the initial object of our cat-
egories of structured objects. We can use a similar convention for coproducts when
we can deduce the definition of this categorical operation from structure operations
of our base category. For instance, we generally use the tensor product notation
to refer to a coproduct of unitary commutative algebras, because we will observe
in §I.3.0.3 that the coproduct is realized by the tensor product in this case.



Reading Guide and Overview of this Volume

This monograph comprises three main parts, referred to as Part I–III, which
form a progression up to our ultimate mathematical goal. Part I, “From Operads to
Grothendieck–Teichmüller Groups”, is mainly devoted to the algebraic foundations
of our subject. In Part II, “Homotopy Theory and its Applications to Operads”, we
develop our rational homotopy theory of operads after a comprehensive review of
the applications of methods of homotopy theory. In Part III, “The Computation of
Homotopy Automorphism Spaces of Operads”, we work out our problem of giving
a homotopy interpretation of the Grothendieck–Teichmüller group.

These parts are widely independent from each others. Each part of this book
is also divided into subparts which, by themselves, form self-contained groupings
of chapters, devoted to specific topics, and organized according to an internal pro-
gression of the level of the chapters each. There is a progression in the level of the
parts of the book too, but the chapters are written so that a reader with a min-
imal background could tackle any of these subparts straight away in order to get
a self-contained reference and an overview of the literature on each of the subjects
addressed in this monograph.

This volume comprises the first named part of the book, “From Operads to
Grothendieck-Teichmüller Groups”, and two appendices, “Trees and the Construc-
tion of Free Operads” and “The Cotriple Resolution of Operads”, where we revisit
with full details the definition of operads in terms of composition operations shaped
on trees and we explain the applications of trees to the definition of universal objects
in the category of operads.

The following overview is not intended for a linear reading but should serve as
a guide each time the reader tackles new parts of this volume.

Part I. From Operads to Grothendieck–Teichmüller Groups. The first
part of this book includes: an introduction to the fundamental concepts of the
theory of operads; a survey on the definition of the little discs operads and of
En-operads together with a detailed study of the connections between the little
2-disc operad and braided category structures; an introduction to the theory of
Hopf algebras together with a study of the applications of Hopf algebras to the
Malcev completion of groups, groupoids and operads; and a detailed account of the
definition of the Grothendieck-Teichmüller group from the viewpoint of the theory
of algebraic operads.

Part I(a). The General Theory of Operads. We give a detailed survey
of the general definitions of the theory of operads in this part. The first chapter §1
is introductory and does not contain any original idea. We mainly explain the
relationship between operads and algebras. In the second chapter §2, we explain
our working definition of the notion of an operad and we give a new approach

xxxix
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to handle unitary operads (the operads equipped with a distinguished arity zero
operation which can be used to model categories of algebras with unit). In the third
chapter §3, we study the applications of general concepts of the theory of monoidal
categories to operads.

Chapter 1. The Basic Concepts of the Theory of Operads. In this first chapter,
we explain May’s definition of the notion of an operad as an object which governs
the structure defined by collections of operations p = p(x1, . . . , xr), where r ∈
N (see §1.1). We examine the applications of usual categorical constructions to
operads and we study the categories of algebras associated to operads afterwards
(see §§1.2-1.3). We also recall the definition of particular instances of colimits
(filtered colimits and reflexive coequalizers) which we heavily use in the theory of
operads in an appendix section of this chapter (§1.4).

Chapter 2. The Definition of Operadic Composition Structures Revisited. The
definition of an operad depends on composition schemes which we associate to
operations p = p(x1, . . . , xr). In May’s definition, which we recall in §1, we consider
composition products where we can plug operations qi = qi(x1, . . . , xni

) in all inputs
i = 1, . . . , r of a given operation p = p(x1, . . . , xr). This definition is perfectly
suited for an introduction of the subject and for the study of algebras associated
to operads. However, to work with operads themselves, we need to revisit the
definition of our objects in order to get more insights into the structure of the
composition products. We devote this second chapter to this subject. In a first
step (§2.1), we check that the composition products of an operad, are, according
to an observation of Martin Markl, fully determined by composition products on
two factors (these operations are also called the partial composition products in
the operad literature). In a second step (§§2.2-2.4), we explain a new approach to
handle unitary operads. In short, we will see that the compositions with an extra
operation of arity zero of a unitary operad can be encoded in a diagram structure
associated to our object. We crucially use this observation in our study of the
(rational) homotopy of operads in the second part of this book.

In general, we assume that an operad consists of a sequence of terms P(r),
indexed by non-negative integers r ∈ N, and whose elements intuitively represent
operations with r inputs indexed by the ordinal r = {1 < · · · < r}. To complete the
account of this chapter, we explain an extension of the definition of an operad where
terms P(r) indexed by arbitrary finite sets r = {i1, . . . , ir} are considered (§2.5). In
general, we can use bijections {1 < · · · < r} �−→ {i1, . . . , ir} to make the indexing
by an arbitrary finite set {i1, . . . , ir} equivalent to an indexing by an ordinal {1 <
· · · < r}. Nevertheless, certain constructions on operads produce operations with
no canonical input numbering and the extension of the input indexing to arbitrary
finite sets becomes useful in this case. (The construction of the free operad in §A
gives a motivating application of this concept.) These ideas go back to Joyal’s
theory of species [98] and were first applied to operads in Getzler–Jones’s paper [77]
and in Ginzburg–Kapranov’s paper [78].

Chapter 3. Symmetric Monoidal Categories and Operads. The third chapter of
this part is devoted to applications of the theory of symmetric monoidal categories
to the study of operads. The ideas of this chapter are not original, apart when we
tackle the applications of our constructions to the new model of unitary operads
which we introduced in the previous chapter.
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We devote a preliminary section of the chapter (§3.0) to a survey of the defini-
tion of unitary commutative algebras and of counitary cocommutative coalgebras
in symmetric monoidal categories. We examine the definition of operads in general
symmetric monoidal categories afterwards (§3.1). We notably study the image of
operads under functors between symmetric monoidal categories. We also survey
the definition of the category of Hopf operads, which we define as the category
of operads in the symmetric monoidal category of counitary cocommutative coal-
gebras (§3.2). The Hopf cooperads, which we consider in the summary of our
mathematical objectives, are the dual structures of these Hopf operads.

We have various notions of functors associated to symmetric monoidal cate-
gories. We devote an appendix section of this chapter to a survey of this sub-
ject (§3.3).

Part I(b). Braids and E2-operads. The main purpose of this part is to
recall the general definition of an En-operad (by using the model of the little n-
discs operads) and to study the connections between En-operads, Artin’s braid
groups, and braided monoidal categories in the case n = 2.

Chapter 4. The Little Discs Model of En-operads. We recall the definition of
the little n-discs operad and we make explicit the definition of an En-operad in the
first section of this chapter (§4.1). We devote the next section of the chapter (§4.2)
to a survey on the computation of the cohomology and of the homology of the
little n-discs operad. We then give an overview of several variants of the little
discs operads in an outlook section (§4.3). This chapter is mostly a survey of the
literature and does not contain any original result.

We will see that the homology of an operad in topological spaces forms an
operad in graded modules. In the second part of this book, we will also use that
the cohomology of a topological operad with coefficients in a field inherits the dual
structure of a cooperad in graded modules (when our objects satisfy mild finiteness
assumptions). We also have a natural unitary commutative algebra structure on
the cohomology of a space. We actually get that the cohomology of a topological
operad with coefficients in a field forms a cooperad in unitary commutative algebras
in graded modules (a graded Hopf cooperad) when we put this unitary commutative
algebra structure and the cooperad structure together. We just make explicit the
definition of the homology operad associated to the operad of little n-discs and the
commutative algebra structure of the spaces of little n-discs in the second section
of this chapter. (We will see that the homology of the operad of little n-discs is
identified with an operad governing graded Poisson algebra structures.)

We use that the category of graded modules inherits a symmetric monoidal
structure to give a sense to these notions of commutative algebras and of operads
in graded modules. We devote an appendix section of this chapter to an account
of our conventions on graded modules and to a survey of the definition of this
symmetric monoidal structure on the category of graded modules (§4.4).

Chapter 5. Braids and the Recognition of E2-operads. We tackle the study
of the relationship between E2-operads and braids in this chapter. We recall the
definition of the Artin braid groups and some conventions on braids in a preliminary
section of the chapter (§5.0).

We then give an account of Fiedorowicz’s definition of models of E2-operads
from contractible operads endowed with an action of braid groups (§5.1). We use
this approach to prove that the classifying spaces of a certain operad in groupoids,
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the colored braid operad, define an E2-operad (§5.2). This operad of colored braids
is closely related to the operad of parenthesized braids which we consider in the
summary of our mathematical objectives. For the moment, simply say that the
operad of colored braids is formed by groupoids whose morphism sets are identified
with cosets of the pure braid groups inside the full Artin braid groups.

We prove in a second part of the chapter that the operad of colored braids is
equivalent to the operad in groupoids formed defined by the fundamental groupoids
of the underlying spaces of the little 2-discs operad (§5.3). We then use the adjunc-
tion between the fundamental groupoid and the classifying space construction in
homotopy theory to give a second proof that the classifying spaces of the colored
braid operad define an operad which is weakly-equivalent to the operad of little
2-discs, and hence, define a model of E2-operad.

We can regard Fiedorowicz construction as a recognition criterion for the class
of E2-operads in topological spaces. We give an overview of more general recog-
nition methods, which address the problem of giving an intrinsic definition of En-
operads for all n ≥ 1, in the concluding section of this chapter (§5.4).

Chapter 6. The Magma and Parenthesized Braid Operads. In the introduc-
tory chapter (§1), we recalled a general correspondence between operads and cat-
egories of algebras. In the case of an operad in the category of small categories
(or groupoids), like the operad of colored braids considered in §5, the algebras are
objects of the category of categories, and our operad therefore governs a class of
monoidal structures which can be associated to a category. The operad of colored
braids of §5 actually encodes the structure of a strict braided monoidal category,
where we have a tensor product which is associative in the strict sense. The main
purpose of this chapter is to explain this correspondence with full details and to give
the definition of a variant of the colored braid operad, the operad of parenthesized
braids, which we associate to braided monoidal categories with general associativity
isomorphisms.

We first give a definition of an operad governing general monoidal categories
(where the tensor product is just associative up to coherently defined isomorphisms)
by elaborating on the classical Mac Lane Coherence Theorem of which we give an
operadic interpretation (§6.1). We explain the definition of the operad of paren-
thesized braids afterwards (§6.2). To complete the account of this chapter, we also
explain the definition of an operad of parenthesized symmetries which is an analogue
for symmetric monoidal categories of the operad of parenthesized braids (§6.3).

Part I(c). Hopf Algebras and the Malcev Completion. In this part,
we revisit the fundamental results of the theory of Hopf algebras and we study
the applications of Hopf algebras to the definition of a rationalization process, the
Malcev completion, which extends the classical rationalization of abelian groups to
general (possibly non-abelian) groups. We then check that the Malcev completion
process applies to groupoids and to operads in groupoids. We use the Malcev
completion of the parenthesized braid operad in our definition of the Grothendieck–
Teichmüller group (in the next part).

Chapter 7. Hopf Algebras. We review the foundations of the theory of Hopf
algebras first and we devote this first chapter of the part to this subject. We
explain the definition of a Hopf algebra in the general context of additive symmetric
monoidal categories enriched in Q-modules and we check that the main results
of the theory remain valid in this framework. In what follows, we mainly apply
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our constructions to Hopf algebras in a category of modules over a characteristic
zero field and to Hopf algebras in complete filtered modules, but our framework
covers other examples of categories where Hopf algebras are usually defined in the
literature (for instance, the categories of motives).

We explain the general definition of a Hopf algebra in the first section of the
chapter (§7.1). We review the relationship between Hopf algebras and Lie alge-
bras in the second section of the chapter (§7.2). We recall the definition of the
enveloping algebra of a Lie algebra in the course of this study and we revisit the
proof of the classical structure theorems of the theory of Hopf algebras, namely the
Poincaré-Birkhoff-Witt Theorem and the Milnor-Moore Theorem. We devote the
third section of chapter (§7.3) to a thorough study of the structure of Hopf algebras
in complete filtered modules. We then use the phrase ‘complete Hopf algebras’ to
refer to a subcategory of the category of Hopf algebras in complete filtered modules
formed by objects which satisfy a natural connectedness condition. We notably
consider this subcategory of complete Hopf algebras when we define our Malcev
completion functor on groups.

Chapter 8. The Malcev Completion for Groups. We just examine the applica-
tions of Hopf algebras to the Malcev completion of groups in this chapter.

We first explain the definition of a general completion process on Hopf algebras.
We apply this completion process to group algebras in order to get a completed
group algebra functor from the category of groups to the category of complete Hopf
algebras. We have a natural (complete) group-like element functor which goes the
other way round, from complete Hopf algebras to groups. We precisely define the
Malcev completion of a group as the group of complete group-like elements in the
completed group algebra of our group. We devote the first section of the chapter
to the definition of these functors (§8.1).

We also say that a group is Malcev complete when this group occurs as the
image of a complete Hopf algebra under the group-like element functor. We study
the category of Malcev complete groups and the properties of the Malcev completion
process in the second and third sections of the chapter (§§8.2-8.3). We will notably
explain that the elements of a Malcev complete group can be represented as the
exponential of elements of a complete Lie algebra associated to our group. We use
this correspondence to check that, in a Malcev complete group, we can define power
operations ga with exponents in an arbitrary field of coefficients a ∈ k.

We devote the rest of the chapter to the study of the Malcev completion of
free groups and of semi-direct products (§§8.4-8.5). In the course of this study, we
also recall the definition of a counterpart, for Hopf algebras and for complete Hopf
algebras, of the classical semi-direct product of groups.

Chapter 9. The Malcev Completion for Groupoids and Operads. The (com-
plete) Hopf algebras of §§7-8 can be identified with group objects in the category of
(complete) counitary cocommutative algebras. In this chapter, we introduce a gen-
eralization of this notion, which we call (complete) Hopf groupoids (see §§9.0-9.1),
in order to extend the Malcev completion process of the previous chapter from
groups to groupoids (§9.1). Then we check that this Malcev completion functor
on groupoids preserves symmetric monoidal category structures, and as a conse-
quence, gives rise to a Malcev completion functor on the category of operads in
groupoids (§9.2). By the way, we explain the definition of an operadic version
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of the classical notion of a local coefficient system. We naturally get such struc-
tures, which we call ‘local coefficient system operads’, when we study the tower
decomposition of the Malcev completion of operads in groupoids.

We devote an appendix section of the chapter (§8.5) to the study of the ex-
istence of group-like elements in the complete counitary cocommutative algebras
underlying a complete Hopf groupoid. We use the results of this appendix to for-
mulate connectedness hypothesis which we naturally need for our study of complete
Hopf groupoids.

Most of the statements explained in this chapter are new, though the completion
of Hopf groupoids was already considered for the definition of motivic fundamental
groupoids by Deligne and Deligne–Goncharov (see [52, 54]), and this chapter could
also serve as a basic reference for the algebraic background of this subject.

Part I(d). The Operadic Definition of the Grothendieck–Teichmüller
Group. The main goal of this part is to explain the definition of the pro-unipotent
Grothendieck-Teichmüller group as a group of automorphisms associated to a Mal-
cev completion of the parenthesized braid operad. We devote the first chapter
of the part to a preliminary study of this Malcev complete operad of parenthe-
sized braids. By the way, we explain the definition of a related operad, the op-
erad of chord diagrams, and we give an operadic interpretation of the notion of a
Drinfeld associator, which we use as equivalences of operads in Malcev complete
groupoids between the Malcev completion of the parenthesized braid operad and
the chord diagram operad. We also explain the definition of a graded version of
the Grothendieck–Teichmüller group as a group of automorphisms associated to a
parenthesized version of the chord diagram operad. We tackle the definition of the
pro-unipotent Grothendieck-Teichmüller group itself in the second chapter of the
part.

The Grothendieck–Teichmüller group has a pro-finite version too, which we
do not really use in this work, but which is the version to be considered for the
applications to the Grothendieck proposal, where the goal is to study of the absolute
Galois group through geometric actions on curves. We just give an overview of this
program in the concluding chapter of this part.

Most of the ideas used in this part are known to experts, but only partial refer-
ences on the operadic interpretation of the pro-unipotent Grothendieck–Teichmüller
group and on the Drinfeld associators were available in the literature so far.

Chapter 10. The Malcev Completion of the Braid Operads and Drinfeld’s As-
sociators. The operad of parenthesized braids is an operad in groupoids whose
morphism sets consist (like the morphism sets of the colored braid operad of §5)
of cosets of the pure braid groups inside the full Artin braid groups. We therefore
study the Malcev completion of the pure braid groups in the first section of this
chapter (§10.0) before studying the Malcev completion of the parenthesized braid
operad (and of the colored braid operad). We notably recall the definition of Lie
algebra counterparts of the braid groups, which we call the Drinfeld–Kohno Lie
algebras and which we denote by p(r) (some authors call these Lie algebras the
‘Lie algebras of infinitesimal braids’). We will see that, by results of Drinfeld and

Kohno, the Malcev completion P̂r of the pure braid group on r-strands Pr is iso-
morphic to the group of exponential elements which we associate to a completion
p̂(r) of the Drinfeld–Kohno Lie algebra p(r).
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We study the Malcev completion of the operad of parenthesized braids (and
of the colored braid operad) afterwards (in §10.1). We then explain the definition
of the chord diagram operad and we revisit the definition of a Drinfeld associator
(§10.2). In short, we will see that the Drinfeld–Kohno Lie algebras form an operad
and the chord diagram operad is an operad in Malcev complete groups which we
associate to this operad in Lie algebras.

We devote the rest of the chapter to the definition of a graded version of
the Grothendieck–Teichmüller group (§10.3) and to the applications of this ob-
ject for the study of natural tower decompositions of the set of Drinfeld’s as-
sociators (§10.4). In the course of this study, we explain the definition of the
graded Grothendieck–Teichmüller Lie algebra grt which we associate to this graded
Grothendieck–Teichmüller group GRT (k). We use this analysis of the tower de-
composition of the set of Drinfeld’s associators when we examine the outcome of the
homotopy spectral sequence associated to the space of homotopy automorphisms
of E2-operads in the third part of this book.

Chapter 11. The Grothendieck–Teichmüller Group. We explain the operadic
definition of the pro-unipotent Grothendieck–Teichmüller group in the first section
of this chapter (§11.1). We precisely check that this group GT (k), such as defined
by Drinfeld, can be identified with a group of operad automorphisms associated to
the Malcev completion of the operad of parenthesized braids. We study a natural
action of the group GT (k) on the set of Drinfeld’s associators afterwards (in §11.2).
We use this action to check, after Drinfeld, that the pro-unipotent Grothendieck–
Teichmüller group GT (k) is isomorphic to the graded Grothendieck–Teichmüller
group studied in the previous chapter GRT (k).

Then we explain the definition of a tower decomposition of the Grothendieck–
Teichmüller group GT (k) = limm GT 〈m〉(k) (§11.3). This tower decomposition is
associated to a filtration of the group GT (k) by normal subgroups Fm GT (k). We
explicitly have GT 〈m〉(k) = GT (k)/ Fm GT (k) for all m ≥ 0. We actually have a

pro-unipotent structure on the first layer of this filtration GT 1(k) = F1 GT (k) (not
on the whole group GT (k)), which we can also identify with the kernel of a natural
character map λ : GT (k) → k× on the group GT (k). To complete the account of
this chapter, we check that the subquotients E0m GT (k) = FmGT (k)/ Fm+1(k),
m ≥ 1, form a weight graded Lie algebra which is isomorphic to the graded
Grothendieck–Teichmüller Lie algebra of the previous chapter grt. (We address
this subject in §11.4.)

Chapter 12. A Glimpse at the Grothendieck Program. This chapter serves as
a conclusion for this volume. We provide a brief introduction to the Grothendieck
program in Galois theory and we give an overview of the literature about the
connections between Grothendieck–Teichmüller groups, motivic Galois groups, and
multizetas.

Appendix A. Trees and the Construction of Free Operads. In this
appendix, we explain the applications of trees to the definition of universal con-
structions in the category of operads. We make our definition of a tree precise in
a preliminary section (§A.1). We explain the definition of general treewise com-
position operations associated to operads afterwards (in §A.2). We then explain
the applications of trees to the definition of free objects in the category of operads
(§§A.3-A.4) and to the definition of coproducts with free objects (§A.5).
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Most of the ideas which we use in this appendix are not original, as the applica-
tions of trees for the study of operads go back to Stasheff’s work on the recognition
of loop spaces [167] and to Boardman–Vogt’s work on homotopy invariant struc-
tures [28]. The definition of free operads in terms of trees, in particular, is due to
Ginzburg–Kapranov [78]. We just give a new definition of reduced free objects in
the context of unitary operads.

Appendix B. The Cotriple Resolution of Operads. In this appendix, we
explain the definition of a simplicial resolution functor on the category of operads,
the cotriple resolution, which we use in our study of the homotopy of operads in the
next parts of this book. We restrict our analysis to the case of connected operads
for simplicity. In short, we prove that the cotriple resolution of an operad has
an explicit description which we obtain by inserting extra structures, modelled by
chains of tree morphisms, in our previous construction of free operads. We explain
the definition of our notion of a tree morphism in the first section of this appendix
(§B.0) and we tackle the applications to the cotriple construction afterwards (§B.1).

The free operad functor inherits a natural composition operation which makes
this object a monad on the category of symmetric sequences (underlying the cate-
gory of operads). We recall the definition of the concept of a monad in §B.2, and
we prove that the structure of an operad can also be defined in terms of an action
of this free operad monad on a symmetric sequence. In the language of category
theory, this result asserts that the category of operads is monadic.

Most of the results explained in this appendix are known to experts (like the
constructions of the previous appendix). We still just give a new definition of a
reduced version of the cotriple resolution for unitary operads.
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CHAPTER 1

The Basic Concepts of the Theory of Operads

The main purpose of this chapter is to explain the definition of an operad. We
make this definition explicit in the first section of the chapter (§1.1). We also explain
the definition of an algebra over an operad and we give some basic examples in sets
to illustrate this definition. We examine the application of standard constructions
of category theory (like free objects, colimits, limits) to operads and to algebras
over operads in the second and third sections of the chapter (§§1.2-1.3). We check
in passing that the usual categories of algebras (associative algebras, commutative
algebras, Lie algebras) are identified with categories of algebras associated to oper-
ads. We also devote an appendix section (§1.4) to a short survey of the definition
of particular colimits (reflexive coequalizers and filtered colimits) which we use in
our applications of category theory constructions to operads.

The basic definition of an operad, given in the next section, makes sense in the
general setting of a symmetric monoidal category M, where we only assume the
existence of a tensor product ⊗ : M×M → M that satisfies the unit, associativity
and symmetry axioms of §0.8. Nonetheless, we need the additional requirement that
the tensor product distributes over colimits (see §0.9) when we tackle the definition
of free objects in the category of operads. This distribution relation with respect
to colimits is also needed to perform categorical constructions in the category of
operads and in categories of algebras over operads. The existence of an internal-
hom bifunctor HomM(−,−) : Mop ×M → M which provides the base category M

with a closed symmetric monoidal category structure (see §§0.8-0.14) is also useful
for the study of algebras over operads. To simplify our account, we assume for the
moment that we deal with a base category M which fulfills all these properties,
and we take our examples of base categories among the category of sets M = Set ,
of simplicial sets M = sSet , of topological spaces M = Top, of modules over the
ground ring M = Mod , or among a variant of these categories. We just make a
few remarks about minor issues which occur when the tensor product does not
distribute over colimits. We revisit the setting of our definitions with more care in
the next chapters.

Recall that we generically use the unbased set notation ∅ for the initial object
of our base category, the notation ∗ for the terminal object, and the notation � for
coproducts (see §0.16). We just pass to additive category notation when we deal
with additive structures or when the base category consists of modules. We then
write 0 for the zero object and ⊕ for the coproduct.

In §§1.2-1.3, we explain that the category of operads and the categories of
algebras associated to an operad have all limits and colimits. The limits of operads
are created in the underlying base category in general. This is also the case of some
particular colimits, like filtered colimits and reflexive coequalizers, but coproducts
in the category of operads do not reduce to coproducts in the base category and we

5



6 1. THE BASIC CONCEPTS OF THE THEORY OF OPERADS

have similar results for algebras over operads (see §§1.2-1.3). Therefore, we keep
the notation of the base category for limits in the category of operads and for limits
in categories of algebras over operads, but we will adopt another style of notation
(the base set notation ∨) for coproducts.

The definition of an operad which we recall in this chapter is borrowed from
May’s monograph [140]. Besides this reference, we should cite Boardman–Vogt’s
work [28] for another approach of the notion of an operad, and Ginzburg–Kapranov’s
article [78], from which we borrow the definition of free operads and the definition
of operads by generators and relations. Reference books on operads, emphasizing
various aspects of the theory, include [66] about modules and algebra categories
associated to operads, [117] about operads and higher categories, [126] which fo-
cuses on algebraic operads and the Koszul duality theory, and [138] which provides
an overall introduction to operads and to the Koszul duality of operads. We also
refer to the textbook [186] for a basic introduction to the objects of the theory of
operads. Most definitions and statements of this introductory chapter are covered
by these reference, and we do not make any claim of originality at this stage of our
work.

1.1. The notion of an operad and of an algebra over an operad

The purpose of this section is, as we just explained, to make explicit the defi-
nition of an operad and of an algebra over an operad. We have several approaches
available. In this introductory chapter, we mostly deal with May’s definitions [140],
which has the advantage of giving a direct and simple interpretation of operadic
structures in terms of operations acting on algebras. In the next chapter (§2), we
give a reduced definition of the structure of an operad. We then rely on an inter-
pretation, in terms of trees, of the composition of operations in an operad. We give
a first informal introduction to the applications of trees in the definition of operads
in this section.

Intuitively, an operad P consists of a collection of objects P(r) which collect
operations p = p(x1, . . . , xr). The notion of an operad is formally defined as a
structure formed by such a collection of objects P(r) together with composition
products that model the composition of operations. From this viewpoint, an op-
erad can be regarded as a particular instance of an analyzer, a notion introduced
by Lazard in [114] in order to generalize the power series operations used in the
theory of formal Lie groups. In what follows, we generally assume that the terms
of our operads P(r) are indexed by non-negative integers r ∈ N, and we follow
this convention all through this section. Nevertheless, for some constructions on
operads, we deal with an extension of the definition where terms P(r) associated to
all finite sets r = {i1, . . . , ir} are allowed. This convention enables us to model op-
erations p = p(xi1 , . . . , xir) with variables (xi1 , . . . , xir) indexed by any such finite
set r = {i1, . . . , ir} and not only by the standard ordered sets r = {1 < · · · < r}
which we consider in the basic definition of the notion of an operad. We explain
this extension of the notion of an operad in §2.5.

In the literature, the number of variables r in an operation p = p(x1, . . . , xr)
(not necessarily related to an operad) is sometimes referred to as the arity of p. In
the operadic context, we use the term of arity to refer to the number r that indexes
the terms P(r) of an operad P and, more generally, for any structure shaped on an
N-indexed collection of objects which we relate to an operad. In the setting where
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P(r)⊗P(n1)⊗···⊗P(nr)
id ⊗(t1⊗···⊗tr)

μ

P(r)⊗P(n1)⊗···⊗P(nr)

μ

P(n1+···+nr)
t1⊕···⊕tr

P(n1+···+nr)

P(r)⊗P(n1)⊗···⊗P(nr)
s⊗(id ⊗···⊗id)

�id ⊗s∗

P(r)⊗P(n1)⊗···⊗P(nr)

μ

P(r)⊗P(ns(1))⊗···⊗P(ns(r))

μ

P(n1+···+nr)

P(ns(1)+···+ns(r))

s∗(n1,...,nr)

Figure 1.1. The equivariance axioms of operads, which are re-
quired to hold for all arities r ≥ 0, n1, . . . , nr ≥ 0, and for all
permutations s ∈ Σr and t1 ∈ Σn1

, . . . , tr ∈ Σnr
.

the terms of an operad P(r) are indexed by all finite sets r = {i1, . . . , ir}, we use
the term of arity to refer to the cardinal r of these indexing sets r = {i1, . . . , ir}
(either regarded as a non-negative integer or as a class of finite sets in bijection to
each other).

The explicit definition of an operad, beyond the intuitive approach, is quite in-
tricate. In fact, we implicitly rely on a primitive operad structure on permutations
when we formulate this definition. In the logical order, we should explicitly define
the operations underlying the composition structure of the permutation operad first
and we should introduce the general definition of an operad afterwards. But we will
proceed differently in order to bring out the ideas underlying the definition. In a
first stage, we only define the shape of the structure of an operad. This incomplete
account is enough to fully explain the intuitive interpretation of the operad formal-
ism, which we do next. Then we give the missing part of our definition, which is
the definition of the primitive operad structure on permutation groups.

1.1.1. The notion of an operad. Formally, an operad in a base category M

consists of a sequence of objects P(r) ∈ M, r ∈ N, where P(r) is equipped with an
action of the symmetric group on r letters Σr, together with:
(1) a unit morphism η : 1 → P(1),
(2) and composition products

μ : P(r)⊗ P(n1)⊗ · · · ⊗ P(nr) → P(n1 + · · ·+ nr),

defined for any r ≥ 0, for all n1, . . . , nr ≥ 0,
and such that natural equivariance, unit and associativity relations, expressed by
the commutativity of the diagrams of Figure 1.1, 1.2, and 1.3, hold. The permu-
tations t1 ⊕ · · · ⊕ tr and s∗(n1, . . . , nr) which occur in the equivariance relations of
Figure 1.1, will be explicitly defined in §1.1.7.
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1⊗P(n)
η⊗id

�

P(1)⊗P(n)

μ

P(n)

P(r)⊗1⊗r
id ⊗η⊗r

�

P(r)⊗P(1)⊗r

μ

P(r)

Figure 1.2. The unit axioms of operads, which are required to
hold for all r ≥ 0 and for all n ≥ 0.

(P(r) ⊗ P(s1)⊗···⊗P(sr)) ⊗ (P(n1
1)⊗···⊗P(n

s1
1 ))

⊗ ···
⊗ (P(n1

r)⊗···⊗P(nsr
r ))

�

μ⊗id ⊗···⊗id

P(r) ⊗ (P(s1)⊗P(n1
1)⊗···⊗P(n

s1
1 ))

⊗ ···
⊗ (P(sr)⊗P(n1

r)⊗···⊗P(nsr
r ))

id ⊗μ⊗···⊗μ

P(s1+···+sr) ⊗ P(n1
1)⊗···⊗P(n

s1
1 )

⊗ ···
⊗ P(n1

r)⊗···⊗P(nsr
r )

μ

P(r) ⊗ P(n1
1+···+n

s1
1 )

⊗ ···
⊗ P(n1

r+···+nsr
r )

μ

P(n1
1+···+n

s1
1 +···+n1

r+···+nsr
r )

Figure 1.3. The associativity axiom of operads, which is re-
quired to hold for all arities r ≥ 0, s1, . . . , sr ≥ 0, and for nj

i ≥ 0.

In principle, we assume that the symmetric groups acts on the left on the
components of an operad and we formulate our equivariance axioms accordingly.
This convention is used by most authors.

The morphism η in the above definition is referred to as the unit morphism of
the operad and the morphisms μ as the composition products. In what follows, we
also use the phrase ‘full composition product ’ for these morphisms μ, because we
use the phrase ‘composition product ’ as a generic name for any class of composition
operations which we associate to operads. In general, we specify an operad by the
notation of the underlying collection P and we use the letters η and μ as generic
notation for the corresponding unit and product morphisms. We simply add a
subscript η = ηP (respectively, μ = μP) in order to specify the operad to which
this unit (respectively, product) morphism is attached whenever this precision is
necessary.

1.1.2. The category of operads. We obviously define a morphism of operads
φ : P → Q as a sequence of morphisms in the base category φ : P(r) → Q(r),
r ∈ N, which commute with the action of symmetric groups and preserve the unit
and the composition structure of our objects. When we work within a fixed base
category M, we use the notation Op to refer to the category formed by operads in
M and this natural class of morphisms. If we need to specify the base category in
which our operads are defined, then we simply add this category as a prefix to our
notation:

Op = MOp .
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To give an example, we use the notation Op = Top Op to refer to the category of
operads in topological spaces (for short, we also speak about topological operads).
We similarly write Op = sSet Op for the category of operads in simplicial sets.
We also speak about simplicial operads in this case. We can actually identify an
operad in simplicial sets with a simplicial object in the category of operads in
sets (see II.§8.0). We can therefore use the name ‘simplicial operad’ without any
confusion in order to refer to the objects of this category sSet Op.

The underlying collection of an operad defines a diagram over the category
Σ formed by the coproduct of the symmetric groups Σr, r ∈ N, in the category
of categories (after identifying these groups with categories with a single object).
In §2.2, we introduce a variant of the category of operads, where the action of the
symmetric groups is replaced by another internal structure, encoded by an action of
a certain category Λ such that Σ ⊂ Λ. In order to form the notation of any variant
of the category of operads, our convention is to add the notation of the indexing
category as a prefix to the expression Op. We therefore use the notation ΛOp for
this category of Λ-operads (see §2.2). We may similarly write ΣOp for the category
of plain operads, such as defined in §1.1.1. We actually take Op as a short notation
for this category Op = ΣOp.

The category of non-symmetric operads, which is also considered in the liter-
ature, is another variant of the category of operads defined by forgetting about
the symmetric structure (and the equivariance axioms) which we consider in our
definition. The phrase ‘symmetric operads ’, referring to the action of the symmet-
ric groups, is used by some authors for the notion defined in §1.1.1. We do not
use non-symmetric operads in this book. The category of symmetric operads is
our category of plain operads. We therefore drop the adjective symmetric and we
simply say ‘operad’ to refer to the category of symmetric operads, in the same way
as we adopt the short notation Op = ΣOp for the category of symmetric operads.

In what follows, we also consider variants of the category of operads where we
forget about the term of arity zero. We use the name ‘non-unitary operad ’ to refer
to this category of operads. When the tensor product distributes over colimits,
we can identify a non-unitary operad with an operad whose term of arity zero is
the initial object of the base category and we can therefore regard the category of
non-unitary operads as a subcategory of the category of all operads Op. We heavily
use the concept of a non-unitary operad and we will devote subsequent paragraphs
to a more thorough study of this notion.

1.1.3. Miscellaneous remarks on the definition of an operad. In the case r = 0,
the composition product of §1.1.1(2) involves an empty set of factors P(ni). This
composition morphism therefore reduces to an endomorphism of the object P(0)
for r = 0. The (right) unit axiom of Figure 1.2 actually forces this endomorphism
to be the identity of P(0). Thus, the consideration of a composition product for
r = 0 in §1.1.1 does not add anything to the structure of an operad. Nevertheless,
the formulation of the associativity axiom in full generality in Figure 1.3 requires
to integrate this degenerate case in our definition.

The commutative diagrams of Figure 1.1, which express the equivariance re-
lations of the composition products of operads, can also be gathered in a sin-
gle equivalent commutative diagram, displayed in Figure 1.4. The permutation
s(t1, . . . , tr), which occurs in this diagram, is given by the composite s(t1, . . . , tr) =
(t1 ⊕ · · · ⊕ tr) · s∗(n1, . . . , nr) of the permutations t1 ⊕ · · · ⊕ tr and s∗(n1, . . . , nr)
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P(r)⊗P(n1)⊗···⊗P(nr)
s⊗(t1⊗···⊗tr)

�id ⊗s∗

P(r)⊗P(n1)⊗···⊗P(nr)

μ

P(r)⊗P(ns(1))⊗···⊗P(ns(r))

μ

P(n1+···+nr)

P(ns(1)+···+ns(r))

s(t1,...,tr)

Figure 1.4. The equivariance axioms of operads, put in a single
diagram, where s(t1, . . . , tr) ∈ Σn1+···+nr

is actually an operadic
composite of the permutations s ∈ Σr and t1 ∈ Σn1

, . . . , tr ∈ Σnr
.

which occur in our initial equivariance axioms. We will see that this composite
permutation s(t1, . . . , tr) is identified with the outcome of an operadic composition
product on permutations (see Proposition 1.1.9).

Intuitively, the object P(r) in the definition of an operad collects abstract op-
erations p = p(x1, . . . , xr) of a given arity r ∈ N (as we explain in the introduction
of this section). The composition morphisms of §1.1.1(2) model composition oper-
ations which we naturally associate to operations of this form and the definition of
the permutations t1⊕· · ·⊕ tr and s∗(n1, . . . , nr) in our equivariance axioms reflects
this interpretation of the composition operations of an operad. Therefore, we give
detailed explanations on this interpretation of the definition of an operad first, and
we explicitly define the permutations t1 ⊕ · · · ⊕ tr and s∗(n1, . . . , nr) occurring in
our equivariance axioms afterwards.

1.1.4. The interpretation of an operad structure. In the case of a concrete sym-
metric monoidal category, we can use the notation p(q1, . . . , qr) ∈ P(n1, . . . , nr) for
the image of a tensor p ⊗ (q1 ⊗ · · · ⊗ qr) ∈ P(r) ⊗ P(n1) ⊗ · · · ⊗ P(nr) under the
composition product (2) in our definition of the structure of an operad §1.1.1. The
unit morphism of §1.1.1(1) is also equivalent to the definition of a distinguished ele-
ment 1 ∈ P(1) (the unit of the operad). In many constructions, we consider partial
composition operations ◦i : P(m) ⊗ P(n) → P(m + n − 1) which are determined
from the (full) composition products by the formula p ◦i q = p(1, . . . , 1, q, 1, . . . , 1)
where we plug the operation q ∈ P(n) in the ith input of p ∈ P(m) and we assign
operad units 1 ∈ P(1) at the other inputs to complete the definition.

In the intuitive interpretation of elements p ∈ P(r) in terms of abstract oper-
ations p = p(x1, . . . , xr), the action of a permutation s ∈ Σr on the component of
an operad P(r) models a permutation of inputs

sp = p(xs(1), . . . , xs(r)),

and the (full) composition products of an operad model the definition of composite
operations of the form

p(q1, . . . , qr) = p(q1(xk1+1, . . . , xk1+n1
),

q2(xk2+1, . . . , xk2+n2
),

...

qr(xkr+1, . . . , xkr+nr
)),
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where we set ki = n1 + · · · + ni−1 (with k1 = 0 by convention). Thus, in the
expression of the composite p(q1, . . . , qr), we split the variables into groupings which
we attach to each operation qi, i = 1, . . . , r. The operadic unit similarly represents
an identity operation (of one variable) 1 = id(x1) and a partial composite p ◦i q =
p(1, . . . , 1, q, 1, . . . , 1) can be identified with a composite operation of the form

p ◦i q = p(x1, . . . , xi−1, q(xi, . . . , xi+n−1), xi+n, . . . , xm+n−1).

In this pointwise formalism, the unit axioms read 1(p) = p, p(1, . . . , 1) = p, and the
associativity axiom reads

p(q1, . . . , qr)(θ
1
1, . . . , θ

s1
1 , . . . , θ1r , . . . , θ

sr
r ) = p(q1(θ

1
1, . . . , θ

s1
1 ), . . . , qr(θ

1
r , . . . , θ

sr
r )),

where we assume p ∈ P(r), q1 ∈ P(s1), . . . , qr ∈ P(sr) and θji ∈ P(nj
i ). The

equivariance axioms come from the identities

p(t1q1, . . . , trqr)

= p(q1(xk1+t1(1), . . . , xk1+t1(n1)), . . . , qr(xkr+tr(1), . . . , xkr+tr(nr))),

(sp)(q1, . . . , qr)

= p(qs(1)(xks(1)+1, . . . , xks(1)+ns(1)
), . . . , qs(r)(xks(r)+1, . . . , xks(r)+ns(r)

)).

The permutations t1⊕· · ·⊕tr and s∗(n1, . . . , nr) (which we formally define in §1.1.7)
correspond to the input permutations that occur in these formulas.

Note that the full composition product of an operad is determined by the
partial composition products. Indeed, the unit and associativity axioms imply that
the composition product satisfies p(q1, . . . , qr) = (· · · (p◦k1+1 q1)◦k2+1 · · · )◦kr+1 qr,
for any p ∈ P(r) and for all q1 ∈ P(n1), . . . , qr ∈ P(nr), where we set ki = n1 +
· · ·+ni−1 for i = 1, . . . , r. This observation is fully developed in §2.1, where we give
another definition, in terms of the partial composition products, of the composition
structure of an operad.

1.1.5. The graphical representation of operad elements. To get a better intu-
ition of the definition of an operad, we also use a box picture

i1 ······
···

ir

p

0

,

where p ∈ P(r) is any operation of the form collected by our operad P . The ingoing
edges of the box materialize the inputs of such an operation and the outgoing edge
is used to symbolize the output.

The composition products of an operad correspond to composition schemes of
the following form:

j11 ······
···

j1n1
··· jr1 ······

···
jrnr

q1 ··· qr

p

0

,

where we plug the outputs of the upper level operations q1 ∈ P(n1), . . . , qr ∈ P(nr)
in the inputs of the lower level operation p ∈ P(r) to obtain a composite operation
p(q1, . . . , qr) ∈ P(n1 + · · ·+ nr) with as much inputs as the upper level operations
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together (and one final output). In the sequel, we use the above picture to represent
the tensor p⊗ (q1 ⊗ · · · ⊗ qr) ∈ P(r)⊗ P(n1)⊗ · · · ⊗ P(nr) which we form to carry
out our composition operation instead of the outcome of this process.

Recall that the elements of an operad p ∈ P(r) represent operations p =
p(x1, . . . , xr) whose inputs are indexed by the elements of the set r = {1 < · · · < r}
(at least, in the setting of §1.1.1). In this context, we can assume that the ingoing
edges of the box which represents our operation p ∈ P(r) in the above picture
are arranged in the plane according to the natural ordering of this indexing set
r = {1 < · · · < r}. But we can also use the extra information specified by the
indices of these ingoing edges in our picture to represent a permutation of inputs in
our operation. For this purpose, we take the convention that these edges materi-
alize a bijection, not necessarily the identity one, between an indexing set and the
input set of our operation. In the picture of composite operations for instance, we
associate the indices jik = n1 + · · ·+ni−1 + k, k = 1, . . . , ni, to the ingoing edges of
the boxes qi, i = 1, . . . , r.

To identify equivalent indexing, we simply assume that we have the relation

i1 ······
···

ir

sp

0

≡

is(1) ······
···

is(r)

p

0

,

when we apply a permutation s ∈ Σr to the inner operation p ∈ P(r). This
formalism is explained with full details in §2.5 in the context where we consider
operad components associated to all finite sets.

1.1.6. The graphical representation of an operad structure. The representation
of the previous paragraphs can be applied to the abstract collection of objects
which underlies an operad and to the tensor products of objects which we use
in our definition of the composition structure of an operad. In this setting, the
composition products of an operad can be depicted as morphisms

j11 ······
···

j1n1
··· jr1 ······

···
jrnr

P(n1) ··· P(nr)

P(r)

0

μ∗−→

j11 ······ j1n1
··· jr1 ······ jrnr

P(n1+···+nr)

0

,

where the treewise arrangement materializes the tensor product which we consider
in the definition of §1.1.1.

The composition schemes which occur in the unit and associativity relations of
operads are represented in Figure 1.5-1.6. In these pictures, we identify the applica-
tion of operadic units and operadic composition products with internal operations
on some factors of our treewise tensor product. In general, we use the notation
η∗ and μ∗, which symbolizes the performance of internal operations on treewise
tensors, for these mappings. The factors to which we apply the operation can in
principle be determined from the internal structure of the trees which occur in the
representation of our mapping.
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1.1.7. Fundamental operations on permutations. We now define the permuta-
tions t1 ⊕ · · · ⊕ tr and s∗(n1, . . . , nr) which occur in the equivariance relations of
Figure 1.1. We use the notation ki = n1 + · · · + ni−1 introduced in the previ-
ous paragraphs. To make our definition more explicit, we use that a permutation
of (1, . . . , r) is equivalent to an ordered sequence w = (w(1), . . . , w(r)) in which
each value k = 1, . . . , r occurs once and only once. In some cases, we can also use
the standard table representation:

w =

(
1 · · · r

w(1) · · · w(r)

)
.

The direct sum of permutations t1 ∈ Σn1
, . . . , tr ∈ Σnr

is the permutation
of {1, . . . , n1+· · ·+nr} given by the action of ti on the interval {ki+1, . . . , ki+ni} ⊂
{1, . . . , n1 + · · · + nr} through the canonical bijection of ordered sets {1 < · · · <
ni} �−→ {ki + 1 < · · · < ki + ni}. This permutation is represented by the sequence
t1 ⊕ · · · ⊕ tr = (k1 + t1(1), . . . , k1 + t1(n1), . . . , kr + tr(1), . . . , kr + tr(nr)) formed
by the concatenation of the sequences ti = (ti(1), . . . , ti(ni)) associated to the
permutations ti, i = 1, . . . , r, together with the index shifts ki. For instance, in the
case of a pair of permutations s ∈ Σm and t ∈ Σn, we obtain:

s⊕ t =

(
1 · · · m m+ 1 · · · m+ n

s(1) · · · s(m) m+ t(1) · · · m+ t(n)

)
.

The block permutation s∗(n1, . . . , nr) associated to a permutation s ∈ Σr,
where n1, . . . , nr ≥ 0 is any collection of natural numbers, is given by the per-
mutation, under s, of the intervals ni = (ki + 1, ki + 2, . . . , ki + ni) in the ambient
set {1, . . . , n1 + · · · + nr}. In the sequence representation, the block permutation
s∗(n1, . . . , nr) is defined by the sequence s∗(n1, . . . , nr) = (ns(1), . . . , ns(r)) formed
by the concatenation of the blocks ni which are ordered according to the order of
the permutation s = (s(1), . . . , s(r)). For instance, the block permutation t∗(m,n)
associated to a transposition t = (1 2) ∈ Σ2 has the form:

(m+ 1, . . . ,m+ n, 1, . . . ,m)︸ ︷︷ ︸
t∗(m,n)

=

(
1 · · · n n+ 1 · · · n+m

m+ 1 · · · m+ n 1 · · · m

)
.

The following proposition follows from easy verifications:

Proposition 1.1.8. Let n1, . . . , nr ≥ 0. In the symmetric group Σn1+···+nr
,

we have the relation

(1) (s1 ⊕ · · · ⊕ sr) · (t1 ⊕ · · · ⊕ tr) = (s1t1)⊕ · · · ⊕ (srtr)

for all r-tuples of permutations (s1, . . . , sr), (t1, . . . , tr) ∈ Σn1
× · · · ×Σnr

, the rela-
tion

(2) s∗(n1, . . . , nr) · t∗(ns(1), . . . , ns(r)) = (st)∗(n1, . . . , nr),

for every s, t ∈ Σr, and the relation

(3) (t1 ⊕ · · · ⊕ tr) · s∗(n1, . . . , nr) = s∗(n1, . . . , nr) · (ts(1) ⊕ · · · ⊕ ts(r))

for every s ∈ Σr and for all (t1, . . . , tr) ∈ Σn1
× · · · × Σnr

. �
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i1 ········· in i1 ········· in

P(n) P(n)

1 P(1)

0 0

i1 ········· in

P(n)

0

η∗

�

μ∗

i1 ········· ir i1 ········· ir

1 ······ 1 P(1) ··· P(1)

P(r) P(r)

0 0

i1 ········· ir

P(r)

0

η∗

�

μ∗

Figure 1.5. The treewise representation of the unit relations of operads.

i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗

P(n1
1) ··· P(n

s1
1 ) ··· P(n1

r) ··· P(nsr
r )

P(s1) ··· P(sr)

P(r)

0 i∗ ··· ··· ··· i∗ ··· i∗ ··· ··· ··· i∗

P(n1) ··· P(nr)

P(r)

0

i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗ ··· i∗

P(n1
1) ··· P(n

s1
1 ) ··· P(n1

r) ··· P(nsr
r )

P(s)

0

i∗ ··· ··· ··· i∗ ··· i∗ ··· ··· ··· i∗

P(n)

0

μ∗

μ∗

μ∗

μ∗

Figure 1.6. The treewise representation of the associativity re-
lations of operads, where we set ni = n1

i + · · ·+nsi
i for i = 1, . . . , r,

and s = s1 + · · ·+ sr, n = n1 + · · ·+ nr to shorten notation.
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Then we obtain:

Proposition 1.1.9. The collection of symmetric groups Σn, n ∈ N, forms an
operad in sets such that:
(0) the action of the symmetric group on each Σn is given by left translations;
(1) the identity permutation on one element id1 ∈ Σ1 defines the operadic unit;
(2) and the composition product μ : Σr × (Σn1

× · · · × Σnr
) → Σn1+···+nr

maps
a collection s ∈ Σr, (t1, . . . , tr) ∈ Σn1

× · · · × Σnr
to the product permutation

s(t1, . . . , tr) = (t1 ⊕ · · · ⊕ tr) · s∗(n1, . . . , nr).

Proof. Easy verification from the relations of Proposition 1.1.8. �

This proposition explains our remark that the operations t1 ⊕ · · · ⊕ tr and
s∗(n1, . . . , nr), which occur in the general definition of an operad, come themselves
from a primitive operad structure on the collection of symmetric groups. The defini-
tion of the composite s(t1, . . . , tr) in Proposition 1.1.9 is forced by the equivariance
axioms of operads and the requirement idr(idn1

, . . . , idnr
) = idn1+···+nr

, where we
use the notation idn for the identity permutation of the set {1, . . . , n} (see §0.10).
In this sense, the result of Proposition 1.1.9 expresses the internal coherence of the
definition of an operad.

To give another (more) simple example, we can readily see that:

Proposition 1.1.10. The collection of one-point sets pt(r) = pt forms an
operad in sets. The action of the symmetric groups is trivial in each arity, and we
take identities of one-point sets to define the composition unit and the composition
products of the operad. �

In what follows, we use the notation Π for the operad of Proposition 1.1.9,
which we also call the permutation operad, and the notation Γ for the operad of
Proposition 1.1.10, which we also call one-point set operad. To be more precise,
when we use this notation Π, we actually refer to a version of the permutation
operad where we forget about the term of arity zero of our object. We therefore
assume Π(r) = Σr for r > 0 and Π(0) = ∅. We use the notation Π+, with the
extra subscript mark +, when we keep this term Π+(0) = Σ0 = pt in our object.
We adopt similar conventions in the case of the one-point set operad Γ .

We soon explain that the permutation operad governs associative monoid struc-
tures while the one-point set operad governs commutative monoid structures. We
will moreover see that both the permutation operad and the one-point set operad
admit generalizations in the context of symmetric monoidal categories, as operads
governing the category of associative algebras and the category of commutative
algebras respectively (which we just call monoids in the context of sets). We use
the name ‘associative operad ’ and the name ‘commutative operad ’ in order to refer
to these generalizations of the permutation operad and of the one-point set operad.
We also adopt the notation As and Com for these operads. We only use the nota-
tion Π and Γ in the context of the category of sets M = Set , in which we therefore
have identities As = Π and Com = Γ .

We explain the definition of a universal operad EndA, which we associate to any
object A of our base category M, before explaining the definition of the category
of algebras associated to an operad.

1.1.11. Endomorphism operads. This operad EndA which we associate to any
object of the base category A ∈ M is called the endomorphism operad of A.
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The definition of the endomorphism operad involves an internal hom-bifunctor
HomM(−,−) : Mop ×M → M and we therefore assume that our base category
is closed (see §0.14) when we use this notion. We set Hom(−,−) = HomM(−,−) for
short in what follows.

The endomorphism operad of A ∈ M is defined by the collection of hom-objects

EndA(r) = Hom(A⊗r, A),

where we form the tensor powers of A in the base category M. We take the action
of the symmetric groups Σr on the tensor powers A⊗r to provide this collection of
hom-objects EndA(r) = Hom(A⊗r, A) with a symmetric structure. The composite
morphisms

Hom(A⊗r, A)⊗
( r⊗

i=1

Hom(A⊗ni , A)
)
⊗A⊗n

�−→ Hom(A⊗r, A)⊗
( r⊗

i=1

Hom(A⊗ni , A)⊗A⊗ni

)
ε−→ Hom(A⊗r, A)⊗A⊗r ε−→ A,

where we consider the natural evaluation morphisms attached to our hom-objects
ε : Hom(K,A)⊗K → A, give operadic composition operations

μ : Hom(A⊗r, A)⊗
( r⊗

i=1

Hom(A⊗ni , A)
)
→ Hom(A⊗n, A)

by adjunction, for all r ≥ 0, n1, . . . , nr ≥ 0, and where we set n = n1 + · · · + nr.
We use these operations to define the composition structure of the endomorphism
operad. The symmetric monoidal unit 1⊗A � A also gives a morphism

η : 1 → Hom(A,A)

by adjunction and we use this morphism to define the unit of our operad.
The reader can easily check that these structure morphisms satisfy the axioms

of §1.1.1 and hence do provide the object EndA with the structure of an operad.
1.1.12. Endomorphism operads in basic ambient categories. In the basic exam-

ple of sets M = Set , the endomorphism operad of an object X ∈ Set consists of the
mapping sets EndX(r) = {f : X×r → X}, for r ∈ N. We then have the following
pointwise formula for the action of permutations on our operad:

sf(x1, . . . , xn) = f(xs(1), . . . , xs(n)),

where the variables xk now refer to actual elements of X, and we have the formula

f(g1, . . . , gr)(x1, . . . , xn1+···+nr
) = f(g1(xk1+1, . . . , xk1+n1

),

g2(xk2+1, . . . , xk2+n2
),

...

gr(xkr+1, . . . , xkr+nr
)),

where we still set ki = n1 + · · ·+ni−1, for the composition products. The operadic
unit is identified with the identity map id : X → X.

In the context of topological spaces M = Top, we have the same explicit def-
inition of the endomorphism operad EndX since the mapping sets EndX(r) = {f :
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X×r → X} are equipped with a topology which identify them with the internal
hom-objects of the category of spaces Top (see §0.12 and §0.14).

In the context of a category of modules M = Mod , the terms of the endo-
morphism operad EndK , where K ∈ Mod , consist of morphisms f : K⊗r → K by
construction of hom-objects in this category Mod (see also §0.12). We may identify
such morphisms f : K⊗r → K with r-linear maps f : (x1, . . . , xr) �→ f(x1, . . . , xr).
The action of permutations on such maps, as well as the operadic composition
products, are given by the same pointwise formulas as in the context of sets.

1.1.13. The notion of an algebra over an operad. An algebra over an operad P
(a P-algebra for short) is an object of the base category A ∈ M together with
morphisms

(∗) λ : P(r)⊗A⊗r → A,

given for all r ≥ 0, and such that equivariance, associativity and unit relations,
expressed by the commutativity of the diagrams of Figure 1.7-1.9, hold. In applica-
tions of this definition, we usually say that the morphisms (∗) define the action of
the operad P on the object A ∈ M. We also say that these morphisms (∗) are the
evaluation morphisms attached to the P-algebra A when we consider an object A
equipped with a fixed P-action. In general, we refer to a P-algebra by the expres-
sion of the underlying object A and we use the letter λ as a generic notation for
the morphisms (∗) which define the action of the operad on A. As in the operad
case (see §1.1.1), we simply add the notation of the algebra as a subscript to this
notation λ = λA when we need to specify it.

The P-algebras form a category with, as morphisms, the morphisms of the base
category f : A → B which preserve the P-actions on A and B. In what follows, we
usually convert the notation of the operad P into calligraphic letters P in order to
get the notation of the category of algebras associated to P . If necessary, then we
write P = MP to specify the base category M.

1.1.14. The interpretation of the structure of an algebra over an operad in the
context of a concrete category. In the context of a concrete symmetric monoidal
category, we can also use the pointwise notation p(a1, . . . , ar) ∈ A for the image of
a tensor p⊗ (a1⊗· · ·⊗ar) ∈ P(r)⊗A⊗r under the evaluation morphism §1.1.13(∗).
In the interpretation of operads given in §1.1.4, this evaluation morphism §1.1.13(∗)
is equivalent to the evaluation of abstract operations p = p(x1, . . . , xr) on actual
elements a1, . . . , ar ∈ A.

The unit axiom is equivalent to the pointwise formula 1(a) = a for a ∈ A. The
associativity axiom reads

p(q1, . . . , qr)(a
1
1, . . . , a

n1
1 , . . . , a1r, . . . , a

nr
r ) = p(q1(a

1
1, . . . , a

n1
1 ), . . . , qr(a

1
r, . . . , a

nr
r ))

for all p ∈ P(r), q1 ∈ P(n1), . . . , qr ∈ P(nr) and where aji ∈ A. The equivariance
axiom reads

sp(a1, . . . , ar) = p(as(1), . . . , as(r)),

for all p ∈ P(r) and a1, . . . , ar ∈ A.
The graphical representation of §1.1.5 can also be applied to depict the action

of operads on algebras. In short, we mark the ingoing edges of our boxes with
algebra elements a1, . . . , ar ∈ A (which we take as inputs for the operation repre-
sented by the box) and we mark the outgoing edge with the result of the operation
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P(r)⊗A⊗r
s⊗id

id ⊗s∗ �

P(r)⊗A⊗r

λ

P(r)⊗A⊗r

λ
A

Figure 1.7. The equiv-
ariance axiom for algebras
over an operad, which is
required to hold for every
arity r ≥ 0, and for all per-
mutations s ∈ Σr.

1⊗A
η⊗id

�

P(1)⊗A

λ

A

Figure 1.8. The unit axiom
for algebras over an operad.

(P(r) ⊗ P(n1)⊗···⊗P(nr)) ⊗ A⊗n �

μ⊗id⊗n

P(r) ⊗ (P(n1)⊗A⊗n1 )⊗···⊗(P(nr)⊗A⊗nr )

id ⊗λ⊗···⊗λ

P(n1+···+nr) ⊗ A⊗n

λ

P(r) ⊗ A⊗r

λ

A

Figure 1.9. The associativity axiom for algebras over an operad,
which is required to hold for all r ≥ 0, n1, . . . , nr ≥ 0, and where
we set n = n1 + · · ·+ nr.

b = p(a1, . . . , ar). Thus, we get the following picture:
a1 ···

···
ar

p

b

.

In the context of a closed monoidal category, the morphisms §1.1.13(∗), which
define the action of an operad P on an object A ∈ M, are equivalent to morphisms

φ : P(r) → HomM(A⊗r, A)

by adjunction, for all r ≥ 0. The equivariance, unit and associativity axioms of
operad actions in §1.1.13 are equivalent to the observation that these morphisms
define an operad morphism from P towards the endomorphism operad associated
to A. Hence, we have the following statement:

Proposition 1.1.15. Providing an object A ∈ M with the structure of an
algebra over an operad P amounts to giving an operad morphism φ : P → EndA,
where we consider the endomorphism operad of our object EndA. �

The evaluation morphisms ε : HomM(A⊗r, A) ⊗ A⊗r → A of the hom-objects
HomM(A⊗r, A) actually give an action of the endomorphism operad EndA on A.
In the equivalence of Proposition 1.1.15, this action corresponds to the identity
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morphism id : EndA → EndA. The assertion of the proposition can therefore
be interpreted as the claim that the endomorphism operad EndA represents the
universal operad which acts on A in the category M.

In the context of a concrete symmetric monoidal category, the morphism φ :
P → EndA associates a homomorphism p : A⊗r → A to any operation p ∈ P(r).
In the formalism of §1.1.14, we are simply considering the map p : (a1, . . . , ar) �→
p(a1, . . . , ar) associated to a fixed element p ∈ P(r). The mapping φ is usually
omitted in the notation of that map since the expression p : A⊗r → A indicates
that we consider a map associated to p ∈ P(r) and not the abstract operation
itself p = p(x1, . . . , xr).

1.1.16. Examples of operads associated to basic algebraic structures in sets. We
will prove that many usual algebraic structures, including associative algebras and
commutative algebras, are governed by operads. The associative operad, the operad
which we associate to the category of associative algebras, will be denoted by As.
The commutative operad, the operad which we associate to the category of (asso-
ciative and) commutative algebras, will be denoted by Com. In the context of sets,
we also have identities Π = As and Γ = Com, where we consider the permutation
operad Π of Proposition 1.1.9 and the one-point set operad Γ of Proposition 1.1.10.
(We give a first proof of these relations in Proposition 1.1.17-1.1.18.)

In general, we do not assume that an algebra is equipped with a unit (unless we
explicitly assert the contrary) and we accordingly use the notation As (respectively
Com) for the version of the associative (respectively, commutative) operad which
governs the category of associative (respectively, commutative) algebras without
unit. To refer to the operads governing algebras with unit, we add a subscript +
to the notation and we say that we deal with a unitary version of the operad. The
connection between the operads governing the unitary and the non-unitary version
of a structure is outlined in §§1.1.19-1.1.20, as a preparation for a more detailed
study, which we address in §2.2. Simply mention for the moment that the operads
As and As+ agree in arity r > 0, but differ in arity r = 0, where we have As(0) = ∅

(the initial object of the base category), in the non-unitary case, whereas we take
As+(0) = 1 (the tensor unit) in the unitary case. We have the same identities in
the case of the commutative operad.

We give a conceptual definition by generators and relations of the associative
operad and of the commutative operad in the next section (see §1.2.6, §1.2.8). We
can also give a direct construction of these operads, which makes sense in any
symmetric monoidal category, by generalizing the definition of the permutation
operad Π of Proposition 1.1.9 and the definition of the one-point set operad Γ of
Proposition 1.1.10. We just explain this correspondence between these operads and
the category of associative (respectively, commutative) algebras in the context of
sets in order to complete the account of this section. We explain the definition
of the operad associated to the category associative (respectively, commutative)
algebras in a category of modules in the next section.

Recall that the (unitary version of the) permutation operad Π is defined by
the symmetric group Π(r) = Σr in each arity r > 0, while the one-point set
operad Γ satisfies Γ (r) = pt for all r > 0. We just take the extra arity zero term
Π+(0) = Γ+(0) = pt when we consider the unitary version of these operads Π+ and
Γ+. In the context of sets, we speak about ‘associative (respectively, commutative)
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monoids ’ rather than about ‘associative (respectively, commutative) algebras’. We
have the following statements:

Proposition 1.1.17. The category of associative monoids with unit is isomor-
phic to the category of algebras over the permutation operad Π+, given in Proposi-
tion 1.1.9, and which is defined by the collection of symmetric groups Π+(r) = Σr

for r ∈ N. The category of associative monoids without unit is isomorphic to the
category of algebras over the operad Π, which we form by removing the term of arity
zero Π+(0) = pt from this operad Π+.

By removing the term of arity 0, we mean, again, that we consider the sub-
operad of the permutation operad such that Π(0) = ∅ and Π(r) = Σr for r > 0.
Thus, this proposition explains the difference, announced in §1.1.16, between the
unitary case, where we consider an operad such that As+(0) = Π+(0) = pt (in the
context of sets), and the non-unitary case, where we take As(0) = ∅.

Proof. Let A be an associative monoid with unit. To a permutation w ∈ Σr,
we can associate the operation w : A×r → A such that w(a1, . . . , ar) = aw(1) · . . . ·
aw(r). In plain terms, this operation is formed by the r-fold product of the sequence
of elements aw(1), . . . , aw(r) in the monoid A. In the case r = 0, we use the unit
morphism η : pt → A (equivalent to an empty product) to define the operation
assigned to the degenerate permutation id0 ∈ Σ0. The verification of the axioms
of §1.1.13 is the matter of an easy understanding exercise.

This process gives a functor from the category of associative monoids with unit
to the category of algebras over the permutation operad.

In the converse direction, when A is an algebra over the permutation op-
erad, we consider the unit operation η : pt → A associated to the degenerate
permutation id0 ∈ Σ0 and the binary operation μ : A × A → A associated to
the identity permutation id2 ∈ Σ2 in arity r = 2. The identity permutation
in arity one 1 = id1 ∈ Σ1 defines the unit of the permutation operad and, as
such, is supposed to act as the identity operation on A. The unit operation
η : pt → A is naturally equivalent to an element e ∈ A which represents the
image of the point pt under η. The identities id2(id0, id1) = id1 = id2(id1, id0)
and id2(id2, id1) = id3 = id2(id1, id2) in the permutation operad are respectively
equivalent to the unit relation μ(e, a) = a = μ(a, e) and to the associativity relation
μ(μ(a1, a2), a3) = μ(a1, μ(a2, a3)) in A. Hence, we have a monoid with unit natu-
rally associated to each algebra over the permutation operad. This correspondence
obviously gives a functor which is strictly inverse to the previously defined functor
from the category associative monoids with unit to the category of algebras over
the permutation operad. This assertion finishes the proof of the first assertion of
the proposition.

The second assertion follows from the same verification (we simply forget about
the degenerate permutation id0 which corresponds to the unit operation η : pt → A
in our arguments). �

Proposition 1.1.18. The category of commutative monoids with unit is iso-
morphic to the category of algebras over the one-point set operad Γ+, given in Propo-
sition 1.1.10, and which is defined by the collection of one-point sets Π+(r) = pt
for r ∈ N. The category of commutative monoids without unit is isomorphic to the
category of algebras over the operad Γ , which we form by removing the term of arity
zero Γ+(0) = pt from this operad Γ+.
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By removing the term of arity 0, we mean, again, that we consider the sub-
operad of the permutation operad such that Γ (0) = ∅ and Γ (r) = pt for r > 0.
Thus, we retrieve the same difference as in Proposition 1.1.17 between the unitary
case, where we consider an operad such that Com+(0) = Γ+(0) = pt , and the
non-unitary case, where we assume Com(0) = ∅.

Proof. The arguments are the same as in the case of algebras over the per-
mutation operad (Proposition 1.1.17). The only difference is the following: the
identity (1 2) pt = pt in the one-point set operad implies, according to the equivari-
ance axiom of operad actions (diagram of Figure 1.7), that the element pt ∈ pt(2)
represents a symmetric operation μ : A×A → A, for any algebra over the one-point
set operad. This explains that the structures associated to the one-point set operad
are commutative. �

1.1.19. Unitary and non-unitary operads. In general, we say that an operad
P+ is unitary when we have P+(0) = 1, the unit object of the ambient symmetric
monoidal category. Thus, we just have P+(0) = pt when we work in the category
of sets M = Set . In the context of a concrete symmetric monoidal category, we
use the notation ∗ ∈ P+(0) for the distinguished arity-zero element of our operad
which we associate to this unit object P+(0) = 1. We also use this mark ∗ in a more
general context to specify the factors P+(0) = 1 occurring in abstract composition
operations (see §2.2.9). We say that an operad P is non-unitary (as opposed to
unitary) when we have P(0) = ∅, where ∅ represents the initial object of our
base category. To be precise, when we use this definition, we assume that the base
category has an initial object such that X ⊗∅ = ∅⊗X = ∅. (These identities are
particular cases of the distributivity relation of the tensor product with respect to
colimits.) In the case where this distribution relation does not hold, we just define
the notion of a non-unitary operad by forgetting about the terms of arity zero in
the definition of §1.1.1. We then use the expression P(0) = ∅ to assert that our
operad is not defined in arity 0.

The operad of unitary associative monoids As+ and the operad of unitary
commutative monoids Com+, which we define by using the identities As+ = Π+

and Com+ = Γ+ in the context of sets, are fundamental examples of unitary operads
(in the category of sets). The operads As = Π and Com = Γ , which we formed by
removing the terms of arity zero from these unitary operads As+ and Com+, are
instances of non-unitary operads.

The terminology ‘unitary operad ’ refers to the observation that the evaluation
morphism of a P+-algebra gives a morphism λ : P+(0) → A, when we consider
the term of arity zero of our operad. If we assume P+(0) = pt (in the point
set context), then this morphism is equivalent to the definition of a distinguished
element in A, which in usual examples (like associative or commutative monoids)
represents a unit of the structure. Because of this interpretation, we also use the
phrase ‘unitary operation’ to refer to the elements of the term of arity zero of an
operad. The non-unitary operads are operads which have no unitary operation.

In principle, our operads are supposed to be unital in the sense that they
are equipped with a unit morphism η : 1 → P(1) (which corresponds to a unit
element 1 ∈ P(1) in the case of a concrete base symmetric monoidal category). This
general assumption has not to be confused with the defining condition P+(0) = 1
of a unitary operad P+. The class of non-unitary operads, similarly, has not to
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be confused with the complement of the class of unitary operads. The unitary
operations p ∈ P+(0) have not to be confused with the unit element 1 ∈ P+(1) too.

In general, we reserve the adjective ‘unital’ to refer to the unit of the compo-
sition structure of an operad (as do many authors). To avoid confusion, we adopt
the word ‘unitary’ to refer to the unit operations which we attach to an algebra and
for the related structures which we get in our operads. Let us mention, however,
that there is no fixed convention in the literature on this subject. (In particular,
the expression ‘unital operad ’ is used in [140] for what we call a unitary operad.)

1.1.20. Unitary extensions of operads. We consider the category formed by the
unitary operads as objects and the operad morphisms φ : P → Q which are the
identity of the unit object 1 in arity zero as morphisms. We adopt the convention to
mark the consideration of fixed terms in operad categories by adding subscripts to
our notation. We therefore use the notation Op∗ for the category of unitary operads.
The subscript ∗ in this expression obviously refers to our notation convention for
the arity zero term of unitary operads in concrete categories.

We also adopt the notation Op∅ for the category formed by the non-unitary
operads of §1.1.19. We then use the lower script ∅ with two meanings. In general,
we just define this category of operads Op∅ by forgetting about arity-zero terms
in the definition of an operad and in the definition of morphisms. We then write
P(0) = ∅ to assert that our objects P ∈ Op∅ are not defined in arity 0. If the
tensor product of the base category distributes over colimits (as we assume all
through this chapter), then we identify the category of non-unitary operads with
the subcategory formed by the operads P such that P(0) = ∅, where we now
use the notation ∅ to refer to the initial object of the base category M. Note
that a morphism φ : P(0) → Q(0) is automatically the identity when we have
P(0) = Q(0) = ∅.

We say that a non-unitary operad P admits a unitary extension when we have
a unitary operad P+ which agrees with P in arity r > 0 and of which composition
operations extend the composition operations of P . If the tensor product of the base
category distributes over colimits, then this condition implies that the canonical
embedding i+ : P → P+ defines a morphism in the category of operads. We may
write Q = P+ to assert that a given operad Q forms a unitary extension of another
given (non-unitary) operad P .

We examine the definition of unitary extensions of operads more thoroughly
in §2.2, after a comprehensive review of the definition of operadic composition
structures which we carry out in §2.1. We immediately see that the underlying
collection of a unitary extension P+ is determined from the associated non-unitary
operad P by the addition of the unit term P+(0) = 1 in arity 0. In §2.2, we will
more precisely explain that the composition structure of a unitary operad P+ can
be determined from the internal composition products of the associated non-unitary
operad P and from extra operations which reflect composition products with the
additional term of arity zero in the unitary extension but which we can still form
inside the non-unitary part of our operad.

1.1.21. Connected operads. In subsequent constructions, we have to consider
non-unitary operads P which satisfy the relation P(1) = 1 in addition to P(0) = ∅.
We say that the operad P is connected (or that P forms a connected operad) when
these conditions are satisfied. We adopt the notation Op∅1 (with the subscripts
indicating the first terms of our operads) for the category of connected operads,
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which we can regard as a full subcategory of the category of non-unitary operads
Op∅ (observe that the preservation of operadic unit implies that any morphism of
connected operads is the identity of the unit object in arity one).

We similarly consider operads P+ which are unitary in the sense of §1.1.19
and satisfy P+(1) = 1. We then say that the operad P+ is connected as a unitary
operad (or that P+ forms a connected unitary operad). We use the notation Op∗1 ⊂
Op∗ for the full subcategory of the category of unitary operads generated by the
connected unitary operads. We mostly deal with non-unitary operads in what
follows. Therefore we generally use the short name ‘connected operad ’ for the
category of connected non-unitary operads, while we keep the full name ‘connected
unitary operads ’ when we deal with unitary operads. To give basic examples, we
immediately see that the non-unitary associative operad As and the non-unitary
commutative operad Com are instances of connected operads, whereas the unitary
version of these operads As+ and Com+ are connected as unitary operads.

We go back to the definition of connected operads at the end of the next section.

1.2. Categorical constructions for operads

In this section, we explain the definition of free objects in the category of oper-
ads and the definition of operads by generators and relations. We also examine the
application of usual categorical constructions, like colimits and limits, to operads.

For these purposes, we naturally have to consider the structure, underlying an
operad, which is formed by a sequence M = {M(r), r ∈ N} whose terms M(r) are
objects of the base category equipped with an action of the symmetric groups Σr.
We call this structure a symmetric sequence. We also adopt the notation Seq to
refer to the category formed by these objects and where the morphisms f : M → N
obviously consist of sequences of morphisms in the base category f : M(r) → N(r),
r ∈ N, which commute with the action of symmetric groups.

We adopt the notation Σ (with no decoration) to refer the category which has
the standard finite ordered sets n = {1 < · · · < n} as objects and whose morphism
sets are defined by MorΣ(n, n) = Σn for n ∈ N and MorΣ(m, n) = ∅ when m �= n.
The category of symmetric sequences is identified with the category of diagrams
associated to this small category Σ. We may also use the phrase ‘Σ-sequence’
(rather than the name ‘symmetric sequence’ in plain words) to refer to the objects
of this category. In this terminology, the word ‘sequence’ just refers to the sequence
of the finite ordered sets n = {1 < · · · < n}, n ∈ N, which shapes the underlying
collection of our objects. We adopt similar conventions for variants of the category
of symmetric sequences which we introduce later on.

We have an obvious forgetful functor ω : Op → Seq from the category of operads
Op to the category of symmetric sequences Seq . We have the following theorem:

Theorem 1.2.1. The forgetful functor ω : Op → Seq, from the category of
operads to the category of symmetric sequences, has a left adjoint Θ : Seq → Op,
which maps any symmetric sequence M ∈ Seq to an associated free object in the
category of operads Θ(M) ∈ Op.
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Explanations. We explain the relationship between the definition of this
statement and the usual definition of free objects (in terms of universal proper-
ties in categories) in the next proposition. We only explain the main ideas of our
construction for the moment. We give more details on the proof of this theorem
in §A.3. Intuitively, the free operad is the structure formed by all formal operadic
composites of generating elements ξ ∈ M(n) with no relation between them apart
from the universal relations which can be deduced from the axioms of operads.

To make the definition of the free operad explicit, we need a definition of the
composition structure of an operad in terms of the partial composition operations
of §1.1.4. In the construction of §A.3, we actually deal with a treewise represen-
tation of operadic composites which reflects the relations between these partial
composition operations. The idea is that the level structures, which we need in the
treewise representation of the full composition products of operads, can be forgot-
ten when we depict elements of the free operad, because the unit and associativity
relations of Figure 1.5-1.6 imply that the multi-fold composition products associ-
ated to different choices of level structure determine the same composite element
in any operad.

To give a simple example, the multiple partial composite p = (1 5) · (((x◦1 y)◦4
z) ◦3 t) such that x ∈ M(2), y ∈ M(3), z ∈ M(2), t ∈ M(2), and where we also
consider an action of the transposition (1 5) ∈ Σ6, defines an element of the free
operad Θ(M) which we represent by the following picture:

(∗)

3 4

5 2 t 1 6

y z

x

0

.

This treewise picture elaborates on a representation of partial composites which we
introduce in §2.1.

For the moment, we can justify this picture by considering the formula p =
(1 5) · x(y, 1)(1, 1, 1, z)(1, 1, t, 1, 1) which arises from the definition of partial com-
position operations in §1.1.4. The element p can also be determined by a 3-
fold composition product p = (1 5) · x(y, z)(1, 1, t, 1, 1), or equivalently, by p =
(1 5) · x(y, 1)(1, 1, t, z). Each formula actually arises from the choice of a particular
level structure on our tree representation. For instance, we get the following picture
for our first decomposition formula:

p = (1 5) · x(y, 1)(1, 1, 1, z)(1, 1, t, 1, 1) =

5 2 3 4 1 6

1 1 t 1 1

1 1 1 z

y 1

x

0

,
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but we may also write:

p = (1 5) · x(y, z)(1, 1, t, 1, 1) =

5 2 3 4 1 6

1 1 t 1 1

y z

x

0

= (1 5) · x(y, 1)(1, 1, t, z) =

5 2 3 4 1 6

1 1 t z

y 1

x

0

= . . .

by using our other expressions of this element p. (The factors 1 represent operadic
units in all cases.) The identity between these representations follows (non trivially)
from repeated applications of the unit and associativity relations of Figure 1.5-1.6.

In §A, we explicitly define the component of arity r of the free operad Θ(M) as
a colimit

(1) Θ(M)(r) = colim
T∈Tree(r)

M(T)

which ranges over a category of trees with r ingoing edges Tree(r) and where M(T)
denotes a tensor product, along the vertex set of a tree T, of components of the
symmetric sequence M. We use these treewise tensor products M(T) to formal-
ize the general composition schemes that occur in an operad, as in our previous
example (∗).

By definition of an adjunction, the free operad is characterized by the existence
of a functorial bijection

(2) MorOp(Θ(M),P) � MorSeq(M,P),

which holds for any pair (M,P) such that M ∈ Seq and P ∈ Op. Together with
this adjunction relation, we have:

– a morphism of symmetric sequences ι : M → Θ(M), the unit of the ad-
junction, naturally associated to any M ∈ Seq , which corresponds to the
identity of the free operad id : Θ(M) → Θ(M) under our bijection (2);

– an operad morphism λ : Θ(P) → P , called the adjunction augmentation,
naturally associated to any operad P ∈ Op, and which, under our bijec-
tion (2), corresponds to the identity of the operad P , viewed as an object
of the category of symmetric sequences.

In the above expansion (1), the adjunction augmentation λ : Θ(P) → P is given
termwise by a morphism λT : P(T) → P(r) defined on each treewise tensor prod-
uct P(T), T ∈ Tree(r), and for any r ∈ N. We refer to these morphisms as the
treewise composition operations (or as the treewise composition products) associated
to our operad P. Intuitively, the morphism λT : P(T) → P(r) maps the formal op-
eradic composites which span the treewise tensor product P(T) to their evaluation
in P . �
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In §A.3, we give a direct construction of the free operad Θ(M) and of the
morphism ι : M → Θ(M). We prove that the obtained object fulfills the required
adjunction relation of free operads in a second step. We define our adjunction
correspondence (2) by associating the composite morphism φι ∈ MorSeq(M,P) to
any operad morphism φ ∈ MorOp(Θ(M),P) and the proof that this correspondence
defines a bijection reduces to the following statement:

Proposition 1.2.2. Any morphism of symmetric sequences f : M → P, where
P is an operad, admits a unique factorization

M
f

ι

P

Θ(M)

∃!φf

such that φf is an operad morphism.

This proposition, proved in §A.3, expresses the adjunction relation of Theo-
rem 1.2.1 in terms of an equivalent universal property which is usually given as
the definition of a free object in the literature (we refer to [130, §IV.1] for the
relationship between adjunctions and universals).

1.2.3. The unit operad. The purpose of the next paragraphs is to examine the
definition of colimits and limits in the context of operads.

To start with, we consider the symmetric sequence such that

I (r) =

{
1, if r = 1,

∅, otherwise,

and whose terms reduce to a unit object 1 in arity r = 1. This symmetric sequence
inherits an obvious operad structure, where the unit morphism η : 1 → I (1) is the
identity morphism of the unit object 1 and the composition products are forced by
the unit axiom of Figure 1.2.

For any operad P , we have one and only one operad morphism from I to P ,

which is simply given by the unit morphism of our operad in arity one I (1) = 1
η−→

P(1). (The definition of this morphism is forced by the preservation of operad
units.) Thus, the object I , which we call the unit operad in what follows, defines
the initial object of the category of operads Op. In general, we use the same letter
η as in our notation of the unit morphism of an operad η : 1 → P(1) for this initial
morphism η : I → P .

The category of operads has a terminal object too, which is identified with
the constant operad such that ∗(r) = ∗ for any arity r ∈ N, where ∗ denotes the
terminal object of our base category M.

The category of symmetric sequences, like any category of diagrams, has col-
imits and limits of any kind, which are formed termwise in the base category. In
the context of operads, we have the following general proposition:

Proposition 1.2.4.
(a) The forgetful functor from operads to symmetric sequences creates all small

limits, the filtered colimits, and the coequalizers which are reflexive in the category
of symmetric sequences.
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(b) The category of operads admits coproducts too and, as a consequence, all
small colimits, though the forgetful functor from operads to symmetric sequences
does not preserve colimits in general.

We refer to the appendix section §1.4 for a reminder on filtered colimits and
reflexive coequalizers.

Proof. Let {Pα, α ∈ I} be any diagram in the category of operads. The
collection

(lim
α∈I

Pα)(r) = lim
α∈I

Pα(r),

defined by the limit of the diagrams {Pα(r), α ∈ I} in the base category M, for
each arity r ∈ N, inherits a natural operadic composition product

(lim
α∈I

Pα(r))⊗ (lim
α∈I

Pα(n1))⊗ · · · ⊗ (lim
α∈I

Pα(nr)) → lim
α∈I

Pα(n1 + · · ·+ nr),

for any r ≥ 0 and n1, . . . , nr ≥ 0, which is given by the composite of the morphism

lim
α∈I

(Pα(r)⊗ Pα(n1)⊗ · · · ⊗ Pα(nr)) → lim
α∈I

Pα(n1 + · · ·+ nr),

induced by the composition products of the operads Pα, with the natural morphism

(lim
α∈I

Pα(r))⊗ (lim
α∈I

Pα(n1))⊗ · · · ⊗ (lim
α∈I

Pα(nr))

→ lim
α∈I

(Pα(r)⊗ Pα(n1)⊗ · · · ⊗ Pα(nr)),

which we deduce from the universal property of limits. The unit morphisms of our
operads η : 1 → Pα(1) induce a unit morphism on the limit too, and we readily
deduce from the uniqueness condition in the universal property of limits that these
structure morphisms on limα∈I Pα fulfill the axioms of operads. We also easily check
that this operad, which we form by the aritywise limit of our objects Pα, represents
the limit of the diagram {Pα, α ∈ I} in the category of operads. The requirement
that the morphisms P → Pα in the definition of the object P = limα∈I Pα preserve
operad structures clearly forces this definition of the structure of our operad P . In
this sense, we obtain that the forgetful functor ω : Op → Seq creates our limit in
the category of operads (see [130] for the definition of this concept of creation).

In the case of a colimit, we can not use the above construction to provide the
aritywise colimit of our diagram of operads

(colim
α∈I

Pα)(r) = colim
α∈I

Pα(r)

with an operadic composition structure in general, because the universal morphisms
which we may deduce from the definition of a colimit go in the wrong direction:

(colim
α∈I

Pα(r))⊗ (colim
α∈I

Pα(n1))⊗ · · · ⊗ (colim
α∈I

Pα(nr))

(∗)←−− colim
α∈I

(Pα(r)⊗ Pα(n1)⊗ · · · ⊗ Pα(nr)).

Nevertheless, the results of Proposition 1.4.2 and Proposition 1.4.4 in the appen-
dix section §1.4 imply that this morphism is an isomorphism when the diagrams
{Pα(n), α ∈ I} are shaped on a filtered category or when we consider the coequal-
izer of a pair of morphisms which is reflexive in the base category. Hence, in these
situations, we can form natural composition products

(colim
α∈I

Pα(r))⊗ (colim
α∈I

Pα(n1))⊗ · · · ⊗ (colim
α∈I

Pα(nr)) → colim
α∈I

Pα(n1 + · · ·+ nr)
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by taking the composite of the morphisms

colim
α∈I

(Pα(r)⊗ Pα(n1)⊗ · · · ⊗ Pα(nr)) → colim
α∈I

Pα(n1 + · · ·+ nr)

induced by the composition products of the operads Pα with the inverse of the
universal morphism (*). In this situation, we can also take the composite of the
unit morphism η : 1 → Pα(1) of any object Pα in our diagram {Pα, α ∈ I} with the
canonical morphism Pα(1) → colimα∈I Pα(1) corresponding to this object in our
colimit in order to get a unit morphism with values in the object colimα∈I Pα(1).
Let us simply observe that the unit morphism which we deduce from this construc-
tion does not depend on the choice of the term Pα when our colimit is shaped on a
filtered category or when our colimit is the coequalizer of a parallel pair of operad
morphisms. We easily check, again, that these structure morphisms on colimα∈I Pα

fulfill the axioms of operads. We also readily check that this operad, which we form
by the aritywise colimit of our objects Pα, represents the colimit of the diagram
{Pα, α ∈ I} in the category of operads.

To realize a coproduct of a collection of operads Pα, α ∈ I, we form a reflexive
coequalizer of the form

Θ(
∐

α∈I Θ(Pα))
d0

d1

Θ(
∐

α∈I Pα)

s0

Q ,

where the morphisms (d0, d1) are determined on each generating summand Θ(Pα)
of the free operad Q1 = Θ(

∐
α∈I Θ(Pα)) by:

– the morphism Θ(ια) : Θ(Pα) → Θ(
∐

α∈I Pα) induced by the canonical
embedding ια : Pα →

∐
α∈I Pα as regards d0;

– the composite of the adjunction augmentation λ : Θ(Pα) → Pα with the
canonical embedding ια : Pα →

∐
α∈I Pα and the adjunction unit of the

free operad ι :
∐

α∈I Pα → Θ(
∐

α∈I Pα) as regards d1.

The reflection s0 is given by the adjunction unit of the free operad ι : Pα → Θ(Pα)
on each generating summand of Q0 = Θ(

∐
α∈I Pα). By the result established in the

first part of the proposition, the existence of this reflection s0 implies that we can
form the coequalizer coeq(d0, d1) in the category of operads by taking the aritywise
coequalizer of this parallel pair of morphisms in the base category.

By the universal property of sums and free operads, any morphism φf : Q0 → R
with values in an operad R is fully determined by a collection of symmetric sequence
morphisms fα : Pα → R . Moreover, we have φfd0 = φfd1 if and only if the diagram

Θ(Pα)
λ

φfα

Pα

fα

R

commutes for every α, where we consider the operad morphism φfα associated to
fα. This condition is equivalent to the requirement that fα preserves operadic
composites and operadic units, because λ is given by the evaluation of the formal
composition products of the free operad in Pα and maps the unit of the free operad
to the unit of the operad Pα. Hence we have φfd0 = φfd1 if and only if each
fα : Pα → R is an operad morphism, and this result implies that giving an operad
morphism φ̄f : coeq(d0, d1) → R amounts to giving operad morphisms fα : Pα → R ,
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for all α ∈ I. We conclude that our coequalizer Q = coeq(d0, d1) represents the
coproduct of the objects Pα, which therefore exists in the category of operads.

The last assertion of the proposition is an application of the result of Proposi-
tion 1.4.5, in the appendix section 1.4. �

1.2.5. Operads defined by generators and relations. The existence of free objects
and coequalizers enables us to define operads by generators and relations. To start
with, we explain the definition of such constructions in the case where the base
category is the category of sets M = Set .

We start with a symmetric sequence M ∈ Seq , whose elements ξ ∈ M(r) repre-
sent generating operations, and with a collection of pairs (wα

0 , w
α
1 ) ∈ Θ(M)(nα)

×2,
α ∈ I, which we use to define generating relations wα

0 ≡ wα
1 within the free operad

Θ(M).
We set Ξ (n) = {eα, α ∈ I |nα = n}, where each eα denotes an abstract gen-

erating element associated to the indexing variable α ∈ I. Let G be any group.
In what follows, we use the notation K[G], for the free G-object associated to any
object K in a base category C. We generally have K[G] =

∐
g∈G K, where we

take a coproduct of copies of the object K indexed by the elements of our group
G. We just have K[G] = G × K when we work in the category of sets C = Set .
We form the free Σn-set R(n) = Σn × Ξ (n), for each n ∈ N. The collection of
these free Σn-sets defines a symmetric sequence R such that R(n) = Σn×Ξ (n), for
each n ∈ N. We consider the symmetric sequence morphisms ρ0, ρ1 : R ⇒ Θ(M)
such that ρ0(eα) = wα

0 and ρ1(eα) = wα
1 respectively. We form the morphisms of

symmetric sequences δ0, δ1 : M �R → Θ(M) induced by ρ0, ρ1 : R ⇒ Θ(M) on R
and by the universal morphism ι : M → Θ(M) on M. We consider the morphisms of
free operads d0, d1 : Θ(M �R) ⇒ Θ(M) induced by these morphisms δ0 and δ1. We
have an operad morphism in the converse direction s0 : Θ(M) → Θ(M �R), yielded

by the composite M ↪→ M �R
ι−→ Θ(M �R), and such that d0s0 = d1s0 = id .

The coequalizer of this reflexive pair P = coeq(Θ(M �R) ⇒ Θ(M)), created in the
category of sets, defines the operad

P = Θ(M : wα
0 ≡ wα

1 , α ∈ I)

which we associate to the generating symmetric sequence M and to the generating
relations wα

0 ≡ wα
1 , α ∈ I.

Intuitively, we perform the reflexive coequalizer coeq(Θ(M �R)
�

⇒Θ(M)) in the
underlying category of sets by identifying any formal composite which involves a
subfactor of the form wα

0 in the operad Θ(M) with the formal composite which we
obtain by performing the substitution wα

0 �→ wα
1 , and conversely when we have a

formal composite with a subfactor of the form wα
1 .

For an operad morphism φf : Θ(M) → Q, we have:

φfd0 = φfd1

⇔ φfρ0 = φfρ1

⇔ φf (w
α
0 ) = φf (w

α
1 ), ∀α ∈ I .

Hence, defining a morphism φ̄f : P → Q on the operad P = Θ(M : wα
0 ≡ wα

1 , α ∈ I)
amounts to giving a morphism of symmetric collections f : M → Q such that the
extension of this morphism to the free operad φf : Θ(M) → Q maps the relations
wα

0 ≡ wα
1 , α ∈ I, to actual identities in the target operad Q.
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1.2.6. Basic examples of operads in sets. The most classical examples of oper-
ads can actually be defined by a presentation by generators and relations. To give
first examples of application of this process in the context of sets, we make explicit
a definition by generators and relations of the operad governing associative alge-
bras (the associative operad As), and we give a similar description of the operad
governing commutative algebras (the commutative operad Com). We check in the
next proposition that this approach gives the same result as the direct construction
of these operads of the introductory section §1.1. We focus on the definition of
non-unitary operads for the moment. We will devote a subsequent chapter §2 to
the definition of unitary operads (as we explain in §1.2.8).

To give a more intuitive interpretation of our construction, we define the gener-
ating symmetric sequence of our operads M by giving operations p = p(x1, . . . , xn)
which generate the terms of this sequenceM(n) as Σn-sets. We use explicit variables
to specify the arity of generating operations, unless this information has already
been specified by the context. We also use variable permutations to denote oper-
ations which correspond to each other under the action of permutations in M(n),
but this indication may not be sufficient to fully determine the symmetric structure
of our object, which we therefore specify apart in our definition.

We define the associative operad in sets by the presentation:

As = Θ(μ(x1, x2), μ(x2, x1) : μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3))),

where we take a generating operation of arity two μ = μ(x1, x2), on which the
group Σ2 operates freely, together with a single generating relation, given by the
identity of composite operations μ(μ, 1) ≡ μ(1, μ) which expresses the associativity
of our generating operation. We define the commutative operad in sets by a similar
presentation:

Com = Θ(μ(x1, x2) : μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3))),

where we now consider a generating operation of arity two μ = μ(x1, x2) equipped
with a trivial (identical) action of the group Σ2 together with the associativity
relation μ(μ, 1) ≡ μ(1, μ) as generating relation again.

In what follows, we may also use classical algebraic notation μ(x1, x2) = x1x2

for the generating operation of the associative (respectively, commutative) op-
erad. We obviously retrieve the standard expression of the associativity relation
(x1x2)x3 ≡ x1(x2x3) from the operadic identity μ(μ, 1) ≡ μ(1, μ) when we adopt
these notation conventions. We notably use the algebraic formalism when we de-
fine a basis of the components of the associative (respectively, commutative) operad
in §1.2.11.

In §1.1, we used the permutation operad (respectively, the one-point set op-
erad) to give a direct construction of an operad governing associative (respectively,
commutative) algebras. The next proposition establishes the identity between this
construction and the definition by generators and relations of the previous para-
graph:

Proposition 1.2.7.
(a) The associative operad As, such as defined in §1.2.6, satisfies

As(r) =

{
∅, if r = 0,

Σr, otherwise,
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and is isomorphic to the (non-unitary version of the) permutation operad of Propo-
sition 1.1.9.

(b) The commutative operad Com, such as defined in §1.2.6, satisfies

Com(r) =

{
∅, if r = 0,

pt , otherwise,

and is isomorphic to the (non-unitary version of the) one-point set operad of Propo-
sition 1.1.10.

In §1.2.11, we will explain that the permutations w ∈ Σr in the result of this
proposition actually correspond to monomials p(x1, . . . , xr) = xw(1) · . . . ·xw(r) when
we use standard algebraic notation to represent the elements of the associative
operad As (as we briefly explain §1.2.6). Recall that we also use the notation
Π for the (non-unitary version of the) permutation operad of Proposition 1.1.9
and the notation Γ for the (non-unitary version of the) one-point set operad of
Proposition 1.1.10. Thus, this proposition asserts that, in the context of sets, we
have an identity As = Π (respectively, Com = Γ ), where we use the notation As
(respectively, Com) for the operad defined by the presentation of §1.2.6.

Proof. We focus on the example of the associative operad (a) as the case of the
commutative operad (b) follows from similar arguments. We still use the notation
Π for the permutation operad all through this proof. Recall that we consider the
non-unitary version of this operad with the term in arity 0 withdrawn when we use
this notation (as specified in the proposition).

To start with, we observe (as in the proof of Proposition 1.1.17) that the per-
mutation μ = id ∈ Σ2 satisfies the generating relations of the associative operad
As in the permutation operad. Hence, we have a well-defined operad morphism
φ : As → Π which maps the generating operation of As to this permutation. To
prove that this morphism is an isomorphism, we form a morphism in the converse
direction by assigning the composite operation ψ(w) = w · μ(· · · (μ(μ, 1), 1), . . . , 1)
to any w ∈ Σr. We immediately see that we have the identity φψ = id and we
easily check that we have the relation id ≡ ψφ in the operad As. The conclusion
follows. �

1.2.8. The presentation of unitary operads. To define unitary versions of the
commutative operad and of the associative operad, we may simply add a generating
operation e in arity 0 and relations of the form μ(e, 1) = 1 = μ(1, e), which express
the identities of neutral elements, to our presentations. Thus, we may set

As+ = Θ(e, μ(x1, x2), μ(x2, x1) : μ(μ, 1) ≡ μ(1, μ), μ(e, 1) ≡ 1 ≡ μ(1, e)),

Com+ = Θ(e, μ(x1, x2) : μ(μ, 1) ≡ μ(1, μ), μ(e, 1) ≡ 1 ≡ μ(1, e)),

to define these operads. The result of Proposition 1.2.7 also extends to the unitary
version of our operads, so that we have As+(r) = Σr (respectively, Com+(r) = pt),
for all r (including r = 0).

Note however that the unitary operation e is special (at least in our examples).
Indeed, in the outcome of the presentation process, the terms of arity r > 0 of the
operad As+ (respectively, Com+) agree with the terms of the non-unitary operad As
(respectively, Com) which we form by dropping the unitary operation e from our
presentation. In fact, we do not use the general approach of operads defined by
generators and relations for unitary operations. We put these operations apart in
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our constructions. We therefore do not consider the case of unitary operads for the
moment. (We put off this study until §2.)

1.2.9. Operad ideals and presentations of operads in module categories. The
construction of §1.2.5 has an analogue in the context of modules over a ground
ring. We simply have to replace the set Ξ (n) = {eα, α ∈ I |nα = n} by the
associated free module K (n) = k[eα, α ∈ I |nα = n], where k is our ground ring,
and we also define the free G-object associated to a k-module K, where G is any
group, by the direct sum operation K[G] =

⊕
g∈G K.

The purpose of this paragraph is to explain that, in the setting of a category
of modules, we can use an operadic version of the notion of an ideal in order to
give another construction of operads by generators and relations. In the next part
of the book, we apply an extension of this construction in the context of graded
modules. For the moment, we focus on the case of plain modules.

In brief, an ideal of an operad in k-modules P is a collection of submodules
S(n) ⊂ P(n), which are preserved by the action of the symmetric groups on the
components of our operad P(n), and where we have p(q1, . . . , qr) ∈ S(n1+ · · ·+nr),
for any composite of elements p ∈ P(r), q1 ∈ P(n1), . . . , qr ∈ P(nr), as soon as we
have p ∈ S(r) or qi ∈ S(ni) for some i ∈ {1 < · · · < r}. We immediately see that
the collection P / S(n) = P(n)/ S(n), which we obtain by taking the quotient of an
operad P by an ideal S , inherits an operad structure.

To a collection of elements zα ∈ P(nα), α ∈ I, in an operad P , we associate
the symmetric sequence 〈zα, α ∈ I〉 ⊂ P linearly spanned by the composites of the
form p(1, . . . , zα(q1, . . . , qnα

), . . . , 1), where the factors p and q1, . . . , qnα
run over

the whole operad P . We easily check, by using the axioms of operads, that this
symmetric sequence S = 〈zα, α ∈ I〉 forms an ideal in P and is actually the smallest
ideal which contains the elements zα, α ∈ I. We also easily check that an operad
morphism φ : P → Q factors through the quotient P /〈zα, α ∈ I〉 if and only if we
have the relation φ(zα) = 0 in Q, for all α ∈ I. Hence, in the case P = Θ(M),
an operad morphism φ̄f : Θ(M)/〈zα, α ∈ I〉 → Q is uniquely determined by a
morphism of symmetric collections f : M → Q whose extension to the free operad
φf : Θ(M) → Q cancels the generating elements of the ideal zα, α ∈ I. From this
observation, we conclude that, in the module context, we can define operads by
generators and relations as quotients

Θ(M : wα
0 = wα

1 , α ∈ I) = Θ(M)/〈wα
0 − wα

1 , α ∈ I〉,
where we replace our relations by differences before forming our ideal S = 〈wα

0 −
wα

1 , α ∈ I〉.
1.2.10. Basic examples of operads in module categories. We can adapt the con-

struction of §1.2.6 to define the module version of the associative (respectively,
commutative) operad. We simply replace the generating sets of §1.2.6 by associ-
ated free modules (as we explained §1.2.9). We explicitly have:

As = Θ(kμ(x1, x2)⊕ kμ(x2, x1) : μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3))),

Com = Θ(kμ(x1, x2) : μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3))),

where we take the same conventions regarding the notation of generating operations
as in the context of sets. In what follows, we also use the classical algebraic notation
μ(x1, x2) = x1x2 for the generating operation of these operads P = As,Com.

Formally, the generating symmetric sequence of the associative operad is de-
fined by MAs(2) = k[μ(x1, x2), μ(x2, x1)] = k[Σ2] and MAs(n) = 0 for n �= 2. The
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generating symmetric sequence of the commutative operad is defined by MCom(2) =
k[μ(x1, x2)] = k and MCom(n) = 0 for n �= 2. By the observations of §1.2.9, we can
identify the associative operad and the commutative operad with quotients As =
Θ(MAs)/〈μ(μ, 1) − μ(1, μ)〉 and Com = Θ(MCom)/〈μ(μ, 1) − μ(1, μ)〉, where we
consider the ideal generated by the difference z(x1, x2, x3) = μ(μ(x1, x2), x3) −
μ(x1, μ(x2, x3)) to implement the associativity relation.

The next classical example of operad which we consider in this chapter is the
Lie operad, which we define by the presentation

Lie = Θ(kλ(x1, x2) : λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) + λ(λ(x3, x1), x2) ≡ 0),

where we have a single generating operation of arity two λ = λ(x1, x2) equipped
with the action of the symmetric group such that (1 2)λ = −λ. The generat-
ing symmetric sequence of the Lie operad is accordingly defined by MLie(2) =
k[λ(x1, x2)] = k±, where ± refers to a twist of the action of permutations by the
signature, and we take MLie(n) = 0 for n �= 2. We can also realize this operad
as a quotient of the free operad Θ(MLie) by the ideal generated by the element
z(x1, x2, x3) = λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) + λ(λ(x3, x1), x2). The relation
z(x1, x2, x3) ≡ 0 corresponds to the classical Jacobi identity of Lie algebras. In
what follows, we also use the classical Lie bracket notation λ(x1, x2) = [x1, x2] for
our generating operation of the Lie operad λ = λ(x1, x2) ∈ Lie(2).

In Proposition 1.2.7, we established that the non-unitary associative (respec-
tively, commutative) operad in sets is identified with the non-unitary version of the
permutation (respectively, one-point set) operad. In a subsequent chapter (§3.1),
we will explain that the free k-module functor k[−] : Set → Mod induces a functor
on operads and we can use this process to associate an operad in k-modules to any
operad in sets. We can easily adapt the arguments of Proposition 1.2.7 to identify
the operad As (respectively, Com) given by our presentation by generators and re-
lations in the category of k-modules with the image of the non-unitary permutation
(respectively, one-point set) operad under this functor k[−]. Hence, we have the
identity:

As(r) =

{
0, if r = 0,

k[Σr], otherwise,

for the associative operad in the category of k-modules, and the identity:

Com(r) =

{
0, if r = 0,

k, otherwise,

for the commutative operad in the category of k-modules.
1.2.11. The underlying symmetric sequence of classical operads. In this para-

graph, we revisit the correspondence between operad elements and abstract opera-
tions in the module context, and for the associative, commutative and Lie operads
P = As,Com, Lie. To simplify, we still focus on the case of the non-unitary version
of the associative and commutative operads P = As,Com. We have P(0) = 0 for
all these operads P = As,Com, Lie and we therefore focus on the terms of arity
r > 0 of our objects in what follows. This vanishing relation P(0) = 0 actually
follows from the restriction of the generating operations to terms of arity r > 0 in
our presentation of these operads.

In the case of the associative operad As, an element p(x1, . . . , xr) ∈ As(r) is
obtained by a multiple composition of an associative product μ(x1, x2) = x1x2
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together with an appropriate shift of the variable indices which ensures that each
variable xi occurs once and only once in the expression of this operation p =
p(x1, . . . , xr). Hence, the term of arity r of the associative operad As(r) is identified
with the module spanned by the monomials p(x1, . . . , xr) on r non-commutative
variables (x1, . . . , xr) which have degree one with respect to each variable. In
standard algebraic notation, such a monomial is written p(x1, . . . , xr) = xi1 · . . . ·
xir , and the degree requirement is equivalent to the assumption that the sequence
(i1, . . . , ir) forms a permutation of (1, . . . , r). Hence, we have the identity:

(1) As(r) =
⊕
s∈Σr

kxs(1) · . . . · xs(r) = k[Σr], for all r > 0,

and we retrieve the observation that As(r) is the regular representation of the
symmetric group Σr from this expression.

The term of arity r of the commutative operad Com(r) is similarly identi-
fied with the module spanned by the operations p = p(x1, . . . , xr) which form a
monomial on r commutative variables (x1, . . . , xr) and which have degree one with
respect to each of these variables (x1, . . . , xr). In standard algebraic notation, such
a monomial is written p(x1, . . . , xr) = x1 · . . . · xr. Hence, we have the identity:

(2) Com(r) = k x1 · . . . · xr = k, for all r > 0,

from which we retrieve the identity between Com(r) and the free k-module of rank
one equipped with a trivial action of the symmetric group Σr.

In the case of the Lie operad Lie, we consider the module spanned by all Lie
monomials p(x1, . . . , xr) which have degree one with respect to each variable xi.
The determination of the module structure of Lie(r) is more intricate than in the
case of the commutative and associative operads. Nevertheless, one can prove
(see [155, §5.6.2] for instance) that Lie(r) has a basis of the form:

(3) Lie(r) =
⊕
s∈Σr
s(1)=1

k[· · · [[xs(1), xs(2)], xs(3)], . . . , xs(r)], for all r > 0,

where we use the Lie bracket notation λ(x1, x2) = [x1, x2] for the generating opera-
tion of our operad λ = λ(x1, x2) ∈ Lie(2). This object Lie(r) therefore forms a free
module of rank (r−1)!. In the case Q[e2iπ/r] ⊂ k, we also have an identity between

Lie(r) and the representation Lie(r) = IndΣr

Cr
χ, where Cr denotes the cyclic group

generated by the r-cycle (1 2 · · · r) ∈ Σr and χ denotes the one-dimensional rep-
resentation of Cr associated to the character χ(1 2 · · · r) = e2iπ/r (see [155, §8.2]
for a general reference on this subject).

1.2.12. The example of the Poisson operad. To complete our examples, we ex-
amine the definition of the Poisson operad. (We will see that a graded version of
this operad occurs as the homology of En-operads.) We define this operad by the
presentation

Pois = Θ(kμ(x1, x2)⊕ kλ(x1, x2) :

μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3)),

λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) + λ(λ(x3, x1), x2) ≡ 0,

λ(μ(x1, x2), x3) ≡ μ(λ(x1, x3), x2) + μ(x1, λ(x2, x3))),

where μ = μ(x1, x2) is a symmetric generating operation, fixed by the action of
the transposition (1 2)μ = μ, and λ = λ(x1, x2) is an antisymmetric generating
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operation, which the action of the transposition carries to its opposite (1 2)λ = −λ.
From this construction, we see that the Poisson operad is a combination of the
commutative operad Com = Θ(kμ(x1, x2) : μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3)))
and of the Lie operad Lie = Θ(kλ(x1, x2) : λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) +
λ(λ(x3, x1), x2) ≡ 0), together with an additional distribution relation

λ(μ(x1, x2), x3) ≡ μ(λ(x1, x3), x2) + μ(x1, λ(x2, x3)),

called the Poisson relation, which mixes the operations of both operads. In what
follows, we may still use the standard product notation μ(x1, x2) = x1x2 and the
Lie bracket notation λ(x1, x2) = [x1, x2] for the image of the generating operations
of the commutative operad and of the Lie operad in Pois.

The commutative operad (respectively, the Lie operad) can be identified with
the suboperad of the Poisson operad generated by the element μ ∈ Pois(2) (re-
spectively, λ ∈ Pois(2)). The Poisson relation implies that each composite of a
Lie operation with commutative operations (in that order) can be rewritten as a
composite of a commutative operation with Lie operations. One can prove by elab-
orating on this remark that Pois(r) is identified with the k-module spanned by
formal products

p(x1, . . . , xr) = p1(x11, . . . , x1r1) · . . . · pm(xm1, . . . , xmrm),

whose factors pi(xi1, . . . , xiri) run over Lie monomials on ri variables xik, k ∈
{1, . . . , ri}, such that each variable xik occurs once and only once in this Lie mono-
mial pi(xi1, . . . , xiri) and the sets {xi1, . . . , xiri}, i = 1, . . . , r, represent the com-
ponents of a partition of the total set of variables {x1, . . . , xr} of our operation
p = p(x1, . . . , xr).

1.2.13. The case of non-unitary operads and of connected operads. We consider
operads in a general base symmetric monoidal category again. We just assume
that the tensor product of this base category distributes over colimits (as usual
all through this chapter) so that the constructions of this section makes sense.
Recall that a non-unitary operad is an operad P in our base category M such that
P(0) = ∅. Recall also that we use the notation Op∅ for the category of non-unitary
operads (see §1.1.20).

We can easily adapt the definition of free operads in the context of non-unitary
operads. We then consider the category Seq>0 whose objects are the symmetric
sequences M such that M(0) = ∅, where we use the same conventions as in the
context of operads (namely, we use this expression M(0) = ∅ to assert either that
our symmetric sequence is not defined in arity zero, or that the component of arity
zero of our symmetric sequence is the initial object of the base category ∅ ∈ M). We
call non-unitary symmetric sequences the objects of this category Seq>0. We have
an obvious forgetful functor ω : Op∅ → Seq>0 from the category of non-unitary
operads Op∅ to this category of non-unitary symmetric sequences Seq>0.

To be more precise, we used in §1.1.20 that we can identify the category of non-
unitary operads Op∅ with the full subcategory of the category of operads formed
by the objects P ∈ Op whose component of arity zero is defined by the initial object
of our base category P(0) = ∅ (as soon as we assume that the tensor product of our
base category distributes over colimits). We can similarly identify our category of
non-unitary symmetric sequences Seq>0 with the full subcategory of the category
of symmetric sequences formed by the objects M ∈ Seq whose component of arity
zero is defined by the initial object of our base category M(0) = ∅ (in the same
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context as in the case of operads). Our forgetful functor ω : Op∅ → Seq>0 defines
an obvious restriction of the forgetful functor ω : Op → Seq on the category of all
operads Op which we consider in Theorem 1.2.1. We can check (by using the explicit
construction of §A) that the free operad Θ(M) ∈ Op associated to a non-unitary
symmetric sequence M ∈ Seq>0 is non-unitary Θ(M)(0) = ∅. The free operad
functor of Theorem 1.2.1 therefore induces a functor Θ : Seq>0 → Op∅ from the
category of non-unitary symmetric sequences Seq>0 to the category of non-unitary
operads Op∅ and this functor fits in an obvious restriction of the adjunction relation
of Theorem 1.2.1.

Recall that a non-unitary operad P is connected if we have the relation P(1) = 1
in addition to P(0) = ∅. If the base category is pointed, in the sense that initial
and terminal objects coincide in M, then any connected operad P inherits a natural
augmentation ε : P → I , which is given by the identity morphism of the unit
object 1 in arity one and by the terminal morphism on the object P(r) otherwise.
This augmentation obviously defines a morphism in the category of operads, and
accordingly, the unit operad I forms a terminal object in the category of connected
operads in addition to define an initial object. This observation implies that the
category of connected operads is pointed (unlike the whole category of operads)
whenever the base category is so. We need to modify our definitions in order to
give a sense to the notion of a free object in this context. We proceed as follows.

First, to a connected operad P , we associate the symmetric sequence P̄ such
that

P̄(r) =

{
∅, if r = 0, 1,

P(r), otherwise.

We call this symmetric sequence the augmentation ideal of P , because we can iden-
tify this object with the kernel of the augmentation morphism ε : P → I when the
base category is pointed. (Nonetheless, we may consider the symmetric sequence P̄
outside the pointed category context, where the definition of the augmentation
morphism ε : P → I does not make sense.)

Recall that we denote the category of connected operads by Op∅1 and that
we can also identify this category with a full subcategory of the category of non-
unitary operads Op∅. For our purpose, we also consider the category Seq>1 formed
by the symmetric sequences such that M(0) = M(1) = ∅. We call connected
symmetric sequences the objects of this category Seq>1. The mapping ω̄ : P �→ P̄
gives a functor, denoted by ω̄ : Op∅1 → Seq>1, from the category of connected
operads Op∅1 towards the category of connected symmetric sequences Seq>1. Now,
we have the following statement:

Theorem 1.2.14. The free operad Θ(M) associated to a connected symmetric
sequence M ∈ Seq>1 forms a connected (non-unitary) operad and the map Θ : M �→
Θ(M) defines a left adjoint of the functor ω̄ : Op∅1 → Seq>1 which maps any

connected operads P ∈ Op∅1 to its augmentation ideal P̄ ∈ Seq>1.

This theorem, which is essentially a follow-up of Theorem 1.2.1, is formally
established in §A.4. In our account of the construction of free operads, we briefly
explain that the components of the free operad Θ(M) are given by colimits over
tree categories. In the case of a connected sequence M ∈ Seq>1, our expansion has
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a reduced expression of the form:

Θ(M)(r) = colim
T∈T̃ree(r)

M(T),

for each r ∈ N, where we now consider a category T̃ree(r) formed by trees T ∈
T̃ree(r) of which all vertices have at least two ingoing edges (see §A.4). We refer

to this subcategory of trees T̃ree(r) as the category of reduced trees with r ingoing
edges (for short, we also speak about reduced r-trees).

In general, an operad defined by a presentation by generators and relations
P = Θ(M : wα

0 = wα
1 , α ∈ I) is connected (in our sense) if and only if the generating

sequence of this operad M vanishes in arity r = 0, 1 (and hence, is connected as
a symmetric sequence). From this observation, we retrieve that the (non-unitary)
associative operad As is connected, like the (non-unitary) commutative operad Com,
and the Lie operad Lie.

1.2.15. The adjunctions between connected operads, non-unitary operads, and
the category of all operads. Recall that the category of connected operads Op∅1,
which we characterize by P(0) = ∅ and P(1) = 1, forms a full subcategory of the
category of non-unitary operads Op∅.

We easily see that the category embedding ι : Op∅1 ↪→ Op∅ has a right adjoint
τ : Op∅ → Op∅1 which maps any non-unitary operad P ∈ Op∅ to a connected
operad τ P such that τ P(0) = ∅, τ P(1) = 1, and τ P(r) = P(r) for r > 1. We just
use the unit morphism η : 1 → P(1) to restrict the composition products of the
operad P to this object τ P when we deal with composition products which involve
the term of arity one τ P(1) = 1. We accordingly get that this collection τ P forms
a suboperad of P and the proof that this object τ P fits our adjunction relation
between operads and connected operads is immediate.

Recall that the category of non-unitary operads Op∅ is identified with a full
subcategory of general operads Op when the tensor product of the base category
distributes over colimits. In this situation, we also get that the category embedding
ι : Op∅ → Op has a right adjoint which is given by an obvious truncation functor
on the category of operads Op. We use the same notation as in the connected case τ
for this truncation functor from the category of general operads Op to the category
of non-unitary operads Op∅.

From our construction of colimits of operads, we can readily check that:

Proposition 1.2.16. The category embeddings Op∅1 ↪→ Op∅ ↪→ Op create
colimits. �

1.3. Categorical constructions for algebras over operads

In the previous section, we focused on the application of categorical construc-
tions to operads. We now study the applications of such constructions to the
categories of algebras associated to operads. We first explain that the construction
of operads by generators and relations reflects the usual definition of algebras in
terms of generating operations ξ : A⊗r → A and relations.

We also give a version of the categorical constructions of §1.2 (free objects,
colimits and limits) for the categories of algebras associated to operads. We are
precisely going to observe (following [140]) that the categories of algebras associated
to operads are identified with categories of algebras equipped which free objects of
a particular form. By the way, we check that any morphism of operads determine
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adjoint extension and restriction functors between the categories of algebras associ-
ated to our operads. We will see that classical functors which connect the categories
of associative, commutative, and Lie algebras, are identified with functors of this
form.

1.3.1. Basic examples of categories of algebras associated to operads. Recall
(see Proposition 1.1.15) that defining an action of an operad P on an object A ∈ M

amounts to giving an operad morphism φ : P → EndA, where EndA denotes the
endomorphism operad of A. In the case of an operad defined by a presentation by
generators and relations

P = Θ(M : wα
0 = wα

1 , α ∈ I),

we deduce, from the observations of §1.2.5, that such a morphism φf : P → EndA is
uniquely determined by a morphism of symmetric sequences f : M → EndA, which
maps the abstract generating operations ξ ∈ M(r) to actual maps ξ : A⊗r → A
such that the identities wα

0 ≡ wα
1 hold in EndA.

For our basic examples of (non-unitary) operads in the category of k-modules
P = Com,As, Lie, we obtain the following statements:

(a) An algebra over the commutative operad Com is a module A equipped with
a product μ : A⊗A → A, which satisfies the symmetry relation

μ(a1, a2) = μ(a2, a1),

for all a1, a2 ∈ A, and the associativity relation

μ(μ(a1, a2), a3) = μ(a1, μ(a2, a3)),

for all a1, a2, a3 ∈ A.
(b) An algebra over the associative operad As is a module A equipped with a

product μ : A⊗A → A which satisfies the associativity relation

μ(μ(a1, a2), a3) = μ(a1, μ(a2, a3)),

for all a1, a2, a3 ∈ A (but no symmetry requirement).
(c) An algebra over the Lie operad Lie is a module g equipped with an operation

λ : g⊗ g → g which satisfies the antisymmetry relation

λ(x1, x2) = −λ(x2, x1),

for all x1, x2 ∈ g, and the Jacobi identity

λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) + λ(λ(x3, x1), x2) = 0,

for all x1, x2, x3 ∈ g.
We can give a similar description of the category of algebras associated to the
Poisson operad (see §1.2.12).

In characteristic 2, we do not necessarily assume that the generating operation
of a Lie-algebra g satisfies the relation λ(x, x) = 0. To associate a category of
algebras which satisfy this condition to the Lie operad Lie, we have to modify the
definition of an algebra over an operad (see [65, §§1.2.12-1.2.16]).

The result of Proposition 1.1.17-1.1.18 (in the non-unitary context) is equiva-
lent to the combination of the above observations (a-b) with the result of Proposi-
tion 1.2.7.
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1.3.2. The category of algebras associated to an operad and free algebras. Re-
call that the algebras associated to a given operad P form a category P with, as
morphisms, the morphisms of the base category f : A → B which preserve the
P-actions on A and B. We have an obvious forgetful functor ω : P → M from the
category of P-algebras P towards the base category M.

We can form a functor in the converse direction by considering a generalized
symmetric tensor algebra

S(P, X) =

∞∐
n=0

(P(n)⊗X⊗n)Σn
,

for any object X ∈ M, where the notation (−)Σn
refers to the performance of a

coinvariant construction in order to identify the natural action of the symmetric
group Σn on the tensor power X⊗n with the internal Σn-structure of the object
P(n). In the case of a concrete symmetric monoidal category, we can define the
object (P(n) ⊗ X⊗n)Σn

as the quotient of the tensor product P(n) ⊗ X⊗n under
the relations such that:

p⊗ (xs(1) ⊗ · · · ⊗ xs(n)) ≡ s · p⊗ (x1 ⊗ · · · ⊗ xn),

for p ∈ P(n), x1 ⊗ · · · ⊗ xn ∈ X⊗n, and where we assume that s runs over the
symmetric group Σn.

We have natural evaluation morphisms

λ : P(r)⊗ S(P, X)⊗r → S(P, X)

which we define termwise by the morphisms

P(r)⊗ (P(n1)⊗X⊗n1)Σn1
⊗ · · · ⊗ (P(nr)⊗X⊗nr)Σnr

→ (P(n1 + · · ·+ nr)⊗X⊗n1+···+nr)Σn1+···+nr

induced by the composition products of our operad P . The axioms of operads
imply that these morphisms satisfy the equivariance, unit and associativity relations
of §1.1.13. We therefore obtain that the object S(P, X) ∈ M forms a P-algebra,
naturally associated to any objectX ∈ M, so that the mapping S(P) : X �→ S(P, X)
defines a functor S(P) : M → P.

The evaluation morphisms of a P-algebra A induce morphisms λ : (P(n) ⊗
A⊗n)Σn

→ A by equivariance, for all n ≥ 0. We can put these morphisms to-
gether to get a single natural morphism λ : S(P , A) → A defined on the object
S(P, A) =

∐∞
n=0(P(n)⊗ A⊗n)Σn

. From the associativity axiom of operad actions,
we easily check that this morphism λ : S(P, A) → A preserves the P-algebra struc-
tures attached to our objects, and hence, defines a morphism in the category of
P-algebras. In the converse direction, for any object X ∈ M, we have a natural
morphism ι : X → S(P , X) which is given by the composite

X
�−→ 1⊗X

η⊗X−−−→ P(1)⊗X = (P(1)⊗X)Σ1
↪→

∞∐
n=0

(P(n)⊗X⊗n)Σn
,

where η refers to the unit morphism of the operad P .
We have the following statement:

Proposition 1.3.3. The functor S(P) : M → P is left adjoint to the forgetful
functor ω : P → M. The morphism ι : X → S(P , X) (respectively, λ : S(P , A) → A)
defines the unit (respectively, the augmentation) of this adjunction relation.
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Explanations and proof. We aim to prove that we have a natural bijection:

MorP(S(P, X), A) � MorM(X,A),

for any X ∈ M and for any A ∈ P. In one direction, to a morphism of P-algebras
φ : S(P , X) → A we associate the morphism f = φι in the base category. In
the other direction, to a morphism in the base category f : X → A we associate
the morphism φf = λ · S(P, f) in the category of P-algebras. The adjunction
augmentation itself λ : S(P , A) → A is the morphism of P-algebras φid associated
to the identity of A, regarded as an object of the base category M.

By a general result of category theory (see [130, §IV.1]), we just have to check
that the composites

A
ι−→ S(P, A)

λ−→ A and S(P , X)
S(P,ι)−−−−→ S(P,S(P , X))

λ−→ S(P, X)

are both identity morphisms to conclude that our mappings φ �→ φι and f �→ φf

are converse to each other, and hence do give an adjunction bijection. This result
follows from the unit axiom of operad actions as regards the first of our composites
and from the unit axiom of operads as regards the second one. �

The result of Proposition 1.3.3 has, like Theorem 1.2.1, an equivalent for-
mulation in terms of universal properties. From this point of view, the functor
S(P) : M → P represents the mapping which associates a free object in the cate-
gory of P-algebras to any object X of the base category M. We make the universal
property of this free object explicit in the next proposition:

Proposition 1.3.4. Any morphism in the base category f : X → A, where A
is a P-algebra, admits a unique factorization

X
f

ι

A

S(P , X)

∃!φf

such that φf is a morphism of P-algebras.

Explanations. The morphism φf such that φf ι = f represents the morphism
of P-algebras φf which we associate to any given morphism of the base category
f : X → A in the correspondence of Proposition 1.3.3. Thus, the uniqueness of our
factorization is equivalent to the claim that the correspondence of Proposition 1.3.3
defines a bijection (as required to define an adjunction relation). �

1.3.5. Basic examples of free algebras. The aritywise expression of our funda-
mental examples of operads P = Com,As, Lie can be retrieved from the classical
expansions of free objects in the categories of algebras associated to these operads:

(a) The free commutative algebra (without unit) is identified with (the aug-
mentation ideal of) the symmetric algebra

S(K) =
∞⊕

n=1

(K⊗n)Σn

together with the commutative product yielded by the process of tensor concate-
nation. From this statement, we retrieve the identity Com(n) = k of §1.2.11(2).
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(b) The free associative algebra (without unit) is identified with (the augmen-
tation ideal of) the tensor algebra

T(K) =

∞⊕
n=1

K⊗n

together with an associative product defined by the concatenation of tensors. We
can also retrieve the identity As(n) = k[Σn] of §1.2.11(1) from this statement since
we have K⊗n = (k[Σn]⊗K⊗n)Σn

for any n ∈ N.
(c) The structure of free Lie algebras is more intricate. Nevertheless, in char-

acteristic 0, we can apply the Milnor-Moore theorem to identify the free Lie algebra
L(K) with the primitive part PrimT(K) of the (unitary version of the) tensor al-
gebra T(K), which we equip with the shuffle coproduct of tensors (we recall the
definition of these notions of the theory of Hopf algebras with full details in §7.2
and we explain this relation L(K) = P T(K) in Proposition 7.2.6 and in Proposi-
tion 7.2.14). Moreover, we have versions of the Milnor-Moore theorem which enable
us to deduce an expansion of the form

L(K) =
∞⊕

n=1

(Lie(n)⊗K⊗n)Σn

from this relation L(K) = P T(K).
We keep focusing on non-unitary algebras in this paragraph, but the identifi-

cations of (a-b) obviously extend to the unitary setting.
The result of Proposition 1.2.4 (about the definition of limits and colimits in

the category of operads) has the following analogue for the category of algebras
associated to an operad:

Proposition 1.3.6. Let P be any operad.
(a) The forgetful functor from P-algebras to the base category creates all small

limits, the filtered colimits, and the coequalizers which are reflexive in the base
category.

(b) The category of P-algebras admits coproducts too and, as a consequence,
all kinds of small colimits, though the forgetful functor from P-algebras to the base
category does not preserve colimits in general.

Recall that we devote an appendix section §1.4 to a reminder on filtered colimits
and reflexive coequalizers.

Proof. We deduce this result from the same argument lines as in the proof of
Proposition 1.2.4 (see also [66, §3.3] or [156, Proposition 2.3.5] for a detailed proof
of this proposition). �

1.3.7. Restriction functors. If an operad morphism φ : P → Q is given, then
we can define comparison functors that connect the category of P-algebras P and
the category of Q-algebras Q. First, we immediately get that any Q-algebra B
inherits a natural P-algebra structure since the operad P acts on B through the
morphism φ : P → Q. Thus we have a natural functor φ∗ : Q → P, from the
category of Q-algebras Q to the category of P-algebras P. We call this functor
φ∗ the restriction functor associated to our operad morphism φ. The existence of
reflexive coequalizers can be used to define a functor in the converse direction:
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Proposition 1.3.8. The restriction functor φ∗ : Q → P, associated to any
operad morphism φ : P → Q, has a left adjoint φ! : P → Q. We call this functor φ!

the extension functor associated to φ : P → Q.

Proof. Let A ∈ P. Let φ!A be the Q-algebra defined by the reflexive coequal-
izer such that

S(Q,S(P, A))
d0

d1

S(Q, A)

s0

φ!A ,

where:

– the morphism d0 is the morphism of free Q-algebras induced by the ad-
junction augmentation λ : S(P, A) → A associated to the P-algebra A;

– the morphism d1 is induced by the mapping S(φ,A) : S(P , A) → S(Q, A)
which we define by using the functoriality of the generalized symmetric
algebra construction with respect to the coefficients;

– and the reflection s0 is the morphism of free Q-algebras induced by the
universal morphism ι : A → S(P , A) of the free P-algebra S(P, A).

We easily check, by using the universal property of free Q-algebras, that giving
a morphism of Q-algebras g : φ!A → B amounts to giving a morphism in the base
category f : A → B which preserves the action of the operad Q on our objects.
Therefore the mapping φ! : A �→ φ!A defines a left adjoint of the restriction functor
φ∗ : B �→ φ∗B. �

1.3.9. Basic examples of extension and restriction functors. The commutative,
associative and Lie operads are connected by morphisms

Lie
ι−→ As

α−→ Com

which we determine on the generating operations of our operads λ ∈ Lie(2), μ ∈
As(2) and μ ∈ Com(2) by the formulas ι(λ) = μ− (1 2)μ and α(μ) = μ.

The restriction functor α∗ : Com → As is identified with the obvious embedding
of the category of commutative algebras into the category of associative algebras.
The restriction functor ι∗ : As → Lie is identified with the standard functor which
maps an associative algebra A to the Lie algebra ι∗A = A− with the same underly-
ing module as A and the commutator λ(a1, a2) = μ(a1, a2)−μ(a2, a1) = a1a2−a2a1
as Lie bracket [a1, a2] = λ(a1, a2).

The extension functor α! : As → Com, defined as the left adjoint of α∗ : Com →
As, can be identified with the functor which maps an associative algebra A to the
quotient A/〈[A,A]〉, where 〈[A,A]〉 denotes the two-sided ideal of A generated by
the commutators [a1, a2] = λ(a1, a2) = μ(a1, a2) − μ(a2, a1), for a1, a2 ∈ A. The
extension functor ι! : Lie → As , which we define as the left adjoint of the restriction
functor ι∗ : As → Lie, can be identified with the functor which maps a Lie algebra
g to the augmentation ideal Ū(g) of the enveloping algebra U(g) associated to g.
Briefly recall that the enveloping algebra U(g) of a Lie algebra g is the quotient of
the (unitary) tensor algebra T(g) associated to g by the two-sided ideal generated
by the differences a1a2−a2a1− [a1, a2], a1, a2 ∈ g, where μ(a1, a2) = a1a2 refers to
the product of T(g) and λ(a1, a2) = [a1, a2] refers to the internal Lie bracket of our
Lie algebra g (we review this definition with full details in §7.2.9). We easily check
that these functors α! : A �→ A/〈[A,A]〉 and ι! : g �→ Ū(g) satisfy the adjunction
relation of extension functors and hence are isomorphic to the operadic extension
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functors of Proposition 1.3.8 which we associate to our morphisms α : As → Com
and ι : Lie → A.

1.3.10. Algebras over connected operads. The structure of an algebra over the
unit operad I (see §1.2.3) reduces to an identity operation. Hence, the category of
I -algebras is simply nothing but the base category M. In the context of a pointed
category (see §1.2.13), the existence of an augmentation ε : P → I , when P is
a connected operad, implies that any object X ∈ M inherits a P-algebra struc-
ture, which is simply given by a trivial action in arity r > 1. In the context of
k-modules, the application of this construction to the classical examples of operads
P = Com,As, Lie identifies a module with an abelian commutative algebra (respec-
tively, an abelian associative algebra, an abelian Lie algebra) on which the structure
product (respectively, Lie bracket) is identically zero.

The extension functor ε! : P → M associated to an augmentation ε : P → I is
identified with an indecomposable functor which, in the module context, just kills
the image of the operations b = p(a1, . . . , ar) such that r > 1 in our P-algebra A. In
the case P = As (and in the case P = Com similarly), this indecomposable functor
ε! : As → M can be defined by the standard construction ε!A = A/A2 where A2

refers to the submodule of A spanned by the products μ(a1, a2) = a1a2 ∈ A, for
a1, a2 ∈ A. In the case P = Lie, we obtain ε! g = g / Γ2(g), where Γ2(g) refers to the
submodule of g spanned by the Lie brackets λ(a1, a2) = [a1, a2] ∈ g, for a1, a2 ∈ g.

1.3.11. Further remarks: operads and monads. The use of the functor S(P) in
operad theory goes back to [140], where it is observed that (a pointed space variant
of) this functor S(P) defines a monad on the base category. The category of P-
algebras is defined in terms of this monad S(P) in [140]. This definition is formally
equivalent to the definition of §1.1.13 where we just consider (in the point of view
of [140]) an expansion of the action of the monad S(P) on A. In the approach
of [140], the result of Proposition 1.3.3 is a consequence of a general statement
about algebras over monads (see [130, §VI.2]).

In the point of view of [140], the operads are exactly the symmetric sequences
P such that S(P) inherits a monad structure. In fact, the definition of S(M) : X �→
S(M, X) as a functor from the base category to itself makes sense for any symmetric
collection M and not only for operads. The category of symmetric sequence comes
also equipped with structures, like a composition product, that reflect pointwise
operations on functors (see [66] for an overall reference on this subject). These
observations are the source of abstract categorical definitions for the notion of an
operad. These definitions are not used in this book, but we can give a sketch of the
ideas.

The category of functors F : M → M is equipped with a natural monoidal
structure, defined by the pointwise composition operation, and monads can be
defined abstractly as monoid objects in that category. In parallel, we can interpret
the definition of the composition structure of an operad in §1.1.1 as the definition of
an abstract monoid structure in the category of symmetric sequences with respect
to the composition operation reflecting the composition structure of functors. In
that respect, the correspondence between operads and monads follows from the
relationship between the composition of symmetric sequences and the composition
of functors (we refer to [164] for the introduction of this idea, to the book [66]
for a general study, based on this definition, of the category of operads and of the
categories of algebras associated operads).
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This definition of operads in terms of the correspondence with generalized sym-
metric algebra functors supposes that the tensor product of the base category dis-
tributes over colimits. But we consider categories for which this colimit requirement
is not valid soon, and therefore we can not rely on this approach in what follows.

1.4. Appendix: Filtered colimits and reflexive coequalizers

The existence of colimits in the category of operads (and in categories of alge-
bras over an operad) relies on the existence of particular colimits (filtered colimits
and reflexive coequalizers), which we create in the base category. The purpose of
this appendix section is to recall the definition of these fundamental colimits in a
general context. For applications to operads, we also study the image of filtered
colimits and reflexive coequalizers under a multifunctor T : C×r → C, where C

is any category, with the example of the r-fold tensor products T (X1, . . . , Xr) =
X1 ⊗ · · · ⊗Xr in mind.

1.4.1. Filtered colimits. Recall (see [130, §IX.1]) that a small category I is fil-
tered when:

(a) For any pair of objects α, β ∈ I, we have morphisms

α u

γ

β v

which meet at the same target object γ in I.
(b) For any pair of parallel morphisms u, v : α ⇒ β, we have a coequalizing

morphism

α
u

v
β

t
γ

such that tu = tv in I.
We say that a colimit colimα∈I Xα is filtered when the indexing category I of our
diagram Xα is filtered.

We have the following observation:

Proposition 1.4.2. Suppose that the multifunctor T : C×r → C preserves
filtered colimits on each input in the sense that the natural morphism

colim
α∈I

T (X1, . . . , Xk
α, . . . , X

r) → T (X1, . . . , colim
α∈I

Xk
α, . . . , X

r)

is an isomorphism for any diagram {Xk
α, α ∈ I} over a filtered category I and for

all Xi ∈ C, i = 1, . . . , k̂, . . . , r. Then the functor T : C×r → C preserves filtered
colimits on the product category C×r in the sense that the natural morphism

colim
α∈I

T (X1
α, . . . , X

r
α) → T (colim

α∈I
X1

α, . . . , colim
α∈I

Xr
α)

is an isomorphism for any collection of diagrams {Xi
α, α ∈ I}, i = 1, . . . , r, over

the same given filtered category I.

Proof. This proposition mainly follows from the observation that the diagonal
functor Δ : I → I×r is final when I is filtered and that a pullback along this
functor does not change the value of a colimit (see [130, §IX.3] for the definition
of the notion of a final functor). We accordingly have colimα∈I T (X

1
α, . . . , X

r
α) �

colim(α1,...,αr)∈I×r T (X1
α1
, . . . , Xr

αr
) and our claim follows from the assumption that

our multifunctor preserves filtered colimits on each input and from the usual Fubini
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decomposition for colimits over a cartesian product of categories. We refer to [66,
Proposition 1.2.2] or [156, Lemma 2.3.2] for further details on this proposition. �

1.4.3. Reflexive coequalizers. Recall that a coequalizer is the colimit of a dia-
gram formed by a parallel pair of morphisms d0, d1 : X1 ⇒ X0. We use the notation
coeq(d0, d1 : X1 ⇒ X0) for this kind of colimit.

In many examples, a parallel pair of morphisms is given together with an extra
morphism s0 : X0 → X1 such that d0s0 = id = d1s0. In this situation, we say that
the object C = coeq(d0, d1 : X1 ⇒ X0) forms a reflexive coequalizer of the pair
d0, d1 : X1 ⇒ X0. We refer to the morphism s0 : X0 → X1 as the reflection of the
parallel pair d0, d1 : X1 ⇒ X0. We also write

C = coeq(X1

�

⇒X0)

in order to stress the existence of this reflection s0 : X0 → X1 when we form our
coequalizer. Note that the addition of a reflection s0 : X0 → X1 to the diagram of
a parallel pair X1 ⇒ X0 does not change the result of colimits. We explicitly have

colim(X1

�

⇒X0) = coeq(d0, d1 : X1 ⇒ X0) for any reflection choice.
The significance of reflexive coequalizers lies in the following stability assertion:

Proposition 1.4.4. Suppose that the multifunctor T : C×r → C preserves
reflexive coequalizers on each input in the sense that the natural morphism

coeq(T (X1, . . . , Xk
1 , . . . , X

r)
�

⇒T (X1, . . . , Xk
0 , . . . , X

r))

→ T (X1, . . . , coeq(Xk
1

�

⇒Xk
0 ), . . . , X

r)

is an isomorphism for any reflexive diagram {Xk
1

�

⇒Xk
0 } and for all Xi ∈ C, i =

1, . . . , k̂, . . . , r. Then the functor T : C×r → C preserves reflexive coequalizers on
the product category C×r in the sense that the natural morphism

coeq(T (X1
1 , . . . , X

r
1 )

�

⇒T (X1
0 , . . . , X

r
0 ))

→ T (coeq(X1
1

�

⇒X1
0 ), . . . , coeq(X

r
1

�

⇒Xr
0 ))

is an isomorphism for any collection of reflexive diagrams {Xi
1

�

⇒Xi
0}, i = 1, . . . , r,

in the base category C.

Proof. Exercise or see [66, Proposition 1.2.1] or [156, Lemma 2.3.2]. In fact,
we may establish this proposition (see §1.4.6) by using the same argument line
as in the proof of Proposition 1.4.2 after observing that reflexive coequalizers are
examples of colimits shaped on a category I such that the diagonal functor Δ : I →
I×r is final (we go back to this observation in §1.4.6). �

The fundamental role of reflexive coequalizers is also asserted by the following
proposition:

Proposition 1.4.5. If coproducts and reflexive coequalizers exist in a category
C, then so does any kind of small colimit in C.

Proof. Exercise (see also [30, §2] and [31, §4.3]). �
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This proposition is applied in §§1.2-1.3 in order to prove the existence of colimits
(of any shape) in the category of operads and in the categories of algebras associated
to an operad.

1.4.6. Remark. Filtered colimits and reflexive coequalizers are both instances
of sifted colimits (see [2]), a class of colimits which was studied by P. Gabriel and
F. Ulmer in [71] (without being named) and by C. Lair independently in [111] (who
used the adjective “tamisante”). In short, we say that a small category I is sifted
when:

(a) For any pair of objects α, β ∈ I, we have morphisms

α u

γ

β v

which meet at the same target object γ in I (as in the definition of a
filtered category).

(b) Every pair of zigzags as in (a) can be connected by a chain of zigzags of
the same shape, so that we have a commutative diagram

α

γ · · · · · γ′

β

in I.
The sifted colimits are the colimits of diagrams shaped on a sifted category.

The above conditions are equivalent to the requirement that the diagonal func-
tor Δ : I → I× I is final in the sense of [130, §IX.3]. The statements of Proposi-
tion 1.4.2-1.4.4 actually extend to all kind of colimits shaped on a sifted category.



CHAPTER 2

The Definition of Operadic Composition
Structures Revisited

In the introductory chapter §1, we gave a first definition of the notion of an
operad, which we used to explain the relationship between operads and algebras.
In this second chapter, we go deeper into the study of the internal structures of
operads themselves.

The first outcome of this second examination, which we explain in the first
section of the chapter (§2.1), is a new definition, in terms of partial composition
operations, of the composition structure of an operad. The equivalence between
May’s definition [140], considered in §1, and this definition in terms of partial com-
position operations is due to Martin Markl [135, 136] and is also used in the work
of Ginzburg–Kapranov on the Koszul duality of operads [78]. In what follows,
we mostly use the definition of operads in terms of partial composition opera-
tions, which is more appropriate as soon as we study operads themselves, while
the definition given in the previous chapter is generally better suited for the study
of algebras over operads. To be specific, the partial composition operations have
the important feature to satisfy homogeneous (quadratic) relations, unlike the full
composition products considered in the definition of §1. The existence of this ho-
mogeneous structure is the crux of the Koszul reduction process of §III.3. Let us
mention that examples of partial composition products were considered before the
development of the theory of operads in the work of Murray Gerstenhaber on the
Hochschild cochain complex (see [74]).

In a second part of this chapter (§§2.2-2.4), we examine the definition of operads
such that P+(0) = 1, where 1 is the tensor unit of the base category M. In §1.2.8,
we mentioned that such operads, which we call unitary operads, can be produced
by the addition of the unit object 1 to the arity 0 component of a non-unitary
operad P . To determine the composition structure of a unitary operad P+ from
the underlying non-unitary operad P , we have to assume that P is equipped with
extra operations which reflect composition products with the additional unitary
term P+(0) = 1. In §2.2, we give a conceptual interpretation, in terms of an
extension of the underlying symmetric structure of an operad, of these unitary
composition operations. In §2.3, we use the result of this analysis to give a reduced
version of the categorical constructions of §1.2 in the context of unitary operads.
In §2.4, we study the structure of connected unitary operads and the applications
of categorical constructions in the context of connected unitary operads.

The first instances of operads considered in May’s monograph [140] are unitary
(unital in the terminology of that reference) and May actually uses a unitary variant
of free algebras over operads for the study of iterated loop spaces. We give a short
survey of this subject in §2.2.

47
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We have considered, so far, that the components of an operad P(r) are indexed
by non-negative integers r ∈ N. Recall that an element p ∈ P(r) intuitively rep-
resents an operation on r variables p = p(x1, . . . , xr) indexed by the elements of
the finite ordered set r = {1 < · · · < r}. But in the construction of free operads,
we may take advantage of considering operad components P(r) associated to all
finite sets r = {i1, . . . , ir} so that we can deal with operations p = p(xi1 , . . . , xir)
whose variables are indexed by any such collection of indices ik = i1, . . . , ir. We
explain this extension of the definition of an operad in the concluding section of
the chapter §2.5.

We assume all through this chapter that we work within a base symmetric
monoidal category M. When we examine the application of categorical construc-
tions to unitary operads in §§2.3-2.4, we assume that the tensor product of this
category distributes over colimits (see §0.9), but we do not use more than the gen-
eral axioms of symmetric monoidal categories until this moment, and our statements
are valid in this setting.

2.1. The definition of operads from partial composition operations

Recall that the partial composition products of an operad are defined by the
formulas p ◦k q = p(1, . . . , 1, q, 1, . . . , 1), where q ∈ P(n) is plugged in the kth input
of the operation p ∈ P(m) and we take operad units 1 ∈ P(1) otherwise. In §1.1.4,
we observed that the unit and associativity axioms of operads imply that the full
composition products of §1.1.1 satisfy p(q1, . . . , qr) = (· · · (p◦k1+1q1)◦k2+1 · · · )◦kr+1

qr, for any p ∈ P(r) and all q1 ∈ P(n1), . . . , qr ∈ P(nr), where we set ki = n1+ · · ·+
ni−1 for i = 1, . . . , r. This result still holds in a general categorical framework as we
can obviously replace our pointwise relations by equivalent identities of morphisms.
In any case, we obtain that the composition products of an operad can be fully
determined by giving the partial composition products ◦k : P(m)⊗P(n) → P(m+
n − 1), where k = 1, . . . ,m. The purpose of this section is to specify relations on
partial composition operations which are equivalent to the equivariance, unit, and
associativity axioms of §1.1.1. The first outcome of this study, as we announced
in the introduction of this chapter, is a new representation of the structure of an
operad which will serve as working definition in our subsequent constructions.

To start with, we give the formal definition, in categorical terms, of the partial
composition operations.

2.1.1. The partial composition products associated to an operad. Let P be an
operad (in the sense of the basic definition of §1.1.1). The partial composition
products associated to P

◦k : P(m)⊗ P(n) → P(m+ n− 1)

are formally defined as composites

P(m)⊗ P(n)
�←−−
(1)

P(m)⊗ 1⊗ · · · ⊗ P(n)⊗ · · · ⊗ 1

−−→
(2)

P(m)⊗ P(1)⊗ · · · ⊗ P(n)⊗ · · · ⊗ P(1)

μ−−→
(3)

P(m+ n− 1),

where we consider a tensor product of operad units η : 1 → P(1), putting the factor
P(n) at the kth position of the tensor grouping P(1) ⊗ · · · ⊗ P(n) ⊗ · · · ⊗ P(1),
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followed by the appropriate component of the full composition product of P . The
range of definition of the full composition products in §1.1.1 implies that a partial
composition operation of this form can be associated to any pair m,n ∈ N and for
each composition index k ∈ {1 < · · · < m}. (But, since the choice of composition
index is empty for m = 0, we can assume m > 0 when we apply partial composition
operations.) In the context of a concrete symmetric monoidal category, we just
retrieve the formula

p ◦k q = p(1, . . . , q, . . . , 1)

recalled in the introduction of this section.
From this definition, we can already readily deduce the equivariance relations

of the partial composition products:

Proposition 2.1.2. The equivariance axiom of operads, expressed by the com-
mutativity of the diagram of Figure 1.4, implies that the partial composition oper-
ations of an operad P make the following diagrams commute

P(m)⊗ P(n)

s⊗t

◦k
P(m+ n− 1)

s◦s(k)t

P(m)⊗ P(n)
◦s(k)

P(m+ n− 1)

,

for all s ∈ Σm, t ∈ Σn, and where s◦s(k) t ∈ Σm+n−1 refers to the partial composite,
within the permutation operad, of the permutations s ∈ Σm, t ∈ Σn.

Proof. The equivariance relation of this proposition immediately follows from
the commutativity of the diagram of Figure 1.4 (which is one form of the equiv-
ariance axiom of operads), where we take r = m and n1 = · · · = ns(k)−1 = 1,
ns(k) = n, ns(k)+1 = · · · = nr = 1.

Simply observe that the permutation s(id , . . . , t, . . . , id), occurring in this ap-
plication of the axiom, with t plugged in the s(k)th composition position of s,
defines the partial composite s ◦s(k) t of the permutations s ∈ Σm, t ∈ Σn. �

Before going further, we review the definition of the operadic composition of
permutations. We aim to give an explicit definition of the permutation s ◦s(k) t ∈
Σm+n−1 which occurs in the above proposition. We only use formal properties of
the partial composition of permutations in what follows. We do not really need
this explicit description therefore, but this inspection will enable us to illustrate
the definition of the partial composition operations of operads.

2.1.3. Partial composites of permutations. The composite permutation s ◦s(k)
t ∈ Σm+n−1 which occurs in the previous proposition can be determined from the
construction of the composition structure on permutations in §§1.1.7-1.1.9. Indeed,
we have by definition:

s ◦s(k) t = s(id1, . . . , t, . . . , id1) = (id1 ⊕ · · · ⊕ t⊕ · · · ⊕ id1) · s(1, . . . , n, . . . , 1).

In the sequence representation of permutations (see §1.1.7), we readily see that the
sequence associated to the composite s◦s(k) t is defined by substituting the sequence
associated to the permutation t to the occurrence of the composition index s(k) in
the sequence representing s. We also perform the standard value shift which reflects
the interpretation of partial composites in terms of a composition of operations
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(see §1.1.4). To be explicit, if we set s = (s(1), . . . , s(m)) and t = (t(1), . . . , t(n)),
then the result of this substitution process reads:

s ◦s(k) t = (s(1)′, . . . , s(k − 1)′, t(1)′, . . . , t(n)′, s(k + 1)′, . . . , s(m)′),

where we have s(i)′ = s(i) when s(i) < s(k), we have s(i)′ = s(i)+n−1 when s(i) >
s(k), and we set t(j)′ = t(j)+n− 1 in all cases. For instance, for the permutations
s = (1, 3, 5, 4, 2) ∈ Σ5 and t = (3, 1, 2) ∈ Σ3, we obtain s ◦4 t = (1, 3, 7, 6, 4, 5, 2).

2.1.4. The graphical representation of partial composition products. In the pic-
ture of §1.1.6, the definition of the partial composition operations from the full
composition products reads:

k ··· ··· k+n−1

1 ··· ··· k−1 P(n) k+n ··· ··· m+n−1

P(m)

0

�←−−
(1)

1 ··· ··· k ··· ··· k+n−1 ··· ··· m+n−1

1 ··· ··· P(n) ··· ··· 1

P(m)

0

−−→
(2)

1 ··· ··· k ··· ··· k+n−1 ··· ··· m+n−1

P(1) ··· ··· P(n) ··· ··· P(1)

P(m)

0

μ−−→
(3)

1 ··· ··· k ··· ··· k+n−1 ··· ··· m+n−1

P(m+n−1)

0

.

Recall (see §1.1.6) that an arrangement of operad components (or elements) on
a tree represents a tensor product. The removal of the unit factors 1 in the isomor-
phism (1) corresponds to the application of the unit isomorphisms in the formal
definition of §2.1.1. This withdrawal operations gives the composition pattern,
shaped on a tree with two vertices, which we depict in our figure. The morphisms
(2-3) correspond to the unit insertion operation and to the full composition opera-
tion which we consider in the definition of §2.1.1.

2.1.5. The partial composition scheme, input indexing and equivariance. In the
case of a concrete symmetric monoidal category, we can use the picture of §2.1.4
to represent the partial composition of operad elements p ∈ P(m) and q ∈ P(n).
In the two-vertex tree which defines the source of our composition operation, we
replace the objects P(m) and P(n) by these elements p ∈ P(m) and q ∈ P(n),
and this picture gives the composition pattern which we associate to our operation
◦k : p⊗ q �→ p ◦k q.

In the picture of §2.1.4, we use the natural indexing of the inputs of the com-
posite operation p ◦k q ∈ P(m + n − 1) to index the inputs of this composition
pattern. In §1.1.5, we mention that we can perform re-indexing operations in order
to materialize the action of permutations on operadic composites. In the context
of the partial composition operation, this extension of our treewise representation
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makes us deal with composition patterns of the following general form:

(1)

j1 ··· ··· jn

i1 ··· ··· ik−1 q ik+1 ··· ··· im

p

0

.

The partial composition operation ◦k : p ⊗ q �→ p ◦k q carries this treewise tensor
to the element:

(2)

i1 ··· ··· ik−1 j1 ··· ··· jn ik+1 ··· ··· im

p◦kq

0

.

In §1.1.5, we also introduced relations to identify the action of permutations
on operations with an input re-indexing of tree edges. In the case of the two-vertex
tree (1), we consider relations of the following form:

(3)

j1 ··· ··· jn

i1 ··· ··· is(k)−1 tq is(k)+1 ··· ··· im

sp

0

≡

jt(1) ··· ··· jt(n)

is(1) ··· ··· is(k−1) q is(k+1) ··· ··· is(m)

p

0

.

Recall that the ingoing edges of a box labeled by an operation p ∈ P(r) are in
bijection with the inputs of this operation. Moreover, as long as we assume that
the inputs of such operations are indexed by the elements of the standard ordered
sets r = {1 < · · · < r}, we adopt the convention that this bijection is materialized
by the ordering of the edges in the plane. Hence, the application of identification
rules in the above picture moves the outgoing edge of q ∈ P(n) from the s(k)th
position in the set of ingoing edges of the element sp ∈ P(m) to the kth position
in the set of in the ingoing edges of the element p ∈ P(m).

The equivariance relation of Proposition 2.1.2 implies the coherence of our
mapping (1) �→(2) with respect to these identifications (3). Indeed, this equivariance
relation reads

i1 ··· ··· is(k)−1 j1 ··· ··· jn is(k)+1 ··· ··· im

sp◦s(k)tq

0

=

i1 ··· ··· is(k)−1 j1 ··· ··· jn is(k)+1 ··· ··· im

s◦s(k)t·p◦kq

0

and, for a one-vertex treewise tensor, we have the relation

i1 ··· ··· is(k)−1 j1 ··· ··· jn is(k)+1 ··· ··· im

s◦s(k)t·p◦kq

0

≡

is(1) ··· ···is(k−1)jt(1) ··· ··· jt(n)is(k+1)··· ···is(m)

p◦kq

0

.

Hence, the map (1) �→(2) equalizes both sides of our relation (3) as requested.
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i1 ··· ··· ir i1 ··· ··· ir

P(r) P(r)

1 P(1)

0 0

i1 ··· ··· ir

P(r)

0

η∗

�

(◦1)∗

ik ik

i1 ··· ··· ··· 1 ··· ··· ir i1 ··· ··· P(1) ··· ir

P(r) P(r)

0 0

i1 ··· ··· ··· ik ··· ··· ir

P(r)

0

η∗

�

(◦k)∗

Figure 2.1. The unit relations of partial composition products,
which hold for all r ∈ N and k = 1, . . . , r.

The other way round, as soon as we use the tree picture of the morphisms
(1) �→(2), we implicitly assume that these morphisms carry the relations (3) to iden-
tities, and this requirement trivially implies that our morphisms fulfill the equivari-
ance relation of partial composition products in Proposition 2.1.2. Thus, whenever
we use the treewise picture of the partial composition operations, we implicitly
assume that our composition operations satisfy these equivariance relations.

2.1.6. The graphical representation of the partial composition products of oper-
ads. In general, we use the picture

j1 ··· ··· jn

i1 ··· ··· ik−1 P(n) ik+1 ··· ··· im

P(m)

0

(◦k)∗−−−→

i1 ··· ···ik−1 j1 ··· ··· jn ik+1··· ···im

P(m+n−1)

0

to represent the partial composition products of an operad (as soon as we can
assume that the equivariance relations of Proposition 2.1.2 are satisfied). In this
representation, we identify the application of the partial composition product ◦k
with the performance of an internal operation in our treewise tensor product (as
in §1.1.6) and we use the notation (◦k)∗ to refer to this morphism. This internal
operation has not to be confused with an external partial composition product,
which we define in §A.2.7 and for which we use the notation ◦ik (with the labeling
of an input of our tree as composition index ik).

In §A, we elaborate on this picture of the partial composition operations in
order to give an explicit description of the free operad. We roughly deal with com-
position schemes, modeled on trees with an arbitrary number of vertices, which
represent multiple applications of partial composition products. We have already
given an example of this representation in our introduction of free operad structures
in §1.2. In Figure 2.2-2.3, we give fundamental examples of such (multi-fold) com-
position schemes which give the shape of the associativity relations satisfied by the
partial composition operations. In Figure 2.1, we also give a representation of the
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j1 ··· ··· k1 ··· ··· kt ··· ··· js

i1 ··· ··· P(s+t−1)

k

ir··· ···

P(r)

k1 ··· ··· kt 0

j1 ··· ··· P(t)

l

js··· i1 ··· ··· j1 ··· ··· k1 ··· ··· kt ··· ··· js ··· ··· ir

i1 ··· ··· P(s)

k

ir··· ··· P(r+s+t−2)

P(r) 0

0 k1 ··· ··· kt

i1 ··· ··· j1 ··· ··· P(t)
k+l−1

js··· ir··· ···

P(r+s−1)

0

(◦l)∗

(◦k)∗

(◦k)∗

(◦k+l−1)∗

Figure 2.2. The associativity relation of partial composition
products for a sequential arrangement of factors, where we assume
r, s, t ∈ N, and k ∈ {1 < · · · < r}, l ∈ {1 < · · · < s}.

j1 ··· ··· js

i1 ··· P(s)

k

··· k1 ··· ··· kt ··· ··· ir

P(r+t−1)

0

j1 ··· ··· js k1 ··· ··· kt

i1 ··· P(s)

k

··· ··· ··· P(t)

l

ir··· i1 ··· ··· j1 ··· ··· js ··· ··· k1 ··· ··· kt ··· ··· ir

P(r) P(r+s+t−2)

0 0

k1 ··· ··· kt

i1 ··· ··· j1 ··· ··· js ··· P(t)
l+s−1

ir···

P(r+s−1)

0

(◦k)∗

(◦l)∗

(◦l+s−1)∗

(◦k)∗

Figure 2.3. The associativity relation of partial composition
products for a ramified arrangement of factors, where we assume
r, s, t ∈ N, and {k < l} ⊂ {1 < · · · < r}.
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unit relations which the partial composition operations satisfy. The verification of
these unit and associativity relations from our initial definition of the composition
structure of an operad in §1.1.1 is the goal of the next proposition:

Proposition 2.1.7. The partial composition operations

◦k : P(m)⊗ P(n) → P(m+ n− 1), k = 1, . . . ,m,

defined from the full composition products of an operad in §2.1.1, fulfill the unit
relations expressed by the commutativity of the diagrams of Figure 2.1 and the
associativity relations expressed by the commutativity of the diagrams of Figure 2.2-
2.3.

Proof. To establish this proposition, we use the treewise interpretation of the
full composition products of operads and the corresponding representation of the
unit and associativity axioms of operads in Figure 1.5-1.6. The unit relations of
the proposition are immediate consequences of the unit axiom of full composition
products, as expressed by the commutative diagrams of Figure 1.5. In one relation,
we deal with a partial composite on an arity 1 component. But in this degenerate
case, the partial composite is formally the same as a full composition product. In the
other unit relation, we readily get that the partial composition operation ◦k with an

operadic unit reduces to the composite morphism P(r)⊗ 1⊗r → P(r)⊗ P(1)⊗r μ−→
P(r), where μ denotes the full composition product of our operad.

The first associativity relation of partial composition products, expressed in
Figure 2.2, is also immediate from the associativity axiom of the full composition
products. Indeed, we simply have to apply the diagram of Figure 1.6 to a configu-
ration of the form

(1)

i1 ··· j1 ··· ··· k1 ··· kt ··· js ··· ir

1 ··· 1 ··· ··· P(t) ··· 1 ··· 1

1 ··· P(s) ··· 1

P(r)

0

which, under the construction of partial composites in §§2.1.1-2.1.5, corresponds to
the composition of partial composition operations represented in Figure 2.2.

In this process (and in the next constructions as well), the unit factors 1 corre-
spond to the (delayed) application of unit morphisms η : 1 → P(1). The unit axiom
of Figure 1.5 implies that the evaluation of an operadic composite on a grouping of
such unit factors is equal to the insertion of a unit morphism η : 1 → P(1) at the
place resulting from the composition operation. In our picture, we just keep unit
factors at the positions associated to such groupings of operadic units.

To check the second associativity relation, we examine the associativity diagram
of Figure 1.6 for configurations of the form:

(2)

i1 ··· j1 ··· js ··· k1 ··· kt ··· ir

1 ··· P(s) ··· 1 ··· 1 ··· 1

1 ··· 1 ··· P(t) ··· 1

P(r)

0
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and:

(3)

i1 ··· j1 ··· js ··· k1 ··· kt ··· ir

1 ··· 1 ··· 1 ··· P(t) ··· 1

1 ··· P(s) ··· 1 ··· 1

P(r)

0

.

The definition of partial composites implies that the composites of partial com-
position operations represented in Figure 2.3 are identified with the composite com-
position products of (2-3) when the composition of the lower rows is performed first.
On the other hand, if we perform the composition of the upper rows in (2-3), then
we obtain in both cases a configuration of the form

(4)

i1 ··· j1 ··· js ··· k1 ··· kt ··· ir

1 ··· P(s) ··· P(t) ··· 1

P(r)

0

.

These composition operations reduce to the application of unit relations and define

isomorphisms (2)
�−→ (4)

�←− (3). From this identification, we deduce, by applying
the associativity axiom of operads, that the composites of the partial composition
operations of Figure 2.3 are both equal to a three-fold composition operation of the
form

(4) →

i1 ··· ··· j1 ··· js ··· k1 ··· kt ··· ··· ir

P(1) ··· P(s) ··· P(t) ··· P(1)

P(r)

0

μ−→

i1 ··· j1 ··· js ··· k1 ··· kt ··· ir

P(r+s+t−2)

0

.

This identification finishes the proof of the proposition. �

2.1.8. The pointwise formulas for the equivariance, unit, and associativity re-
lations of partial composition products. In general, we use the graphical picture to
express the relations satisfied by the partial composition products of an operad.
But we can easily give a representation of our relations in terms of formulas on ele-
ments when our base category forms a concrete symmetric monoidal category. The
equivariance relation of partial composition products, stated in Proposition 2.1.2,
is equivalent to the identity sp ◦s(k) tq = s ◦s(k) t · p ◦k q, for p ∈ P(m), q ∈ P(n),
s ∈ Σm, t ∈ Σn, and k = 1, . . . ,m. The unit relations, given by the diagrams of
Figure 2.1, are equivalent to the formulas

1 ◦1 p = p and p ◦k 1 = p,

for all p ∈ P(r), and k = 1, . . . , r. The associativity relation of Figure 2.2 reads:

(a ◦k b) ◦k+l−1 c = a ◦k (b ◦l c),
for a ∈ P(r), b ∈ P(s), c ∈ P(t), and k ∈ {1 < · · · < r}, l ∈ {1 < · · · < s}, while
the associativity relation of Figure 2.3 reads:

(a ◦k b) ◦s+l−1 c = (a ◦l c) ◦k b,
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for a ∈ P(r), b ∈ P(s), c ∈ P(t), and {k < l} ⊂ {1 < · · · < r}.
2.1.9. The definition of operads in terms of partial composition operations. The

result of Proposition 2.1.7 gives natural axioms for the definition of operads in terms
of partial composition products.

To be explicit, we temporarily call operad shaped on partial composition schemes
the structure defined by a sequence of objects P(n) ∈ M, n ∈ N, where each P(n) is
equipped with an action of the symmetric group Σn (as in the definition of §1.1.1),
together with:
(1) a unit morphism η : 1 → P(1),
(2) and partial composition products ◦k : P(m)⊗P(n) → P(m+n−1), defined for

any m,n ∈ N, for each k ∈ {1 < · · · < m}, and which satisfy the equivariance
relations of Proposition 2.1.2, as well as the unit relations of Figure 2.1 and the
associativity relations of Figure 2.2–2.3.

Recall that we assume the equivariance relation to give a sense to the treewise
representation which we use in our figures.

The definition of a connected operad in §1.1.21 has an obvious analogue for
operads shaped on partial composition schemes. In this case, we forget about arity
zero components in our definition and we set P(1) = 1. We then see that the
partial composition operations (2) such that m = 1 or n = 1 are determined by
the unit axioms of Figure 2.1. Hence, the composition structure of a connected
operad shaped on partial composition schemes can be fully determined by partial
composition products (2) such that m,n > 1.

The operads shaped on partial composition schemes form a category with, as
morphisms, the morphisms of symmetric sequences φ : P → Q which preserve op-
eradic units and the internal partial composition operations of our operads. The re-
sult of Proposition 2.1.7 implies that we have an obvious functor from the standard
category of operads towards the category of operads shaped on partial composition
schemes. Our claim is that:

Theorem 2.1.10. The correspondence of §2.1.1, between the partial composi-
tion operations and the standard full composition products of operads, defines an
isomorphism of categories between the standard category of operads, such as defined
in §1.1.1, and the category of operads shaped on partial composition schemes, such
as defined in §2.1.9. �

This result follows from coherence statements of §A, where we explain a general
definition of treewise composition operations which include the full composition
products of §1.1.1 and the partial composition products considered in this section
as particular examples.

2.1.11. The commutative operad. To complete the survey of this section, we
revisit the definition of the commutative operad, which is one of the main examples
of operad introduced in the previous chapter (in the context of sets and modules).
We just check that the direct definition of this operad works in the setting of a
general symmetric monoidal category M. We still consider both a non-unitary
version and a unitary version of the commutative operad, which we respectively
denote by Com and Com+ as usual.

In the context of a general symmetric monoidal category M, we can define
the commutative operad Com+ by Com+(r) := 1 for any arity r ∈ N, where we
consider the unit object 1 of our category M. We provide each object Com+(r)
with a trivial (in the sense of identical) action of the symmetric group, for any
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r ∈ N. We take the identity morphism of the unit object to define the operadic
unit η : 1 → Com+(1), and we take the unit isomorphisms of our symmetric
monoidal structure 1⊗ 1 � 1 to define the partial composition products of this
operad ◦k : Com+(m) ⊗ Com+(n) → Com+(m + n − 1), for any m,n ∈ N and for
each k = 1, . . . ,m. We easily check that these composition operations fulfill our
equivariance, unit and associativity relations.

We just drop the term of arity zero Com+(0) = 1 when we deal with the non-
unitary version of the commutative operad Com. We may also set Com(0) = ∅,
where ∅ represents the initial object of our base category (see §1.1.19).

In the next chapter, we will observe that the unitary commutative operad
Com+ is associated to a general notion of unitary commutative algebra, which can
be defined in any symmetric monoidal category, and we have a similar statement for
the non-unitary version of this operad Com. But our main motivation for the study
of the commutative operad (for the moment at least) comes from the observation
that the operad Com+ represents the terminal object of the category of unitary
operads Op∗. We check this assertion in the next section.

2.2. The definition of unitary operads

Recall that we use the name ‘unitary operad ’ to refer to operads P+ such
that P+(0) = 1, whereas we say that an operad is non-unitary when this operad is
void in arity zero. In the case where the tensor product of the base category dis-
tributes over colimits (see §0.9), we can identify non-unitary operads with operads
P such that P(0) = ∅, where ∅ denotes the initial object of the base category (as
we did in the case of the commutative operad P = Com in the previous paragraph).
In general, we just forget about arity zero terms to define the structure of a non-
unitary operad. In this case, we also write P(0) = ∅ to assert that our operad is
not defined in arity zero (see §1.1.19).

The operad of unitary associative monoids As+, defined in §1 (in the set con-
text and in the module context), and the operad of unitary commutative monoids
Com+, studied in the previous paragraph §2.1.11, are our basic examples of unitary
operads. The operads As and Com, which we obtain by forgetting about the terms
of arity zero of these unitary operads, form basic instances of non-unitary operads.

Recall that we use the notation Op∗ for the category which has the unitary
operads P+ as objects and the operad morphisms φ : P+ → Q+ which are the
identity of the unit object 1 in arity zero as morphisms. We use the notation Op∅

for the category of non-unitary operads.
In §1.1.20, we call ‘unitary extension’ a unitary operad P+ which is obtained

by the addition of a unit term P+(0) = 1 to a given non-unitary operad P . The
main purpose of this section is to check that the composition structure of a unitary
extension P+ is determined by the internal structure of the underlying non-unitary
operad P and extra operators which reflect the composition operations with the
unit term P+(0) = 1 in this unitary operad P+.

In applications, we generally use the partial composition products of the previ-
ous section to determine the composition structure of non-unitary operads. But, we
put the composition products with the arity zero term P+(0) = 1 apart when we
deal with unitary operads. In short, our idea is to regard these special instances of
composition products as part of an internal diagram structure which we associate
to our object. We will see that fixing P+(0) = 1 transforms these composition
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products into additive operations, while the partial composition products are qua-
dratic, and this observation motivates the use of a different approach to handle the
composition products with the arity zero term of unitary operads.

We go back to the analysis of the previous section in order to carry out our
program. In a first step, we study the composition products which we form by
taking the arity zero term P+(0) = 1 as composition factors in a unitary operad
P+.

2.2.1. The restriction operators associated to a unitary operad structure. We
assume that P+ is a unitary operad, so that P+(0) = 1, and we use the notation
P to refer to the non-unitary operad which agrees with P+ in arity r > 0.

We consider composition operations of the form

P+(n)
�←−−
(1)

P+(n)⊗ P+(0)⊗ · · · ⊗ 1⊗ · · · ⊗ 1⊗ · · · ⊗ P+(0)

η∗−−→
(2)

P+(n)⊗ P+(0)⊗ · · · ⊗ P+(1)⊗ · · · ⊗ P+(1)⊗ · · · ⊗ P+(0)

μ−−→
(3)

P+(m),

where η∗ is given by the application of operadic units η : 1 → P+(1) at places
specified by an increasing sequence 1 ≤ k1 < · · · < km ≤ n, and μ denotes the full
composition product of the unitary operad P+ that corresponds to this composition
scheme.

We can associate such an increasing sequence 1 ≤ k1 < · · · < km ≤ n to
any increasing map u : {1 < · · · < m} → {1 < · · · < n} by using the relation
u(i) = ki, for i = 1, . . . ,m. We accordingly have a morphism u∗ : P+(n) → P+(m),
associated any such increasing map u : {1 < · · · < m} → {1 < · · · < n}, which
we determine by the above composite (1-3). We call this morphism the restriction
operator associated to the map u : {1 < · · · < m} → {1 < · · · < n}. In the case
m,n > 0, we identify this restriction operator with an internal operation of the
non-unitary operad P underlying P+:

u∗ : P(n) → P(m)

In the case m = 0, n > 0, our construction returns augmentation morphisms with
values in the unit object of the base category:

ε : P(n) → 1 .

We also write o∗ = ε for this augmentation, which represents the restriction operator
associated to the initial map o : 0 → n.

In the context of a concrete category, we can define these restriction maps u∗ :
P(n) → P(m) by the formula u∗(p) = p(∗, . . . , ∗, 1, ∗, . . . , ∗, . . . , ∗, 1, ∗, . . . , ∗), for
any p ∈ P(n), where we use the notation ∗ to refer to the distinguished element
of the operad P+ in arity 0. The augmentation is similarly defined by ε(p) =
p(∗, . . . , ∗).

In the case where we take a single unitary factor P+(0) = 1 in our composi-
tion operation (1-3), we retrieve the definition of a partial composition operation

P(n)
�←− P+(n) ⊗ P+(0)

◦k−→ P+(n − 1). The restriction operator ∂k : P(n) →
P(n− 1) which corresponds to this composite is associated to the increasing map

∂k : {1 < · · · < n− 1} → {1 < · · · < n}
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such that:

∂k(x) =

{
x, for x = 1, . . . , k − 1,

x+ 1, for x = k, . . . , n− 1,

for any k = 1, . . . , n. In the context of a concrete category, we can define this
restriction operator by the formula ∂k(p) = p ◦k ∗.

We immediately see that all restriction operators associated to a unitary operad
structure occur as composites of these particular restriction operators ∂k : P(n) →
P(n−1), for k = 1, . . . , n, as we observed in §2.1 that the full composition products
of an operad are composites of partial restriction operators. This assertion can also
be deduced from the observation that all increasing maps u : {1 < · · · < m} →
{1 < · · · < n} are composites of maps of the form ∂k as soon as we establish
that the action of restriction operators satisfies a natural associativity relation (see
Lemma 2.2.4).

2.2.2. The category of finite ordinals and injections. We aim to establish that
the restriction operators u∗ : P(n) → P(m) defined in the previous paragraph
can be embodied in an extension of the internal symmetric structure of operads.
For this purpose, we consider the category Λ>0 which has the finite ordered sets
n = {1 < · · · < n}, where n > 0, as objects, and all injective maps f : {1 < · · · <
m} → {1 < · · · < n} (not necessarily monotonous) as morphisms. This category
contains a distinguished subcategory Λ+

>0 ⊂ Λ>0 with the same objects as Λ>0, but
of which morphisms reduce to the increasing maps of §2.2.1.

The lower script > 0 in the above notation refers to the restriction to ordered
sets n = {1 < · · · < n} such that n > 0 in the set of objects of the categories Λ+

>0 ⊂
Λ>0. We actually use the notation Λ (with no subscript) for the variant of the
category Λ>0 whose object set includes a zero object 0 which corresponds to the
empty set. We refer to this category Λ as the category of (finite) ordinals and
injections, since any object of this category n = {1 < · · · < n} is equivalent to an
ordinal. We also use the notation Λ+ for the category which has the same objects
as the category Λ but where we only take the increasing injections as morphisms.
We trivially have Λ+

>0 = Λ>0 ∩ Λ+.
We do not really deal with diagrams over the whole category Λ in this book, but

we generally use the notation Λ (with no extra decoration) as a qualifier for objects
of which structure includes an action of morphisms f ∈ MorΛ(m, n). In particular,
we use the phrase ‘non-unitary Λ-sequence’ to refer to the category of contravariant
diagrams over the category Λ>0. In §2.4, we similarly coin the phrase ‘connected Λ-
sequence’ for the category of contravariant diagrams over the full subcategory Λ>1

of the category Λ generated by the ordinals n = {1 < · · · < n} such that n > 1.
We also use the notation of the whole category Λ (rather than the notation of

a specific full subcategory) in the expression of morphism sets. We adopt similar
conventions for the sets of increasing maps on any subcategory of the category
Λ+ ⊂ Λ.

2.2.3. The decomposition of morphisms in the category of finite ordinals and
injections. The symmetric group Σn is identified with the group of automorphisms
of the object n in the category Λ>0. We readily see that any morphism f ∈
MorΛ(m, n) has a unique decomposition f = ρσ, such that ρ ∈ MorΛ+(m, n) and
σ ∈ Σm. The map which occurs in this decomposition ρ is characterized by
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the relation {f(1), . . . , f(m)} = {ρ(1) < · · · < ρ(m)} and the permutation σ =
(σ(1), . . . , σ(m)) is characterized by the equation ρ(σ(i)) = f(i), for any i ∈ m.

In the particular case of a composite f = su, where u ∈ MorΛ+(m, n), and
s ∈ Σn, the existence of our decomposition is equivalent to a commutation formula
su = ρσ, where ρ ∈ MorΛ+(m, n) and σ ∈ Σm is a permutation associated to
s ∈ Σn. This permutation σ ∈ Σm is actually identified with the image of s
under the application of the restriction operator ρ∗ on the permutation operad
Π(n) = Σn. We make the restriction operators of the permutation operad explicit
in §§2.2.7-2.2.8. We will give a proof of this identity σ = ρ∗(s) at this moment.

In §1.2, we define the permutation category Σ as the category formed by the
finite ordered sets n = {1 < · · · < n} as objects, where n ∈ N, together with the
morphisms sets such that MorΣ(n, n) = Σn and MorΣ(m, n) = ∅ for m �= n. In
parallel to our category Λ>0, we consider the full subcategory of the permutation
category Σ>0 ⊂ Σ generated by the ordered sets n = {1 < · · · < n} such that
n > 0. This category Σ>0 is identified with the isomorphism subcategory of the
category Λ>0. We write Λ>0 = Λ+

>0Σ>0 to express the decomposition f = us of the
morphisms in the category Λ>0. The following lemma provides a first motivation
for the introduction of the category Λ>0:

Lemma 2.2.4. Let P+ be any unitary operad with P as underlying non-unitary
operad.

(a) The restriction operators P(t)
v∗
−→ P(s)

u∗
−→ P(r) associated to any sequence

of increasing maps {1 < · · · < r} u−→ {1 < · · · < s} v−→ {1 < · · · < t} such that
r, s, t > 0 satisfy the relation u∗v∗ = (vu)∗.

(b) The restriction operators P(n)
u∗
−→ P(m) associated to increasing maps

{1 < · · · < m} u−→ {1 < · · · < n} also satisfy equivariance relations, expressed by
the commutativity of the diagrams

P(n)
s

u∗

P(n)

ρ∗

P(m)
σ

P(m)

,

for all s ∈ Σn, where ρ denotes the increasing map and σ ∈ Σm denotes the
permutation such that we have the relation su = ρσ in MorΛ(m, n).

Proof. The first assertion follows from an application the associativity rela-
tion of Figure 1.3 to the unitary operad P+. In the proof of this assertion, we also
use the unit axiom of Figure 1.2.

To be explicit, we consider a composition pattern formed by three rows of
operad components, with the single factor P+(t) on the lower row, and a t-fold
(respectively, s-fold) tensor product of the form P+(0)⊗· · ·⊗1⊗ · · ·⊗1⊗ · · ·⊗P+(0)
on the second (respectively, third) row. The unit factors 1 are set at positions v(1) <
· · · < v(s) (respectively, u(1) < · · · < u(r)) on the second (respectively, third row).
We take the image of these factors under the unit morphism η : 1 → P+(1) before
performing composition operations. We readily see that, for such a composition
scheme, the commutativity of the diagram of Figure 1.3 gives the identity between
the morphisms u∗v∗ and (vu)∗ considered in our proposition.

The morphism u∗v∗ occurs when we perform the operadic composite of the
factors of the first row with the factors of the second row first and the operadic
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composite of the outcome of this composition operation with the factors of the third
row afterwards. The other way round, when we perform the operadic composites of
the second and third rows at first, we get operadic composites of operadic units with
arity zero factors of our operad. More explicitly, we consider composite morphisms

of the form 1⊗P+(0)
η⊗id−−−→ P+(1) ⊗ P+(0)

μ−→ P+(0), where we still use the
notation η : 1 → P+(1) for the unit of our unitary operad. We use the unit
axiom of Figure 1.2 to identify these composites with the canonical isomorphism

1⊗P+(0)
�−→ P+(0). We readily check that we get the composition scheme of the

restriction operator (vu)∗ after the performance of this first composition operation.
The conclusion of assertion (a) follows.

The second assertion of the proposition is a consequence of the second equiv-
ariance axiom of Figure 1.1, where we take nk = 1 if k ∈ {s(u(1)), . . . , s(u(m))}
and nk = 0 otherwise. The permutation s∗ moves the factors P+(1) in the ten-
sor product P+(0) ⊗ · · · ⊗ P+(1) ⊗ · · · ⊗ P+(1) ⊗ · · · ⊗ P+(0) to the positions
1 ≤ u(1) < · · · < u(m) ≤ n. Hence, the composite μ · (id ⊗s∗) occurring in
our application of the equivariance axiom gives the restriction operator associ-
ated to u. On the other hand, the composition product P+(n) ⊗ P+(0) ⊗ · · · ⊗
P+(1) ⊗ · · · ⊗ P+(1) ⊗ · · · ⊗ P+(0)

μ−→ P+(m) with the factors P+(1) at the ini-
tial positions k ∈ {s(u(1)), . . . , s(u(m))} of our tensor product gives the restriction
operator associated to the increasing map ρ such that {ρ(1) < · · · < ρ(m)} =
{s(u(1)), . . . , s(u(m))}. From the constructions of decompositions in §2.2.3, we
immediately deduce that this map ρ is identified with the increasing map ρ such
that su ∈ ρΣm. Thus, the equivariance relation gives a commutative diagram of
the form considered in our statement, but where σ denotes the block permutation
σ = s∗(0, . . . , 0, 1, 0, . . . , 0, . . . , 0, 1, 0, . . . , 0) associated to our lengths nk ∈ {0, 1}.

The definition of §1.1.7 implies that this block permutation is represented by the
sequence (s(u(1))′, . . . , s(u(m))′) which we obtain by withdrawing the values k �∈
{s(u(1)), . . . , s(u(m))} from (s(1), . . . , s(n)) and where we perform an appropriate
index shift, marked by the symbol ′, in order to retrieve a permutation of (1, . . . ,m).
To be precise, we just jump over the values k �∈ {s(u(1)), . . . , s(u(m))} in order to
carry out this re-indexing process. Performing this operation obviously amounts to
applying an inverse of our increasing map ρ to the sequence s(u(1)), . . . , s(u(m)).
We consequently have (ρ(s(u(1))′), . . . , ρ(s(u(m))′)) = (s(u(1)), . . . , s(u(m))) and
this observation immediately implies that our block permutation is identified with
the permutation σ which occurs in the decomposition su = ρσ of the map f =
su. �

The following proposition is a consequence of Lemma 2.2.4:

Proposition 2.2.5. Let P be a non-unitary operad. We assume that P is
associated to a unitary operad P+. Then the underlying symmetric sequence of this
non-unitary operad P inherits a Λop

>0-diagram structure. The restriction operators

of §2.2.1 give the action of the subcategory Λ+
>0 ⊂ Λ>0 on our object P, while the

action of the isomorphism subcategory Σ>0 ⊂ Λ>0 such that Λ>0 = Λ+
>0Σ>0 is

yielded by the natural symmetric structure of our operad.

In §2.2.2, we coin the phrase ‘non-unitary Λ-sequence’ for the Λop
>0-diagram

structures which we consider in this proposition. In what follows, we use this
terminology (rather than the name ‘Λop

>0-diagram’) in order to stress the parallelism
between this category of diagrams and the category of symmetric sequences. The
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idea is that the structure of a (non-unitary) Λ-sequence occurs as an enrichment of
the structure of a (non-unitary) symmetric sequence.

Explanations. To obtain the contravariant action s∗ : P(n) → P(n) of a
permutation s ∈ Σn, regarded as a morphism of the category Λ>0, we actually
consider the action of the permutation s−1 : P(n) → P(n), inverse to s, in the
natural symmetric structure of the operad. The inversion operation enables us
to retrieve a contravariant action, as required, from the natural left action of the
symmetric group Σn on P(n).

In general, the morphism f∗ : P(n) → P(m) associated to a map f ∈ MorΛ(m, n)
such that f = us, where u ∈ MorΛ+(m, n) and s ∈ Σm, is explicitly defined by the
composite

P(n)
u∗
−→ P(m)

s−1

−−→ P(m),

where we take the restriction operator associated to u, followed by the action of
the inverse of the permutation s on P .

We obviously have id∗ = id for the action of identity morphisms and the
associativity relation of the action f∗g∗ = (gf)∗ for general morphisms of the
category Λ>0 is an immediate consequence of the results of Lemma 2.2.4. �

To complete our analysis of the structure on the underlying sequence of unitary
operads, we give a categorical interpretation of the augmentations of §2.2.1:

Proposition 2.2.6. The augmentations ε : P(n) → 1, n > 0, which we deduce
from the structure of a unitary operad P+, define a morphism of Λop

>0-diagrams
ε : P → Cst from the non-unitary operad P towards the constant diagram such that
Cst(n) = 1, for all n > 0.

Proof. We easily check, by using the same arguments as in the proof of the
functoriality relation u∗v∗ = (vu)∗ in Lemma 2.2.4, that the augmentations ε :
P(n) → 1, n > 0, make commute the diagrams

P(n)

ε

u∗
P(m)

ε

1

,

where we consider the restriction operator associated to any map u ∈ MorΛ+(m, n).
We similarly see, by using the equivariance axiom of §1.1.1, that the augmentation
ε : P(n) → 1 carries the action of a permutation s ∈ Σn on P(n) to the iden-
tity of the operad term P+(0) = 1. This verification completes the proof of our
proposition. �

The constant diagram Cst actually represents the underlying non-unitary Λop
>0-

sequence of the commutative operad Com (we examine this connection more thor-
oughly in §2.2.19). The augmentation morphism ε : P → Cst can therefore be
identified with a morphism towards this object Com. We use the notation of the
commutative operad Com, rather than the notation of the constant object Cst, in
our subsequent applications of the result of Proposition 2.2.6.

In what follows, we generally call ‘augmented non-unitary Λ-sequence’ the
structure formed by a Λop

>0-diagrams equipped with an augmentation over the object
Cst = Com. We may just forget about the augmentation when Com(r) = Cst(r) = 1
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represents the terminal object of our base category (for instance, when we work in
the category of sets M = Set), so that every non-unitary Λ-sequence is tautologi-
cally equipped with an augmentation over this diagram Com.

2.2.7. The example of the permutation operad. We can easily make explicit the
restriction operators of the permutation operad. We just go back to the definition
of the operadic composition of permutations in §§1.1.7-1.1.9.

Let s ∈ Σn. Let u : {1 < · · · < m} → {1 < · · · < n} be any increasing map. In
the permutation operad, we have ∗ = id0 ∈ Σ0, 1 = id1 ∈ Σ1, and the composite

u∗(s) = s(∗, . . . , ∗, 1, ∗, . . . , ∗, 1, ∗, . . . , ∗)

is given by the block permutation s∗(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0), where we take
blocks of length 1 at the positions specified by the values of our injection 1 ≤
u(1) < · · · < u(m) ≤ n and we fill the remaining positions with blocks of length 0.
This block permutation can be identified with the permutation which we obtain by
withdrawing the terms s(k) �∈ {u(1) < · · · < u(m)} in the sequence representation
of the permutation s = (s(1), . . . , s(n)), and where we also perform an index shift
to retrieve a permutation of (1, . . . ,m) instead of (u(1), . . . , u(m)). This index shift
operation, which carries the set {u(1) < · · · < u(m)} to {1 < · · · < m}, can formally

be identified with the application of the mapping u−1 : {u(1) < · · · < u(m)} �−→
{1 < · · · < m} converse to our increasing map.

For instance, in the case of the map u : {1, 2, 3} → {1, 2, 3, 4, 5} such that

u(1) = 1, u(2) = 4, u(3) = 5,

and of the permutation s = (3, 1, 5, 2, 4), we perform the withdrawal operation
(3, 1, 5, 2, 4) �→ (1, 5, 4), followed by the normalization operation (1, 5, 4) �→ (1, 3, 2),
to get:

u∗(3, 1, 5, 2, 4) = (1, 3, 2).

2.2.8. Remark: decomposition of injective maps and the image of permuta-
tions under restriction operators. In §2.2.3, we mention that the permutation σ ∈
Σm which fits in the decomposition su = ρσ of the composite map f = su :
{1, . . . ,m} → {1, . . . , n} is identified with the image of the permutation s ∈ Σn

under the restriction operator ρ∗ : Σn → Σm associated to the increasing map ρ on
the permutation operad.

This identity σ = ρ∗(s) actually follows from an application the equivariance
relation of Lemma 2.2.4 to the identity permutation idn ∈ Σn in the permutation
operad Π . Indeed, in this case, the equivariance relation reads σ · u∗(idn) = ρ∗(s),
and this relation immediately gives our identity σ = ρ∗(s) since we trivially have
u∗(idn) = idm for the identity permutation idn ∈ Σn.

By applying a similar argument to the inverse permutation s−1, we also obtain
that the permutation u∗(s) ∈ Σm is determined by the equation

s−1 · u = ρ · u∗(s)−1

in the mapping set MorΛ(m, n), where we consider the decomposition f = ρσ of the
map f = s−1u as an increasing injection ρ ∈ MorΛ+(m, n) followed by a permutation
σ ∈ Σm.

2.2.9. The graphical definition of restriction operators. We generally use the
symbol ∗ to mark the positions of unitary factors P+(0) = 1 in the picture of a
restriction operator. When we use this convention, the definition of the restriction
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operators from the full composition products of a unitary operad in §2.2.1 reads:

∗ ··· ··· 1 ··· ··· k ··· ··· m ··· ··· ∗

P+(n)

0

�←−−
(1)

1 ··· k ··· m

P+(0) ··· 1 ··· 1 ··· 1 ··· P+(0)

P+(n)

0

η∗−−→
(2)

1 ··· k ··· m

P+(0) ··· P+(1) ··· P+(1) ··· P+(1) ··· P+(0)

P+(n)

0

μ−−→
(3)

1 ··· ··· m

P+(m)

0

,

where (2) is the morphism η∗, considered in §2.2.1, which is given by the insertion
of operadic units η : 1 → P+(1) on the inputs k = 1, . . . ,m of our composition
scheme, and (3) is the full composition product of the unitary operad P+.

2.2.10. The graphical representation of restriction operators. We elaborate on
our representation of the action of permutations in §1.1.5 to get a graphical inter-
pretation of our restriction operations on treewise tensors.

In a first step, we again use a re-indexing operation to depict the external action
of any map f : {1 < · · · < m} → {1 < · · · < n} of the category Λ on a treewise
tensor of the form considered in §1.1. In the context of a concrete base category,
we explicit write:

f∗ :

j1 ··· ··· ··· jn

p

0

�→

∗ ··· i1 ··· ··· ··· im ··· ∗

p

0

,

for any p ∈ P(n). To form this picture, we replace the input indices satisfying
j ∈ {f(1), . . . , f(m)} by their pre-image under the map f : {1 < · · · < m} →
{1 < · · · < n} in the representation of the operation p ∈ P(n), and we replace the
remaining input indices j �∈ {f(1), . . . , f(m)} by the symbol ∗.

Recall that the object on the source of our map in the above picture also
represents the image of the element p ∈ P(n) under the action of the permutation
τ ∈ Σn such that τ (k) = jk, for k = 1, . . . , n, on the operad P . We now consider a
decomposition of the form τ−1f = uσ−1 in the category Λ, where u is an increasing
map and σ ∈ Σm. We readily see that the target of our map, which gives the result
of our re-indexing operation, represents the composition pattern associated to the
restriction operator u∗ : P(n) → P(m), where we also apply the permutation σ to
re-index the inputs associated to the element u∗(p) ∈ P(m) in the outcome of this
restriction operator. Indeed, we clearly have σ(k) = ik, for all k = 1, . . . ,m, when
we take the orientation of our figure to enumerate these indices (i1, . . . , im) and the
mapping u : {1 < · · · < m} → {1 < · · · < n} simply determines the positions of
these inputs within the inputs of the element p ∈ P(n).

In a second step, we can use the restriction operator u∗ : P(n) → P(m),
associated to any increasing map u : {1 < · · · < m} → {1 < · · · < n}, and which
we regard as an internal operation of the operad P , in order to define a reduced
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form of the treewise tensors returned by our re-indexing process. We explicitly set:

∗ ··· i1 ··· ··· ··· im ··· ∗

p

0

≡

i1 ··· ··· ··· im

u∗(p)

0

,

where we consider the increasing map u : {1 < · · · < m} → {1 < · · · < n} which
fits in the decomposition τ−1f = uσ−1 of our morphism f in the category Λ. The
set {u(1) < · · · < u(m)} ⊂ {1 < · · · < n} which determines this map simply
corresponds to the position of the inputs labeled by an index ik ∈ {1 < · · · < m},
in our picture.

In §1.1.5, we also introduced an equivariance relation on treewise tensors in
order to identify an input re-indexing with the internal action of a permutation on
the operad. We can elaborate on this representation in order to extend the above
reduction operations to restriction operators f∗ : P(n) → P(m) associated to any
map f : {1 < · · · < m} → {1 < · · · < n} (possibly not monotonous) in the cate-
gory Λ>0. In our picture, we move the index ik attached to an input k = 1, . . . ,m
to the edge at position f(k) on the source treewise tensor product, and we mark the
remaining edges with the symbol of the unitary composite ∗, as in the increasing
map case. We readily see that the permutation of the index positions (i1, . . . , im)
involved in this process corresponds to the action of the permutation σ−1 which
occurs in the decomposition f = uσ−1 of our mapping. We use the equivariance
relation of Lemma 2.2.4(b) to establish the coherence of this extended reduction
process with respect to the composition of restriction operators and the action of
permutations.

To give a simple example, for the map f : 3 → 5 such that f(1) = 5, f(2) = 1,
f(3) = 4, the image of an element p ∈ P(5) under the restriction operator f∗ :
P(5) → P(3) is given by the following picture:

1 2 3 4 5

p

0

�→

2 ∗ ∗ 3 1

p

0

≡

2 3 1

u∗(p)

0

,

where u denotes the increasing map such that u(1) = 1, u(2) = 4, u(3) = 5. We
also have:

2 3 1

u∗(p)

0

≡

1 2 3

su∗(p)

0

≡

1 2 3

f∗(p)

0

,

where s denotes the permutation such that s(1) = 2, s(2) = 3, s(3) = 1, and for
which also we get f = us−1 ⇒ su∗ = f∗.

In what follows, we use an extension of this graphical representation to a gen-
eral categorical setting where we deal with abstract morphisms not necessarily
defined by maps on concrete tensors. We then adopt the generic notation ρ∗ for
the restriction operators

∗ ··· i1 ··· ··· ··· im ··· ∗

P(n)

0

ρ∗−→
≡

i1 ··· ··· ··· im

P(m)

0

,

which we consider in our reduction process.
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The treewise restriction operators can also be applied to treewise tensor prod-
ucts shaped on trees with several vertices. This natural extension of our picture
is used in Proposition 2.2.16, when we formulate an associativity relation between
the restriction operators and the partial composition products of operads.

2.2.11. The graphical representation of augmentations. We adapt the conven-
tions of the previous paragraph to represent the augmentations ε : P(n) → 1 which
we deduce from the structure of a unitary operad P+. We use the augmentation
morphism to extend the reduction procedure of the previous paragraph when all
inputs are marked by the unitary symbol ∗. We get the following picture

∗ ··· ··· ··· ∗

P(n)

0

ρ∗−→
≡

∗

0

for this reduction process. The degenerate tree ∗ → 0 which occurs in this picture
formally represents a copy of the unit object 1.

If we work within a category of modules, then we have:

∗ ··· ··· ··· ∗

p

0

≡ ε(p) ·
∗

0
,

for any operad element p ∈ P(n), where we now regard the degenerate tree ∗ → 0
as a canonical generator for the free k-module of rank 1, and we identify the image
of the element p ∈ P(n) under the augmentation ε : p �→ ε(p) with a multiplicative
scalar ε(p) ∈ k.

In what follows, we also deal with an obvious extension of this construction for
treewise tensors shaped on trees with several vertices.

In §2.2.1, we focus on composition products of a unitary operad P+ which only
involve the arity zero term P+(0) = 1 and operadic unit as composition factors.
But we can still consider partial composition products ◦k : P+(m) ⊗ P+(n) →
P+(m+ n− 1) defined by the composition scheme of §2.1.4. In the cases m,n > 0,
which exclude the composites with the unitary factor P+(0) = 1, these composition
operations are identified with internal composition operations of the non-unitary
operad P underlying P+ and they satisfy the equivariance, unit, and associativity
relations of §2.1 within this non-unitary operad.

To complete our results, we make explicit associativity relations which com-
bine our restriction operators and the partial composition products of §2.1. We
regard these mixed associativity relations as part of an equivariance property of
the partial composition products with respect to the action of category Λ>0 on the
underlying collection and to the action of the augmentations. We actually establish
an equivariance relation of the same shape as the relation of Proposition 2.1.2, but
we now deal with an action of general injective maps instead of permutations. In
a preliminary step, we extend the definition of the partial composition product of
permutations, involved in this equivariance relation, to injective maps.

2.2.12. Partial composition products for ordinal injections. Let f : {1 < · · · <
r} → {1 < · · · < m} and g : {1 < · · · < s} → {1 < · · · < n} be any pair
of injective maps. Let k ∈ {1 < · · · < r}. Our purpose is to define a map
f ◦f(k) g : {1 < · · · < r + s − 1} → {1 < · · · < m + n − 1} that reflects the
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input indexing and the distribution of unitary symbols ∗ in the treewise tensor
representation of a partial composition operation:

(1)

∗ ··· j′1 ··· ··· j′s ··· ∗

∗ ··· i′1 ··· P(n)

f(k)

··· i′r ··· ∗

P(m)

0

,

where we perform the re-indexing process determined by the map f on the inputs
of the lower factor:

1 ··· ··· ··· m

P(m)

0

f∗

−→

∗ ··· i1 ··· ··· ··· ir ··· ∗

P(m)

0

,(2)

and the re-indexing process determined by the map g on the inputs of the upper
factor:

1 ··· ··· ··· n

P(n)

0

g∗

−→

∗ ··· j1 ··· ··· ··· js ··· ∗

P(n)

0

.(3)

To simplify our layout, we assume that we start with treewise tensors equipped
with a canonical input indexing, as indicated in the above pictures (2-3). In this
situation, the value f(k) ∈ {1 < · · · < m} of our mapping f : {1 < · · · < r} →
{1 < · · · < m} marks the position of the ingoing edge labeled by the index k ∈
{1 < · · · < r} in the outcome of our re-indexing process (2) and similarly in (3).

The indices (i1, . . . , ir) in (2) form a permutation of (1, . . . , r) and the in-
dices (j1, . . . , js) in (3) form a permutation of (1, . . . , s). When we form the com-
posite of our re-indexed operations to get the picture of Equation (1), we perform
our standard index shift in order to obtain a composite operation with inputs la-
beled by the index set {1, . . . , r + s − 1}. In our figure, we use the notation i′∗
(respectively, j′∗) to denote the image of the indices i∗ (respectively, j∗) under this
canonical re-indexing operation.

Thus, our goal is essentially to determine the position of the edge marked by
each value x ∈ {1, . . . , r + s − 1} in the outcome of this re-indexing process. This
position gives the value of our composite map f ◦f(k) g on x ∈ {1, . . . , r + s − 1}.
The determination of this position follows from a straightforward inspection of
our figure. We obtain that the map f ◦f(k) g can be determined by the following
procedure. We first set:

f(x)′ =

{
f(x), if f(x) < f(k),

f(x) + n− 1, if f(x) > f(k),

for x = 1, . . . , k − 1, k + 1, . . . , r, and:

g(y)′ = g(y) + f(k)− 1,
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for y = 1, . . . , s. This index shift is equivalent to the shuffle {1 < · · · < f̂(k) < · · · <
m}� {1 < · · · < n} �−→ {1 < · · · < m+ n− 1} which reflects the planar ordering of
the ingoing edges of the lower and upper vertices in our first picture (1). Then we
define our map f ◦f(k) g : {1 < · · · < r + s − 1} → {1 < · · · < m + n − 1} by the
formula:

(f ◦f(k) g)(l) =

⎧⎪⎨⎪⎩
f(l)′, for l = 1, . . . , k − 1,

g(l − k + 1)′, for l = k, . . . , k + s− 1,

f(l − s+ 1)′, for l = k + s, . . . , r + s− 1.

Equivalently, we can determine our map f ◦f(k) g by replacing the occurrence of
the term f(k) in the sequence (f(1), . . . , f(r)) by the sequence (g(1), . . . , g(s)) and
by performing the above shift operations f(x) �→ f(x)′ and g(y) �→ g(y)′ in the
outcome of this substitution process.

2.2.13. Remarks: Partial composition of increasing injective maps and associa-
tivity relations. In the case of increasing maps u ∈ MorΛ+(r,m) and u ∈ MorΛ+(s, n),
which are determined by sequences of values of the form:

1 ≤ u(1) < · · · < u(r) ≤ m and 1 ≤ v(1) < · · · < v(s) ≤ n,

we immediately see, from our definition, that the map u ◦u(k) v : {1 < · · · <
r + s − 1} → {1 < · · · < m + n − 1} is the increasing map represented by the
sequence:

1 ≤ u(1) < · · · < u(k − 1) < v(1) + u(k)− 1 < · · · < v(s) + u(k)− 1

< u(k + 1) + n− 1 < · · · < u(r) + n− 1 ≤ m+ n− 1.

If we assume that u and v represent the ordered sequence of the remaining in-
put positions after our re-indexing operation §2.2.12(2-3), then we readily see that
this sequence, associated to u ◦u(k) v, corresponds to the input positions of our
composition scheme §2.2.12(1).

Let f ∈ MapΛ(r,m) be a map such that f = uσ, where we assume u ∈
MapΛ+(k,m) and σ ∈ Σr. Let g ∈ MapΛ(s, n) be a map such that g = vτ , for
some v ∈ MapΛ+(l, n) and some τ ∈ Σs. We easily check that we have the associa-
tivity relation f ◦f(k) g = (u ◦uσ(k) v) · (σ ◦σ(k) τ ), where we consider the partial
composition σ ◦σ(k) τ of the permutations σ ∈ Σr and τ ∈ Σs, such as defined
in §2.1.3. We can use this identity to establish the correspondence of §2.2.12 in
two steps: we check the case of increasing maps first and we use the coherence of
our definition with respect to the action of permutations in order to establish our
general formula afterwards.

2.2.14. Remarks: Partial composition with the empty map. The definition of
the partial composition operation f ◦g(k) g in §2.2.12 remains valid when g is an
empty map g = o : 0 → n. We still assume that f : r → m is any injective
map and we fix k ∈ r. In this setting, our composition operation returns a map
f ◦f(k) o : {1 < · · · < r − 1} → {1 < · · · < m+ n− 1} such that:

(f ◦f(k) o)(l) =
{
f(l)′, for l = 1, . . . , k − 1,

f(l + 1)′, for l = k, . . . , r − 1,
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where we still perform the following index shift on the values of our function f :

r → m at the points x = 1, . . . , k̂, . . . , r:

f(x)′ =

{
f(x), when f(x) < f(k),

f(x) + n− 1, when f(x) > f(k).

In the case of an increasing map u : {1 < · · · < r} → {1 < · · · < m},
represented by a sequence of the form 1 ≤ u(1) < · · · < u(r) ≤ r this construction
returns the increasing map u ◦u(k) o : {1 < · · · < r − 1} → {1 < · · · < m + n − 1}
represented by the sequence:

1 ≤ u(1) < · · · < u(k − 1) < u(k + 1) + n− 1 < · · · < u(r) + n− 1 ≤ m+ n− 1

which we obtain by removing the value u(k) and by shifting the terms u(l) > u(k)
by n− 1.

The following observation is used in §II.8.4 and in §II.11.2 in our construction
of a model for the rational homotopy of unitary operads:

Proposition 2.2.15. We fix a pair of finite ordered sets m = {1 < · · · < m},
n = {1 < · · · < n}, and a composition index i ∈ {1 < · · · < m}. Each injective
map h ∈ MorΛ(t,m+ n− 1) admits a decomposition h = f ◦f(k) g, for uniquely
determined maps f ∈ MorΛ(r,m) and g ∈ MorΛ(s, n), uniquely determined ordered
sets r = {1 < · · · < r} and s = {1 < · · · < s} (possibly, s = 0), and a composition
index k ∈ {1 < · · · < r} such that f(k) = i.

Proof. Exercise. �

We have the following statement:

Proposition 2.2.16. Let P be the underlying non-unitary operad of a unitary
operad P+.

(a) We have a commutative diagram:

P(m)⊗ P(n)

ε⊗ε

◦k
P(m+ n− 1)

ε

1⊗ 1 � 1

,

for any m,n > 0, k = 1, . . . ,m, where we consider the partial composition products
◦k : P(m) ⊗ P(n) → P(m + n − 1) of the non-unitary operad P and the augmen-
tation morphisms ε : P(r) → 1, r > 0, which we determine from the composition
operations of our unitary operad P+.

(b) We also have a commutative diagram of the form:

P(m)⊗ P(n)

f∗⊗g∗

◦f(k)

P(m+ n− 1)

(f◦f(k)g)
∗

P(r)⊗ P(s)
◦k

P(r + s− 1)

,

for any m,n > 0, k = 1, . . . ,m, where we consider the restriction operators associ-
ated to any pair of maps f ∈ MorΛ(r,m), g ∈ MorΛ(s, n) on our operad P, and we
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have a commutative diagram of the form:

P(m)⊗ P(n)

f∗⊗ε

◦f(k)

P(m+ n− 1)

(f◦f(k)o)
∗

P(r)⊗ 1 �
P(r)

∂k
P(r − 1)

,

for any m,n > 0, k = 1, . . . ,m, where we consider an empty map o ∈ MorΛ(0, n),
we still assume f ∈ MorΛ(r,m), k ∈ {1 < · · · < r}, and ∂k denotes the restriction
operator associated to the increasing map ∂k : {1 < · · · < r − 1} → {1 < · · · < r}
such that ∂k(x) = x for x = 1, . . . , k − 1 and ∂k(x) = x + 1 for x = k, . . . , r − 1
(see §2.2.1).

Proof. This proposition follows from a simple variation of the argument line
of Proposition 2.1.7, where we establish the associativity relations of the partial
composition products. To get our result, we just replace the composition schemes
considered in the proof of this proposition by composition schemes of the form:

i1 ··· j1 ··· jl ··· js ··· ir

∗ ··· 1 ··· ∗ ··· 1 ··· 1 ··· 1 ··· ∗ ··· 1 ··· ∗

1 ··· 1 ··· P(n) ··· 1 ··· ∗

P(m)

0

with unitary factors ∗ on the vertices of the upper level. The claim of assertion (a)
corresponds to the case where all these vertices are marked by the symbol ∗. The
proof of our statements reduces to straightforward verifications. Note that we can
restrict ourselves to the case of increasing maps. The general result then follows
from the associativity of the partial composition operation with respect to the
composition of maps in the category Λ and from the result of Proposition 2.1.2,
where we check the equivariance of the partial composition products of an operad
with respect to the action of permutations. �

2.2.17. The definition of unitary operads as extensions of non-unitary operads.
In §2.1, we established that the composition structure of an operad is determined
by giving the partial composition products of §2.1.1. In the unitary context, we
obtain from the results obtained in this section that the composition structure of a
unitary extension P+ of a non-unitary operad P can be determined by giving:
(1) the internal partial composition products of the non-unitary operad P , which,

in our unitary extension, correspond to the partial composition products

P+(m)⊗ P+(n)︸ ︷︷ ︸
=P(m)⊗P(n)

◦k−→ P+(m+ n− 1)︸ ︷︷ ︸
=P(m+n−1)

such that m,n > 0,
(2) the restriction operators u∗ : P(n) → P(m), for u ∈ MorΛ+(m, n) and m,n > 0,

which are equivalent to composition operations of the form

P+(n)⊗ P+(0)⊗ · · · ⊗ 1⊗ · · · ⊗ 1⊗ · · · ⊗ P+(0)︸ ︷︷ ︸
=P(n)

μη∗−−→ P+(m)︸ ︷︷ ︸
=P(m)

,
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with operadic units and unitary terms as composition factors,
(3) and the augmentations ε : P(n) → 1, n > 0, which yield composition products

P+(n)⊗ P+(0)⊗ · · · ⊗ P+(0)︸ ︷︷ ︸
=P(n)

μ−→ P+(0)︸ ︷︷ ︸
=1

with the unitary term P+(0) = 1 as target.
These structure morphisms also satisfy the following assertions:

(a) The partial composition products (1) fulfill the equivariance, unit, and
associativity axioms of §2.1.9 within the non-unitary operad P.

(b) The restriction operators (2) and the augmentation (3) also fulfill equiv-
ariance and internal associativity relations, formulated in Lemma 2.2.4,
so that (2-3) actually provide the underlying sequence of the non-unitary
operad P with the structure of an augmented Λ-diagram (in the terms
of §2.2.2).

(c) The restriction operators (2) and the augmentation (3) fulfill associativ-
ity relations, which we express by the commutativity of the diagrams of
Proposition 2.2.16, with respect to the partial composition operations (1).

(d) The component of arity one of the augmentation (3) defines a retraction
of the operadic unit η : 1 → P(1).

We call augmented non-unitary Λ-operad the general structure defined by a
non-unitary operad P equipped with restriction operators (2) and augmentations
(3) that satisfy the above requirements. We also adopt the notation ΛOp∅ /Com
for this category of augmented non-unitary Λ-operads, where we obviously take the
morphisms of non-unitary operads that preserve the restriction operators and the
augmentation of our objects as morphisms.

We already briefly mentioned that the augmentations ε : P(n) → 1 which we
associate to our unitary operad structure in (3) actually define a morphism with
values in the underlying Λop

>0-diagram of the commutative operad Com+. We soon
check that these morphisms define a morphism of augmented non-unitary Λ-operads
from P to the augmented non-unitary Λ-operad Com underlying Com+, so that the
(non-unitary) commutative operad Com actually represents the terminal object of
our category of augmented non-unitary Λ-operads. This observation motivates the
notation ΛOp∅ /Com which we give to this category of operads.

The notion of an augmented Λ-operad has a natural extension to operads with
no fixed arity zero component. But in what follows we only consider the non-unitary
version of this notion, such as defined in this paragraph. For this reason, we often
omit to specify that we restrict ourselves to non-unitary operads and we just use
the name ‘augmented Λ-operad’ to refer to objects of the category of augmented
non-unitary Λ-operads.

In certain cases (when the unit object of the category is the terminal object), an
operad comes automatically equipped with augmentation morphisms (3), which are
canonically determined by the structure of the ambient category. In this context,
we use the abridged notation ΛOp∅ = ΛOp∅ /Com for the category of augmented
non-unitary Λ-operads. Furthermore, we just use the name ‘Λ-operad’, where we
omit to specify the existence of the augmentation, for the objects of this category
P ∈ ΛOp∅.
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We can summarize the previous results of this section and the correspondence
of §2.2.17 as the definition of a functor τ : Op∗ → ΛOp∅ /Com from the cate-
gory of unitary operads Op∗ towards the category of augmented non-unitary Λ-
operad ΛOp∅ /Com. We check that:

Theorem 2.2.18. The correspondence of §2.2.17 gives an isomorphism of cat-
egories between the category of unitary operads Op∗ and the category of augmented
non-unitary Λ-operads ΛOp∅ /Com.

Proof. In what follows, we use general restriction operators (and the corre-
spondence of this theorem) to handle the composition operations with the unitary
term P+(0) = 1 of unitary operads P+, while we consider partial composition
operations when we deal with composition structures attached to the non-unitary
operad P underlying our object P+. Nevertheless, we can apply the result of Theo-
rem 2.1.10, where we explain the definition of arbitrary operads in terms of partial
composition operations, to unitary operads P+, and we temporarily focus on the
restriction operators corresponding to the partial composition operations with the
unitary term P+(0) = 1 in the proof of this theorem.

Thus, we consider the particular restriction operators ∂k : P(n) → P(n − 1),
defined in §2.2.1, which correspond to the partial composition operations with a
unitary factor ◦k : P+(n) ⊗ P+(0) → P+(n − 1), for any n > 1. The terminal
augmentation ε : P(1) → 1, on the component of arity one of our operad P(1), is also
clearly identified with the unique partial composition product ◦1 : P+(1)⊗P+(0) →
P+(0), which has the unitary component as target P+(0) = 1. The structure of
an augmented non-unitary Λ-operad P accordingly includes all partial composition
products which we have to fix in order to determine this unitary operad P+. The
equivariance, unit and associativity requirements of the restriction operators in the
definition of an augmented non-unitary Λ-operad also cover all equivariance, unit
and associativity relations which these partial composition products with a unitary
factor ◦k : P+(n) ⊗ P+(0) → P+(n − 1), k = 1, . . . , n, have to satisfy within the
unitary operad P+. We therefore obtain that the mapping τ : P+ �→ P defines an
isomorphism of categories τ : Op∗ → ΛOp∅ /Com as claimed in our theorem. �

The unitary commutative operad Com+, such as defined in §2.1.11, provides a
natural example of unitary operad. We check that this operad Com+ represents the
terminal object of the category of unitary operads Op∗ (as we already mentioned
in this section) and, equivalently, that the non-unitary commutative operad Com
underlying Com+ represents the terminal object of the category of augmented non-
unitary Λ-operads ΛOp∅ /Com.

2.2.19. The unitary structure of the commutative operad. Recall that the op-
erad Com+ is defined by the constant symmetric sequence Com+(n) = 1, that the
action of the symmetric group Σn on Com+(n) is trivial, and that the composition
products ◦k : Com+(m)⊗Com+(n) → Com+(m+n− 1) are given by the canonical
unit isomorphisms 1⊗ 1 � 1 in our base symmetric monoidal categoryM. The com-
position products μ : Com+(r)⊗Com+(n1)⊗· · ·⊗Com+(nr) → Com+(n1+· · ·+nr),
which we associate to this composition structure, are obviously given by the canon-
ical unit isomorphisms 1⊗ 1⊗ · · ·⊗1 � 1 too, and we easily get from this definition
that the restriction operators of the non-unitary operad Com underlying Com+ are
given by identity morphisms of the unit object. Hence, in the result of Propo-
sition 2.2.5, we obtain that Com inherits a constant Λop

>0-diagram structure (in
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arity n > 0). The augmentations ε : Com(n) → 1 associated to this operad are
given by the identity of the unit object too.

In Proposition 2.2.6, we prove that the Λop
>0-diagram formed by the non-unitary

operad P underlying a unitary operad P+ is canonically augmented over this con-
stant diagram. In fact, at the operad level, we have the following result:

Proposition 2.2.20. The augmentations ε : P+(n) → 1, which we define by

considering the components P+(n) = P+(n)⊗P+(0)
⊗n μ−→ P+(0) of the composition

products of a unitary operad P+ (see §2.2.1), form a morphism of unitary operads
ε : P+ → Com+.

Proof. The equivariance, unit, and associativity axioms of operads, as for-
mulated in the definition of §1.1.1, imply that the augmentations ε : P+(n) → 1
carry all structure morphisms associated to the unitary operad P+ to the identity
of the unit object 1. We immediately conclude that these augmentations define a
morphism towards the commutative operad Com+ as asserted. �

From this proposition, we readily conclude that:

Proposition 2.2.21. The unitary commutative operad Com+, such as defined
in §3.1, represents the terminal object of the category of unitary operads. �

In the non-unitary setting, we obtain the following counterpart of these state-
ments:

Proposition 2.2.22. The augmentation morphisms ε : P(n) → 1 attached
to an augmented non-unitary Λ-operad P ∈ ΛOp∅ /Com define a morphism of
augmented non-unitary Λ-operads ε : P → Com, where we assume that the commu-
tative operad Com is equipped with the constant Λop

>0-diagram structure of Propo-
sition 2.2.6 and with the identity of the unit object 1 as augmentation morphisms
ε : Com(n) → 1.

The commutative operad Com accordingly represents the terminal object of the
category of augmented non-unitary Λ-operads ΛOp∅ /Com. �

Recall that the structure morphisms which we associate with the commutative
operad Com in this proposition correspond to the composition structure attached to
the unitary version of the commutative operad Com+. The claim of this proposition
is therefore equivalent, in view of the result of Theorem 2.2.18, to the assertions of
Proposition 2.2.20-2.2.21.

2.2.23. Free algebras over unitary operads. We assume throughout this para-
graph that we work in the category of topological spaces. The operads consider in
May’s monograph [140] are actually unitary operads (called unital operads in that
reference).

We already observed that giving the arity 0 operation λ : P+(0) → A, for an
algebra A over a unitary operad P+, amounts to fixing a unit element in A. In the
topological setting, we can identify this unit element with a base point associated
to our space A and we therefore naturally deal with the category of pointed spaces
when we consider unitary operads P+ in topological spaces. Then we can use the
action of the category of finite ordinals and injections to give a reduced version of
the free P+-algebra functor. We proceed as follows. In this paragraph, we consider
the whole category of finite ordinals and injections Λ rather than the subcategory
Λ>0. The (contravariant) action of the truncated category Λ>0 on the non-unitary
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P, which we have considered all through this section, extends to a (contravariant)
action of the category Λ on the unitary operad P+ associated to P .

The basic observation is that the cartesian powers X×n, n ∈ N, of a pointed
space X inherits a (covariant) Λ-diagram structure: to any injective map f : {1 <
· · · < m} → {1 < · · · < n}, which defines a morphism in the category Λ, we
associate the mapping f∗ : X×m → X×n which maps any m-tuple (x1, . . . , xm) ∈
X×m to the n-tuple (y1, . . . , yn) ∈ X×n such that:

yj =

{
xi, if j = f(i), for some i,

∗, otherwise.

We then form the coend

S∗(P+, X) =

∫ n∈Λ

P+(n)×X×n

to define the (reduced free) P+-algebra associated to our based spaceX. Intuitively,
performing this coend amounts to implementing identities

pf∗(x1, . . . , xm) = f∗p(x1, . . . , xm),

in the free algebra structures of §1.3. One can readily check that this reduced
free algebra functor S∗(P+) : X �→ S∗(P+, X) gives a left adjoint of the reduced
forgetful functor ω : P+ → Top∗, where we retain the base point, defined by the
map λ : P+(0) → A, from the structure of our P+-algebras A ∈ P+.

May’s approximation theorem [140] deals with the reduced free algebras asso-
ciated to the little n-cubes operads Cn+ (see §4.1). May’s result precisely asserts
that, when X is a connected space (and more generally, when X is group-like), the
free algebra S∗(Cn+, X) is weakly-equivalent to the iterated loop spaces ΩnΣnX,
where Ωn refers to the n-fold loop space functor on pointed spaces, and Σn refers
to the n-fold suspension. In this construction, which gives the starting point of the
iterated loop space theory of [140], the little n-cubes operad Cn+ can be replaced
by any Λ-object weakly-equivalent to Cn+ and which satisfies some mild cofibration
conditions with respect to the action of symmetric groups.

The most classical example of such an equivalence, occurring in the case n = 1,
is given by the associative (permutation) operad As+. In this case, the reduced
free associative monoid, which our construction represents, can be identified with
the construction J(X) introduced by James in [96]. May’s approximation theo-
rem actually occurred as a generalization of a result established by James for the
combinatorial construction J(X).

The abstract structure defined by restriction operators is notably used to give a
model of generalized James-Hopf’s maps in [44] and in Berger’s recognition criterion
of En-operads (the operads which are weakly-equivalent to the little n-cubes) in [23,
24]. We go back to the definition of the little cubes operads and to the subject of
iterated loop space theory in §4. We give further references on these topics in this
subsequent chapter §4.

2.3. Categorical constructions for unitary operads

We now assume that the tensor product of the base category distributes over
colimits, as we require in §0.9, and we revisit the definition of the categorical con-
structions of §1.2 in the context of unitary operads. The idea is to use the category
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isomorphism of Theorem 2.2.18 and to formulate our constructions in terms of
augmented non-unitary Λ-operads rather than in terms of unitary operads.

Our first purpose is to explain the definition of a reduced version of free unitary
operads. Let P+ be any unitary operad. By Proposition 2.2.5 and Proposition 2.2.6,
the collection P(n), n > 0, where we forget about the arity zero term P+(0) = 1 of
this unitary operad P+, inherits the structure of a Λ

op
>0-diagram and is also equipped

with an augmentation over the constant Λop
>0-diagram Cst, which represents the

Λop
>0-diagram associated to the underlying non-unitary operad Com of the unitary

commutative operad Com+. Recall that we rather use the phrase ‘augmented non-
unitary Λ-sequence’ to refer to this structure (see §2.2.2). Thus, the mapping ω+ :
P+ �→ P actually gives a functor ω+ : Op∗ → Λ Seq>0 /Com from the category of
unitary operads Op∗ to the category of augmented non-unitary Λ-sequences, which
we denote by Λ Seq>0 /Com. This functor reduces to the obvious forgetful functor
ω : ΛOp∅ /Com → Λ Seq>0 /Com when we pass to the category of augmented non-
unitary Λ-operads P ∈ ΛOp∅ /Com equivalent to the category of unitary operads
P+ ∈ Op∗.

We elaborate on the free operad construction of the introductory chapter §1 to
define a left adjoint of this forgetful functor Θ : Λ Seq>0 /Com → ΛOp∅ /Com. We
then use the isomorphism of Theorem 2.2.18 to go back to the category of unitary
operads Op∗ and to define the reduced unitary operad Θ(M)+ which we associate
to any object M ∈ Λ Seq>0 /Com. In comparison with the construction of §1.2, we
already fix a subpart of the composition structure of the free unitary operad Θ(M)+
in the definition of the augmented non-unitary Λ-sequence M. This free unitary
operad Θ(M)+ is therefore smaller than the standard free operad of §1.2.

The forgetful functor from the category of augmented non-unitary Λ-operads
to the category of augmented non-unitary Λ-sequences fits in a diagram

Λ Seq>0 /Com ΛOp∅ /Com
ω

Seq>0

Θ
Op∅ω

,

where the vertical arrows are the obvious forgetful functors from the category of
augmented non-unitary Λ-operads (respectively, Λ-sequences) to the category of
ordinary non-unitary operads (respectively, symmetric sequences) and we consider
the standard forgetful functor from the category of ordinary non-unitary operads to
the category of non-unitary symmetric sequences on the bottom row. We actually
prove that our free object functor Θ : Λ Seq>0 /Com → ΛOp∅ /Com defines a
lifting of the free object functor of §1.2 on the bottom row of this diagram.

To be more precise, let M be any object in the category of augmented non-
unitary Λ-sequences Λ Seq>0 /Com. Let Θ(M) be the free operad associated to the
symmetric sequence underlying our object M, where we forget about the restriction
operators and the augmentation morphisms. We have the following proposition:

Proposition 2.3.1.
(a) The free operad Θ(M) inherits the additional structure of an augmented Λ-

operad which is also uniquely determined by requiring that the canonical embedding
ι : M → Θ(M) defines a morphism of augmented non-unitary Λ-sequences.
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(b) Let f : M → P be a morphism of augmented non-unitary Λ-sequences
with values in an augmented non-unitary Λ-operad P. The operad morphism φf :
Θ(M) → P associated to f in the adjunction relation of Theorem 1.2.1 and Propo-
sition 1.2.2 preserves the additional augmented Λ-operad structure attached to our
objects and hence, defines a morphism in the category of augmented non-unitary
Λ-operads.

Explanations. We refer to the appendix part (Proposition A.3.12) for a de-
tailed proof of this statement. We just outline the main ideas of our construction
for the moment.

The requirement that the canonical embedding ι : M → Θ(M) defines a mor-
phism of augmented non-unitary Λ-sequences is equivalent to the following assump-
tions:

– The restriction operators u∗ : Θ(M)(n) → Θ(M)(m), for u ∈ MorΛ(m, n)
and m,n > 0, are determined on M(n) ⊂ Θ(M)(n) by the internal restric-
tion operators u∗ : M(n) → M(m) attached to our object M.

– The augmentations ε : Θ(M)(r) → 1, for r > 0, are similarly determined
on M(r) ⊂ Θ(M)(r) by the augmentation morphisms ε : M(r) → 1 given
with M.

In §1.2, we explained that the free operad Θ(M) intuitively consists of formal com-
posites of elements of the generating symmetric sequence M (when we work in a
concrete base symmetric monoidal category). Recall that we represent such formal
composites by tensors arranged on trees. The idea is to use the associativity re-
lations of Proposition 2.2.16 in order to extend the restriction operators and the
augmentations of our generating symmetric sequence to these formal operadic com-
posites.

To illustrate our constructions, we consider the same formal composite p =
(1 5) · (((x ◦1 y) ◦4 z) ◦3 t) as in our definition of the free operad in §1.2. This
element p is represented by the following treewise tensor:

p =

3 4

5 2 t 1 6

y z

x

0

(see §1.2). We assume that we work within a category of modules, so that the
application of the augmentation ε : M(n) → k to an element ξ ∈ M(n) returns a
multiplicative scalar ε(ξ) ∈ k.

Let u : 3 → 6 be the map such that u(1) = 1, u(2) = 2, u(3) = 5. We use
the conventions of §2.2.10 in order to represent the application of the restriction
operator u∗ on our operation p. We replace the indices attached to the inputs of
our element in the above picture by their corresponding counterimage u−1(k) when
k ∈ {u(1), u(2), u(3)} and by the mark ∗ otherwise:

u∗(p) =

∗ ∗

3 2 t 1 ∗

y z

x

0

.
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We then get the following reductions:

u∗(p) ≡ ε(t) ·

3 2 ∗ 1

y w∗(z)

x

0

≡ ε(t) ·

3 2 1

v∗(y) w∗(z)

x

0

,

where v∗(y) denotes the image of the element y ∈ M(3) under the restriction
operator associated to the increasing map v : 2 → 3 such that v(1) = 1, v(2) = 2,
and w∗(z) denotes the image of the element z ∈ M(2) under the restriction operator
associated to the increasing map w : 1 → 2 such that w(1) = 1.

We can also give an algebraic formulation, in terms of partial composition
products, of this restriction process. We then consider a decomposition of our map
u : 3 → 6 of the same shape u = ((a◦1 b)◦4 c)◦3d as our formal composite p = (1 5) ·
(((x ◦1 y) ◦4 z) ◦3 t) in the free operad. We can easily determine this decomposition
from the picture of our restriction operator in the treewise representation of the
element u∗(p). We actually have a = id = id2 (the identity map of the ordered
set 2 = {1 < 2}) and b = id = id3 (the identity map of the ordered set 3 = {1 <
2 < 3}). We have c = w : 1 → 2, where w is the map such that w(1) = 1. We
also get the empty map o : 0 → 2 for the remaining factor d of our decomposition
u = ((a ◦1 b) ◦4 c) ◦3 d. We have u∗ · (1 5) = (1 3) · u∗, and in this formalism,
we deduce from the equivariance relations of Proposition 2.2.16 that we have the
formulas:

u∗(p) = ε(t) · (1 3) · ∂3((x ◦1 y) ◦4 w∗(z))

= ε(t) · (1 3) · ((x ◦1 v∗(y)) ◦3 w∗(z)),

where we again consider the map v : 2 → 3 such that v(1) = 1, v(2) = 2. We
exactly retrieve the composite represented in our treewise picture of the restriction
operator u∗ : p �→ u∗(p).

In §1.2, we briefly explain that the treewise composites which span the free
operad Θ(M) are formally defined as elements of treewise tensor products M(T),
where T runs over a category of trees Tree(r), so that the components of the free
operad have an expansion of the form Θ(M)(r) = colimT∈Tree(r)M(T), for all r ∈ N.
The restriction operators u∗ : Θ(M)(n) → Θ(M)(m) are defined termwise by mor-
phisms of the form u∗ : M(T) → M(u∗ T), for T ∈ Tree(n), where u∗ T determines
the composition schemes associated to the image of our formal composites under
the restriction operator u∗ : p �→ u∗(p). In §A.1.11, we will explain that these
maps u∗ : T �→ u∗ T also represent the restriction operators of a Λ-operad structure
on the categories of trees Tree(r), r ∈ N.

The augmentation morphisms ε : Θ(M)(n) → Com(n) can either be obtained
by the same explicit construction, where we just assign a unitary symbol to all
inputs of our treewise tensor products, or can be determined as the components of
the unique operad morphism ε : Θ(M) → Com that extends the augmentation of
M. In fact, to determine the image of a treewise tensor under the augmentation
morphism of the free operad, we just have to apply the augmentation of our Λ-
sequence ε : M(r) → 1 to each factor of our tensor product. This operation lands
in the tensor product of the unit object 1 over our tree. We just use the canonical

isomorphism 1⊗ · · · ⊗ 1
�−→ 1 in order to get a result in the unit object 1. In our
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example (where we also assume 1 = k), we get:

ε(p) =

∗ ∗

∗ ∗ t ∗ ∗

y z

x

0

≡ ε(x) · ε(y) · ε(z) · ε(t).

We immediately obtain that the morphism φf : Θ(M) → P which extends our
morphism of augmented non-unitary Λ-sequences f : M → P in assertion (b) pre-
serves restriction operators and augmentations, because we use universal relations,
valid in any given unitary extension by Proposition 2.2.16, to define our structures
on the free operad Θ(M). We deduce the conclusion of assertion (b) from this
observation. �

Then we check that:

Theorem 2.3.2.
(a) The construction of Proposition 2.3.1 gives a functor

Θ(−) : Λ Seq>0 /Com → ΛOp∅ /Com,

which defines a left adjoint of the obvious forgetful functor ω : ΛOp∅ /Com →
Λ Seq>0 /Com from the category of augmented non-unitary Λ-operads ΛOp∅ /Com
towards the category of augmented non-unitary Λ-sequences Λ Seq>0 /Com, and
which maps any augmented non-unitary Λ-sequence M ∈ Λ Seq>0 /Com to an as-
sociated free object in the category of augmented non-unitary Λ-operads Θ(M) ∈
ΛOp∅ /Com.

(b) If we take the unitary extension Θ(M)+ of this free augmented connected
Λ-operad Θ(M) which we associate to any augmented non-unitary Λ-sequence M ∈
Λ Seq>0 /Com in assertion ( a), then we get a functor

Θ(−)+ : Λ Seq>0 /Com → Op∗

which is left adjoint to our extended forgetful functor ω+ : Op∗ → Λ Seq>0 /Com
from the category of unitary operads Op∗ towards the category of augmented non-
unitary Λ-sequences Λ Seq>0 /Com.

Explanations. We naturally gain the result of this theorem in the category
of augmented non-unitary Λ-operads and assertion (b) is an immediate corollary of
the result of assertion (a). We elaborate on the definition of the adjunction relation
for the ordinary free operad functor in §1.2 and on the claims of Proposition 2.3.1
to get our statement.

To be explicit, recall that the canonical embedding of the free operad ι : M →
Θ(M) represents the unit morphism of our adjunction in Theorem 1.2.1, while the
augmentation of this adjunction λ : Θ(P) → P is identified with the morphism of the
free operad λ = φid associated to the identity morphism of the object P , for each op-
erad P . The assertions of Proposition 2.3.1 imply that the morphism ι : M → Θ(M)
lies in the category of augmented non-unitary Λ-sequences when M belongs to this
category and λ = φid similarly defines a morphism of augmented Λ-operads when
we assume that P is so. The relations of adjunction units and of adjunction augmen-
tations remain obviously valid for this restriction of our morphisms to augmented
non-unitary Λ-sequences and augmented non-unitary Λ-operads, which therefore



2.3. CATEGORICAL CONSTRUCTIONS FOR UNITARY OPERADS 79

define the unit and the augmentation of an adjunction relation for our upgraded free
operad functor with values in the category of augmented non-unitary Λ-operads.

The morphism of augmented Λ-operads φf : Θ(M) → P yielded by the result
of Proposition 2.3.1(b) also represents image of the morphism of augmented non-
unitary Λ-sequences f : M → P under the correspondence of our adjunction relation
since we have φf ι = f by definition of this morphism in the category of ordinary
operads (see Proposition 1.2.2). �

The unit operad I admits an obvious unitary extension I+ and we immediately
see that this operad I+ defines the initial object of the category of unitary operads.
The restriction operators u∗ : I (n) → I (m), which we determine from this unitary
operad structure, reduce to the identity of the initial object when m,n > 1, to
the initial morphism of the unit object ∅ → 1 when m > 1, n = 1, and to the
identity of the unit object 1 → 1 when m = n = 1. We have a similar trivial
representation of the augmentations ε : I (n) → 1 attached to the unit operad. We
may also directly check that the unit operad I , equipped with this extra structure,
defines the initial object of the category of augmented non-unitary Λ-operad.

Then we can establish the following result, which parallels the statement of
Proposition 1.2.4 about the construction of limits and colimits in the category of
ordinary operads:

Proposition 2.3.3.
(a) The forgetful functor ω : ΛOp∅ /Com → Λ Seq>0 /Com creates all small

limits, the filtered colimits, and the coequalizers which are reflexive in the category
of non-unitary Λ-sequences.

(b) The category of augmented non-unitary Λ-operads also admits coproducts
and, as a byproduct, all small colimits.

Proof. Exercise: check that the arguments of §1.2.4 extend to the setting of
augmented non-unitary Λ-operads. (We go back to the definition of coproducts in
the proof of the next statement.) �

To complete the statement of this Proposition 2.3.3, we may note that limits in
the category of augmented non-unitary Λ-sequences are created aritywise as limits
of objects of the ambient category equipped with an augmentation over the unit
object Com(r) = 1. We have a similar statement regarding colimits (we can forget
about augmentations in this case). We elaborate on these observations to compare
limits and colimits in the category of augmented non-unitary Λ-operads and in the
category of ordinary non-unitary operads. We get the following result:

Proposition 2.3.4. The functor τ : ΛOp∅ /Com → Op∅ /Com, which forgets
about the restriction operators in the structure of an augmented Λ-operad, preserves
colimits and limits.

We can also consider the prolongment of the forgetful functor of this proposition
to the category of plain non-unitary operad Op∅, where we also forget about the
augmentation morphisms attached to our objects. This functor actually creates the
colimits in the category of augmented non-unitary Λ-operads, but we do not use
this more precise result.
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Proof. The case of limits follows from the observation that the forgetful func-
tor ω : Λ Seq>0 /Com → Seq>0 /Com creates limits (because limits in diagram cat-
egories are created termwise) and from the results of Proposition 1.2.4 and Propo-
sition 2.3.3, where we check that limits of operads are created aritywise in the base
category (see also Proposition 1.2.16).

We can check that the forgetful functor τ : ΛOp∅ /Com → Op∅ creates the
coequalizers which are reflexive in the base category by the same argument. We
examine the construction of coproducts with more details in order to check that this
forgetful functor preserves coproducts as well and this verification will be enough
to conclude that our functor preserves all colimits.

In Proposition 1.2.4, we establish that a coproduct of operads Q =
∨

α Pα is
given by a reflexive coequalizer of free operads

Θ(
∐

α∈I Θ(Pα))
d0

d1

Θ(
∐

α∈I Pα)

s0

Q

If we assume that each Pα is equipped with an augmented Λ-operad structure, then
the free operad Θ(

∐
α∈I Pα) inherits an augmented Λ-operad structure, and we have

the same result for the free operad Θ(
∐

α∈I Θ(Pα)). The structure morphisms of
our coequalizer belong to the category of augmented non-unitary Λ-operads too.
From this result, we deduce that our coequalizer Q admits an augmented Λ-operad
structure (since we observed that reflexive coequalizers are created termwise in all
operadic categories) and this augmented non-unitary Λ-operad also represents the
coproduct of the objects Pα in the category of augmented non-unitary Λ-operads.
The conclusion follows. �

We can use Proposition 2.3.3 and the isomorphism of Theorem 2.2.18 to get
the existence of limits and colimits in the category unitary operads Op∗.

We can also rephrase the result of Proposition 2.3.4 in terms of the trunca-
tion functor τ : P+ �→ P from unitary operads to non-unitary operads. To be
precise, recall that any unitary operad P+ comes equipped with an augmentation
over the commutative operad Com+ (see Proposition 2.2.20) and the augmenta-
tion morphism of the augmented non-unitary Λ-operad equivalent to P+ reflects
this structure attached to our unitary operad. For the study of limits, we have
to deal with the functor τ : Op∗ → Op∅ /Com which retains this augmentation
ε : P → Com from the structure of the unitary operad P+.

We get the following statement:

Proposition 2.3.5. The obvious truncation functor τ+ : Op∗ → Op∅ from the
category of unitary operads to the category of non-unitary operads Op∅ preserves
colimits and the extension of this forgetful functor τ+ : Op∗ → Op∅ /Com, where
we keep the natural augmentation of unitary operads, preserves limits. �

2.4. The definition of connected unitary operads

In the previous sections, we explained the definition of general unitary operads,
but in applications we often deal with operads which satisfy an extra connectedness
condition. To be more precise, recall that a non-unitary operad P is called con-
nected when this operad satisfies P(1) = 1 in addition to the condition P(0) = ∅

of the definition of the category of non-unitary operads. In the unitary setting, we
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say that P is connected when have P(0) = P(1) = 1 (see §§1.1.19-1.1.20). The con-
nected unitary operads P+ are obviously identified with the unitary extensions of
the non-unitary operads P which are connected as non-unitary operads. Hence, the
category isomorphism of Theorem 2.2.18, between unitary operads and augmented
non-unitary Λ-operads, has an obvious restriction to connected operads.

Recall that a symmetric sequence M is called connected when we have M(0) =
M(1) = ∅ and we write Seq>1 for the category of symmetric sequences which
satisfy this condition. The category of connected (non-unitary) operads is denoted
by Op∅1 and the category of connected unitary operads by Op∗1. We also write
ΛOp∅1 /Com for the category of augmented connected Λ-operads, which consists of
the augmented non-unitary Λ-operads which are connected as non-unitary operads.
If we restrict ourselves to connected operads, then the result of Theorem 2.2.18
precisely implies that we have an isomorphism

τ+ : Op∗1
�−→ ΛOp∅1 /Com

between this subcategory of the category of augmented non-unitary Λ-operads
ΛOp∅1 /Com ⊂ ΛOp∅ /Com and the category of connected unitary operads Op∗1.

We aim to adapt the construction of §2.3 in order to get a reduced definition of
free objects in the context connected unitary operads. We again define a free object
functor with values in the category of augmented connected Λ-operads first. We
use the isomorphism of Theorem 2.2.18 afterwards in order to get unitary operads
from this construction. We still assume that the tensor product of our base category
distributes over colimits since we need this property in our definition of free objects.

In Theorem 1.2.14, we observed that the standard free operad functor Θ(−)
gives rise to a functor from the category of connected symmetric sequences to the
category of connected (non-unitary) operads. In this theorem, we also proved that
this free connected operad functor is left adjoint to the augmentation ideal functor
ω̄ : P �→ P̄ which maps a connected operad P to the symmetric sequence such
that P̄(n) = ∅, if n = 0, 1, and P̄(n) = P(n), otherwise. The definition of free
augmented non-unitary Λ-operads in §2.3, and our subsequent definition of free
unitary operads, is not well suited for this connected version of the adjunction
relation, because when we form the augmentation ideal of an operad P̄ , we have
to discard the restriction operators u∗ : P(n) → P(m) which have the arity 1
component of the operad as target. Hence, we introduce a new subcategory Λ>1 of
the category Λ>0 where the object 1 = {1}, which corresponds to this arity r = 1,
is removed.

2.4.1. The connected version of the category of finite ordinals and injections.
We basically consider the full subcategory of the category of ordinals and injections
generated by the ordered sets n = {1 < · · · < n} such that n > 1. We use the
notation Λ>1 for this truncated category, and as in §2.2.2, we adopt the notation
Λ+
>1, with a + superscript, to refer to the subcategory of Λ>1 which has the same

objects, but whose morphisms consist of the increasing injections only.
We also use the notation Σ>1 for the isomorphism subcategory of Λ>1. We still

have MorΣ(n, n) = Σn and MorΣ(m, n) = ∅ when m �= n. We have obvious identities
Λ+
>1 = Λ+ ∩ Λ>1 and Σ>1 = Σ ∩ Λ>1, as well as a decomposition Λ>1 = Λ+

>1Σ>1

as in the case of the category Λ>0. Recall that we use the notation of the whole
category Λ (respectively, Λ+, Σ) rather than the notation of a specific subcategory
in the expression of morphism sets.
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We call connected Λ-sequence the structure formed by a connected symmetric
sequence M equipped with restriction operators u∗ : M(n) → M(m), associated
to all maps u ∈ MorΛ+(m, n), where m,n > 1, and which fulfill the associativity
and equivariance relations of Proposition 2.2.4. We immediately see that giving
this structure amounts to providing the sequence M with a contravariant action of
the category Λ>1 such that the restriction operators u∗ : M(n) → M(m) give the
action of the subcategory Λ+

>1 on M and the internal symmetric structure of the
collection M(n) provides the action of the isomorphism subcategory Σ>1 ⊂ Λ>1

(see Proposition 2.2.5). We use the notation Λ Seq>1 (and the same conventions
as in §2.2.2) to denote this category of diagrams. We moreover adopt the notation
Λ Seq>1 /Com to refer to the category formed by the connected Λ-sequences M ∈
Λ Seq>1 which are equipped with an augmentation over the augmentation ideal

of the commutative operad Com. We can also identify this object Com with the
constant Λop

>1-diagram such that Com(r) = 1, for all r > 1.
2.4.2. The augmentation ideal of connected Λ-operads. Let P an augmented

non-unitary Λ-operad which satisfies our connectedness condition P(1) = 1. The
action of the category Λ>0 on P obviously restricts to an action of the truncated
category Λ>1 on the augmentation ideal P̄ . We moreover have an augmentation
morphism ε : P̄ → Com, with the augmentation ideal of the commutative operad
as codomain, which is given by the obvious restriction of the augmentation mor-
phism ε : P → Com attached to our operad P.

The mapping ω̄ : P �→ P̄ therefore gives a functor

ω̄ : ΛOp∅1 /Com → Λ Seq>1 /Com

from the category of augmented connected Λ-operads ΛOp∅1 /Com towards the

category of augmented connected Λ-sequences Λ Seq>1 /Com.
In §§1.2.13-1.2.14, we prove that the restriction of the standard free operad

functor Θ : Seq → Op to the category of connected symmetric sequences Seq>1

defines a left adjoint for the augmentation ideal functor ω̄ : P �→ P̄ on the category
of ordinary connected operads Op∅1. We now check that this adjunction relation
lifts to augmented connected Λ-operads.

Let M be any object in the category of augmented connected Λ-sequences
Λ Seq>1 /Com. Let Θ(M) be the free operad associated to the symmetric sequence
underlying M, where we still forget about the restriction and the augmentation
morphisms attached to our object. Recall again that the assumption M(0) =
M(1) = ∅ implies that this free operad Θ(M) is connected. In particular, we
have Θ(M)(1) = 1, with a unit morphism η : 1 → Θ(M)(1) given by the identity
morphism of the unit object 1 ∈ M. Recall also that we write Θ̄(M) for the
augmentation ideal of this free connected operad Θ(M) and that the unit of our
adjunction Θ : Seq>1 � Op∅1 : ω̄ in §§1.2.13-1.2.14 is the morphism ι : M → Θ̄(M)
defined by the obvious restriction, to the components of arity r > 1, of the canonical
embedding ι : M → Θ(M) of the object M in the free operad Θ(M).

We get the following proposition:

Proposition 2.4.3.
(a) The free connected operad Θ(M) inherits the additional structure of an aug-

mented Λ-operad which is also uniquely determined by requiring that the canonical
morphism ι : M → Θ̄(M) defines a morphism of augmented connected Λ-sequences.
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(b) Let f : M → P̄ be a morphism of augmented connected Λ-sequences with
values in the augmentation ideal of an augmented connected Λ-operad P. The op-
erad morphism φf : Θ(M) → P associated to f in the adjunction relation of Theo-
rem 1.2.1 and Proposition 1.2.2 preserves the additional augmented Λ-operad struc-
tures of our objects and hence, defines a morphism in the category of augmented
connected Λ-operads.

Explanations. We again give short explanations for the proof of this state-
ment and we refer to the appendix part (Proposition A.4.7) for details. We first
adapt the construction of Proposition 2.3.1 in order to get an augmented Λ-operad
structure on the free operad Θ(M). In this previous statement, we assumed that
the restriction (respectively, augmentation) morphisms of the free operad are de-
termined on M ⊂ Θ(M) by the restriction (respectively, augmentation) morphisms
attached to our collection M. In the present case, we use the following require-
ments, which are equivalent to the assumption that the morphism ι : M → Θ̄(M)
defines a morphism of augmented connected Λ-sequences:

– The restriction operator u∗ : Θ(M)(n) → Θ(M)(m), associated to any
injective map u : {1 < · · · < n} → {1 < · · · < m}, for n,m > 0, is
determined on M(n) ⊂ Θ(M)(n) by:

– the augmentation

M(n)
ε−→ 1 = Θ(M)(1)

when n > m = 1;
– the internal restriction operator attached to our object

M(n)
u∗
−→ M(m) ⊂ Θ(M)(m)

when n ≥ m ≥ 2.
– The augmentation morphism ε : Θ(M)(n) → 1 is determined on M(n) ⊂

Θ(M)(n) by the natural augmentation morphism

ε : M(n) → 1

given with our object M.

In each condition, we implicitly assume n > 1 when we consider the restriction of
our structure morphisms on the free operad to the subobject M(n).

The definition of restriction operators requires some explanations. In the case
n,m > 1, we retrieve the same requirements as in the construction of Proposi-
tion 2.3.1. In the case m = 1, the construction of this previous statement does not
make sense, but the unit relation of §2.2.17 and the invariance of the augmentation
with respect to restriction operators imply that we have a commutative diagram

M(n)

ε

ι Θ(M)(n)

u∗ ε

Θ(M)(1) =
ε 1

which forces the definition of our restriction operator u∗ : Θ(M)(n) → Θ(M)(1) on
the subobject M(n) ⊂ Θ(M)(n).
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We use the associativity relations of Proposition 2.2.16 (as in the proof of
Proposition 2.3.1) to extend these restriction and augmentation morphisms to the
treewise tensor products which span the free operad. The single difference occurs
when the application of our restriction operator to treewise tensor products makes
appear a factor of arity 1. In this case, our construction produces a unit factor 1,
returned by the application of the augmentation ε : M(r) → 1, which we reduce
further to get the result of our operation.

We go back to the example given in the verification of Proposition 2.3.1 (and to
the module setting) in order to illustrate this process. We then have the following
picture:

u∗(p) =

∗ ∗

3 2 t 1 ∗

y z

x

0

,

from which we obtain

u∗(p) ≡ ε(t) · ε(z) ·

3 2 ∗ 1

y 1

x

0

≡ ε(t) · ε(z) ·

3 2

v∗(y) 1

x

0

,

where v∗(y) denotes the image of the element y ∈ M(3) under the restriction
operator associated to the increasing map v : 2 → 3 such that v(1) = 1, v(2) = 2
(as in the verification of Proposition 2.3.1). In this construction, we apply the
augmentation ε : M(2) → 1 to both z ∈ M(2) and t ∈ M(2), but we perform
this operation in order to retrieve a multiple of the unitary factor ∗ in the case of
t(∗, ∗) = ε(t)∗ and a multiple of the operadic unit 1 in the case of z(1, ∗) = ε(z)1.
For this factor z ∈ M(2), we equivalently use the identity w∗(z) = ε(z) ·1 in the free
operad Θ(M), where we consider the restriction operator w∗ : z �→ w∗(z) associated
to the map w : 1 → 2 such that w(1) = 1 (compare with Proposition 2.3.1).

We can also identify the treewise tensor product in our first picture of the
restriction operator u∗(p) with a representation of the composite

u∗(p) = ε(t) · (1 3) · ((x ◦1 v∗(y)) ◦3 w∗(z)),

already considered in the proof of Proposition 2.3.1, and where we perform the
additional reduction

u∗(p) = ε(t) · ε(z) · (1 3) · ((x ◦1 v∗(y)) ◦3 1)
= ε(t) · ε(z) · (1 3) · ((x ◦1 v∗(y))

by using the identity w∗(z) = ε(z) · 1 in the connected free operad Θ(M).
The definition of the augmentation morphism ε : Θ(M) → Com is the same as

in the setting of general augmented Λ-operads of Proposition 2.3.1.
In §2.3, we briefly explain that the restriction operators of the free operad Θ(M)

associated to a (possibly non-connected) Λ-sequence M are defined by termwise
operations u∗ : M(T) → M(u∗ T) on the treewise tensor products M(T) which
span our object. In the connected setting, we have a similar identity, but we
now consider a restriction operator on reduced r-trees u∗ : T �→ u∗ T modeling
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the composition schemes which arise from our reduced construction of restriction
operators on connected free operads. In §A.4, we will explain that these maps u∗ :
T �→ u∗ T also represent the restriction operators of a connected unitary operad
structure on our categories of reduced trees.

The remaining assertions of our lemma follow from the same arguments as in
Proposition 2.3.1. �

Then we have the following statement:

Theorem 2.4.4.
(a) The construction of Proposition 2.4.3 gives a functor

Θ(−) : Λ Seq>1 /Com → ΛOp∅1 /Com,

which defines a left adjoint of the upgraded augmentation ideal functor ω̄ : P �→
P̄ from the category of augmented connected Λ-operads ΛOp∅1 /Com towards the

category of augmented connected Λ-sequences Λ Seq>1 /Com (see §2.4.2), and which

maps any augmented connected Λ-sequence M ∈ Λ Seq>1 /Com to an associated free
object in the category of augmented connected Λ-operads Θ(M) ∈ ΛOp∅1 /Com.

(b) If we take the unitary extension Θ(M)+ of this free augmented connected
Λ-operad Θ(M) which we associate to any augmented connected Λ-sequence M ∈
Λ Seq>1 /Com in assertion ( a), then we get a functor

Θ(−)+ : Λ Seq>0 /Com → Op∗

which is left adjoint to the prolongment of the augmentation ideal functor ω̄ : P �→ P̄
to the category of connected unitary operads Op∗1.

Explanations. We use the same arguments as in the proof of Theorem 2.3.2
to deduce this statement from the results of Proposition 2.4.3. We still obtain that
the canonical morphism ι : M → Θ̄(M), which we associate to the free operad
on a connected symmetric sequence in §§1.2.13-1.2.14, determines the unit of our
adjunction between augmented connected Λ-sequences and augmented connected
Λ-operads.

We also get that the augmentation morphism of our adjunction λ : Θ(P̄) → P is
yielded by the augmentation morphism of the adjunction of §§1.2.13-1.2.14 between
connected symmetric sequences and ordinary connected operads. This adjunction
is identified with the morphism λ = φι on the free operad Θ(P̄) which we associate
to the obvious embedding ι : P̄ → P . When we work with unitary operads, we
just take the unitary extension of this morphism λ : Θ(P̄)+ → P+ to get the
augmentation of our adjunction in assertion (b). �

We observed in §1.2.15 that the category embedding ι : Op∅1 ↪→ Op∅ has an
obvious right adjoint τ : Op∅ → Op∅1, which maps a non-unitary operad P ∈ Op∅

to the connected operad such that τ P(0) = ∅, τ P(1) = 1, and τ P(n) = P(n) for
n > 1. We have a version of this truncation functor construction in the setting of
augmented non-unitary Λ-operads, and as a byproduct, we have an analogue of the
adjunction of §1.2.15 in the setting of unitary operads:

Proposition 2.4.5.
(a) The obvious category embedding ι : ΛOp∅1 /Com ↪→ ΛOp∅ /Com has a

right adjoint τ : ΛOp∅ /Com → ΛOp∅1 /Com.



86 2. THE DEFINITION OF OPERADIC COMPOSITION STRUCTURES REVISITED

(b) If we take the unitary extension τ (P+) = τ (P)+ of the augmented non-
unitary Λ-operad associated to any P ∈ ΛOp∅ /Com in ( a), then we get a functor
τ : Op∗ → Op∗1 on the category of unitary operads P+ ∈ Op∗, and this functor
defines a right adjoint of the category embedding ι : Op∗1 ↪→ Op∗ which naturally
occurs in the setting of unitary operads.

Proof. Let P ∈ ΛOp∅ /Com. We define the components of the operad τ P
by the formula:

(1) τ P(r) = lim
u:1→n

1×P(1) P(r),

for any fixed arity r > 0, where the limit ranges over the category of maps u ∈
MorΛ(1, n) as objects together with the factorizations v = su such that s ∈ Σr as
morphisms, and we consider the pullback of the restriction operators u∗ : P(r) →
P(1) along the unit morphism of our operad in the base category:

(2) 1×P(1) P(r) P(r)

u∗

1
η

P(1)

.

We use that the permutation s ∈ Σr in a factorization v = su induces a morphism
1×P(1)s : 1×P(1) P(r) → 1×P(1) P(r) between the base change associated to the
restriction operators u∗, v∗ : P(r) → P(1) when we form our limit. These objects
τ P(r) are endowed with a canonical augmentation ε : τ P(r) → 1 by construction,
and fit in commutative diagrams

(3) τ P(r)

ε

P(r)

u∗

1
η

P(1)

,

for all u ∈ MorΛ(1, n). If we take the category of sets as base category, then we
can identify this object τ P(r) with the subset of operations p ∈ P(r) such that
u∗(p) = 1, for all restriction operators u∗ : P(r) → P(1), where 1 ∈ P(1) denotes
the unit of our operad.

Each map f ∈ MorΛ(m, n) induces a restriction operator f∗ : τ P(n) → τ P(m)
which we determine on our limit termwise by using the commutative diagrams

(4) τ P(n) P(n)
f∗

(fu)∗

P(m)

u∗

1 P(1)

,

for all u ∈ MorΛ(1,m). The augmentations ε : τ P(r) → 1 which we associate to
our objects in (3) clearly satisfy the invariance relation εf∗ = ε with respect to
the action of our restriction operators f∗ : τ P(n) → τ P(m). The collection τ P =
{τ P(r), r > 0} accordingly inherits the structure of an augmented Λ-sequence.
Moreover, we clearly have τ P(1) = 1 since our limit reduces to the single term
1×P(1) P(1) = 1 in this case.
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We also use a termwise construction to define the products ◦i : τ P(m) ⊗
τ P(n) → τ P(m + n − 1) of the operadic composition structure on τ P . Let
u ∈ MorΛ(1,m+ n− 1). We use that we have u = f ◦f(1) g, for some maps
f ∈ MorΛ(1,m) and g ∈ MorΛ(1, n), which we can explicitly determine by f(1) = i
and g(1) = u(1)− i+ 1. We simply form the diagram

(5) τ P(m)⊗ τ P(n) P(m)⊗ P(n)
◦i

f∗⊗g∗

P(m+ n− 1)

u∗

1⊗ 1 P(1)⊗ P(1)
◦1

P(1)

,

to define the value of our composition operation on the term associated to the
map u ∈ MorΛ(1,m+ n− 1) in (1). We easily check that these operations fulfill
the equivariance, unit and associativity relations of augmented Λ-operads. Hence,
our construction does give a functor τ : ΛOp∅ /Com → ΛOp∅1 /Com from the
category of augmented non-unitary Λ-operads ΛOp∅ /Com to the category of aug-
mented connected operads ΛOp∅1 /Com. We easily check that this functor is left
adjoint to the category embedding ι : ΛOp∅1 /Com → ΛOp∅ /Com too. The ex-
tension of this adjunction relation to categories of unitary operads follows from an
immediate application of the isomorphism result of Theorem 2.2.18. �

We can use the result of this proposition to extend the adjunction relation of the
free augmented connected Λ-operad of Theorem 2.4.4 to morphisms φf : Θ(M) → P
with values in any augmented non-unitary Λ-operad P ∈ ΛOp∅ /Com (possibly
not connected) and we have an obvious counterpart of this result in the context
of unitary operads. We can also apply this observation to the construction of
morphisms on connected unitary operads defined by a presentation by generators
and relations. We tackle this subject soon (see §2.4.8).

We easily check that the construction of colimits in the category of all operads
(see Proposition 1.2.4) and in the category of augmented non-unitary Λ-operads
(see Proposition 2.3.3) works in the category of augmented connected Λ-operads
as well. The result of Proposition 2.4.5 implies that the category embedding ι :
ΛOp∅1 /Com → ΛOp∅ /Com preserves colimits.

We also have limits in the category of augmented connected Λ-operads which
are created aritywise in the base category as in the case of general augmented
non-unitary Λ-operads (see Proposition 2.3.3). We immediately deduce from this
construction that the functor ι : ΛOp∅1 /Com → ΛOp∅ /Com preserves lim-
its besides colimits. We have similar statements for the category embedding ι :
Op∅1 /Com → Op∅ /Com (compare with Proposition 1.2.16). The obvious for-
getful functor ω : ΛOp∅ /Com → Op∅ /Com preserves limits and colimits too by
Proposition 2.3.5.

We summarize our statements concerning colimits in the next proposition. We
should note that in the colimit case, we can forget about augmentations in categories
of ordinary operads, because this structure is not essential for the definition of our
objects and does not affect the result of our constructions.
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Proposition 2.4.6. The functors of the diagram

ΛOp∅1 /Com
ι

τ

ΛOp∅ /Com

τ

Op∅1
ι

Op∅

preserve colimits.

We may actually see that all functors considered in this diagram create colimits,
but we do not use this more precise statement.

Proof. We are left to check that the forgetful functor on the left-hand side
τ : ΛOp∅1 /Com → Op∅1 /Com preserves colimits, but this result is an immediate
consequence of the other cases, of the commutativity of our diagram, and of the
observation that the category embedding ι : Op∅1 /Com ↪→ Op∅ /Com actually
creates colimits. �

The result of Proposition 2.4.6 has the following unitary counterpart:

Proposition 2.4.7. The functors of the diagram

Op∗1
ι

τ+

Op∗

τ+

Op∅1
ι

Op∅

preserve colimits. �
We can also formulate a similar result for limits. We just have to retain the

augmentation over the commutative operad in this case in order to get the correct
limit construction in the category of non-unitary operads. We more explicitly get
that the extended truncation functor τ+ : Op∗1 → Op∅1 /Com preserves limits.

We now focus on the case where we take a category of modules as base category
M = Mod . We explain in §1.2.9 that, in this setting, operads can be defined by
generators and relations as quotients P = Θ(M)/〈zα, α ∈ I〉, where we consider
an ideal 〈zα, α ∈ I〉 in a free operad Θ(M). We elaborate on this construction
and we use our definition of free objects in the category of augmented connected
Λ-operads given in Theorem 2.4.4 in order to define a reduced construction of
operads by generators and relations in the context of unitary operads. We explain
our approach in the next paragraph.

2.4.8. The definition of unitary operads by generators and relations. We first
assume that M is an augmented connected Λ-sequence (in k-modules). We apply
the construction of Proposition 2.4.3 to provide the free operad associated to M
with the structure of an augmented Λ-operad.

Let S = 〈zα, α ∈ I〉 be an ideal generated by a collection of elements zα ∈ S(nα)
in this free operad Θ(M). We assume that we have the vanishing relation

(1) ε(zα) = 0

when we apply the augmentation ε : Θ(M)(nα) → k to any such element zα ∈ S(nα)
in our ideal S . We also assume that we have the relation

(2) u∗(zα) ≡ 0 mod S(m),
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for all restriction operators u∗ : Θ(M)(n) → Θ(M)(m), where n = nα. We easily
check that the symmetric sequence S = 〈zα, α ∈ I〉 forms an operadic ideal in the
unitary extension of the free operad Θ(M) as soon as these conditions are satisfied
(use the correspondence of §2.2.17 between augmentations, restriction operators
and composition operations). Therefore, we can form a quotient of the free unitary
operad Θ(M)+ by our ideal S = 〈zα, α ∈ I〉 to get an object Θ(M)+/〈zα, α ∈
I〉 in the category of unitary operads. We immediately check that this operad
defines a unitary extension of the basic quotient operad Θ(M)/〈zα, α ∈ I〉 which we
considered in the study of §1.2.9.

The morphisms of unitary operads φ̄f+ : Θ(M)+/〈zα, α ∈ I〉 → Q+ are clearly
in bijection with the morphisms of augmented non-unitary Λ-operads φf : Θ(M) →
Q such that φf (z

α) = 0 for each generating element of the ideal zα ∈ S(nα).
In applications, we can reduce the verification of our vanishing condition (2) to

the restriction operators ∂k : Θ(M)(n) → Θ(M)(n− 1), k = 1, . . . , n, associated to
the partial composition products ∂k(p) = p ◦k ∗ since we observed in §2.2.1 that all
restriction operators on a unitary operad occur as composites of these particular
restriction operators.

2.4.9. Examples of unitary operads constructed by generators and relations. We
explain the application of the construction of §2.4.8 to the basic examples of unitary
operads considered in §1.2.10, namely the associative operad As+ and the commu-
tative operad Com+. We also address the definition of a unitary version of the
Poisson operad Pois+. We consider the case of the associative operad first.

Recall that we have As = Θ(kμ(x1, x2) ⊕ kμ(x1, x2))/〈μ(μ, 1) − μ(1, μ)〉, for
a generating symmetric sequence such that MAs(2) = kμ(x1, x2) ⊕ kμ(x1, x2)
andMAs(r) = 0 for r �= 2. Since MAs vanishes in arity r > 2, we only have to specify
an augmentation ε : MAs(2) → k in order to provide this symmetric sequence with
the structure of an augmented Λ-sequence. We take ε(μ) = 1 to reflect the idempo-
tence relations μ(e, e) = e for the unit element of an associative algebra. By apply-
ing the associativity of restriction operators with respect to operadic composition
structures, we obtain ∂1(μ(μ, 1)−μ(1, μ)) = μ(μ(∗, 1), 1)−μ(1(∗), μ) = μ−1(μ) = 0
and similarly ∂2(μ(μ, 1)− μ(1, μ)) = ∂3(μ(μ, 1)− μ(1, μ)) = 0. Hence, the assump-
tions of §2.4.8 are fulfilled, so that the operad As inherits restriction operators,
and as a consequence, admits a unitary extension As+ such that As+(0) = k and
As+(r) = As(r) = k[Σr] for r > 0. This operad As+ is actually identified with
the image of the permutation operad under the functor k[−] : Set Op → Mod Op
(see §3.1.2).

The case of the commutative operad is similar. We take the same expression
as in the associative case for the value of the augmentation ε : MCom(2) → k on the
generating operation μ ∈ MCom(2). We see that the assumptions of §2.4.8 are also
fulfilled for the commutative operad, which therefore admits a unitary extension
Com+ such that Com+(0) = k and Com+(r) = Com(r) = k for r > 0. This operad
Com+ is actually identified with the image of the one-point set operad under our
functor k[−] : Set Op → Mod Op (see the concluding discussion of §3.1).

The unitary extension process can also be applied to the Poisson operad Pois.
Recall that this operad has a generating symmetric sequence such that MPois(2) =
kμ(x1, x2)⊕kλ(x1, x2), where μ = μ(x1, x2) represents a (symmetric) commutative
product and λ = λ(x1, x2) represents an (anti-symmetric) Lie bracket. We take
ε(μ) = 1 (as usual) and ε(λ) = 0. We check again that the generating relations
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of the Poisson operad (see §1.2.12) are canceled by the restriction operators so
that the operad Pois admits a unitary extension Pois+ such that Pois+(0) = k
and Pois+(r) = Pois(r) for r > 0. In fact, the definition ε(λ) = 0 for the Lie
bracket operation λ ∈ Pois(2) is forced by the cancelation condition for the Jacobi
relation, or by the invariance of augmentation under the action of the transposition
(1 2) ∈ Σ2 on this operation λ ∈ Pois(2).

Note that we can also define a unitary extension for the Lie operad Lie. We
then necessarily set ε(λ) = 0 as explained in the case of the Poisson operad, so that
we have λ(∗, x1) = λ(x1, ∗) = 0 in the unitary operad Lie+. For an algebra g over
this operad Lie+, we simply get that the unitary operation ∗ determines a central
element e which satisfies the relation λ(e,−) = 0 in our Lie algebra g.

2.5. The definition of operads shaped on finite sets

In the definition of §1.1, and in the definition of §2.1 similarly, we assumed that
the terms of an operad P(r) are indexed by non-negative integers r ∈ N. Intuitively,
we assume that the elements of an operad (in the context of a concrete category)
represent operations whose inputs are indexed by elements of the standard finite
ordered sets r = {1 < · · · < r}. In the graphical representation of §1.1.5 and §2.1.5,
this input ordering is used to determine the planar arrangement of the ingoing edges
of a box associated to an operation. In §1.1.6 (and in §2.1.5 similarly), we observed
that the operadic composition operations are left invariant when we perform a
change of planar arrangement in our representation. This observation motivates us
to give a new definition of the notion of an operad which reflects this invariance
property of the operadic composition operations. For this aim, we use that any
symmetric sequence, underlying the structure of an operad, extends to a functor
on the category which has the finite sets as objects and the bijections of finite sets
as morphisms.

This extension of the definition of an operad intuitively amounts to the intro-
duction of operations p = p(xi1 , . . . , xir) with variables indexed by an arbitrary set
r = {i1, . . . , ir} rather than by the standard ordered set r = {1 < · · · < r} (see
the introduction of the chapter). In this setting, we consider partial composites
of the form p ◦ik q = p(xi1 , . . . , q(xj1 , . . . , xjs), . . . , xir), for any composition index
ik ∈ {i1, . . . , ir}, and for operations p = p(xi1 , . . . , xir), q = q(xj1 , . . . , xjs). The
main purpose of this section is to reformulate the definition of an operad in terms
of these numbering-free extensions of the partial composition products and to make
explicit the expression of the equivariance, unit and associativity axioms of operads
when we work in this setting. By the way, we will observe that the graphical repre-
sentation of §§2.1.5-2.1.6 gives the picture of the partial composition of operations
with inputs indexed by finite sets (we simply forget about the planar embedding of
our figures).

To begin with, we explain the equivalence between the category of symmetric
sequences and the category of functors on the category of finite sets.

2.5.1. Symmetric collections. We use the notation Bij for the category which
has the finite sets as objects and the bijections of finite sets as morphisms. We
adopt the convention to denote a finite set, regarded as an object of Bij , by an
underlined sans serif letter r. We use the italic letter r = card(r) corresponding to
the notation of our set r to refer to the cardinal of this set. We can regard this
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cardinal either as a non-negative integer, or as an isomorphism class of objects in
the category of finite sets.

We call symmetric collection a functor M : Bij → M which maps any finite set

r ∈ Bij to an object of the base category M(r) ∈ M and any bijection u : r
�−→ s to

a morphism u∗ : M(r) → M(s).
We use the notation Coll for the category of symmetric collections, where a

morphism of symmetric collections f : M → N obviously consists of a collection
of morphisms in the base category f : M(r) → N(r) which preserve the action of
bijections on our objects.

The category of finite sets Bij has a small skeleton with the standard ordered
sets r = {1 < · · · < r}, r ∈ N, as objects and the permutations w ∈ Σr, viewed

as bijections w : {1 < · · · < r} �−→ {1 < · · · < r}, as morphisms. The following
proposition is a consequence of this fact:

Proposition 2.5.2. The category of symmetric collections Coll is equivalent
to the category of symmetric sequences Seq considered in §1.2.

Construction and proof. In one direction, to a symmetric collection M ∈
Coll , we associate the symmetric sequence such that M(r) = M({1, . . . , r}). (We

just identify a permutation w ∈ Σr with a bijection w : {1, . . . , r} �−→ {1, . . . , r} in
order to provide this object M(r) with an action of the symmetric group Σr, for
each r ∈ N.)

If the base category has small colimits, then we can use a general Kan extension
process to obtain a functor in the converse direction, from symmetric sequences to
symmetric collections, and to get a left adjoint of the above functor i∗ : Coll → Seq
therefore. Let M = {M(r), r ∈ N} be any given symmetric sequence. We use the
relative tensor product notation

M(r) = MorBij ({1, . . . , r}, r)⊗Σr
M(r), where r = card(r),

to symbolize this Kan extension process.
If we work in a category of modules M = Mod , then we can define this

relative tensor product as the module spanned by formal tensors u ⊗ ξ, where
u ∈ MorBij ({1, . . . , r}, r) and ξ ∈ M(r), modulo the relations us ⊗ ξ ≡ u ⊗ sξ
which identify the action of permutations s ∈ Σr by right translation on bijections
u ∈ MorBij ({1, . . . , r}, r) with the internal Σr-structure of the object M(r). The
verification that this mapping gives an inverse equivalence of the canonical functor
Coll → Seq is straightforward. In a general context, we can replace the set of tensors
u⊗ ξ by a coproduct of copies of the object M(r) over the set MorBij ({1, . . . , r}, r),
and we perform an appropriate coend construction to implement the identities
us ⊗ ξ ≡ u ⊗ sξ in our object. Recall, by the way, that we generally use the no-
tation S ⊗K, where S is a set and K is any object in a category C, to refer to a
coproduct of copies of the object K over the set S.

In fact, the category equivalence of this proposition still holds when the base
category is not equipped with colimits. To avoid the colimit construction, we just
pick a bijection ur : {1 < · · · < r} → r for each finite set r of cardinal r = card(r).
We then set M(r) = M(r), and we define the morphism f∗ : M(r) → M(s) associated
to any f ∈ MorBij (r, s) by the action of the composite bijection u−1

s · f · ur : {1 <

· · · < r} → {1 < · · · < r}, which defines a permutation of {1 < · · · < r}, on the
object M(r). �
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In the case of the permutation groups Π(r) = Σr, which represent the under-
lying symmetric sequence of the permutation operad (§§1.1.7-1.1.9), we have an
identity Π(r) = MorBij ({1, . . . , r}, r).

In what follows, we often use that the bijections u ∈ MorBij ({1, . . . , r}, r) which
occur in the construction of Proposition 2.5.2, are equivalent to orderings i1 <
· · · < ir of the set r. The kth term of such an ordering ik gives the value of the
corresponding bijection u(k) = ik on the kth element of the set {1 < · · · < r}.
Thus, in the case of the permutation operad Π, we can identify the object Π(r)
with the set of orderings of the set r.

2.5.3. Back to the graphical representation of symmetric sequences. The con-
struction of the collection associated to a symmetric sequence in Proposition 2.5.2
can be materialized by using our graphical representation of operads in §1.1.5. In-
deed, in the picture

i1 ······
···

ir

p

0

,

where p is any operad element, we can obviously assume that (i1, . . . , ir) are the
elements of an arbitrary finite set, and not necessarily a permutation of (1, . . . , r).
The relation

i1 ······
···

ir

sp

0

≡

is(1) ······
···

is(r)

p

0

,

used to identify equivalent elements in the construction of §1.1.5, corresponds to
the quotient process involved in the tensor product MorBij ({1, . . . , r}, r) ⊗Σr

P(r)
(see the proof of Proposition 2.5.2). We only applied this formalism to operads
in §1.1.5 but this interpretation of our construction obviously works for arbitrary
symmetric sequences (and not only for the underlying symmetric sequence of an
operad).

2.5.4. The graphical representation of symmetric collections. The box represen-
tation, recalled in the previous paragraph, has a natural extension in the context
of symmetric collections. In the picture of §1.1.5, we use the planar arrangement
of the ingoing edges of the box to materialize the bijection between the global in-
puts {i1, . . . , ir} and the inputs of operad elements. To be more precise, we can
use the ordering, determined by the orientation of the ambient plane of our figure,
to get a canonical bijection between the set of ingoing edges {e1, . . . , er} and the
finite ordered set r = {1 < · · · < r} whose terms correspond to the inputs of our
operation p ∈ P(r). In the setting of symmetric collections, we just forget about
the planar embedding of our figure. We consider abstract trees, and we assume
that ingoing edges form an abstract set {e1, . . . , er} (not necessarily equipped with
a linear ordering).

In the context of a concrete base category, we represent any element of our
collection ξ ∈ M(r) by a box labeled by ξ together with one outgoing edge e0, whose
target is usually marked by the symbol 0, and a set of ingoing edges {ei1 , . . . , eir},
whose source are usually labeled by the elements of the indexing set r = {i1, . . . , ir},
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as in the following picture:
i1

e1

······
···

ir
er

ξ

0

.

The edge set e = {e1, . . . , er} may be distinguished from the external indexing
set r = {i1, . . . , ir} and we assume that ξ belongs to M(e). The edge indexing is
equivalent to a bijection between r = {i1, . . . , ir} and the edge set e = {e1, . . . , er}.
Thus, when we form our representation, we formally consider pairs (s, ξ), where

s : e
�−→ r and ξ ∈ M(e). The isomorphism s∗ : M(e)

�−→ M(r) induced by the
bijection can be used to associate an element of M(r) to ξ ∈ M(e). To make this
correspondence faithful, we simply set (su, ξ) ≡ (s, u∗(ξ)) whenever we apply a

bijection u : e
�−→ f to change the edge set. Graphically, this identity (su, ξ) ≡

(s, u∗(ξ)) reads:
i1
u(e1)

······
···

ir
u(er)

ξ

0

≡

i1
e1

······
···

ir
er

u∗(ξ)

0

.

The natural action of bijections v : r
�−→ s corresponds, in the graphical representa-

tion, to the obvious reindexing operation on the input labels of ingoing edges.
The information of the input set e is obviously redundant with respect to the in-

formation fixed by the indexing set r. Performing our identification process amounts
to reducing the unnecessary pieces of information. The consideration of redundant
information in our picture is motivated by certain constructions where we are nat-
urally lead to delay the reduction process (when we represent composite operations
for instance).

We can also apply our representation to objects and not only to elements. To
be explicit, we use the picture

i1
e1

······
···

ir
er

M(e)

0

to represent a copy of the object M(e) which is naturally identified with M(r) when

we apply the isomorphism s∗ : M(e)
�−→ M(r) induced by the bijection s : e

�−→ r
such that s(ek) = ik, for k = 1, . . . , r, where we still assume r = {i1, . . . , ir} and
e = {e1, . . . , er}.

2.5.5. The operadic composition of finite sets. To an operad P , we now as-
sociate a collection P(r) indexed by the finite sets r. The unit morphism of the
operad P is obviously equivalent to a morphism η : 1 → P(1) with values in the
component of this collection associated to any one-point set 1 = {1}. This collec-
tion also inherits composition operations which extend the partial composition of
our operads. We need to introduce composition operations on finite sets in order
to define the scheme of our composition operations.

Let r = {i1, . . . , ir}. Let s = {j1, . . . , js}. For any ik ∈ r, we set

r ◦ik s = {i1, . . . , îk, . . . , ir} � {j1, . . . , js},
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where we use the notation îk to mark the removal of the element ik from r. To

bijections u : r
�−→ m, v : s

�−→ n, and to any composition index ik ∈ r, we can
associate a bijection, denoted by u ◦u(ik) v : r ◦ik s → m ◦u(ik) n, which is given by

the map u on the set {i1, . . . , îk, . . . , ir} and by the map v on the set {j1, . . . , js}.
We readily check that the partial composition of finite sets fulfills analogues of

the unit and associativity relations of §2.1. To be explicit, we have the following
assertions:

(a) For any finite set s, we have an identity 1 ◦1 s = s. For a finite set r
equipped with a distinguished element ik ∈ r, the set r ◦ik 1 is not equal to
r in the strict sense, but we have an obvious bijection r ◦ik 1 � r naturally
associated to the pair (r, ik).

(b) For a triple (r, s, t), we have associativity identities

(r ◦ik s) ◦jl t = r ◦ik(s ◦jl t),
(r ◦ik s) ◦il t = (r ◦il t) ◦ik s,

where we assume ik ∈ r and jl ∈ s in the first case, while we take {ik �=
il} ⊂ r in the second case.

(c) The bijections of (a) are coherent with respect to the associativity relations
of (b) in the sense that all diagrams which we may form by combining a
unit bijection r ◦ik 1 � r with an associativity identity (in which we take a
unit set 1 for one of the objects r, s, or t) commute.

This is enough to formalize the definition of partial composition operations
shaped on the composition of finite sets:

Proposition 2.5.6. The definition of morphisms

(1) P(m)⊗ P(n)
◦k−→ P(m+ n− 1)

for all m,n ∈ N, k = 1, . . . ,m, and such that the equivariance relation of Proposi-
tion 2.1.2 holds, is equivalent to the definition of morphisms

(2) P(m)⊗ P(n)
◦ik−−→ P(m ◦ik n),

for all finite sets m, n, and for each ik ∈ m, such that the diagram

P(r)⊗ P(s)

u∗⊗v∗

◦ik
P(r ◦ik s)

(u◦u(ik)v)∗

P(m)⊗ P(n)
◦u(ik)

P(m ◦u(ik) n)

commutes, for any pair of bijections u : r
�−→ m, v : s

�−→ n.

The main purpose of this proposition is to make explicit the relationship be-
tween the plain partial composition operations (1) and the extended ones (2).

Proof. For standard ordered sets m = {1 < · · · < m} and n = {1 < · · · < n},
we consider the bijection {1 < · · · < m} ◦ik {1 < · · · < n} = {1 < · · · < îk <

. . . ,m} � {1 < · · · < n} �−→ {1 < · · · < m + n − 1} which maps the interval

{1 < · · · < ik−1} ⊂ {1 < · · · < îk < . . . ,m} to the same interval {1 < · · · < ik−1}
in {1 < · · · < m + n − 1}, the summand {1 < · · · < n} to {ik < · · · < ik + n − 1}
and the remaining elements {ik + 1 < · · · < m} of the summand {1 < · · · < îk <
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· · · < m} to {ik + n < · · · < m+ n− 1}. The desired correspondence between our
partial composition operations is deduced from the commutativity of the following
diagram:

P(m)⊗ P(n)
◦ik

=

P(m+ n− 1)

=

P({1, . . . ,m+ n− 1})

P({1, . . . ,m})⊗ P({1, . . . , n})
◦ik

P({1, . . . ,m} ◦ik {1, . . . , n})

�

.

This diagram enables us to define the collection of partial composition op-
erations (1) from partial composition operations of the form (2) by identifica-
tion. In the other direction, given finite sets m and n, we can pick bijections

{1 < · · · < m} �−→ m, {1 < · · · < n} �−→ n, and use the equivariance diagram of
the proposition to retrieve the partial composite (2) associated to the sets m and n
from a partial composite of the form occurring in our diagram:

P({1 < · · · < m})⊗ P({1 < · · · < n})
◦ik−−→ P({1 < · · · < m} ◦ik {1 < · · · < n}).

This process makes the correspondence between partial composition operations
of the form (1) and (2) fully explicit. The equivalence between the equivariance
relations for (1) and (2) follows from straightforward verifications. �

2.5.7. The example of the permutation operad. In the case of the permutation
operad Π(r) = Σr, the elements of Π(r) are identified with orderings u = {i1 < · · · <
ir} of the unordered set r (see our explanations after Proposition 2.5.2). We can use
this representation to give a simple definition of the partial composition operations
associated to this operad. We just describe the final result of this composition
process again and we leave the verification of our claim as an exercise to the readers.

In short, the sequence corresponding to the composite u◦ik v can be obtained by
replacing the occurrence of the composition index ik in the sequence representing u
by the sequence representing v. For elements u = {i1 < · · · < im} ∈ Π(m) and
v = {j1 < · · · < jn} ∈ Π(n), we explicitly obtain a result of the form

u ◦ik v = {i1 < · · · < ik−1 < j1 < · · · < jn < ik+1 < · · · < im}.

In comparison with the process of §2.1.3, we simply have to forget the value shifts,
which actually correspond to the bijection considered in the proof of Proposi-
tion 2.5.6.

2.5.8. Operads with terms indexed by finite sets. We can readily adapt the
representation of §2.1.6 to get the picture of partial composition products in the
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context of operads with terms indexed by finite sets:
(∗)

j1 ··· ··· jn

i1 ··· ··· ik−1 P(n)

ek

ik+1 ··· ··· im

P(m)

0

(◦ek
)∗−−−−→

i1 ··· ··· j1 ··· ··· jn ··· ··· im

P(m ◦ek
n)

0

.

On the source of this mapping, we consider indexing sets m and n that represent the
sets of ingoing edges attached to the boxes of our treewise structure. The labeling

of the tree inputs is equivalent to bijections {i1, . . . , ik−1, ik+1, . . . , im} �−→ m \{ek}
and {j1, . . . , jl} �−→ n.

We readily see that these partial composites satisfy an obvious generalizations
of the unit and associativity relations of §2.1. In the expression of the unit relation
in the diagram of Figure 2.1, we consider composition operations of the form ◦ik :
P(r)⊗P(1) → P(r ◦ik 1), together with the composition operation ◦1 : P(1)⊗P(r) →
P(1 ◦1 r), and we use the bijection r ◦ik 1 � r and the identity 1 ◦1 r = r to retrieve
the object P(r) in our diagram. In the diagrams of Figure 2.2-2.3, which express
the associativity of our composition operations, we similarly have to replace the
ordinal numbers r + s − 1, s + t − 1, r + t − 1 and r + s + t − 2 by appropriate
composites of finite sets and we use the associativity of the composition of finite
sets.

We consider the general structure formed by a symmetric collection P =
{P(r), r > 0} equipped with treewise composition operations of the form (∗) such
that these extensions of the unit and associativity relations of operads hold. We
deduce from Proposition 2.5.2 and Proposition 2.5.6 that this category of operads,
shaped on the structure of a symmetric collection, is equivalent to the category of
plain operads, where we index the terms of our objects by the non-negative inte-
gers. We use the definition of operads with terms indexed by finite sets as working
definition of the structure of an operad in the appendix chapters §§A-B.

2.5.9. Unitary operads with terms indexed by finite sets. The constructions
of §2.2, about the definition of unitary operads, can be extended to operads with
terms indexed by finite sets. We then consider the category Inj>0 formed by the
non-empty finite sets as objects and the injective maps as morphisms. We also
consider the complete variant of this category Inj . We moreover consider the sub-
category Inj>1 ⊂ Inj generated by the finite sets r of cardinal r > 1. We now have
an identity between the category of bijection Bij and the isomorphism subcategory
of Inj . Note however that we can hardly give a sense to the decomposition Λ = Λ+Σ
of §2.2.3 in this category Inj .

We use the name ‘non-unitary Λ-collection’ (which parallels the phrase ‘non-
unitary Λ-sequence’) for the category of contravariant functors from Inj>0 to any
base category M. We similarly use the name ‘connected Λ-collection’ for the cat-
egory of contravariant functors from Inj>1 to M. We can easily extend the con-
struction of Proposition 2.5.2 to define an equivalence of categories between the
category of non-unitary (respectively, connected) Λ-collections and the category of
non-unitary (respectively, connected) Λ-sequences. We have a similar result when
we deal with objects equipped with an augmentation over the constant diagram
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underlying the commutative operad Com. We can also define an analogue of the
notion of an augmented non-unitary Λ-operad in the context of operads with terms
indexed by finite sets and we can extend the correspondence of the previous para-
graphs to this category of augmented non-unitary Λ-operads.

We can also use this category of augmented non-unitary Λ-operads with terms
indexed by finite sets in order to model the structure of unitary operads (as we do
in §§2.2.5-2.2.18). We can easily make our correspondence between the structure of
an augmented non-unitary Λ-operad and the structure of a unitary operad entirely
explicit in the context of operads with terms indexed by finite sets too. Indeed,
we readily see that the non-unitary operad P underlying a unitary operad P+

inherits restriction operators f∗ : P(s) → P(r) which we associate to the injections
f : r → s and which extend the restriction operators of §2.2.1. Each component
of our operad P(r) inherits an augmentation ε : P(r) → 1 too. The collection
P therefore forms a contravariant diagram over the category Inj>0 and comes
equipped with an augmentation with values in the underlying collection of the
commutative operad Com.

We extend the partial composition operations of §2.5.7 to injections in order
to write down an analogue of the equivariance relations of Proposition 2.2.16. We
proceed as follows. Let r = {i1, . . . , ir} and s = {j1, . . . , js} be finite sets. Let
ik ∈ r. To any pair of injective maps f : r → m and g : s → n, we associate the map
f ◦f(ik) g : r ◦ik s → m ◦f(ik) n such that:

(f ◦f(ik) g)(x) =
{
f(x), when x ∈ {i1, . . . , îk, . . . , ir},
g(x), when x ∈ {j1, . . . , js}.

In the case where s = 0 and g is an empty map o : 0 → n, we get the following
expression for our partial composition operations:

(f ◦f(ik) o)(x) = f(x), for x ∈ {i1, . . . , îk, . . . , ir}.
We readily see that we retrieve the partial composition operations of injective maps
of §§2.2.12-2.2.13 when we apply the correspondence of Proposition 2.5.6 to these
partial composition operations. We just replace the partial composites of ordinal
injections in the expression of the equivariance relations of Proposition 2.2.16 by
these extended composition operations in order to get the expression of the equivari-
ance of the partial composition products with respect to the injective maps between
finite sets.

We use these relations as axioms (together with the unit and associativity
relations of the previous paragraph §2.5.8) in order to extend the definition of
our notion of an augmented non-unitary Λ-operad to the context of operads with
terms indexed by finite sets. The equivalence between this category of augmented
non-unitary Λ-operads and the category of unitary operads is immediate from our
definition.





CHAPTER 3

Symmetric Monoidal Categories and Operads

In the introductory chapter §1, we have worked in the setting of a base cate-
gory M equipped with a tensor product ⊗ : M×M → M which distributes over
colimits. This assumption is required for the application of categorical constructions
(like colimits, free objects) to operads (§§1.2-1.3) and is also implicitly used as soon
as we deal with endomorphisms operads (see §1.1). Nonetheless, we also observed
that the definition of an operad in §1.1.1 makes sense in any symmetric monoidal
category without assuming that the tensor product satisfies any other requirement
than the fundamental unit, associativity and symmetry axioms of §0.8(a-c). In §2,
we observed that the definition of operads in terms of partial composition operations
makes sense in this general setting too. The isomorphism between the category of
(connected) augmented non-unitary Λ-operads and the category of (connected) uni-
tary operads (see Theorem 2.2.18) is defined in any symmetric monoidal category
as well.

In this third chapter, we study the application of general symmetric monoidal
category constructions to operads (regardless of any colimit requirement). In §3.1,
we study the image of operads under functors between symmetric monoidal cat-
egories. In §3.2, we study the category of operads in counitary cocommutative
coalgebras (called Hopf operads in what follows) as an application of the definition
of the notion of an operad in a general symmetric monoidal category. In an appen-
dix section §3.3, we review the definition of various notions of structure preserving
functors associated to symmetric monoidal categories.

Throughout this chapter, we deal with a generalization of the notion of a com-
mutative algebra and of the notion of a cocommutative coalgebra which we formalize
by using the notion of a symmetric monoidal category. We devote a preliminary
section to a survey of this subject. We tackle our main topics afterwards.

Most definitions of this chapter are not original. Our first purpose is to give a
comprehensive and detailed survey of concepts and constructions scattered over the
literature. In particular, the definition of the notion of an operad in the axiomatic
setting of symmetric monoidal categories was apparently first considered in a report
of G. Kelly, now published in [103] (in the case where the tensor product distributes
over colimits). The notion of a Hopf operad was introduced by E. Getzler and J.
Jones in [77]. These authors notably observed that the homology of an operad in
topological spaces inherits a Hopf operad structure (we go back to this statement
in the next chapter). By the way, we also check in this chapter that the classical
constructions on Hopf operads extend to Λ-operads, the notion introduced in the
previous chapter for the study of unitary operads.

99
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3.0. Commutative algebras and cocommutative coalgebras in
symmetric monoidal categories

The purpose of this preliminary section is to make explicit the definition of
the notion of a unitary commutative algebra and of the dual notion of a counitary
cocommutative coalgebra in the context of symmetric monoidal categories. We
address the case of commutative algebras first.

3.0.1. The category of unitary commutative algebras in a symmetric monoidal
category. Let M be any symmetric monoidal category. We define a unitary com-
mutative algebra in M as a structure formed by an object A ∈ M together with
morphisms η : 1 → A and μ : A ⊗ A → A which make the following diagrams
commute:

A⊗ 1
id ⊗η

�

A⊗A

μ

1⊗A
η⊗id

�

A

,

A⊗A⊗A

μ⊗id

id ⊗μ
A⊗ A

μ

A⊗A
μ

A

,

and

A⊗A

μ

(1 2)∗

A⊗A

μ

A

.

The morphism η (respectively, μ) represents the unit (respectively, the product)
which we associate to our object A. The above diagrams express the unit, associa-
tivity and commutativity relations that govern the structure of a unitary commu-
tative algebra.

In the basic case where M is the category of sets M = Set (respectively, the
category of modules M = Mod over a ground ring k), we obviously retrieve the
classical notion of a commutative monoid with unit (respectively, of a commutative
k-algebra with unit).

In general, we refer to a unitary commutative algebra by the notation of the
underlying object of the base category A ∈ M, and we abusively assume that the
unit morphism η and the product μ are part of the internal structure attached
to this object A. We adopt the letter η (respectively, μ) as a generic notation
for all unit (respectively, product) morphisms associated to a unitary commutative
algebra. If necessary, then we just use a subscript η = ηA (respectively, μ = μA) in
order to specify the algebra A ∈ M associated to this unit (respectively, product)
morphism.

The unitary commutative algebras in M form a category, which we denote by
MCom+, or just by Com+ = MCom+ when the monoidal category M is fixed by
the context. We obviously define a morphism of unitary commutative algebras as
a morphism of the base category f : A → B which makes the following diagrams
commute:

1

ηA

= 1

ηB

A
f

B

, A⊗A

μA

f⊗f
B ⊗B

μB

A
f

B

.
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Recall that we use the lower script + to mark the consideration of unitary
structures (as in §1.1.16). The category of non-unitary commutative algebras, which
we denote by MCom (or just by Com = MCom), is obviously defined by forgetting
about the unit morphisms in our definitions.

Note that the unit object of the underlying category 1 inherits a natural com-
mutative algebra structure, and represents the initial object of the category of
unitary commutative algebras MCom+. One can prove that the obvious forgetful
functor ω : MCom+ → M creates limits in unitary commutative algebras (when-
ever limits exist in M). But the forgetful functor ω : MCom+ → M does not
preserve colimits in general. (To give a simple example, we have already observed
that the unit object 1, which generally differs from the initial object of M, is the
initial object of MCom+.)

In the case where the tensor product of M distributes over colimits (see §0.9),
one can prove that colimits of any shape exist in the category of unitary commuta-
tive algebras. This statement is a particular case of the general result of Proposi-
tion 1.3.6, where we prove the existence of colimits in any category of algebras over
an operad (we check in the next paragraphs that unitary commutative algebras are
equivalent to algebras over the commutative operad).

This general construction implies that the filtered colimits of the category uni-
tary commutative algebras are created in the base category (when the tensor prod-
uct of M distributes over colimits), and we have the same result for the coequalizers
of parallel pairs of unitary commutative algebra morphisms which are reflexive in
the base category. But we can simplify the general construction of Proposition 1.3.6
when we need to define coproducts in the category of unitary commutative algebras.
Indeed, we will see that a tensor product of unitary commutative algebras inherits
a natural unitary commutative algebra structure and represents the coproduct of
our objects in the category of unitary commutative algebras (see §3.0.3).

3.0.2. The equivalence with the category of algebras over the commutative op-
erad. In the introductory chapter §1.1, we generally assume that the tensor product
of our base category ⊗ : M×M → M distributes over colimits. Nevertheless, we
already observed that the definition of an operad in §1.1.1 makes sense as soon
as the unit, associativity and symmetry axioms of symmetric monoidal categories
are satisfied. This is also the case of the definition of an algebra over an operad
in §1.1.13 though the statement of Proposition 1.1.15, which gives an interpretation
of operad actions in terms of endomorphism operads, does not make sense when
the tensor product is not compatible with colimits (since endomorphism operads
are not defined in this case).

In §2.1.11, we check that the definition of the commutative operad extends to
arbitrary symmetric monoidal categories. We then set Com+(r) = 1 for any r ∈ N,
where we consider the unit object of our symmetric monoidal category 1 ∈ M and
we take a trivial action of the symmetric group in each arity. We define the operadic
unit η : 1 → Com+(1) by the identity morphism of the unit object id : 1

=−→ 1 and
the partial composition products ◦k : Com+(m)⊗Com+(n) → Com+(m+n−1) by
the unit isomorphisms of our symmetric monoidal structure 1⊗ 1 � 1. We can also
identify the full composition products μ : Com+(r)⊗Com+(n1)⊗· · ·⊗Com+(nr) →
Com+(n1 + · · · + nr) with the canonical isomorphisms 1⊗ 1⊗ · · · ⊗ 1 � 1 which
we deduce from the unit relations of the tensor product in our symmetric monoidal
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category. We just forget about the arity zero term Com+(0) = 1 when we consider
the non-unitary version of the commutative operad Com.

We easily see that the category of unitary commutative algebras Com+ =
MCom+, such as defined in the previous paragraph, is isomorphic to the category
of algebras associated to (this generalization of) the commutative operad Com+,
and we have a similar statement in the case of the category of non-unitary com-
mutative algebras Com = MCom. The proof of this observation follows from a
formal extension, in the context of a general symmetric monoidal category, of the
arguments of Proposition 1.1.17-1.1.18.

3.0.3. The symmetric monoidal structure of the category of unitary commu-
tative algebras. The category of unitary commutative algebras in a symmetric
monoidal category MCom+ actually inherits a symmetric monoidal structure from
the base category M.

First, we readily see that a tensor product of unitary commutative algebras
A⊗B inherits a natural unitary commutative algebra structure, with the composite
morphism

1
�−→ 1⊗ 1

ηA⊗ηB−−−−−→ A⊗B

as unit, and the morphism

A⊗B ⊗A⊗B
(2 3)∗−−−−→ A⊗A⊗B ⊗B

μ⊗μ−−−→ A⊗B

as product.
For the unit object 1, which represents the initial object of the category of

commutative algebras MCom+, the isomorphisms A ⊗ 1
�−→ A

�←− 1⊗A, formed
in the underlying monoidal category M, are isomorphisms of unitary commutative
algebras. Hence, the unit relations of the tensor product hold within the cate-
gory MCom+. The associativity and symmetry relations of the tensor product
remain valid in the category of unitary commutative algebras as well. Thus, we
have a whole symmetric monoidal structure on MCom+, as claimed at the begin-
ning of this paragraph.

We can easily check that the tensor product A⊗B represents the coproduct of A
and B in Com+ (and therefore coproducts exist in Com+ without any assumption on

the tensor product of the base category). The universal morphisms A
i−→ A⊗B

j←− B
are given by the tensor products i = idA ⊗ηB and j = ηA⊗ idB, where we consider
the unit morphisms of our algebras ηA : 1 → A and ηB : 1 → B.

3.0.4. The category of counitary cocommutative coalgebras in a symmetric mo-
noidal category. The structure of a counitary cocommutative coalgebra in a sym-
metric monoidal category is defined by duality from the definition of a unitary
commutative algebra.

In brief, a counitary cocommutative coalgebra inM consists of an object C ∈ M

equipped with morphisms ε : C → 1 and Δ : C → C ⊗ C such that the following
diagrams commute:

C

Δ
� �

C ⊗ 1 C ⊗ C
id ⊗ε ε⊗id

1⊗C

,

C
Δ

Δ

C ⊗ C

Δ⊗id

C ⊗ C
id ⊗Δ

C ⊗ C ⊗ C

,



3.0. COMMUTATIVE ALGEBRAS AND COCOMMUTATIVE COALGEBRAS 103

and

C

ΔΔ

C ⊗ C
(1 2)∗

C ⊗ C

.

The morphism ε (respectively, Δ) is called the counit or augmentation (respectively,
the coproduct or diagonal) of the cocommutative algebra C. The above diagrams
express the counit, coassociativity and cocommutativity relations that govern the
structure of a counitary cocommutative coalgebra.

We refer to a counitary cocommutative coalgebra by the notation of its under-
lying object C ∈ M (as in the algebra case). We use the letter ε (respectively, Δ)
as a generic notation for all counit (respectively, coproduct) morphisms attached
to a counitary cocommutative coalgebra structure. If necessary, then we just use a
subscript ε = εC (respectively, Δ = ΔC) in order to specify the coalgebra C ∈ M

associated to this counit (respectively, coproduct) morphism.
The counitary cocommutative coalgebras in M form a category, which we de-

note by MComc
+, or just by Comc

+ = MComc
+, where we use a superscript c to

mark the consideration of coalgebra structures. We obviously define a morphism of
counitary cocommutative coalgebras as a morphism of the base category f : C → D
which makes the following diagrams commute:

C

εC

f
D

εD

1 = 1

,

C

ΔC

f
D

ΔD

C ⊗ C
f⊗f

D ⊗D

.

The usual notion of counitary cocommutative coalgebra corresponds to the
case where M = Mod is a category of modules over a ground ring k. In the case
where M is the category of sets M = Set (and more generally when the symmetric
monoidal structure operation of our category is defined by the cartesian product),
any object X ∈ Set inherits a counit ε : X → ∗, because the unit object is the
final object of our category ∗ (the one-point set in the case M = Set), as well as
a coproduct Δ : X → X × X (the diagonal) and this operation trivially fulfills
our counit, coassociativity and cocommutativity relations. Hence, any set X ∈ Set
inherits a tautological counitary cocommutative coalgebra structure in Set . The
definition of the coproduct on X is actually forced by the counit relation and we
therefore have an identity of categories Set Comc

+ = Set .
The tensor unit 1 of a symmetric monoidal category M generally inherits a

coalgebra structure (invert the orientation of arrows in the definition of the algebra
structure of 1 in §3.0.1) and represents the terminal object of the category of couni-
tary cocommutative coalgebras. We can also dualize the definition of the tensor
product of algebras in §3.0.3 to obtain that a tensor product of counitary cocom-
mutative coalgebras C⊗D inherits a counitary cocommutative coalgebra structure,
with the composite morphism

C ⊗D
εC⊗εD−−−−→ 1⊗ 1

�−→ 1
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as counit, and the morphism

C ⊗D
ΔC⊗ΔD−−−−−−→ C ⊗ C ⊗D ⊗D

(2 3)∗−−−−→ C ⊗D ⊗ C ⊗D

as coproduct. We provide the category of counitary cocommutative coalgebras with
the symmetric monoidal structure determined by this tensor product operation.

This tensor product C ⊗D also represents the cartesian product of C and D
in the category of counitary cocommutative coalgebras. The universal morphisms

C
p←− C ⊗D

q−→ D are given by the tensor products p = id ⊗εD and q = εC ⊗ id ,
where we consider the counit morphisms of our coalgebras εC : C → 1 and εD :
D → 1. (Thus, we can fully dualize the observations of §3.0.3 about the categorical
interpretation of the tensor product of unitary commutative algebras.) We can
also easily check that the forgetful functor ω : MComc

+ → M creates colimits
whenever colimits exist in M (just like the dual forgetful functor on the category
of commutative algebras creates limits).

3.0.5. The image of algebras and coalgebras under functors between underlying
symmetric monoidal categories. To complete this account, we study the image of
algebras and coalgebras under functors between symmetric monoidal categories.

First, we consider the case where we have a lax symmetric monoidal functor
F : M → N between symmetric monoidal categories M and N. In this situation,
the object F (A) ∈ N, where A is a unitary commutative algebra in M, forms a
unitary commutative algebra in N.

Recall that a functor is lax symmetric monoidal when we have a unit morphism
η : 1 → F (1) and a natural transformation θ : F (X) ⊗ F (Y ) → F (X ⊗ Y ) which
satisfy natural coherence constraints with respect to the unit, associativity and
symmetry isomorphisms of our symmetric monoidal categories (see §3.3.1). In what
follows, we generally assume that we have the relation F (1) = 1 in the category
N and that our unit morphism η : 1 → F (1) is given by the identity morphism of
the unit object 1 ∈ N. We then say that F is a unit-preserving functor and that
θ : F (X)⊗F (Y ) → F (X ⊗ Y ) defines a symmetric monoidal transformation on F .
We do not use this stronger notion for the moment.

If we assume that A is a unitary commutative algebra in M, then we just form
the composites

1 → F (1)
F (η)−−−→ F (A) and F (A)⊗ F (A)

θ−→ F (A⊗A)
F (μ)−−−→ F (A)

in order to define a unit morphism and a product on the object F (A) ∈ N. We
easily check that these operations satisfy the unit, associativity, and commutativity
axioms of §3.0.1 as soon as the unit morphism η : 1 → F (1) and the natural
transformation θ : F (X) ⊗ F (Y ) → F (X ⊗ Y ) fulfill the coherence constraints
of §3.3.1. We therefore get that the object F (A) ∈ N forms a unitary commutative
algebra in the category N.

This construction is obviously functorial and the mapping F : A �→ F (A)
therefore induces a functor from the category of unitary commutative algebras
in M towards the category of unitary commutative algebras in N. Furthermore, we
easily check that the symmetric monoidal transformation θ : F (A)⊗F (B) → F (A⊗
B), inherited from F , defines a morphism in the category of unitary commutative
algebras when we assume A,B ∈ MCom+ and we consider the unitary commutative
algebra in N associated to the tensor product A ⊗ B ∈ M. The unit morphism
η : 1 → F (1) associated to our functor F tautologically defines a morphism of
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unitary commutative algebras in N as well. Thus, the functor F : MCom+ →
NCom+, induced by F : M → N, is also lax symmetric monoidal with respect to
the symmetric monoidal structures which our categories of unitary commutative
algebras inherit from the base category (see §3.0.3). The functor F : MCom+ →
NCom+ is obviously unit-preserving too as soon as F is so.

These observations can be dualized in the context of coalgebras. We then
assume that F : M → N is a lax symmetric comonoidal functor, with a coaugmen-
tation ε : F (1) → 1 and a natural transformation θ : F (X ⊗ Y ) → F (X) ⊗ F (Y )
which again fulfill natural coherence constraints with respect to the unit, associativ-
ity and symmetry isomorphisms of our symmetric monoidal categories (see §3.3.1).
In this situation, the object F (C) ∈ N, where C is a counitary cocommutative
coalgebra in M, inherits the structure of a counitary cocommutative coalgebra in
N, and this mapping F : C �→ F (C) gives a functor from the category of counitary
cocommutative coalgebras in M towards the category of counitary cocommutative
coalgebras in N. This functor F : MComc

+ → NComc
+, induced by F : M → N, is

also lax symmetric comonoidal with respect to the symmetric monoidal structures
which our categories of counitary cocommutative coalgebras inherit from the base
category. The functor F : MComc

+ → NComc
+ is obviously unit-preserving too as

soon as F is so.
If our functor F : M → N is strongly symmetric monoidal in the sense that

the morphisms which we use to compare our symmetric structures are isomor-

phisms η : 1
�−→ F (1) and θ : F (X) ⊗ F (Y )

�−→ F (X ⊗ Y ) (see §3.3.1), then
we have a functor induced by F both on the category of unitary commutative
algebras F : MCom+ → NCom+ and on the category of counitary cocommu-
tative coalgebras F : MComc

+ → NComc
+. These functors are both symmetric

monoidal (in the strong sense) too. If we have a pair of functors F : M � N : G
that form a symmetric monoidal adjunction in the sense of §3.3.3, then we have
an induced symmetric monoidal adjunction at the level of our categories of al-
gebras F : MCom+ � NCom+ : G and at the level of categories of coalge-
bras F : MComc

+ � NComc
+ : G as well. Indeed, we readily see that the unit

η : X → G(F (X)) and the augmentation ε : G(F (A)) → A of such an adjunction
define morphisms of unitary commutative algebras (respectively, counitary cocom-
mutative coalgebras) when X (respectively, A) is equipped with such a structure.
Therefore, these morphisms define the unit and the augmentation morphism of an
adjunction at the algebra (respectively, coalgebra) level.

3.0.6. The basic example of the free module functor. To give a simple example
of symmetric monoidal functor construction, we consider the functor k[−] : Set →
Mod which maps any object of the category of sets X ∈ Set to the associated free
k-module, which we denote by k[X], for any fixed ground ring k. We generally
write [x] for the generating element of this k-module k[X] associated to any x ∈ X.

This functor k[−] : Set → Mod is symmetric monoidal (see §3.3.2), and hence,
induces a symmetric monoidal functor both from the category of unitary commuta-
tive monoids (the category of unitary commutative algebras in sets) to the category
of unitary commutative algebras in k-modules and from the category of counitary
cocommutative coalgebras in sets (which reduces to the category of sets by an
observation of §3.0.4) to the category of counitary cocommutative coalgebras.
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The counit and coproduct which define the counitary cocommutative coalgebra
structure of a free k-module k[X] can be defined by the explicit formula

ε[x] = 1 and Δ[x] = [x]⊗ [x],

for each element x ∈ X. In what follows, we generally say that an element c ∈ C in
a counitary cocommutative coalgebra in k-modules C is group-like when it satisfies
the same relations ε(c) = 1 and Δ(c) = c ⊗ c with respect to the counit and the
coproduct of our coalgebra C as such an element c = [x] ∈ k[X] in the counitary co-
commutative coalgebra associated to a set C = k[X]. We use the notation G(C) for
the set formed by the group-like elements in any counitary cocommutative coalge-
bra C. We can easily check that the mapping G : C �→ G(C) defines a right-adjoint
of our functor k[−] : Set → Comc

+ from sets to counitary cocommutative coalge-
bras Comc

+ = Mod Comc
+. The unit of this adjunction is the obvious embedding

ι : X → k[X] and the augmentation is identified with the obvious morphism of
k-modules ρ : k[G(C)] → C induced by the tautological set inclusion G(C) ⊂ C on
the basis of k[G(C)].

We deduce from the general observations of §3.0.5 that the functor k[−] : Set →
Comc

+ is (strongly) symmetric monoidal since our initial functor from sets to k-
modules k[−] : Set → Mod is so. We immediately see that the group-like element
functor G : Comc

+ → Set is symmetric monoidal too, because this functor, as a
right-adjoint, preserves final objects and cartesian products which we respectively
identify with the unit and the tensor product of our symmetric monoidal category
of coalgebras (see §3.0.4). We easily check that the unit morphism and the aug-
mentation morphism of the adjunction k[−] : Set � Comc

+ : G are also symmetric
monoidal transformations, so that our adjoint functors define a symmetric monoidal
adjunction in the sense of §3.3.3.

We also have G(C) = MorComc
+
(k, C), where we consider the natural counitary

coalgebra structure associated to the unit object 1 = k (see §3.0.4). We can use this
identity G(C) = MorComc

+
(k, C) to retrieve the claim that the group-like element

functor G : Comc
+ → Set preserves final objects and cartesian products.

3.1. Operads in general symmetric monoidal categories

In this section, we study the dependence of the definition of an operad from
the underlying symmetric monoidal category. We mainly prove that operads are
preserved by (lax) symmetric monoidal functors and that any symmetric monoidal
adjunction between symmetric monoidal categories gives rise to an adjunction at
the level of operad categories. We also explain a construction of functors on operads
when we have an adjunction relation where only the right adjoint functor is (lax)
symmetric monoidal.

Recall that a functor F : M → N between symmetric monoidal categories M

and N is lax symmetric monoidal when we have a unit morphism η : 1 → F (1)
and a natural transformation θ : F (X)⊗ F (Y ) → F (X ⊗ Y ) which are compatible
with the unit, associativity and symmetry isomorphisms of our symmetric monoidal
categories (see §3.3.1). Most examples of lax symmetric monoidal functors which
we consider in this book satisfy F (1) = 1 (we then say that F is unit-preserving)
and our unit morphism η : 1 → F (1) is given by the identity morphism of the
unit object 1 ∈ N. In this situation, we also say that the natural transformation
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θ : F (X) ⊗ F (Y ) → F (X ⊗ Y ) which we associate to our lax monoidal functor
defines a symmetric monoidal transformation on F . We have the following result:

Proposition 3.1.1.
(a) If F : M → N is a lax symmetric monoidal functor, then the collection

of objects F (P(r)) ∈ N, r ∈ N, defined by applying F aritywise to the underlying
collection of an operad P in M, forms an operad F (P) in N, so that F induces a
functor from the category of operads in M to the category of operads in N:

F : MOp → NOp .

(b) If we moreover assume that F : M → N is unit-preserving F (1) = 1, then
this functor on operads preserves unitary extensions in the sense that we have the
identity F (P+) = F (P)+, for any unitary operad P+ ∈ MOp∗ (see §1.1.20), so
that the mapping F : P+ �→ F (P+) defines a functor from the category of unitary
operads in M to the category of unitary operads N:

F : MOp∗ → NOp∗ .

Explanations. The definition of the operad structure on the collection of
objects F (P(r)) ∈ N, r ∈ N, is immediate:

– each object F (P(r)) ∈ N trivially inherits an action of the symmetric
group Σr by functoriality;

– the collection F (P)(r) = F (P(r)) also inherits a unit morphism

1 → F (1)
F (η)−−−→ F (P(1))

as well as partial composition operations

F (P(m))⊗ F (P(n))
θ−→ F (P(m)⊗ P(n))

◦k−→ F (P(m+ n− 1))

defined for all m,n ∈ N, k = 1, . . . ,m, and which clearly satisfy the
equivariance, unit and associativity relations of operads.

This construction is obviously functorial in P ∈ MOp.
For a unitary operad P+ (in the sense of §1.1.19), we have F (P+(0)) = F (1) = 1

as soon as the functor F is unit-preserving, and F (P+) clearly forms a unitary op-
erad therefore. This operad F (P+) has F (P) as underlying non-unitary operad
and this verification proves the second assertion of the proposition. We may also
check that our functor F : M → N induces a functor on the category of augmented
non-unitary Λ-operads F : MΛOp∅ /Com → NΛOp∅ /Com by adapting our def-
inition of the functor on the category of ordinary operads F : MOp → NOp. We
just need the identity F (1) = 1 in this case in order to establish that each object
F (P(r)) ∈ N, r > 0, inherits an augmentation ε : F (P(r)) → F (1) = 1 from the
operad P ∈ MΛOp∅ /Com. We can then use the equivalence between augmented
non-unitary Λ-operads and unitary operads (in Theorem 2.2.18) in order to retrieve
the relation F (P+) = F (P+) for any unitary operad P+. �

In the context of this proposition, we may also observe that the image of any
P-algebra under our functor F : M → N inherits an F (P)-algebra structure, so
that the mapping F : A �→ F (A) defines a functor from the category of algebras
over P ∈ MOp to the category of algebras over the operad F (P) associated to P
in the category N.
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3.1.2. Examples of functors between operads in symmetric monoidal categories.
The functors considered in §3.3.2 give examples of situations where we can use the
result of Proposition 3.1.1:

(a) Let us begin with the simplest example, namely the functor k[−] : Set →
Mod which maps a setX ∈ Set to the associated free k-module k[X] ∈ Mod . Propo-
sition 3.1.1 implies that this functor induces a functor k[−] : Set Op → Mod Op,
from the category of operads in sets towards the category of operads in k-modules,
and we have a similar statement for the extension of this functor to simplicial
sets k[−] : sSet → sMod .

If we apply this functor k[−] : Set Op → Mod Op to the permutation (respec-
tively, one-point set) operad of §1.1, then we clearly get a model of the associative
(respectively, commutative) operad in k-modules. In the case of the permutation
operad, we just get As+(r) = k[Σr] for r ∈ N (unitary case). In the case of the
one-point set operad, we get Com+(r) = k[pt ] = k for r ∈ N. In the non-unitary set-
ting, we simply replace the arity 0 component of these operads by the null module.
In each case, we exactly retrieve the expansion of §§1.2.10-1.2.11 for the operads
defined by generators and relations in §1.2.10. This identification gives an ana-
logue of the results of Proposition 1.2.7 in the context of k-modules. Note that
Com+(r) = k can also be identified with a particular instance of the commutative
operad of §2.1.11 since k represents the unit object of the category of k-modules.

(b) The geometric realization functor | − | : sSet → Top similarly induces
a functor | − | : sSet Op → Top Op from the category of operads in simplicial
sets sSet Op towards the category of topological operads Top Op. In the converse
direction, the singular complex functor Sing•(−) : Top → sSet induces a func-
tor Sing•(−) : Top Op → sSet Op from the category of topological operads towards
the category of operads in simplicial sets.

Recall that the geometric realization and singular complex functors define an
instance of a symmetric monoidal adjunction (see §3.3.2). In such a situation, we
have the following additional result:

Proposition 3.1.3. The functors on operads F : MOp � NOp : G induced by
the functors of a symmetric monoidal adjunction F : M � N : G are still adjoint
to each other. The augmentation ε : F (G(Q)) → Q and the unit η : P → G(F (P))
of this adjunction (at the operad level) are given by the aritywise application of the
augmentation and of the unit morphism of the underlying adjunction between the
categories M and N.

Proof. The augmentation ε : F (G(Y )) → Y and the unit η : X → G(F (X))
of the adjunction F : M � N : G are symmetric monoidal transformations by
definition of the notion of a symmetric monoidal adjunction. This observation
immediately implies that we can apply these morphisms to operads aritywise in
order to get operad morphisms. The structure relations between the adjunction
augmentation and the adjunction unit remain obviously valid for these induced
operad morphisms, and therefore, we still have an adjunction relation at the level
of operad categories, with the unit and augmentation morphisms specified in the
proposition. �

Thus, in the particular case of the geometric realization and singular complex
functors, we obtain the following proposition:
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Proposition 3.1.4. The functors |− | : sSet Op � Top Op : Sing•(−) induced
by the realization of simplicial sets and by the singular complex functor on operads
are adjoint to each other. The augmentation ε : | Sing•(Q)| → Q (respectively, the
unit η : P → Sing•(|P |)) of this adjunction is given by the aritywise application
of the augmentation (respectively, of the unit) of the underlying adjunction between
simplicial sets and topological spaces. �

The result of Proposition 3.1.3 also applies to the adjunction of §3.0.6 between
sets and counitary cocommutative coalgebras k[−] : Set → Comc

+ : G, where we
consider the lifting of the free module functor k[−] : Set → Mod to the category of
coalgebras Comc

+.
In the sequel, we often deal with adjunction relations F : M � N : G such

that the right adjoint functor G is symmetric monoidal, but not the left adjoint F .
In this situation, we still have a functor G : NOp → MOp given by the result
of Proposition 3.1.1 but we can not apply the construction of this proposition
to get a functor on operads from F . Nevertheless, in the case where we deal
with symmetric monoidal categories equipped with colimits and limits, and if we
moreover assume that the tensor product distributes over colimits (see §0.9), then
we have the following result:

Proposition 3.1.5.
(a) Let F : M � N : G be a pair of adjoint functors between symmetric

monoidal categories, such that G (but not necessarily F ) is lax symmetric monoidal.
If the category M is equipped with colimits and is equipped with a tensor product
that distributes over colimits (so that we can define free operads and form colimits
of operads in that category), then the functor on operads G : NOp → MOp which
we obtain by the aritywise application of G : N → M (see Proposition 3.1.3) admits
a left adjoint F� : MOp → NOp.

(b) If G is unit-preserving, so that the functor G : NOp → MOp preserves
unitary operad structures (see Proposition 3.1.1), then we also have a functor on
unitary operads F� : MOp∗ → NOp∗ which is left adjoint to G : NOp∗ → MOp∗.
This functor satisfies the relation F�(A+) = F�(A)+, for any unitary extension
A+ ∈ MOp∗ of an operad A ∈ MOp∅ in the category M.

Proof. We focus on the first assertion of this proposition for the moment.
We adapt a general construction of adjoint functors, namely the adjoint lifting
theorem (see [31, §4.5] and [97]), to get the functor F� : MOp → NOp adjoint to
G : NOp → MOp. We just note that this functor G : NOp → MOp preserves
limits since limits of operads are created aritywise in the base category and our
functor G preserves limits at this level by adjunction.

We consider the case of a free operad P = Θ(M) first. We then set:

(1) F�(Θ(M)) := Θ(F (M)),

where F (M) denotes the symmetric sequence in N formed by the image of the
components of the collection M(r) ∈ MSeq , r ∈ N, under the functor F on the
base category M. We also take the image of the morphisms s∗ : M(r) → M(r)
which define the action of permutations s ∈ Σr on M(r) ∈ M under our functor F
to determine the symmetric structure of this collection F (M)(r) = F (M(r)), r ∈ N,
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in the category N. We have a chain of adjunction relations

(2) MorNOp(Θ(F (M)),Q) = MorNSeq(F (M),Q)

= MorMSeq(M, G(Q)) = MorMOp(Θ(M), G(Q)),

which we deduce from the adjunction relation of free operads and from the aritywise
adjunction relation between our functors on base categories F : M � N : G.

Let φ : Θ(M) → Θ(N) be a morphism of free operads in the category M. The
adjunction relations in Equation (2) are functorial in Q ∈ NOp. By the Yoneda
Lemma, we have an operad morphism φ� : Θ(F (M)) → Θ(F (N)) which we associate
to the dotted natural transformation of morphism sets in the following diagram:

(3) MorNOp(Θ(F (M)),Q)
�

MorMOp(Θ(M), G(Q))

MorNOp(Θ(F (N)),Q)
�

φ∗
�

MorMOp(Θ(N), G(Q))

φ∗

.

If we assume that φ = φf is associated to a morphism of symmetric sequences
f : M → Θ(N), then we can determine φ� as the free operad morphism associated
to the morphism of symmetric sequences defined by the composite:

F (M(r))
F (f)−−−→ F (Θ(N)(r))

F (φG(ι)η)−−−−−−→ FG(Θ(F (N))(r))
ε−→ Θ(F (N)(r)),

for each arity r ∈ N, where we consider:

– the morphism ε : FG(Θ(F (N))(r)) → Θ(F (N))(r) determined by the aug-
mentation of the adjunction F : M � N : G,

– the operad morphism φG(ι)η : Θ(N) → G(Θ(F (N))), determined on the
symmetric sequence N by the morphisms

N(r)
η−→ GF (N(r))

G(ι)−−−→ G(Θ(F (N))(r))

which we obtain by composing the unit of our adjunction in the base cat-
egory η : N(r) → GF (N(r)) with the canonical embedding ι : F (N(r)) ↪→
Θ(F (N))(r) of the symmetric sequence F (N)(r) = F (N(r)) in the free
operad Θ(F (N)), for each r ∈ N.

To extend our adjoint functor to the whole category of operads MOp, we use
that any object P ∈ MOp fits in a reflexive coequalizer of the form:

(4) Θ(Θ(P))
d0

d1

Θ(P) ε

s0

P .

Recall that we write λ = φid for the operad morphism λ : Θ(P) → P induced by
the identity of the operad P. This morphism represents the augmentation of the
adjunction between the forgetful functor on the category of operads and the free
operad functor Θ : Seq → Op. The embedding ι : M → Θ(M), already considered
in this proof, represents the unit of this adjunction relation. To define our reflexive
coequalizer (4), we explicitly consider:

– the morphism of free operads d0 = φid : Θ(Θ(P)) → Θ(P) associated to
the identity of the object Θ(P);

– the morphism of free operads d1 = Θ(φid) : Θ(Θ(P)) → Θ(P) induced by
the just considered morphism λ = φid : Θ(P) → P ;
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– and the morphism of free operads s0 = Θ(ι) : Θ(P) → Θ(Θ(P)) induced
by the embedding ι : P → Θ(P).

We also set ε = φid to get our coequalizing morphism with values in the object P .
We clearly have εd0 = εd1 and the identity between this morphism ε = φid and
the coequalizer of our diagram (4) is a general result on adjoint functors (see [130,
§§VI.6-7]). We also refer to §B for further details on this statement.

To define the image of our operad P under the functor F�, we just set:

(5) F�(P) := coeq(Θ(F (Θ(P)))︸ ︷︷ ︸
=F�(Θ(Θ(P)))

�

⇒Θ(F (P))︸ ︷︷ ︸
=F�(Θ(P))

),

where we take the image of the coequalizer diagram (4) under our functor on free
operads. We easily deduce from the case of free operads that this object F�(P)
fulfills the adjunction relation:

(6) MorNOp(F�(P),Q) = MorMOp(P, G(Q)),

for all Q ∈ NOp. The definition of the morphism F�(φ) : F�(P) → F�(B) associated
to any morphism φ : P → B in the category of operads in M can easily be deduced
from the Yoneda Lemma. We can also observe that our coequalizer diagram (4)
is functorial and we use the construction of our functor on free operads to get an
explicit definition of this morphism F�(φ).

Let us observe that this functor on operads F� : MOp → NOp preserves the
category of non-unitary operads, regarded as a full subcategory of the category of
all operads, because the identity F (∅) = ∅ (which follows from our adjunction rela-
tion) implies that the functor F� carries the free non-unitary operad Θ(M) ∈ MOp∅,
which we may associate to any non-unitary symmetric sequence M ∈ MSeq>0, to a
non-unitary operad in the category N. The functor G, on the other hand, does not
preserve connected operads in general, unless we assume G(∅) = ∅. We can how-
ever form a functor on connected operads G : NOp∅ → MOp∅ from G : N → M

by forgetting about the arity zero component of our objects in the construction of
Proposition 3.1.1. We still get that the restriction of our functor F� : MOp → NOp
to non-unitary operads forms a left adjoint of this functor on non-unitary operads
G : NOp∅ → MOp∅.

In the proof Proposition 3.1.1, we still observe that G : N → M induces a
functor on the category of augmented non-unitary Λ-operads G : NΛOp∅ /Com →
MΛOp∅ /Com as soon as we assume that G is unit-preserving G(1) = 1. Recall
that the definition of this functor reflects the identity G(Q+) = G(Q)+ for the
unitary extension Q+ of an operad Q ∈ NOp∅. We just retrieve the previous
functor on non-unitary operads G : NOp∅ → MOp∅ when we forget about the
extra structures attached to the objects of the category of augmented non-unitary
Λ-operads. We can easily adapt the previous construction to define a left adjoint
F� : MΛOp∅ /Com → NΛOp∅ /Com of this functor on augmented non-unitary
Λ-operads G : NΛOp∅ /Com → MΛOp∅ /Com. We just consider the extension
of the free operad functor to the category of augmented non-unitary Λ-operads
in the first step of our process. We use the equivalence between augmented non-
unitary Λ-operads and unitary operads in order to define a left adjoint of the functor
G : NOp∗ → MOp∗ induced by G : N → M from this functor on augmented non-
unitary Λ-operads F� : MΛOp∅ /Com → NΛOp∅ /Com.
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Let us observe that this functor defines a lifting of our previously defined functor
on the category of ordinary (non-unitary) operads:

MΛOp∅ /Com
F�

ω

NΛOp∅ /Com

ω

MOp∅

F�

MOp∅

because we have a similar result for the free operad functor Θ : Λ Seq>0 /Com →
ΛOp∅ /Com which we use in the construction of this adjoint. We use this corre-
spondence to gives a sense to the relation F (P+) = F (P)+ given in our theorem
when P+ ∈ MOp∗ is the unitary extension of an operad P ∈ MOp∅. �

In §II.10, we rely on the construction of this theorem in order to produce an
operadic enhancement of the Sullivan cochain dg-algebra functor Ω∗ : X �→ Ω∗(X).

3.2. The notion of a Hopf operad

We devote this section to the study of operads in the symmetric monoidal cat-
egory of counitary cocommutative coalgebras. One of our aims is to check that
operads in counitary cocommutative coalgebras are equivalent to counitary cocom-
mutative coalgebra objects in the category of operads. The existence of these
multiple equivalent definitions motivates us to adopt specific conventions for these
operads. To be explicit, we generally use the name ‘Hopf operad ’ (rather than the
phrase ‘operad in counitary cocommutative coalgebras’) to refer to these objects,
unless we want to emphasize a particular definition of our structure. We also use the
notation Hopf Op, rather than Comc

+ Op, to refer to the category of Hopf operads.
We actually adopt the general convention to use the name ‘Hopf’ as a prefix for

any category of structured objects which we may form in a category of counitary
cocommutative coalgebras (or in a category of unitary commutative algebras). We
stress that the coalgebra (respectively, algebra) underlying a Hopf object is always
supposed to be cocommutative (respectively, commutative) under our convention.

The constructions of the next paragraphs §§3.2.1-3.2.5 are valid in any ambi-
ent symmetric monoidal category M in which we define our category of counitary
cocommutative coalgebras Comc

+ = MComc
+. We fix such a base category M all

through this section.
3.2.1. The definition of Hopf operads as operads in counitary cocommutative

coalgebras. The symmetric monoidal structure of the category of counitary cocom-
mutative coalgebras Comc

+ = MComc
+ is defined in §3.0.4. Recall simply that the

tensor product of coalgebras A,B ∈ Comc
+ is obtained by providing the tensor

product of A and B in the underlying symmetric monoidal category with a natural
coalgebra structure. The unit, associativity and symmetry isomorphisms of the
tensor product of coalgebras are inherited from the ambient symmetric monoidal
category and the forgetful functor ω : MComc

+ → M is, as a consequence, symmet-
ric monoidal in the sense of §3.3.1.

To define operads in counitary cocommutative coalgebras, we simply apply
the general definition of §1.1.1 to the symmetric monoidal category of coalge-
bras Comc

+. Under this approach, an operad in counitary cocommutative coal-
gebras (a Hopf operad in our terminology) consists of a collection of counitary
cocommutative coalgebras P(r) together with an action of the symmetric group Σr
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on P(r), for each r ∈ N, a unit morphism η : 1 → P(1), and composition operations
◦k : P(m) ⊗ P(n) → P(m + n − 1), defined for all m,n ∈ N, k = 1, . . . ,m. We
assume that these structure morphisms are formed in the category of counitary
cocommutative coalgebras and satisfy the equivariance, unit, and associativity re-
lations of operads §2.1.9 in this category Comc

+. If we use the definition of §1.1
(rather than the definition of operads in terms or partial composition operations),
then we equivalently assume that the total composition products of our operad
μ : P(r) ⊗ P(n1) ⊗ · · · ⊗ P(nr) → P(n1 + · · · + nr) are morphisms of counitary
cocommutative coalgebras.

3.2.2. The internal structure of Hopf operads. An operad in counitary cocom-
mutative coalgebras forms an operad in the base category since, as we just observed,
the forgetful functor ω : MComc

+ → M is symmetric monoidal by construction. As
such, an operad in counitary cocommutative coalgebras P can be identified with
an operad in M such that the symmetric group Σr acts on P(r) by morphisms of
cocommutative coalgebras, for each r ∈ N, and the unit morphism η : 1 → P(1),
as well as the composition operations ◦k : P(m) ⊗ P(n) → P(m + n − 1) preserve
coalgebra structures.

We go back to the definition of the coalgebra structure on the unit object 1
and on the tensor product P(m) ⊗ P(n) in order to make explicit the conditions
which these coalgebra morphisms η and μ have to satisfy. We obtain that the
preservation of coalgebra structures by the operadic unit η : 1 → P(1) is equivalent
to the commutativity of the diagrams

(1) 1
η

=

P(1)

ε

1

, 1
η

�

P(1)

Δ

1⊗ 1
η⊗η

P(1)⊗ P(1)

,

where we use the notation ε (respectively, Δ) to refer to the counit (respectively,
coproduct) associated to each coalgebra P(r). We similarly get that the preser-
vation of coalgebra structures by the composition products ◦k : P(m) ⊗ P(n) →
P(m+ n− 1) is equivalent to the commutativity of the diagrams

(2) P(m)⊗ P(n)
◦k

ε⊗ε

P(m+ n− 1)

ε

1 = 1

,

P(m)⊗ P(n)
◦k

Δ⊗Δ

P(m+ n− 1)

Δ(P(m)⊗ P(m))⊗ (P(n)⊗ P(n))

�

(P(m)⊗ P(n)⊗ (P(m)⊗ P(n))
◦k⊗◦k

P(m+ n− 1)⊗ P(m+ n− 1)

,

for all m,n ∈ N, k = 1, . . . ,m.
In the case where M is the category of k-modules so that we have 1 = k, the

requirement that η : 1 → P(1) is a morphism of coalgebras is equivalent to the
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assumption that the operadic unit element 1 ∈ P(1) (determining η) is group-like,
because the unit 1 is so in the ground ring k (regarded as a coalgebra). The relations
which we express by the commutativity of the diagrams (2) are also equivalent to
the equations:

ε(p ◦k q) = ε(p) · ε(q) and Δ(p ◦k q) =
∑

(p),(q)

(p(1) ◦k q(1))⊗ (p(2) ◦k q(2)),

for all p ∈ P(m), q ∈ P(n), where we use the notation Δ(x) =
∑

(x) x(1) ⊗ x(2) to

represent the expansion of the coproduct of any element x in a coalgebra. We have
an analogous pointwise expression of our relations in the context of the symmetric
monoidal categories of graded modules, of differential graded modules, of simplicial
modules and of cosimplicial modules, which we consider later on in this work.

The observations of this paragraph imply that we can define operads in couni-
tary cocommutative coalgebras as operads in the base category P, where each P(r)
is equipped with a counit ε : P(r) → 1 and a coproduct Δ : P(r) → P(r) ⊗ P(r),
which define a counitary cocommutative coalgebra structure on P(r), such that the
diagrams (1-2) commute, for all m,n ∈ N, k = 1, . . . ,m.

To give an abstract interpretation of the compatibility conditions expressed by
these commutative diagrams, we will check that the category of operads inherits a
tensor product from the base category � : Op ×Op → Op such that the doubled
factors in the tensor products of (1-2) can be interpreted as the components of a

tensor square P�2 in Op. We devote the next paragraphs to this subject. This
tensor product � : Op×Op → Op will be called the aritywise tensor product of
operads.

3.2.3. The aritywise tensor product of operads. Let P ,Q ∈ Op. The compo-
nents of the operad P �Q are given by the obvious formula (P �Q)(r) = P(r) ⊗
Q(r) in each arity r ∈ N, where we form the tensor product of the objects P(r)
and Q(r) in the ground symmetric monoidal category M. The diagonal action
of permutations w ∈ Σr on the tensor product P(r) ⊗ Q(r) provides the object
(P �Q)(r) = P(r) ⊗ Q(r) with an action of the symmetric group Σr, for each
r ∈ N. The unit of the operad P �Q is given by the composite morphism

1
�−→ 1⊗ 1

ηP⊗ηQ−−−−→ P(1)⊗ Q(1)

where we consider the unit morphisms of the operads P and Q. The partial com-
position products of P �Q are defined by the composite morphisms

(P(m)⊗ Q(m))⊗ (P(n)⊗ Q(n))
�−→ (P(m)⊗ P(n))⊗ (Q(m)⊗ Q(n))

◦k⊗◦k−−−−→ P(m+ n− 1)⊗ Q(m+ n− 1),

where we apply an appropriate tensor permutation to gather the factors attached
to each operad P and Q and we apply the composition products of these operads.
We immediately check that these structure morphisms satisfy the equivariance, unit
and associativity axioms of operads. Thus, our construction, which is also obviously
natural with respect to P ,Q ∈ Op, yields a bifunctor � : Op×Op → Op.

We readily see that the commutative operad Com+, which consists of the unit
object 1 in all arities Com+(r) = 1, forms a unit for the aritywise tensor product of
operads. We also have a natural associativity (respectively, symmetry) isomorphism
on � which is given by the aritywise application of the associativity (respectively,
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symmetry) isomorphism of the tensor product ⊗ in the ambient category M. We
simply have to check that these aritywise associativity (respectively, symmetry)
isomorphisms preserve the internal structure of operads, but this assertion follows
from formal verifications. We conclude that the bifunctor � : Op ×Op → Op is the
tensor product of a symmetric monoidal structure on Op.

A counitary cocommutative coalgebra in Op formally consists of an operad
P ∈ Op equipped with a counit (an augmentation) ε : P → Com+ and a coproduct
Δ : P → P �P, both formed in the category of operads, such that the counit,
coassociativity and cocommutativity relations of §3.0.4 hold. We immediately see
that giving these structure morphisms amounts to providing each object P(r) with
a counitary cocommutative coalgebra structure which is preserved by the action of
permutations on our object. Furthermore, for the morphisms ε : P → Com+ and
Δ : P → P �P , the preservation of operadic units and of composition products is
equivalent to the commutativity of the diagrams (1-2) in §3.2.2. Hence, we have
the following result:

Proposition 3.2.4. The Hopf operads, initially defined as operads in counitary
cocommutative coalgebras in §3.2.1, can equivalently be defined as counitary cocom-
mutative coalgebras in operads, where we take the aritywise tensor product of §3.2.3
to provide the category of operads with a symmetric monoidal structure. �

We crucially need the equivalence of this proposition for the definition of Hopf
operads by generators and relations (see Proposition 3.2.10).

In §3.0.4, we mention that the tensor unit 1 represents the terminal object of the
category of counitary cocommutative coalgebras and the tensor product represents
the cartesian product in that category. The same results hold in the operad context:

Proposition 3.2.5.
(a) The unitary commutative operad Com+, which defines the unit of the arity-

wise tensor product of operads, inherits a natural Hopf operad structure and defines
the terminal object of the category of Hopf operads.

(b) The aritywise tensor product of Hopf operads inherits a natural Hopf op-
erad structure. The aritywise tensor product therefore induces a bifunctor � :
Hopf Op ×Hopf Op → Hopf Op which provides the category of Hopf operads with
a symmetric monoidal structure with the unitary commutative operad Com+ as unit
object.

(c) The tensor product of Hopf operads P �Q ∈ Hopf Op, considered in (b),
actually represents the cartesian product of P and Q in Hopf Op. The structure

projections P
p←− P �Q

q−→ Q, which characterize this cartesian product, are iden-
tified with the tensor products p = id �ε and q = ε � id, where we consider the
counit morphisms ε : P → Com+ (respectively, ε : Q → Com+) of the Hopf operad
structure on P (respectively, Q).

Proof. This result follows from the identity Hopf Op = Op Comc
+ established

in Proposition 3.2.4 and from the observations of §3.0.4 concerning the categorical
interpretation of the tensor product of coalgebras in a symmetric monoidal category
which we apply to the category of operads M = Op. �

The assertions of this proposition can also be deduced from the result of Propo-
sition 1.2.4 which asserts that limits of operads are created in the underlying cat-
egory. We simply note that Proposition 1.2.4 holds as soon as limits exist in the
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base category and we use the observations of §3.0.4 to get the definition of terminal
objects and cartesian products in categories of counitary cocommutative coalgebras.

We now examine the adjunction between symmetric sequences and operads in
the context of Hopf operads. We assume for the construction of free operads that
the base category M is equipped with colimits and with a tensor product which
satisfies the distribution relation of §0.9(a) with respect to colimits.

In parallel to the name ‘Hopf operad’, we use the phrase ‘Hopf symmetric se-
quence’ to refer to the category of symmetric sequences in counitary cocommutative
coalgebras. We also use the notation Hopf Seq , instead of Comc

+ Seq , to refer to the
category of Hopf symmetric sequences. We revisit the definition of the structure
of a Hopf symmetric sequence in the next paragraph (just as we did in the case of
Hopf operads).

3.2.6. Hopf symmetric sequences and the definition of free Hopf operads. We
can obviously extend the definition of the aritywise tensor product of operads to
symmetric sequences. We then obtain a bifunctor � : Seq × Seq → Seq which
provides Seq with the structure of a symmetric monoidal category (we just keep
the action of symmetric groups in the construction of §3.2.3 and we forget about
the operadic unit and the composition operations). The tensor unit in the category
Seq is still given by the unitary commutative operad Com+, of which we forget the
operadic composition structure.

We can readily identify a Hopf symmetric sequence with a symmetric sequence
in the base category M ∈ Seq equipped with a counit morphism ε : M → Com+

and a coproduct Δ : M → M �M in the category of symmetric sequences such that
the counit, coassociativity, and cocommutativity relations of §3.0.4 are satisfied in
this symmetric monoidal category Seq . We therefore have an identity between the
category of Hopf symmetric sequences and the category of counitary cocommutative
coalgebras in Seq . In our notation, this identity reads Hopf Seq = Comc

+ Seq =
Seq Comc

+.
We can apply the construction of the free operad to the symmetric monoidal

category of counitary cocommutative coalgebras whenever the base category M is
equipped with colimits and has a tensor product which distributes over colimits.
(Recall that the category of counitary cocommutative coalgebras has colimits as
well, which are created in the base category M.) We then get a Hopf operad Θ(M),
naturally associated to any Hopf symmetric sequence M, and which satisfies the
universal property of Proposition 1.2.2 in the category of Hopf operads.

We have already observed that the forgetful functor ω : Comc
+ → M, from

counitary cocommutative coalgebras to the base category, is symmetric monoidal
by construction, and as a consequence, induces a functor ω : Hopf Op → Op from
Hopf operads to operads. According to the discussion of §§3.2.1-3.2.4, we can also
identify this functor with a forgetful functor which retains the operad structure in
Hopf operads and forgets about the coalgebra structure on each component of our
object. We also have an obvious forgetful functor ω : Hopf Seq → Seq from the
category of Hopf symmetric sequences Hopf Seq to the category of plain symmetric
sequences Seq . We study the interplay between these forgetful functors and the
free object functors which we attach to the category of Hopf operads and to the
category of operads.
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The explicit construction of the free operad Θ(M) in §A involves a combination
of colimits and tensor products. We mentioned in §3.0.4 that the forgetful func-
tor ω : Comc

+ → M creates colimits (in addition to tensor products). From this
observation, we immediately deduce that the forgetful functor ω : Hopf Op → Op
preserves free operads. But we are going to use another approach to prove this
statement. Namely, we rely on our interpretation of Hopf operads as coalgebras in
operads, which we use in the following observations:

Lemma 3.2.7. Let M be a Hopf symmetric sequence. Let Θ(M) be the free
operad associated to M, and formed in the base category after forgetting the internal
cocommutative coalgebra structure of this object M.

(a) The counit morphisms ε : M(r) → 1 and the coproduct operations Δ :
M(r) → M(r)⊗M(r), which define the counitary cocommutative coalgebra structure
of the objects M(r), extend to operad morphisms ε : Θ(M) → Com+ and Δ :
Θ(M) → Θ(M)� Θ(M) which provide the free operad Θ(M) with the structure of a
Hopf operad.

(b) Let f : M → P be a morphism of Hopf symmetric sequences, where P
is a Hopf operad. Let φf : Θ(M) → P be the unique morphism factorizing f in
the category of operads. The free operad Θ(M) inherits a Hopf operad structure
by assertion ( a). The morphism φf automatically preserves this additional coalge-
bra structure which we attach to the object Θ(M) and as a consequence defines a
factorization of our morphism f in the category of Hopf operads.

(c) In the construction of ( a), the universal morphism of the free operad ι :
M → Θ(M) defines a morphism of Hopf symmetric sequences. In the construction
of (b), if we consider the morphism λ : Θ(P) → P, associated to the identity of P,
and which defines the augmentation of the free operad adjunction, then we obtain
a morphism of Hopf operads.

Proof. Recall that the counits ε : M(r) → 1, which we associate to each
coalgebra M(r), can be viewed as a morphism of symmetric sequences with values
in the unitary commutative operad Com+. The existence of the operad morphism
extending these counit morphisms ε : Θ(M) → Com+ immediately follows from the
universal property of the free operad, such as stated in Proposition 1.2.2.

By composing the diagonals Δ : M(r) → M(r)⊗M(r) with a tensor product of
the universal morphisms ι : M(r) → Θ(M)(r) in each arity r ∈ N, we also obtain a
morphism Δ : M → Θ(M)� Θ(M). By applying the universal property of the free
operad, we obtain again an operad morphism Δ : Θ(M) → Θ(M) � Θ(M) which
extends this morphism of symmetric sequences.

The uniqueness requirement in the universal property of free operads (see
Proposition 1.2.2 again) implies that the just defined morphisms fulfill the counit,
coassociativity and cocommutativity relations of coalgebras on the free operad
Θ(M).

The universal morphism ι : M → Θ(M) forms a morphism of Hopf symmetric
sequences by construction of the coalgebra structure on Θ(M). Thus, the first
assertion of (c) is immediate. The uniqueness requirement in the universal property
of free operads also implies that the morphism φf : Θ(M) → P associated to a
morphism of Hopf symmetric sequences in (b) intertwines coalgebra structures and
hence, forms a morphism of Hopf operads. The second assertion of (c) about the
adjunction augmentation λ : Θ(P) → P is also immediate from this result. �
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Then we obtain:

Proposition 3.2.8. The free operad Θ(M), together with the Hopf structure
constructed in the previous lemma, forms the free object associated to M in the
category of Hopf operads.

Proof. This proposition is a formal consequence of the results of assertions
(b-c) in Lemma 3.2.7. �

Lemma 3.2.7 also implies the following result on the free operad adjunction:

Proposition 3.2.9. The free Hopf operad functor of Proposition 3.2.8 fits in
a commutative diagram

Hopf Seq
Θ

ω

Hopf Op
ω

ω

Seq
Θ

Op
ω

,

where we consider the obvious forgetful functor from the category of Hopf operads
(respectively, symmetric sequences) to the category of plain operads (respectively,
symmetric sequences). We also have a commutative diagram

MorHopf Op(Θ(M),P)
�

ω

MorHopf Seq (M,P)

ω

MorOp(Θ(M),P)
�

MorSeq (M,P)

,

where the horizontal maps are defined by the adjunction relations of free operads,
while the vertical maps are given by our forgetful functors from Hopf operads (respec-
tively, symmetric sequences) to plain operads (respectively, symmetric sequences).

Proof. The assertion of Proposition 3.2.8 implies that the forgetting of coal-
gebra structures preserves free operads. In Lemma 3.2.7, assertion (c) similarly
implies that the forgetting of coalgebra structures preserves the unit morphism and
the augmentation morphism of the free operad adjunction. From this observation,
we immediately conclude that the forgetting of coalgebra structures also intertwines
the adjunction correspondence on morphisms. �

In §1.2, we briefly explain that the free operad Θ(M) intuitively consists of
formal operadic composites of elements ξ ∈ M(n) (when we work in a concrete
base symmetric monoidal category). In this interpretation, the construction of
Lemma 3.2.7 gives an extension of the counit (respectively, coproduct) of M to
such composites by using the pointwise commutation relations of §3.2.2. We use
this idea soon in order to determine the counit and the coproduct of composite
elements in operads defined by generators and relations (see §3.2.11).

We now focus on the case where we take a category of modules as base category
M = Mod . We explain in §1.2.9 that operads in module categories can be defined
by generators and relations as quotients P = Θ(M)/〈zα, α ∈ I〉, where we consider
an ideal 〈zα, α ∈ I〉 in a free operad Θ(M). In the context of Hopf operads, we have
the following result:
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Proposition 3.2.10. Let M be a Hopf symmetric sequence (in k-modules).
We apply the construction of Lemma 3.2.7 to obtain a Hopf structure on the free
operad associated to M. Let S = 〈zα, α ∈ I〉 be the ideal generated by a collection
of elements zα ∈ S(nα) in the free operad Θ(M). If we have

ε(zα) = 0 and Δ(zα) ∈ S(nα)⊗ Θ(M)(nα) + Θ(M)(nα)⊗ S(nα)

for each zα ∈ S(nα), then:
(a) The operad P = Θ(M)/〈zα, α ∈ I〉 inherits a quotient Hopf operad structure

from the free operad Θ(M).
(b) The morphisms of Hopf operads φ̄f : Θ(M)/〈zα, α ∈ I〉 → Q defined on this

quotient are in obvious bijection with the morphisms of Hopf operads φf : Θ(M) →
Q such that φf (z

α) = 0 for each generating element of the ideal zα ∈ S(nα).

In the situation of this proposition, we also say that the ideal S = 〈zα, α ∈ I〉
forms a Hopf ideal in the operad Θ(M).

Proof. The requirement ε(zα) = 0 implies that ε induces a morphism on the
quotient Θ(M)/ S , and hence provides this quotient operad with a counit

ε : Θ(M)/〈zα, α ∈ I〉 → Com+ .

The requirement Δ(zα) ∈ S(nα)⊗ Θ(M)(nα) + Θ(M)(nα)⊗ S(nα) is equivalent to
the vanishing of Δ(zα) in the module:

((Θ(M)/ S)� (Θ(M)/ S))(nα) =
(
Θ(M)(nα)/ S(nα)

)
⊗
(
Θ(M)(nα)/ S(nα)

)
=
(
Θ(M)(nα)⊗ Θ(M)(nα)

)
/
(
S(nα)⊗ Θ(M)(nα) + Θ(M)(nα)⊗ S(nα)

)
,

and implies that Δ : Θ(M) → Θ(M)� Θ(M) induces a morphism

Δ : Θ(M)/ S → (Θ(M)/ S)� (Θ(M)/ S)

on the quotient operad Θ(M)/ S = Θ(M)/〈zα, α ∈ I〉. These morphisms, obtained
by a quotient process, naturally satisfy the counit, coassociativity, and cocom-
mutativity relations of coalgebras and hence, provide the operad Θ(M)/ S with a
well-defined Hopf structure.

To check the second assertion of the proposition, we simply observe that the
morphism φ̄f : Θ(M)/〈zα, α ∈ I〉 → Q, induced by the morphism of Hopf oper-
ads φf : Θ(M) → Q, naturally preserves coalgebra structures as well, and hence,
defines a morphism of Hopf operads. �

3.2.11. First examples of Hopf operads defined by a presentation. In Proposi-
tion 3.2.5, we check that the unitary commutative operad Com+ has a natural Hopf
structure. The same result holds for the non-unitary version of the commutative
operad Com. To illustrate our constructions, we check that this structure result
can be retrieved from the statement of Proposition 3.2.10 and from the presenta-
tion commutative operad in §1.2.10. We then assume that the ground symmetric
monoidal category is a category of modules over a ring.

Recall that the generating symmetric sequence of the commutative operad is
defined by MCom(2) = k[μ(x1, x2)] = k, where μ = μ(x1, x2) denotes an operation
on which Σ2 acts trivially, and we have MCom(r) = 0 for r �= 2. We provide the
module MCom(2) = k[μ(x1, x2)] with the coalgebra structure such that ε(μ) = 1 and
Δ(μ) = μ ⊗ μ for this generating operation. We use the preservation of operadic
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composition structures to determine the image of the generating relations of Com
under the counit and the coproduct in the free operad:

ε(μ(μ, 1)− μ(1, μ)) = 1− 1 = 0,

Δ(μ(μ, 1)− μ(1, μ)) = (μ⊗ μ)(μ⊗ μ, 1⊗ 1)− (μ⊗ μ)(1⊗ 1, μ⊗ μ)

= μ(μ, 1)⊗ μ(μ, 1)− μ(1, μ)⊗ μ(1, μ)

= (μ(μ, 1)− μ(1, μ))⊗ μ(μ, 1) + μ(1, μ)⊗ (μ(μ, 1)− μ(1, μ)).

We see, from this computation, that the generating relations of the commutative
operad generate a Hopf ideal. Hence, the assumptions of Proposition 3.2.10 are
satisfied, and we retrieve that Com inherits a well-defined Hopf operad structure
such that ε(μ) = 1 and Δ(μ) = μ⊗ μ for the generating operation μ = μ(x1, x2).

The unitary and the non-unitary version of the associative operad also inher-
its a Hopf structure. Let us see how to retrieve this structure result from our
presentation again. The generating symmetric sequence of the associative operad
is given by MAs(2) = k[μ(x1, x2), μ(x2, x1)] = k[Σ2], where μ = μ(x1, x2) de-
notes an operation on which Σ2 acts regularly, and MAs(r) = 0 for r �= 2. We
provide the module MAs(2) with the coalgebra structure such that ε(μ) = 1 and
Δ(μ) = μ⊗ μ. The definition of the counit and of the coproduct of the transposed
operation (1 2) · μ = μ(x2, x1) is then forced by the equivariance requirement. We
check, as in the case of the commutative operad, that μ(μ, 1)− μ(1, μ) generates a
Hopf ideal, from which we conclude again that the operad As inherits a well-defined
Hopf structure.

In the case of the Lie operad, we have a generating symmetric sequence such
that MLie(2) = k[λ(x1, x2)] = k± where k± denotes the signature representation.
We have in this case no possibility of fixing a counit ε(λ) ∈ k and a coproduct
Δ(λ) ∈ Lie(2)⊗Lie(2) such that the counit relations hold, the equivariance require-
ments of operad morphisms are satisfied, and the Jacobi relation is canceled by
the counit in k and by the coproduct in Lie(3) ⊗ Lie(3). Hence, we have no Hopf
structure on the Lie operad.

3.2.12. The example of the Poisson operad. Though we have no Hopf structure
on the Lie operad, we can define an appropriate counit and coproduct for the
corresponding generating operation λ in the Poisson operad. Recall that the Poisson
operad Pois is defined by a presentation of the form

Pois = Θ( kμ(x1, x2)⊕ kλ(x1, x2) : μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3)),

λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) + λ(λ(x3, x1), x2) ≡ 0,

λ(μ(x1, x2), x3) ≡ μ(λ(x1, x3), x2) + μ(x1, λ(x2, x3)) ),

where the action of the symmetric group in arity 2 is determined by (1 2) · μ = μ
and (1 2) ·λ = −λ. We extend the formula of the commutative operad to define the
counit and the coproduct of the product operation μ = μ(x1, x2). We define the
counit and the coproduct of the Lie bracket operation λ = μ(x1, x2) by ε(λ) = 0
and Δ(λ) = λ⊗μ+μ⊗λ. We easily check again that the generating relations of the
Poisson operad form a Hopf ideal (adapt the verifications performed in §3.2.11 for
the commutative operad) and we have a well-defined Hopf structure on the Poisson
operad therefore. We use a graded variant of this Hopf structure in our study of
the homology of En-operads (see §4.2).
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3.2.13. Remark: Tensor product of algebras over Hopf operads. The existence
of a Hopf structure on an operad P implies that the associated category of algebras
P inherits a symmetric monoidal structure from the underlying symmetric monoidal
category M. Indeed, the tensor product of P-algebras A,B ∈ P inherits an action
of P , given by the composite morphisms

P(r)⊗ (A⊗B)⊗r Δ−→ (P(r)⊗ P(r))⊗ (A⊗B)⊗r

�−→ (P(r)⊗A⊗r)⊗ (P(r)⊗B⊗r)
λA⊗λB−−−−−→ A⊗B,

for any r ∈ N, where we consider the coproduct of P followed by the obvious
tensor permutation and the tensor product of the evaluation morphisms attached
to the P-algebras. The tensor unit 1 also inherits an action of the operad P by
restriction of the natural commutative algebra structure of this object 1 through the
counit morphism ε : P → Com+. The counit, coassociativity and cocommutativity
relations at the level of the coalgebra structure of the Hopf operad P imply that
the unit, associativity and symmetry isomorphisms of the base category define P-
algebra morphisms when we deal with tensor products of P-algebras. Hence, we
have a whole symmetric monoidal structure on the category of P-algebras.

In the case of algebras over the commutative operad, we retrieve the symmetric
monoidal structure of §3.0.3. In the case of algebras over the associative operad,
we retrieve the similarly defined symmetric monoidal structure of the category of
unitary associative algebras (see the introduction of §3.0).

3.2.14. The case of connected operads. Recall that the category of connected
operads Op∅1, such as defined in §1.1.21, consists of the operads P such that
P(0) = ∅ and P(1) = 1.

The constructions of §§3.2.3-3.2.5 can readily be adapted in the context of
connected operads. We actually have (P �Q)(0) = ∅ and (P �Q)(1) = 1 so
that the category Op∅1 is equipped with a well-defined aritywise tensor product
inherited from the category of operads. We accordingly have a symmetric monoidal
structure on Op∅1. We just need to observe that the unit object of this category is
the non-unitary version of the commutative operad Com (defined in §2.1.11).

The result of Proposition 3.2.4 remains valid for connected operads, and so
does the result of Proposition 3.2.5 (provided that we replace the unitary version
of the commutative operad Com+ in this statement by its non-unitary counterpart
Com).

3.2.15. Unitary Hopf operads and non-unitary Hopf Λ-operads. The descrip-
tion of unitary operads in terms of augmented (connected) non-unitary Λ-operad
structures given in the previous chapter makes sense in any base category. Hence,
we can apply these ideas without change within the category of counitary cocom-
mutative coalgebras in order to give a description of the category of unitary Hopf
operads in terms of augmented non-unitary Λ-operads in counitary cocommutative
coalgebras. We use the phrase ‘ non-unitary Hopf Λ-operad ’ to refer this category
of augmented (connected) non-unitary Λ-operads.

We can also rely on the observations of §3.2 in order to identify unitary Hopf
operads with counitary cocommutative coalgebras in the category of unitary op-
erads, because the aritywise tensor products (P �Q)(r) = P(r) ⊗ Q(r), such as
defined in §3.2.3, clearly preserves the category of unitary operads. We can equiv-
alently check that the aritywise tensor product of operads lifts to a tensor product
operation on the category of augmented non-unitary Λ-operads. We explicitly get
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that the action of the restriction operator u∗ associated to a map u ∈ MorΛ(m, n)
on a tensor product of operads P �Q is given by the diagonal action of the re-
striction operators associated to our map u on P and Q. The augmentation mor-
phisms ε : (P �Q)(r) → 1 are similarly defined by taking the tensor products of
the augmentation morphisms of the operads P and Q. We moreover see that the
preservation of counitary cocommutative coalgebra structures by the action of the
restriction operators u∗ on this tensor product P �Q is equivalent to the assump-
tion that the augmentation ε : P → Com and the diagonal Δ : P → P �P of the
Hopf operad underlying P preserve restriction operators. We have similar assertions
for the augmentation morphisms of our augmented Λ-operad structure. These ob-
servations imply that we can identify the category of non-unitary Hopf Λ-operads,
which we use to model unitary Hopf operads, with the category of counitary co-
commutative coalgebras in the category of augmented Λ-operads equipped with the
aritywise tensor structure. We have similar observations for the category of non-
unitary Hopf Λ-sequences which we can equivalently define either as augmented
non-unitary Λ-sequences in the category of counitary cocommutative coalgebras or
as counitary cocommutative coalgebras in the category of augmented Λ-sequences
(where we take the obvious extension of the aritywise tensor products of non-unitary
Hopf Λ-operads).

Let us observe that the augmentation morphisms ε : P(r) → 1 in the definition
of an augmented non-unitary Λ-operad necessarily reduce to the counit morphism
of the coalgebras P(r) which underlie our object P when we work in the category of
counitary cocommutative coalgebras. We therefore omit to mention the augmenta-
tion when we deal with (connected) non-unitary Hopf Λ-operads. We similarly see
that the commutative operad Com defines the terminal object of the category of
(connected) non-unitary Hopf Λ-operads. We therefore adopt the following short
notation for the category of non-unitary Hopf Λ-operads:

Hopf ΛOp∅ = Hopf ΛOp∅ /Com .

We use an analogous abridged notation for the category of non-unitary (respec-
tively, connected) Hopf Λ-operads and for the category of non-unitary (respectively,
connected) Hopf Λ-sequences which underlies this category of Λ-operads.

We can combine the results of Proposition 2.3.1 (respectively, Proposition 2.4.3)
and Proposition 3.2.7 to determine the free operad associated to a non-unitary Hopf
Λ-sequence (respectively, to a connected Hopf Λ-sequence). We can also combine
the observations of §2.4.8 and the results of Proposition 3.2.10 to get a definition
of unitary Hopf operads by generators and relations.

The associative operad As+, the commutative operad Com+, and the Poisson
operad Pois+, give examples of connected unitary Hopf operads which we can define
by a presentation by generators and relations of this form. In fact, we simply have
to check that the augmentation morphisms defined in §2.4.9 preserve the coalge-
bra structure on the generating collection MP of these operads P = As,Com,Pois
(see §§3.2.11-3.2.12) to conclude that P = As,Com,Pois all have a unitary extension
as a Hopf operad.

3.3. Appendix: Functors between symmetric monoidal categories

In various constructions of the previous sections, we have to transport struc-
tures (like commutative algebras) from one symmetric monoidal category M to
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another N. For this aim, we deal with functors that preserve the internal struc-
tures of our symmetric monoidal categories in a strict or relaxed sense. The purpose
of this appendix section is to review the definition of the extra structures, consist-
ing of natural equivalences or natural transformations, which we use to govern the
preservation of tensor products by such functors F : M → N between symmetric
monoidal categories M and N.

3.3.1. (Lax) symmetric (co)monoidal functors. Recall that a functor F : M →
N between symmetric monoidal categories M and N is lax symmetric monoidal
when we have a morphism η : 1 → F (1) and a natural transformation θ : F (A)⊗
F (B) → F (A⊗B), such that natural unit, associativity and symmetry constraints,
expressed by the commutativity of the following diagrams, hold:

F (A)⊗ F (1) θ
F (A⊗ 1)

�

F (A)⊗ 1 �

η

F (A)

,

F (1)⊗ F (A)
θ

F (1⊗A)

�

1⊗F (A)
�

η

F (A)

,

(F (A)⊗ F (B))⊗ F (C)
θ⊗id

�

F (A⊗B)⊗ F (C)

θ

F (A)⊗ (F (B)⊗ F (C))

id ⊗θ

F ((A⊗B)⊗ C)

�

F (A)⊗ F (B ⊗ C)
θ

F (A⊗ (B ⊗ C))

and

F (A)⊗ F (B)
θ

�

F (A⊗B)

�

F (B)⊗ F (A)
θ

F (B ⊗A)

.

In applications to operads, we often have to assume that our functor satisfies F (1) =
1 and that our natural morphism η : 1 → F (1) reduces to the identity morphism
of the unit object 1 ∈ N. In this situation, we say that the functor F is unit-
preserving and that θ defines a symmetric monoidal transformation on F . Most
lax symmetric monoidal functors which we consider in this book satisfies this extra
condition F (1) = 1. We therefore only consider this subclass of the class of lax
symmetric monoidal functors in the sequel.

We have a dual situation where our functor F is equipped with a morphism
ε : F (1) → 1 and with a natural transformation θ : F (A ⊗ B) → F (A) ⊗ F (B)
which satisfy the dual of the above unit, associativity and symmetry constraints.
We then say that F defines a lax symmetric comonoidal functor. If we have in
addition F (1) = 1, so that the augmentation morphism ε : F (1) → 1 associated to
F reduces to the identity morphism of the unit object 1 ∈ N, then we also say that
F is unit-preserving and that θ defines a symmetric comonoidal transformation on
F . We will still see that most lax symmetric comonoidal functors which we consider
in this book are unit-preserving. We therefore only consider this subclass of the
class of lax symmetric comonoidal functors in what follows (as in the case of lax
symmetric monoidal functors).
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We may also deal with a nicer situation, where we have both F (1) = 1 and our

symmetric monoidal transformation θ defines an isomorphism θ : F (A)⊗ F (B)
�−→

F (A⊗B), for every pair of objects A,B ∈ M (or dually in the case of a symmetric
comonoidal transformation). We say in this case that θ forms a symmetric monoidal
equivalence and that F : M → N is a symmetric monoidal functor from M to N

(some authors say that F is ‘strongly symmetric monoidal ’ in this context).
3.3.2. Fundamental examples of symmetric monoidal functors. The geometric

realization functor

| − | : sSet → Top

(see §0.5) is a fundamental example of a functor which is (strongly) symmetric
monoidal. Recall that the tensor product operation on simplicial sets and topolog-
ical spaces is defined by the cartesian product of these categories. In this context,

the canonical projections K
p←− K×L

q−→ L induce morphisms |K| p←− |K×L| q−→ |L|
which we can put together to define a natural transformation from |K × L| to
|K| × |L| in the category of topological spaces. This natural transformation actu-
ally defines a homeomorphism

θ : |K × L| �−→ |K| × |L|,

for all K,L ∈ sSet (see for instance [141, §III]), This result follows from a topo-
logical interpretation, in terms of simplicial decompositions of prisms, of the clas-
sical Eilenberg-Zilber equivalence (we refer to loc. cit. for details). For a point,
we obviously have | pt | = pt , and the definition of the natural transformation
θ : |K × L| → |K| × |L| from universal categorical constructions automatically
ensures that the unit, associativity and symmetry constraints of §3.3.1 are fulfilled.

The singular complex functor

Sing• : Top → sSet ,

which defines the right adjoint of the geometric realization functor |−| : sSet → Top
(see §0.5), is also symmetric monoidal. In this case, the identity Sing•(pt) = pt and

the existence of an isomorphism Sing•(K×L)
�−→ Sing•(K)×Sing•(L) immediately

follows from the definition of Sing• : Top → sSet as a right adjoint.
To give another simple example, the functor k[−] : Set → Mod , which maps any

set X ∈ Set to the associated free k-module k[X], is symmetric monoidal because
we have an obvious identity k[pt ] = k for the one-point set pt ∈ Set , and a natural

isomorphism k[X]⊗k[Y ]
�←− k[X×Y ], for any cartesian product of sets X,Y ∈ Set .

(We easily check that this natural transformation fulfills our unit, associativity and
symmetry constraints.) We go back to this example in §3.0.6.

The simplicial extension of the free k-module functor k[−] : sSet → s Mod
(considered in §0.3) is also symmetric monoidal (the symmetric monoidal structure
of simplicial modules will be studied in §II.5.2).

The normalized chain complex functor N∗ : sSet → dg Mod , of which we recall
the definition in §II.5.0.5, is an instance of functor which is lax but not strongly
symmetric monoidal. In the case of this functor, we have a natural transformation
θ : N∗(X) × N∗(Y ) → N∗(X × Y ), called the Eilenberg-MacLane morphism, which
satisfies our unit, associativity and symmetry constraints, but this morphism is
only a weak-equivalence and is not an isomorphism (see [129, §§VIII.6-8]). We give
a detailed survey of this subject in §II.5.2.
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3.3.3. Symmetric monoidal adjunctions. Suppose now we have a pair of adjoint
functors F : M � N : G between symmetric monoidal categories M and N such
that both F and G are symmetric monoidal. We then say that our adjunction is
symmetric monoidal if the augmentation morphisms ε : F (G(X)) → X and the
unit η : A → G(F (A)) of our adjunction are identity morphisms on unit objects
and make commute the diagrams

F (G(X))⊗ F (G(Y ))

�

ε⊗ε
X ⊗ Y

F (G(X)⊗G(Y ))
�

F (G(X ⊗ Y ))

ε ,

and

A⊗B
η

η⊗η

G(F (A⊗B))

G(F (A))⊗G(F (B))
�

G(F (A)⊗ F (B))

� ,

where we consider the symmetric monoidal transformations associated to F and G.
One can check (exercise) that the augmentation ε : | Sing•(X)| → X and the

unit η : K → Sing•(|K|) of the adjunction between the geometric realization | − | :
sSet → Top and the singular complex functor Sing•(−) : Top → sSet satisfy
these relations. Hence, this adjunction | − | : sSet � Top : Sing•(−) is symmetric
monoidal in the sense defined in this paragraph.
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CHAPTER 4

The Little Discs Model of En-operads

We explain the definition of the operad of little n-discs Dn and the defini-
tion of the notion of an En-operad in the first section of this chapter (§4.1). We
review classical results on the homology of the little disc operads in the second
section (§4.2).

The homology functor goes from spaces to graded modules. In good cases, the
homology of a space also inherits a coalgebra structure, dual to the standard com-
mutative algebra structure of the cohomology, and the homology defines a symmet-
ric monoidal functor from the category of spaces towards the category of counitary
cocommutative coalgebras in graded modules. This observation implies that the
homology of an operad forms an operad in the category of counitary cocommuta-
tive coalgebras in graded modules. Thus, we get that the homology of an operad
forms a Hopf operad in graded modules in the terminology of §3.2. In this case, we
also speak about graded Hopf operads for short. We make explicit the graded Hopf
operad structure of the homology of the little n-discs operads in §4.2.

To complete our account, we provide an introduction to geometrical variants
of the little discs operads: the operad of framed little discs, obtained by adding
a rotation parameter in the definition of the ordinary little discs operad; and the
Fulton–MacPherson operad, which is a model of En-operad obtained by a compact-
ification of the configuration spaces of points in Rn. We tackle these subjects in an
outlook section (§4.3). We also briefly explain the relationship between the little
2-discs operad and an operad defined by another compactification of configuration
spaces, the Deligne–Mumford–Knudsen compactification, whose terms represent
the moduli spaces of stable marked curves of genus zero.

We devote an appendix section (§4.4) to a short account of our conventions
on graded modules. We notably explain the definition of a symmetric monoidal
structure on the category of graded modules. We work within this base category
when we study the homology of the little n-discs operads.

In this monograph, we deal with non-unitary operad structures as soon as we
perform in-depth constructions on operads, and for technical reasons, we systemat-
ically regard a unitary operad as a unitary extension of an underlying non-unitary
operad. Therefore, in contrast with standard conventions, we assume that the lit-
tle n-discs operad satisfies Dn(0) = ∅ in the basic case. The unitary version of
the operad of little n-discs, which is more usually considered in the literature, is
denoted by Dn+ and is obtained by adding an arity zero term Dn+(0) = pt to this
non-unitary operad Dn.

The results and concepts surveyed in this chapter come from [27, 28, 140] as
regards the definition of the little discs operads and the applications to iterated
loop spaces, and from [8, 45, 46] as regards the homology of the little discs operads.

129
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We deal with operads in topological spaces from now on. (Recall that we
also use the phrase ‘topological operad’ for this category of operads.) We use basic
concepts of homotopy theory in order to formulate some statements which we obtain
for such operads. To be specific, recall that a map of topological spaces f : X → Y
is a weak-equivalence if this map induces a bijection at the level of the sets of

connected components f∗ : π0X
�−→ π0Y and an isomorphism of homotopy groups

f∗ : πn(X, x0)
�−→ πn(X, f(x0)), in every dimension n ≥ 1 and for any choice of base

point x0 ∈ X. We say that a morphism of operads in topological spaces φ : P → Q
is a weak-equivalence if each component of this morphism φ : P(r) → Q(r) defines
a weak-equivalence of topological spaces.

We consider various categories equipped with such a class of weak-equivalences.
We generally use the notation

∼−→ to distinguish this class of morphisms in our
category. Recall that a homotopy equivalence of topological spaces is automatically
a weak-equivalence. The converse implication holds for cell complexes, but fails
in general. In the operad case, we will consider homotopy equivalences in the
operadic sense, which are invertible up to homotopy in the category of operads (as
we briefly explained in the Mathematical Objectives chapter in the Preliminaries
of this volume). Let us observe that a morphism of operads in topological spaces
φ : P → Q whose components φ : P(r) → Q(r) are homotopy equivalences of spaces
for all r ∈ N is a weak-equivalence of operads, but is not necessarily a homotopy
equivalence of operads, because the homotopy inverses of the maps φ : P(r) → Q(r)
do not necessarily form an operad morphism.

We also consider the homotopy category of the category of operads in topolog-
ical spaces Ho(Top Op) in what follows. We explain the definition of the notion of
a homotopy category in detail in §II.1. We can simply assume that Ho(Top Op) is
the category defined by formally inverting the weak-equivalences of the category of
operads for the moment.

4.1. The definition of the little discs operads

The purpose of this section is to recall the definition of the little n-discs operad
and of the derived notion of an En-operad, as we explained in the introduction of
the chapter. To complete our account, we provide a short survey on the initial
applications of the little discs operads to the study of iterated loop spaces.

To begin this account, we explain what the little discs are. We assume that n
is a positive (finite) integer n = 1, 2, . . . for the moment.

4.1.1. The little discs. Let Dn denote the standard unit n-disc, defined as the
space Dn = {(t1, . . . , tn) ∈ Rn |t21+ · · ·+ t2n ≤ 1} inside the Euclidean space Rn. The
little n-discs, which give the name of the little n-discs operad, are affine embeddings
c : Dn → Dn of the form

c(t1, . . . , tn) = (a1, . . . , an) +R · (t1, . . . , tn),
for some translation vector (a1, . . . , an) ∈ Dn and a multiplicative scalar R > 0 such
that R2 < 1−(a21+· · ·+a2n). In what follows, we use the graphical representation of
the image of such maps c(Dn) to illustrate our constructions on little discs. By abuse
of notation, we also set c = c(Dn) and we use the same letter c to denote both our
mapping from Dn to Dn and the corresponding subspace in Dn. Let us mention that
this space c = c(Dn) forms an n-disc inside Dn with (a1, . . . , an) = c(0, . . . , 0) ∈ Dn

as center and R > 0 as radius. Thus, we can retrieve these parameters which
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Figure 4.1. The representation of an element in the little 2-disc
operad, and the action of the cyclic permutation (1 2 3) on this
element.

determine our embedding c : Dn → Dn from our picture of this space c = c(Dn)
inside Dn.

The boundary of the unit n-disc Dn, defined as the space of points (t1, . . . , tn) ∈
Dn such that t21 + · · ·+ t2n = 1, will be denoted by ∂ Dn. The interior of Dn, defined
as the complement of the subspace ∂ Dn in Dn or equivalently as the space of
points (t1, . . . , tn) ∈ Dn such that t21 + · · · + t2n < 1, will be denoted by D̊n. We
define the boundary of a little n-disc c as the subspace ∂c = c(∂ Dn) of c = c(Dn),

and the interior as c̊ = c(D̊n).
4.1.2. The spaces of little discs. The space of little n-discs Dn(r) is the space

of r-tuples c = (c1, . . . , cr), whose terms ci are affine embeddings ci : Dn → Dn of
the form considered in §4.1.1 and such that c̊i ∩ c̊j = ∅ for all pairs i �= j.

The space Dn(r) is equipped with the compact-open topology since the collec-
tion of affine maps c = (c1, . . . , cr) is naturally identified with an element of the
mapping space MapTop(

∐r
i=1 Dn,Dn). Equivalently, we can use some parameters

that determine these maps, like the centers (a1, . . . , an) = ci(0, . . . , 0) ∈ Dn and
the radius R > 0, to specify the topology of Dn(r). The first definition of the
topology of Dn(r) is more convenient when we deal with applications of little discs
to iterated loop spaces. The second definition is more convenient when we examine
the connections of little discs with configuration spaces (see §4.2.1).

Figure 4.1 gives the representation of an element c ∈ Dn(3). In this picture,
we use that the definition of c as an r-tuple c = (c1, . . . , cr) is equivalent to the
assumption that the little n-discs c1, . . . , cr ⊂ Dn are indexed by a number i =
1, . . . , r. Thus, we regard an element of the space of little n-discs c ∈ Dn(r) as a
configuration of r-little discs in Dn, numbered by i = 1, . . . , r, and whose interiors
do not overlap.

We have a natural map s∗ : Dn(r) → Dn(r), associated to each permutation
s ∈ Σr, such that s∗(c1, . . . , cr) = (cs−1(1), . . . , cs−1(r)), for any c = (c1, . . . , cr) ∈
Dn(r). Pictorially, this map s∗ : Dn(r) → Dn(r) is given by an obvious reindexing
operation of the little discs of a configuration: we apply s ∈ Σr to the index i =
1, . . . , r associated to each little n-disc of the configuration c = (c1, . . . , cr) ∈ Dn(r)
in order to get the picture of the permuted configuration of little n-discs s∗(c) =
(cs−1(1), . . . , cs−1(r)) ∈ Dn(r) (see Figure 4.1 for an example of application of this
process).

The collection Dn = {Dn(r), r > 0}, where we equip each space Dn(r) with
this action of the symmetric group Σr, forms a symmetric sequence. In certain
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Figure 4.2. The composition of elements in the little 2-disc operad.
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Figure 4.3. The representation of a restriction operator in the
little 2-disc operad.

applications, we may prefer to consider the symmetric collection associated toDn, of
which terms Dn(r) are indexed by arbitrary finite sets r, rather than this symmetric
sequence. The elements of a space Dn(r) in this symmetric collection are identified
with collections of little n-discs c = {ci1 , . . . , cir} indexed by the elements of our
set r = {i1, . . . , ir} rather than by the numbers i = 1, . . . , r. The action of finite
set bijections u ∈ MorBij (r, s) on the symmetric collection Dn(r) is the obvious
extension of the reindexing process given by the action of permutations.

4.1.3. The operad of little n-discs. The component of arity one of the symmetric
sequence of little n-discs is equipped with a natural unit element 1 ∈ Dn(1), given
by the 1-tuple 1 = (id), where we consider the identity mapping id : Dn → Dn. In
our graphical description of the space of little n-discs, we can also associate this
map to the subspace Dn = id(Dn) ⊂ Dn (the full unit n-disc). We also have natural
composition operations ◦i : Dn(k)×Dn(l) → Dn(k+ l− 1), i = 1, . . . , k, which are
defined by:

a ◦i b = (a1, . . . , ai−1, ai ◦ b1, . . . , ai ◦ bl, ai+1, . . . , ak) ∈ Dn(k + l − 1),

for any pair of elements of the little discs spaces a = (a1, . . . , ak) ∈ Dn(r) and
b = (b1, . . . , bl) ∈ Dn(s), where the expression ai ◦ bj refers to the composite of the
maps ai : Dn → Dn and bj : Dn → Dn. Note that such a composite ai ◦ bj is still
an embedding of the form specified in §4.1.1. Intuitively, the configuration of little
n-discs a◦i b ∈ Dn(k+ l−1) is obtained by putting the configuration b = (b1, . . . , bl)
in the ith little disc of the configuration a = (a1, . . . , ak), as in Figure 4.2. In this
process, we apply the affine mapping ai : Dn → Dn, equivalent to the little n-disc
ai = ai(D

n), in order to put the little n-disc configuration b at the appropriate
position and scale.

The (non-unitary) operad of little n-discs Dn, for n = 1, 2, . . . , is the operad
formed by the symmetric sequence of the little discs spaces Dn = {Dn(r), r > 0},
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such as defined in §4.1.2, together with the unit element 1 = (id) ∈ Dn(1), and
the just defined composition operations ◦i : Dn(k)×Dn(l) → Dn(k+ l− 1), which
clearly satisfy the equivariance, unit and associativity axioms of operads, as we can
see by a straightforward inspection of our definitions.

4.1.4. The unitary version of the little n-disc operad. We assume Dn(0) = ∅

by convention and we adopt the notation Dn for a non-unitary version of the little
n-discs operad in this book (as we explained in the introduction of this chapter).
We have, on the other hand, a unitary version of the little n-discs operad whose
unique element of arity zero represents, by convention, an empty collection of little
n-discs inside the unit n-discs. We use the notation Dn+ for this operad such
that Dn+(0) = ∗, where ∗ refers to both the one-point set and the element of this
set (which represents the distinguished element of arity zero of our operad).

This unitary operad of little n-discs Dn+ forms a unitary extension of the non-
unitary little n-discs operad Dn (in the sense of §1.1.20). Recall that, in such
a unitary extension, we associate the partial composites with the extra element of
arity zero of our operad ∗ ∈ Dn+(0) to restriction operators ∂k : Dn(r) → Dn(r−1)
such that ∂k(c) = c ◦k ∗, for any r > 1 (see §2.2.1). The image of a configuration of
little n-discs c = (c1, . . . , cr) under this restriction operator ∂k : Dn+(r) → Dn+(r−
1) can readily be identified with the r − 1-tuple ∂k(c) = (c1, . . . , ĉk, . . . , cr), where
the kth term of c has been removed (see Figure 4.3 for an example). Recall that
the action of permutations and the restriction operators determine a contravariant
action of the category of (non-empty finite) ordinal and injections Λ>0 (see §2.2.2)
on the non-unitary operad Dn underlying Dn+ (see §2.2). The operation u∗ :
Dn(l) → Dn(k), which we associate to any injective map u : {1 < · · · < k} →
{1 < · · · < l} in this category Λ>0, is simply given by u∗(c) = (cu(1), . . . , cu(k)),
for any c = (c1, . . . , cl) ∈ Dn(l), and the just considered basic restriction operator
∂k : Dn(r) → Dn(r−1) corresponds to the increasing map ∂k : {1 < · · · < r−1} →
{1 < · · · < r} such that ∂k(x) = x for x = 1, . . . , k − 1 and ∂k(x) = x + 1 for
x = k, . . . , r − 1 (see §2.2.1).

In the general study of unitary operads in §2.2, we also consider augmentation
morphisms which reflect the operadic composites ε(p) = p(∗, . . . , ∗) where we plug
the unitary element ∗ in all inputs of our operation p = p(x1, . . . , xr). In the case
of operads in topological spaces such as the little n-discs operad P = Dn, these
augmentations reduce to the obvious canonical maps ε : Dn(r) → pt with values in
the one-point set pt .

The unitary operad Dn+ naturally occurs in applications to iterated loop
spaces. We also use the restriction operators u∗ : Dn(s) → Dn(r) in our description
of the homology of the little discs operads in the next section.

4.1.5. The operads of little discs as a nested sequence of operads. The operads
of little discs actually form a nested sequence of topological operads

D1 ↪→ D2 ↪→ · · · ↪→ Dn ↪→ · · · .
The embedding ι : Dn−1 ↪→ Dn is defined as follows. We first use the map ι :
Dn−1 → Dn such that ι(t1, . . . , tn−1) = (t1, . . . , tn−1, 0) (the equatorial embedding
of the n−1-disc Dn−1 into the n-disc Dn) to regard Dn−1 as a subspace of Dn. To a
little n− 1-disc c : Dn−1 → Dn−1, we then associate the little n-disc ι(c) : Dn → Dn

with the same center as c in the equatorial disc Dn−1 ⊂ Dn and the same radius.
Thus, if we assume c(t1, . . . , tn−1) = (a1, . . . , an−1) + R · (t1, . . . , tn−1), then this
little n-disc ι(c) is formally defined by ι(c)(t1, . . . , tn−1, tn) = (a1, . . . , an−1, 0)+R ·
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Figure 4.4. The image of a little 1-
disc configuration in the little 2-disc
operad.

(t1, . . . , tn−1, tn). Finally, we set ι(c) = (ι(c1), . . . , ι(cr)), for any collection of little
n-discs c = (c1, . . . , cr) ∈ Dn−1(r) and for each r > 0, to define our operad map
ι : Dn−1 ↪→ Dn (see Figure 4.4 for the graphical representation of this map). We
readily see that these maps ι : Dn−1(r) ↪→ Dn(r) preserve the internal structure
of our operads and hence do define operad morphisms ι : Dn−1 ↪→ Dn, for all
n > 1. We see that these morphisms admit an obvious extension to the unitary
version of the little discs operads too. We can check further that our mappings
ι : Dn−1(r) ↪→ Dn(r), are topological inclusions, for all r > 0, and hence, the little
n− 1-discs space Dn−1(r) can really be identified with a subspace of Dn(r).

We also set D∞ = colimn Dn to add a terminal term to our sequence of operads
and to define an infinite dimensional version of the little disc operads. We have an
obvious extension of this construction in the unitary setting.

To complete our definitions, we record the following result (already mentioned
in the chapter introduction) about the operad of little 1-discs D1 and this infinite
dimensional little discs operad D∞:

Proposition 4.1.6.
(a) We have π0 D1(r) = Σr, for r > 0, and the canonical maps D1(r) →

π0D1(r) define a weak-equivalence of topological operads D1
∼−→ As between the

little 1-disc operad D1 and the associative operad in sets As (which we view as a
discrete topological operad). In the unitary setting, we similarly have π0D1+ � As+.

(b) We have π0 D∞(r) = ∗, for r > 0, and the canonical maps D∞(r) →
π0D∞(r) define a weak-equivalence of topological operads D∞

∼−→ Com between D∞
and the commutative operad in sets Com (which we view as a discrete topological
operad). In the unitary setting, we similarly have π0D∞+ � Com+.

Proofs and explanations. Let P be any operad in spaces. We consider
the sets of path-connected components π0 P(r) associated to the topological spaces
P(r) underlying this operad P . We immediately see that the collection of these
sets π0 P(r) inherits an operad structure from P. This assertion formally follows
from the obvious observation that the mapping π0 : X �→ π0X defines a symmetric
monoidal functor from topological spaces to sets (see §§3.1.1-3.1.4). If we assume
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that the spaces P(r) are locally path-connected and we regard the sets π0 P(r)
as discrete topological spaces (as in the proposition), then we can moreover con-
sider the collection of the canonical maps P(r) → π0 P(r) to define a morphism
of topological operads between P and this operad in sets π0 P . To establish our
proposition, we determine the operad π0 P for P = D1,D∞ and we check that the
morphism P → π0 P defines a weak-equivalence of topological operads in the case of
these operads P = D1,D∞. This claim is equivalent to the assertion that the path-
connected components of the spaces P(r) = D1(r),D∞(r) are weakly-contractible.

In the case P = D1, the embedding of a collection of little intervals (of little
1-discs) c = (c1, . . . , cr) ∈ D1(r) in the one dimensional space D1 determines an
order relation between the intervals. To be explicit, we set ci < cj when we have

ci(0) < cj(0) (equivalently, when we have ci(s) ≤ cj(t) for all s, t ∈ D1). The
obtained ordering ci1 < · · · < cir determines a permutation (i1, . . . , ir) of the in-
dices (1, . . . , r) which we associate to the configuration of little 1-discs (c1, . . . , cr).
(To give an example, for the little configuration of Figure 4.4, we obtain the per-
mutation (1, 3, 2).)

This assignment gives a map p : D1(r) → Σr. We can easily define a map in
the converse direction i : Σr → D(r) such that pi = id and a homotopy ip ∼ id to
establish that this map p : D1(r) → Σr is a homotopy equivalence of topological
spaces, for each arity r > 0. From this verification, we conclude that we have an
identity π0 D1(r) = Σr and that the path-connected components of the space D1(r)
are contractible, as asserted. Recall that the permutation groups Π(r) = Σr define
the underlying collection of the associative operad As when we work in the category
of sets. By inspection of definitions, we also easily check that the relation π0 D1 =
As holds as an identity of operads. We easily check that we can extend this relation
to the unitary operad π0 D1+ when we add the one-point set D1+(0) = ∗ to the
components of the little 1-discs operad D1+.

We refer to [28, Lemma 2.50] for the detailed proof that the spaces D∞(r) are
contractible. We then have π0 D∞(r) = ∗, for each r > 0, where we use the notation
∗ for the one-point set (viewed as the terminal object of the category of sets). Recall
that the commutative operad in sets Com is also given by Com(r) = pt = ∗, for
all r > 0. In the case of one-point sets, the existence of the relation π0 D∞(r) = ∗
for each r > 0 automatically implies that the identity π0 D∞ = Com holds in the
category of operads. We similarly get an identity of operads π0 D∞+ = Com+ when
we consider the unitary extension of the operad D∞. �

The operads Dn, where 1 < n < ∞, are not weakly-equivalent to discrete
operads (unlike D1 and D∞). This observation can be deduced from the homology
computations of the next section. Nonetheless, we readily see that the spaces
Dn(r) are path-connected for n > 1. The identity of the theorem π0 Dn = Com in
assertion (b) accordingly holds as soon as n > 1, and we similarly have the relation
π0Dn+ = Com+ when we consider the unitary extension of the little n-discs operad
Dn.

4.1.7. Relationship with the little n-cubes operad. The little n-cubes operad,
denoted by Cn, is a variant of the little n-discs operad Dn of which elements
consist of configurations of cubes (rather than discs) inside a fixed unit cube. To
be precise, we first define a little cube c as a map c : [0, 1]n ↪→ [0, 1]n of the form

c(t1, . . . , tn) = (a1 + (b1 − a1)t1, . . . , an + (bn − an)tn),
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for each point (t1, . . . , tn) ∈ [0, 1]n, where (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n are
given parameters such that 0 ≤ ak < bk ≤ 1, for each k = 1, . . . , n. The
space c = c([0, 1]n) accordingly defines an n-dimensional cube in [0, 1]n with a
non-empty interior c̊ and faces parallel to the faces of the ambient unit cube. The
n-tuples (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n represent the extremal vertices of this
little cube.

The spaces Cn(r), which form the little n-cubes operad Cn, consist of r-tuples
of little n-cubes c = (c1, . . . , cr) with disjoint interiors. Thus, a typical element of
the little n-cubes operad is represented by a picture of the following form:

2

3

4

1 .

The definition of the symmetric structure and of the composition operations of
the operad of little n-cubes follows from an obvious variation of the definition of
the symmetric structure and of the composition operations of the operad of little
n-discs.

The operad of little n-discs is weakly-equivalent to the operad of little n-cubes
as an operad in topological spaces (we refer to [23, 169] for proofs of this statement).
The operads of little cubes can be used to define models of suspension maps in
iterated loop space theory (see [140, Proposition 5.4]), while the operads of little
discs can not. But the little discs operads make some of our constructions more
natural and we therefore prefer to use this model.

4.1.8. Iterated loop spaces. The little n-discs are used to represent composition
schemes of continuous maps α : Dn → X with values in a space X equipped with
a fixed base point x0 and such that α �∂ Dn= x0. The space formed by these maps

ΩnX = {α ∈ MapTop(D
n, X) | α �∂ Dn= x0},

together with the topology inherited from MapTop(D
n, X), is one of the possible

equivalent definitions of the n-fold loop space associated toX. In the case n = 1, we
retrieve with this construction the basic definition of the space of loops α : D1 → X
based at x0. This 1-fold loop space is more usually denoted by ΩX (with the
dimension exponent withdrawn from the notation).

The pairs (X, x0), consisting of a topological space X together with a distin-
guished base point x0 ∈ X, form the objects of the category of pointed spaces Top∗.
The morphisms of this category are the morphisms of topological spaces that pre-
serve base points. By abuse of notation, we generally use the notation of the space
X rather than the pair (X, x0) to denote an object of this category Top∗. In gen-
eral, we also use the notation ∗ to refer to the base point which we associate to
any such space X ∈ Top∗ (we only make this point explicit when this precision is
necessary). When we use this convention, we abusively assume that our space X,
regarded as an object of the category of pointed spaces Top∗, comes together with
a base point which is part of its internal structure.

The loop space ΩnX is equipped with a natural base point, which is defined
by the constant map α ≡ x0 with values in the base point x0 of the space X.
The assignment Ωn : X �→ ΩnX accordingly gives a functor Ωn : Top∗ → Top∗
with values in the category of pointed spaces Top∗. The n-fold loop space functor
Ωn : Top∗ → Top∗ can formally be identified with the n-fold composite of the basic
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single loop space functor Ω : Top∗ → Top∗. This observation motivates the name
‘iterated loop space’ for the spaces of this form Y = ΩnX.

4.1.9. Operations on iterated loop spaces associated to little discs. Each ele-
ment c ∈ Dn+(r) in the unitary operad of little n-discs Dn+ determines an r-fold
operation c : ΩnX × · · · × ΩnX → ΩnX. Let us recall this construction.

Let c = (c1, . . . , cr) ∈ Dn+(r). The assumption that each little disc ci has
a radius > 0 in the definition of the little n-discs operad implies that the map
ci : Dn → Dn induces an affine isomorphism between Dn and ci = ci(D

n). To a
collection of n-fold loop space elements α1, . . . , αr ∈ ΩnX, we then associate the
map α : Dn → X such that

α(t1, . . . , tn) =

⎧⎪⎨⎪⎩
αi(c

−1
i (t1, . . . , tn)), when (t1, . . . , tn) belongs to the image

of a small disc ci = ci(D
n),

∗ (the base point of X), otherwise.

The assumption αi �∂ Dn= ∗ for the elements of ΩnX ensures that this map is well-
defined and continuous over Dn. Moreover, we clearly have α �∂ Dn= ∗. Thus, the
map α : Dn → X defines an element of the n-fold loop space α = c(α1, . . . , αr) ∈
ΩnX naturally associated to α1, . . . , αr ∈ ΩnX and this mapping c : (α1, . . . , αr) �→
c(α1, . . . , αr) gives the operation c : ΩnX × · · · × ΩnX → ΩnX associated to our
operad element c ∈ Dn+(r).

Intuitively, the composite α = c(α1, . . . , αr) : Dn → ΩnX is obtained by apply-
ing the maps αi to the little n-discs of the configuration c by using the mappings

c−1
i : ci(D

n)
�−→ Dn associated to our little n-discs ci = ci(D

n). The complement of
the little n-discs inside Dn is sent to the base point.

We easily see that the action of the symmetric groups and the composition
products of the little n-discs operad reflect the action of the symmetric groups and
the composition of such operations on n-fold loop spaces. We accordingly have the
following statement:

Proposition 4.1.10. The construction of §4.1.9 provides any n-fold loop space
ΩnX with an action of the (unitary) little n-discs operad Dn+ so that ΩnX forms
an algebra over this operad. �

To summarize, this proposition gives the construction of an algebraic structure
(an algebra over Dn+) from a topological object (an n-fold loop space). The fol-
lowing recognition theorem, which gave the first motivation for the introduction of
operads in topology, proves that this algebraic structure provides a faithful picture
of our object:

Theorem 4.1.11 (J. Boardman, R. Vogt [27, 28], P. May [140]). Let Y be a
space equipped with an action of the (unitary) operad of little n-discs Dn+, so that
this space Y forms a Dn+-algebra (in the category of topological spaces). We then
have a pointed space BnY , naturally associated to Y , together with a chain of weak-
equivalences of Dn+-algebras Ω

nBnY
∼← · ∼−→ Y , which connect Y to the n-fold loop

space on BnY when π0Y forms a group.

Explanations and references. Recall that we have π0 D1+ = As+ and
π0Dn+ = Com+ for n > 0. We deduce from this result that the set of connected
components π0Y of any space Y equipped with an action of the operad Dn+ inherits
a natural monoid structure. We just consider the operation μ = c : π0Y × π0Y →
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π0Y induced by the natural action c : Y × Y → Y of any element of arity two
c ∈ Dn+(2) of our operad on our space Y to define the multiplication operation
of this monoid structure on π0Y . (We go back to this construction in the next
paragraph.) In our statement, we precisely assume that every element in this
monoid is invertible, so that π0Y forms a group. In the next paragraph, we will see
that, in the case Y = ΩnX, we can identify the set π0Y with the nth homotopy
group of the space X. Thus, we get that π0Y forms necessarily a group when
Y = ΩnX, and this group condition is therefore necessary in our statement. We
can actually associate a space ΩnBnY to any space Y equipped with an action of
the operad Dn+. We just get that this space forms a group completion of Y when
π0Y does not form a group (we refer to [3] for the definition of the notion of group
completion in topology and for further references on this subject).

The references cited in our statement provide different approaches of this the-
orem. The arguments of [140] rely on an approximation theorem (see Theorem 2.7
in loc. cit.) which asserts that free algebras over Dn+ are weakly-equivalent to
iterated loop spaces of suspensions ΩnΣnX. The method of this reference [140]
returns the n-fold delooping BnY in one step whereas the arguments of [27, 28]
rely on an inductive delooping process. �

To complete the account of this section, we explain that the action of the little
n-discs operad on n-fold loop spaces represents a fine level of homotopical structures
which underlies the classical definition of the homotopy groups of pointed spaces.
We will not go much further into the applications of operads to iterated loop spaces.
We refer to the literature, notably the already cited monographs [28, 140], for a
thorough study of this subject.

4.1.12. Basic motivations: the definition of homotopy groups. The nth homo-
topy group πn(X, x0) of a space X equipped with a base point x0 ∈ X can be
defined as the set of homotopy classes of maps u : Dn → X which are identical
to the base point x0 ∈ X on ∂ Dn ⊂ Dn. Simply recall that a homotopy between
any such maps u0, u1 : Dn → X consists of a map h : [0, 1] × Dn → Dn such that
h(0, ·) = u0, h(1, ·) = u1 and h(s, ·) �∂ Dn= x0, for all s ∈ [0, 1].

The group π1(X, x0) is identified with the fundamental group of X because a
based loop on the pointed space X is nothing but a map α : D1 → X such that
α �∂ D1= x0 and we have a similar identification for homotopies. Recall that the
fundamental group π1(X, x0) is not abelian in general whereas the higher homotopy
groups πn(X, x0), n ≥ 2, are. We aim to revisit the definition of the group structure
on πn(X, x) from the operadic viewpoint.

We have a formal identity between the group πn(X, x0) and the set of path-
connected components of the n-fold loop space ΩnX. We can moreover identify
the usual multiplication operation of this group πn(X, x0) with an operation μ :
ΩnX × ΩnX → ΩnX, formed at the loop space level, which we deduce from the
action of the little n-discs operad on the space ΩnX. We actually need to consider
a model of the n-fold loop space ΩnX as a set of maps on a cube [0, 1]n instead of a
disc Dn, and to deal with an action of the operad of little n-cubes on ΩnX instead
of an action of the operad of little n-discs, in order to retrieve the exact picture
of the mutiplication operation associated to this group πn(X, x0) (we refer to [182,
§IV] for this picture). We get an equivalent result, however, if we continue with the
action of the little n-discs operad on our disc model of the n-fold loop space ΩnX.
Then we precisely consider the operation μ = c : ΩnX ×ΩnX → ΩnX, determined
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by the action of any element of arity 2 of the little n-discs operad c ∈ Dn(2) on our
space ΩnX.

If we assume n > 1, then all operations c : ΩnX × ΩnX → ΩnX associated to
such a little n-disc configuration c ∈ Dn(2) are the same up to homotopy. Indeed,
since Dn(2) is path-connected, any pair of configurations of little n-discs c0, c1 ∈
Dn(2) are connected by a path cs, s ∈ [0, 1], in the space Dn(2) and the collection of
operations cs : ΩnX×ΩnX → ΩnX, s ∈ [0, 1], associated to this path determines a
homotopy between the operations associated to c0 and c1 on ΩnX. This argument
line also implies that the multiplication operation defined by an element c ∈ Dn(2)
is homotopy equivalent to the multiplication operation determined by the image of
this element under the action of the transposition on the space of little 2-discs (1 2)·
c ∈ Dn(2). Hence, we obtain that the multiplication of πn(X, x0) is equal to the
opposite operation, and as a consequence, that the group πn(X, x0) is commutative.

In the case of n = 1, we have two choices of multiplications in homotopy,
corresponding to the two path-connected components of the space D1(2), and
these multiplications are transposed to each other. Thus we retrieve the non-
commutativity of the fundamental group π1(X, x0) from the identity π0 D1(2) =
As(2). The homotopy, which gives the associativity of the multiplication on ho-
motopy groups, can also be defined by a one parameter family of triple operations
μs
3(·, ·, ·) : ΩnX×ΩnX×ΩnX → ΩnX, s ∈ [0, 1], associated to a path in the little n-

discs space Dn(3). The inversion operation is apart because the homotopies which
give this operation are not included in the structure determined by the operad of
little n-discs.

By pushing our operadic analysis further, we can regard the associativity (re-
spectively, commutativity) of the group structure on πn(X, x0) as a consequence
of the operad identity π0D1+ = As+ (respectively, π0 Dn+ = Com+ for n > 1).
We mention after Proposition 4.1.6 that the operads Dn+ are not componentwise
contractible for 1 < n < ∞. We will check that the space Dn(2) is homotopy
equivalent to a sphere Sn−1. We will also see that each space Dn(r) has a non-
trivial homology (we tackle this subject in the next section). Fine structures arising
from the operad little n-discs operad can be revealed by studying homology groups
H∗(Ω

nX, k) rather than restricting our consideration to the set of connected com-
ponents πn(X, x0) = π0(Ω

nX). The monograph [45] gives a complete description of
these homological structures in the case where the coefficient ring of the homology
is a field.

4.1.13. The notion of an En-operad. To conclude this section we just make
explicit the formal definition of the notion of an En-operad. In brief, a non-unitary
(respectively, unitary) En-operad in topological spaces is a topological operad P ∈
Top Op which is isomorphic to the operad of little n-discs Dn (respectively, Dn+) in
the homotopy category of topological operads Ho(Top Op). Equivalently, we assume
that P is connected to Dn by a chain of morphisms of topological operads

P
∼←− · ∼−→ · · · ∼−→ Dn

which form weak-equivalences of spaces aritywise.
The existence of a model structure on Top Op (see §II.1) implies that such a

chain can be reduced to a zigzag of two weak-equivalences

P
∼←− · ∼−→ Dn .

The same observations hold in the unitary context.
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In many applications, authors take the additional assumption that En-operads
are cofibrant as symmetric sequences (we explain the definition of this concept
in §II.1.4 and in §II.8.1) in order to ensure that the category of algebras associ-
ated with different models of En-operads are Quillen equivalent (see §II.1.4). The
interesting reader can notice that all instances of En-operads considered in this
work (including the reference model of little n-discs by the way) are cofibrant as
symmetric sequences. But we will not pay attention to this technical point. Fur-
thermore, as soon as we consider homotopy automorphism groups, we need to deal
with cofibrant models of En-operads and this requirement is actually stronger than
being cofibrant as a symmetric sequence (see for instance [25]).

In the case where P is cofibrant, the model category axioms imply that we
can reduce our chain of weak-equivalences between P and Dn to a single morphism
P

∼−→ Dn, but we usually do not need to make this weak-equivalence explicit too.
In the case n = 1,∞, the result of Proposition 4.1.6 immediately implies:

Proposition 4.1.14.
(a) A non-unitary operad P whose underlying spaces P(r) are locally path-

connected is an E1-operad if and only if we have π0 P(r) = Σr, for all r > 0,
and the canonical maps P(r) → π0 P(r) define a weak-equivalence of topological

operads P
∼−→ As, where we regard the associative operad As, formed in the category

of sets, as a discrete topological operad. A similar result holds in the unitary context,
with the non-unitary associative operad As replaced by the unitary one As+.

(b) A non-unitary operad P whose underlying spaces P(r) are locally path-
connected is an E∞-operad if and only if we have π0 P(r) = ∗, for all r > 0,
and the canonical maps P(r) → π0 P(r) define a weak-equivalence of topological

operads P
∼−→ Com, where we regard the commutative operad Com, formed in the

category of sets, as a discrete topological operad. A similar result holds in the uni-
tary context, with the non-unitary commutative operad Com replaced by the unitary
one Com+. �

Since the operads Dn are not equivalent to discrete operads for 1 < n < ∞, we
do not have such a simple characterization of En-operads in general. On the other
hand, the existence of weak-equivalences P

∼←− · ∼−→ Dn implies that En-operads
have the same homology as the operad of little n-discs (and similarly in the unitary
context). This observation gives a simple necessary condition which En-operads
have to satisfy and we study the homology of En-operads in the next section.

4.2. The homology (and the cohomology) of the little discs operads

The goal of this section is to give a description of the homology of the little
n-discs operad Dn, and as a byproduct of any En-operad.

We fix a ground ring k and we consider the homology H∗(X) = H∗(X, k) and the
cohomology H∗(X) = H∗(X, k) with coefficients in this ring all through this section.
We are going to use that the homology of a space inherits a coalgebra structure as
soon as this homology H∗(X) = H∗(X, k) forms a free module over the ground ring.
We can see that the homology of the space of little n-discs H∗(Dn(r)) does admit
a free module structure, for any choice of ground ring k, and hence, does inherit
such a coalgebra structure, for any arity r > 0.
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For simplicity, we make explicit some conditions on the ground ring which
ensure that our general statements hold, but we do not insist on the optimal as-
sumptions which we could use in the case of the little discs operads. In fact, we
do not need more than the case of a field for the subsequent applications of the
homology of operads which we consider in this book. In our study of the rational
homotopy of operads, for instance, we only consider the case of the homology with
coefficients in the field of rational numbers k = Q.

We naturally deal with objects defined in the category of graded modules,
denoted by gr Mod . We have a symmetric monoidal structure on the category of
graded modules (see the appendix section §4.4 for a reminder on the definition of
this symmetric monoidal structure). The homology of a space forms a counitary
cocommutative coalgebra in the symmetric monoidal category of graded modules
(at least when we take a field as coefficient ring as we just explained). When we take
the homology of a topological operad, we get an operad in the category of counitary
cocommutative coalgebras in graded modules. We also speak about graded Hopf
operads for short in this case. The main goal of this section is to determine the
graded Hopf operad structure of the homology of the little discs operads.

We generally use the prefix graded to refer to any category of structured objects
defined within the category of graded modules. For instance, we speak about graded
counitary cocommutative coalgebras, graded operads, . . . Recall that we also use the
prefix ‘Hopf’ to refer to any category of structured objects defined in a category
of counitary cocommutative coalgebras (see §3.2). We combine both conventions
when we deal with operads in the category of counitary cocommutative coalgebras
in graded modules.

In mathematical formulas, we similarly use the notation gr Comc
+ (rather than

gr Mod Comc
+) for the category of graded counitary cocommutative coalgebras, we

use the notation gr Op (rather than gr Mod Op) for the category of graded operads,
and we use the notation gr Hopf Op for the category of graded Hopf operads. In
Proposition 3.2.4, we observed that Hopf operads can be identified with counitary
cocommutative coalgebras in operads. In the graded context, this identity reads
gr Hopf Op = gr Comc

+ Op = gr Op Comc
+.

The homology of the little n-discs operad is trivial in degree ∗ > 0 when
n = 1,∞ since the topological spaces underlying these operads have contractible
connected components (and similarly in the unitary context). Therefore we gener-
ally assume 1 < n < ∞ in what follows.

In a first stage, we forget about operadic composition structures, and we give a
description of the cohomology of each space Dn(r) as a graded unitary commutative

algebra. We then work with the configuration spaces F (D̊n, r) which are homotopy
equivalent to the spaces of little n-discs Dn(r) and which carry all the necessary
information for this homology computation. We recall the definition of these spaces
first.

4.2.1. Configuration spaces. The space of configurations of r points in a topo-
logical space M ∈ Top is defined by:

F (M, r) = {(a1, . . . , ar) ∈ Mr|ai �= aj for all pairs i �= j},
for any r > 0. In what follows, we mostly consider the configuration space as-
sociated to the open n-discs M = D̊n. The configuration space associated to the
Euclidean space M = Rn is more usually considered in the literature on the little
discs operads, but the standard homeomorphism between the Euclidean space and
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the open n-disc induces a homeomorphism at the configuration space level. There-
fore, we can deduce results involving one of these configuration spaces from results
involving the other.

To an element of the little n-discs operad c ∈ Dn(r), we associate the configura-

tion of points (c1(0), . . . , cr(0)) ∈ F (D̊n, r) defined by the centers of the little n-discs

ci of our collection c = (c1, . . . , cr). We then get a map ω : Dn(r) → F (D̊n, r), which
we call the disc center mapping. We have the following result:

Proposition 4.2.2. The disc center mapping defines a homotopy equivalence
of topological spaces ω : Dn(r)

∼−→ F (D̊n, r), for each r > 0.

Proof. Exercise or see [140, §4]. �

Though we can not define general operadic composition operations on config-
uration spaces, we do have restriction operators (and augmentation maps) which
model the composition operations with an operation of arity zero in a unitary op-
erad. In what follows, we use our notion of augmented non-unitary Λ-sequence to
formalize this structure (see §2.2). Recall that the little n-discs operad Dn inher-
its restriction operators (and augmentation maps) which correspond to the com-
position operations with the distinguished operation of arity zero in the unitary
extension of this operad (see §4.1.4). We have the following statement:

Proposition 4.2.3. The collection of configuration spaces F (D̊n, r), r > 0,
is equipped with the structure of an (augmented) non-unitary Λ-sequence and the

collection of disc center mappings ω : Dn(r)
∼−→ F (D̊n, r), r > 0, define a morphism

in the category of (augmented) non-unitary Λ-sequences.

Explanations. The action of an injective map u : {1 < · · · < k} → {1 < · · · <
l} on an element a = (a1, . . . , al) ∈ F (D̊n, l) is defined by u∗(a) = (au(1), . . . , au(k)).
This construction clearly gives an action of our category Λ on the collection of
configuration spaces and we have an obvious canonical augmentation ε : F (D̊n, r) →
pt , for each r > 0, so that the collection F (D̊n,−) = {F (D̊n, r), r > 0} forms an
augmented non-unitary Λ-sequence as stated in the proposition. We readily see
that the disc center mappings ω : Dn(r)

∼−→ F (D̊n, r), r > 0, define a morphism of

augmented non-unitary Λ-sequences, when we equip the collection F (D̊n,−) with
this Λ-sequence structure and we equip the collection of the little n-discs spaces
Dn(r), r > 0, with the Λ-sequence structure of §4.1.4, �

We now examine the topological structure of the configuration spaces F (D̊n, r)
with the aim of determining the cohomology of these spaces. We begin with the
following simple observation:

Proposition 4.2.4. We have a homotopy equivalence F (D̊n, 2)
∼−→ Sn−1 be-

tween the configuration space of two points F (D̊n, 2) and the n− 1-sphere Sn−1.

Proof. We easily check that the mapping which associates the normalized

vector
−→
ab/||−→ab|| ∈ Sn−1 to each pair (a, b) ∈ F (D̊n, 2) defines a homotopy equiva-

lence. �
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4.2.5. The definition of fundamental classes. For n > 1, the result of Proposi-
tion 4.2.4 implies that we have an identity:

H∗(F (D̊
n, 2)) = H∗(S

n−1) =

{
k, for ∗ = 0, n− 1,

0, otherwise,

and we have a similar result for the cohomology H∗(F (D̊n, 2)). We use the notation
[Sn−1] for the fundamental class of the sphere (equipped with a suitable orienta-
tion) which defines a generator of the module Hn−1(S

n−1) and which we transport

to H∗(F (D̊n, 2)) by using the homotopy equivalence of Proposition 4.2.4. We will
also use the notation [pt ] for the canonical generator of the degree 0 component

of the homology module H∗(F (D̊n, 2)). In the cohomological context, we consider

the element ω ∈ Hn−1(F (D̊n, 2)), dual to [Sn−1], in order to obtain a canonical

generator of Hn−1(F (D̊n, 2)).
Let now r ≥ 2. For each pair 1 ≤ i < j ≤ r, we consider the map φij :

F (D̊n, r) → F (D̊n, 2) such that φij(a1, . . . , ar) = (ai, aj) and we set ωij = φ∗
ij(ω)

for the image of ω ∈ Hn−1(F (D̊n, 2)) under the morphism φ∗
ij : Hn−1(F (D̊n, 2)) →

Hn−1(F (D̊n, r)) induced by this map. Observe that φij is the restriction operator
associated to the injection ρij : {1 < 2} → {1 < · · · < r} such that ρij(1) = i
and ρij(2) = j. We can use the same construction to associate a class ωij to
any pair (i, j) (not necessarily well-ordered). We actually have ωij = (−1)nωji,
for any pair i �= j, since the change of the ordering (i, j) in the definition of our
map φij corresponds to the application of an antipode map on the sphere in the
correspondence of Proposition 4.2.4.

Let S(ωij , i < j) be the graded symmetric algebra generated by the classes ωij

in degree n− 1. We have the following result:

Theorem 4.2.6 (See V. Arnold [8], F. Cohen [45]). Let n > 1. Let r ≥ 2.

(a) In H∗(F (D̊n, r)), we have the relation ω2
ij = 0, for each pair i < j, as well

as the relation ωijωjk − ωikωjk − ωijωik = 0, for each triple i < j < k.

(b) The morphism S(ωij , i < j) → H∗(F (D̊n, r)), which maps the generator ωij

to the corresponding cohomology class in H∗(F (D̊n, r)), induces an isomorphism

S(ωij , i < j)

(ω2
ij , ωijωjk − ωikωjk − ωijωik)

�−→ H∗(F (D̊n, r)),

when we form the quotient of the symmetric algebra S(ωij , i < j) by the ideal
generated by the relations of ( a). �

This theorem is established in the cited references by using Euclidean spaces Rn

instead of open discs D̊n. This choice does not change the result since the home-
omorphism between the Euclidean n-space Rn and the open n-disc D̊n induces a
homeomorphism at the configuration space level.

In the reference [8], only the case n = 2 of the above theorem is treated. In this
case, we can take the complex differential form d log(zi − zj) as a representative
of the class ωij in the de Rham complex of the configuration space of the complex
plane F (C, r) = {(z1, . . . , zr) ∈ Cr |zi �= zj} (we just consider the de Rham complex
with coefficients in the field of complex numbers k = C). The general case of the
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theorem is addressed in the reference [45]. The computation involves the Leray-
Serre spectral sequence associated to the map

f : F (Rn, r) → F (Rn, r − 1)

which forgets the last point of a configuration. We also refer to the article [163] for
a comprehensive and accessible survey of the homological computations which give
the result of Theorem 4.2.6.

For our applications, we need to determine the morphisms ∂∗
k : H∗(F (D̊n, r −

1)) → H∗(F (D̊n, r)) induced by the map ∂k : F (D̊n, r) → F (D̊n, r − 1) such that

∂k(a1, . . . , ar) = (a1, . . . , âk, . . . , ar), for any a = (a1, . . . , ar) ∈ F (D̊n, r). Recall
that these maps represent the restriction operators associated to morphisms ∂k :
{1 < · · · < r − 1} → {1 < · · · < r} in the category Λ (see Proposition 4.2.3). We
have the following straightforward result:

Proposition 4.2.7. Let n > 1 again. Let r > 1. Fix k ∈ {1 < · · · < r}. The

morphism ∂∗
k : H∗(F (D̊n, r − 1)) → H∗(F (D̊n, r)) induced by the restriction operator

∂k : F (D̊n, r) → F (D̊n, r − 1) is determined by the formula:

∂∗
k(ωij) =

{
ωij , if k �∈ {i < j},
0, otherwise,

for each generating cohomology class ωij of the cohomology algebra H∗(F (D̊n, r−1)).

Proof. Exercise. �

4.2.8. Homology and monoidal structures. We can use the homology isomor-

phism ω∗ : H∗(Dn(r))
�−→ H∗(F (D̊n, r)) induced by the disc center mapping ω :

Dn(r)
∼−→ F (D̊n, r) and the duality pairing

H∗(F (D̊n, r))⊗ H∗(Dn(r))
�−→ H∗(F (D̊n, r))⊗ H∗(F (D̊

n, r))
〈−,−〉−−−−→ k

to determine the homology of each component of the little n-discs operad from our
description of the cohomology of the configuration space F (D̊n, r) in Theorem 4.2.6.
We now aim to give a description of this collection of homology modules H∗(Dn) =
{H∗(Dn(r)), r > 0} as an operad.

We have already used that the cohomology defines a functor from spaces to
commutative algebras. We examine the definition of a coalgebra structure on the
homology of spaces first. We explain the general definition of operad structures on
the homology of operads and we address the applications of this construction to the
operad of little n-discs afterwards. We use the formalism of symmetric monoidal
functors (see §3.3.1).

We obviously have H∗(pt) = k by definition of ordinary homology so that the
mapping H∗ : X �→ H∗(X) defines a unit-preserving functor from topological spaces
to graded modules. We consider the Künneth morphism κ : H∗(X) ⊗ H∗(Y ) →
H∗(X × Y ). We have the following classical statement:

Proposition 4.2.9 (See [129, §VIII] or [166, §5.3]).
(a) The Künneth morphism defines a symmetric monoidal transformation on

the homology functor H∗ : X �→ H∗(X) regarded as a functor from the symmetric
monoidal category of spaces Top to the symmetric monoidal category of graded
modules gr Mod.
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(b) If the coefficient ring is a field, then the Künneth morphism is an iso-
morphism. Hence, the homology defines a (strongly) symmetric monoidal func-
tor H∗ : Top → gr Mod in this case. �

We can therefore apply the general constructions of §3.0.5 to obtain:

Proposition 4.2.10. If the coefficient ring is a field, then the homology func-
tor H∗ : Top → gr Mod induces a functor from the category of topological spaces Top
to the category of counitary cocommutative coalgebras in graded modules gr Comc

+,
and this functor H∗ : Top → gr Comc

+ is also symmetric monoidal.

Explanations. In §3.0.5, we deal with the general case of a functor between
symmetric monoidal categories. In the context of Proposition 4.2.10, we consider
the homology functor H∗ : Top → gr Mod between topological spaces and graded
modules. The first result of this proposition, the existence of a counitary cocom-
mutative coalgebra structure on the homology, follows from Proposition 4.2.9 and
from the observation that any space X naturally forms a counitary cocommutative
coalgebra in the category of spaces (with the constant map ε : X → pt as counit and
the diagonal map Δ : X → X×X as coproduct). The second result of the proposi-
tion, namely the definition of the symmetric monoidal functor H∗ : Top → gr Comc

+,
arises from the observations of §3.0.5.

To prepare our subsequent study of the homology of little discs, we examine
this applications of the general construction of §3.0.5 with more details. First, the
graded counitary cocommutative coalgebra structure on the homology of a space
H∗(X) is formed as follows:

– to define the counit of this coalgebra, we simply consider the morphism
H∗(X) → H∗(pt) = k, associated to the constant map X → pt ;

– to define the coproduct, we form the composite

H∗(X)
Δ∗−−→ H∗(X ×X)

�←− H∗(X)⊗ H∗(X)

where we consider the morphism induced by the diagonal of the space X
followed by the Künneth isomorphism.

The unit, associativity and symmetry properties of the Künneth isomorphism en-
sure that the coproduct, which we obtain in this construction, satisfies the counit,
coassociativity, and cocommutativity relations of graded counitary cocommutative
coalgebras (see §3.0.5).

This coproduct on the homology of a space H∗(X) represents the dual morphism
of the product μ : H∗(X) ⊗ H∗(X) → H∗(X) that defines the commutative algebra
structure of the cohomology H∗(X), because this product can also be defined as a
composite

H∗(X)⊗ H∗(X)
κ−→ H∗(X ×X)

Δ∗
−−→ H∗(X),

where we consider a cohomological version of the Künneth morphism, followed by
the morphism induced by the diagonal of the space X. Note that the commutative
algebra structure of the cohomology is still defined when the Künneth morphism
is not an isomorphism (in contrast with the coalgebra structure of the homology).
To give a more explicit expression of this duality between the product and the
coproduct, we consider the natural pairing 〈−,−〉 : H∗(X) ⊗ H∗(X) → k between
the cohomology and the homology of X. If we set Δ(c) =

∑
i ai ⊗ bi for the
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coproduct of an element c in H∗(X), then we have the adjunction relation

〈α · β, c〉 =
∑
i

±〈α, ai〉 · 〈β, bi〉,

for every α, β ∈ H∗(X), where the sign ± is produced by the commutation of the
factors α and ai in this expression.

Recall that we equip any category of counitary cocommutative coalgebras in
a base category MComc

+ with the tensor product ⊗ : MComc
+ ×MComc

+ →
MComc

+ inherited from the base categoryM (see §3.0.4). We just takeM = gr Mod
in the case of the category of graded counitary cocommutative coalgebras gr Comc

+.
We readily check that the Künneth morphism H∗(X) ⊗ H∗(Y ) → H∗(X × Y ) de-
fines a morphism of graded counitary cocommutative coalgebras, and satisfies the
unit, associativity and symmetry constraints of §3.3.1 in this category gr Comc

+

(see §3.0.5). We can therefore improve the assertion of Proposition 4.2.9. We
explicitly obtain that the homology functor defines a symmetric monoidal func-
tor H∗ : Top → gr Comc

+ from the category of spaces Top to the category of graded
counitary cocommutative coalgebras gr Comc

+, as asserted in our statement. �

We then obtain:

Proposition 4.2.11. Let P be any operad in topological spaces.
(a) The collection of graded modules H∗(P) = {H∗(P(r)), r ∈ N} defined by the

homology of the spaces P(r) with coefficients in any ground ring k forms an operad
in graded modules (a graded operad) naturally associated to P.

(b) If the ground ring is a field, then this operad H∗(P) is actually an operad in
graded counitary cocommutative coalgebras (a graded Hopf operad), where we use
the coalgebra structure of the homology modules H∗(P(r)) provided by the result of
Proposition 4.2.10.

Explanations. This proposition is a corollary of the results of §3.1, where we
examine the image of operads under functors between symmetric monoidal cate-
gories. We consider the homology functor H∗ : X �→ H∗(X) from the category of
spaces to the category of graded modules (respectively, to the category of graded
counitary cocommutative coalgebras) and we use the result of Proposition 3.1.1 to
get the definition of an operad structure on the homology H∗(P). We obtain the
following result:

– the morphisms w∗ : H∗(P(r)) → H∗(P(r)), induced by the action of per-
mutations w ∈ Σr at the topological level, give the action of permutations
on the homology of the operad;

– the morphism k = H∗(pt)
η∗−→ H∗(P(1)), induced by the operadic unit of

the topological operad P , gives an operadic unit at the homology level;
– the partial composition products of the topological operad P induce mor-
phisms

H∗(P(m))⊗ H∗(P(n)) → H∗(P(m)× P(n))
(◦i)∗−−−→ H∗(P(m+ n− 1))

which give the partial composition products of the homology operad H∗(P);
– and the preservation of unit, associativity and symmetry isomorphisms
by symmetric monoidal functors ensures that these structure morphisms
fulfill the equivariance, unit and associativity axioms of operads (see §3.1).
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Depending on the context (a-b). we can form these structure morphisms (and define
the operad structure of the object H∗(P)) in the category of graded modules or in
the category of counitary cocommutative coalgebras.

To complete this analysis, recall that such a functor on operads H∗ : P �→ H∗(P)
preserves unitary extensions: we have the identity H∗(P+) = H∗(P)+ for any unitary
extension P+ of a non-unitary operad P . �

Recall that we use the phrase ‘graded Hopf operad ’ to refer to an operad in
graded counitary cocommutative coalgebras and we adopt the notation gr Hopf Op
(instead of gr Comc

+ Op) for this category of operads. Thus, the result of Propo-
sition 4.2.11(b) asserts that the homology functor H∗ : Top → gr Comc

+ induces a
functor H∗ : Top Op → gr Hopf Op from the category of topological operads Top Op
to the category of graded Hopf operads gr Hopf Op.

For P = D1 (respectively, P = D∞), the existence of a weak-equivalence be-
tween our operad and the discrete operad of associative (respectively, commutative)
monoids implies:

Proposition 4.2.12.
(a) We have an identity of graded Hopf operads H∗(D1) = As, where we con-

sider the associative operads in k-modules As (which we regard as a graded operad
concentrated in degree 0) together with the coproduct inherited from the correspond-
ing operad in sets (see the concluding paragraph of §3.1). In the unitary setting, we
similarly have H∗(D1+) = As+.

(b) We have an identity of graded Hopf operads H∗(D∞) = Com, where we
consider the commutative operads in k-modules Com (which we regard as a graded
operad concentrated in degree 0) together with the coproduct inherited from the
corresponding operad in sets (see the concluding paragraph of §3.1 again). In the
unitary setting, we similarly have H∗(D∞+) = Com+. �

Recall that our main objective is to give the description of the graded Hopf
operad H∗(Dn) when 1 < n < ∞. We define a graded Hopf operad by generators
and relations in the next paragraph (the n-Gerstenhaber operad Gerstn). We explain
afterwards that this operad represents the homology of the operad of little n-discs.

4.2.13. The Gerstenhaber operads. The n-Gerstenhaber operad Gerstn is actu-
ally a graded version of the Poisson operad of §1.2.12, and some authors use the
phrase ‘n-Poisson operad ’, or the phrase ‘Poisson operad of degree n − 1’, rather
than the name ‘n-Gerstenhaber operad’, to refer to this object. We actually define
Gerstn by the same presentation as the Poisson operad:

Gerstn = Θ
(
kμ(x1, x2)⊕ kλ(x1, x2) :

μ(μ(x1, x2), x3) ≡ μ(x1, μ(x2, x3)),

λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) + λ(λ(x3, x1), x2) ≡ 0,

λ(μ(x1, x2), x3) ≡ μ(λ(x1, x3), x2) + μ(x1, λ(x2, x3))
)
,

where we still consider a generating operation μ = μ(x1, x2) of degree 0 such that
(1 2) ·μ = μ, but we now assume that λ = λ(x1, x2) is an operation of degree n− 1
such that (1 2) · λ = (−1)nλ, with a sign (−1)n that depends on the dimension n.

The operation μ defines an associative and commutative product which gener-
ates a suboperad isomorphic to the commutative operad Com inside the n-Gersten-
haber operad (see [77, 134]). The operation λ is a graded analogue of the Lie
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bracket operation of the Poisson operad. The suboperad of the n-Gerstenhaber
operad generated by this operation λ is isomorphic to an operadic suspension of
the Lie operad Lie (see [77]). (We only use operadic suspensions in §III.4 and we
explain the definition of this concept in this subsequent chapter.)

The distribution relation λ(μ(x1, x2), x3) = μ(λ(x1, x3), x2) + μ(x1, λ(x2, x3))
implies, as in the Poisson case, that any composite of products and Lie brackets
in the n-Gerstenhaber operad is equal to a product of Lie monomials. To be more
precise, one can prove that each module Gerstn(r) is spanned by formal products

p(x1, . . . , xr) = p1(x11, . . . , x1r1) · . . . · pm(xm1, . . . , xmrm),

whose factors pi(xi1, . . . , xiri) run over Lie monomials on ri variables xik, k ∈
{1, . . . , ri}, such that each variable xik occurs once and only once in this Lie mono-
mial pi(xi1, . . . , xiri) and the sets {xi1, . . . , xiri}, i = 1, . . . , r, represent the com-
ponents of a partition of the total set of variables {x1, . . . , xr} of our operation
p = p(x1, . . . , xr). (We assume that the Lie bracket λ is homogeneous of degree
n−1 when we form our Lie monomials.) The description of the Lie operad in §1.2.10,
remains also valid in this context and any monomial pi = pi(xi1, . . . , xiri) in the
above expansion has a reduced form

pi(xi1, . . . , xiri) = λ(· · ·λ(λ(xi1, xi2), xi3 · · · ), xiri),

such that we have the order relation xi1 < xik for all 1 < k with respect to the
natural ordering inherited from the full set of variables {x1 < · · · < xr} of our
operation p = p(x1, . . . , xr).

We provide the operad Gerstn with a Hopf structure such that ε(μ) = 1 and
Δ(μ) = μ⊗ μ for the commutative product operation μ ∈ Gerstn(2), and ε(λ) = 1
and Δ(λ) = λ ⊗ μ + μ ⊗ λ for the Lie bracket operation λ ∈ Gerstn(2). We can
readily see, as in the Poisson case (see §3.2.12), that the ideal of generating relations
forms a Hopf ideal, so that this Hopf structure is well-defined.

4.2.14. The unitary Gerstenhaber operad. We have considered a non-unitary
version of the n-Gerstenhaber operad in the construction of the previous para-
graph. We can also define a unitary n-Gerstenhaber operad by observing that
the operad Gerstn inherits restriction operators such that ∂1μ = ∂2μ = 1 and
∂1λ = ∂2λ = 0 (as in the Poisson case). We easily check that the application of
these restriction operators cancels the generating relations of Gerstn. We then use
the process of §2.4.8 to obtain the definition of our unitary extension Gerstn+ of
the operad Gerstn.

The Hopf structure of the n-Gerstenhaber operad is clearly preserved by our
restriction operators so that our construction yields a unitary extension of the n-
Gerstenhaber operad in the category of Hopf operads.

In the computation of the homology of the operad of little discs, we use the
Hopf structure of the Gerstenhaber operad and the restriction operators associated
to this unitary extension of our object. The main result reads:

Theorem 4.2.15 (F. Cohen [45]). Let n > 1.
(a) The elements μ = [pt ] ∈ H0(Dn(2)) and λ = [Sn−1] ∈ Hn−1(Dn(2)) satisfy

the graded symmetry relations (1 2) · μ = μ and (1 2) · λ = (−1)nλ as well as the
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generating relations of the Poisson operad

μ(μ(x1, x2), x3) = μ(x1, μ(x2, x3)),

λ(λ(x1, x2), x3) + λ(λ(x2, x3), x1) + λ(λ(x3, x1), x2) = 0

and λ(μ(x1, x2), x3) = μ(λ(x1, x3), x2) + μ(x1, λ(x2, x3))

in the homology of the little n-discs operad H∗(Dn).
(b) The counit and coproduct of these elements in the homology of the space

Dn(2) are given by the formulas:

ε[pt ] = 1, Δ[pt ] = [pt ]⊗ [pt ],

ε[Sn−1] = 0, Δ[Sn−1] = [Sn−1]⊗ [pt ] + [pt ]⊗ [Sn−1].

The restriction operators ∂k : H∗(Dn(2)) → H∗(Dn(1)), k = 1, 2, induced by the
restriction operators of the little n-discs operad in homology can be determined by:

∂1[pt ] = ∂2[pt ] = 1, ∂1[S
n−1] = ∂2[S

n−1] = 0,

where we use the obvious identity H∗(Dn(1)) = H∗(F (D̊n, 1)) = k.
(c) The mapping μ �→ [pt ] ∈ H0(Dn(2)) and λ �→ [Sn−1] ∈ Hn−1(Dn(2)) induces

an isomorphism of graded Hopf operads

h : Gerstn
�−→ H∗(Dn),

which also admits a unitary extension h : Gerstn+
�−→ H∗(Dn+).

Explanations and references. We refer to [45] for the proof of the identi-
ties of (a) in the homology of the little discs operad (see also [163] for another nice
reference on this topic). The identities of (b) are obvious.

This preliminary verification is used to check that we have a well-defined mor-
phism of graded operads h : Gn → H∗(Dn) which maps the operation μ ∈ Gerstn(2)
(respectively, λ ∈ Gerstn(2)) in the n-Gerstenhaber operad to the class [pt ] ∈
H0(Dn(2)) (respectively [Sn−1] ∈ Hn−1(Dn(2))) in the homology of the little n-discs
operad (as specified in the theorem). The coproduct of the homology classes [pt ]
and [Sn−1] agrees with the coproduct of the corresponding generating operations in
the n-Gerstenhaber operad. We deduce from this observation that our morphism
preserves coproducts and forms a morphism of graded Hopf operads therefore.

We still have to check that this morphism is an isomorphism. We can deduce
this claim from the computation of the cohomology of configuration spaces in Theo-
rem 4.2.6 and from the duality formula of the next proposition. (We use the explicit
construction of our comparison morphism in this proposition, but we do not use
any further result on this morphism to check the given duality formula.) We refer
to [163] for details on this proof of the isomorphism claim.

The result of this theorem also follows from the computation of [45] which
gives the expression of the homology H∗(S∗(Dn+, X)) as a functor in H∗(X), for any
pointed space X, where we consider the unitary operad of little n-discs Dn+ and
S∗(Dn+, X) refers to the free Dn+-algebra associated toX modulo the identification
of the unit of this Dn+-algebra structure with the base of point of X (see loc.
cit. for details). In the simplest case where we take the field of rational numbers
k = Q as ground ring and we consider the homology with rational coefficients
H∗(−) = H∗(−,Q), the result of [45] asserts that this functor is precisely given by
the free Gerstn+-algebra on the (reduced) homology H̃∗(X) of the space X. Thus,
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we have the functor identity H∗(S∗(Dn+, X)) = S(Gerstn+, H̃∗(X))). which implies
the relation Gerstn = H∗(Dn) at the operad level. The description of the homology
H∗(S∗(Dn, X)) as a functor in H̃∗(X) is more complicated otherwise.

The preservation of restriction operators implies that our morphism h extends
to a morphism of unitary operads h+ which is obviously an isomorphism too since
h is. �

Proposition 4.2.16. Let ωij ∈ H∗(F (D̊n, r)) be any of the generating elements

of the cohomology algebra H∗(F (D̊n, r)) (as in §4.2.5). Let p = p(x1, . . . , xr) ∈
Gerstn(r) be a product of Lie monomials which represents a basis element of the
module Gerstn(r) as we explain in §4.2.13. We apply the morphism of Theo-
rem 4.2.15 to regard p as an element of H∗(Dn(r)). Then we have the duality
relation

〈ωij , p〉 =
{
1, in the case p = x1 · . . . · λ(xi, xj) · . . . · x̂j · . . . · xr,

0, otherwise,

with respect the pairing 〈·, ·〉 : H∗(F (D̊n, r))⊗ H∗(Dn(r)) → k considered in §4.2.8.

Proof. We use that the disc center mapping ω : Dn(r) → F (D̊n, r) defines
a morphism of non-unitary Λ-sequences. We have by definition ωij = φ∗

ij(ω),

where ω ∈ Hn−1(F (D̊n, 2)) is the dual element of the class [Sn−1] which represents
the Lie bracket operation λ = λ(x1, x2) in H∗(Dn). Recall that the map φij :

F (D̊n, r) → F (D̊n, 2) considered in the definition of this element ωij is the restriction
operator associated to the map ρij : {1 < 2} → {1 < · · · < r} such that ρ(1) = i
and ρ(2) = j. By functoriality of the pairing between cohomology and homology,
and by the preservation of restriction operators, we obtain the relation:

〈ωij , p〉 = 〈(φij)
∗(ω), p〉 = 〈ω, (ρij)∗(p)〉,

for any p = p(x1, . . . , xr) ∈ Gerstn(r). The result of the proposition accordingly
follows from the expression of restriction operators on products of Lie monomials
in the Gerstenhaber operad §4.2.13 and from the duality formula 〈ω, λ〉 = 1. �

The expression of the pairing 〈π, p〉 associated to any monomial π = ωi1j1 ·
. . . · ωirjr can be obtained from the result of this proposition and from the adjunc-

tion relation between the product of H∗(F (D̊n, r)) and the coproduct of H∗(Dn(r))
(see §4.2.8). The combinatorial formula that arises from this process is made ex-
plicit in [163] and implies that our construction yields a non-degenerate pairing in
each arity r > 0 between the component of the n-Gerstenhaber operad Gn(r) and
the cohomology algebra of Theorem 4.2.6. This argument provides a proof that
the map of Theorem 4.2.15 defines an isomorphism between the n-Gerstenhaber
operad and the homology of the little n-discs operad (as we mention in the proof
of this statement).

4.3. Outlook: Variations on the little discs operads

The little n-discs operad of §4.1 is our reference model of En-operad, and we
mostly deal with structures which we directly obtain from the consideration of
this topological object. Nonetheless, this operad is not universal. We have other
instances of En-operads and, depending on the considered application, one model of
En-operad may be more appropriate than another. We may also consider additional
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Figure 4.5. The picture of an element in the Fulton–MacPherson
compactification of the configuration space.

structures in our definition in order to get variants of the notion of an En-operad.
The purpose of this section is to give an overview of geometric constructions that
yield such operads related to little discs.

In the first instance, we provide an outline of the definition of the Fulton–
MacPherson operad FMn, an instance of En-operad introduced by E. Getzler
and J. Jones in [77] which arises from a compactification of the configuration
spaces F (Rn, r). Intuitively, we may regard a configuration of points as a config-
uration of discs equipped with a zero radius. The idea of the Fulton–MacPherson
operad is to use the compactification process in order to extend the composition of
little discs to this degenerate case. We then obtain a picture of the form of Fig-
ure 4.5, where we consider a scale of microscopic configurations organized along a
tree which define (free) operadic composites in our spaces. We outline the definition
of these topological spaces which form our operad first.

4.3.1. The Fulton–MacPherson compactifications. In the approach of [77], we
first consider a compactified space F (Rn, r) defined by performing real blow-ups of
the diagonal subspaces xi1 = xi2 = · · · = xik in the product space (Rn)r and by
taking the closure of the configuration space F (Rn, r) in the cartesian product of
all these blow-ups, for each r > 0. This compactification process is actually a real
analogue of the construction which Fulton–MacPherson introduced for the study
of configuration spaces of points in complex varieties (see [69]). The real version of
the compactification process which we use to define the Fulton–MacPherson operad
was initially introduced by Axelrod-Singer, in [12], for the study of the perturbative
expansion of Chern-Simons quantum field theories.

In summary, the real blow-up of the small diagonal Δ = {x1 = x1 = · · · = x1}
in a product space (Rn)k is a space BlΔ(R

n)k ⊂ (Rn)k × (Rn)k such that:

– the mapping

π : BlΔ(R
n)k → (Rn)k

induced by the projection π(x1, . . . , xk, v1, . . . , vk) = (x1, . . . , xk) is one-
to-one over the complement of the diagonal Δ in (Rn)k,
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– and we have

π−1(a, . . . , a) = {(a, . . . , a)} × ((Δ⊥ \ 0)/R>0),

for the points of the diagonal (a, . . . , a) ∈ Δ, where (Δ⊥ \ 0)/R>0 is the
space of open half lines R>0 v in the vector space Δ⊥ = {x1+x2+· · ·+xk =
0}.

The spaces F (Rn, r) returned by the real Fulton–MacPherson compactification pro-
cess are manifolds with corners, and the canonical embeddings F (Rn, r) ↪→ F (Rn, r)
define weak-equivalences of topological spaces. We refer to the cited articles [12, 69],
or to [157], for further details on the construction of these spaces F (Rn, r).

The configuration space F (Rn, r) inherits an action of the group R>0 �Rn which
we determine by the transformations of the Euclidean space Rn such that:

φ : (x1, . . . , xn) �→ λ · (x1, . . . , xn) + (a1, . . . , an),

where λ ∈ R>0 and (a1, . . . , an) ∈ Rn. The Fulton–MacPherson compactification
process can be performed equivariantly in order to get a compactification C (Rn, r)
of the quotient space C (Rn, r) = F (Rn, r)/R>0 �Rn. The spaces C (Rn, r) have the
structure of a manifold with corners as well and the composite map F (Rn, r) →
C (Rn, r) ↪→ C (Rn, r) defines a weak-equivalence too (we refer to [157] for a detailed
proof of this assertion).

4.3.2. The Fulton–MacPherson operad. The spaces FMn(r) = C (Rn, r) form
the underlying collection of the Fulton–MacPherson operad FMn. The structure
of this operad is defined as follows. To start with, we immediately see that the
symmetric group Σr acts on FMn(r), for each r, so that our collection of spaces
forms a symmetric sequence. We also have FMn(1) = pt , so that FMn inherits a
canonical operadic unit too.

Let F̊Mn(r) = C (Rn, r) = F (Rn, r)/R>0 �Rn. For simplicity, we just ex-
plain the definition of the operadic composites of (equivariance classes of) points
of the configuration spaces a = (a1, . . . , ak) ∈ F (Rn, k) and b = (b1, . . . , bl) ∈
F (Rn, l) which correspond to elements of the inner subspaces F̊Mn(−) of the Fulton–
MacPherson operad FMn(−) = C (Rn,−). We can assume a1 + · · · + ak = 0 and
b1 + · · ·+ bl = 0 by equivariance with respect the action of translations. We define
the operadic composite a ◦i b ∈ FMn(k + l − 1) as the point of the compactified
space FMn(k + l − 1) = C (Rn, k + l − 1) represented by the collection

(a1, . . . , ai−1, ((ai, . . . , ai), (b1, . . . , bl)), ai+1, . . . , ak+l−1)

∈ Ri−1 × BlΔ(R
n)l × Rk−i,

where we consider the point

((ai, . . . , ai), (b1, . . . , bl)) ∈ {(ai, . . . , ai)} × ((Δ⊥ \ 0)/R>0)

in the blow-up of the space {xi = xi+1 = · · · = xi+l−1} ⊂ (Rn)k+l−1.
This process has a natural extension to the whole spaces FMn(−) = C (Rn,−)

and returns well-defined operadic composition operations ◦i : FMn(k)× FMn(l) →
FMn(k + l − 1), for all k, l > 0 and for each i = 1, . . . , k.

We already mentioned that the spaces FMn(r) are weakly-equivalent to the
configuration spaces F (Rn, r) (see §4.3.1). We accordingly have a weak-equivalence

Dn(r)
∼−→ F (Rn, r)

∼−→ FMn(r) between the spaces of little n-discs Dn(r) and the
components of the Fulton–MacPherson operad FMn(r). These maps do not form
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an operad morphism, but one can lift them to get a weak-equivalence of operads
W(Dn)

∼−→ FMn, where W(Dn) is the Boardman–Vogt construction of Dn (see [28]),
an operad defined by formal composites of configurations of little n-discs arranged
on trees equipped with a metric structure. This operad W(Dn) is also equipped

with a natural weak-equivalence W(Dn)
∼−→ Dn, and hence, we have a chain of

weak-equivalences of operads

Dn
∼←− W(Dn)

∼−→ FMn,

from which we conclude that the Fulton–MacPherson operad FMn defines an En-
operad. We refer to [157] for the explicit construction of the operad morphism

W(Dn)
∼−→ FMn.

We have not been explicit about the terms of arity zero in the construction of
the operad FMn. We use the notation FMn for a non-unitary version of the Fulton–
MacPherson operad in general, so that we have FMn(0) = ∅ by convention. But we
also have an obvious extension of the definition of these spaces FMn(r) in arity zero,
and we can use this observation to form a unitary version of the Fulton–MacPherson
operad FMn+.

The Boardman–Vogt construction is a general construction used to define cofi-
brant resolutions of operads (see §II.1.4 for the definition of this notion). In the
case of the Fulton–MacPherson operad, we actually have an isomorphism of topo-
logical operads FMn � W(FMn) and one can deduce from this relation that the
Fulton–MacPherson operad forms a cofibrant model of En-operad (see [157]).

4.3.3. Trees and the underlying structure of the Fulton–MacPherson operad.
The relation FMn � W(FMn) mentioned in the previous paragraph implies that
the operad FMn is free as an operad in sets. If we forget about the topology, then
we can actually identify the Fulton–MacPherson operad FMn with the free operad

generated by the symmetric sequence F̊Mn(r). This free operad structure reflects
the geometry of the spaces FMn(r) in the blow-up construction of §4.3.1.

To be more explicit, one can observe that each space FMn(r) has a decompo-
sition of the same shape as the components of the free operad

FMn(r) =
∐

T∈Tree(r)

F̊Mn(T),

where we use the formalism of the appendix chapter §A. Simply say for the moment

that Tree(r) denotes the category of r-trees, and the space F̊Mn(T), is formed by
a cartesian product

F̊Mn(T) =
∏

v∈V (T)

F̊Mn(rv),

representing an arrangement of factors F̊Mn(rv) on the vertices v ∈ V (T) of a
tree T.

The open space F̊Mn(r) = C (Rn, r) = F (Rn, r)/R>0 �Rn inside the compact-

ification FMn(r) = C (Rn, r) is identified with the space F̊Mn(Y) associated to the
corolla:

Y =

i1 · · · ir

v

0

.
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The operadic composite of configurations a = (a1, . . . , ak) ∈ F (Rn, k) and b =
(b1, . . . , bl) ∈ F (Rn, l), of which we have made the definition explicit in §4.3.2, lies
in the subspace F̊Mn(T) associated to a tree with two vertices

T =

i ··· ··· i+l−1

1 ··· ··· i−1 v i+l ··· k+l−1

u

0

.

The spaces F̊Mn(T), which we associate to r-trees T such that card(V (T)) ≥ 2,
define the facets of the manifold with corners FMn(r) = C (Rn, r).

4.3.4. Some variations on the Fulton–MacPherson compactification. In [108],
Kontsevich deals with a simpler definition of compactifications from the quotients
C (Rn, r) = F (Rn, r)/R>0 �Rn of the configuration spaces F (Rn, r). For each pair
1 ≤ i < j ≤ r, we consider the mapping θij : C (Rn, r) → Sn−1 which sends the
equivariance class of a configuration a = (a1, . . . , ar) to the unit vector

θij(a1, . . . , ar) =
−−→aiaj/||−−→aiaj ||.

For each triple 1 ≤ i < j < k ≤ r, we consider the mapping δijk : C (Rn, r) → [0,∞]
such that:

δijk(a1, . . . , ar) = ||−−→aiaj ||/||−−→aiak||.

We then form the map

ι : C (Rn, r) → (Sn−1)(
r
2 ) × [0,∞](

r
3 )

such that ι(a1, . . . , ar) = ((θij(a1, . . . , ar))ij , (δijk(a1, . . . , ar))ijk). We readily see
that this map is an embedding. We can actually identify the compactification
C (Rn, r) of §4.3.1 with the closure of the image of the space C (Rn, r) in the product

space (Sn−1)(
r
2 ) × [0,∞](

r
3 ) (see [72] for a detailed proof of this claim). We refer

to [72] for a detailed study of the relationship between Kontsevich’s approach and
the blow-up construction of §4.3.1.

We have a variant of this construction defined by considering the closure of

the image of the space C (Rn, r) under the map ι̃ : C (Rn, r) → (Sn−1)(
r
2 ) such

that ι(a1, . . . , ar) = (θij(a1, . . . , ar))ij . Let C̃(Rn, r) be the space obtained by this
compactification construction. We still have an operad structure, which is studied in
details in [162], on the collection of the spaces FM∼

n (r) = C̃ (Rn, r). We see however

that the map ι̃ is not injective, and therefore, the space FM∼
n (r) = C̃ (Rn, r) differs

from the previously considered compactification FMn(r) = C (Rn, r).
Kontsevich is not precise about the operads used in his work. In [108], he calls

FM∼
n the Fulton–MacPherson operad, though this operad differs from the standard

Fulton–MacPherson operad FMn.
This operad FMn is better suited for Kontsevich’s proof of the formality of the

operad of little n-discs (we go back to this subject in §II.14 and in the concluding
chapter of Part III), while the variant FM∼

n is used by Dev Sinha in [161, 162] in
order to define a cosimplicial space model for knot spaces (we also go back to this
subject in the concluding chapter of Part III).
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4.3.5. The Deligne–Mumford–Knudsen compactification of the moduli spaces of
curves. We now consider the case n = 2 of the configuration spaces F (Rn, r) and of
the Fulton–MacPherson operad FMn. In §4.3.1, we consider the action of the group
of real similarities R>0 �Rn on the configuration space F (Rn, r), but when we deal
with configuration of points in the plane R2 = C, we can also consider an action of
the group of complex similarities C×

�C (which consists of the transformations of
the complex plane φ : z �→ az + b such that a ∈ C× and b ∈ C).

The quotient space F (C, r)/C×
�C is identified with the quotient F (CP1, r +

1)/PGL(2,C) of the configuration space of r + 1 points in the projective line CP1

under the diagonal action of the group of homographies PGL(2,C). This quotient
F (CP1, r + 1)/PGL(2,C) also represents the moduli space M0r+1 which classifies
the isomorphism classes of genus zero smooth curves C = CP1 with r + 1 marked
points a0, . . . , ar ∈ C.

We have a compactification of this space, the Deligne–Mumford–Knudsen com-
pactification M0r+1, which we define by considering certain singular curves at the
infinity of our moduli space M0r+1. To be explicit, we say that C is a stable curve
of genus zero with r + 1 marked points when:
(1) this curve C admits at most a finite number of singularities, all of which consist

of double points, and has r+1 marked points a0, . . . , ar ∈ C which are distinct
from the singular points;

(2) each irreducible component of C contains at least three special points (singu-
larities and marked points);

(3) the dual graph of our curve C, which has the irreducible components as vertices
and the local branches passing through special points as half edges (possibly
glued on double points), is a tree.

In the case r = 3 for instance, we get the following shapes of dual graphs associated
to our curves:

a0 a1

a3 a2

a0 a1

•

a3 a2

a0 a2

•

a3 a1

a0 a3

•

a2 a1

.

We precisely define the Deligne–Mumford–Knudsen compactification M0r+1 of the
spaceM0r+1 as the moduli space of the stable curves of genus zero with r+1 marked
points. We refer to the work of Deligne and Mumford [53] and Knudsen [105] for

a definition of these space M0r+1 which relies on general ideas of stack theory. We
refer to the work of Keel [102] for a combinatorial definition of these compactifi-

cations M0r+1 which relies on iterated blow-up constructions (similar to the ideas
used in the Fulton–MacPherson compactification process).

The collection such that

M(r) =

{
pt , for r = 1,

M0r+1, for r > 1,

inherits an operad structure. The composition products of this operad ◦i : M0k+1×
M0l+1 → M0k+l, i = 1, . . . , k, are defined by gluing curves at marked points. Each
space M0r+1 is also equipped with a stratification. The strata are indexed by
the dual graphs of curves and this stratum decomposition reflects the composition
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1

2

3

Figure 4.6. The representation of an element
in the framed little 2-disc operad.

structure of the operad M. We refer to [76] for the detailed definition of this corre-

spondence between the composition products of the operadM and the stratification
of the spaces M0r+1.

The article [102] gives a description of the cohomology ring of the space M0r+1.
The Fulton–MacPherson compactification of the configuration space F (CP1, r+ 1)
in [69] contains a divisor which is isomorphic to the cartesian product of the space

M0r+1 with the affine line A1. This divisor is used to get a representation of the
classes (and of the product) of the cohomology ring H∗(M0r+1).

The homology of the spaces M0r+1 also forms an operad in the category of
graded modules H∗(M) (like the homology of the little 2-discs spaces). The structure
of this operad is determined in [76] in terms of a presentation by generators and
relations. In short, the homology operad H∗(M) is identified with an operad HyCom,
called the hypercommutative operad in [76], which has a symmetric generating
operation μr ∈ HyCom(r) in each arity r ≥ 2 and higher associativity relations
as generating relations. We also refer to the book [133] for an account of this
computation and for a study of a correspondence between the operations encoded
by the operad HyCom and operations occurring in the quantum cohomology of
projective algebraic varieties.

4.3.6. The operad of framed little discs. We can actually relate the Deligne–
Mumford–Knudsen operad to a variant of the little 2-discs operad. We more pre-
cisely consider a framed version of the little 2-discs operad to express this relation-
ship.

To be explicit, recall that we define a little n-disc as an affine embedding
c : Dn ↪→ Dn of the form c(t1, . . . , tn) = (a1, . . . , an) + r · (t1, . . . , tn), for a trans-

lation term (a1, . . . , an) ∈ D̊ and a scaling factor r > 0 (see §4.1.1). The framed
little n-discs, which we consider to define the framed little n-discs operad fDn, are
embeddings c : Dn → Dn of the form c(t1, . . . , tn) = (a1, . . . , an) + r · q(t1, . . . , tn),
where in comparison with the definition of §4.1.1 we consider an additional rota-
tion parameter q ∈ SO(n). The space fDn(r) precisely consists of collections of
embeddings of this form c = (c1, . . . , cr) with the same non-intersection condition
i �= j ⇒ c̊i∩ c̊j = ∅ as in the definition of the ordinary little n-discs operad Dn. The
symmetric structure, the unit, and the composition structure of this operad fDn

are defined by an obvious extension of the construction of §4.1.3. The framed little
discs operad fDn has also a natural unitary extension fDn+ such that fDn+(0) = pt .

In the 2-dimensional case, we add a mark to the picture of the little 2-discs
in order to represent the angle of the rotation that occurs in the definition of the
framed little discs (the horizontal axis defines the zero angle). Figure 4.6 for instance
gives the picture of a configuration of framed little discs in the space fD2(3).
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We now focus on the case n = 2 of the construction. Let S be the operad such
that S(1) = SO(2) = S1 and S(r) = ∅ for r �= 1. We have an obvious operad
morphism S → fD2. By a result of Drummond-Cole [58], the moduli space operad

M of §4.3.5 is identified with the result of a homotopy pushout in the category of
topological operads:

S I

fD2 M

.

This operadic homotopy pushout is formally defined by replacing the morphism
S → fD2 by a cofibration in the category of operads, and by taking the pushout of
this cofibration along the morphism S → I . We refer to §II.1 for the definition of
this notion of a cofibration in the category of operads

The operad H∗(S) has a single generating operation Δ, given by the fundamen-
tal class of the sphere in arity one H∗(S(1)) = H∗(S

1), and we have Δ◦1Δ = 0. The
operad H∗(fD2) is identified with an operadic semi-direct product of the Gersten-
haber operad Gerst2 and of the operad H∗(S). We refer to [75] for a full description
of this homology operad H∗(fD2), which is usually called the Batalin–Vilkovisky
operad in the literature. We also refer to [158] for a description of the homology
operads H∗(fDn) for all n ≥ 2.

4.4. Appendix: The symmetric monoidal category of graded modules

Let k be any fixed a ground ring. In §0.1, we define the category of graded mod-
ules gr Mod as the category formed by k-modules K equipped with a splitting K =⊕

n∈Z Kn. A morphism of graded modules is a morphism of k-modules f : K → L
such that f(Kn) ⊂ Ln, for all n ∈ Z. We say that an element x ∈ K is homogeneous
of degree n ∈ Z and we write deg(x) = n when we have x ∈ Kn.

The main purpose of this appendix section is to explain the definition of our
symmetric monoidal structure on the category graded modules. By the way, we also
check the existence of a hom-bifunctor Homgr Mod (−,−) : gr Modop × gr Mod →
gr Mod which implies that the category gr Mod is closed symmetric monoidal.

4.4.1. The symmetric monoidal structure of the category of graded modules.
The tensor product of K,L ∈ gr Mod in the category of graded modules is the
tensor product of K and L as k-modules, which we equip with the decomposition
such that (K ⊗ L)n =

⊕
p+q=n Kp ⊗ Lq. This construction obviously gives a

bifunctor

⊗ : gr Mod × gr Mod → gr Mod

with the ground ring k regarded as a graded module concentrated in degree 0 as
unit object. We also have an obvious associativity isomorphism (K ⊗ L) ⊗ M �
K ⊗ (L⊗M) inherited from k-modules.

We then provide the category of graded modules with a symmetry isomorphism
which reflects the commutation rules of differential graded algebra. We precisely
define the symmetry isomorphism of a tensor product of graded modules c : K ⊗
L → L ⊗K by the formula c(x ⊗ y) = (−1)pqy ⊗ x, for any pair of homogeneous
elements x ∈ Kp and y ∈ Lq, where we consider the sign (−1)pq determined by the
rules of §0.2. We generally use the symbol ± to mark the occurrence of such a sign
in our formula (see §0.2)
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We immediately see that the tensor product of graded modules satisfies the
distribution relation of §0.9 with respect to colimits. We mention in §0.14 that this
extra condition is related to the existence of an internal hom in the category of
graded modules. We make this internal hom explicit in the next paragraph.

4.4.2. The internal hom of graded modules. We basically define the internal
hom of graded modules L,M ∈ gr Mod as the graded module Homgr Mod (L,M)
spanned in degree n by the morphisms of k-modules f : L → M such that f(Lp) ⊂
Mp+n. Thus, we set Homgr Mod(L,M)n =

∏
p Homgr Mod(Lp,Mp+n), for each n ∈ Z.

The adjunction relation Morgr Mod (K ⊗ L,M) � Morgr Mod (K, Homgr Mod(L,M))
easily follows from the adjunction relation of k-modules. Note that a morphism of
graded modules is identified with a homomorphism of degree 0 where, according to
the conventions of §0.13, we use the term “homomorphism” to refer to an element
of the graded hom Homgr Mod (L,M).

In §0.14, we mention that, for general reasons, the internal hom-objects of
a closed symmetric monoidal category inherit a composition product, an internal
tensor product operation, and evaluation morphisms. In the context of graded mod-
ules, the evaluation morphism is identified with the morphism of graded modules ε :
Homgr Mod(L,M) ⊗ L → M which maps any tensor f ⊗ x ∈ Homgr Mod(L,M) ⊗ L
to the element f(x) ∈ M defined by applying the k-module map f : L → M
to x ∈ L. Note that Homgr Mod (L,M) ⊗ L refers to the tensor product of graded
modules in this construction. The composition product ◦ : Homgr Mod (L,M) ⊗
Homgr Mod(K,L) → Homgr Mod (K,M) is induced by the obvious composition opera-
tion on k-module morphisms. The tensor product operation ⊗ : Homgr Mod (K,L)⊗
Homgr Mod(M,N) → Homgr Mod(K ⊗ M,L ⊗ N) maps (homogeneous) homomor-
phisms f : K → L and g : M → N to the homomorphism f ⊗ g : K ⊗L → M ⊗N
such that (f ⊗ g)(x ⊗ y) = ±f(x) ⊗ g(y), for any pair of (homogeneous) ele-
ments x ∈ K and y ∈ L, where the sign ± is produced by the commutation
of g and x.



CHAPTER 5

Braids and the Recognition of E2-operads

Recall that P is an En-operad when we have weak-equivalences of topological
operads P

∼←− · ∼−→ Dn which connect P to the operad of little n-discs Dn. In
this situation, we also say that P is weakly-equivalent to Dn. In many problems
the issue is to prove that a given object P does form an En-operad. The usual
method is to apply an appropriate recognition criterion that builds the required
weak-equivalences from internal structures of P .

In the previous chapter, we observed that a topological operad P is an E1-
operad if and only if each space P(r) has contractible components which form
an operad in sets π0 P isomorphic to the operad of associative monoids As (see
Proposition 4.1.14). This criterion actually implies that P is weakly-equivalent
to the operad in sets As, viewed as a discrete operad in topological spaces. The
existence of the weak-equivalence with the little 1-discs operad follows in this con-
text from the observation that the operad D1 is itself weakly-equivalent to As. In
Proposition 4.1.14, we also observed that a topological operad P forms an E∞-
operad if and only if each space P(r) is contractible. This criterion implies that P
is weakly-equivalent to the discrete operad of commutative monoids Com. The
weak-equivalence with D∞ follows, again, from the observation that D∞ consists
of contractible spaces and is itself weakly-equivalent to Com.

The main objective of this chapter is to explain a similar characterization, due
to Z. Fiedorowicz [62], of the class of E2-operads.

We start with the observation that each space D2(r) is an Eilenberg-MacLane
space K(Pr, 1), where Pr = π1D2(r) denotes the pure braid group on r strands. We
then consider the universal covering Ď2(r) of the little 2-discs space D2(r), which
is contractible and comes equipped with an action of the pure braid group such
that Ď2(r)/Pr = D2(r). This action of the group Pr on the covering space Ď2(r)
actually extends to an action of the entire braid group Br which lifts the action of
the symmetric group Σr on the little 2-discs space D2(r). The crux of Fiedorow-
icz’s idea relies on the observation that the collection of spaces Ď2 = {Ď2(r), r > 0}
inherits the same structure as an operad, except that we have to replace the sym-
metric group actions of the standard definition §1.1.1 by braid group actions. We
also use the phrase ‘braided operad ’ for this variant of the notion of an operad.
We regard the quotient construction Ď2(r)/Pr = D2(r), which gives the connec-
tion between the little 2-discs space D2(r) and the associated universal covering
space Ď2(r), as an instance of a general symmetrization process which enables us
to retrieve a symmetric operad from any braided operad structure. The recogni-
tion theorem of Z. Fiedorowicz precisely asserts that any operad P obtained by
symmetrization P(r) = P̌(r)/Pr of a contractible braided operad P̌ is E2.

159
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We use this recognition method to check that the classifying spaces of a certain
operad in groupoids, the operad of colored braids, forms an instance of an E2-
operad.

In a preliminary section §5.0, we survey basic concepts of braid theory and
we recall the definition of the braid groups Br. In §5.1, we explain the definition
of a braided operad and we state Fiedorowicz’s recognition criterion. In §5.2, we
give the definition of the operad of colored braids, and we explain our construction
of a model of E2-operad from the classifying spaces of this operad in groupoids.
In §5.3, we explain that the operad of colored braids is also equivalent to an operad
in groupoids, naturally associated to the little 2-discs operad, which is formed by
the fundamental groupoids of the little 2-discs spaces. In a concluding section §5.4,
we give a brief introduction to more general recognition theorems which aim to give
a characterization of En-operads for any n ≥ 1.

The ideas of §§5.1-5.2 are mostly borrowed from [62]. The preprint [188] pro-
vides a generalization of this approach for the recognition of operads built from
Eilenberg-MacLane spaces. In §5.3, we outline another approach of Fiedorowicz’s
criterion, which relies on the adjunction between classifying spaces and fundamental
groupoids.

5.0. Braid groups

In the previous chapter, we used the configuration spaces F (D̊n, r), r > 0,
for our study of the homology of the little n-discs operad Dn. By the way, we
observed that, in the case n = 1, the configuration spaces F (D̊1, r) have contractible
connected components, indexed by the permutations of the sequence (1, . . . , r) (like
the little 1-discs spaces D1(r)). To begin this chapter, we record the following

preliminary observation about the homotopy of the spaces F (D̊n, r) for n ≥ 2:

Proposition 5.0.1. The spaces F (D̊n, r) are connected for all n ≥ 2. If n >

2, then we moreover have π1 F (D̊n, r) = 0. If n = 2, then we have in contrast

π∗ F (D̊2, r) = 0, for all ∗ �= 1.

Proof. In the previous chapter, we recalled that the map f : F (D̊n, r) →
F (D̊n, r − 1) which forgets about the last point of a configuration is a fibration.
The idea is to prove this proposition by induction on r, by using the homotopy
exact sequence associated to these fibrations:

· · · → π∗(f
−1(b), a) → π∗(F (D̊

n, r), a)
f∗−→ π∗(F (D̊

n, r − 1), b) → · · ·

· · · → π1(f
−1(b), a) → π1(F (D̊

n, r), a)
f∗−→ π1(F (D̊

n, r − 1), b) → π0(f
−1(b), a)︸ ︷︷ ︸
=∗

,

where a = (a1, . . . , ar) is a fixed base point in the configuration space F (D̊n, r) and
we set b = (a1, . . . , ar−1) = f(a). The fiber of the map f at this base point b is
identified with the punctured space

f−1(b) = {(a1, . . . , ar−1, b) ∈ D̊n|b �= a1, . . . , ar−1} = D̊n \ {a1, . . . , ar−1},
which is connected as soon as n > 1. Hence, we have the identity π0(f

−1(a), ar) = ∗
as indicated in our formula.

The connectedness of this space f−1(b) implies, by induction on r, that the

spaces F (D̊n, r) are connected as well, for all n > 1. In the case n > 2, we have
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besides π1(f
−1(b), a) = π1(D̊n\{a1, . . . , ar−1}, ar) = ∗, and by an immediate induc-

tion again, we deduce from the terms of degree one of the homotopy exact sequence
that the spaces F (D̊n, r) are simply connected too. In the case n = 2, we have

π∗(f
−1(b), a) = π∗(D̊2 \ {a1, . . . , ar−1}, ar) = ∗ for all ∗ > 1, and we use the higher

terms of the homotopy exact sequence to conclude that π∗(F (D̊2, r), a) vanishes for
all ∗ > 1. �

We have the same assertions as in this proposition for the little disc spaces
Dn(r) since we have a homotopy equivalence ω : Dn(r)

∼−→ F (D̊n, r) (see Proposi-
tion 4.2.2) which induces an isomorphism on homotopy groups. Briefly recall that
this homotopy equivalence, which we call the disc center mapping, sends an r-tuple
of little n-discs c = (c1, . . . , cr), which represents an element of the space Dn(r),

to the configuration of points defined by the centers ci(0, . . . , 0) ∈ D̊n of the discs
ci : Dn → Dn, i = 1, . . . , r.

The previous proposition implies that the configuration spaces F (D̊2, r), and
hence the little 2-discs spaces D2(r), are Eilenberg-MacLane spaces K(Pr, 1), where

we set Pr = π1(F (D̊2, r), ∗). Recall that this group Pr is called the pure braid group
on r strands. The Artin braid group Br, which we also consider in our study of E2-
operads, sits in a short exact sequence 1 → Pr → Br → Σr → 1. The purpose of this
preliminary section is to recall the classical interpretation of these groups, in terms
of isotopy classes of braids on r strands, and the geometric representation which
arises from this interpretation. The identity between the little 2-discs spaces D2(r)
and the Eilenberg-MacLane spaces K(Pr, 1) is used in the next sections.

To begin with, we explain the definition of the Artin braid group Br as the
fundamental group of a space.

5.0.2. Braid groups. Recall that the space F (D̊2, r) is equipped with an action
of the symmetric group Σr, which is given by the formula

w∗(a1, . . . , ar) = (aw−1(1), . . . , aw−1(r)),

for each (a1, . . . , ar) ∈ F (D̊2, r), and for any permutation w ∈ Σr (see Proposi-
tion 4.2.3). The braid group on r strands Br is precisely defined as the fundamental

group of the quotient of the configuration space F (D̊2, r) under this action:

Br = π1(F (D̊
2, r)/Σr, ∗).

The quotient map q : F (D̊2, r) → F (D̊2, r)/Σr induces a morphism q∗ : Pr → Br.
Now we easily check that:

Lemma 5.0.3. The symmetric group Σr acts freely and properly on F (D̊2, r) so

that the quotient map q : F (D̊2, r) → F (D̊2, r)/Σr is a covering map. �

Then we can apply standard results of covering theory to obtain:

Proposition 5.0.4. The morphism q∗ : Pr → Br fits in an exact sequence of

groups 1 → Pr
q∗−→ Br

p∗−→ Σr → 1, where the map p∗ : Br → Σr is deduced from
the action of Br = π1(F (D̊2, r)/Σr, ∗) on the fiber of the covering q : F (D̊2, r) →
F (D̊2, r)/Σr at any base point ∗ ∈ F (D̊2, r)/Σr. �

5.0.5. Braids and braid diagrams. The braids, which motivate the name given
to the braid groups, occur in a representation of the paths in the configuration
space F (M, r) associated to any manifold M . We review this representation of a
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braid before recalling the classical presentation of the braid groups by generators
and relations. For our purpose, we focus on the case M = D̊2, and our braids are
defined in the cylinder D̊2 × [0, 1]. In our study, we refer to works which deal with

braids in the Euclidean plane M = R2 rather than in the open disc M = D̊2, but we
have an obvious isomorphism between the braid groups associated to these spaces
since the Euclidean plane R2 is homeomorphic to the open disc D̊2.

We precisely define a braid with r strands in D̊2 as a collection of r disjoint
arcs αi : [0, 1] → D̊2 × [0, 1], i = 1, . . . , r, of the form

αi(t) = (xi(t), yi(t), t), t ∈ [0, 1],

and whose origin αi(0) = (xi(0), yi(0), 0) and end-point αi(1) = (xi(1), yi(1), 1) lie
in a set of fixed contact points {(x0

k, 0, t
0)|k = 1, . . . , r} on the axis y = 0 of the

boundary discs of our cylinder D̊2 × {t0}, where t0 = 0, 1 (see [11]). We can take
the sets of equidistant points

(x0
k, 0, 0), (x

0
k, 0, 1), with x0

k = −1 + (2k − 1)/(r + 1), k = 1, . . . , r,

as contact points for the moment.
The requirement that the arcs αi are disjoint is equivalent to the relation

(xi(t), yi(t)) �= (xj(t), yj(t))

for all i �= j and for every t ∈ [0, 1]. In the case t0 = 0, 1, this assumption implies
that the r-tuple (α1(t

0), . . . , αr(t
0)) = ((x1(t

0), 0, t0), . . . , (xr(t
0), 0, t0)) forms a

permutation of ((x0
1, 0, t

0), . . . , (x0
r, 0, t

0)). The mapping s : k �→ s(k) such that

xi(0) = x0
k, xi(1) = x0

s(k), for i = 1, . . . , r,

defines a permutation s ∈ Σr, naturally associated to our braid α, and usually
referred to as the underlying permutation of the braid α.

The set of pure braids consists of the braids which have the identity as under-
lying permutation.

The arcs αi define the strands of the braid. For the moment, we take the
convention that the collection of strands αi, i = 1, . . . , r, which defines a braid
α = (α1, . . . , αr), is equipped with the indexing such that αi(0) = (x0

i , 0, 0), for
i = 1, . . . , r. We then have (α1(1), . . . , α1(1)) = ((x0

s(1), 0, 1), . . . , (x
0
s(r), 0, 1)),

where s ∈ Σr is the permutation associated to our braid. (We will adopt another
convention in §5.2 where we consider braids equipped with additional structures
for which this ordering is not natural.)

We use a projection onto the plane (x, t) to get a convenient representation of
our braids. We give an example of this representation in Figure 5.1 for a braid on
4 strands with

s =

(
1 2 3 4
4 2 1 3

)
as underlying permutation. The projection picture works for braids such that the in-
tersection between the projected arcs (xi(t), t) reduce to isolated points, and where
each intersection (xi(t), t) = (xj(t), t) involves no more than two arcs (xi(t), t),
(xj(t), t). In this context, the usual convention is to insert a gap at each intersec-
tion point (xi(t), t) = (xj(t), t), as in the example of Figure 5.1, in order to specify
the strand which goes under the other with respect to the y-coordinate. Such a
figure is called a braid diagram.
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0

1

x

t

1-1
x0
1 x0

2 x0
3 x0

4

Figure 5.1. An instance of braid diagram. In the next pictures,
we generally do not specify the abscissa x0

i of the contact points.
We just specify the index of contact points when necessary.

In the next paragraph, we recall the definition of the isotopy relation between
braids. The notion of isotopy can be formalized in terms of braid diagrams, and
one can prove that braid diagrams are enough to give a faithful picture of braids
up to isotopy. This observation is originally due to E. Artin, and we refer to
his article [11], or to the subsequent textbook [101] by C. Kassel and V. Turaev,
for more explanations about the relationship between braids and braid diagrams.
In what follows, we just use braid diagrams informally in order to illustrate our
constructions.

5.0.6. Braid isotopies. By definition, an isotopy from a braid α to another one
β is a continuous family of braids hs such that h0 = α and h1 = β. Two braids are
isotopic if we have an isotopy between them, and in this case we write α ∼ β. The
isotopy relation is clearly an equivalence relation on the set of braids.

Let us regard a braid as a single map α(t) = (α1(t), . . . , αr(t)) rather than as
a collection of maps. The assumption that the underlying braids of an isotopy hs

form a continuous family is equivalent to the requirement that the two parameter
map h : (s, t) �→ hs(t) is continuous on [0, 1]× [0, 1]. By continuity, the requirement
that hs(1) belongs to the discrete space {((x0

w(1), 0, 1), . . . , (x
0
w(k), 0, 1))|w ∈ Σr}

implies that the map s �→ hs(1), given by the endpoints of the isotopy, is constant.
Hence, we see that isotopic braids have the same underlying permutation.

By a standard abuse of language, we generally use the word braid to refer to
an isotopy class of braids unless the distinction is made necessary by the context.

5.0.7. Relationship with the fundamental groups. We immediately see that a
pure braid on r strands αi(t) = (xi(t), yi(t), t) is equivalent to a based loop γ(t) =

((x1(t), y1(t)), . . . , (xr(t), yr(t))) in the configuration space F (D̊2, r), where we take
the configuration of our contact points on the line a0 = ((x0

1, 0), . . . , (x
0
r, 0)) as a

base point. Similarly, an isotopy of pure braids is equivalent to a homotopy of
based loops in F (D̊2, r). Thus, the pure braid group Pr, which we define as the

fundamental group of the space F (D̊2, r), is identified with the set of isotopy classes
of pure braids.
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· =

Figure 5.2. The concatenation of braids

· · ·

Figure 5.3. The identity braid

Let b0 = q(a0) be the image of the element a0 = ((x0
1, 0), . . . , (x

0
r, 0)) in the

quotient space F (D̊2, r)/Σr. The fiber of this point b0 under the covering map

q : F (D̊2, r) → F (D̊2, r)/Σr is q−1(b0) = {((x0
w(1), 0), . . . , (x

0
w(r), 0)), w ∈ Σr}. The

set of all braids on r strands is identified with the set of paths connecting a0 to
another point wa0 = ((x0

w(1), 0), . . . , (x
0
w(r), 0)) in this fiber. Braid isotopies are

also equivalent to path homotopies. By standard results of covering theory, any
loop γ based at b0 in the quotient space F (D̊2, r)/Σr lifts to a path of this form
γ̃, with γ̃(0) = a0 and γ̃(1) = wa0 for some w ∈ Σr. Moreover, such a lifting is
unique once we fix the starting point γ̃(0) = a0 and any homotopy of based loops
lifts to a path homotopy. Hence, the full braid group Br, which we define as the
fundamental group of the quotient space F (D̊2, r)/Σr, is identified with the set of
isotopy classes of all braids.

In both cases Pr and Br, the group multiplication can readily be identified
with a natural concatenation operation on braids, of which the Figure 5.2 gives
an example. The unit element with respect to this group multiplication is given
by the identity braid, represented in Figure 5.3. In what follows, we also use the
notation idr to refer to this braid in Br. For short, we can still set id = idr

when we do not need to specify the number of strands of our braid. Note that we
perform compositions downwards, in the increasing direction of the t coordinates
(as opposed to conventions adopted by other authors). Our choice is more natural
when we regard braids as morphisms oriented from a source to a target object and
we use this interpretation soon.

In Proposition 5.0.3, we refer to a general result of covering theory in order to
define the morphism p∗ : Br → Σr. By going back to the proof of this result, we
immediately see that the morphism p∗ : Br → Σr is identified with the map that
sends the isotopy class of a braid α to its underlying permutation s. The natural
embedding of the subset of pure braids into the set of all braids gives the morphism
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1 i i+ 1 r· · ·· · · · · · · · ·

· · ·

· · ·

· · ·

· · ·

Figure 5.4. The generating braids

q∗ : Pr → Br. Thus we have a full interpretation of the exact sequence of groups
1 → Pr → Br → Σr → 1 in terms of isotopy classes of braids.

5.0.8. Generating elements. For i = 1, . . . , r − 1, we consider the element τi ∈
Br represented by the diagram of Figure 5.4

The mapping p∗ : Br → Σr assigns the elementary transposition ti = (i i+1) ∈
Σr to this braid τi ∈ Br. In §0.10, we recall that the symmetric group Σr admits
a classical presentation, where we take these permutations ti, i = 1, . . . , r − 1, as
generating elements. For the braid group, we have the following statement:

Theorem 5.0.9 (see [10]). The braid group Br admits a presentation where
we take the braids τi, i = 1, . . . , r − 1, as generating elements together with the
commutation relations

τiτj = τjτi, for i, j ∈ {1, . . . , r − 1} such that |i− j| ≥ 2,

and the braid relations

τiτi+1τi = τi+1τiτi+1, for i ∈ {1, . . . , r − 2},

as generating relations (see also the picture of these relations in Figure 5.5). �

In other words, the braid group Br is given by the same presentation as the
symmetric group Σr except that we forget about the involution relation t2i = 1
associated to transpositions. The idea of this result goes back to the work of E.
Artin [10] cited in reference. We refer to [26], [63], and [101] for various proofs of
the theorem.

The inverse of a generator τi in the braid group can actually be obtained by
switching the disposition of the strands in the representation of Figure 5.4 (the
i+1st strand comes in the foreground and the ith strand goes in the background).

5.0.10. Change of contact points. In the definition of §5.0.5, we assume that
the origin points of a braid belong to the subset {(x0

k, 0, 0)|k = 1, . . . , r}, where
x0
k = −1+ (2k− 1)/(r+1), and the end points belong to the subset {(x0

k, 0, 1)|k =
1, . . . , r}. Equivalently, our braids correspond to paths in the configuration space

F (D̊2, r) that starts at the element ((x0
1, 0), . . . , (x

0
r, 0)) and ends at a permutation

((x0
w(1), 0), . . . , (x

0
w(r), 0)) of this base point ((x0

1, 0), . . . , (x
0
r, 0)).
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i· · · · · ·

· · ·· · ·

· · ·

· · ·

ji + 1 j + 1

≡

i· · · · · ·

· · ·· · ·

· · ·

· · ·

ji + 1 j + 1

i· · · · · ·

· · ·· · ·

i + 1 i+ 2

≡

i· · · · · ·

· · ·· · ·

i + 1 i+ 2

Figure 5.5. The commutation and braid relations in braid groups.

In principle, the fundamental groups associated to different choices of base
points in a connected space are isomorphic. Hence, in our case, we obtain isomor-
phic groups if we replace our collection of contact points {(x0

k, 0)|k = 1, . . . , r} ×
{0, 1} in the definition of the braid group by another one with arbitrary ordinates
{(ak, bk)|k = 1, . . . , r} × {0, 1}. But the definition of an isomorphism which com-
pares the groups associated to these choices of base points involves the choice of a
path γ(t) = (γ1(t), . . . , γr(t)) from one configuration γ(0) = ((x0

1, 0), . . . , (x
0
r, 0)) to

the other one γ(1) = ((a1, b1), . . . , (ar, br)) in the space F (D̊2, r). In the braid pic-
ture, we represent this isomorphism by a concatenation of the strands of our braids
with the arcs of the path γ. This isomorphism clearly depends on the homotopy
class of the path γ, and hence, is not canonical in general.

In the sequel, we implicitly use changes of base points, but we also need a strict
control of the isomorphisms which we use to compare our groups. For this aim,
we restrict ourselves to base configurations of the form ((a1, 0), . . . , (ar, 0)), where
all points lie on the line y = 0, and for which we assume a1 < · · · < ar. Equiva-
lently, we only consider base configurations (a1, . . . , ar) which lie in the equatorial

1-disc D̊1 ⊂ D̊2, and belong to the connected component associated to the permuta-
tion (1, . . . , r) in the configuration space F (D̊1, r). Since F (D̊1, r) has contractible
connected components, all paths γ(t) = (γ1(t), . . . , γr(t)) which go from any such

configuration to another one inside F (D̊1, r) are homotopic, and hence, induce the
same isomorphism at the fundamental group level. Thus, all choices of contact
points on the line y = 0 yield the same braid group up to a canonical and well
determined isomorphism.

5.0.11. Degenerate cases. We should note that the definition of the braid group
Br makes sense for r = 0. We then deal with a degenerate situation where our braids
have an empty set of strands. We therefore have B0 = ∗ for formal reasons.
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The braid group B1 is also trivial (like the symmetric group Σ1), with the
isotopy class of a one-strand vertical braid as unique element.

5.1. Braided operads and E2-operads

Let Ď2(r) be the universal coverings of the spaces of little 2-discs D2(r). The
main purpose of this section is to check that the collection of these spaces Ď2(r)
inherits the structure of an operad. To be precise, recall that we have to deal with
a variant of the notion of an operad when we pass to these covering spaces Ď2(r).
Namely, we have to consider an action of the braid groups instead of the action of
the symmetric groups of the standard definition §1.1.1. In a preliminary step, we
explain the general definition of this braided variant of the notion of an operad.
Then we explain the statement of Fiedorowicz’s recognition theorem [62] which
asserts than we can define E2-operads by taking the symmetrization of contractible
braided operads.

5.1.1. Braided operads. We explicitly define a braided operad P in a base cat-
egory M as a collection of objects P(r) ∈ M, r ∈ N, where P(r) is now equipped
with an action of the braid group Br, together with:
(1) a unit morphism η : 1 → P(1),
(2) and composition products μ : P(r)⊗ P(n1)⊗ · · · ⊗ P(nr) → P(n1 + · · ·+ nr),

defined for every r ≥ 0, and for all n1, . . . , nr ≥ 0,
such that natural equivariance, unit and associativity relations, modeled on the
same commutative diagram as in the case of symmetric operads (Figure 1.1-1.3),
hold. We just have to consider elements of the braid groups α ∈ Br (respec-
tively, β1 ∈ Bn1

, . . . , βr ∈ Bnr
) instead of permutations s ∈ Σr (respectively,

t1 ∈ Σn1
, . . . , tr ∈ Σnr

) in our equivariance relations. We therefore need an ex-
tension to the braid groups of the definition of block permutations and of the
definition of the direct sum of permutations. We define these operations in the
following proposition:

Proposition 5.1.2. Let r ∈ N. Let n1, . . . , nr ∈ N.
(a) The direct sum of permutations, regarded as a mapping Σn1

× · · · ×Σnr
→

Σn1+···+nr
, has a unique lifting to braid groups

Bn1
× · · · ×Bnr

→ Bn1+···+nr
,

which is given by the picture of Figure 5.6 when we consider the case of the direct
sum idn1

⊕ · · · ⊕ τk ⊕ · · · ⊕ idnr
of a generating braid τk ∈ Bni

with identity braids
idnj

∈ Bnj
, j �= i, and which satisfies the following multiplicativity relation

(α1 · β1)⊕ · · · ⊕ (αr · βr) = (α1 ⊕ · · · ⊕ αr) · (β1 ⊕ · · · ⊕ βr),

for all (α1, . . . , αr), (β1, . . . , βr) ∈ Bn1
× · · · ×Bnr

.
(b) The block permutation construction, which we regard as a mapping Σr →

Σn1+···+nr
, has a unique lifting to braid groups

Br → Bn1+···+nr
,

which is given by the picture of Figure 5.7 when we consider the case of a generating
element τi ∈ Br, and which satisfies the following multiplicativity relation

(α · β)∗(n1, . . . , nr) = α∗(n1, . . . , nr) · β∗(ns(1), . . . , ns(r)),

for all α, β ∈ Br, and where s denotes the underlying permutation of the braid α.
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Figure 5.6. The direct sum idn1
⊕ · · · ⊕ τk ⊕ · · · ⊕ idnr

in the braid group.
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Figure 5.7. The block braid (τi)∗(n1, . . . , nr)

(c) In addition, we have the commutation relation

β1 ⊕ · · · ⊕ βr · α∗(n1, . . . , nr) = α∗(n1, . . . , nr) · βs(1) ⊕ · · · ⊕ βs(r),

for all α ∈ Br, (β1, . . . , βr) ∈ Bn1
× · · · ×Bnr

, and where s denotes the underlying
permutation of the braid α again.

Proof. The multiplicativity relations imply that these operations on braids
are uniquely determined by fixing the image of generating elements. In each case,
we just have to check that our mapping preserves the generating relations of the
braid groups in order to establish the validity of our definition.

In the case of the direct sums (a), we have to check that our operations preserve
the internal generating relations of braid groups which we form within each factor
Bni

, as well as the commutation relation

(idn1
⊕ · · · ⊕ τk ⊕ · · · ⊕ idnr

) · (idn1
⊕ · · · ⊕ τl ⊕ · · · ⊕ idnr

)

= (idn1
⊕ · · · ⊕ τl ⊕ · · · ⊕ idnr

) · (idn1
⊕ · · · ⊕ τk ⊕ · · · ⊕ idnr

)
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when we take generating elements of disjoint factors Bni
and Bnj

, i �= j, of the
cartesian product Bn1

× · · · × Bnr
. These identities are visibly preserved by our

mapping.
The preservation of the generating relations of the braid group Br by the block

braid construction of (b) is checked by a similar straightforward inspection.
The multiplicativity relations similarly imply that we are left to check the

identity of assertion (c) in the case where one element among α and β1, . . . , βr is
a generating braid τk, and all the others are identity braids. The validity of the
relation in this generating case is still immediate, and this verification completes
the proof of our proposition. �

The braids of Figure 5.6 and Figure 5.7 can also be defined purely algebraically,
in terms of the generating elements of the braid group Bn1+···+nr

. In the case of
Figure 5.6, we have:

idn1
⊕ · · · ⊕ τk ⊕ · · · ⊕ idnr

= τki+k,

for all τk ∈ Bni
, where we set again ki = n1 + · · · + ni−1, for i = 1, . . . , r. In the

case of Figure 5.7, we obtain:

(τk)∗(n1, . . . , nr) =

(τki+ni
τki+ni−1 . . . τki+1) · (τki+ni+1τki+ni

. . . τki+2) · . . .
. . . · (τki+ni+ni+1

τki+ni+ni+1−1 . . . τki+ni+1
).

The definition of the permutation operad in Proposition 1.1.9 has the following
braided analogue:

Proposition 5.1.3. The collection of braid groups Bn, n ∈ N, forms a braided
operad in sets such that:
(1) the action of the braid group on each Bn is given by left translations;
(2) the identity braid on one strand id1 ∈ B1 defines the operadic unit;
(3) and the composition product μ : Br × (Bn1

× · · · × Bnr
) → Bn1+···+nr

maps a
collection α ∈ Br, (β1, . . . , βr) ∈ Bn1

× · · · ×Bnr
, to the product element

α(β1, . . . , βr) = β1 ⊕ · · · ⊕ βr · α∗(n1, . . . , nr)

in Bn1+···+nr
.

Proof. This statement easily follows from the relations of Proposition 5.1.2.
�

In what follows, we use the notation B for the operad defined in this proposition
which we also call the ‘braid operad ’. To be more precise, when we use this notation
B, we actually refer to a version of the braid operad where we forget about the term
of arity zero of our object. We therefore assume B(r) = Br for r > 0 and B(0) = ∅.
We use the notation B+, with the extra subscript mark +, when we keep this term
B+(0) = B0 = pt in our object. Thus, we adopt the same conventions for this
operad as in the case of the permutation operad (see §1.1).

The result of §2.1, the equivalence between the plain definition of an operad and
the definition in terms of partial composition operations has an obvious extension to
braided operads. In the sequel, we use this definition, in terms of partial composites,
rather than the definition of §5.1.1.
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1 2

◦1

1 2

=

1 2 3

Figure 5.8. An operadic composition of braids

1 22 3 44

�→

11 22

≡

11 22

Figure 5.9. An instance of a restriction operator in the braid operad

Let α ∈ Bm, β ∈ Bn. To illustrate the definition, we give an instance of
an operadic composition of braids α ◦k β = α(id1, . . . , β, . . . , id1) ∈ Bm+n−1 in
Figure 5.8. Intuitively, the operadic composite α ◦k β is obtained by inserting
the braid β on the kth strand of the braid α. To ease the understanding of our
picture, we have marked the array in which the braid β is inserted. In subsequent
constructions, we will use that the strands which define the composite braid α ◦k β
in the outcome of this process are canonically in bijection with the strands of the
braid α minus the kth one αk plus the strands of the braid β.

5.1.4. Unitary braided operads and restriction operators. The notion of a uni-
tary operad has an obvious analogue in the context of braided operads and so does
the notion of a unitary extension of non-unitary operads. Furthermore, any unitary
braided operad P+ inherits restriction operators u∗ : P+(n) → P+(m), associated
to the increasing injections u : {1 < · · · < m} → {1 < · · · < n}, and which we de-
fine as the composition operations u∗(p) = p(∗, . . . , 1, . . . , ∗, . . . , 1, . . . , ∗) ∈ P+(m)
where we take an arity zero operation ∗ ∈ P+(0) at each place j �∈ {u(1), . . . , u(m)}
as in the case of unitary symmetric operads (see §2.2). We can also define a braided
analogue of the category of finite ordinals and injections of §2.2.2 in order to com-
bine the action of braids α ∈ Br with the restriction operators associated to these
increasing injections u ∈ MorΛ+(m, n) in a single diagram structure.

The unitary braid operad B+, for instance, defines a unitary extension of the
non-unitary braid operad B since we have B+(0) = B0 = pt for this operad.
The image of a braid α ∈ Bn under a restriction operator u∗ : Bn → Bm is
obtained by removing the strands αk whose index k does not lie in the image of the
map u : {1 < · · · < m} → {1 < · · · < n}. Figure 5.9 gives an instance of application



5.1. BRAIDED OPERADS AND E2-OPERADS 171

of this restriction process for the injection u : {1 < 2} → {1 < 2 < 3 < 4} such
that u(1) = 2 and u(2) = 4.

The components of a symmetric operad naturally inherit an action of braid
groups (by restriction through the canonical morphism p∗ : Br → Σr) so that any
symmetric operad naturally forms a braided operad. The next proposition gives a
functor in the converse direction as this restriction operation:

Proposition 5.1.5.
(a) Let P be any braided operad. We set SymP(r) = P(r)/Pr, for any r ∈ N.

The collection SymP = {SymP(r), r ∈ N} inherits a symmetric structure, a unit
morphism, and operadic composition operations from the braided operad P. Hence,
this collection forms a symmetric operad SymP naturally associated to P.

(b) The mapping Sym : P �→ SymP provides a left adjoint of the obvious functor
which carries a braided operad to the symmetric operad defined by restricting the
action of the braid groups on our objects to symmetric groups. The collection of
quotient morphisms q : P(r) → P(r)/Pr defines a morphism of braided operads q :
P → SymP which represents the augmentation of this adjunction.

(c) The mapping Sym : P �→ SymP preserves non-unitary operads and unitary
extensions as well. To be explicit, for a unitary braided operad P+, we have an
obvious identity Sym(P+) = Sym(P)+ in the category of symmetric operads.

(d) In the case of the braid operad B(r) = Br, we have SymB(r) = Br/Pr = Σr

and the symmetric operad SymB is identified with the permutation operad Π, such
as defined in Proposition 1.1.9. We have an analogous identity SymB+ = Π+ for
the unitary version of the braid operad B+.

Proof. Since Σr = Br/Pr, we immediately obtain that the action of Br

on P(r) induces an action of the symmetric group Σr on the quotient object P(r)/Pr.

The operadic unit of P obviously defines a unit morphism 1
η−→ SymP(1) at

the level of the collection SymP since SymP(1) = P(1)/P1 = P(1). Recall that the
direct sums β1 ⊕ · · · ⊕ βr as well as the block braid construction α∗(n1, . . . , nr) of
Proposition 5.1.2 lift the corresponding constructions on permutations. If β1, . . . , βr

are pure braids, then so is the direct sum β1⊕· · ·⊕βr because we have the identity
idn1

⊕ · · · ⊕ idnr
= idn1+···+nr

at the level of permutations, and we have a similar
assertion in the case of the block braid α∗(n1, . . . , nr). Thus, the permutations
β1 ⊕ · · · ⊕ βr and α∗(n1, . . . , nr) that occur in the equivariance relations of braided
operads are pure whenever α and β1, . . . , βr are pure braids. From this observation,
we immediately deduce that the composition products of the operad P induce
composition products on the collection of quotient objects SymP(r) = P(r)/Pr so
that we have a commutative diagram

P(r)⊗ P(n1)⊗ · · · ⊗ P(nr)
μ

P(n1 + · · ·+ nr)

P(r)/Pr ⊗ P(n1)/Pn1
⊗ · · · ⊗ P(nr)/Pnr ∃μ

P(n1 + · · ·+ nr)/Pn1+···+nr

,

for every r ≥ 0 and for all n1, . . . , nr ≥ 0. The equivariance, unit and associativity
relations of Figure 1.1-1.3 remain obviously satisfied in the quotient SymP . This
verification completes the construction of the symmetric operad SymP associated
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to P . The assertion about the adjunction relation follows from a straightforward
inspection of our construction.

The identity between the symmetrization of the braid operad and the permuta-
tion operad follows from the observation that the operadic composition operations
of braids α(β1, . . . , βr) = (β1⊕ · · ·⊕βr) ·α∗(n1, . . . , nr) lift corresponding operadic
composition operations on permutations.

The verification of assertion (c) of the proposition is immediate. �

We aim to prove that the topological operad of little 2-discs is given the sym-
metrization of a contractible braided operad in topological spaces. We actually
have the following more explicit result:

Theorem 5.1.6 (Z. Fiedorowicz [62]). The universal coverings Ď2(r) of the
little 2-disc spaces D2(r) form a braided operad in topological spaces Ď2 with the
operad of little 2-discs D2 as associated symmetric operad.

We have a similar result for the unitary extension of the operad of little 2-
discs D2+. We then get a unitary extension Ď2+ of our braided operad of covering
spaces Ď2 such that Sym Ď2+ = D2+.

We address the proof of this theorem in a series of constructions and lemmas.
We focus on the definition of the non-unitary operad structure on the collection
of covering spaces Ď2(r), r > 0. The extension of our constructions to unitary
operads is straightforward.

Recall that the definition of a universal covering depends on the choice of a
base point in the base space. To be precise, the universal coverings associated to
different base points are isomorphic, but we need to control the isomorphisms which
relate our universal coverings in order to check that the axioms of operads hold at
this level. We use a particular choice of base points in the little 2-disc spaces in
order to work out this problem. We devote the next paragraph to this question.

5.1.7. The choice of base points. Recall that the operad of little 1-discs embeds
into the little 2-discs operad by a topological inclusion D1 ↪→ D2. In Proposi-
tion 4.1.6, we prove that each space D1(r) has contractible connected components
D1(r)w indexed by permutations w ∈ Σr. Recall that π0 D1 is also isomorphic to
the permutation operad as an operad. Equivalently, the partial composition prod-
uct ◦k : D1(m)×D1(n) → D1(m+n−1) maps each cartesian product of connected
components D1(m)s × D1(n)t into the connected component D1(m + n − 1)s◦kt,
associated to the composition product s◦k t of the permutations s ∈ Σm and t ∈ Σn

within the permutation operad.
We consider the contractible space D1(r)id associated to the identity permu-

tation id = idr ∈ Σr and the corresponding subspace of D2(r) which according
to our definition (see §4.1.5) consists of configurations of little 2-discs of the form
represented in Figure 5.10. We take a configuration of little 2-discs c0 inside the
image of the space D1(r)id as base point in the space of little 2-discs D2(r). We
assume that Ď2(r) is the universal covering of the space D2(r) formed at this base
point from now on.

Any disc configuration c coming from the subspace D1(r)id ↪→ D2(r) can be
connected to our base point c0 by a path γ0 in that subspace D1(r)id ↪→ D2(r). All
paths of this form belong to the same homotopy class since D1(r)id is contractible.
Such a path gives a canonical isomorphism between the universal covering of D2(r)
determined at the base point c and the universal covering Ď2(r) determined at our
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1 2 i r· · · · · ·
Figure 5.10. The form
of a configuration of lit-
tle 2-discs in the image of
the contractible subspace
D1(r)id ↪→ D2(r) which
we take as a base point in
the space D2(r).
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Figure 5.11. The path corresponding to the generating braid τi
in the little 2-disc space D2(r).
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chosen base point c0. We explain this process in the next paragraph. We use a
classical construction of universal coverings, in terms of a space of homotopy classes
of paths, in order to make our isomorphisms explicit.

5.1.8. The construction of the universal coverings. In short, we use that the
covering space Ď2(r) can be defined by the set of homotopy classes of paths γ :
[0, 1] → D2(r) with our base point c0 as origin:

Ď2(r) = {γ : [0, 1] → D2(r)|γ(0) = c0}/ � .

We briefly recall the definition of the topology of this space. We refer to standard
textbooks (like [139, §V.10]) for further details on this general construction of the
theory of coverings.

The homotopies considered in our definition of the space Ď2(r) are formed by
continuous families of paths γs, s ∈ [0, 1], which have our base point as origin
γs(0) = c0, and which are constant at the end-point γs(1) ≡ c1. In what follows,
we use the notation [γ] for the class of a path γ under this homotopy relation. We
consider the map q : Ď2(r) → D2(r) which sends (the homotopy class of) a path
γ : [0, 1] → D2(r) to its end-point γ(1) ∈ D2(r). We equip the set Ď2(r) with an
appropriate topology in order to ensure that this map q : Ď2(r) → D2(r) defines a
covering. We proceed as follows:

– each point c ∈ D2(r) in the little 2-discs space D2(r) admits a basis of
neighborhoods formed by contractible open sets Uc,α, α ∈ I;

– to each path γ : [0, 1] → D2(r) such that γ(0) = c0 and γ(1) = c, we
associate the collection of sets Ǔc,α ⊂ Ď2(r) which consist of homotopy
classes of paths of the form α · γ where α is any path such that α(0) = c
and α([0, 1]) ⊂ Uc,α;

– we take this collection Ǔc,α, α ∈ I, as a basis of open neighborhoods for

the element [γ] in the space Ď2(r).

This definition is actually forced by the requirement that the counterimage of the
set Uc,α under the covering map q : Ď2(r) → D2(r) is a union of open sets.

In what follows, we omit to check the continuity of the maps which we define on
covering spaces. These verifications generally reduce to straightforward inspections.

In the construction of this paragraph, the isomorphism which connects the
space Ď2(r) with the universal covering taken at another base point c is given by
the concatenation of the paths γ : [0, 1] → D2(r), which define the elements of the
covering space Ď2(r), with a path γ0 : [0, 1] → D2(r) such that γ0(0) = c and
γ0(1) = c0. From this construction, we immediately see that this isomorphism is
canonical as soon as the homotopy class of the path γ0, which connects our base
points, is uniquely determined and we can ensure that such a property hold when,
as we set in §5.1.7, we restrict ourselves to base points c0 which belong to the image
of the space D1(r)id in D2(r).

5.1.9. The action of braid groups. The pure braid group Pr can immediately be
identified with the group of automorphisms of the covering Ď2(r) → D2(r) because:

– the automorphism group of a universal covering is identified with the fun-
damental group of its base space,

– and the homotopy equivalence ω : D2(r)
∼−→ F (D̊2, r), defined by the disc

center mapping, induces a group isomorphism

π1(D2(r), ∗) �−→ π1(F (D̊
2, r), ∗) = Pr.



5.1. BRAIDED OPERADS AND E2-OPERADS 175

One can adapt this approach in order to prove that the action of Pr on Ď2(r)
extends to an action of the full braid group Br. Indeed, we can also identify our
covering space Ď2(r) with the universal covering of the quotient space D2(r)/Σr,

for which we have π1(D2(r)/Σr, ∗) �−→ π1(F (D̊2, r)/Σr, ∗) = Br.
We give an explicit construction of this action in order to ease our subsequent

verification of the equivariance relations of operadic composition products on our
covering spaces Ď2(r). We rely on the explicit definition of the universal covering
space Ď2(r) of §5.1.8. We consider a path in the little 2-disc space τi : [0, 1] → D2(r)
of the form represented in Figure 5.11. We immediately see from our picture that
the image of this path under the disc center mapping ω : D2(r) → F (D̊2, r) is a
representative of the generating braid of Figure 5.4.

Note that the endpoint of this path τi(1) is identified with the image of our
base disc configuration c0 under the action of the transposition ti = (i i+ 1).

Let now γ : [0, 1] → D2(r) be a path in D2(r) with γ(0) = c0 as origin so that the
homotopy class of this path [γ] defines an element of the covering space Ď2(r). We
apply the transposition ti to this path in order to obtain a path tiγ with tiγ(0) = tic

0

as origin. We concatenate tiγ with the path represented in Figure 5.11 to obtain a
new path (tiγ) · τi : [0, 1] → D2(r) with c0 as origin and of which homotopy class
[(tiγ) · τi] determines an element of the space Ď2(r).

By an immediate visual inspection of these constructions, we obtain that:

Lemma 5.1.10.
(a) The mapping τi : [γ] �→ [(tiγ) · τi] defines a lifting to the space Ď2(r) of the

map ti : D2(r) → D2(r) which gives the action of the transposition ti = (i i+1) on
the space of little 2-discs D2(r).

(b) The maps τi : Ď2(r) → Ď2(r), i = 1, . . . , r − 1, which we deduce from this
construction, satisfy the generating relations of braids groups, and hence, determine
an action of the braid group Br on the covering space Ď2(r). �

This result completes the construction of the action of the braid groups on the
collection of spaces Ď2 = {Ď2(r), r > 0}.

We can use a similar composition process [γ] �→ [γ · ω] when ω : [0, 1] → D2(r)
is any loop based at ω(0) = ω(1) = c0 in order to determine the action of the
fundamental group π1(D2(r), c

0) on the universal covering Ď2(r). We immedi-
ately see that this action corresponds to a restriction of the action considered in

Lemma 5.1.10 when we apply the isomorphism π1(D2(r), ∗) �−→ π1(F (D̊2, r), ∗) to
identify π1(D2(r), ∗) with the pure braid group Pr.

The following statement follows from this identification and from standard
results of covering theory:

Lemma 5.1.11. The covering map q : Ď2(r) → D2(r) defined in §5.1.8 induces

a homeomorphism q∗ : Ď2(r)/Pr
�−→ D2(r), where the quotient space Ď2(r)/Pr is

formed by considering the restriction of the action of Lemma 5.1.10 to the pure
braid group Pr. �

5.1.12. The operadic composition structure. We now aim to define operadic
composition operations on the collection Ď2. We can take the operadic unit of the
little 2-disc operad 1 ∈ D2(1) as base point in the space D2(1). We then take the
homotopy class of the constant path 1(t) ≡ 1 associated to this obvious element
1 ∈ D2(1) to define the operadic unit of the object Ď2.
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We proceed as follows to define our composition products on Ď2. Let α :
[0, 1] → D2(m) (respectively, β : [0, 1] → D2(n)) be a path which represents an
element of the covering space Ď2(m) (respectively, Ď2(n)). Let a

0 = α(0) (respec-
tively, b0 = β(0)) be the base point in the little 2-discs space D2(m) (respectively,
D2(n)) which underlies this covering. We fix a composition index k ∈ {1, . . . ,m}.
By performing the operadic composition of little 2-discs pointwise, we obtain a path
α◦k β : [0, 1] → D2(m+n−1) with α◦k β(0) = a0◦k b0 as origin. This configuration
of little 2-discs a0 ◦k b0 is not necessarily equal to the base point c0 which we have
chosen in the little 2-disc space D2(m+n−1), but the assumptions that a0 lies in the
image of the space D1(m)id inside D2(m) and that b0 lies in the image of the space
D1(n)id inside D2(n) imply that a0 ◦k b0 comes from the space D1(m+n−1)id too,
because the operadic composition operations on the set of connected components
of the little 1-discs operad correspond to the operadic composition of permutations
and we have idm ◦k idn = idm+n−1 when we consider identity permutations (see
Proposition 1.1.9). Thus, we can fix a path γ0 : [0, 1] → D2(m + n − 1) such
that γ0(0) = c0 and γ0(1) = a0 ◦k b0 which entirely lies in the image of the space
D1(m+n−1)id in D2(m+n−1) (see §5.1.7). We concatenate our composite α◦k β
with such a path γ0 : [0, 1] → D2(m + n − 1). The homotopy class [α ◦k β · γ0]
defines an element of Ď2(m + n − 1) naturally associated to [α] ∈ Ď2(m + n − 1)
and [β] ∈ Ď2(m+ n− 1). This mapping gives a composition product

◦k : Ď2(m)× Ď2(n) → Ď2(m+ n− 1)

which obviously lifts the corresponding composition product of the little 2-discs
operad. We prove that:

Lemma 5.1.13. The composition products defined in the previous paragraph
◦k : Ď2(m) × Ď2(n) → Ď2(m + n − 1) fulfill the equivariance relations of braided
operads, as well as the unit relations and the associativity relations of operads in
the covering spaces Ď2(r), r > 0.

Proof. The proof of the unit and associativity relations of composition prod-
ucts follows from a straightforward verification. We use the explicit definition of
the action of the generating braids τi in §§5.1.9-5.1.10 to check that our composi-
tion products are also equivariant with respect to the action of these elements τi
in the braid group. The verification of this generating case suffices to prove the
equivariance of our composition products in full generality. �

The covering maps q : Ď2(r) → D2(r) clearly define a morphism of braided
operads q : Ď2 → D2. The assertion of Lemma 5.1.11 also implies that this mor-
phism induces an isomorphism between the symmetrized operad Sym Ď2 and D2.
This verification finishes the proof of Theorem 5.1.6. �

Theorem 5.1.6 has the following consequence:

Theorem 5.1.14 (Z. Fiedorowicz [62]). Let P be a non-unitary braided operad
in topological spaces. Suppose that the action of Br on P(r) is free and proper, for
all r > 0. If the spaces P(r) are contractible for all r > 0, then the symmetric
operad SymP such that SymP(r) = P(r)/Pr forms a (non-unitary) E2-operad and
we have an obvious extension of this result in the context of unitary operads.

Proof. We again focus on the case of non-unitary operads. The extension of
our argument lines to general operads is straightforward. We form the aritywise
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product Q(r) = P(r)× Ď2(r) in the category of braided operads. The braid group
Br operates diagonally on the space Q(r) = P(r)× Ď2(r), for each r > 0, and we
equip the collection Q = {P(r) × Ď2(r), r > 0} with a braided operad structure
by using a straightforward extension, to braided operads, of the aritywise tensor
product of symmetric operads (see §3.2.3). The canonical projections

(1) P(r) ← P(r)× Ď2(r) → Ď2(r)

define morphisms of braided operads P ← Q → Ď2.
Recall that the spaces P(r) are contractible by assumption and we have al-

ready observed that the spaces Ď2(r) are contractible too. Thus, the considered
projections are weak-equivalences between contractible spaces.

The braid group Br operates freely and properly on P(r) by assumption, and
on Ď2(r) as well by definition of this space as a universal covering. The diagonal
action of Br on P(r) × Ď2(r) is free and proper too. Hence, the maps (1) induce
weak-equivalences

(2) P(r)/Pr
∼←− (P(r)× Ď2(r))/Pr

∼−→ Ď2(r)/Pr = D2(r),

when we take the quotient of our spaces under the action of the group Pr ⊂ Br.
These maps (2) represent the components of the morphisms of symmetric operads
SymP ← SymQ → Sym Ď2 associated to our morphisms of braided operads P ←
Q → Ď2. Hence, we conclude that these morphisms of symmetric operads define
weak-equivalences SymP

∼←− SymQ
∼−→ Sym Ď2 = D2 and this observation completes

the proof of our theorem. �

5.2. The classifying spaces of the colored braid operad

Recall that an Eilenberg-MacLane space of typeK(G, 1), where G is any group,
is a connected space X such that π1(X) = G and π∗(X) = 0 for ∗ �= 1. These
conditions determine the homotopy type of the space X (all Eilenberg-MacLane
spaces of a given type K(G, 1) are weakly-equivalent).

In §5.0, we mentioned that the underlying spaces of the little 2-discs operad
D2 are Eilenberg-MacLane spaces K(Pr, 1) associated to the pure braid groups

Pr. This result follows from the existence of the homotopy equivalence D2(r)
∼−→

F (D̊2, r), established in Proposition 4.2.2, and from the computation of the homo-

topy groups of the configuration spaces F (D̊2, r) in Proposition 5.0.1. We have a
standard simplicial model BG for the Eilenberg-MacLane space K(G, 1) which is
usually called the classifying space of the group G, because this model BG repre-
sents the base space of a universal G-principal bundle.

The purpose of this section is to define a classifying space model of the little
2-disc operad D2. We do not have a full operad structure on the collection of
pure braid groups and we therefore have to consider an extension of the classifying
space construction to groupoids and to operad in groupoids in order to define this
model. We are precisely going to construct a collection of groupoids, the colored
braid groupoids CoB(r), which contain the pure braid groups Pr as automorphism
groups of objects, and which form an operad in the category of groupoids. We then
prove that the collection of classifying spaces B(CoB(r)) which we associate to this
operad in groupoids CoB defines a model of an E2-operad.

To begin with, we make explicit the definition of an operad in the category of
small categories and in the category of groupoids. Then we recall the definition of
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the classifying space of a category and we examine the application of this classifying
space construction to operads in categories. We define the colored braid operad
afterwards as an instance of an operad in groupoids.

5.2.1. The category of small categories and groupoids. We use the notation
Cat for the category of small categories. The cartesian product of categories × :
Cat ×Cat → Cat defines the tensor product operation of a symmetric monoidal
structure on Cat . The one-point set pt , which is identified with the final object of
the category of small categories, defines the unit object of this symmetric monoidal
structure. (We generally assume that a set S is identified with a discrete category
with S as object set and with no other morphism than identity morphisms.)

Recall that a groupoid is a small category in which all morphisms are invertible
and that groups can be identified with groupoids with a single object. We use the
notation Grd for the full subcategory of groupoids inside the category of small cat-
egories Cat . We immediately see that the embedding Grd ↪→ Cat creates products
and final objects. The category of groupoids Grd forms, therefore, a symmetric
monoidal subcategory of the category of small categories Cat .

5.2.2. Operads in small categories and in groupoids. We use our general defini-
tion of an operad in a symmetric monoidal category in order to define the category
of operads in the category of small categories and in the category of groupoids.
Thus, an operad in the category of small categories P (we also speak about operads
in categories for short) consists of a sequence of small categories P(r) ∈ Cat , r ∈ N,
equipped with an action of the symmetric groups Σr, together with a unit mor-
phism η : pt → P(1), and composition products μ : P(r)× P(n1)× · · · × P(nr) →
P(n1 + · · · + nr), all formed in the category of categories, and which satisfy our
usual equivariance, unit and associativity relations in this category. Since the cate-
gory of groupoids forms a symmetric monoidal subcategory of the category of small
categories, we can also define an operad in the category of groupoids as an operad
in the category of categories P of which components are groupoids P(r) ∈ Grd , for
all r ∈ N.

The equivalence between our first definition of an operad (see §1.1) and the
definition in terms of partial composition operations (see §2.1) naturally holds in
the context of the category of categories M = Cat (respectively, of groupoids M =
Grd). Hence, the composition structure of an operad in categories (respectively,
groupoids) can also be defined by giving a collection of functors ◦k : P(m)×P(n) →
P(m+n− 1), k = 1, . . . ,m, which satisfies the equivariance, unit and associativity
relations of §2.1.

The category of operads in categories is denoted by Cat Op (following our con-
ventions). By definition, a morphism of operads in categories φ : P → Q is a
sequence of functors φ : P(r) → Q(r) which preserve the structure operations of
our operads. The category of operads in groupoids, also denoted by Grd Op, forms
a full subcategory of the category of operads in categories Cat Op.

In what follows, we consider operad morphisms φ : P → Q of which all un-
derlying functors φ : P(r) → Q(r) are equivalences of categories. We then say
that our operad morphism φ is a categorical equivalence, and we use the notation
φ : P

∼−→ Q, with the distinguishing mark ∼, for these morphisms. Note that the
inverse equivalences of the functors φ : P(r)

∼−→ Q(r) do not necessarily define an
operad morphism in general, and we do not assume that such a property holds in
our definition of a categorical equivalence of operads.
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5.2.3. Recollections on classifying spaces. The classifying space of a category C

is the simplicial set B(C) defined in dimension n by the n-fold sequences of compos-
able morphisms of C

α = {x0
α1−→ x1

α2−→ · · · αn−−→ xn}

together with the face operators such that:

di(α) =

⎧⎪⎨⎪⎩
x1

α2−→ · · · αn−−→ xn, for i = 0,

x0
α1−→ · · · → xi−1

αi+1αi−−−−→ xi+1 → · · · αn−−→ xn, for i = 1, . . . , n− 1,

= x0
α1−→ · · · αn−1−−−→ xn−1, for i = n,

and the degeneracy operators such that:

sj(α) = x0
α1−→ · · · αj−→ xj

id−→ xj
αj+1−−−→ · · · αn−−→ xn, for all j = 0, . . . , n.

We define the classifying space of a groupoid B(G) by the same construction, by
using the definition of a groupoid as a small category in which all morphisms are
invertible. We can also apply this classifying space construction to a group G,
which we identify with a groupoid with a single object ObG = ∗. We also use the
notation BG = B(G) for the classifying space in this case. We soon explain that
this space BG is identified with the quotient of a contractible space EG on which
the group G operates freely (see §5.2.13). The space EG actually represents the
total space of a universal principal G-bundle with the space BG as basis.

Let us mention that the simplicial set B(C) forms a Kan complex if and only
if the category C is a groupoid (see for instance [79, §I.3]). This result can be
used to check, by a direct and simple computation, that the geometric realization
of the classifying space BG of a group G is an Eilenberg-MacLane space of type
K(G, 1) (use the combinatorial definition of simplicial homotopy groups in [51, §2]
or in [141, §1]).

The mapping B : C �→ B(C) defines a functor from the category of small cat-
egories C to the category of simplicial sets sSet , and we have the following easy
result:

Proposition 5.2.4. The functor B : Cat → sSet is symmetric monoidal in the
sense of §3.3.1:
(1) for the one-point set pt, viewed as the unit object of the category of small

categories, we have an obvious identity B(pt) = pt;
(2) for a cartesian product of categories C×D, we have an isomorphism of sim-

plicial sets B(C×D)
�−→ B(C) × B(D) which is yielded by the maps of classi-

fying spaces B(C)
p∗←− B(C×D)

q∗−→ B(D) induced by the canonical projections

C
p←− C×D

q−→ D;
(3) and these comparison isomorphisms ( 1-2) fulfill the unit, associativity and sym-

metry constraints of §3.3.1.

Proof. The proof of assertions (1-2) reduces to a straightforward inspection

of definitions. The definition of the isomorphism B(C×D)
�−→ B(C) × B(D) from

universal categorical constructions automatically ensures that the unit, associativity
and symmetry constraints of §3.3.1 are fulfilled. �
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Then the result of Proposition 3.1.1 implies:

Proposition 5.2.5. Let P be an operad in small categories. The collection
of classifying spaces B(P)(r) = B(P(r)), which we associate to the categories P(r),
r ∈ N, forms an operad in simplicial sets naturally associated to P. �

We can also take a restriction of the functor defined in this proposition B :
P �→ B(P) to the category non-unitary operads P ∈ Cat Op∅. We easily check
that the object B(P) forms a non-unitary operad in this case (when we regard
the category of non-unitary operads in simplicial sets as a full subcategory of the
category of all operads). Recall that, in the situation of Proposition 5.2.4, the
mapping B : P �→ B(P) also preserves unitary extensions, so that we have an
identity B(P+) = B(P)+ for any unitary operad in the category of small categories
P+ ∈ Cat Op∗ (see Proposition 3.1.1).

In §3.3.2, we observe that the geometric realization functor |−| : sSet → Top is
also symmetric monoidal. We can apply this functor to the simplicial operad B(P)
in order to form an operad in topological spaces naturally associated to P . In
general, we abusively use the notation of the underlying simplicial operad B(P) for
this operad in topological spaces. We only mark the application of the realization
functor | − | when the context requires to distinguish the topological object from
its simplicial counterpart.

The mapping B : P �→ B(P) defines a functor from the category of operads in the
category of small categories to the category of operads in simplicial sets. In §4, we
introduced a notion of weak-equivalence for the category of operads in topological
spaces. In the simplicial framework, we consider weak-equivalences of simplicial
sets, which are maps f : X → Y of which geometric realization |f | : |X| → |Y |
defines a weak-equivalence of topological spaces. We then say that a morphism
of operads in simplicial sets φ : P → Q is a weak-equivalence if each component
of this morphism φ : P(r) → Q(r) defines a weak-equivalence in the category
of simplicial sets. From this definition, we immediately see that a morphism of
operads in simplicial sets is a weak-equivalence φ : P

∼−→ Q if and only if the
geometric realization of this morphism defines a weak-equivalence of operads in
topological spaces |φ| : |P | ∼−→ |Q |.

The following proposition, which is an immediate corollary of a standard result
on classifying spaces, is worth recording:

Proposition 5.2.6. The classifying space functor B : Cat Op → sSet Op maps
the categorical equivalences of operads in categories φ : P

∼−→ Q to weak-equivalences
of operads in simplicial sets B(φ) : B(P)

∼−→ B(Q). �

The rest of this section is devoted to the definition of the colored braid operad
CoB and to the proof that the associated classifying space operad B(CoB) defines
an instance of E2-operad. We also establish a unitary extension of this result. In a
first step, we define the underlying groupoids of this operad.

In general, we define a small category by giving an object set ObC together with
morphism sets MorC(x, y), for all pairs of objects x, y ∈ ObC. But the information
is carried by the morphisms in the case of the groupoids of colored braids CoB(r).
Therefore, we use another approach for the definition of these groupoids CoB(r). We
give an object set ObCoB(r) and a single morphism set MorCoB(r), which collects
all morphisms of our groupoid, together with maps s, t : MorCoB(r) → ObCoB(r)
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which reflect the way to retrieve the source and the target object information from
the definition of a morphism in MorCoB(r). We give a definition of the colored
braid groupoid in these terms first. We make explicit an equivalent definition of
the morphism set MorCoB(r)(u, v) associated to each pair of objects u, v ∈ ObCoB(r)
in terms of a coset decomposition of the braid groups Br afterwards. We follow a
similar plan when we explain the definition of an action of the symmetric groups
Σr and of operadic composition operations on our groupoids CoB(r), r ∈ N.

5.2.7. Groupoids revisited. In a preliminary step, we explain the general def-
inition of a groupoid G when we use a single morphism set MorG to collect all
morphisms of our object. In this context, we assume in that we have a pair of
maps s, t : MorG → ObG such that s(α) ∈ ObG represents the source object and
t(α) ∈ ObG represents the target object which we assign to any morphism α ∈ MorG.
We also assume that we have a map e : ObG → MorG, satisfying se = te = id , which
gives the identity morphism idx = e(x) ∈ MorG associated to each object x ∈ ObG.
The morphism set MorG(x, y) which we associate to a pair of objects in our groupoid
x, y ∈ ObG is defined by the subset of morphisms α ∈ MorG such that s(α) = x and
t(α) = y. The fiber product

MorG×st MorG

p

q
MorG

t

MorG s ObG

,

which we can more explicitly define as the set of pairs (α, β) ∈ MorG× MorG such
that s(α) = t(β), collects all pairs of composable morphisms in our groupoid. The
composition of morphisms in G is given by a product operation μ : MorG×st MorG →
MorG, defined on this fiber product, and such that sμ = sq, tμ = tp. Thus,
we have the formulas s(α · β) = s(β) and t(α · β) = t(α), for all composable
morphisms (α, β) ∈ MorG×st MorG, where we set α · β = μ(α, β).

To define the inverse of morphisms in a groupoid, we similarly consider a map
ι : MorG → MorG such that sι = t and tι = s. The unit, associativity, and
inverse relations of the composition structure of groupoids can be written in terms
of commutative diagrams by using the product operation μ on the fiber product
MorG×st MorG, but we prefer to use the standard pointwise expressions of these
relations in what follows, because we define the product and inversion maps of our
groupoids as maps between explicit point-sets.

5.2.8. The groupoids of colored braids. The object set ObCoB(r) of the groupoid
of colored braids on r strands CoB(r) is the set of permutations w ∈ Σr which
we regard as orderings (w(1), . . . , w(r)) of the values (1, . . . , r). The morphism
set MorCoB(r) consists of isotopy classes of braids α together with a bijection
i �→ αi between the index set i ∈ {1, . . . , r} and the strands αi ∈ {α1, . . . , αr}
of our braid α. Intuitively, this bijection assigns a color i ∈ {1, . . . , r} to each
strand αi.

In §5.0.5, we assume that the strands of a braid form an r-tuple (α1, . . . , αr)
ordered according to the ordering of the points (α1(0), . . . , αr(0)) on the line (y =
0, t = 0). In the colored braid case, we rather consider the ordering equivalent to the
bijection i �→ αi which we give with our braid α. Thus, we have (α1(0), . . . , αr(0)) =
((x0

u(1), 0, 0), . . . , (x
0
u(r), 0, 0) for some permutation u ∈ Σr (not necessarily equal

to the identity), where we again use the notation x0
k, for k = 1, . . . , r, for the
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Figure 5.12. An instance of colored braid.
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Figure 5.13. The representation of identity elements in the
groupoid of colored braids.

abscissa of the contact points of our braids on the axis y = 0 (see §5.0.5). This
permutation defines the source of our braid u = s(α) in the groupoid CoB(r). The
target of our braid v = t(α) is the permutation v such that (α1(1), . . . , αr(1)) =
((x0

v(1), 0, 1), . . . , (x
0
v(r), 0, 1). Intuitively, we simply take the ordering of the origin

points of the strands on the line (y = 0, t = 0) to determine an ordering of our
set of colors which defines the source permutation u of the colored braid α. We
similarly take the ordering of the end points of the strands on the line (y = 0, t = 1)
to determine the target permutation u of our colored braid α. To illustrate these
definitions, we give an instance of a colored braid in Figure 5.12. The source
and target permutations associated to this colored braid are given by the ordered
sequences u = (2, 4, 3, 1) and v = (3, 4, 1, 2).

The identity morphism idw := e(w), which we assign to any permutation w ∈
Σr, is the identity braid together with the strand coloring such that αw(i)(t) =

(x0
i , 0, t), for all t ∈ [0, 1] and for any i = 1, . . . , r (see Figure 5.13).
The composition of the groupoid is given by the standard concatenation op-

eration on braids, inherited from the braid group, and represented in Figure 5.2.
Note simply that the colors assigned to strands agree on contact points when our
braids (α, β) satisfy the relation s(α) = t(β) and hence are composable in the sense
of §5.2.7. In this situation, each composite strand inherits a single color from its
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components and we use this correspondence to define the coloring of our composite
braid α · β ∈ MorCoB(r).

The inversion of colored braids can also be deduced from the inversion operation
of the braid groups.

5.2.9. Braid cosets and morphisms in the colored braid groupoids. The coloring
of the strands of a morphism α in the colored braid groupoid CoB(r) can be deter-
mined by giving the source object u = s(α) of this morphism α in ObCoB(r) = Σr.
Indeed, the values of this permutation u = (u(1), . . . , u(r)) represent the colors
of our braid at the origin points of the strands ((x0

1, 0, 0), . . . , (x
0
r, 0, 0)) and fully

determine the colors of the strands themselves. From this observation, we readily
deduce that the morphism set MorCoB(r)(u, v), which we associate to any pair of
permutations u, v ∈ Σr in the colored braid groupoid CoB(r), can be identified
with the pre-image p−1

∗ (v−1u) ⊂ Br of the permutation v−1u ∈ Σr in the braid
group Br, where we consider the natural group morphism from braids to permu-
tations p∗ : Br → Σr. The composition operation of CoB(r) is also identified with
the operation p−1

∗ (w−1v)× p−1
∗ (v−1u) → p−1

∗ (w−1u) obtained by restriction of the
natural multiplication of the braid group Br. For a single permutation w ∈ Σr, we
have an identity MorCoB(r)(w,w) = p−1

∗ (w−1w) = Pr and the identity morphism
associated to w in the groupoid CoB(r) corresponds to the neutral element of the
pure braid group Pr.

5.2.10. The symmetric structure of the colored braid groupoids. Each groupoid
of colored braids CoB(r) inherits a natural action of permutations. Therefore
the collection CoB = {CoB(r), r > 0} forms a symmetric sequence of groupoids.
To be explicit, to each permutation s ∈ Σr, we associate a groupoid morphism
s∗ : CoB(r) → CoB(r) which is defined by the obvious left translation operation
s∗ : Σr → Σr on the object set ObCoB(r) = Σr. We proceed as follows to de-
fine the action of our permutation s ∈ Σr on the morphism set MorCoB(r). We
assume that α is a braid equipped with a strand coloring i �→ αi which repre-
sents an element of this morphism set MorCoB(r). We define s∗(α) ∈ MorCoB(r)
by taking the same underlying braid as α, but we equip this braid s∗(α) with
the modified coloring s(i) �→ αi which assigns the value s(i) ∈ {1, . . . , r} to the
strand αi previously colored by the index i ∈ {1, . . . , r} in α ∈ MorCoB(r). These
mappings s∗ : MorCoB(r) → MorCoB(r) and s∗ : ObCoB(r) → ObCoB(r) clearly
preserve the structure operations of our groupoid. In the definition of §5.2.9, the
mapping s∗ : MorCoB(r)(u, v) → MorCoB(r)(su, sv) can also be identified with the

identity map of the set p−1
∗ ((sv)−1(su)) = p−1

∗ (v−1u) ⊂ Br when we use the defini-
tions MorCoB(r)(u, v) = p−1

∗ (v−1u) and MorCoB(r)(su, sv) = p−1
∗ ((sv)−1(su)) of the

morphism sets associated to the pairs (u, v) and (su, sv) in CoB(r).
5.2.11. The operadic composition operations on colored braids. We have an

identity CoB(1) = pt . We take the identity map of the one-point set pt to provide
the collection of colored braid groupoids with an operadic unit morphism η : pt →
CoB(1). We define operadic composition operations ◦k : CoB(m) × CoB(n) →
CoB(m + n − 1) by the operadic composition of permutations at the object set
level. (Hence, the collection of object-sets of our operad ObCoB is identified with
the permutation operad in the category of sets.) We use the operadic composition
operation for braids (see §§5.1.2-5.1.3) in order to define the value of this operadic
composition operation on the morphism sets of our groupoids.
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Figure 5.14. An operadic composition of colored braids

To be explicit, we fix such morphisms α ∈ MorCoB(m) and β ∈ MorCoB(n).
Intuitively, to define the composite α ◦k β ∈ MorCoB(m + n − 1), we insert the
braid β in the strand of α colored by k ∈ {1, . . . ,m}. We also apply the standard
operadic shift i �→ i+ k− 1 to the index of the strands of β in the composite braid
and the shift i �→ i + n − 1 to the index of the strands of α when k < i. We
use this correspondence to define the coloring of our composite braid α ◦k β. In
comparison with the process of §§5.1.2-5.1.3, we simply use an ordering defined by
the color indexing of the strands of α instead of the natural ordering of the source
points on the line y = t = 0. Thus, the composition of braids in the colored braid
groupoid is formally defined by the composition operation of §§5.1.2-5.1.3 up to
an input reordering, which we determine from the source permutation of the braid
α. To illustrate this process, we give an instance of partial composition operation
α ◦1 β ∈ MorCoB(3) in Figure 5.14. In order to ease the understanding of this
picture, we have added dotted lines marking the array in which the braid β is
inserted.

In the coset representation of morphism sets (see §5.2.9), the partial composi-
tion operation ◦k : MorCoB(m)(s, t)×MorCoB(n)(u, v) → MorCoB(m+n−1)(s ◦k u, t ◦k v)
maps any pair of elements α ∈ p−1

∗ (t−1s) and β ∈ p−1
∗ (v−1u) to the composite braid

α◦s−1(k)β which has p∗(α◦s−1(k)β) = (t◦k v)−1 ·(s◦k u) as associated permutation.
This operation obviously preserves the groupoid structure, and hence, gives a mor-
phism ◦k : CoB(m)× CoB(n) → CoB(m+ n− 1) in the category of groupoids. We
easily check that these partial composition operations on the groupoids CoB(r),
r > 0, fulfill the equivariance, the unit and the associativity axioms of operads
(we rely on the counterpart of this verification for the permutation and the braid
operads).

These composition operations clearly extend to the degenerate case where β is a
colored braid with an empty set of strands. This observation implies that the operad
CoB has a unitary extension CoB+. The restriction operator u∗ : CoB+(n) →
CoB+(m) which we define on this unitary extension CoB+ can actually be identified
with a natural extension to colored braids of the strand removal operations in the
braid groups (see §5.1.4) just like the operadic composition of colored braids extends
the operadic composition of braids.

The definition of the colored braid operad is now complete and we aim to prove:
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Theorem 5.2.12. The operad B(CoB) associated to the (non-unitary) operad of
colored braids CoB is a (non-unitary) E2-operad and the unitary operad B(CoB)+
associated to the unitary version of this operad CoB+ is a unitary E2-operad.

We focus on the case of non-unitary operads. The extension of our constructions
to unitary operads is straightforward.

The idea is to identify B(CoB) with the symmetrization of a contractible braided
operad and to deduce Theorem 5.2.12 from the recognition theorem of §5.1. This
contractible braided operad is formed by a collection of contractible classifying
spaces EBr naturally associated to the braid groups Br. In a preliminary step, we
review the general definition of these contractible classifying spaces EG, which can
be associated to any group G.

5.2.13. Translation categories and their classifying spaces. To a group G, we
first associate a translation category EG which has ObEG = G as object set and of
which morphism sets are defined by the one-point sets MorEG

(α, β) = {β−1α}, for
all α, β ∈ G. The element β−1α represents the right translation which connects β
to α in G. This interpretation motivates the name ‘translation category’ which we
give to this category EG. The translation category EG obviously forms a groupoid,
for any group G.

The translation category EG is also naturally equipped with a left G-action,
which assigns a functor g∗ : EG → EG to each g ∈ G. This functor is given by the
left translation operation g∗(α) = gα at the object set level, and by the identity of
the translation factors (gβ)−1(gα) = β−1α at the morphism set level.

We then set EG = B(EG), where we consider the classifying space of the
translation category EG. We can represent the n-simplices of this classifying space
as chains

α = {α0
α−1

1 α0−−−−→ α1
α−1

2 α1−−−−→ · · · α−1
n αn−1−−−−−−→ αn},

where (α0, . . . , αn) runs over Gn+1. The morphisms occurring in this simplex are
determined by the sequence of vertices (α0, . . . , αn), as we see in the above expres-
sion. The ith face of this simplex di(α) is obtained by omitting the vertex αi in our
expression, while the jth degeneracy sj(α) is obtained by repeating the vertex αj .
By functoriality of the classifying space construction, the simplicial set EG inherits
a left G-action from the translation category EG. The image of a simplex α under
this action reads:

g∗(α) = {gα0
(gα1)

−1(gα0)−−−−−−−−−→ gα1
(gα2)

−1(gα1)−−−−−−−−−→ · · · (gαn)
−1(gαn−1)−−−−−−−−−−→ gαn}.

This space EG is equipped with a natural map p∗ : EG → BG with values in
the classifying space of our group BG. If we regard the group G as a category
with a single object ∗, then this map of classifying spaces is induced by the functor
p : EG → G defined by the obvious assignment p(α) = ∗ on objects and by the
mapping such that p(β−1α) = β−1α on morphisms. We now have the following
statement, which follows from an immediate inspection of our constructions:

Observation 5.2.14.
(a) The groupoid EG is equivalent to a point, and as a consequence, has a

contractible classifying space EG = B(EG).
(b) The action of G on EG is free.
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(c) The mapping p∗ : EG → BG induces an isomorphism p∗ : EG/G
�−→ BG

when we take the quotient of the classifying space EG under the action of our group
G.

In the topological context, the contractibility of the simplicial set EG implies
that the space |EG| is contractible. The free action of G on EG gives rise to a
free and proper action at the topological level. Furthermore, the mapping p∗ :

EG → BG induces a homeomorphism |EG|/G = |EG/G| �−→ |BG| since we have
|X/G| = |X|/G for any spaceX equipped with a G-action. The space |EG| actually
forms a principal G-bundle associated to G and is universal (as we already briefly
explained in §5.2.3) in the sense that any principal G-bundle q : E → B can be
obtained by taking the pullback of our projection map p∗ : |EG| → |BG| along a
classifying map f : B → |BG| which is uniquely determined (up to homotopy).

We now consider the translation categories EBr
associated to the braid groups

Br. We immediately see that the collection formed by this sequence of groupoids
E (r) = EBr

inherits a natural braided operad structure from the braid groups: the
braided structure of this collection is defined by the natural action of the braid
groups Br on the translation categories EBr

; the unit morphism η : pt → E (1) is
given by the identity of the one-point set EB1

= pt ; the composition products ◦k :
EBm

× EBn
→ EBm+n−1

are determined by the operadic composition of braids at
the level of the object sets ObEBn

= Bn. We easily check (by using the result
obtained for braid groups) that these composition products fulfill the equivariance,
unit and associativity axioms of braided operads.

We apply the symmetrization functor of Proposition 5.1.5 in the context of the
category of categories M = Cat in order to get a symmetric operad SymE naturally
associated to E . We have the following observation:

Lemma 5.2.15. The colored braid operad CoB is identified, as a symmetric
operad in groupoids, with the symmetrization of the braided operad E such that
E (r) = EBr

for all r > 0, where we consider the translation categories of the braid
groups Br.

Proof. We use the definition of §5.2.9 where we identify the morphism sets
of the groupoid CoB(r) with the cosets MorCoB(r)(u, v) = p−1

∗ (v−1u) naturally as-
sociated to the morphism p∗ : Br → Σr. We have an obvious functor p∗ : EBr

→
CoB(r) given by the map p∗ : Br → Σr on the object set ObEBr

= Br and by the
embedding {β−1α} ↪→ p−1

∗ (p∗(β)
−1p∗(α)) on each morphism set MorEBr

(α, β) =

{β−1α}, for α, β ∈ Br. We immediately see that this functor carries the action
of Br on EBr

to the natural action of Σr on CoB(r) and the action of Pr ⊂ Br

on EBr
to a trivial action. We can also readily check, by unraveling the definition

of a quotient object in the category of categories, that p∗ : EBr
→ CoB(r) identifies

CoB(r) with the quotient category EBr
/Pr.

We have already observed that p∗ : EBr
→ CoB(r) carries the action of the

braid group Br on EBr
to the natural action of the symmetric group Σr on the

groupoid CoB(r). We readily obtain that p∗ preserves the operadic composition
products too (use the coset definition of these composition operations in §5.2.11).
Hence, the collection of functors p∗ : EBr

→ CoB(r) defines a morphism in the
category of braided operads p∗ : E → CoB and the relation EBr

/Pr = CoB(r)
immediately implies that this morphism identifies CoB with the symmetric operad
naturally associated to E . �



5.3. FUNDAMENTAL GROUPOIDS AND OPERADS 187

The conclusion of Proposition 5.2.5 remains obviously valid in the context of
braided operads. In the particular case of the translation categories associated to
braid groups E (r) = EBr

, we deduce from this assertion that:

Fact 5.2.16. The collection of classifying spaces B(E )(r) = B(EBr
) = EBr

inherits a braided operad structure.

The geometric realization and classifying space functors naturally commute
with quotients under group actions. In the case of the symmetrization functor Sym,
which is essentially given by such a quotient process, this observation implies:

Observation 5.2.17. We have operad identities Sym | B(E)| = | Sym B(E )| =
| B(SymE )|.

Thus, from the identity SymE = CoB established in Lemma 5.2.15, we conclude
that | B(CoB)| is identified with the symmetrization of the contractible braided
operad | B(E)|. The braided operad B(E) is also contractible by observation 5.2.14
and the braid group Br operates freely and properly at the level of the topological
space | B(E(r))| = EBr. By Theorem 5.1.14, these assertions imply that | B(CoB)| =
Sym | B(E)| forms an E2-operad, as claimed in Theorem 5.2.12. �

5.2.18. Remark. The category of algebras associated with the colored braid op-
erad consists of braided categories equipped with a strictly associative tensor prod-
uct. This statement is an operadic counterpart of a result of Joyal and Street [99]
asserting that the disjoint union of the braids groups form a free braided category
on one generating object. The correspondence between operads in groupoids and
monoidal structures on categories is the subject of the next chapter. We go back
to the connection between the colored braid operad and Joyal-Street’s statement
at this moment.

5.3. Fundamental groupoids and operads

In the previous section, we observed that the spaces underlying the little discs
operad D2(r) are identified with the Eilenberg-MacLane spaces K(Pr, 1) associated
to the pure braid groups Pr, and hence, have a well-determined isomorphism class
in the homotopy category of spaces. Recall also that we can use the classifying
space construction in order to make explicit a model of the objects K(Pr, 1) in the
category of topological spaces. But we have needed to replace the pure braid groups
Pr by the groupoids of colored braids CoB(r) in the construction of the previous
section in order to model the structure of the little 2-discs operad at the level of
such classifying spaces.

The main purpose of this section is to explain the source of this problem and
to give an explanation for the introduction of colored braids in §5.2.

The pure braid group Pr represents the fundamental group of the little 2-discs
space D2(r), and involves, by definition of the fundamental group, the choice of a
base point in D2(r). The problem comes from this choice: base points can not be
chosen coherently with respect to the structure operations attached to our operad.
The natural idea is to replace fundamental groups by fundamental groupoids in
order to work out this difficulty. In the case of the little 2-discs operad D2, we
precisely prove that the fundamental groupoids of the spaces D2(r) form an operad
in groupoids which is equivalent to the colored braid operad of §5.2. The main goal
of this section is to establish this result. Before, we quickly recall the definition
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of the fundamental groupoid and we check that the fundamental groupoids of the
spaces underlying an operad in topological spaces form an operad in groupoids.

5.3.1. Fundamental groupoids. We denote the fundamental groupoid of a topo-
logical space X by πX. The object set of this groupoid πX is the underlying
point-set of the space X. Let x, y ∈ X. The morphisms from x to y in πX are
the homotopy classes of paths α : [0, 1] → X with α(0) = x as prescribed origin
and α(1) = y as prescribed endpoint. The composition of morphisms in πX is
given by the usual composition operation on paths and extends the composition
of based loops considered in the definition of the fundamental group. The unit
relation, the associativity relation and the existence of inverses in πX is proved by
a straightforward extension of the arguments classically considered in the context
of fundamental groups.

The fundamental group of X at a base point x0 ∈ X is clearly identified with
the group of automorphisms of the point x0 in the fundamental groupoid

π1(X, x0) = MorπX(x0, x0)

and we have an isomorphism connecting x0 ∈ X to another point x ∈ X in πX if
an only if x0 and x belong to the same path connected component of the space X.

Thus, if we regard a group as a groupoid with one object, then we can also iden-
tify the fundamental group π1(X, x0) at a base point x0 with the full subcategory
of πX generated by the single object {x0} ⊂ X = ObπX. If X is path connected,
then the embedding π1(X, x0) ↪→ πX, which we deduce from this categorical in-
terpretation of the fundamental group, defines an equivalence of categories. In
general, we get that the fundamental groupoid is equivalent (as a category) to the
coproduct

∐
[x0]∈π0(X) π1(X, x0) formed by picking a representative x0 ∈ C in each

path connected component [x0] = C ∈ π0(X) of the space X.
In what follows, we also use the notation πX �A⊂ πX for the full subcategory

of the fundamental groupoid πX generated by a subset of our space A ⊂ X. We
obviously have π1(X, x0) = πX{x0} when we assume that our subset reduces to the
one-point set A = {x0}.

Even in the path connected case, we usually have no canonical choice for a single
base point x0 in a space X. We therefore consider full subcategories πX �A⊂ πX
associated to such base sets A ⊂ X.

The mapping π : X �→ πX clearly gives a functor from spaces to groupoids
and usual results on fundamental groups extend to fundamental groupoids. But we
need to take care of the difference between the notion of an isomorphism and the
notion of an equivalence in the groupoid context. For instance, a homeomorphism
induces an isomorphism on fundamental groupoids, but a homotopy equivalence of
spaces f : X

∼−→ Y only induces an equivalence of fundamental groupoids in general
f∗ : πX

∼−→ πY (unless our map f defines a bijection at the point set level).

In order to study the image of topological operads under the fundamental
groupoid functor π : Top → Grd , we still establish that:

Proposition 5.3.2. The functor π : Top → Grd is symmetric monoidal:
(1) for the one-point set pt, viewed as the unit object of the category of spaces, we

have an obvious identity π pt = pt;

(2) for a cartesian product of spaces X×Y , we have an isomorphism π(X×Y )
�−→

πX × πY which is yielded by the morphisms of fundamental groupoids πX
p∗←−

π(X × Y )
q∗−→ πY induced by the canonical projections X

p←− X × Y
q−→ Y ;
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(3) and these comparison isomorphisms ( 1-2) fulfill the unit, associativity and sym-
metry constraints of §3.3.1.

Proof. The proof of assertion (1) is immediate. The proof of assertion (2)
reduces to a straightforward extension of arguments classically used in the case of

fundamental groups. The definition of the isomorphism π(X × Y )
�−→ πX × πY

from universal categorical constructions automatically ensures, as usual, that the
unit, associativity and symmetry constraints of symmetric monoidal functors are
fulfilled. �

Proposition 5.3.3. Let P be an operad in topological spaces. The collec-
tion π P = {π P(r), r ∈ N}, where we consider the fundamental groupoids of the
spaces P(r), forms an operad in groupoids naturally associated to P. �

We can also take a restriction of the functor defined in this proposition π :
P �→ π P to the category non-unitary operads P ∈ Top Op∅. We easily check
that the object π P forms a non-unitary operad in this case (when we regard the
category of non-unitary operads in groupoids as a full subcategory of the category
of all operads). From Proposition 3.1.1, we moreover deduce that the mapping π :
P �→ π P preserves unitary extensions, or more explicitly, that we have an identity
π(P+) = (π P)+, for any unitary operad in topological spaces P+ ∈ Top Op∗.

For the operad of little 2-discs P = D2, we obtain the following result:

Theorem 5.3.4. The fundamental groupoid operad of the little 2-discs operad
πD2 is connected to the colored braid operad CoB of §5.2 by a chain of categorical
equivalences of operads in groupoids

πD2
∼←− · ∼−→ CoB ,

and similarly for the unitary extension of these operads πD2+ and CoB+.

Proof. We focus on the non-unitary operad case of this theorem. The exten-
sion of our construction to the setting of unitary operads is straightforward.

We still use the embedding D1 ↪→ D2 to identify the operad of little 1-discs
D1 with a suboperad of D2 (see §4.1.5). We consider, for each r ∈ N, the full
subcategory of the fundamental groupoid πD2(r) generated by the image of the
set D1(r) in D2(r). We adopt the notation πD2(r) �D1(r) for this category, which
obviously forms a groupoid. The collection of groupoids

πD2 �D1= {πD2(r) �D1(r), r > 0}
also defines a suboperad of πD2 because the object sets D1(r) associated to these
groupoids πD2(r) �D1(r) form themselves a suboperad of the little 2-discs operad D2,
regarded as an operad in sets. We use this operad πD2 �D1⊂ πD2 as an interme-
diate object between the fundamental groupoid operad πD2 and the colored braid
operad CoB.

The embeddings πD2(r) �D1(r)↪→ πD2(r) are equivalences of categories since
each space D2(r) is connected, and as a consequence, the embedding of operads in
groupoids πD2 �D1

↪→ πD2 defined by the collection of these morphisms forms a
categorical equivalence of operads. To complete our arguments, we define a second
categorical equivalence of operads πD2 �D1

∼−→ CoB connecting πD2 �D1 with the
colored braid operad CoB . In a preliminary step, we construct the collection of
groupoid equivalences πD2(r) �D1(r)

∼−→ CoB(r) underlying our operad morphism.
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Let Π(r) be the subset of the configuration space F (D̊2, r) formed by the ele-
ments of the form a0w = ((x0

w(1), 0), . . . , (x
0
w(r), 0)), where w ∈ Σr. If we go back

to the construction of §5.2.8, where we define the groupoids of colored braids, then
we immediately see that the isotopy classes of braids defining the morphisms of
this colored operad are nothing but homotopy classes of paths between elements
of Π(r). In other words, we have a formal identity CoB(r) = π F (D̊2, r) �Π(r), for
each r > 0.

The homotopy equivalence ω : D2(r)
∼−→ F (D̊2, r), defined by the disc cen-

ter mapping (see §§4.2.1-4.2.2), induces an equivalence of fundamental groupoids

ω∗ : πD2(r)
∼−→ π F (D̊2, r). In order to connect πD2(r) �D1(r)⊂ πD2(r) with the

groupoid CoB(r) = π F (D̊2, r) �Π(r), we pick a collection of little 2-discs c0 in the

image of our embedding D1(r) → D2(r) such that ω(c0) = a0id . Then we consider
the subset Ξ (r) formed by the elements c0w = w∗(c

0) in D1(r) ↪→ D2(r), where we
assume w ∈ Σr. The disc center mapping is clearly equivariant, so that ω(c0w) = a0w,

for all w ∈ Σr, and the equivalence ω∗ : πD2(r)
∼−→ π F (D̊2, r) induces, by restric-

tion to Ξ (r) ⊂ D2(r), a groupoid isomorphism πD2(r) �Ξ(r)
�−→ π F (D̊2, r) �Π(r). To

recap, we now have a groupoid diagram

(1) πD2(r) �Ξ(r)
�

π F (D̊2, r) �Π(r)
=

CoB(r)

πD2(r) �D1(r)

πD2(r) ∼ π F (D̊2, r)

where vertical morphisms are embeddings of full subgroupoids, the bottom hori-
zontal morphism is a groupoid equivalence, and the upper horizontal morphism is
a groupoid isomorphism. The connectedness of D2(r) implies that the first vertical
embedding πD2(r) �Ξ(r)↪→ πD2(r) �D1(r) defines an equivalence of groupoids too,
just like the second embedding πD2(r) �D1(r)↪→ πD2(r).

The groupoid equivalence which we aim to define is obtained by picking an
appropriate inverse equivalence of the embedding πD2(r) �Ξ(r)↪→ πD2(r) �D1(r).

Recall that the embedding of a configuration of little 1-discs c = (c1, . . . , cr) in
the interval D1 = [−1, 1] determines a linear ordering i1 < · · · < ir of the indices
of these 1-discs ci, i = 1, . . . , r. In Proposition 4.1.6, we use this observation to
assign a permutation w = (i1, . . . , ir) to each element c ∈ D1(r) and to establish the
identity π0 D1(r) = Σr. To an element c in the image of the space D1(r) in D2(r),
we associate the base element c0w ∈ Ξ (r) formed by applying the permutation w
associated to c to the initially chosen configuration of little 2-discs c0. Equivalently,
we consider the base element c0w which lies in the same connected component D1(r)w
of the 1-disc space D1(r) as c ∈ D1(r).

Recall that each space D1(r)w is contractible. We pick a path γ which links
γ(0) = c0w to γ(1) = c and lies in this contractible space. We perform such a
choice of path for every element c in the image of the little 1-disc space D1(r) in
D2(r). The homotopy class of our path γ represents an isomorphism between c
and c0w in the fundamental groupoid πD2(r). We consider the groupoid morphism
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πD2(r) �D1(r)→ πD2(r) �Ξ(r) which maps each object c to the associated configura-

tion c0w in the set Ξ (r), and which is given, at the morphism set level, by the com-
position with the isomorphism [γ] ∈ MorπD2(r)(c

0
w, c) determined by the homotopy

class of our path connecting c0w and c inside D1(r) ↪→ D2(r). The contractibility of
the space D1(r)w, where we define this path γ, implies that this isomorphism does
not depend on choices.

Now we can take the composite of the just defined equivalence of groupoids

with the obvious isomorphism πD2(r) �Ξ(r)
�−→ π F (D̊2, r) �Π(r) in order to get a

morphism of groupoids

(2) πD2(r) �D1(r)
∼−→ π F (D̊2, r) �Π(r)= CoB(r),

which is also an equivalence by construction. We see that our mapping, which
associates an element c0w to any c, is equivariant with respect to the action of
permutations, and as a consequence, so is our groupoid morphism since we observed
that our construction does not depend on any other choice.

We immediately see that our morphism sends the unit element of the op-
erad πD2 �D1

to the unit element of the colored braid operad CoB too because

we trivially have CoB(1) = π F (D̊2, 1) �Π(1)= pt . We also see that our groupoid
morphisms commute with the operadic composition products at the object level,
because we use the decomposition of the little 1-discs operad into connected compo-
nents to determine our correspondence on objects and the operadic composition of
permutations reflects the operadic composition associated to the connected compo-
nents of the little 1-discs operad. The existence of a groupoid equivalence between
πD2(r) �D1(r) and CoB(r), for each r > 0, implies that the morphisms of the
groupoid πD2(r) �D1(r) are composites of elementary paths which correspond to
the generating braids τi in the morphism sets of the groupoid CoB(r). We easily
see, by going back to our figures, that we retrieve the definition of the operadic
composites of a generating braid with the identity braid in Proposition 5.1.2 when
we form the operadic composites of the path of Figure 5.11 with a constant path
in the fundamental groupoid of the little 2-discs operad. We readily conclude from
the verification of these generating cases that our mappings preserve the operadic
composites of all morphisms in our groupoids.

We conclude that our collection of groupoid equivalences (2) defines a morphism
of operads in groupoids πD2 �D1

→ CoB, which is also a categorical equivalence by
construction. Hence, we finally have a chain of categorical equivalences of operads
in groupoids

(3) πD2
∼←− πD2 �D1

∼−→ CoB

that links the fundamental groupoid of the operad of little 2-discs πD2 to the
operad of colored braids CoB. We also readily see, by an immediate extension of
our arguments, that these categorical equivalences preserve the restriction operators
attached to our operads, and hence, extend to categorical equivalences of unitary
operads. This observation completes the proof of Theorem 5.3.4. �

5.3.5. Remark: The representation of morphisms in the fundamental groupoid
of the little 2-discs operad. The bijection

ω∗ : Morπ D2(r)(a, b)
�−→ Morπ F(D̊2,r)(ω(a), ω(b))
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induced by the disc center mapping ω : D2(r)
∼−→ F (D̊2, r) implies that the mor-

phisms of the fundamental groupoid of the little 2-discs space are specified by:

– a configuration of little 2-discs a = (a1, . . . , ar), which represents the
source of our morphism,

– a configuration of little 2-discs b = (b1, . . . , br), which defines the target,
– and a braid on r strands α = (α1, . . . , αr) such that αi connects the center
of the ith little 2-disc ai in the source configuration a to the center of the
ith little 2-disc bi in the target configuration b.

Thus, we get a picture of the following form:

11
2

1
2

α =

a

b

for a morphism α ∈ MorπD2(2)(a, b), with the configuration of little 2-discs a repre-
sented at the top of the picture, and b at the bottom.

In the special case of configurations of little 2-discs centered on the axis y = 0,
like

α =

1122

1 2

,

we may use a simplified picture where, as in the braid diagram representation, we
only retain the trace of our little 2-discs configurations on the axis y = 0:

1 2

12

.

This trace also represents the counterimage of our configurations of little 2-discs
under the operad embedding D1 ↪→ D2. The groupoid equivalence πD2(r) �D1(r)

∼−→
CoB(r), considered in the proof of Theorem 5.3.4, is given at the morphism level by
a simple path concatenation operation which recenters the contact points of such
braid diagrams.

5.3.6. Extra remarks. The results of Theorem 5.2.12 and Theorem 5.3.4 are
actually not independent though we give a direct proof of each statement. To
explain the precise relationship between our results, we consider simplicial sets
rather than topological spaces.
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The classifying space construction of §5.2.3 is naturally given as a functor from
categories to simplicial sets. The fundamental groupoid construction has a com-
binatorial analogue, defined on the category of simplicial sets, and which yields
a left adjoint π : sSet → Grd of the restriction of the classifying space functor
B : Cat → sSet to the category of groupoids Grd ⊂ Cat . The augmentation
π B(G) → G of this adjunction π : sSet � Grd : B defines an isomorphism of
groupoids, for all G ∈ Grd . The adjunction unit X → B(πX) defines a weak-
equivalence of simplicial sets when X is a Kan complex with a trivial homotopy in
degree ∗ > 1.

The simplicial version of the fundamental groupoid π : sSet → Grd defines a
symmetric monoidal functor like the fundamental groupoid of topological spaces
(this result is a variation on the Eilenberg-Zilber correspondence). Therefore, the
fundamental groupoid induces a functor π : sSet Op → Grd Op from the category
of simplicial operads sSet Op to the category of operads in groupoids Grd Op. This
functor is still left adjoint of the functor on operads B : Grd Op → sSet Op which we
define by the aritywise application of the classifying space functor from groupoids
to simplicial sets. By combining this adjunction with the realization and singular
complex adjunction relation (see §3.1.4), we get a chain of adjunctions

Top Op
Sing•(−)

(1) sSet Op

|−| π

(2) Grd Op
B

which link the category of topological operads and the category of operads in
groupoids.

The unit (respectively, the augmentation) of the adjunction between simplicial
sets and topological spaces is a weak-equivalence, and so is the unit (respectively,
the augmentation) of the corresponding adjunction (1) on operads.

The augmentation of the adjunction between simplicial sets and groupoids de-

fines a groupoid isomorphism π B(G)
�−→ G, for all G ∈ Grd , while the unit of this

adjunction X → B(πX) defines a weak-equivalence of simplicial sets as soon as X is
a Kan complex with a trivial homotopy in degree ∗ > 1. These assertions extend to
the unit and the augmentation of the adjunction (2) on our categories of operads.

From these observations, we deduce that the existence of weak-equivalences of
operads D2

∼←− · ∼−→ B(CoB), asserted by Theorem 5.2.12, implies the existence of
categorical equivalences of operads in groupoids between the fundamental groupoid
operad πD2 and the operad of colored braids CoB � π B(CoB). On the other
hand, since we observed that the underlying spaces of the little 2-discs operad D2

are Eilenberg-MacLane spaces, we automatically have weak-equivalences of operads
which connect the operads in topological spaces D2 and B(πD2). Hence, the exis-
tence of categorical equivalences of operads in groupoids between πD2 and CoB ,
as asserted in Theorem 5.3.4, also implies the existence of weak-equivalences of
simplicial operads connecting D2 and B(CoB), as claimed in Theorem 5.2.12.

Our adjunctions (1-2) can also be used to give a necessary and sufficient recog-
nition criterion for E2-operads. Namely, an operad P is E2 if and only if each space
P(r) has a trivial homotopy in degree ∗ > 1 and π P is equivalent to the colored
braid operad CoB as an operad in groupoids.
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5.4. Outlook: The recognition of En-operads for n > 2

The recognition of En-operads is more difficult in the case n > 2 than in the
case n = 2, because the underlying spaces of the little n-discs operads are no longer
Eilenberg-MacLane spaces when n > 2. On the other hand, we do have sufficient
conditions asserting, as in Theorem 5.1.14, that certain operads Symn P obtained
by a quotient process from an appropriate contractible object P are En.

In the context of Theorem 5.1.14, we consider the category of braided operads,
the obvious restriction functor from symmetric operads to braided operads, and
the symmetrization functor which represents a left adjoint of this restriction func-
tor. Nice analogues of these notions have been introduced by Michael Batanin with
the aim of defining higher dimensional generalizations of fundamental groupoids
(see [18] for this part of the program). In Batanin’s approach [19, 20, 21], the
category of braided operads is replaced by a category of n-operads which have an
underlying collection P(τ ) indexed by n-level trees. These trees represent com-
position patterns that can be formed from the structure of an n-category. We
again have an obvious functor Op → n Op from the category of ordinary operads
to the category of n-operads and we have an n-symmetrization functor which goes
in the converse direction Symn : n Op → Op. In [20], Batanin establishes that the
symmetrization of a contractible n-operad (satisfying some suitable cofibration re-
quirement) is an En-operad. In [19], he proves further that many usual models
of En-operads, like the Fulton–MacPherson operads (see §4.3), can be defined by
applying this symmetrization process.

Batanin’s recognition criterions are used to define models of En-operads for
each n independently. In [23], Clemens Berger explains that models of the little
n-discs operads, regarded as a nested sequence of operads, can be obtained from
contractible (symmetric) operads equipped with an appropriate cellular structure.
The first application of this recognition method, given by Berger himself in [23], is
the construction of simplicial models of En-operads from a basic simplicial operad,
first considered by Barratt-Eccles in [17], and which is given by an application of the
translation category construction of §§5.2.13-5.2.16 to the symmetric groups Σn. In
short, one can check that the Barratt-Eccles operad E is an E∞-operad in simplicial
sets equipped with a filtration by suboperads E1 ⊂ · · · ⊂ En ⊂ · · · ⊂ E such that
the geometric realization of this sequence of operads in the category of simplicial sets
defines a nested sequence of operads in topological spaces |E1 | ⊂ · · · ⊂ |En | ⊂
· · · ⊂ |E | which is connected to the nested sequence of the little discs operads
D1 ⊂ · · · ⊂ Dn ⊂ · · · ⊂ D by a chain of weak-equivalences of nested sequences of
operads in topological spaces. The free algebras associated to these operads En,
which we deduce from the Barratt-Eccles operad E , are related to simplicial models
of n-fold spaces of suspensions ΩnΣnX defined by Jeff Smith in [165]. This model
is precisely given by a group completion of the reduced free algebra S∗(En+, X)
(see §2.2.23), for any pointed simplicial set X, and where we consider a unitary
version of the operad En. Berger’s method has also been applied successfully by
Jim McClure and Jeff Smith in [143] to prove that a certain operad, defined by
natural operations acting on Hochschild cochain complexes, is E2. This result has
lead to a new conceptual proof of the Deligne conjecture claiming the existence of
a natural E2-structure on the Hochschild cochain complex (see the preface of the
book).
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Other models of En-operads, related to the topics studied in the present chap-
ter, arise from the iterated monoidal categories of [15], which generalize the classical
braided monoidal categories of quantum algebra (n = 2) and yield higher intermedi-
ate structures between the standard (noncommutative) monoidal categories (n = 1)
and symmetric monoidal categories (n = ∞).





CHAPTER 6

The Magma and Parenthesized Braid Operads

The operads of the category of small categories, like the operad of colored braids
considered in the previous chapter, govern multiplicative structures on categories.
In §5.2.18, we already mentioned that an action of the operad of colored braids on a
category encodes a braided monoidal structure whose tensor product is associative
in the strict sense. We give a detailed proof of this statement in this chapter.
But our main purpose is to explain the definition of a variant of the operad of
colored braids, the operad of parenthesized braids, whose actions encode general
braided monoidal structures, where the tensor product is associative up to natural
isomorphisms.

Recall that the colored braid operad is an operad in groupoids CoB of which
object sets form an operad in sets isomorphic to the permutation operad Π. The
morphisms of the rth component of this operad CoB(r) are isotopy classes of braids
with r strands whose (fixed) contact points are labeled by indices (i1, . . . , ir) (the
colors) that form a permutation of the set (1, . . . , r). These contact points, together
with the associated colors, represent the objects of our operad. In the parenthesized
braid operad, denoted by PaB , the object sets form an operad in sets isomorphic to
a free operad Ω = Θ(μ(x1, x2), μ(x2, x1)) generated by a non-symmetric operation
μ = μ(x1, x2) in arity 2. We adopt the name ‘magma’, which Bourbaki introduces
for general non-associative structures (see [35, §I.1]), to refer to this free operad in
sets.

In our geometrical picture, the morphisms of the rth component of the paren-
thesized braid operad PaB(r) are still defined by isotopy classes of braids with r
strands, but we now consider contact points located on the center of diadic par-
titions of the interval [−1, 1]. These diadic partitions are in bijection with planar
binary trees and this correspondence gives the isomorphism between the object sets
of the parenthesized braid operad and the components of the magma operad.

The diadic partitions correspond to a suboperad of the little 2-disc operad
defined by certain little 2-disc configurations centered on the horizontal axis. The
components of the operad of parenthesized braids are actually identified with the
full subgroupoids of the fundamental groupoid operad of little 2-discs defined by
these particular subsets of base points. Recall that the connection between the
colored braid operad CoB and the fundamental operad of little 2-discs πD2 involves
a chain of categorical equivalences πD2

∼←− · ∼−→ CoB . The operad of parenthesized
braids PaB is actually the minimal object which can be used to give the middle
term in such a chain.

In a first step (§6.1), we explain the definition of an operad, which we call the
parenthesized permutation operad, and which governs general monoidal category
structures, where we have no symmetry constraint on the tensor product. By the
way, we also give an operadic interpretation of the Mac Lane Coherence Theorem.

197
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In a second step (§6.2), we address the definition of the parenthesized braid operad
itself, and we give the proof that this operad governs the structure of a braided
monoidal category with general associativity isomorphisms. To complete our ac-
count, we explain the definition of an analogous operad, the operad of parenthesized
symmetries, which encodes the structure of a symmetric monoidal category with
general associativity isomorphisms. We devote a third section §6.3 to this topic.

Let us mention that Bar-Natan uses the name ‘parenthesized braid’ and the
notation PaBr for objects that differ from the groupoids PaB(r) in our defini-
tion of the operad of parenthesized braids (see [16]). The objects considered by
Bar-Natan PaBr actually represent summands of a free enriched braided monoidal
category on one generating object. We explain the connection between Bar-Natan
formalism and our operadic approach with more details in §6.2.8. By the way,
we also explain the relationship between the operad of colored braids of §5.2 and
Joyal-Street’s definition of the free braided monoidal category on one generating
object.

6.1. Magmas and the parenthesized permutation operad

The ultimate objective of this chapter, as we just explained, is to define an
operad in groupoids, the operad of parenthesized braids, with the same morphism
sets as the operad of colored braids of §5.2, but where the object sets are changed
into terms of the magma operad in order to encode general braided monoidal cat-
egory structures. The rough idea is to perform a pullback operation in order to
get this change of object sets. This pullback process can also be used to get an
operad governing general non-symmetric monoidal categories, and we study this
more basic example first. The relationship between monoidal structures and this
pullback operation actually follows from an operadic interpretation of the Mac Lane
Coherence Theorem which we explain in this section too.

The magma operad, as we explain in the introduction of this chapter, is a free
operad (in sets) with a single (non-symmetric) generator μ in arity 2. We explicitly
set:

Ω = Θ(μ(x1, x2), μ(x2, x1)),

where μ = μ(x1, x2) denotes our generating operation, and tμ = μ(x2, x1), with
t = (1 2), is the associated transposed element. The algebras associated to this
operad are identified with Bourbaki’s (non-commutative) magmas (see [35, §I.1]).
To be explicit, by going back to the definition of free operads in §1.2, we see that
an Ω-algebra in sets consists of an object A ∈ Set equipped with a (possibly non-
commutative and non-associative) product m : A× A → A which gives the action
of the generating operation μ ∈ Ω(2) on A. This is exactly Bourbaki’s definition of
a magma, and the name ‘magma operad’ is motivated by this correspondence.

To begin this section, we explain a representation of the elements of the magma
operad in terms of non-commutative non-associative monomials and planar binary
trees.

6.1.1. The algebraic definition of the magma operad. Recall that the elements
of a free operad intuitively consists of formal operadic composites of generating
operations with no relation between them apart from the general equivariance,
unit and associativity relations of operads. In the case of the magma operad, we
consider operadic composites of the product μ = μ(x1, x2) and of the transposed
operation tμ = μ(x2, x1). If we take the usual product notation μ(x1, x2) = x1x2
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for the generating operation μ = μ(x1, x2), then these operadic composites are
equivalent to parenthesized words

xixj , (xixj)xk, xi(xjxk),

((xixj)xk)xl, (xi(xjxk))xl, (xixj)(xkxl), . . .

defined by providing any permutation of the variables (x1, . . . , xr) with a full bi-
nary bracketing (the parenthesization). These parenthesized words are the non-
commutative non-associative monomials considered by Bourbaki.

In this algebraic representation of the elements of the magma operad, the
symmetric groups act by permuting variable indices, the unit is defined by the
one-variable word 1 = 1(x1) = x1, and the operadic composition operations ◦k :
Ω(m)×Ω(n) → Ω(m+n−1), k = 1, . . . ,m, are defined by the natural substitution
of variables in non-commutative non-associative monomials. For instance, we have:

((x3x1)x2) ◦1 ((x2x1)x3) = (x5((x2x1)x3))x4.

To get this composite, we replace the variable x1 (corresponding to our composition
index k = 1) in the first monomial p(x1, x2, x3) = (x3x1)x2 by the second monomial
q(x1, x2, x3) = (x2x1)x3, and we use the variable index shift of §1.1.4 to form a new
monomial p ◦1 q = p(q(x1, x2, x3), x4, x5) on the variables (x1, . . . , x5).

6.1.2. The planar binary tree representation. In our general construction of
free operads, the elements are represented by trees whose vertices are labeled by
generating operations. In the case of the magma operad, we can form a reduced
version of this representation, where the elements of arity r consist of planar binary
trees with r ingoing edges indexed by a permutation (i1, . . . , ir) of (1, . . . , r) as in
the following pictures:

xixj =
i j

, (xixj)xk =
i j k

, xi(xjxk) =
i j k

,

((xixj)xk)xl =
i j k l

, (xi(xjxk))xl =
i j k l

,

(xixj)(xkxl) =
i j k l

, . . .

In the representation of §A, these planar binary trees correspond to treewise
elements in which all vertices are labeled by the generating operation μ and where
no vertex labeled by the transposed operation tμ occurs. The equivariance rela-
tion of §1.1.5 (see also §A.2) implies that the treewise elements considered in the
appendix are, in the case of the magma operad, equivalent to treewise elements of
this reduced form, and hence, that we can restrict ourselves to such planar binary
trees in our construction.

The symmetric action, the operadic unit and the operadic composition opera-
tions of the magma operad are given by the same operations as in §A.1 for planar
binary trees. The symmetric group acts by permutation of the indices attached to
the ingoing edges. To obtain the picture of an operadic composite of trees σ ◦k τ ,
we plug the second tree τ in the ingoing edge of the tree σ marked by the index
k and we perform the usual shift operation on the input indices of this composite
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object. For instance, in the case considered in §6.1.1, we get the following picture:

3 1 2
◦1

2 1 3
=

5 2 1 3 4

.

6.1.3. The underlying permutation and parenthesization of the elements of the
magma operad. We readily see that each component of the magma operad Ω(r)
forms a free Σr-set. We obtain, to be more precise, that each element p ∈ Ω(r) has
a unique expression p = sπ = π(xs(1), . . . , xs(r)) such that π arises as a (multiple)
composite of the generating operation μ = μ(x1, x2) (with no occurrence of the
transposed operation) and where s is a permutation acting on this monomial π =
π(x1, . . . , xr). We refer to the permutation s occurring in this expression p = sπ as
the underlying permutation of the magma element p ∈ Ω(r). We also refer to the
composite which defines the monomial π as the underlying parenthesization of the
word p = π(xs(1), . . . , xs(r)).

We can easily retrieve the permutation s and the composite π from the mono-
mial expression of our element p ∈ Ω(r). Indeed, the permutation s represents the
ordering of the variables in the word underlying p (where we forget about the paren-
thesization), while the monomial π = π(x1, . . . , xr) is determined by the parenthe-
sization itself (with the variables put in the canonical order). As an example, in
the case p = p(x1, x2, x3, x4, x5) = (x5((x2x1)x3))x4, we obtain the permutation
s = (5, 2, 1, 3, 4) which corresponds to the ordering of variables x5x2x1x3x4 and we
have an identity p = sπ = π(x5, x2, x1, x3, x4), where:

π(x1, x2, x3, x4, x5) = (x1((x2x3)x4))x5 =

1 2 3 4 5

.

In the treewise representation, the permutation s can also be determined by
the ordering (in the plane) of the indices attached to the ingoing edges of our tree
(where we use the outgoing edge of the tree to fix the orientation of our figure).

6.1.4. The unitary extension of the magma operad. The magma operad has a
unitary extension Ω+ such that

Ω+(n) =

{
∗, if n = 0,

Ω(n), otherwise,

and of which composition structure extends the composition structure of the non-
unitary operad Ω. In §2.2, we observe that the partial composition operations
with the additional arity zero term of such an operad are equivalent to restriction
operators ∂k : Ω+(n) → Ω+(n − 1) such that ∂k(p) = p ◦k ∗. Furthermore, for
a connected free operad, such as the magma operad Ω = Θ(μ(x1, x2), μ(x2, x1)),
the associativity of partial composites implies that our restriction operators are
uniquely determined by their expression on generating operations μ = μ(x1, x2) and
tμ = μ(x2, x1) (see §2.4). For these operations, we trivially have ∂1(μ) = ∂2(μ) = 1
and ∂1(tμ) = ∂2(tμ) = 1, since the component of arity one of our operad Ω is
reduced to the one-point set formed by the unit element 1 ∈ Ω(1).

If we use our correspondence between the restriction operators ∂k and the
composition operations p ◦k ∗, then the formulas ∂1(μ) = ∂2(μ) = 1 are equiv-
alent to the assumption that the operation μ(x1, x2) = x1x2 satisfies the unit
identities μ(∗, x1) = x1 = μ(x1, ∗) in the operad Ω+. In the algebraic approach
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of §6.1.1, we get the expression of a restriction operator on a non-commutative non-
associative monomials by performing this substitution xk = ∗ (and the standard in-
dex shift on the remaining variables). For instance, we have ∂3((x5((x2x1)x3))x4) =
(x4((x2x1)∗))x3 = (x4(x2x1))x3. In the treewise representation of §6.1.2, the oper-
ation ∂k(σ) = σ ◦k ∗ is identified with the removal of the ingoing edge indexed by k
in the tree σ. For instance, in the case p(x1, x2, x3, x4, x5) = (x5((x2x1)x3))x4, we
get the following picture:

∂3

⎛⎝5 2 1 3 4
⎞⎠ =

4 2 1 3

=
4 2 1 3

.

The algebras over the operad Ω+ are identified with sets A equipped with a
product m : A×A → A (which determines the action of the non-unitary operad Ω
on A) together with a distinguished element e ∈ A such that m(e, a) = a = m(a, e),
for all a ∈ A. This element e represents the image of the arity zero operation ∗ ∈
Ω+(0) in A.

6.1.5. Pullbacks of operads in groupoids. By definition of free operads, giving
a morphism ω : Ω → P from the magma operad Ω to an operad in sets P amounts
to fixing an operation of arity two m ∈ P(2) such that m = ω(μ).

We consider such a morphism ω : Ω → ObQ with values in the object-set
operad P = ObQ underlying an operad in groupoids Q. For each r > 0, we form
a groupoid ω∗ Q(r) with Obω∗ Q(r) = Ω(r) as object set and with the morphism
sets such that:

Morω∗ Q(r)(p, q) = MorQ(r)(ω(p), ω(q)),

for all p, q ∈ Ω(r). These morphism sets are equipped with the identity morphisms
and with the composition operations of the morphism sets of the groupoid Q(r).

The collection of groupoids ω∗ Q(r), r > 0, also inherits an operad structure:

– the action of a permutation s ∈ Σr on the groupoid ω∗ Q(r) is the functor
s∗ : ω∗ Q(r) → ω∗ Q(r) given by the action of s on the magma operad at
the object set level and by the maps

MorQ(r)(ω(p), ω(q))︸ ︷︷ ︸
=Morω∗ Q(r)(p,q)

s∗−→ MorQ(r)(sω(p), sω(q))︸ ︷︷ ︸
=Morω∗ Q(r)(sp,sq)

inherited from the groupoid Q(r) at the morphism set level;
– the unit object 1 ∈ Obω∗ Q(1), equivalent to a functor η : pt → ω∗ Q(1),
is given by the unit element of the magma operad 1 ∈ Ω(1);

– the composition operations ◦k : ω∗ Q(m) × ω∗ Q(n) → ω∗ Q(m + n − 1),
are the functors given by the partial composition operations of the magma
operad at the object set level and by the mapping

MorQ(m)(ω(p0), ω(p1))︸ ︷︷ ︸
=Morω∗ Q(m)(p0,p1)

× MorQ(n)(ω(q0), ω(q1))︸ ︷︷ ︸
=Morω∗ Q(n)(q0,q1)

◦k−→ MorQ(m+n−1)(ω(p0) ◦k ω(q0), ω(p1) ◦k ω(q1))︸ ︷︷ ︸
=Morω∗ Q(m+n−1)(p0◦kq0,p1◦kq1)

inherited from the operad Q at the morphism set level, for all m,n > 0
and for each k = 1, . . . ,m.
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The collection ω∗ Q(r), r > 0, therefore forms an operad in groupoids ω∗ Q. We
refer to this operad as the pullback of the operad Q along the morphism ω : Ω →
ObQ determined by the object m ∈ ObQ(2).

In the case where our operad Q has a unitary extension Q+, we immediately see
that the morphism of non-unitary operads ω : Ω → ObQ associated to an element
m ∈ ObQ(2) has a unitary extension ω : Ω+ → ObQ+ as soon as the relations
m ◦1 ∗ = m ◦2 ∗ = 1 hold in Q+. In this situation, we also have a unitary version
ω∗ Q+ of the operadic pullback ω∗ Q. We define this object by an obvious extension
of our construction.

6.1.6. The pullback of the permutation operad. We first examine the application
of our pullback construction to the permutation operad Π which is basically defined
in the category sets, but which we may also regard as formed of a collection of
discrete groupoids. We adopt the notation CoP to distinguish this operad in the
category of groupoids from the underlying operad in sets Π. We accordingly have

ObCoP(r) = Π(r) = Σr,

for each r > 0, and the morphism sets of the groupoid CoP(r) are defined by:

MorCoP(r)(u, v) =

{
pt , if u = v,

∅, otherwise,

for all u, v ∈ Σr. We also use the name ‘colored permutation operad ’ to refer to this
operad in groupoids CoP .

Let m ∈ ObCoP(2) be the object defined by the identity permutation (1, 2) ∈
Σ2. The operad morphism ω : Ω → Π = ObCoP associated to this element m ∈
ObCoP(2) is obviously identified with the map which sends a parenthesized words
p = p(xs(1), . . . , xs(r)) to the underlying permutation (s(1), . . . , s(r)) (in the sense
of §6.1.3) and forgets about the bracketing (see §6.1.3). Let

PaP := ω∗ CoP

denote the pullback of the permutation operad under this morphism. We accord-
ingly have

ObPaP(r) = Ω(r),

for every r > 0, by definition of our pullback operation. We call this operad in
groupoids the ‘operad of parenthesized permutations ’.

For parenthesized words p = p(xu(1), . . . , xu(r)) and q = q(xv(1), . . . , xv(r)), with
ω(p) = u and ω(q) = v as underlying permutations, we have:

MorPaP(r)(p, q) =

{
pt , if ω(p) = ω(q),

∅, otherwise.

The morphism ω : Ω → ObCoP clearly admits a unitary extension, and we accord-
ingly have a unitary version of the parenthesized permutation operad PaP+ such
that PaP+(0) = ∗.

The groupoid PaP(3) contains an associativity isomorphism

α(x1, x2, x3) ∈ MorPaP(3)((x1x2)x3, x1(x2x3))

which connects the objects (x1x2)x3, x1(x2x3) ∈ Ω(3).
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((x1 � x2) � x3) � x4
a(x1,x2,x3)�x4

a(x1�x2,x3,x4)(x1 � (x2 � x3)) � x4

a(x1,x2�x3,x4) (x1 � x2) � (x3 � x4)

a(x1,x2,x3�x4)x1 � ((x2 � x3) � x4)

x1�a(x2,x3,x4)

x1 � (x2 � (x3 � x4))

Figure 6.1. The pentagon relation. We use the notation
m(x1, x2) = x1 � x2 for an object of an operad m = m(x1, x2) ∈
ObQ(2). The expressions ((x1�x2)�x3)�x4, · · · ∈ ObQ(4) repre-
sent composites of this object in our operad. We have for instance
((m◦1m)◦1m)(x1, x2, x3, x4) = ((x1�x2)�x3)�x4. We similarly
use algebraic expressions of the form a(x1, x2, x3)� x4 ∈ MorQ(4)
to represent the operadic composites of morphisms in our operad.
We have for instance (id ◦1a)(x1, x2, x3, x4) = a(x1, x2, x3) � x4,
where we consider the image of the morphisms id = idx1�x2

∈
MorQ(2) and a ∈ MorQ(3) under the operadic composition func-
tor ◦1 : Q(2)× Q(3) → Q(4).

We have the following result, which gives an operadic interpretation of the Mac
Lane Coherence Theorem:

Theorem 6.1.7 (Operadic interpretation of the Mac Lane Coherence Theo-
rem).

(a) The morphisms of the groupoids PaP(r) can be obtained as (categorical)
composites of morphisms which themselves decompose into operadic composition
products of identity morphisms and of the associativity isomorphism α(x1, x2, x3).

(b) Let Q be any operad in the category of categories. Let

m = m(x1, x2) ∈ ObQ(2)

be an object in the component of arity two of this operad. In what follows, we also
set

m(x1, x2) = x1 � x2

and we use classical algebraic notation (rather than operadic notation) to represent
the composites of this object in our operad Q. Let

a(x1, x2, x3) ∈ MorQ(3)((x1 � x2) � x3, x1 � (x2 � x3))

be an isomorphism which connects the operadic composites

(m ◦1 m)(x1, x2, x3) = (x1 � x2) � x3 ∈ ObQ(3)

and (m ◦2 m)(x1, x2, x3) = x1 � (x2 � x3) ∈ ObQ(3)

in the category Q(3).
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If this associativity isomorphism a = a(x1, x2, x3) makes the pentagon diagram
of Figure 6.1 commute in Q(4), then all parallel morphisms of the category Q(r)
which we obtain from this isomorphism a = a(x1, x2, x3) by combinations of the
operations of ( a) are equal, for any r > 0. In this situation, we also have a
morphism of operads in groupoids

φ : PaP → Q

uniquely determined by the assignment φ(μ(x1, x2)) = x1 �x2 at the object set level
and by the assignment φ(α(x1, x2, x3)) = a(x1, x2, x3) at the morphism set level.

(c) In the construction of (b), if we moreover assume the existence of an object

e ∈ ObQ(0)

which satisfies the relation

e � x1 = x1 = x1 � e

at the object set level (where we again use algebraic notation to denote the compos-
ites with this object in our operad) and the relation

a(e, x1, x2) = a(x1, e, x2) = a(x1, x2, e) = idm(x1,x2)

at the morphism set level (with the same notation conventions as above), then the
morphism φ : PaP → Q has a unitary extension

φ : PaP+ → Q

which maps the distinguished arity 0 element of the unitary operad of parenthesized
permutations ∗ ∈ PaP+(0) to this object e ∈ ObQ(0).

Explanations. The claims of this theorem follow from an operadic interpre-
tation of the Mac Lane Coherence Theorem [130]. We use operadic notation in this
proof rather than the algebraic notation which we adopt in the statement of our
theorem.

To understand the claims of (a-b), we may look at the picture formed by the full
subgroupoid of PaP(r) generated by the parenthesized words p = p(xs(1), . . . , xs(r))
for a given underlying permutation s ∈ Σr. The morphisms of this subgroupoid are
identified with the paths of a graph, represented in Figure 6.2 in the case r = 4, and
in Figure 6.3 in the case r = 5. To simplify these pictures, we only represents the
parenthesization (in the form of binary trees) underlying our objects p ∈ ObPaP(r)
and we omit the permutation labeling (s(1), . . . , (s(r)) which is by assumption the
same for all objects occurring in the figure. In the case r = 4, we just retrieve the
pentagon diagram of the theorem.

The edges of our graph are operadic composition products of associativity iso-
morphisms and of identity morphisms. The claim of (a) is therefore equivalent to
the connectedness of this graph, which visibly holds in the case r = 4 and in the
case r = 5. The general case of this claim can be established by an easy induction.

Note that all possible combinations of categorical composites of operadic com-
posites of associativity isomorphisms and identity morphisms which we may form
to connect a pair of objects with the same underlying permutation in the groupoid
PaP(r) are equal, since the morphism sets which we associated to any such pair
of objects are reduced to a point by construction of this groupoid. The idea of
the second claim of our statement (b) is that the validity of the pentagon equation
and the universal relations satisfied by the composition operations of an operad in



6.1. MAGMAS AND THE PARENTHESIZED PERMUTATION OPERAD 205

μ◦1α

μ◦2α

α◦1μ

α◦2μ

α◦3μ

Figure 6.2. The associa-
hedra in dimension 2. The
edges are given by the im-
age of the associativity iso-
morphism α ∈ MorPaP(3)
under the functors − ◦k
μ : PaP(3) → PaP(4),
k = 1, 2, 3, and μ ◦k − :
PaP(3) → PaP(4), k =
1, 2, in the parenthesized
permutation operad PaP .

μ◦1−

μ◦2−

− ◦1μ

− ◦2μ

− ◦3μ

− ◦4μ

α◦1α

α◦2α

α◦3α

Figure 6.3. The picture of the 3 dimensional associahedra. The
binary tree corresponding to the word x1(x2(x3(x4x5))) is put at
the infinity of the figure. The pentagon cells of this picture are
identified with the image of the pentagon of Figure 6.2 under the
functors − ◦k μ : PaP(4) → PaP(5), k = 1, 2, 3, 4, and μ ◦k − :
PaP(4) → PaP(5), k = 1, 2, marked in the figure. The square cells
correspond to the factorization of morphisms α ◦k α, marked by
dotted arrows in the figure, and which arise from the bifunctoriality
of the composition operations −◦k− : PaP(3)×PaP(3) → PaP(5),
k = 1, 2, 3.
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categories suffice to imply the identity of all these composites in our operad. To
establish this result, we observe that the edges of our graphs form the 1-dimensional
skeleton of a connected cell complex whose 2-dimensional cells are equivalent either
to the pentagon of Figure 6.1, which correspond to the assumption of our claim,
or to square diagrams, which reflect universal relations satisfied by the composi-
tion operations of an operad in categories. The picture of Figure 6.3 makes this
observation clear in the case r = 5. The edges of our graph form, in general, the
1-dimensional skeleton of a polyhedron, the Stasheff associahedron K (r), whose
boundary decomposes into cartesian products of associahedra of lower dimension:

∂ K (r) =
⋃

m ◦ik
n=r

K (m)× K (n),

for a set of faces indexed by operadic composition schemes:

p = a(xi1 , . . . , b(xj1 , . . . , xjn), . . . , xim)

(see §2.1, §2.5). The form of the 2-dimensional cells of the associahedra can be
obtained by induction from the shape of this decomposition. The associahedra
actually define an operad in topological space which models homotopy associative
monoids (see [167]). We refer to [73, 116, 125] for various constructions of the
associahedra as convex polyhedra and to Stasheff’s original article [167] for a real-
ization as a cell complex. We can use all these constructions to get a geometrical
proof of our statement (see [160]). We can also use a direct inductive argument,
forgetting about the geometry of associahedra and focusing on the underlying com-
binatorics of trees, to establish that all relations between the paths of our graph
reduce to composites of pentagon and square relations. We refer to Mac Lane’s
monograph [130] for further details on this purely combinatorial approach.

To establish our assertion (b), we consider the image of our graph in the
groupoid Q(r), with the object m ∈ ObQ(2) and the associativity isomorphism
a ∈ MorQ(3) substituted to the object μ and to the universal associativity iso-
morphism α of the parenthesized permutation operad PaP . The assumption on
our associativity isomorphism a(x1, x2, x3) implies the commutativity of the pen-
tagon diagrams of this graph in the groupoid Q(r). The bifunctoriality of operadic
composition products implies the commutativity of the squares of our graph. The
graph therefore commutes as a whole and this assertion gives the crux of the proof
of our claim (b). Indeed, the commutativity of the graph implies that the image of
our graph in the groupoid Q(r) gives a coherent definition of groupoid morphisms
φ : PaP(r) → Q(r), r > 0, that preserve the structure operations of our operads.

The requirements of (c) imply that our operad morphism φ : PaP → Q makes
the composite with the arity zero term ∗ in the unitary extension of the operad
PaP correspond to the composite with the object e in the operad Q. Therefore, we
immediately obtain that our operad morphism φ : PaP → Q admits an extension
φ : PaP+ → Q to the unitary operad PaP+ as soon as we have an object e that
satisfies these conditions in Q. �

To sum up, the result of Theorem 6.1.7 gives an equivalence between operad
morphisms φ : PaP → Q and pairs (m, a), where m = m(x1, x2) ∈ ObQ(2) and a =
a(x1, x2, x3) ∈ MorQ(3) is an isomorphism that makes this operation m(x1, x2) =
x1 �x2 associative in the operad Q. In the expression of this associativity relation,
we assume the verification of coherence constraints, which can be reduced to the
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commutativity of the pentagon diagram of Figure 6.1. In the unitary case, we
consider an additional object e ∈ Q(0) which satisfies strict unit relations e� x1 =
x1 = x1 � e with respect to the product m(x1, x2) = x1 �x2 and natural coherence
constraints with respect to the associativity isomorphism a = a(x1, x2, x3).

For the sake of comparison, in the case of the discrete groupoid operad CoP we
have the following statement:

Theorem 6.1.8.
(a) Giving a morphism φ : CoP → Q from the permutation operad CoP towards

an operad in groupoids Q amounts to giving an object

m(x1, x2) = x1 � x2 ∈ ObQ(2)

which satisfies a strict associativity relation

(x1 � x2) � x3 = x1 � (x2 � x3)

in the operad Q.
(b) In the construction of ( a), if we moreover assume the existence of an object

e ∈ ObQ(0) such that e � x1 = x1 = x1 � e,

then the morphism φ : CoP → Q has a unitary extension φ : CoP+ → Q which maps
the distinguished arity 0 element of the unitary operad of permutations ∗ ∈ CoP+(0)
to this object e ∈ ObQ(0).

Proof. If we regard an operad in sets P as a collection of discrete groupoids,
then giving a morphism of operads in groupoids φ : P → Q reduces to giving a
morphism of operads in sets φ : P → ObQ with values in the object-set operad
underlying Q. In the case of the permutation operad P = Π, which we identify
with the associative operad in sets As (see Proposition 1.2.7), we deduce from the
presentation by generators and relations of §1.2.6 that giving such a morphism
amounts to giving an operation m ∈ Q(2) which satisfies the associativity relation
in Q. The argument line is similar in the unitary case. �

6.1.9. The operadic representation of monoidal structures on categories. Re-
call that the action of an operad P on an object A in a base symmetric monoidal
category M is equivalent to a morphism φ : P → EndA, where EndA is the endo-
morphism operad of A. In the case where we work within the category of (small)
categories M = Cat and we deal with an object of this category C ∈ Cat , the endo-
morphism operad EndC is defined in arity r by the category which has the r-functors
f : C×r → C as objects and the natural transformation between such functors as
morphisms.

From the results established in this section, we obtain that giving a mor-
phism φ : PaP+ → EndC amounts to giving a monoidal structure on C with
strict unit relations but general associativity isomorphisms (see [130]), while giv-
ing a morphism φ : CoP+ → EndC is equivalent to giving a monoidal structure
with both strict unit and strict associativity relations. In both cases, we take the
image of the object μ = μ(x1, x2) under φ to get the tensor product operation
m(X1, X2) = X1 ⊗X2 : C×C → C of the monoidal structure on C. In the unitary
setting, we also take the image of the unitary element of the operad ∗ ∈ P+(0)
to get a natural transformation e : pt → C equivalent to a unit object 1 ∈ C for
this tensor product in C. In the case of the parenthesized permutation operad,
we take the image of the associativity isomorphism α ∈ MorP(3) to get a natural
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isomorphism a(X1, X2, X3) : (X1 ⊗X2) ⊗X3
�−→ X1 ⊗ (X2 ⊗X3) that makes our

tensor product associative. In the colored permutation case, we assume that this
associativity relation holds strictly (X1 ⊗X2)⊗X3 = X1 ⊗ (X2 ⊗X3) and we take
the identity morphism as associativity isomorphism a = id . The pentagon relation
of Theorem 6.1.7 is nothing but the usual coherence axiom of [130] for the associa-
tivity isomorphism of a monoidal category and we have a similar correspondence
for the coherence constraints associated to the unit object. This identity gives the
correspondence between the construction of Theorem 6.1.7–6.1.8 and the definition
of a monoidal structure on a category C.

To complete the account of this section, we record the following result which
motivates the introduction of the pullback construction of §6.1.5 for operads in
groupoids:

Proposition 6.1.10. Let P be an operad in groupoids which has the magma
operad as underlying object operad ObP = Ω. For any lifting problem

R

φ

P

∃?ψ

S

such that φ is a categorical equivalence of operads in groupoids (see §5.2.2), we have
a fill-in morphism ψ that makes our lifting diagram commute in the strict sense.

Proof. Exercise. �

6.2. The parenthesized braid operad

Recall that the operad of colored braids CoB satisfies ObCoB = Π . We de-
fine the operad of parenthesized braids PaB by applying the pullback construc-
tion of §6.1.5 to this operad CoB . We explicitly set PaB := ω∗ CoB, where
we again consider the morphism ω : Ω → Π which maps a parenthesized word
p = p(xs(1), . . . , xs(r)) ∈ Ω(r) to its underlying permutation s ∈ Σr (as in §6.1.6).
We then have ObPaB(r) = Ω(r) for each arity r > 0, and we have the rela-
tion MorPaB(r)(p, q) = MorCoB(r)(ω(p), ω(q)) for any pair of parenthesized words
p = p(xu(1), . . . , xu(r)) and q = q(xv(1), . . . , xv(r)) with u = ω(p) and v = ω(q) as
underlying permutations. The symmetric group actions, the unit, and the compo-
sition operations that define the operad structure of this collection of groupoids are
inherited from the magma operad at the object set level and from the colored braid
operad at the morphism set level (see §6.1.5). The parenthesized braid operad has
a unitary version (like the parenthesized permutation operad) which is defined by
an obvious unitary extension of our pullback construction.

Recall that we use the notation CoP for the permutation operad Π regarded
as an operad in groupoids. We have an obvious morphism of operads in groupoids
ι : CoP → CoB which is given by the identity ObCoB = Π at the object set level.
This morphism admits a lifting

PaP PaB

CoP
ι

CoB

,



6.2. THE PARENTHESIZED BRAID OPERAD 209

which identifies the operad of parenthesized permutations PaP with a suboperad
of PaB such that ObPaB = ObPaP = Ω . This operad embedding has an obvious
extension to unitary operads.

The main purpose of this section is to give an analogue of Theorem 6.1.7 for the
parenthesized braid operad. To complete our account, we also state an analogue
of the result of Theorem 6.1.8 for the colored braid operad. Before examining this
question we give a topological interpretation of the operad PaB in terms of the
fundamental groupoid of the little 2-discs operad πD2.

6.2.1. Parenthesized braids and fundamental groupoid elements. In the defini-
tion of the operad of colored braids CoB, we make a choice of contact points a on

the medium axis y = 0 of the open disc D̊2. The planar binary trees, which define
the objects of the groupoids PaB(r), actually have an interpretation in terms of par-
ticular choices of configurations of contact points on this line y = 0. To be explicit,
instead of the equidistant contact points of §5.0, we consider the centers of diadic
decompositions of the axis y = 0 of the open disc D̊2. In the next proposition, we
establish that these configurations of points correspond to configurations of little
2-discs which generate a free operad (isomorphic to the magma operad) inside the
little 2-disc operad D2. The equivalence between these diadic decompositions, the
free suboperad of little 2-discs, and the planar binary trees of the magma operad,
is made explicit (for the low arity cases r = 2, 3, 4) in the picture of Figure 6.4.

In our proposition, we rely on this correspondence on objects in order to prove
that the parenthesized braid operad PaB is identified with a suboperad of the operad
πD2 formed by the fundamental groupoids of the little 2-discs spaces D2(r), r > 0.
In what follows, we use this relationship in order to represent the morphisms of the
parenthesized braid operad PaB as braids whose origins and end-points are given
by the centers of little 2-discs configurations corresponding to the elements of the
object sets of our operad ObPaB ⊂ ObπD2 (see Figure 6.5 for an example). In
general, we use a simplified representation in terms of a braid diagram, where we
replace the configurations of little 2-discs considered in our picture by their trace
on the axis y = 0. This projection actually gives the diadic decompositions of the
interval which we associate to our objects in the little 2-discs operad.

Proposition 6.2.2.
(a) The configuration of little 2-discs

μ = 1 2 ∈ D2(2)

generates a free operad, isomorphic to Ω, within the little 2-disc operad D2.
(b) The disc center mapping of §4.2.2 can be applied to paths in the spaces of

little 2-discs to give an isomorphism

ω∗ : πD2 �Ω
�−→ PaB

between the operad of parenthesized braids PaB and the restriction of the funda-
mental groupoid of the little 2-disc operad D2 to the objects of this suboperad Ω ⊂
ObπD2.

Proof. Let φ : Ω → D2 be the morphism that sends the generating element
μ ∈ Ω(2) of the free operad Ω to the little 2-disc configuration μ ∈ D2(2) of
assertion (a). The claim of assertion (a) is that this morphism defines an embedding
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i k

l

j i j ki j

ki j i ji llki ji l j kj k k l

Figure 6.4. The correspondence between binary trees, operadic
composites of a generating little 2-disc configurations and diadic
decompositions of the interval in arity r = 2, 3, 4. The indices (i, j),
(i, j, k), (i, j, k, l), . . . run over permutations of (1, 2), (1, 2, 3),
(1, 2, 3, 4), . . . The diadic decompositions of the interval represent
a counterpart, in the little 1-disc operad, of the little 2-disc com-
posites considered in this picture (see the proof of Proposition 6.2.2
for detailed explanations).

α =

33 222111

1 2 3

Figure 6.5. The picture, in the fun-
damental groupoid of the little 2-discs
operad, of a morphism of the paren-
thesized braid operad.

of operads. In our verification, we use the symmetric collection equivalent to the
magma operad Ω , and we consider monomials p = p(xi1 , . . . , xir) ∈ Ω(r) of which
variables can be indexed by an arbitrary finite set r = {i1, . . . , ir}. The element μ
visibly comes from the operad of little 1-discs D1 which we regard as a suboperad
of D2 by using the correspondence of §4.1.5 (see also §5.1.7). The morphism φ
therefore admits a factorization through D1 and we are left to prove that this
factorization φ : Ω → D1 is an injection. Equivalently, we can look at the trace
of any configuration of little 2-discs c ∈ D2(r) on the axis y = 0 in the ambient
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disc D2 to determine the pre-image of this operation c ∈ D2(r) in the magma
operad Ω. (Recall that the image of D1 in D2 consists of configurations of little
discs centered on this axis y = 0, and the trace, considered in our process, can be
used to determine the counterimage in D1 of an element of D2.)

The configurations of little intervals that lie in the image of our map φ are
associated to diadic decompositions of the interval [−1, 1] (see Figure 6.4 for exam-
ples). To retrieve an element of Ω from the corresponding configuration of little
intervals c, we just observe that we have c = μ(a, b) where a ∈ D1({i1, . . . , im}) (re-
spectively, b ∈ D1({j1, . . . , jn})) is produced by applying the affine transformation
t �→ 2t+ 1 (respectively, t �→ 2t− 1) to the configuration of little intervals that lie
in the subinterval [−1, 0] ⊂ [−1, 1] (respectively, [0, 1] ⊂ [−1, 1]) of the collection c.
We carry on this process to obtain, by induction, the full decomposition of c in the
magma operad Ω .

The second claim of the proposition is a variation on the result of Theo-

rem 5.2.12. Simply note that we now have a direct isomorphism ω∗ : πD2 �Ω
�−→ PaB

which lifts the chain of category equivalences considered in the proof of Theo-
rem 5.2.12:

πD2(r) �Ω(r)
ω∗

� PaB(r)

πD2(r) πD2(r) �D1(r) CoB(r)

.

This verification completes the proof of Proposition 6.2.2.

We must note that the isomorphism of the proposition ω∗ : πD2 �Ω
�−→ PaB does

not extend to a morphism of unitary operads. We therefore need to go back to the
rectification process of Theorem 5.3.4 when we deal with the restriction operators
u∗ : PaB+(n) → PaB+(m) which define the composition operations with the addi-
tional term PaB+(0) = ∗ of the unitary operad of parenthesized braids PaB+. �

6.2.3. The associativity isomorphism and the braiding of the parenthesized braid
operad. The morphism ι : PaP → PaB considered in the introduction of this section
is given by the identity ObPaB = ObPaP = Ω on object sets and is defined at the
morphism set level by sending the associativity isomorphism α ∈ MorPaP(3) in the
parenthesized permutation operad to the morphism

α =

1 2 3

321

in the parenthesized braid operad. The pentagon relation of Figure 6.1 is equivalent
to the identity of the following parenthesized braid diagrams:

12 3 4

1 2 3 4

=

12 3 4

1 2 3 4

.
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Besides the associativity isomorphism α ∈ MorPaB(3), we consider the mor-
phism

τ =

1 2

2 1

which we call the braiding isomorphism (of the parenthesized braid operad). We
readily see that the associativity isomorphism and the braiding isomorphism satisfy
the following identities

1 2 3

12 3

=

1 2 3

12 3

and

1 23

1 2 3

=

1 23

1 2 3

,

which we express, in algebraic terms, by the commutativity of the hexagon diagrams
of Figure 6.6. We moreover have the obvious identities α(∗, x1, x2) = α(x1, ∗, x2) =
α(x1, x2, ∗) = idμ(x1,x2) and τ (∗, x1) = τ (x1, ∗) = idx1

(which we can also express
by the restriction formulas ∂1α = ∂2α = ∂3α = idμ and ∂1τ = ∂2τ = id1) when we
work in the unitary extension of our operad PaB+.

We can now formulate the analogue of Theorem 6.1.7 for the parenthesized
braid operad:

Theorem 6.2.4.
(a) The morphisms of the groupoid PaB(r) can be obtained as (categorical)

composites of morphisms which themselves decompose into operadic composition
products of identity morphisms, of the associativity isomorphism α ∈ MorPaB(3),
and of the braiding isomorphism τ ∈ MorPaB(2).

(b) Let Q be any operad in the category of categories. Let

m = m(x1, x2) ∈ ObQ(2)

be an object in the component of arity two of this operad. In what follows, we also
set

m(x1, x2) = x1 � x2

and we use classical algebraic notation (rather than operadic notation) to represent
the composites of this object in our operad Q. Let

a(x1, x2, x3) ∈ MorQ(3)((x1 � x2) � x3, x1 � (x2 � x3))

be an isomorphism which connects the operadic composites

(m ◦1 m)(x1, x2, x3) = (x1 � x2) � x3 ∈ ObQ(3)

and (m ◦2 m)(x1, x2, x3) = x1 � (x2 � x3) ∈ ObQ(3)

in the category Q(3). Let

c = c(x1, x2) ∈ MorQ(2)(x1 � x2, x2 � x1)

be an isomorphism which connects the operation m(x1, x2) = x1 � x2 ∈ ObQ(2) to
its transposite (1 2)m(x1, x2) = x2 � x1 ∈ ObQ(2) in the category Q(2).
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(x1 � x2) � x3

c(x1,x2)�x3 a(x1,x2,x3)

(x2 � x1) � x3

a(x2,x1,x3)

x1 � (x2 � x3)

c(x1,x2�x3)

x2 � (x1 � x3)

x2�c(x1,x3)

(x2 � x3) � x1

a(x2,x3,x1)

x2 � (x3 � x1)

x1 � (x2 � x3)

x1�c(x2,x3) a(x1,x2,x3)
−1

x1 � (x3 � x2)

a(x1,x3,x2)
−1

(x1 � x2) � x3

c(x1�x2,x3)

(x1 � x3) � x2

c(x1,x3)�x2

x3 � (x1 � x2)

a(x3,x1,x2)
−1

(x3 � x1) � x2

Figure 6.6. The hexagon relations. In these diagrams, we again
use the operator notation m(x1, x2) = x1 � x2 for an object of an
operad m = m(x1, x2) ∈ ObQ(2), and the expressions (x1 � x2) �

x3, · · · ∈ ObQ(4) in our diagram represent operadic composites of
this object (as in the picture of the pentagon relation in Figure 6.1).
We have for instance (m ◦1 m)(x1, x2, x3) = (x1 � x2) � x3. We
similarly use algebraic expressions of the form c(x1, x2)� x3, · · · ∈
MorQ(3) to represent operadic composites of morphisms in our
operad Q. We have for instance (id ◦1c)(x1, x2, x3) = c(x1, x2)�x3,
where we consider the image of the morphisms id = idx1�x2

∈
MorQ(2) and c ∈ MorQ(2) under the operadic composition functor
◦1 : Q(2)× Q(2) → Q(2).

If these isomorphisms a = a(x1, x2, x3) and c = c(x1, x2) make the pentagon
diagram of Figure 6.1 and the hexagon diagrams of Figure 6.6 commute, then we
have a morphism of operads in groupoids

φ : PaB → Q

uniquely determined by the assignments φ(μ) = x1 � x2, φ(α) = a(x1, x2, x3) and
φ(τ ) = c(x1, x2) in the operad Q.

(c) In the construction of (b), if we moreover assume the existence of an object

e ∈ ObQ(0)
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12 34

1 23 4

=

12 34

1 23 4

Figure 6.7. The decomposition of a parenthesized braid.

which satisfies the relation

e � x1 = x1 = x1 � e

at the object set level (where we again use algebraic notation to denote the compos-
ites with this object in our operad), together with the identities

a(e, x1, x2) = a(x1, e, x2) = a(x1, x2, e) = idm(x1,x2),

c(e, x1) = c(x1, e) = idx1

at the morphism set level (with the same notation conventions as above), then the
morphism φ : PaB → Q has a unitary extension

φ : PaB+ → Q

which maps the distinguished arity 0 element of the unitary operad of parenthesized
braids ∗ ∈ PaB+(0) to this object e ∈ ObQ(0).

Proof. We subdivide the proof of this theorem in several steps. We use op-
eradic notation in this proof rather than the algebraic notation which we adopt in
the statement of our theorem.

Step 1: The decomposition of morphisms in the parenthesized braid operad. We
first prove that any given morphism β ∈ MorPaB(r)(p, q) has a decomposition of the
form specified in assertion (a). We suggest the reader to follow our argument lines
on the example depicted in Figure 6.7.

We have MorPaB(r)(p, q) = MorCoB(r)(ω(p), ω(q))) ⊂ Br by definition of the
groupoids of parenthesized braids. We immediately obtain, therefore, that our
morphism β ∈ MorPaB(r)(p, q) admits a decomposition

β = β1 · . . . · βn,

where each factor βi ∈ MorPaB(r)(pi, qi) consists, after forgetting about parenthe-
sizations, of a single generating element τk of the braid group Br.

If pi = pi(xs(1), . . . , xs(r)) has s = (s(1), . . . , s(k), s(k + 1), . . . , s(r)) as un-
derlying permutation, then qi has an underlying permutation of the form stk =
(s(1), . . . , s(k + 1), s(k), . . . , s(r)), with the factors (s(k), s(k + 1)) switched. We
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pick a parenthesization that gathers the factors xs(k) and xs(k+1) in the word
xs(1) · . . . · xs(r). We therefore consider a parenthesized word of the form

κi = πi(xs(1), . . . , μ(xs(k), xs(k+1)), . . . , xs(r)) ∈ Ω(r),

where πi ∈ Ω(r − 1). By Theorem 6.1.7(a), we have a morphism

ρ = ρ(xs(1), . . . , xs(k), xs(k+1), . . . , xs(r)) ∈ MorPaP(r)

which goes from pi to κi in the operad of parenthesized permutations, and this
morphism is given by a composition of associators. We similarly have a morphism

σ = σ(xs(1), . . . , xs(k+1), xs(k), . . . , xs(r)) ∈ MorPaP(r)

which goes from qi to λi = πi(xs(1), . . . , μ(xs(k+1), xs(k)), . . . , xs(r)) in PaP(r). We
therefore have a decomposition of each morphism βi of the form

βi = σ(xs(1), . . . , xs(k+1), xs(k), . . . , xs(r))
−1

· πi(xs(1), . . . , τ (xs(k), xs(k+1)), . . . , xs(r))

· ρ(xs(1), . . . , xs(k), xs(k+1), . . . , xs(r))

where ρ and σ are defined by composites of associators, and the medium factor,
which represents the operadic composite s · idπi

◦kτ in the morphism set of our op-
erad, reduces to the application of a braiding isomorphism τ within a fixed paren-
thesized word.

This observation completes the proof of assertion (a) of the theorem.
Step 2: The construction of the category morphisms φ(r) : PaB(r) → Q(r). The

result of Theorem 6.1.7(b) implies the existence (and the uniqueness) of a morphism
φ : PaP → Q satisfying φ(μ) = m and φ(α) = a whenever we have an object m ∈
ObQ(2) and an associativity isomorphism a ∈ MorQ(3) that satisfies the pentagon
relation of Figure 6.1 in the operad Q. The aim of our next verifications is to
establish that this morphism φ : PaP → Q admits an extension to the parenthesized
braid operad PaB which we determine by the additional assignment φ(τ ) = c when
we have a braiding isomorphism c ∈ MorQ(2) such that the hexagon diagrams of
Figure 6.6 commute.

The definition of the morphism φ : PaP → Q includes the definition of a map
φ : Ω(r) → Q(r) at the object set level, for each r ∈ N. In this second step,
we precisely aim to define a map of morphism sets φ : MorPaB(r) → MorQ(r)
corresponding to this map of object sets φ : Ω(r) → Q(r) and to complete the
construction of a groupoid morphism φ : PaB(r) → Q(r), for each r ∈ N.

The image of a morphism β ∈ MorPaB(r)(p, q) under an operad morphism φ :
PaB → Q is actually uniquely determined from the decomposition obtained in Step
1 and the assignments α �→ a = a(x1, x2, x3), τ �→ c = c(x1, x2), since our operad
morphism is supposed to commute with all structure operations involved in this
decomposition. For instance, in the case of the braid of Figure 6.5, we obtain an
expression of the form

φ(β) = m(1, a−1)·m(1,m(1, c)) ·m(1, a) · a(1,m, 1) ·m(m(1, c), 1)

·m(a, 1) ·m(m(c, 1), 1) ·m(a−1, 1) ·m(m(1, c), 1) ·m(a, 1)

in MorQ(4) (where we do not mark input permutations for simplicity).
The main purpose of our verifications is to establish that the map

φ : MorPaB(r)(p, q) → MorQ(φ(p), φ(q)),
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which we determine from the decomposition process of Step 1, does not depend on
the choices involved in this operation.

The Mac Lane Coherence Theorem implies that φ(β) does not depend on the
choice of the decomposition of the isomorphisms of the parenthesized permutation
operad that connect the parenthesized words of our factorization. We also see
that the outcome of our construction does not depend on the parenthesizations
π ∈ Ω(r − 1), which we choose to gather the factors of the braiding isomorphisms
in our words. Indeed, we can go from one parenthesization κi = κi(x1, . . . , xr−1)
to another λi = λi(x1, . . . , xr−1) by a morphism ρ = ρ(x1, . . . , xr−1) defined within
the parenthesized permutation operad (and hence formed by a composite of asso-
ciators). The middle square of the commutative diagram

pi(xs(1),...,xs(r))

κi(xs(1),...,μ(xs(k),xs(k+1)),...,xs(r))

κi◦kτ

ρ◦kμ
λi(xs(1),...,μ(xs(k),xs(k+1)),...,xs(r))

λi◦kτ

κi(xs(1),...,μ(xs(k+1),xs(k)),...,xs(r))
ρ◦kμ

λi(xs(1),...,μ(xs(k+1),xs(k)),...,xs(r))

qi(xs(1),...,xs(r))

is carried to a commutative square by our morphism φ, for any choice of the mor-
phism c = φ(τ ), because the composition products of an operad in the category of
categories ◦k : Q(m)×Q(n) → Q(m+n−1) is a morphism of categories (and, hence,
defines a bifunctor). The external triangles are carried to commutative triangles
too (by the Mac Lane Coherence Theorem), and we conclude that both paths from
pi = pi(xs(1), . . . , xs(r)) to qi = qi(xs(1), . . . , xs(r)) in the above diagram yield the
same morphism in Q.

We still have to establish that the morphism φ(β) does not depend on the
choice of the decomposition β = β1 · . . . · βn which we form from the image of our
morphism β in the braid group Br after forgetting about parenthesizations. We
are left to check that the application of the generating relations of braids does not
change the result of our construction.

In the case of the commutation relation τkτl = τlτk, we can assume that we
have chosen a parenthesization of the form

λi = πi(xs(1), . . . , μ(xs(k), xs(k+1)), . . . , μ(xs(l), xs(l+1)), . . . , xs(r))

when we determine the image of morphisms βi and βi+1 associated to the factors
of this braid relation. The identity of the result associated to the decompositions

β = β1 · . . . · βi · βi+1 · . . . · βn = β1 · . . . · βi+1 · βi · . . . · βn

follows, in that case, from the associativity of the composition product of operads.
In the case of the braiding relation τkτk+1τk = τk+1τkτk+1, we assume that we

have chosen a parenthesization of the form

λi = πi(xs(1), . . . , μ(μ(xs(k), xs(k+1)), xs(k+2)), . . . , xs(r))
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(x1�x2)�x3

c(x1,x2)�x3

a(x1,x2,x3)
x1�(x2�x3)

x1�c(x2,x3)

c(x1,x2�x3)

x1�(x3�x2)
a(x1,x3,x2)

−1

c(x1,x3�x2)

(x1�x3)�x2

c(x1,x3)�x2

(x2�x1)�x3

a(x2,x1,x3)

(x3�x1)�x2

a(x3,x1,x2)

x2�(x1�x3)

x2�c(x1,x3)

x3�(x1�x2)

x3�c(x1,x2)

x2�(x3�x1)
a(x2,x3,x1)

−1

(x2�x3)�x1

c(x2,x3)�x1
(x3�x2)�x1

a(x3,x2,x1)
x3�(x2�x1)

Figure 6.8. The dodecagon relation. We adopt the same conven-
tions as in the picture of the pentagon and hexagon relations in this
diagram. In short, we again use the operator notation m(x1, x2) =
x1�x2 for an object of an operad m = m(x1, x2) ∈ ObQ(2), we use
expressions of the form (x1�x2)�x3, · · · ∈ ObQ(4) to represent op-
eradic composites of this object, and we use the algebraic formulas
c(x1, x2) � x3, · · · ∈ MorQ(3) to represent operadic composites of
morphisms in our operad Q (see Figure 6.1 and Figure 6.6 for fur-
ther explanations on the correspondence between these expressions
and standard operadic notation).

when we determine the image of morphisms associated to the factors of this braid re-
lation. The identity of our morphisms in Q reduces in that case to the commutation
of the dodecagon diagram of Figure 6.8, which we establish next (in Lemma 6.2.5).

Step 3: The preservation of operadic composition structures. In the previous
step, we checked that we have a coherent definition of the morphisms of small cat-
egories φ : PaB(r) → Q(r) which extend an operad morphism φ : PaP → Q on the
parenthesized permutation operad PaP . The purpose of this third step is to check
that these morphisms φ : PaB(r) → Q(r) preserve the structure operations of our
operads, and hence, define a morphism in the category of operads. The equivari-
ance and the preservation of operadic units are immediate, and the preservation
of the operadic composition products of objects follows from the definition of our
morphisms as an extension of the components of an operad morphism on the op-
erad of parenthesized permutations. We are therefore left to check the preservation
of the operadic composition products for the morphisms of the parenthesized braid
operad.

The decomposition of morphisms, which we have used to determine our maps
on morphism sets φ : MorPaB(r) → MorQ(r) in Step 2, can be applied to reduce
the verification of the relations φ(β ◦k γ) = φ(β) ◦k φ(γ) to generating cases. The
preservation of operadic composites with associators is also included in the defini-
tion of our morphisms as an extension of the components of an operad morphism on
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the parenthesized permutation operad. We therefore reduce our verifications to the
case where β (respectively, γ) is an identity morphism in PaB and γ (respectively,
β) is given by the application of a braiding τ within a parenthesized word.

The verification of the relation φ(β ◦k γ) = φ(β) ◦k φ(γ) is immediate when β
is the identity and the braiding occurs in the second factor γ. Thus we focus on
the case where the braiding occurs in the first factor β.

We assume β = κ(x1, . . . , τ (xl, xl+1), . . . , xm) and γ = idλ, for some κ ∈
Ω(m− 1), l ∈ {1, . . . ,m− 1}, and λ ∈ Ω(n). We can still use the decomposition of
the word λ within the magma operad to reduce our verification to the case where
λ = μ and n = 2. If γ = idμ is plugged in an input k �= l, l + 1 of the word β =
κ(x1, . . . , τ (xl, xl+1), . . . , xm), then our relation follows from the associativity of the
composition products in Q. If γ = idμ is plugged in an input k = l, l + 1 of the
braiding τ = τ (xl, xl+1) within the composite β = κ(x1, . . . , τ (xl, xl+1), . . . , xm),
then we see that the decomposition of the morphism τ (xl, xl+1) ◦k idμ, involved in
the construction of our map φ : β◦kγ, is equivalent to the application of the hexagon
relations of Figure 6.6 within the parenthesized braid operad, and the commuta-
tion of these diagrams in Q implies the preservation of this operadic composition
operation.

This verification completes the proof of assertion (b) of the theorem.
Step 4: The definition of the unitary extension of our morphism. To address

the proof of assertion (c), we just observe that the relations of this assertion, which
read m ◦1 e = m ◦2 e = 1, a ◦1 ide = a ◦2 ide = a ◦3 ide = idm, and c ◦1 ide =
c ◦1 ide = id1, imply that the assignment φ : ∗ �→ e gives a coherent extension
of our morphism φ : PaB → Q when we consider the image of the object μ ∈
ObPaB(2), and of the morphisms α ∈ MorPaB(3)(μ(μ(x1, x2), x3), μ(x1, μ(x2, x3))),
τ ∈ MorPaB(2)(μ(x1, x2), μ(x2, x1)) under the restriction operators ∂k = − ◦k ∗
in PaB . From this verification, we readily deduce that φ carries any restriction
operator in PaB to the corresponding composite with the object e in the operad Q,
and our conclusion follows. �

The next lemma, which we use in the proof of Theorem 6.2.4, is a standard
statement of the theory of braided monoidal categories (see [99]):

Lemma 6.2.5. If the morphisms a(x1, x2, x3) and c(x1, x2) of Theorem 6.2.4
make the hexagon diagrams of Figure 6.6 commute, then the dodecagon of Fig-
ure 6.8, tiled with two hexagons and one square, commutes as well.

We suggest the reader to make these relations explicit for the associativity
isomorphism α and for the braiding τ of the parenthesized braid operad PaB .

Proof. The left hand side and right hand side hexagons in the dodecagon
tiling of the lemma are identified with the hexagons of Figure 6.6 (with a factor a±1

inverted) and therefore, these hexagons commute. The medium square commutes
as well. Indeed, for the morphism c = c(x1, x2), going from m = m(x1, x2) to
tm = m(x2, x1), where we set t = (1 2), the functoriality of the composition
product ◦2 : Q(2)×Q(2) → Q(3) gives c ◦2 (tm) ·m ◦2 c = c ◦2 c = (tm) ◦2 c · c ◦2 m,
which is the identity asserted by the commutation of that square. �

To sum up, the result of Theorem 6.2.4 gives an equivalence between op-
erad morphisms φ : PaB → Q and triples (m, a, c) consisting of an operation
m(x1, x2) = x1 � x2 ∈ ObQ(2), an isomorphism a = a(x1, x2, x3) ∈ MorQ(3) which
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makes this operation m(x1, x2) = x1 � x2 associative in the operad Q, and an
isomorphism c = c(x1, x2) ∈ MorQ(2) which makes m braided commutative in the

sense that we have c(x1, x2) : x1 � x2
�−→ x2 � x1, but we do not necessarily get

the identity of the object m(x1, x2) = x1 � x2 when we go back to x1 � x2 by
applying this commutation operator c = c(x1, x2) twice. In both the expression
of the associativity and braiding relations, we assume the verification of coherence
constraints, which can be reduced to the commutativity of the pentagon diagram of
Figure 6.1 in the case of the associativity relation and of the hexagon diagrams of
Figure 6.6 in the case of the braiding relation. In the unitary case, we consider an
additional object e ∈ Q(0) which satisfies strict unit relations e� x1 = x1 = x1 � e
with respect to m(x1, x2) = x1�x2, and natural coherence constraints with respect
to the associativity isomorphism and to the braiding isomorphism.

For the sake of comparison, in the case of the colored braid operad, we obtain
the following statement:

Theorem 6.2.6.
(a) Giving a morphism φ : CoB → Q from the colored braid operad CoB towards

an operad in the category of categories Q amounts to giving an object

m(x1, x2) = x1 � x2 ∈ ObQ(2)

and an isomorphism

c(x1, x2) ∈ MorQ(2)(x1 � x2, x2 � x1)

such that the strict associativity relation

(x1 � x2) � x3 = x1 � (x2 � x3)

holds in the operad Q and the hexagons of Figure 6.6, where we take a = id,
commute.

(b) In the construction of ( a), if we moreover assume the existence of an object

e ∈ ObQ(0) such that e � x1 = x1 = x1 � e,

and c(e, x1) = id = c(x1, e),

then the morphism φ : CoB → Q has a unitary extension φ : CoB+ → Q which maps
the distinguished arity 0 element of the unitary operad of colored braids ∗ ∈ CoB+(0)
to this object e ∈ ObQ(0).

Proof. This result follows from the same argument lines as Theorem 6.2.4.
We just forget about the associativity isomorphisms in our verifications. �

6.2.7. The operadic representation of braided monoidal structures on categories.
We can extend the observations of §6.1.9 to get an interpretation of the action of
the operads P = CoB+,PaB+ on a category C. We again use that such an action
is encoded by a morphism φ : P → EndC which maps the objects of our operad
p ∈ ObP(r) to multi-functors f : C×r → C and the morphisms of the operad to
natural transformations.

In both cases, we can take the image of the object μ = μ(x1, x2) under our
morphism φ to get the tensor product operation m(X1, X2) = X1⊗X2 : C×C → C

of a monoidal structure on C (as in §6.1.9). The image of the unitary element of
the operad gives a natural transformation e : pt → C equivalent to a unit object
1 ∈ C for this tensor product in C, and we can take the image of the braiding τ to
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get a natural isomorphism c(X1, X2) : X1 ⊗X2
�−→ X2 ⊗X1 that makes the tensor

product of our category braided commutative. In the case of the parenthesized
braid operad, we take the image of the associativity isomorphism α ∈ MorPaB(3)

to get a natural isomorphism a(X1, X2, X3) : (X1⊗X2)⊗X3
�−→ X1⊗(X2⊗X3) that

makes the tensor product associative. In the case of the colored braid operad, we
assume that the tensor product satisfies the associativity relation in the strict sense
(X1⊗X2)⊗X3 = X1 ⊗ (X2⊗X3) and we take a(X1, X2, X3) = id as associativity
isomorphism. Hence, we obtain that giving a morphism φ : PaB+ → EndC is
equivalent to giving a braided monoidal structure on C, in the sense of [130], with
strict unit relations but general associativity isomorphisms, while giving a morphism
φ : CoB+ → EndC is equivalent to giving a braided monoidal structure with both
strict unit and strict associativity relations. The pentagon diagram of Figure 6.1
and the hexagon diagrams of Figure 6.6 are equivalent to the usual coherence axioms
of braided monoidal categories (see [130]), and we have a similar correspondence
for the coherence constraints associated to the unit object.

The constructions of this chapter can readily be adapted to get operads that
govern symmetric monoidal category structures with strict or general associativity
isomorphisms. We survey this case in the next section.

6.2.8. Free braided monoidal categories. The free algebra construction of §1.3.4
can be applied in the category of small categories to associate a free strict (respec-
tively, general) braided monoidal category S(P ,X) to any small category X ∈ Cat ,
when we take P = CoB+ (respectively, P = PaB+).

We focus on the case of a one-point set X = pt . For the operad P = CoB+,
we obtain ObS(CoB+, pt) = N and S(CoB+, pt) =

∐
r∈N(CoB+(r) × pt×r)Σr

=∐
r∈N CoB+(r)Σr

is identified with the disjoint union of the braid groups Br, re-
garded as categories with a single object. The tensor product ⊗ : S(CoB+, pt) ×
S(CoB+, pt) → S(CoB+, pt) is given by the addition of non-negative integers at
the object level, and by the direct sum of braids at the morphism level. We actu-
ally retrieve, with this operadic approach, the Joyal-Street construction of the free
braided monoidal category (see [99]).

For the operad P = PaB+, we have ObS(PaB+, pt) = Ω(x)+, where we use the
notation Ω(x)+ for a free magma on one variable x. The category S(PaB+, pt) ad-
mits a decomposition S(PaB+, pt) =

∐
r∈N(PaB+(r)×pt×r)Σr

=
∐

r∈N PaB+(r)Σr
,

whose rth summand PaB+(r)Σr
is identified with the full subcategory generated by

monomials of weight r in the object set defined by the free magma Ω(x)+. For any
pair of such monomials p, q ∈ Ω(x)+, we moreover have MorS(PaB+,pt)(p, q) = Br.
The tensor product associated to this category ⊗ : S(PaB+, pt) × S(PaB+, pt) →
S(PaB+, pt) is given by the substitution operation p(x, . . . , x) ⊗ q(x, . . . , x) =
μ(p(x, . . . , x), q(x, . . . , x)) at the object level and by the direct sum of braids at
the morphism level again.

Bar-Natan’s parenthesized braid categories (see [16]) are identified with Hopf
groupoids k[PaB+(r)Σr

] associated to these summands of the free braided monoidal
category (we formalize the definition of the notion of a Hopf groupoid in §9).

6.3. The parenthesized symmetry operad

We briefly mention in §6.2.7 that we can adapt the constructions of the previous
section to get operads encoding symmetric monoidal category structures with strict
or general associativity isomorphisms. We survey this construction in this section.
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Recall that the notion of a symmetric monoidal category differs from the structure
of a braided monoidal category by the requirement that the braiding isomorphism

c(X1, X2) : X1 ⊗X2
�−→ X2 ⊗X1, which we call the symmetry isomorphism in this

context, satisfies the involution relation c(X1, X2)c(X2, X1) = id for every pair of
objects in our category X1, X2 ∈ C.

We consider the operad in sets Γ such that Γ (r) = pt , for all r > 0 (the operad
of commutative monoids). We start with the operads in discrete groupoids P which
has the components of this operad Γ as object sets. We explicitly have ObP(r) =
Γ (r) = pt and MorP(r)(pt , pt) = pt , for all r > 0. We then set CoS := α∗ P where
we consider the pullback of this operad P along the standard morphism α : Π → Γ
from the permutation operad Π to Γ . We accordingly have ObCoS(r) = Π(r) = Σr

by construction and the morphism sets of the groupoids CoS(r) which form this
operad CoS are given by MorCoS(r)(u, v) = pt , for all u, v ∈ Σr, r > 0. The structure
operations of this operad are inherited from the permutation operad at the object
set level and are given by trivial one-point set maps at the morphism set level. We
are precisely going to see that this operad CoS , which we call the colored symmetry
operad, is associated to the category of symmetric monoidal categories whose tensor
product is associative in the strict sense.

We then set PaS := ω∗ CoS , where we consider the pullback of the colored
symmetry operad CoS along the standard morphism ω : Ω → Π from the magma
operad Ω to the permutation operad Π, as in the construction of the parenthesized
braid operad of the previous section. We accordingly have ObPaS(r) = Ω(r), and
the morphism sets of the groupoids PaS(r) which form this operad PaS are given
by MorPaS(r)(p, q) = pt , for all p, q ∈ Ω(r), r > 0. The structure operations of this
operad are inherited from the magma operad at the object set level and are again
given by trivial one-point set maps at the morphism set level.

We call this operad PaS the parenthesized symmetry operad. We explain an
analogue of the statement of Theorem 6.2.4 for this operad PaS .

We have an obvious unitary extension of both the colored symmetry operad
and the parenthesized symmetry operad. We consider these unitary operads CoS+

and PaS+ in order to model the existence of strict units in symmetric monoidal
categories.

6.3.1. The representation of morphisms in the parenthesized symmetry operad.
We can actually use a variant of the parenthesized braid diagram picture to repre-
sent the morphisms of the parenthesized symmetry operad PaS . We still represent
the source and target objects of our morphisms p, q ∈ Ω(r) by diadic decompositions
of the intervals, which reflect the underlying parenthesization of these operations in
the magma operad, together with a labeling of contact points, on the center of the
components our diadic decompositions, which reflects the positions of the variables
(x1, . . . , xr) in our parenthesized words p = p(x1, . . . , xr) and q = q(x1, . . . , xr).

Recall that we have MorPaS(r)(p, q) = pt , for all p, q ∈ Ω(r), by construction
of the operad PaS . We represent our morphism by an r tuple of strands which
connect the contact points with the same label in the source and target object
of our morphisms. We simply forget about the relative positions of the strands
which we consider in our representation of braid diagrams. We give an example of
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application of this representation in the following picture:

12 34

1 23 4

We can also use an obvious variant of the insertion of braids to represent the
operadic composition of operations in PaS . We have an obvious operad morphism
q : PaB → PaS , which we form by forgetting the relative positions of the strands
in our representation of the morphisms of the parenthesized braid operad as braid
diagrams.

The operad of parenthesized symmetries inherits an associativity isomorphisms,
which is given by the same picture as the associativity isomorphism of the paren-
thesized braid operad:

α =

1 2 3

321

∈ MorPaS(3)((x1x2)x3, x1(x2x3)),(1)

and a symmetry homomorphism:

τ =

1 2

2 1

∈ MorPaS(3)(x1x2, x2x1),(2)

which represents the underlying transposition of the braiding isomorphism of the
parenthesized braid operad. We see that this symmetry isomorphism satisfies the
involution relation

(3) τ (x1, x2)τ (x2, x1) = id

(unlike the braiding isomorphism of the parenthesized braid operad), where (1 2)τ =
τ (x2, x1) represent the image of the operation τ = τ (x1, x2) under the action of the
transposition (1 2) ∈ Σ2 on PaS(2).

We immediately check that these isomorphisms satisfy the same pentagon and
hexagon relations, expressed by the commutativity of the diagrams of Figure 6.1 and
Figure 6.6, as the associativity isomorphism and the braiding of the parenthesized
braid operad (see §6.2.3). We may simply observe that the hexagon diagrams
of Figure 6.6 become equivalent to each other when our symmetry isomorphism
c = c(x1, x2) satisfies the involution relation c(x1, x2)c(x2, x1) = id .

We have the same obvious identities as in the case of the parenthesized braid
operad when we pass to the unitary extension of our operad PaS+ and we con-
sider the composition operations with the element of arity zero ∗ ∈ PaS+(0). We
explicitly have the formulas α(∗, x1, x2) = α(x1, ∗, x2) = α(x1, x2, ∗) = idμ(x1,x2)

and τ (∗, x1) = τ (x1, ∗) = idx1
We equivalently get ∂1α = ∂2α = ∂3α = idμ and

∂1τ = ∂2τ = id1 when we use restriction operators to represent these composition
operations ∂k = − ◦k ∗.

We can now formulate the analogue of the statement of Theorem 6.2.4 for the
parenthesized symmetry operad:
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Theorem 6.3.2.
(a) Let Q be any operad in the category of categories. Let

m = m(x1, x2) ∈ ObQ(2)

be an object in the component of arity two of this operad. In what follows, we also
use the notation

m(x1, x2) = x1 � x2

for this object and we again use classical algebraic notation (rather than operadic
notation) to represent the composites of this object in our operad Q. Let

a(x1, x2, x3) ∈ MorQ(3)((x1 � x2) � x3, x1 � (x2 � x3))

be an isomorphism which connects the operadic composites

(m ◦1 m)(x1, x2, x3) = (x1 � x2) � x3 ∈ ObQ(3)

and (m ◦2 m)(x1, x2, x3) = x1 � (x2 � x3) ∈ ObQ(3)

in the category Q(3). Let

c = c(x1, x2) ∈ MorQ(2)(x1 � x2, x2 � x1)

be a symmetry isomorphism which connects the object m(x1, x2) = x1�x2 ∈ ObQ(2)
to its transposite (1 2)m(x1, x2) = x2�x1 ∈ ObQ(2) in the category Q(2) and which
satisfies the involution relation c(x1, x2)c(x2, x1) = id, where (1 2)c = c(x2, x1)
represents the image of this isomorphism under the action of the transposition
(1 2) ∈ Σ2 on Q(2).

If these isomorphisms a = a(x1, x2, x3) and c = c(x1, x2) make the pentagon
diagram of Figure 6.1 commute, as well as (any one of) the hexagon diagrams of
Figure 6.6, then we have a morphism of operads in groupoids

φ : PaS → Q

uniquely determined by the assignments φ(μ) = x1 � x2, φ(α) = a(x1, x2, x3) and
φ(τ ) = c(x1, x2) in the operad Q.

(b) In the construction of ( a), if we moreover assume the existence of an object

e ∈ ObQ(0)

which satisfies the relation

e � x1 = x1 = x1 � e

at the object set level (where we again use algebraic notation to denote the compos-
ites with this object in our operad), together with the identities

a(e, x1, x2) = a(x1, e, x2) = a(x1, x2, e) = idm(x1,x2),

c(e, x1) = c(x1, e) = idx1

at the morphism set level (with the same notation conventions as above), then the
morphism φ : PaB → Q has a unitary extension

φ : PaS+ → Q

which maps the distinguished arity 0 element of the unitary operad of parenthesized
symmetries ∗ ∈ PaS+(0) to this object e ∈ ObQ(0).

Proof. The proof of this statement follows from the same argument lines as
the result of Theorem 6.2.4 and we leave this verification as an exercise. �
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In the case of the colored symmetry operad, we obtain the following statement:

Theorem 6.3.3.
(a) Giving a morphism φ : CoS → Q from the colored symmetry operad CoS

towards an operad in the category of categories Q amounts to giving an object

m(x1, x2) = x1 � x2 ∈ ObQ(2)

which satisfies the strict associativity relation

(x1 � x2) � x3 = x1 � (x2 � x3)

in this operad Q, together with a symmetry isomorphism

c(x1, x2) ∈ MorQ(2)(x1 � x2, x2 � x1)

which satisfies the involution relation c(x1, x2)c(x2, x1) = id and makes commute
(any one of) the hexagons of Figure 6.6 for the choice a = id of associativity
isomorphism.

(b) In the construction of ( a), if we moreover assume the existence of an object

e ∈ ObQ(0) such that e � x1 = x1 = x1 � e,

and c(e, x1) = id = c(x1, e),

then the morphism φ : CoS → Q has a unitary extension φ : CoS+ → Q which
maps the distinguished arity 0 element of the unitary operad of colored symmetries
∗ ∈ CoS+(0) to this object e ∈ ObQ(0).

Proof. This statement parallels the result of Theorem 6.2.6, and follows again
from a straightforward adaptation of the arguments of Theorem 6.2.4 (where we
forget about the associativity isomorphism). �

We use the same ideas as in §6.2.7 to deduce from these statements that giving
an action of the (unitary) operad of parenthesized symmetries PaS+ on a category
C amounts to providing this category C with a symmetric monoidal structure, with
a strict unit but general associativity isomorphisms, while giving an action of the
(unitary) operad of colored symmetries CoS+ on C amounts to providing C with a
symmetric monoidal structure where the tensor product satisfies both strict unit
and strict associativity relations.

We observed in §6.3.1 that we have an obvious morphism from the operad
of parenthesized braids PaB to the operad of parenthesized symmetries PaS . We
actually have a whole commutative diagram of operad morphisms

PaP+ PaB+ PaS+

CoP+ CoB+ CoS+

which summarizes the connections between the operads considered in this chapter
and which obviously mirrors the diagram of functors between the categories of
monoidal categories encoded by our operads.
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CHAPTER 7

Hopf Algebras

The purpose of this chapter is to review the definition of the notion of a Hopf
algebra and to explain classical structure results on Hopf algebras.

Briefly recall for the moment that a Hopf algebra is an object which is equipped
with both a counitary coalgebra structure, a unitary algebra structure, and with
an operation, called the antipode, which is a generalization of the classical inversion
operation for groups. Hopf algebras equipped with a commutative algebra struc-
ture naturally occur in the framework of algebraic geometry, as function rings of
affine group schemes (see for instance [33, 55, 180]). Hopf algebras equipped with
a cocommutative coalgebra structure notably occur in algebraic topology, as the
homology of connected H-spaces (see for instance [182, §III.8] for an introduction
to this subject), and as the natural structure of the Steenrod algebra (see [168]).
Hopf algebras equipped with a cocommutative coalgebra structure also occur in
representation theory, as the dual objects of the commutative Hopf algebras con-
sidered in the study of affine group schemes, and as the enveloping algebras of Lie
algebras (we review the definition the enveloping algebra of a Lie algebra in the
second section of this chapter). In the next chapter, we also use complete Hopf
algebras in order to extend the rationalization of abelian groups to general groups.
We refer to this construction as the Malcev completion. Further fields of applica-
tions of commutative and cocommutative Hopf algebra structures include algebraic
combinatorics (see the monographs [4, 5]), the Grothendieck-Galois theory (see for
instance [172, §6] for a nice introduction to this subject and [32] for a comprehen-
sive account), and the Connes-Kreimer approach of the renormalization theory in
mathematical physics (see [49]).

The notion of a Hopf algebra makes also sense without assuming any com-
mutativity property, for both the coalgebraic and the algebraic part of the struc-
ture. Significant examples of Hopf algebras which are neither cocommutative nor
commutative occur in the theory of quantum groups (see for instance [56] for an
authoritative overview of this subject). In our applications however, we only deal
with Hopf algebras which are cocommutative as coalgebras. Therefore, when we
deal with a Hopf algebra, we generally assume that the coalgebra structure is co-
commutative and we do not recall this convention, unless the precision is required
by the context.

In the first section of the chapter (§7.1), we recall the precise definition of a
Hopf algebra and we give a reminder of basic examples of Hopf algebras. To be
more specific, we check that the free k-module k[G] associated to a group G inherits
a Hopf algebra structure.

The second section (§7.2) is devoted to the connection between Lie algebras and
Hopf algebras: we recall the definition of the enveloping algebra of a Lie algebra
and the statement of the theorems of Poincaré-Birkhoff-Witt and Milnor-Moore
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(the classical structure theorems of the theory of Hopf algebras). The main out-
come of these theorems is that the enveloping algebra functor defines an equivalence
of categories between the category of Lie algebras and a subcategory of the cate-
gory of (cocommutative) Hopf algebras formed by objects which satisfy a certain
conilpotence condition.

In the third section (§7.3), we study Hopf algebras in the category of complete
filtered modules. We use these complete Hopf algebras in the next chapter (§8) in
order to define the Malcev completion of groups.

7.1. The notion of a Hopf algebra

This first section is introductory. Our purpose is to recall the general definition
of a Hopf algebra and the definition of the Hopf algebra structure on a group
algebra k[G].

In short, the notion of a Hopf algebra is defined by replacing sets, underlying
the usual group structures, by coalgebras, and by using tensor structures instead of
cartesian structures in the definition of the unit, product, and inversion operations.
In the case of a group algebra k[G], we consider the natural coalgebra structure
of §3.0.6, with the coproduct defined by the diagonal Δ([g]) = [g] ⊗ [g] on the
elements of G, and the counit such that ε([g]) = 1, for any g ∈ G. The Hopf
structure of k[G] is yielded by the structure operations attached to our group G.
In the sequel, we generally assume that the underlying coalgebra of a Hopf algebra
is cocommutative, and we therefore take this convention in our definition.

The definition of a Hopf algebra makes sense in the general setting of symmetric
monoidal categories. Throughout this section, we generally start with abstract defi-
nitions, which we formulate in this categorical framework, and we make explicit the
applications of our concepts in the context of a category of modules over a ground
ring k. The purpose of this abstract approach is to give a conceptual introduction
to the main ideas of the theory and to prepare the ground for applications of Hopf
algebras in other contexts than the standard categories of modules over a ring.

In certain cases, we use pointwise formulas, directly transported from a mod-
ule context, to specify morphisms in abstract categories. The idea is to interpret
such formulas in terms of operations on abstract variables, so that our formulas
actually represent combinations of morphisms which we produce by applying struc-
ture operations of the ambient category. For instance, we may use the expression

c(x⊗ y) = y ⊗ x to refer to a symmetry isomorphism c : M ⊗N
�−→ N ⊗M .

To start with, we review the definition of the notion of a counitary (cocom-
mutative) coalgebra, which we introduced in §3.0.4 in the context of symmetric
monoidal categories. In a second step, we examine the definition of a bialgebra,
which are monoid objects (algebras in the sense of §3.0) in the symmetric monoidal
category of coalgebras. We explain the definition of a Hopf algebra afterwards.

7.1.1. Counitary cocommutative coalgebras. Briefly recall that a counitary co-
commutative coalgebra (in a symmetric monoidal category) consists of an object
C equipped with a counit ε : C → 1 (also referred to as the augmentation) and
with a coproduct Δ : C → C⊗C which satisfies natural counit, coassociativity and
cocommutativity relations (see §3.0.4).

In the module context, the augmentation ε : C → k assigns a scalar ε(x) ∈ k to
each element x ∈ C, and we represent the expansion of the coproduct of any such
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element Δ(x) ∈ C⊗2 by an expression of the form Δ(x) =
∑

(x) x(1) ⊗ x(2), where

x(1), x(2) ∈ C denote the factors of this tensor in C⊗2.
The coassociativity relation implies that all n−1-fold iterations of the coproduct

of our coalgebra C define the same morphism Δ(n) : C → C⊗n, and we can naturally
extend our notation of the coproduct to represent the expansion of the n-fold tensor
Δ(n)(x) ∈ C⊗n arising from any such iterated application of coproducts. Explicitly,
we write Δ(n)(x) =

∑
(x) x(1) ⊗ · · · ⊗ x(n), for any x ∈ C. In this formalism the

coassociativity relation reads:∑
(x)

x(1) ⊗ x(2) ⊗ x(3)︸ ︷︷ ︸
Δ(3)(x)

=
∑
(x)

Δ(x(1))⊗ x(2)︸ ︷︷ ︸
Δ⊗id ·Δ(x)

=
∑
(x)

x(1) ⊗Δ(x(2))︸ ︷︷ ︸
id ⊗Δ·Δ(x)

.

The counit relations read:∑
(x)

ε(x(2)) · x(1) =
∑
(x)

ε(x(1)) · x(2) = x,

and the cocommutativity relation reads:∑
(x)

x(2) ⊗ x(1) =
∑
(x)

x(1) ⊗ x(2).

The coassociativity implies that these relations have an obvious extension to multi-
ple coproducts. In particular, we obtain from the cocommutativity relation that an
n-fold coproduct Δ(n)(x) ∈ C⊗n is invariant under the action of any permutation
s ∈ Σn on C⊗n.

Recall that we use the notation Comc
+ for the category formed by the counitary

cocommutative coalgebras with the structure preserving morphisms of the base
category as morphisms.

7.1.2. Tensor product of counitary cocommutative coalgebras. In §3.0.4, we ob-
serve that the tensor product of augmented cocommutative coalgebras inherits a
counitary cocommutative coalgebra structure so that augmented cocommutative
coalgebras form a symmetric monoidal category with unit, associativity and sym-
metry isomorphisms inherited from the base category.

In the module context, the definition of the augmentation on a tensor product
of coalgebras C,D ∈ Comc

+ reads

ε(x⊗ y) = ε(x) · ε(y),
and the definition of the coproduct reads

Δ(x⊗ y) =
∑

(x),(y)

(x(1) ⊗ y(1))⊗ (x(2) ⊗ y(2)),

for any x ∈ C, y ∈ D, and where we adopt the convention of §7.1.1 for the notation
of the coproduct of x (respectively, y) in C (respectively, D). The ground ring k,
which represents the unit object of our module category Mod , is equipped with the
augmented cocommutative coalgebra structure such that ε(1) = 1 and Δ(1) = 1⊗1.

7.1.3. Unitary associative algebras. In §3.0, we focused on the study of com-
mutative structures. However, we mentioned that most of our constructions can be
handled for associative (non-commutative) algebras.

To get the definition of a unitary associative algebra, we just drop the com-
mutativity requirement from our definition. Thus, a unitary associative algebra in
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a (symmetric) monoidal category M consists of an object A ∈ M equipped with
a unit morphism η : 1 → A and with a product μ : A ⊗ A → A which satisfies
natural unit and associativity relations. In general, we express these relations by
the commutativity of the following diagrams:

A⊗ 1
id ⊗η

�

A⊗A

μ

1⊗A
η⊗id

�

A

, A⊗ A⊗A

μ⊗id

id ⊗μ
A⊗A

μ

A⊗A
μ

A

.

In the module context, we use the standard algebraic notation 1 = η(1) ∈ A and
a1a2 = μ(a1 ⊗ a2), for the unit element and the product of an associativity algebra
A. If necessary, then we just use a subscript in order to specify the associative
algebra A which corresponds to a given unit morphism η = ηA (respectively, to a
given product morphism μ = μA).

The morphisms of unitary associative algebras consist, as in the commutative
case, of the morphisms of the base category which preserve the unit and the product
operation of our objects. We use the notation As+ = MAs+ for the category of
unitary associative algebras in M. We just forget the base category from this
notation when this information is not necessary (as in the commutative algebra
case again).

7.1.4. Tensor product of unitary associative algebras. The tensor product A⊗B
of unitary associative algebras A,B ∈ As+ inherits a unitary associative algebra
structure whose definition is the same as in the unitary commutative algebra case:

– the unit morphism of the tensor product A⊗B is given by the composite

1
�−→ 1⊗ 1

ηA⊗ηB−−−−−→ A⊗B, where we use the unit isomorphism of the base
category before applying the unit morphisms of our algebras A and B;

– and the product morphism is given by the composite A⊗B⊗A⊗B
(2 3)∗−−−−→

A ⊗ A ⊗ B ⊗ B
μA⊗μB−−−−−→ A ⊗ B, where we perform a tensor permutation

(2 3)∗ (by using the symmetry isomorphism of the base category) before
applying the product morphisms of our algebras A and B.

The unit object of the base symmetric monoidal category 1 inherits a canonical
unitary associative algebra structure and represents a unit object for the tensor
product of unitary associative algebras. The tensor product of unitary associative
algebras inherits unit, associativity and symmetry isomorphisms from the base
category too. The category of unitary associative algebras therefore inherits a full
symmetric monoidal structure from the base category.

In the module context, the unit element of the tensor product A⊗B is given by
the tensor product 1A⊗B = 1A⊗1B of the unit elements of our algebras 1A ∈ A and
1B ∈ B, and the definition of the product reads (a1⊗b1)·(a2⊗b2) = (a1a2)⊗(b1b2),
for any a1 ⊗ b1, a2 ⊗ b2 ∈ A⊗B.

This symmetric monoidal structure is similar to the symmetric monoidal struc-
ture of the category of unitary commutative algebras, such as defined in §3.0.3.
However, we may observe that the tensor product of unitary associative algebras
is not identified with the coproduct of the category (in contrast with the tensor
product of unitary commutative algebras). To be specific, we have a commutation
relation (a⊗1)·(1⊗b) = a⊗b = (1A⊗b)·(a⊗1B), between the image of the elements
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of A and B in the tensor product A⊗B, while such commutativity relations do not
occur in coproducts when we work in the category of unitary associative algebras.

7.1.5. Bialgebras. We formally define a (cocommutative) bialgebra as a unitary
associative algebra (in the sense of §7.1.3) in the symmetric monoidal category of
counitary (cocommutative) coalgebras. Accordingly, a cocommutative bialgebra in
a symmetric monoidal category M consists of an object H ∈ M equipped with:
(1) a counitary cocommutative coalgebra structure, determined by a counit ε : H →

1 and a coproduct Δ : H → H ⊗ H which satisfy the counit, coassociativity,
and cocommutativity relations of §3.0.4,

(2) together with a unit morphism η : 1 → H and a product morphism μ : H⊗H →
H, both formed in the category of counitary cocommutative coalgebras, and
which satisfy the unit and associativity relations of §7.1.3 in that category.

Under our conventions for the notation of algebra categories, the category of bial-
gebras which we define in this paragraph is denoted by the expression Comc

+ As+ =
MComc

+ As+. We drop the base category from this notation when we do not need
to recall this information (as usual).

7.1.6. The distribution relations underlying a bialgebra structure. Since the cat-
egory of counitary cocommutative coalgebras inherits its symmetric monoidal struc-
ture from the base category, the unit and product morphisms, which define the
unitary associative algebra structure of our bialgebras, can be formed in the base
category, and the requirement that these morphisms are morphisms of counitary
cocommutative coalgebras is equivalent to the commutativity of the following dia-
grams:

1
η

=

H

ε

1

,

1
η

�

H

Δ

1⊗ 1
η⊗η

H ⊗H

(1)

(as regards the unit morphism) and:

H ⊗H
μ

ε⊗ε

H

ε

1⊗ 1 � 1

,

H ⊗H
μ

Δ⊗Δ

H

ΔH ⊗H ⊗H ⊗H

(2 3)∗

H ⊗H ⊗H ⊗H
μ⊗μ

H ⊗H

(2)

(as regards the product). In the module context, the commutation of these diagrams
are equivalent to identities:

ε(1) = 1, Δ(1) = 1⊗ 1,

and ε(a · b) = ε(a) · ε(b), Δ(a · b) =
∑

(a),(b)

a(1) · b(1) ⊗ a(2) · b(2),

for any a, b ∈ H.
We just unravel the definition of the counitary cocommutative coalgebra struc-

ture on the unit object 1 (1 = k in the module context) and on the tensor product
H⊗H to get these identities. We readily see that the distribution relation between
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the product and the coproduct is equivalent to the identity Δ(a · b) = Δ(a) ·Δ(b)
by definition of the product of tensors in unitary associative algebras. We more
generally see that assuming the commutativity of the diagrams (1-2) amounts to
requiring that the counit ε : H → 1 and the coproduct Δ : H → H ⊗ H define
morphisms of unitary associative algebras, where we use the underlying unitary
associative algebra structure of our bialgebra H, of the unit object 1 and of the
tensor product H ⊗H. We therefore obtain that:

Proposition 7.1.7. The structure of a bialgebra, initially defined as the struc-
ture of a unitary associative algebra in the category of counitary cocommutative
coalgebras in §7.1.5, can equivalently be defined as the structure of a counitary co-
commutative coalgebra in the category of unitary associative algebras (where we use
the observations of §7.1.4 to provide the category of unitary associative algebras
with a symmetric monoidal structure). �

This proposition asserts that we have an identity of categories Comc
+ As+ =

As+ Comc
+ when we apply our conventions for the notation of categories.

7.1.8. Hopf algebras. Recall that we generally use the phrase ‘Hopf object’ to
refer to any class of structured object in the symmetric monoidal category of couni-
tary cocommutative coalgebras (see §3). But we prefer to use the name ‘bialgebra’
for the category unitary associative algebras in counitary cocommutative coalgebras
and we reserve the name ‘Hopf algebra’ for objects of this category which satisfy
certain extra properties (in order to agree with the conventions of the literature).
We explicitly define a Hopf algebra H as a bialgebra in the sense of §7.1.5 equipped
with:
(1) morphisms σ, τ : H → H, both formed in the base category, and which fit in a

commutative diagram

H

Δ

ε 1
η

H

H ⊗H
σ⊗id

id ⊗τ
H ⊗H

μ

,

where we consider the unit, the counit, the product and the coproduct opera-
tions of our bialgebra H.
This definition makes sense in any symmetric monoidal category, but we ex-

amine the particular case of Hopf algebras in modules with more details first. (We
tackle more elaborate examples in the next sections.) In the module context, our
relations, expressed by the commutativity of the diagram of (1), are equivalent to
the equations ∑

(a)

σ(a(1)) · a(2)
(1)
= ε(a) · 1 (2)

=
∑
(a)

a(1) · τ (a(2)),

which hold for any a ∈ H and take values in H. In general, a morphism σ which
fits in a relation of the form (1) is called a left antipode, and a morphism τ which
fits in the symmetric relation (2) is called a right antipode.

We denote the category of Hopf algebras by the expression HopfAlg .
To complete the definition of a Hopf algebra, we check that:

Proposition 7.1.9. In general, if we assume that a bialgebra H is equipped
with a left antipode σ : H → H, then we have at most one right antipode on H
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which is also necessarily equal to the left antipode as a morphism from H to H. If
we symmetrically assume that a bialgebra H is equipped with a right antipode τ :
H → H, then we have at most one left antipode on H which is also necessarily
equal to the right antipode.

Hence, in our definition of a Hopf algebra §7.1.8, the left and the right antipodes
are necessarily equal σ = τ , and are also unique. Furthermore any morphism of
bialgebras φ : G → H, where G and H are Hopf algebras, automatically preserves
antipodes.

In fact, we do not need the cocommutativity of the coalgebra structure in the
proof of this statement, as well as in the proof of the next general statements on
Hopf algebras up to Proposition 7.1.12.

Proof. The result of this proposition holds in any symmetric monoidal cate-
gory, but we prefer to give a proof in the module setting in order to illustrate our
coproduct notation. The reformulation of our arguments in a general setting is the
matter of a straightforward transcription.

Let H be any bialgebra. Recall that we use the notation Δ(3) for the 3-fold
coproduct of any coalgebra (see §7.1.1). We adopt a similar notation μ(3) for the
3-fold product of our bialgebra H. The proof of the first claims of the proposition
reduce to the proof of an identity σ(a) = τ (a), for all a ∈ H, and for any given left
and right antipodes σ, τ : H → H. To establish this relation, we perform different
reductions of the expression

μ(3) · (σ ⊗ id ⊗τ ) ·Δ(3)(a) =
∑
(a)

σ(a(1)) · a(2) · τ (a(3)),

leading to σ(a) in one case, and to τ (a) in the other case. We just use that both
the left and right antipode relations can be applied within our 3-fold coproduct
Δ(3)(a) = Δ⊗ id ·Δ(a) = id ⊗Δ ·Δ(a). We explicitly have:∑

(a)

σ(a(1)) · a(2) · τ (a(3)) =
∑
(a)

ε(a(1))1 · τ (a(2)) =
∑
(a)

τ (ε(a(1))a(2)) = τ (a),

=
∑
(a)

σ(a(1)) · ε(a(2))1 =
∑
(a)

σ(ε(a(2))a(1)) = σ(a),

and these identities prove our claim σ(a) = τ (a).
The relation φσ(a) = τφ(a) = σφ(a), for a morphism φ : G → H, follows from

the same argument line, by considering different reductions of the expression (φσ⊗
φ⊗ τφ) ·Δ(3)(a) =

∑
(a) φσ(a(1)) · φ(a(2)) · τφ(a(3)). �

Thus, in what follows, we use the name ‘antipode’ (without extra precision)
to refer to the single morphism σ = τ which defines both the left and the right
antipode of a Hopf algebra. The result of Proposition 7.1.9 also motivates us to
regard Hopf algebras as bialgebras endowed with special properties (as alluded
to before we introduce our definition) rather than bialgebras equipped with extra
structures. In categorical terms, we regard the category of Hopf algebras HopfAlg
as a full subcategory of the category of bialgebras.

This interpretation diminishes the inconsistence between the definition of a
Hopf algebra and our convention to use the name ‘Hopf’ as a qualifier for any
category of structured object in the symmetric monoidal category of counitary co-
commutative coalgebras. In fact, the terminology ‘Hopf algebra’ was originally used
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in algebraic topology for bialgebra structures, without any reference to antipodes,
but in situations where antipodes automatically exist.

By elaborating on the arguments of Proposition 7.1.9, we also obtain that:

Proposition 7.1.10. In a Hopf algebra H, the antipode σ : H → H defines:
(1) a morphism of counitary cocommutative coalgebras from H to H;
(2) and a morphism of unitary associative algebras from H to Hop, where we use

the notation Hop for the unitary associative algebra obtained by changing the
product of H into the transposite operation μop(x1, x2) = μ(x2, x1) (we also say
that σ defines an anti-morphism of unitary associative algebras from H to H).

We check this proposition in the module context again. We reduce the proof
of our proposition to the verification of the following statement:

Lemma 7.1.11.
(a) The antipode σ(a) of any element a ∈ H in a Hopf algebra H satisfies the

identities
ε(σ(a)) = ε(a) and Δσ(a) =

∑
(a)

σ(a(2))⊗ σ(a(1)),

with respect to the counit ε : H → k and the coproduct Δ : H → H ⊗ H of the
counitary cocommutative coalgebra structure of our object H.

(b) The antipode also preserves the unit element of our Hopf algebra 1 ∈ H in
the sense that we have the identity σ(1) = 1, and we moreover have the formula

σ(ab) = σ(b) · σ(a),
for any product of elements a, b ∈ H.

Proof. We establish the product relation first. We use the identity σ = τ
between the left and the right antipode of a Hopf algebra (see Proposition 7.1.9).

Let a, b ∈ H. We readily see (by using the same arguments as in the proof of
Proposition 7.1.9) that the expression

∑
(a),(b) σ(a(1)b(1)) · a(2)b(2) · τ (b(3)) · τ (a(3))

can either be reduced to σ(ab) (if we start by applying the relations of the right
antipode τ ) or to τ (b) · τ (a) (if we use the relation for the left antipode σ first
and the distribution relation between the product and the coproduct of our Hopf
algebra H). We therefore obtain σ(ab) = τ (b) · τ (a) = σ(b) · σ(a).

We establish the coproduct relation Δσ(a) =
∑

(a) σ(a(2))⊗ σ(a(1)) by similar

arguments, by considering different reductions of the expression
∑

(a) Δσ(a(1)) ·
Δ(a(2)) ·(1 2)∗(τ⊗τ )Δ(a(3)) (we get Δσ(a) in one case and

∑
(a) τ (a(2))⊗τ (a(1)) in

the other case). We establish the augmentation relation εσ(a) = ε(a) by considering
different reductions of the expression

∑
(a) εσ(a(1))·ε(a(2)). The unit relation σ(1) =

1 is a direct consequence of the left antipode relation σ(1) · 1 = ε(1) · 1 and of the
identity ε(1) = 1. �

For the sake of completeness, we also check that:

Proposition 7.1.12. The antipode of a Hopf algebra satisfies the involution
relation σ2 = id as soon as we assume that the coproduct of our Hopf algebra is
cocommutative.

Proof. We check this assertion in the module context again. The transcrip-
tion of our arguments in a general categorical setting reduces to a straightforward
exercise. We start with the expression

∑
(a) σ(σ(a(1))) ·σ(a(2)) ·a(3). By performing



7.1. THE NOTION OF A HOPF ALGEBRA 235

the left antipode relation on the second and third factors of this tensor product,
we obtain that this expression reduces to σ(σ(a)). On the other hand, the already
established coproduct identity Δσ = σ ⊗ σ · Δ (where we use the cocommutativ-
ity of the coproduct to drop the transposition) implies that we can also apply the
left antipode relation on the first and second factors of our tensor product. If we
perform this reduction first, then we retrieve the simple expression of our element
a ∈ A. Hence, we have the relation σ(σ(a)) = a, for any a ∈ A, which is the claim
of the proposition. �

7.1.13. Monoid and group algebras. Recall that we use the notation k[X] for the
free k-module associated to a setX, and the notation [x] for the basis element of this
k-module k[X] associated to any element of our set x ∈ X. In §3.0.4, we observed
that k[X] inherits a canonical counitary cocommutative coalgebra structure such
that ε([x]) = 1 and Δ([x]) = [x]⊗ [x], for any x ∈ X.

In the case of an associative monoid X = M , we readily see that k[M ] inherits
an additional unitary associative algebra structure, with a unit 1k[M ] = [1] yielded
by the unit of M , and a product induced by the product of M , so that we have
[a] · [b] = [a ·b], for any a, b ∈ M . Furthermore, we easily check that these operations
fulfill the relations of §7.1.6 so that our unit η : k → k[M ] and product morphisms
μ : k[M ] ⊗ k[M ] → k[M ] are morphisms of counitary cocommutative coalgebras.
Hence, the free k-module k[M ] associated to a monoid M forms a bialgebra in the
sense of the definition of §7.1.5.

In the case of a group X = G, we can check further that the mapping σ :
k[G] → k[G] such that σ([g]) = [g−1], for any g ∈ G, satisfies the equation of a left
and right antipode on k[G]. Hence, the free k-module k[G] associated to a group G
(the group algebra of G) forms an instance of a Hopf algebra, in the sense of §7.1.8.

7.1.14. Group like elements. Recall that the subset of group-like elements of a
counitary cocommutative coalgebra C, denoted by G(C), is defined by:

G(C) = {c ∈ C|ε(c) = 1,Δ(c) = c⊗ c}.

In §3.0.6, we observed that the map G : C �→ G(C) defines a right adjoint of the free
k-module map k[−] : X �→ k[X], regarded as a functor k[−] : Set → Comc

+ from
the category of sets Set to the category of counitary cocommutative coalgebras
in k-modules Comc

+ = Mod Comc
+. The unit of this adjunction is the morphism

ι : X → Gk[X] yielded by the identity between the elements of X and the basis
elements of the k-module k[X] (which are group-like by definition of our counitary
cocommutative coalgebra structure on C = k[X]). The adjunction augmentation
is the morphism ρ : k[G(C)] → C defined by the extension to the free k-module
k[G(C)] of the set inclusion G(C) ⊂ C.

In the context of groups and Hopf algebras, we obtain the following results:

Proposition 7.1.15. The set of group-like elements G(H) in a Hopf algebra H
satisfies the following belonging relations:

1 ∈ G(H), g, h ∈ G(H) ⇒ gh ∈ G(H), and g ∈ G(H) ⇒ σ(g) ∈ G(H).

Furthermore, for a group-like element g ∈ G(H), the antipode relations imply:

g · σ(g) = σ(g) · g = 1.
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The set of group-like elements G(H) of a Hopf algebra H consequently forms a
group with the multiplication μ : G(H) × G(H) → G(H) induced by the product of
our Hopf algebra.

Proof. The axioms of bialgebras include the relations ε(1) = 1, Δ(1) = 1⊗ 1,
which are equivalent to the requirement that the unit element of H is group-like in
the sense of our definition. Hence, we have 1 ∈ G(H).

For a product of group-like elements g, h ∈ H, the axioms of §7.1.6 imply the
relations ε(gh) = ε(g) ·ε(h) = 1 ·1 = 1 and Δ(gh) = Δ(g) ·Δ(h) = (g⊗g) · (h⊗h) =
(gh)⊗ (gh). Hence, we have g, h ∈ G(H) ⇒ gh ∈ G(H).

For the antipode σ(g) ∈ H of a group-like element g ∈ G(H), the identities
established in Lemma 7.1.11 imply εσ(g) = ε(g) = 1 and Δσ(g) = (1 2)∗(σ ⊗
σ)Δ(g) = σ(g)⊗ σ(g). Hence, we have g ∈ G(H) ⇒ σ(g) ∈ G(H).

The identities g ·σ(g) = σ(g) · g = 1 are formal consequences of the application
of the antipode relations when we assume ε(g) = 1 ⇒ ηε(g) = 1 and Δ(g) = g ⊗ g.
This observation completes our verifications. �

Proposition 7.1.16. The functor G : HopfAlg → Grp obtained by the con-
struction of Proposition 7.1.15 is also right adjoint to the group algebra functor
k[−] : Grp → HopfAlg, from groups to Hopf algebras.

Proof. We easily see that the unit and augmentation of the adjunction k[−] :
Set � Comc

+ : G between the category of sets Set and the category of couni-
tary cocommutative coalgebras Comc

+ (see our reminder on the definition of these
morphisms in §7.1.14) preserve the additional unit and product structures of our
objects when we deal with groups and Hopf algebras. Therefore our functors
k[−] : Grp � HopfAlg : G still form an adjoint pair between the category of
groups Grp and the category of Hopf algebras HopfAlg . �

7.2. Lie algebras and Hopf algebras

We survey the relationship between Lie algebras and Hopf algebras in this
second section. Lie algebras arose in the mathematical literature as infinitesimal
versions of group structures. The tangent space of a Lie group (a manifold equipped
with a group structure) is a fundamental instance of Lie algebra. The classical Lie’s
third theorem asserts that any finite dimensional real Lie algebra can be integrated
into a Lie group, and hence occurs as such a tangent space.

The relationship between Lie algebras and Hopf algebras which we aim to
review in this section is an algebraic counterpart of this correspondence. The main
device for this study is the enveloping algebra functor, of which we recall the formal
definition. To be explicit, we will check that the enveloping algebra functor induces
an equivalence of categories between the category of Lie algebras and a subcategory
of Hopf algebras which satisfy a local conilpotence condition (see §7.2.15). This
assertion is a consequence of the Milnor-Moore Theorem. In this section, we also
recall the statement of the Poincaré-Birkhoff-Witt Theorem and the statement of
a general structure theorem for locally conilpotent Hopf algebras which we use in
our proof of the Milnor-Moore Theorem.

Throughout this section, we assume that we work in an additive base symmetric
monoidal category M whose morphism sets are uniquely divisible as abelian groups
and hence form Q-modules. To coin this situation, we say that M forms a Q-additive
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symmetric monoidal category. In the case of a module category M = Mod , this
requirement is equivalent to the assumption that the ground ring k satisfies Q ⊂ k.
The notion of a Lie algebra makes sense in other contexts. Notably, we will consider
Lie algebras in module categories defined over more general rings later on, but we
have to distinguish several variants of the notion of a Lie algebra in this context.

We need colimits in order to define the enveloping algebra of Lie algebras. We
therefore also assume that colimits exist in M and that the tensor product of our
category M distributes over colimits (see §0.9).

The primitive element functor in §7.2.11 is defined by a kernel in the base cat-
egory. We need the existence of all kernels to define the subobjects of primitive
elements of arbitrary coalgebras. We assume that this is so all through this sec-
tion to simplify our account. We may observe, nonetheless, that our proof of the
Poincaré-Birkhoff-Witt Theorem and of the Milnor-Moore Theorem implies that
we can realize the subobject of primitive elements of a Hopf algebra in a Q-additive
symmetric monoidal category as the kernel of an idempotent morphism. Moreover,
the proof of the Poincaré-Birkhoff-Witt Theorem and of the Milnor-Moore Theo-
rem which we give in this book is valid as soon as such kernels exist in our base
category M.

The Q-additive category requirement implies that our categoryM is canonically
enriched over the category of Q-modules ModQ, with the natural morphism sets
of our category as hom-objects HomM(−,−) = MorM(−,−). In good cases, the
existence of this Q-additive structure implies that the category is equipped with
an external tensor product ⊗ : ModQ ×M → M such that MorM(K ⊗ M,N) =
MorModQ(K, HomM(M,N)), for all K ∈ ModQ and M,N ∈ M. By adjunction, we
readily see that the classical unit, associativity and symmetry relations of tensor
products hold for any combination of this external tensor product ⊗ : ModQ ×M →
M with the internal tensor product of the category of Q-modules ModQ and of the
our category M. This external tensor product can be associated to a symmetric
monoidal functor η : ModQ → M, which maps any Q-module K ∈ ModQ to the
tensor product K ⊗ 1 with the unit object 1 in our symmetric monoidal category
M (see [66]). In the case where M is a category of modules Mod = Modk over a
ground ring such that Q ⊂ k, this symmetric monoidal functor η : ModQ → Modk

is the standard functor of extension of scalars. In §7.2.3, we use the external tensor
product ⊗ : ModQ ×M → M to extend the operadic expansion of the free Lie
algebra (see §1.3.5) to the category of Lie algebras in our symmetric monoidal
category M.

In this section, we still use the idea to specify general morphisms by pointwise
formulas, as in the module context, since we can generally interpret these formulas
as combinations of the structure operations of our ambient category (as we ex-
plain in the introduction of the previous section). In our survey, we formulate all
definitions in the setting of a general symmetric monoidal category first, and we
make explicit the applications in the module context afterwards. To begin with, we
review the definition of a Lie algebra.

7.2.1. Lie algebras. In §1.3.1, we recall the definition of a Lie algebra as an
instance of a category of algebras associated to an operad Lie.

In the context of a Q-additive symmetric monoidal category M, we define a Lie
algebra as an object g ∈ M equipped with a morphism λ : g⊗ g → g, called the
Lie bracket, which satisfies the antisymmetry relation λ · (id +(1 2)∗) = 0 and a
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3-fold tensor relation λ(λ, 1) · (id +(1 2 3)∗+(1 3 2)∗) = 0 which corresponds to the
classical Jacobi relation. In these formulas, we use the notation σ∗ for the action
of a permutation σ ∈ Σr on a tensor power g⊗r.

In the module context, we write λ(x1, x2) = [x1, x2] ∈ g for the image of
elements x1, x2 ∈ g under the Lie bracket λ : g⊗ g → g. The antisymmetry
relation reads [x1, x2] = −[x2, x1], and the Jacobi relation reads

[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2] = 0,

for x1, x2, x3 ∈ g. The Jacobi relation is equivalent to the formula [[x, y], a] =
[[x, a], y] + [x, [y, a]], for all x, y, a ∈ g, which asserts that the operation θa = [−, a]
forms a derivation with respect to the Lie bracket. By antisymmetry, we have
also have the relation [x, [a, b]] = [[x, a], b] − [[x, b], a], for a, b, x ∈ g, which asserts
that these derivation operations θa = [−, a] satisfy the identity [θa, θb] = θ[a,b],
where we set [θa, θb] = θaθb − θbθa, for any a, b ∈ g. (We are mainly going to use
these variations of the Jacobi relation in the definition of semi-direct products of Lie
algebras in §8.5.4.) We will also see that the relation [x, [a, b]] = [[x, a], b]− [[x, b], a],
for a, b, x ∈ g, has an interpretation in terms of representations of Lie algebras
(see §7.2.9).

We denote the category of Lie algebras by Lie. We obviously define a morphism
of Lie algebras as a morphism of the base category which preserves the structure
operation (the Lie bracket) of our Lie algebras. As usual, we just specify the
ambient symmetric monoidal category M in our notation Lie = MLie when this
information is necessary.

7.2.2. Remarks. In the standard definition of a Lie algebra, we assume that we
have the vanishing relation [x, x] = 0, for all x ∈ g, instead of the antisymmetry
relation. In §8.2.2, where we give a short introduction to Lie algebras over the
integers, we will take this vanishing relation [x, x] = 0 in our definition. Let us
observe that [x, x] = 0 is equivalent to the antisymmetry relation [x1, x2] = −[x2, x1]
when we work in a category of modules over a ring k such that 2 is invertible (and
hence, when we assume Q ⊂ k), but this is no longer the case when 2-torsion
phenomena may occur in our category of modules.

Further subtleties occur in other examples of symmetric monoidal categories.
In the context of graded modules, where we use the symmetric monoidal structure
of §4.4, the antisymmetry relation reads [x1, x2] = −± [x2, x1], with an extra sign
that arises from the permutation of the elements x1, x2 ∈ g (see §0.2, §4.4.1). In this
case, we assume that we have the vanishing relation [x, x] = 0 for the homogeneous
elements of even degree of our graded Lie algebra and the relation [[x, x], x] = 0
for the homogeneous elements of odd degree. These requirements follow from the
(graded) antisymmetry and Jacobi relations when we work in a category of graded
modules over a ring k where 2 and 3 are invertible (and hence, when we assume
Q ⊂ k), but are not automatically satisfied otherwise.

7.2.3. Relationship with the operadic definition and free Lie algebras. We see
that the definition of the structure of a Lie algebra which we give in §7.2.1 is
identical to the description of the structure of an algebra over the Lie operad which
we give in §1.3.1. We more precisely get, by the observations of §1.3.1, that giving
an operation λ : g⊗ g → g such that the antisymmetry and the Jacobi relations
hold (as in §7.2.1) amounts to giving an operad morphism φ : Lie → Endg, where Lie
is our notation for the Lie operad and Endg is the endomorphism operad associated
to the object g.
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We only consider the case of a base category of modules M = Mod in §1.3.1,
but we can extend this correspondence in the setting of a Q-additive symmetric
monoidal category. We just consider the external hom-objects of our base cate-
gory HomM(−,−) in the definition of the components of the endomorphism operad
Endg(r) = HomM(g⊗r, g), for r ∈ N.

The interpretation of Lie algebras in terms of algebras over operads implies that
the category of Lie algebras inherits free objects, which admit an expansion of the
form L(M) =

⊕∞
r=0(Lie(r)⊗M⊗r)Σr

. We just use the external tensor product of
our base category with the category of Q-modules, where the Lie operad is defined,
in order to form the tensor products Lie(r)⊗M⊗r which occur in this formula. We
can equivalently use the symmetric monoidal functor η : ModQ → M equivalent to
this external tensor product in order to map the Lie operad Lie in our symmetric
monoidal category M.

Recall also that the expression (−)Σr
in this expansion refers to the application

of a coinvariant functor which we use to identify the right action of permutations on
the tensor powers M⊗r with their left action on the components of the Lie operad
Lie(r) in our object (see §§1.3.2-1.3.5). In the sequel, we refer to the summands
of this expansion Lr(M) = (Lie(r) ⊗ M⊗r)Σr

as the components of homogeneous
weight of the free Lie algebra.

In the literature, the free Lie algebra is usually defined as a quotient of a free
magma (see for instance [34, II.2.2], or [155, §0.2]). This construction parallels
the definition of the Lie operad by generators and relations. (Magmas, as we
observed in §6.1, are identified with structures associated to free operads.) In this
approach, the free Lie algebra L(M) intuitively consists of Lie monomials on the
elements of our generating object x ∈ M (when we work in a concrete symmetric
monoidal category), where a Lie monomial refers to a formal operadic composite
of Lie brackets quotiented by the antisymmetry and Jacobi relations. The Lie
bracket on L(M) is intuitively defined by the obvious substitution operation on Lie
monomials. The homogeneous component of weight r of the free Lie algebra Lr(M)
is linearly generated by the Lie monomials in r variables [· · · [[x1, x2], . . . ], xr], where
x1, . . . , xr ∈ M . The Lie bracket preserves the weight grading in the sense that we
have the relation [Ls(M),Lt(M)] ⊂ Ls+t(M), for all s, t ≥ 0. (We go back to this
observation in the next section.)

In §1.2.11, we mention that the Lie operad has an intricate symmetric structure.
The structure theorems of Hopf algebras imply that the free Lie algebra functor
has a more effective realization in terms of a retract of the tensor algebras, and we
rather use this approach when we have to deal with free Lie algebras. We review
the definition of the tensor algebra and of the symmetric algebras before tackling
this subject.

7.2.4. The tensor algebra and the symmetric algebra. The (unitary) tensor alge-
bra T(M) associated to an objectM ∈ M in our base categoryM is explicitly defined
by the sum T(M) =

⊕∞
r=0M

⊗r, where we form the tensor powers of our object
M⊗r by using the tensor product operation of the base category ⊗ : M×M → M.
In the sequel, we refer to the summands of this expansion Tr(M) = M⊗r as the
components of homogeneous weight of the tensor algebra.

The (unitary) symmetric algebra S(M) is explicitly defined by the sum S(M) =⊕∞
r=0(M

⊗r)Σr
, where we apply the coinvariant functor (−)Σr

in order to make
the action of permutations σ ∈ Σr on the tensor powers M⊗r equal to identity
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morphisms. In the module context, we get the relation xσ(1) ⊗ · · · ⊗ xσ(r) ≡ x1 ⊗
· · · ⊗ xr for every x1 ⊗ · · · ⊗ xr ∈ M⊗r, and for each σ ∈ Σr. The summands
Sr(M) = (M⊗r)Σr

define the components of homogeneous weight of the symmetric
algebra.

The tensor algebra inherits a unit η : 1 → T(M) given by the identity between
the unit object 1 and the summand M⊗0 = 1 of weight r = 0 of our expansion
T(M) =

⊕∞
r=0 M

⊗r, as well as a product μ : T(M)⊗T(M) → T(M) which is defined

by the concatenation operations M⊗s ⊗ M⊗t =−→ M⊗s+t termwise, so that T(M)
forms a unitary associative algebra. The symmetric algebra inherits a similarly
defined unit η : 1 → S(M), as well as a product μ : S(M)⊗ S(M) → S(M) which
is given by the morphisms (M⊗s)Σs

⊗ (M⊗t)Σt
→ (M⊗s+t)Σs+t

induced by the
concatenation operations of the tensor algebra termwise. This product operation
becomes commutative on the symmetric algebra. The object S(M) forms a unitary
commutative algebra therefore.

In the tensor algebra case, we have a canonical embedding ι : M → T(M),
given by the identity between M and the object M⊗1 = M . In the symmetric
algebra case, we have a similarly defined embedding ι : M → S(M), given by the
identity between M and the object (M⊗1)Σ1

= M .
In §1.3.5, we already briefly recalled the definition of the (non-unitary) tensor

algebra and of the (non-unitary) symmetric algebra to illustrate the construction
of free algebras over operads. The (unitary) tensor algebras which we consider in
this paragraph represent the free objects of the category of (unitary) associative
algebras in our base symmetric monoidal category, while the (unitary) symmet-
ric algebras represent the free objects of the category of (unitary) commutative
algebras. The universal properties of free objects are equivalent to the following
adjunction statements:

Proposition 7.2.5.
(a) The tensor algebra functor T : M → As+ is left adjoint to the forgetful

functor ω : As+ → M from the category of unitary associative algebras As+ to
the base category M. The embedding ι : M → T(M) represents the unit of this
adjunction relation.

(b) The symmetric algebra functor S : M → Com+ is left adjoint to the for-
getful functor ω : Com+ → M from the category of unitary commutative algebras
Com+ to the base category M. The embedding ι : M → S(M) also represents the
unit of this adjunction relation.

Explanations. In §§1.3.3-1.3.4, we explained that the assertions of this propo-
sition have an equivalent formulation in terms of universal properties. In the case
of the tensor algebra R = T(M) (respectively, in the case of the symmetric algebra
R = S(M)), we explicitly obtain that any morphism f : M → A with values in a
unitary associative (respectively, commutative) algebra A admits a unique factor-
ization

M

ι

f
A

R

φf

such that φf is a morphism of unitary associative (respectively, commutative) al-
gebras.
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The image of a tensor x1 ⊗ · · · ⊗ xr ∈ M⊗r in the tensor algebra T(M) is
denoted by x1 ·. . .·xr ∈ T(M) (when we work in a concrete base symmetric monoidal
category), because by identifying the object M with a summand of T(M), we obtain
that this tensor represents the product of the elements x1, . . . , xr ∈ M in T(M).
We adopt similar conventions for the symmetric algebra. In this case, we have
the identity xσ(1) · . . . · xσ(r) = x1 · . . . · xr which reflects the commutativity of the
product in S(M). The product of the tensor algebra is given by the concatenation
operation (x1 · . . . · xs) · (y1 · . . . · yt) = x1 · . . . · xs · y1 · . . . · yt, and we have a similar
correspondence in the symmetric algebra case.

The extension of a module morphism f : M → A to the tensor (respectively,
symmetric) algebra is explicitly defined by the formula φf (x1 · . . . ·xr) = f(x1) · . . . ·
f(xr) for any monomial x1 · . . . · xr ∈ R where we take the product of the image of
the elements x1, . . . , xr ∈ M in the algebra A. �

We use the statement of Proposition 7.2.5 to establish the following structure
result:

Proposition 7.2.6. The tensor algebra R = T(M) (respectively, the symmetric
algebra R = S(M)) inherits a Hopf algebra structure such that:

– the augmentation ε : R → 1 is the morphism of unitary associative (re-
spectively, commutative) algebras associated to the zero morphism ε(x) ≡ 0
from M to the unit object 1;

– the coproduct Δ : R → R ⊗ R is the morphism of unitary associative
(respectively, commutative) algebras given by the formula Δ(x) = x⊗ 1 +
1⊗ x on M ⊂ R;

– the antipode σ : R → R is the anti-morphism of unitary associative (re-
spectively, commutative) algebras given by the opposite of the identity map
σ(x) = −x on M ⊂ R.

In an abstract categorical setting, we regard our pointwise formulas as an alge-
braic combination of morphisms involving the structure operations of the ambient
category (as we explained in the introduction of this section).

Explanations. In the module context, we can apply the formula given in the
proof of Proposition 7.2.5 to determine the image of any monomial x1 · . . . · xr ∈ R
under our structure morphisms. For the augmentation, we obtain ε(x1 · . . . · xr) =
ε(x1) · . . . · ε(xr) = 0 as soon as r > 0. For the coproduct, we get the expression:

Δ(x1 · . . . · xr) = (x1 ⊗ 1 + 1⊗ x1)︸ ︷︷ ︸
Δ(x1)

· . . . · (xr ⊗ 1 + 1⊗ xr)︸ ︷︷ ︸
Δ(xr)

=
∑

{i1<···<is}�{j1<···<jt}
={1<···<r}

(xi1 · . . . · xis)⊗ (xj1 · . . . · xjt).

For the antipode, we get σ(x1 · . . . · xr) = σ(xr) · . . . · σ(x1) = (−1)r · (xr · . . . · x1).
The proof of the structure relations of Hopf algebras reduces to straightfor-

ward verifications, which are also immediate because the uniqueness claim in the
definition of morphisms on tensor (respectively, symmetric) algebras enables us to
reduce these verifications to the case of generating elements. �
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7.2.7. The adjunction between Lie and associative algebras. Let A be any (uni-
tary) associative algebra. One can readily check that the commutator [a1, a2] =
a1a2 − a2a1 satisfies the antisymmetry and Jacobi relation of a Lie bracket, and
hence provides A with a natural Lie algebra structure.

In §1.3.9, we interpret (a non-unitary version of) this correspondence as an
instance of a restriction functor ι∗ : A �→ ι∗A, associated to an operad morphism
from the Lie operad to the (non-unitary) associative operad. This interpretation
works same in the unitary context. In the case of the tensor algebra, the existence
of this structure implies that, for any object M ∈ M, we have a natural morphism
of Lie algebras ι : L(M) → T(M) which fits in a factorization

M T(M)

L(M)

ι

of the canonical embedding M ↪→ T(M). In the operadic approach, we have
L(M) =

⊕∞
r=0(Lie(r) ⊗ M⊗r)Σr

(see §1.3.5, §7.2.3), T(M) =
⊕∞

r=0(As+(r) ⊗
M⊗r)Σr

(see §1.3.5), and our free algebra morphism is the natural transformation
induced by the morphisms ι : Lie(r) → As+(r) at the operad level.

Intuitively, the morphism ι : L(M) → T(M) maps the Lie monomials, which
represent the elements of the free Lie algebra, into commutators in the tensor
algebra. From this representation, we retrieve that the morphism ι : L(M) → T(M)
preserves the weight grading of our free algebras and splits as a sum of homogeneous
components ι : Lr(M) → Tr(M).

In Proposition 1.3.8, we give a general construction of extension functors on
categories of algebras associated to operads. These extension functors are left
adjoint to the restriction functors associated to operad morphisms. In the case
of the Lie operad and the associative operad, the application of our construction
returns a functor ι! : Lie → As+ which is left adjoint to our explicitly defined
restriction functor ι∗ : As+ → Lie. The image of a Lie algebra g under this
extension functor ι! : Lie → As+ is usually called the enveloping algebra of g, and
is denoted by ι! g = U(g). The enveloping algebra of a Lie algebra is endowed with
a Lie algebra morphism ι : g → U(g) which represents the unit of our adjunction.

In the approach of Proposition 1.3.8, the image of a Lie algebra under the
extension functor ι! g = U(g), is defined by a reflexive coequalizer of free algebras
of the form:

T(L(g))
d0

d1

T(g) ε

s0

U(g) .

The morphism ε : T(g) → U(g) which occurs in this coequalizer is identified with the
morphism of associative algebras induced by the canonical morphism ι : g → U(g)
underlying the enveloping algebra. This coequalizer construction differs from the
classical definition of the enveloping algebra. We review this classical approach
in §7.2.9. We just examine some applications of our extension functor construction
U = ι! : Lie → As+ when we take a free Lie algebra g = L(M) before. We then have
ι! L(M) = UL(M) = T(M) by composition of adjunction relations. Furthermore,
we readily see that the previously considered morphism ι : L(M) → T(M), which we
defined by using the definition of free Lie algebras, is identified with the canonical
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Lie algebra morphism ι : L(M) → U L(M) attached to the enveloping algebra. We
have the following observation:

Proposition 7.2.8. The morphism ι : L(M) → T(M) admits a retraction
ρ : T(M) → L(M), which is formed in the base category M, and which is defined
by the following formula:

ρ(x1 · . . . · xr) =
1

r
· [· · · [[x1, x2], x3], . . . , xr],

for any monomial x1 · . . . · xr ∈ Tr(M), and for each r > 0.

Proof. We borrow our argument from [151, §B.2, Lemma 2.2]. We establish
the proposition within a base category of modules for simplicity. We use that
the mapping Δ : L(M) → L(M) such that Δ(p) = rp for any homogeneous
monomial p ∈ Lr(M) defines a derivation of the free Lie algebra. We explicitly
have the derivation relation Δ([p, q]) = [Δ(p), q] + [p,Δ(q)] for all p, q ∈ L(M).
We then equip the sum k⊕L(M) with the Lie bracket such that [(λ, p), (μ, q)] =
(0, λΔ(q)− μΔ(p) + [p, q]), for any (λ, p), (μ, q) ∈ k⊕L(M). We consider the mor-
phism of associative algebras ad : UL(M) → End(k⊕L(M))op which is defined by
the mapping ad(q) : (λ, p) �→ [(λ, p), (0, q)] when q ∈ L(M).

For a monomial of the tensor algebra x1 · . . . · xr ∈ T(M), which we identify
with a product of generating elements x1, . . . , xr ∈ M in the enveloping algebra
T(M) = UL(M), we get the formula:

ad(x1 · . . . · xr)(1, 0) = ad(xr) · . . . · ad(x1)(1, 0) = (0, [· · · [[x1, x2], x3], . . . , xr]).

We therefore have ad(u)(1, 0) = (0, rρ(u)), for any homogeneous element of weight
r of the tensor algebra u ∈ Tr(M). For a homogeneous Lie polynomial p ∈ Lr(M),
we obtain on the other hand:

ad(p)(1, 0) = [(1, 0), (0, p)] = (0,Δ(p)) = (0, rp).

We therefore have the identity rp = rρ(p) ⇒ p = ρ(p) and our proposition follows.
�

The structure theorems of Hopf algebras, which we explain soon, give a charac-
terization of the object L(M) within the tensor algebra T(M), and in the sequel, we
actually use this representation when we need to handle free Lie algebra structures.

7.2.9. The classical definition of enveloping algebras. In the module context,
the enveloping algebra U(g) of a Lie algebra g is classically defined as a quotient

U(g) = T(g)/〈x · y − y · x− [x, y], x, y ∈ g〉,
where we divide the tensor algebra T(g) by the ideal generated by the relations
x · y − y · x− [x, y] ≡ 0, for x, y ∈ g. The morphism ι : g → U(g) associated to the
enveloping algebra U(g) is defined as the composite of the morphism ι : g → T(g)
with the canonical quotient morphism q : T(g) → U(g). In general, we use the same
notation for the elements of the tensor algebra and their image in the enveloping
algebra. Intuitively, the quotient process makes the commutator of Lie algebra
elements x, y ∈ g equal to the image of the Lie bracket [x, y] ∈ g in the enveloping
algebra U(g).

From this quotient definition, we easily retrieve that the enveloping algebra U(g)
fits in an adjunction relation MorAs+(U(g), A) = MorLie(g, A), for A ∈ As+, and
the canonical morphism ι : g → U(g) represents the unit of this adjunction. The
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morphism of unitary associative algebras φf : U(g) → A associated to a Lie alge-
bra morphism f : g → A is given by the same formula as in the tensor algebra
case φf (x1 · . . . · xr) = f(x1) · . . . · f(xr) except that we now assume that the
monomial x1 · . . . · xr represents an element of the enveloping algebra U(g).

The enveloping algebra of a Lie algebra is also used to study the category
of representations of a Lie algebra. In short, we define a representation of a Lie
algebra g as an object of the base category M ∈ M equipped with an operation
[−,−] : M ⊗ g → M which satisfies the relation of a Lie bracket [ξ, [x, y]] =
[[ξ, x], y] − [[ξ, y], x] for ξ ∈ M and x, y ∈ g. The category of representations of g
is isomorphic to the category of right modules over the enveloping algebra U(g),
where we define a right module over an associative algebra A as an object of the
base category M ∈ M equipped with a morphism ρ : M ⊗ A → M that satisfies
the usual unit and associativity relations of the structure of a right module in M.
We explicitly set ξ · (x1 · . . . · xn) = [· · · [[ξ, x1], x2], . . . , xn] to define the action
ξ · u = ρ(ξ ⊗ u) of a monomial u = x1 · . . . · xn ∈ U(g), where x1, . . . , xn ∈ g, on an
element ξ ∈ M . We use the relation of Lie brackets [ξ, [x, y]] = [[ξ, x], y]− [[ξ, y], x]
to check that this action remains well-defined when we pass to the quotient of the
tensor algebra by the ideal of defining relations of the enveloping algebra.

We use the adjunction relation of enveloping algebras to establish the following
structure result:

Proposition 7.2.10. The enveloping algebra of a Lie algebra U(g) inherits a
Hopf algebra structure such that:

– the augmentation ε : U(g) → 1 is the morphism of unitary associative
algebras induced by the zero morphism ε(x) = 0 from the Lie algebra g to
the unit object 1;

– the coproduct Δ : U(g) → U(g)⊗U(g) is the morphism of unitary associa-
tive algebras whose restriction to the Lie algebra g is given by the formula
Δ(x) = x⊗ 1 + 1⊗ x;

– the antipode σ : U(g) → U(g) is the anti-morphism of unitary associative
algebras whose restriction to the Lie algebra g is given by the opposite of
the identity map σ(x) = −x.

Explanations. This proposition follows from the same argument line as the
result of Proposition 7.2.6 (where we define the Hopf algebra structure of the tensor
and symmetric algebras). For our purpose, we only have to check that the formulas
of the proposition correspond to the definition of Lie algebra morphisms on g.
(We then use our adjunction relation to extend these morphisms to well-defined
structure morphisms on the enveloping algebra.)

This condition is obvious for the augmentation. In the case of the coproduct,
we readily obtain the relation [Δ(x),Δ(y)] = [x, y] ⊗ 1 + 1 ⊗ [x, y] in the tensor
product U(g) ⊗ U(g), and therefore, we have [Δ(x),Δ(y)] = Δ([x, y]), for every
x, y ∈ g. In the case of the antipode, we have σ([x, y]) = −[x, y] = yx − xy =
σ(y)σ(x)− σ(x)σ(y), and this result agrees with the expression of the commutator
of σ(x) and σ(y) (in this order) in the opposite algebra U(g)op.

The explicit formulas for the augmentation, the coproduct, and the antipode
of monomials are also the same as in the tensor algebra case. �

The first objective of the Lie theory of Hopf algebras is to identify the image
of a Lie algebra g inside the associated enveloping algebra U(g). For this aim,
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we explain the definition of a primitive element functor on coalgebras. Intuitively,
the primitive element functor represents an infinitesimal version of the functor of
group-like elements of the previous section from Hopf algebras to groups.

7.2.11. Primitive elements in coaugmented counitary cocommutative coalgebras.
We consider a (counitary cocommutative) coalgebra C equipped with a morphism
of coalgebras η : 1 → C, where we regard the tensor unit 1 as the terminal object of
the category of (counitary cocommutative) coalgebras. We refer to this morphism
as a coaugmentation associated to the coalgebra C. We define the primitive part
of a coaugmented coalgebra C as an object P(C) ⊂ C in the ambient category M

such that:
P(C) = {x ∈ C|ε(x) = 0,Δ(x) = x⊗ 1 + 1⊗ x}.

We then write x ⊗ 1 ∈ C ⊗ C (respectively, 1 ⊗ x ∈ C ⊗ C) for the morphism
id ⊗η : C → C ⊗ C (respectively, η ⊗ id : C → C ⊗ C) yielded by the tensor
product of the coaugmentation η : 1 → C with the identity morphism of the object
C (as in the construction of Proposition 7.2.6).

In principle, we have to define this object P(C) by an appropriate kernel in M.
To simplify our presentation, we assume from now on that kernels automatically
exist in M (and, more generally, that the base category is equipped with limits
in addition to biproducts and colimits). Nevertheless, in each statement where
we explicitly determine the primitive part of a coalgebra structure, we proceed
by a direct approach, without assuming the existence of a subobject of primitive
elements as a preliminary result. In general, we only need the existence of split
kernels for idempotent morphisms. This assumption is actually sufficient for the
Poincaré-Birkhoff-Witt Theorem (in our formulation) and for the Milnor-Moore
Theorem (which we establish soon).

The following observations parallel the assertions of Proposition 7.1.15 (about
the definition of a group structure on the set of group-like elements in a Hopf
algebra):

Proposition 7.2.12. Let H be a Hopf algebra. Let [x, y] = xy− yx denote the
commutator operation in H. We have [P(H),P(H)] ⊂ P(H). The object P(H) ⊂ H
consequently inherits a Lie algebra structure with the morphism [−,−] : P(H) ⊗
P(H) → P(H) induced by the commutator of H as Lie bracket.

Proof. In the proof of Proposition 7.2.10, we already used an identity of
the form [x ⊗ 1 + 1 ⊗ x, y ⊗ 1 + 1 ⊗ y] = [x, y] ⊗ 1 + 1 ⊗ [x, y]. If we assume
Δ(x) = x⊗ 1 + 1⊗ x and Δ(y) = y ⊗ 1 + 1⊗ y, then we deduce from this relation
that we have the identity Δ([x, y]) = [Δ(x),Δ(y)] = [x, y]⊗1+1⊗ [x, y]. We clearly
have the implication ε(x) = ε(y) = 0 ⇒ ε([x, y]) = [ε(x), ε(y)] = 0 too, and these
verifications establish that the object P(H) is stable under commutators, which is
the claim of the proposition. �

Proposition 7.2.13. The functor of primitive elements P : HopfAlg → Lie
is right adjoint to the enveloping algebra functor U : Lie → HopfAlg (which we
regard as a functor with values in the category of Hopf algebras by using the result
of Proposition 7.2.10).

Proof. Let g be a Lie algebra. Let H be a Hopf algebra. We elaborate on
the adjunction relation of §7.2.7, between Lie algebra morphisms f : g → H and
unitary associative algebra morphisms φ = φf : U(g) → H. We use pointwise
formulas to make our argument more explicit, as usual.
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We have f = φf �g (by definition of this adjunction), and as a consequence, we
have f(g) ⊂ P(H) (equivalently, the map f comes from a Lie algebra morphism
with values in P(H)) if and only if the associated morphism of unitary associative
algebras φ : U(g) → H satisfies εφ(x) = 0 = ε(x) and Δφ(x) = f(x)⊗1+1⊗f(x) =
φ ⊗ φ · Δ(x) for any x ∈ g. We deduce from the injectivity of the adjunction
correspondence that the verification of these relations on g implies that the identities
εφ = ε and Δφ = φ⊗φ ·Δ hold on the whole U(g). We therefore conclude that the
adjunction relation of §7.2.7 restricts to an adjunction relation between Lie algebra
morphisms f : g → P(H) and Hopf algebra morphisms φ : U(g) → H, and this
result proves the claim of our proposition. �

The Milnor-Moore Theorem, which we state soon, implies that this adjunction
defines an equivalence of categories when we restrict ourselves to a subcategory
of Hopf algebras satisfying an appropriate conilpotence condition. Before address-
ing this general statement, we determine the primitive elements of the symmetric
algebra and of the tensor algebra. The result reads as follows:

Proposition 7.2.14.
(a) For the symmetric algebra S(M), which comes equipped with the Hopf al-

gebra structure of Proposition 7.2.6, we have P S(M) = M .
(b) For the tensor algebra T(M), which comes equipped with the Hopf algebra

structure of Proposition 7.2.6, the morphism ι : L(M) → T(M) of §§7.2.7-7.2.8
defines an isomorphism between the free Lie algebra L(M) and the Lie algebra of
primitive elements P T(M) ⊂ T(M).

Proof. We again use pointwise formulas in order to make our argument more
explicit.

The definition of the coproduct in the symmetric algebra S(M) immediately
implies M ⊂ P S(M). To check the converse inclusion, we consider the morphism
φ : S(M) → S(M) defined by the projection onto the summand S1(M) = M in
the symmetric algebra S(M). For a homogeneous element u ∈ Sr(M) of weight
r > 0, we have u = (1/r) ·

∑
(u) u(1) · φ(u(2)). (The proof of this identity follows

from a straightforward verification, by using the explicit formula of the coproduct of
monomials u = x1 · . . . ·xr in the proof of Proposition 7.2.6.) This equation implies
that we have the following relations u ∈ P S(M) ⇒ u = (1/r) · (u ·φ(1)+1 ·φ(u)) =
(1/r) · φ(u) ⇒ u ∈ M , for any homogeneous element u ∈ Sr(M), from which we
conclude that P S(M) = M .

In the case of the tensor algebra, we again immediately have M ⊂ P T(M), and
this inclusion implies L(M) ⊂ PT(M) since primitive elements are preserved by
commutators (see Proposition 7.2.12). To check the converse inclusion, we consider
the morphism ψ : T(M) → T(M) (closely related to the morphism of Proposi-
tion 7.2.8) such that ψ(1) = 0, ψ(x1) = x1, and

ψ(x1 · . . . · xr) = [· · · [[x1, x2], x3], . . . , xr],

for a monomial u = x1 · . . . · xr of order r > 1.
For a homogeneous element u ∈ Tr(M) of weight r > 0, we have again the

relation:

(∗) u =
1

r
·
∑
(u)

u(1) · ψ(u(2))
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which we establish as follows (we borrow our argument from [183]). We can assume
u = x1 · . . . · xr and we argue by induction on the order of this tensor r > 0. The
identity clearly holds when r = 1. In the case r > 1, we write u = v · xr, where we
set v = x1 · . . . · xr−1. The formula given in the proof of Proposition 7.2.6 implies
that the coproduct of this monomial v ∈ T(M) can be written

∑
(v) v(1) ⊗ v(2) =

v⊗ 1+
∑′

(v) v(1) ⊗ v(2) +1⊗ v, where the middle sum consists of tensors v(1) ⊗ v(2)
whose factors v(1), v(2) ∈ T(M) are monomials of order > 0 in the tensor algebra.
We assume by induction that we have the relation

∑
(v) v(1) · ψ(v(2)) = (r − 1)v ⇔∑′

(v) v(1) · ψ(v(2)) + ψ(v) = (r − 1)v. We then have the formula:

Δ(u) = Δ(v) ·Δ(xr) = Δ(v) · (xr ⊗ 1 + 1⊗ xr)

⇒
∑
(u)

u(1) · ψ(u(2)) = vψ(xr) +
∑′

(v)

v(1)ψ(v(2)xr) + ψ(vxr)

+
∑′

(v)

v(1)xrψ(v(2)) + xrψ(v).

We use the identities ψ(xr) = xr, ψ(v(2)xr) = [ψ(v(2)), xr] = ψ(v(2))·xr−xr ·ψ(v(2))
and ψ(vxr) = [ψ(v), xr] = ψ(v) · xr − xr · ψ(v) to reduce this expression to the
formula: ∑

(u)

u(1) · ψ(u(2)) = v · xr +
∑′

(v)

v(1) · ψ(v(2)) · xr + ψ(v) · xr,

and we use the induction hypothesis to get our relation (∗) for the element u =
v · xr = x1 · . . . · xr.

This equation (∗) readily implies, as in the symmetric algebra case, that we have
u ∈ P T(M) ⇒ u ∈ L(M) and the proof of this relation completes the verification
of our identity P T(M) = L(M). �

We now explain the concept of a locally conilpotent Hopf algebra. We use
this notion in our formulation of the Poincaré-Birkhoff-Witt Theorem and of the
Milnor-Moore Theorem in the setting of Q-additive symmetric monoidal categories.

7.2.15. Locally conilpotent Hopf algebras. In any Hopf algebra H the relation
εη = id , between the unit η : 1 → H and the counit ε : H → 1, implies that we
have a decomposition H = 1⊕ I(H), where we set I(H) = ker(ε : H → 1). We call
this subobject I(H) the augmentation ideal of the Hopf algebra H. We consider
the morphism π = id −εη, which defines the projector associated to this summand
I(H) in the Hopf algebra H.

Let Δ(n) : H → H⊗n denote the n-fold coproduct associated to our Hopf
algebra (see §7.1.1). Let π(n) : H⊗n → H⊗n denote the n-fold tensor power of
our projector π. The composite π(n)Δ(n) represents the components of the n-fold
coproduct Δ(n) on the summand I(H)⊗n of the tensor product H⊗n (we remove
all terms involving a unit factor).

We say that H is locally conilpotent when H admits a colimit decomposition
K0 → · · · → Km → · · · → colimm Km = H such that:
(1) we have π(n)Δ(n) �Km= 0 as soon as n > m;
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(2) and the coproduct H → H ⊗H admits a factorization

H
Δ

H ⊗H

Km ∃
colimp+q≤m Kp ⊗Kq

,

for each m ∈ N.
We use the notation HopfAlgc for the full subcategory of the category of Hopf
algebras HopfAlg formed by the locally conilpotent Hopf algebras.

We can retrieve the definition of [151, §B.3] (where our locally conilpotent Hopf
algebras are called connected Hopf algebras) by taking Km = ker(π(m+1)Δ(m+1)).
We easily check (by using the coassociativity of the coproduct) that these kernels
form a nested sequence ker(π(1)Δ(1)) ⊂ · · · ⊂ ker(π(m+1)Δ(m+1)) ⊂ · · · ⊂ H. We
automatically have the vanishing condition (1). When we work in a category of
modules over a field (so that the tensor product preserves kernels), we easily check
(by using the coassociativity of the coproduct again) that the coproduct condi-
tion (2) is automatically fulfilled too. We accordingly get that our local conilpo-
tence condition is equivalent to the relation colimm ker(π(m+1)Δ(m+1)) = H when
we fix Km = ker(π(m+1)Δ(m+1)).

The tensor algebra (and the symmetric algebra similarly) is an instance of a lo-
cally conilpotent Hopf algebra. Indeed, we see that the objectsKm =

⊕
r≤m Tr(M)

fulfill our coproduct condition (by using the explicit expression of this coproduct
in Proposition 7.2.6) and we trivially have T(M) = colimm(

⊕
r≤m Tr(M)). The

enveloping algebra U(g) of a Lie algebra is locally conilpotent too. In the con-
text of modules over a field, we take Km = im(

⊕
r≤m Tr(g) → T(g) → U(g)) and

our requirements follow from the observation that the coproduct of U(g) is iden-
tified with a quotient of the coproduct of the tensor algebra T(g). In the general
context, we can arrange this construction by extending the colimit decomposition
T(g) = colimm{

⊕
r≤m Tr(g)} to the coequalizer of §7.2.7 which serves to define the

enveloping algebra.
We can now state the first main structure theorem of the theory of Hopf alge-

bras:

Theorem 7.2.16 (Structure Theorem). Let H be a Hopf algebra. The mor-
phism e : SP(H) → H defined by the symmetrized sum

e(x1 · . . . · xr) =
1

r!
·
∑
σ∈Σr

xσ(1) · . . . · xσ(r)

on the monomials x1 · . . . ·xr ∈ S(P(H)) is an isomorphism of counitary cocommu-
tative coalgebras as soon as H is locally conilpotent (see §7.2.15).

Proof. The proof of this theorem forms the technical heart of this section.
We adapt ideas of [150] (see also [39, 149]). We divide our argument line in several
steps.

Preliminaries: Convolution algebras. Let End(H) be the module formed by the
endomorphisms f : H → H of the object H in the base category. The composition
of endomorphisms gives a product ◦ that provides this module End(H) with a
natural unitary associative algebra structure. To prove our theorem, we use that
End(H) is equipped with an additional associative product, called the convolution
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product, and which we define by the composition operation f ∗ g = μ ◦ (f ⊗ g) ◦Δ,
for any f, g ∈ End(H), where Δ : H → H ⊗H denotes the coproduct of our Hopf
algebra while μ : H⊗H → H refers to the product as usual. We equivalently have:

(f ∗ g)(u) =
∑
(u)

f(u(1)) · g(u(2))

for any u ∈ H. The morphism ηε, defined by the composite of the unit and of the
counit of the Hopf algebra, is a unit with respect to the convolution product since
we have (ηε ∗ f)(u) =

∑
(u) ε(u(1)) · f(u(2)) = f(

∑
(u) ε(u(1)) · u(2)) = f(u), for any

u ∈ H, and similarly (f ∗ ηε)(u) = f(u).
Let us observe that the definition of this convolution product makes sense

in the more general case of a hom-object Hom(C,A) such that C is a counitary
cocommutative coalgebra (or just a counitary coassociative coalgebra) and A is a
unitary associative algebra. Furthermore, our construction is natural in C and in
A. In the course of our verifications, we notably consider the convolution algebras
defined by the hom-objects Hom(H,H⊗H) and Hom(H⊗H,H⊗H). In these cases,
we use the natural counitary cocommutative coalgebra structure (respectively, the
natural unitary associative algebra structure) of the tensor product H⊗H to define
our convolution product.

For our purpose, we still consider the morphism π : H → H such that π =
id −ηε ⇔ id = ηε + π. Recall that this morphism represents the projection onto
the summand I(H) = ker(ε : H → 1) of our Hopf algebra H (see §7.2.15).

Step 1: A subalgebra of the convolution algebra. We set πn := π∗n, for all n ∈ N,
and we consider formal sums f =

∑∞
n=0 λnπ

n, λn ∈ Q, which we aim to identify
with elements of the endomorphism algebra End(H). For this purpose, we use the
colimit decomposition H = colimm Km which we consider in our local conilpotence
condition in §7.2.15 and which gives the relation End(H) = limm Hom(Km, H) at
the hom-object level. Each morphism πn can be written as a composite πn =
∇(n)π(n)Δ(n), where Δ(n) : H → H⊗n denotes the n-fold coproduct of our Hopf
algebra (as in §7.2.15), the morphism π(n) : H⊗n → H⊗n is the n-fold tensor power
of our projector π, and ∇(n) : H⊗n → H denotes the n-fold product. By definition
of the local conilpotence condition (see §7.2.15), we have π(n)Δ(n)(Km) = 0 ⇒
πn(Km) = 0 when n > m. This vanishing relation enables us to regard our formal
sum as an element of the limit of hom-objects End(H) = limm Hom(Km, H) defined
by the collection of partial sums fm =

∑m
n=0 λnπ

n ∈ Hom(Km, H), for m ≥ 0.
Let S = {

∑∞
n=0 λnπ

n |λn ∈ Q (∀n)} be the submodule of the endomorphism
algebra End(H) formed by the endomorphisms f ∈ End(H) which admit an expan-
sion of this form f =

∑∞
n=0 λnπ

n. We have πm ∗ πn = πm+n and the coproduct
condition §7.2.15(2) in our definition of the local conilpotence implies that the con-
volution product f ∗ g ∈ End(H) of endomorphisms of the form f =

∑∞
n=0 λnπ

n

and g =
∑∞

n=0 μnπ
n satisfies f ∗ g =

∑∞
n=0(
∑

p+q=n λpμq)π
n. Hence, our module

S is preserved by the convolution product of the endomorphism algebra End(H).
In the next steps of this proof, we consider a new collection of elements es ∈

End(H), which we define by the formulas:

e1 = log∗(id) = log∗(ηε+ π) =

∞∑
n=1

(−1)n−1π
n

n
and es =

(e1)∗s

s!
for s ∈ N.
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We see that each es has an expansion of the form es =
∑

n≥s λnπ
n with a leading

term of order n = s. We can therefore give a sense to infinite sums
∑∞

s=0 cse
s in

End(H). We moreover have the relation

S =
{ ∞∑
n=0

λnπ
n |λn ∈ Q (∀n)

}
=
{ ∞∑
s=0

cse
s | cs ∈ Q (∀s)

}
inside the endomorphism algebra End(H).

Step 2: The coproduct relations. We determine a distribution relation between
the action of the endomorphisms es on H and the coproduct of the Hopf algebra
H. For this purpose, we use the convolution structure associated to the hom-
objects Hom(H,H ⊗ H) and Hom(H ⊗ H,H ⊗ H). We have an obvious extension
of the formal sum representation of Step 1 to Hom(H,H ⊗H) since we also have a
limit decomposition Hom(H,H ⊗H) = limn Hom(K

n, H ⊗H) in this case. We have
a similar observation for the hom-object Hom(H ⊗ H,H ⊗ H). We then use the
identity Hom(H ⊗H,H ⊗H) = limpq Hom(K

p ⊗Kq, H ⊗H).
We easily check that the distribution relation between the coproduct and the

product of H implies that we have the distribution relation Δ ◦ (f ∗ g) = (Δ ◦
f) ∗ (Δ ◦ g) in Hom(H,H ⊗ H) when we form the composite of endomorphisms
f, g ∈ End(H) = Hom(H,H) with the coproduct Δ ∈ Hom(H,H ⊗ H). Hence, the
morphism Δ∗ : Hom(H,H) → Hom(H,H ⊗ H) such that Δ∗(f) = Δ ◦ f preserves
the convolution product. We have a similar result for the morphism Δ∗ : Hom(H ⊗
H,H ⊗ H) → Hom(H,H ⊗ H) such that Δ∗(f) = f ◦ Δ. We then use that the
coproduct Δ : H → H ⊗ H defines a morphism of coalgebras (and hence, the
assumption that this coproduct is cocommutative) in order to get our distribution
relation.

We study the composite of the endomorphism e1 = log∗(id) with the coproduct
of H. We have Δ ◦ id = (id ⊗ id) ◦ Δ, and we deduce from the usual logarithm
addition formula that we have the identity:

Δ ◦ log∗(id) = log∗(id ⊗ id) ◦Δ
= log∗((id ⊗ηε) ∗ (ηε⊗ id)) ◦Δ
= (log∗(id)⊗ ηε+ ηε⊗ log∗(id)) ◦Δ,

where we use the coproduct condition §7.2.15(2) again in order to give a sense to
the terms of this relation in our limit of hom-objects.

We have e0 = (e1)∗0 = ηε (the convolution unit), and accordingly, we can
rewrite the above relation as Δ◦e1 = (e1⊗e0+e0⊗e1)◦Δ. We then have Δ◦er =
(Δ ◦ e1)∗r/r! = (e1 ⊗ e0 + e0 ⊗ e1)∗r ◦Δ/r! for each endomorphism er = (e1)∗r/r!,
and the binomial identity implies that we have the following distribution relation:

(∗) Δ ◦ er =
∑

s+t=r

(es ⊗ et) ◦Δ,

for all r ∈ N.
Step 3: The Eulerian idempotents . We now prove that the endomorphisms es,

s ∈ N, form a complete collection of orthogonal idempotents in the endomorphism
algebra End(H). For this purpose, we consider a third collection of elements, which
we define by the simple formula ψn = id∗n, where id : H → H is the identity



7.2. LIE ALGEBRAS AND HOPF ALGEBRAS 251

morphism. For each n ∈ N, we readily get:

ψn = exp∗(n log∗(id)) = exp∗(ne
1) =

∞∑
s=0

nses

when we define the exponential exp∗(x) by the usual power series expansion in the
convolution algebra.

Recall that we use the notation Δ(n) for the n-fold coproduct of the Hopf
algebra H and the notation ∇(n) for the n-fold product. We have already ob-
served that the elements πn ∈ End(H) introduced in Step 1 satisfy the relation
πn = ∇(n)π(n)Δ(n), where we set π(n) = π⊗n. We immediately deduce, from the
definition of the convolution product, that our new elements ψn = id∗n are also
identified with the composites ψn = ∇(n)Δ(n), for all n ∈ N.

The distribution relation (∗) implies, by an immediate induction, that we have
the formula

(∗′) Δ(n) ◦ er =
∑

r1+···+rn=r

(er1 ⊗ · · · ⊗ ern) ◦Δ(n)

for all n ∈ N. From this formula, we get the identity:

(∇(n)π(n)Δ(n)) ◦ er = ∇(n) ◦
( ∑
r1+···+rn=r

(π ◦ er1)⊗ · · · ⊗ (π ◦ ern)
)
◦Δ(n),

from which we deduce the vanishing relation:

πn ◦ er = 0 for n > r,

because if we assume n > r, then we have rk = 0 for some factor in each term of
the above formula and πe0 = πηε = 0. The relation (∗′) similarly implies that we
have the identity:

ψn ◦ er = (∇(n)Δ(n)) ◦ er = ∇(n) ◦
( ∑
r1+···+rn=r

(er1 ⊗ · · · ⊗ ern)
)
◦Δ(n)

=
∑

r1+···+rn=r

er1 ∗ · · · ∗ ern =
∑

r1+···+rn=r

r!

r1! · · · rn!
· er,

which gives:

ψn ◦ er = nrer,

for each n ∈ N, r ∈ N, when we consider the composite of the morphism ψn = id∗n

with any er ∈ End(H).
We consider the variants Sr = {

∑∞
s=r cse

s | cs ∈ Q (∀s)} = {
∑∞

n=r λnπ
n |λn ∈

Q (∀n)} of the module S = S0 introduced in Step 1. We form the quotient ob-
ject S / Sr+1 and we write p̄ ∈ S / Sr+1 for the image of an element p ∈ S in this
quotient. From the expansion ψn =

∑∞
s=0 n

ses, we deduce the relation:

ψ̄n =
r∑

s=0

nsēs ⇒ ēs =
r∑

n=0

θsnψ̄
n,

where (θkl)kl denotes the inverse of the Vandermonde matrix (ns)ns.
We deduce from the vanishing of the product πn ◦ er for n > r that we

have the relation Sr+1 ◦er = 0 in End(H) and that the mapping ρ : f �→ f ◦ er

induces a well-defined module morphism ρ : S / Sr+1 → End(H). We also de-
duce from our computation of the product ψn ◦ er that we have the formula
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ρ(ψ̄n) = nrer, for all n ∈ N. By using the Vandermonde matrix again, we ob-
tain ρ(ēs) =

∑r
n=0 θsnρ(ψ̄

n) =
∑r

n=0 θsnn
rer = δrse

r, where δrs is the Kronecker
delta (compare this argument with [124]). We conclude from this computation that
our endomorphisms er, r ∈ N, satisfy the relations

es ◦ et =
{
es, if s = t,

0, otherwise.

We moreover have
∑

s e
s = exp∗ log∗(id) = id . We therefore obtain that the

endomorphisms er, r ∈ N, form a complete set of orthogonal idempotents in the
endomorphism algebra of the object H.

From now on, we use the name ‘Eulerian idempotents ’ (following the convention
of the article [150]) to refer to these endomorphisms es ∈ End(H), s ∈ N. The
original Eulerian idempotents, such as defined in [154], are collections of idempotent
elements esn defined in the group algebra of the symmetric groups Q[Σn]. These
idempotents correspond to the endomorphisms es ∈ End(H) which we associate to
the tensor algebra H = T(M) (see [124, 150] and [155, §9]).

Step 4: The Eulerian splitting. We consider the splitting

H =
∞⊕
r=0

er(H),

which we deduce from the action of the Eulerian idempotents er ∈ End(H) on
our Hopf algebra H and where er(H) ⊂ H denotes the image of the endomorphism
er : H → H, for each r ∈ N. Recall that we have e0 = ηε, the unit of the convolution
product. We readily see that we have the inclusion relation e1(H) ⊂ P(H), because
we have e0e1(u) = 0 ⇒ ε(e1(u)) = 0, and for r = 1, the distribution relation (∗)
implies:

Δ(e1(u)) =
∑
(u)

[
e1(u(1))⊗ e0(u(2)) + e0(u(1))⊗ e1(u(2))

]
=
∑
(u)

[
ε(u(2)) · e1(u(1))⊗ 1 + 1⊗ ε(u(1)) · e1(u(2))

]
= e1(u)⊗ 1 + 1⊗ e1(u).

The goal of this step is to prove that we have an isomorphism er(H) � Sr(e
1(H)),

for every r ∈ N. Later on (in the concluding step of the proof of this theorem), we
will prove that the inclusion e1(H) ⊂ P(H) is actually an equality.

Recall that we set I(H) = ker(ε : H → 1) and the morphism π : H → H
such that π = id −ηε = id −e0 is identified with the projector associated to this
summand of our Hopf algebra. Recall besides that we use the notation ∇(r) :
H⊗r → H for the r-fold product in our Hopf algebraH and the notation Δ(r) : H →
H⊗r for the r-fold coproduct. We also consider the morphism π(r) : H⊗r → H⊗r

defined by the tensor power of our projector π : H → H.
In the case n = r, the distribution formula (∗′) together with the identities

πe0 = 0 and πe1 = e1 imply that we have the relation:

(∗∗) π(r)Δ(r)(er(u)) =
∑
(u)

e1(u(1))⊗ · · · ⊗ e1(u(r)),

for all u ∈ H. We then consider the morphism η : Sr(e
1(H)) ↪→ e1(H)⊗r ↪→ H⊗r

such that η(x1 · . . . · xr) = (1/r!) ·
∑

σ∈Σr
xσ(1) ⊗ · · · ⊗ xσ(r) for any monomial
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x1 · . . . · xr ∈ Sr(e
1(H)). The above formula (∗∗), where we also use the symmetry

of the r-fold coproduct Δ(r), implies that π(r)Δ(r)(er(u)) lies in the image of this
morphism. Hence, we have a morphism Sr : er(H) → Sr(e

1(H)) which fits in a
commutative diagram:

er(H)
Sr

π(r)Δ(r)

Sr(e
1(H))

η

H⊗r

,

for any r ∈ N. Let Πr = er∇(r)η be the morphism Πr : Sr(e
1(H)) → er(H) defined

by taking the composite

Sr(e
1(H))

η
H⊗r ∇(r)

H
er

er(H) ,

for any r ∈ N.
The previous distribution formula (∗∗) implies that we have the relation:

∇(r)π(r)Δ(r)(er(u)) =
∑
(u)

e1(u(1)) · . . . · e1(u(r)) = (e1 ∗ · · · ∗ e1)(u),

and hence that we have the identity:

∇(r)π(r)Δ(r)(er(u)) = r! · er(u),
for all u ∈ H, from which we readily deduce that we have the identity ΠrSr(e

r(u)) =
r! · er ◦ er(u) = r! · er(u). We aim to establish a converse relation SrΠr(�) = r! ·�
for any � = e1(u1) · . . . · e1(ur) ∈ Sr(e

1(H)). We have by definition:

Πr(�) =
1

r!
·
∑
σ∈Σr

er(e1(uσ(1)) · . . . · e1(uσ(r))).

We now consider a general element of the form v = e1(v1) · . . . · e1(vr) in the Hopf
algebra H. We have:

Δ(r)(e1(vi)) =

r∑
k=1

1⊗ · · · ⊗ e1(vi)

k

⊗ · · · ⊗ 1, for each i = 1, . . . , r,

since we observed that e1(H) consists of primitive elements. We use the distribution
relation between the product and the coproduct of a Hopf algebra to obtain that
the r-fold coproduct of our element v = e1(v1) · . . . · e1(vr) satisfies:

Δ(r)(v) = Δ(r)(e1(v1)) · . . . ·Δ(r)(e1(vr)),

and admits an expansion of the form:

Δ(r)(v) =
∑
τ∈Σr

e1(vτ(1))⊗ · · · ⊗ e1(vτ(r)) + tensors with a unit factor,

where the remainder consists of terms ρ = ρ1⊗· · ·⊗ρr ∈ H⊗r which contain at least
one unit factor ρi = 1 ∈ H. We apply the distribution relation (∗∗) to our element
u = v = e1(v1) · . . . · e1(vr) and we use the relations e1(1) = 0 and e1 ◦ e1 = e1 to
obtain the identity:

π(r)Δ(r)(er(v)) =
∑
τ∈Σr

e1(vτ(1))⊗ · · · ⊗ e1(vτ(r)).
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We apply this formula to the terms v = e1(uσ(1)) · . . . · e1(uσ(r)) in the expansion
of Πr(�). We then get:

π(r)Δ(r)(Πr(�)) =
1

r!
·
∑

σ,τ∈Σr

e1(uτσ(1))⊗ · · · ⊗ e1(uτσ(r))

=
∑
σ∈Σr

e1(uσ(1))⊗ · · · ⊗ e1(uσ(r))

after an obvious change of summation variables and a reduction of identical terms.
We consequently have the relation ηSrΠr(�) = π(r)Δ(r)Πr(�) = r! · η(�), from
which we conclude that we have the identity SrΠr(�) = r! · �, for all � ∈
Sr(e

1(H)). We therefore obtain that our maps Sr and Πr do define converse iso-
morphisms between Sr(e

1(H)) and er(H) (up to the multiplicative scalar r! ∈ Q).
We go back to the consideration of a general element of the form v = e1(v1) ·

. . . · e1(vr) in the Hopf algebra H. We can also use our distribution relation (∗∗) to
compute the expression π(n)Δ(n)(en(v)) for n > r. Indeed, we see that all tensors
in the expansion of the n-fold coproduct Δ(n)(v) contain at least one unit factor
1 ∈ H in this case and the application of our distribution relation (∗∗) therefore
returns a trivial result π(n)Δ(n)(en(v)) = 0.

Conclusions. We now consider the symmetrization map e : S(e1(H)) → H,
which we define by the same formula as in the statement of our theorem:

e(e1(u1) · . . . · e1(ur)) =
1

r!
·
∑
σ∈Σr

e1(uσ(1)) · . . . · e1(uσ(r)),

for � = e1(u1) · . . . · e1(ur) ∈ Sr(e
1(H)). We trivially have er(e(�)) = Πr(�) when

we take the projection of e(�) ∈ H onto the summand er(H) ⊂ H. We already
observed, on the other hand, that we have the relation π(n)Δ(n)(en(v)) = 0 for
any element of the form v = e1(v1) · . . . · e1(vr) when n > r. We accordingly have
ηSn(e

n(v)) = 0 ⇒ Sn(e
n(v)) = 0 ⇒ en(v) = 0 for any such v = e1(v1) · . . . · e1(vr).

This vanishing relation implies that e : S(e1(H)) → H carries Sr(e
1(H)) into⊕

n≤r e
n(H) and satisfies e(�) ≡ Πr(�)(mod

⊕
n<r e

n(H)), for any � = e1(u1) ·
. . . · e1(ur) ∈ Sr(e

1(H)). Then we can use that our morphisms Πr : Sr(e
1(H)) →

er(H) are invertible in the base category to obtain that the symmetrization map
e : S(e1(H)) → H is invertible too.

To complete our verifications, we just check, by using the inclusion e1(H) ⊂
P(H) and a straightforward computation, that e defines a coproduct preserving
morphism from the symmetric algebra S(e1(H)), which we equip with the coalgebra
structure of Proposition 7.2.6, towards our Hopf algebra H. Moreover, from the
relation e1(H) ⊂ P(H), we conclude that e preserves the augmentation attached
to our objects too. Hence, our symmetrization map e : S(e1(H)) → H defines an
isomorphism in the category of counitary cocommutative coalgebras. Then we can
use the result of Proposition 7.2.14(a), where we determine the primitive elements
of a symmetric coalgebra, to deduce the additional relation e1(H) = P S(e1(H)) =

P(H) from the existence of this isomorphism e : S(e1(H))
�−→ H. The statement of

our theorem follows. �
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Proposition 7.2.14(b) and Theorem 7.2.16 give the free Lie algebra case of the
Poincaré-Birkhoff-Witt Theorem:

Theorem 7.2.17 (Poincaré-Birkhoff-Witt Theorem). The morphism e : S(g) →
U(g) defined by the symmetrized sum

e(x1 · . . . · xr) =
1

r!
·
∑
σ∈Σr

xσ(1) · . . . · xσ(r)

on the symmetric algebra monomials x1 · . . . · xr ∈ S(g) yields an isomorphism
of counitary cocommutative coalgebras from the symmetric algebra S(g) to the en-
veloping algebra U(g), for all Lie algebras in our base category g ∈ Lie.

Proof. The equivalence between the claim of Theorem 7.2.17 and the com-
bined results of Proposition 7.2.14(b) and Theorem 7.2.16 in the case of a free Lie
algebra g = L(M) follows from the identity UL(M) = T(M) (see §7.2.7). The
assertion that our morphism e : S(g) → U(g) is a morphism of counitary cocommu-
tative coalgebras in the theorem follows from a straightforward verification (similar
to the verification of the parallel claim of Theorem 7.2.16), and we do not come
back to this claim.

To establish the general case of our theorem, we use that any Lie algebra g fits
in a reflexive coequalizer of free Lie algebras

L(M1)
d0

d1
L(M0)

s0

g ,

of which construction can be deduced from the free Lie algebra adjunction (see [130,
§VI.7] for details). The symmetric algebra functor preserves reflexive coequalizers
(by the general statements of §1.4) as well as the enveloping algebra functor (by
adjunction and because reflexive coequalizers of algebras are created in the under-
lying category). Thus, our natural transformation fits in a diagram of coequalizers
of the form:

S L(M1)

�

SL(M0)

�

S(g)

e

T(M1) T(M0) U(g)

,

where we use the identity U L(M) = T(M) of §7.2.7 and the combined results of
Proposition 7.2.14(b) and Theorem 7.2.16 to get that this diagram involves isomor-
phisms between the terms of our coequalizers. The existence of these isomorphisms
implies that we get an isomorphism at the level of the coequalizers themselves, and
this assertion finishes the proof of our theorem.

We borrow this argument for the proof of the general case of the Poincaré-
Birkhoff-Witt Theorem from [151, Theorem B.2.3]. We however do not use the same
approach as in this reference for the verification of the case of free Lie algebras. We
also refer to [1, §3.3] for another approach of the Poincaré-Birkhoff-Witt Theorem
(in a different setting) and to [81] for a historical overview of the subject. Let us
mention that our proof works as soon as we have kernels for idempotent morphisms.

�
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Theorem 7.2.17 admits the following immediate consequence which extends the
results of Proposition 7.2.14(b) to arbitrary Lie algebras:

Theorem 7.2.18. The canonical morphism ι : g → U(g), which we associate to
any enveloping algebra U(g), admits a natural retraction ρ : U(g) → g and induces
an isomorphism between the Lie algebra g and the Lie algebra of primitive elements
PU(g) ⊂ U(g). �

This result gives one part of the Milnor-Moore Theorem:

Theorem 7.2.19 (Milnor-Moore Theorem). The enveloping algebra and prim-
itive element functors U : Lie � HopfAlg : P induce adjoint equivalences of
categories between the category of Lie algebras Lie and the subcategory of locally
conilpotent Hopf algebras HopfAlgc.

The original Milnor-Moore Theorem [145] deals with Hopf algebras in (weight)
graded modules that satisfy a stronger conilpotence condition as the one considered
in this theorem. (We actually use this conilpotence condition for weight graded Hopf
algebras in §§7.3.15-7.3.16.) The reference [151, Theorem B.4.5] provides a gener-
alization of Milnor-Moore’s result in the setting of locally conilpotent (connected)
Hopf algebras in Q-modules (respectively, graded modules, differential graded mod-
ules). We give a direct proof of the general case of our theorem by relying on the
result of Theorem 7.2.16 (the Structure Theorem), on the result of Theorem 7.2.17
(the Poincaré-Birkhoff-Witt Theorem), and on the result of Theorem 7.2.18.

Proof. The claim of Theorem 7.2.18 actually gives one of the inversion re-

lations of our category equivalence g
�−→ P U(g). We use the statements of Theo-

rem 7.2.16 and Theorem 7.2.17 to get the converse relation UP(H)
�−→ H. For this

purpose, we simply observe that our morphism U P(H) → H fits in a commutative
triangle

U P(H)

SP(H)

�

�

H

,

where the diagonal morphisms are the isomorphisms of Theorem 7.2.16 and Theo-
rem 7.2.17. �

To complete the survey of this section, and as a preparation for subsequent ap-
plications of enveloping algebras to the study of operads, we examine the definition
of a symmetric monoidal structure on Lie algebras.

7.2.20. Direct sums of Lie algebras. The category of Lie algebras inherits limits
and colimits, like any category of algebras over an operad. Furthermore, the limits
of Lie algebras, as well as the filtered colimits and the reflexive coequalizers, are
created in the ambient symmetric monoidal category. In our setting, we also have
an identity between the direct sum g⊕ h and the product of g and h in the category
of Lie algebras since we assume that the ambient category is additive. We precisely
take this direct sum operation ⊕ : Lie ×Lie → Lie to provide the category of Lie
algebras Lie with a symmetric monoidal structure. The zero object 0, which also



7.2. LIE ALGEBRAS AND HOPF ALGEBRAS 257

represents the initial object of the category of Lie algebras, defines the monoidal
unit. The direct sum satisfies the unit, associativity, and symmetry axioms of sym-
metric monoidal categories, but it clearly does not satisfy the distribution relation
of §0.9 with respect to colimits.

The Lie bracket of the Lie algebra g⊕ h is defined by [(x1, y1), (x2, y2)] =
([x1, x2], [y1, y2]), for all x1, x2 ∈ g, and y1, y2 ∈ h.

The canonical embeddings i : g → g⊕ h and j : h → g⊕ h define morphisms
of Lie algebras. We moreover have [i(g), j(h)] = 0 in g⊕ h. We readily see that
the Lie algebra g⊕ h is universal with this property in the sense that giving a
morphism from g⊕ h towards a Lie algebra m amounts to giving a pair of Lie algebra
morphisms (f : g → m, g : h → m) such that we have the relation [f(g), g(h)] = 0
in m. This result holds in the general setting of Q-additive symmetric monoidal
categories.

The Lie algebra embeddings g
i−→ g⊕ h

j←− h induce morphisms U(g)
i∗−→

U(g⊕ h)
j∗←− U(h) at the enveloping algebra level, and we can use the product of the

enveloping algebra in order to get a morphism μ(i∗, j∗) : U(g) ⊗ U(h) → U(g⊕ h)
such that μ(i∗, j∗)(u⊗ v) = i∗(u) · j∗(v), for u⊗ v ∈ U(g)⊗ U(h). We claim that:

Lemma 7.2.21. The just defined morphism μ(i∗, j∗) : U(g) ⊗ U(h) → U(g⊕ h)
is an isomorphism.

Proof. In general, we have a bijection between the morphisms of unitary
associative algebras on a tensor product φ : U ⊗ V → T and the pairs of unitary
associative algebra morphisms (φf : U → T, φg : V → T ) that satisfy the relation
[φf (U), φg(V )] = 0 in T because we can set φ(u ⊗ v) = φf (u) · φg(v) to get a
morphism on U ⊗ V when this condition is satisfied. In the case of the enveloping
algebras U = U(g) and V = U(h), the verification of the relation [f(g), g(h)] = 0 for
the Lie algebra morphisms (f : g → T, g : h → T ) associated to (φf : U(g) → T, φg :
U(h) → T ), readily implies that we have the commutation relation [φf (u), φg(v)] =
0 on the whole tensor product U(g)⊗ U(h).

Hence, giving a morphism of unitary associative algebras φ : U(g)⊗ U(h) → T
amounts to giving a pair of Lie algebra morphisms (f : g → T, g : h → T ) such
that [f(g), g(h)] = 0, and according to the analysis of §7.2.20, this data amounts to
defining a Lie algebra morphism on the direct sum g⊕ h.

From this result, we conclude that the tensor product U(g)⊗U(h) satisfies the
same adjunction relation as the enveloping algebra of the Lie algebra g⊕ h, and
hence, is isomorphic to this enveloping algebra U(g⊕ h). The morphism considered
in the lemma can readily be identified with the comparison isomorphism which we
define in this proof. �

7.2.22. The symmetric monoidal category of Hopf algebras. We have already
observed that the category of counitary cocommutative coalgebras in a symmetric
monoidal category inherits a symmetric monoidal structure and we have a similar
result for the category of unitary associative algebras. As we define bialgebras in
terms of a combination of these structures, we deduce from our general primary
results that the category of bialgebras inherits a symmetric monoidal structure too.
When we deal with Hopf algebras G,H ∈ HopfAlg , we have an obvious antipode on
the tensor product G⊗H, which is defined factorwise by the tensor product of the
antipodes associated to G and H. We conclude that the category of Hopf algebras
HopfAlg forms a symmetric monoidal subcategory of the category of bialgebras.
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We implicitly check, in the proof of Lemma 7.2.21, that our pairing μ(i∗, j∗) :
U(g) ⊗ U(h) → U(g⊕ h) defines a morphism of unitary associative algebras. We
readily see that our morphism preserves counits and coproducts too (since this is
so on the Lie algebras which generate our unitary algebra tensor product). Accord-
ingly, our pairing defines an isomorphism of Hopf algebras.

In the formalism of symmetric monoidal categories, the result of Lemma 7.2.21
implies:

Proposition 7.2.23. The enveloping algebra functor U : Lie → HopfAlg is
symmetric monoidal in the sense that:
(1) in the case of the zero object 0, viewed as the unit object of the category of Lie

algebras, we have an obvious identity U(0) = 1;
(2) in the case of a direct sum of Lie algebras g⊕ h, the pairing of §7.2.20 defines

a Hopf algebra isomorphism U(g)⊗ U(h)
�−→ U(g⊕ h);

(3) and these comparison isomorphisms fulfill the unit, associativity and symmetry
constraints of §3.3.1.

Proof. The statement of assertion (1) is obvious and we have already checked
the result of assertion (2). The proof of the unit, associativity and symmetry
constraints, claimed by assertion (3), follows from a straightforward inspection of
definitions. �

7.3. Lie algebras and Hopf algebras in complete filtered modules

In this section, we examine the definition of Hopf algebras and the applica-
tions of the concepts of §§7.1-7.2 in the case where the ambient category consists
of modules M equipped with a filtration M = F0 M ⊃ · · · ⊃ Fs M ⊃ · · · such
that M = lims M/ Fs M . We use the phrase ‘complete filtered module’ to refer to
such objects. We also use the name ‘complete Hopf algebra’ to refer to a subcat-
egory of Hopf algebras in complete filtered modules which satisfy an appropriate
connectedness condition.

Our main purpose is to check that the main results of §7.2, about the relation-
ship between Lie algebras and Hopf algebras, do work for complete Hopf algebras.
We first check that the category of complete filtered modules forms an example of
symmetric monoidal category which fulfills the requirements of the previous sec-
tion §7.2. We revisit the definition of the adjunction between Lie algebras and Hopf
algebras in the context of complete filtered modules afterwards. We are notably
going to check that the universal algebra structures of §7.2, namely the free Lie
algebra, the symmetric algebra, the tensor algebra and the enveloping algebras of
Lie algebras, can be realized as completions of ordinary universal algebra struc-
tures when we pass from the category of plain modules to the category of complete
filtered modules.

Throughout this section, we assume that our ground ring k is a field of char-
acteristic zero. The assumption that k is a field ensures us that the tensor product
of k-modules preserves monomorphisms, kernels and finite limits. Let us mention
that our constructions have generalizations in the context of complete modules over
a complete local ring R, like power series ring k[[t]], which are naturally considered
in problems of deformation theory (see for instance [137] for a general reference on
this subject).
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We explain the precise definition of the categories of filtered modules and of
complete filtered modules which we use in this section first. We also explain the
definition of a category of weight graded modules which we use as an auxiliary
category in our constructions. We check that the category of filtered modules and
the category of complete filtered modules form examples of Q-additive symmetric
monoidal categories in the sense considered in §7.2. We have a similar result for
the category of weight graded modules.

7.3.1. The category of filtered modules. We call filtered module the structure
defined by a module M equipped with a decreasing filtration of the form:

M = F0 M ⊃ · · · ⊃ Fs M ⊃ Fs+1M ⊃ · · · .
We also say that a module morphism f : M → N is filtration preserving when we
have f(Fs M) ⊂ Fs N , for all s ∈ N. We use the notation f Mod for the category
formed by the filtered modules as objects together with the filtration preserving
morphisms as morphisms.

We actually use this category f Mod as an intermediate object in our definition
of the category of complete filtered modules. We are also going to use the following
observations in our constructions:

(a) The direct sum
⊕

α∈I Mα of filtered modules Mα, α ∈ I, inherits a canon-
ical filtration, defined by the obvious formula Fs(

⊕
α Mα) =

⊕
α Fs(Mα), and rep-

resents the coproduct of the objects Mα, α ∈ I, in the category of filtered modules.
The category of filtered modules is obviously additive so that we have an identity
between finite direct sums and cartesian products of filtered modules.

(b) A submodule K ⊂ M of a filtered module M inherits a canonical filtration,
defined by Fs K = K ∩ Fs M . We call this filtration the induced filtration on
K. We easily see that the kernel K = ker(f) of a filtration preserving morphism
f : M → N , where we assume M,N ∈ f Mod and we equip this object K with
the induced filtration, represents the kernel of the morphism f in the category of
filtered modules.

(c) A quotient N/M of a filtered module N by a submodule M is also equipped
with a canonical filtration, defined by Fs(N/M) = Fs(N)/M ∩ Fs(N). We easily
see that this quotient filtered module N/M represents the cokernel of the canonical
embedding i : M ↪→ N in the category of filtered modules. In general, the cokernel
of a morphism f : M → N in the category of filtered modules can be realized as
the quotient filtered module N/f(M), where we regard the image of our morphism
f(M) ⊂ N as a submodule of the codomain N .
The existence of coproducts and cokernels implies that the category of filtered
modules has all colimits. Recall that, in an additive category, the coequalizer of a
parallel pair (d0, d1) is identified with the cokernel of the difference d0 − d1.

The observations of (b) imply that the monomorphisms of the category of
filtered modules are the filtration preserving morphisms i : M → N which are
injective as module morphisms. In general, the preservation of filtrations by a
morphism i : M → N is equivalent to the relation i(Fs M) ⊂ Fs N ⇔ Fs M ⊂
i−1(Fs N). We say that a monomorphism of filtered modules i : M → N is a
filtered module inclusion and we write i : M ↪→ N when we have an equality
Fs M = i−1(Fs N) so that we can identify the subobject M with a submodule of N
equipped with the induced filtration of (b).

Note that a monomorphism of filtered modules is not necessarily a filtered
module inclusion, and hence, is not necessarily a kernel in the category of filtered
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modules. This observation immediately proves that the category of filtered modules,
though additive, fails to be abelian. Note also that a morphism of filtered modules
which is bijective as a module morphism is not an isomorphism in the category of
filtered modules in general. The isomorphisms of the category of filtered modules
precisely consist of the filtration preserving morphisms f : M → N which are
bijective as module morphisms and of which inverse bijection f−1 : N → M is also
filtration preserving.

7.3.2. Towers. We immediately see that giving a filtration as in §7.3.1 amounts
to giving a coaugmented tower of surjections:

M � · · · � M/ Fs+1 M � M/ Fs M � · · · � M/ F0 M = 0

since we have the identity Fs M = ker(M → qs−1M) when we set qsM = M/ Fs+1 M
for all s ≥ −1. We refer to the quotient object qsM = M/ Fs+1 M as the sth level
of the tower associated to the filtered module M . We also have an equivalence
between the morphisms of filtered modules and the morphisms of coaugmented
towers, which formally consist of the module morphisms f : M → N such that we
have factorizations:

M

f

· · · M/ Fs+1 M

f∗

M/ Fs M

f∗

· · · M/ F0 M

f∗

N · · · N/ Fs+1 N N/ Fs N · · · N/ F0 N

when we consider the towers associated of our objects M,N ∈ f Mod . In this
equivalence, the isomorphisms of the category of filtered modules correspond to the
morphisms of coaugmented towers which form an isomorphism levelwise.

We mainly use the tower representation when we define the completion of fil-
tered modules (in the next paragraph). In the tower representation, we can easily
realize colimits by an obvious levelwise construction, and we can see that the fil-
tration constructions of §7.3.1 match this process. For our purpose, we record the
following observations:

(a) For a direct sum
⊕

α∈I Mα of filtered modules Mα, α ∈ I, we have an
obvious identity: (⊕

α∈I

Mα

)
/ Fs
(⊕
α∈I

Mα

)
=
⊕
α∈I

(
Mα/ Fs Mα

)
,

for each s ∈ N.
(b) For a submodule K ⊂ M of a filtered module M , which we equip with the

induced filtration of §7.3.1(b), we have a tower identity K/ Fs K = K/K ∩ Fs M ,
and the inclusion K ⊂ M induces an embedding

K/K ∩ Fs M ↪→ K/ Fs M,

for each s ∈ N. For the kernel K = ker(f) of a filtration preserving morphism
f : M → N , we have the relation

ker(f)/ ker(f) ∩ Fs M = ker(f∗ : M/ Fs M → N/ Fs N),

at each level s ∈ N.
(c) For the quotient N/M of a filtered module N by a submodule M , where

we consider the quotient filtration of §7.3.1(c), we have a short exact sequence

0 → M/M ∩ Fs N → N/ Fs N → (N/M)/ Fs(N/M) → 0,
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for each s ∈ N.
The proof of these observations reduces to easy verifications.

7.3.3. Completions. The completion of a filtered module M is the module M̂
such that M̂ = lims M/ Fs M . The quotient morphisms q : M → M/ Fs M lift to a

canonical morphism q : M → M̂ with values in this limit M̂ = lims M/ Fs M . The

module M̂ inherits a canonical filtration, defined by the kernels

Fs M̂ = ker(M̂ → M/ Fs M),

where we consider the canonical morphisms M̂ → M/ Fs M associated to the limit

M̂ = lims M/ Fs M . The morphism q : M → M̂ is clearly filtration preserving. The

mapping M �→ M̂ obviously defines a functor on the category of filtered modules
f Mod and the morphism q : M → M̂ is obviously natural in M ∈ f Mod too.

In the language of §7.3.2, setting Fs M̂ = ker(M̂ → M/ Fs M) amounts to

providing the completed module M̂ with the filtration associated to the tower

M̂ � · · · � M/ Fs+1 M � M/ Fs M � · · · � M/ F0 M = 0

which we use in our definition of the object M̂ . We accordingly have an identity:

M̂/ Fs+1 M̂ = M/ Fs+1 M,

for every s ∈ N. This tower identity implies that the completion functor is idempo-
tent in the sense that the canonical morphism q : N → N̂ associated to a completed
module N = M̂ is an isomorphism.

In general, we say that a filtered module M is complete when the associ-
ated morphism q : M → M̂ is an isomorphism (equivalently, when we have
M = lims M/ Fs M). The idempotence of the completion functor implies that the

completion of a filtered module M gives a complete filtered module M̂ naturally
associated to M . This complete filtered module M̂ is also universal in the sense
that any filtration preserving morphism f : M → N , where N is complete, admits
a unique factorization

M
f

q

N

M̂
f̂

in the category of filtered modules (we take the image of the morphism f under the

completion functor and we use the identity N = N̂ to get this factorization).
7.3.4. The category of complete filtered modules. The category formed by the

complete filtered modules as objects together with the filtration preserving mor-

phisms as morphisms is denoted by f̂ Mod . The completion functor can be inter-

preted as a left adjoint of the obvious category embedding i : f̂ Mod ↪→ f Mod .

In what follows, we use notation of the form ĉolimαMα, with a hat mark, to
distinguish the colimit of a diagram in the category of complete filtered modules

Mα ∈ f̂ Mod , α ∈ I, from the colimit of this diagram colimα Mα in the category
of filtered modules f Mod . We also use the phrase ‘complete colimit ’ to distinguish

the colimit ĉolimαMα in the category of complete filtered modules f̂ Mod from the
‘ordinary colimit ’ colimα Mα, which we form in the category of filtered modules
f Mod .
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The idempotence of the completion functor actually implies that the com-

plete colimit ĉolimαMα can be realized as a completion of the ordinary colimit
(colimα Mα) .̂ This observation implies that the category of complete filtered mod-
ules has all colimits too. We more generally have the identity of complete filtered
modules:

(colim
α

Mα)̂= ĉolimαM̂α

for any diagram of filtered modules Mα ∈ f Mod , α ∈ I, where we consider the
complete colimit of the completion of our objects on the right-hand side.

For our purpose, we record the following assertions about the definition of par-
ticular instances of colimits and limits in the category of complete filtered modules
(we rely on the observations of §7.3.2 and on general properties of limits for the
verification of these claims):

(a) For the direct sum of a finite collection of filtered modulesMαi
, i = 1, . . . , n,

we have an obvious relation(
Mα1

⊕ · · · ⊕Mαn

)̂= M̂α1
⊕ · · · ⊕ M̂αn

.

In the case of complete filtered modules Mαi
= M̂αi

we deduce from this identity
that the direct sum Mα1

⊕ · · · ⊕ Mαn
is complete, and we obtain, besides, that

this direct sum represents the coproduct of the objects Mαi
, i = 1, . . . , n, in the

category of complete filtered modules. The category of complete filtered modules
is therefore additive (like the category of filtered modules). For the direct sum⊕

α∈I Mα of a (possibly infinite) collection of filtered modules Mα, α ∈ I, the
completion returns a complete filtered module (

⊕
α∈I Mα)̂which represents the

coproduct of the objects M̂α in the category of complete filtered modules. We can

also use the notation
⊕̂

α∈IMα (with the hat mark) to refer to these coproducts in
the complete sense.

(b) Let K ⊂ M be a submodule of a filtered module M , which we equip with
the induced filtration of §7.3.1(b). The morphism of complete filtered modules

K̂ → M̂ which extends the inclusion i : K ↪→ M is an inclusion of filtered modules.
The kernel ker(f) of a filtration preserving morphism f : M → N , equipped with
the induced filtration, is automatically complete as soon as M and N are complete,
and represents the kernel of the morphism f in the category of complete filtered
modules. In general, we have the relation

ker(f)̂= ker(f̂ : M̂ → N̂),

where f̂ : M̂ → N̂ is the morphism of complete filtered modules induced by our
morphism f : M → N .

(c) For the quotient N/M of a filtered module N by a submodule M , which
we equip with the quotient filtration of §7.3.1(c), we have the relation

(N/M)̂= N̂/M̂ ,

where we use the observation of assertion (b) to identify the completion M̂ with

a submodule of the complete filtered module N̂ . In particular, the quotient of a
complete filtered module N = N̂ by a complete submodule M = M̂ is automatically
complete. The object (N/M)̂ represents the cokernel of the inclusion M̂ ↪→ N̂ in
the category of complete filtered modules. In general, the cokernel of a morphism

f̂ : M̂ → N̂ in the category of complete filtered modules can be identified with the
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completion (N/f(M)) ,̂ where we regard the image of our morphism f(M) ⊂ N as
a submodule of the object N .

We easily see that the category of complete filtered modules, though additive,
fails to be abelian (for the same reasons as the category of plain filtered modules).
Nevertheless, we have an abelian category structure at the level of a category of
weight graded modules, which we use as approximations of our complete filtered
modules. We explain the definition of a weight graded modules in the next para-
graph and we explain the definition of a weight graded module associated to a
(complete) filtered module afterwards.

7.3.5. The category of weight graded modules. The category of weight graded
modules, denoted by w Mod , consists of modules M which are equipped with a
decomposition into a sum M =

⊕
s∈N Ms of components of homogeneous weight

Ms ∈ Mod , s ∈ N. The morphisms of the category of weight graded modules are
the module morphisms f : M → N which preserve the weight decomposition of
our objects in the sense that we have the relation f(Ms) ⊂ Ns, for each weight
s ∈ N. This definition of a weight graded module is obviously the same as the
definition of a graded module in §4.4 (except that our weight grading decomposi-
tions are supposed to range over the set of non-negative integers). Nevertheless,
the weight gradings which we consider in this section have a different nature than
the gradings of §4.4, which we generally associate to homological constructions.
This difference motivates us to introduce another category for these objects. We
also use a symmetric monoidal structure for weight graded modules that differs
from the symmetric monoidal structure of §4.4 on the category of graded modules
(see §7.3.13).

The category of weight graded modules inherits both limits and colimits (re-
alized componentwise) and is also clearly abelian (unlike the category of filtered
modules and the category of filtered modules).

7.3.6. The weight graded module associated to a filtered module. To a filtered
module M ∈ f Mod we associate a weight graded module E0 M ∈ w Mod with the
subquotients

E0s M = Fs M/ Fs+1 M, s ∈ N,

as homogeneous components. The mapping E0 : M �→ E0 M defines a functor from
the category of filtered modules f Mod to the category of weight graded modules
w Mod . In what follows, we also consider the obvious restriction of this functor to

the category of complete filtered modules f̂ Mod .
The subquotients E0s M can also be defined in terms of the tower associated to

M . We explicitly have:

E0s M = ker(M/ Fs+1 M → M/ Fs M), for any s ∈ N.

For the completion of a filtered module M̂ , we immediately deduce from this rep-
resentation that we have the relation:

E0s M̂ = E0s M,

for every s ∈ N.
The following easy statement motivates the introduction of weight graded mod-

ules for the study of complete filtered modules:

Proposition 7.3.7. A morphism of complete filtered modules defines an iso-

morphism f : M
�−→ N (in the category of complete filtered modules) if and only if



264 7. HOPF ALGEBRAS

the morphism of weight graded modules which we associate to this morphism forms

an isomorphism E0 f : E0 M
�−→ E0 N (in the category of weight graded modules).

Explanations and proof. Recall that we consider the categorical notion of
isomorphism in the category of (complete) filtered modules (see §7.3.1), and a
morphism of complete filtered modules f : M → N is an isomorphism in this
sense if and only if this morphism induces an isomorphism levelwise on the tower

decomposition of the objects M,N ∈ f̂ Mod (see §7.3.2). The morphism of weight
graded modules E0 f : E0 M → E0 N , on the other hand, forms an isomorphism
in the category of weight graded modules if and only if this morphism defines an
isomorphism componentwise.

The “only if” part of the proposition follows from the functoriality of the map
E0 : f �→ E0 f . We therefore focus on the proof of the “if” part. The definition
E0s M = ker(M/ Fs+1 M → M/ Fs M) implies that the modules of homogeneous
weight E0s M fit in short exact sequences

0 → E0s M → M/ Fs+1M → M/ Fs M → 0,

for all s ∈ N. From these exact sequences, we obtain by induction that a morphism
of filtered modules f : M → N induces an isomorphism at each level s of the towers
associated to our modules as soon as the morphism of weight graded modules E0 f :
E0 M → E0 N is an isomorphism. The proposition follows. �

In subsequent applications, we combine the result of this proposition with the
following observations:

Proposition 7.3.8. The mapping E0 : M �→ E0 M preserves the categorical op-
erations considered in §7.3.1( a-c). To be explicit, we have the following assertions:

(a) For a direct sum
⊕

α Mα of (complete) filtered modules Mα, we have the
obvious relation

E0
(⊕

α

Mα

)
=
⊕
α

E0 Mα.

(b) For the kernel K = ker(f : M → N) of a filtration preserving morphism
f : M → N , where M and N are (complete) filtered modules, we have the relation

E0 ker(f : M → N) = ker(E0 f : E0 M → E0 N).

(c) For a submodule M ⊂ N of a filtered module N , which we equip with the
induced filtration of §7.3.1(b), the weight graded module E0 M associated to M
embeds into E0 N , and we have a short exact sequence

0 → E0 M → E0 N → E0(N/M) → 0

which identifies E0 N/ E0 M with the weight graded module E0(N/M), where the
module N/M is equipped with the quotient filtration of §7.3.1( c).

Proof. The proof of this proposition reduces to easy verifications by using the
observations of §7.3.2 on the definition of direct sums, kernels and quotient objects
in the category of complete filtered modules. �
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7.3.9. The tensor product of filtered modules. The tensor product M ⊗ N of
filtered modules M,N ∈ f Mod inherits a canonical filtration, which we define by:

Fr(M ⊗N) =
∑

s+t=r

Fs(M)⊗ Ft(N) ⊂ M ⊗N, for each r ∈ N.

The category of filtered modules is therefore equipped with a natural tensor product
operation.

The ground field k, equipped with the filtration such that F0 k = k and Fs k =
0 for s > 0, forms a unit for this tensor product. We readily check that the
associativity isomorphism of the tensor product of k-modules (K ⊗ L) ⊗ M �
K ⊗ (L⊗M) preserves filtrations, and hence, defines an associativity isomorphism
in the category of filtered modules. We similarly have a symmetry isomorphism
M⊗N � N⊗M inherited from the base category of k-modules. Thus we have a full
symmetric monoidal structure on the category of filtered modules. We readily see,
moreover, that the tensor product of filtered modules distributes over the direct sum
operation of §7.3.1(a), over the cokernel operation of §7.3.1(c), and as a consequence
over all colimits, as we require in §0.9(a).

The tensor product of complete filtered modules is not complete in general, but
we can lift the symmetric monoidal structure of the category of filtered modules
to the category of complete filtered modules by using our completion functor. We
explicitly set:

M⊗̂N = lim
r
(M ⊗N)/ Fr(M ⊗N),

for any M,N ∈ f̂ Mod , in order to get a tensor product operation ⊗̂ on the category

of complete filtered modules f̂ Mod . We aim to establish that the category of com-
plete filtered modules, equipped with this completed tensor product, is symmetric
monoidal. We rely on the following observation:

Lemma 7.3.10. The natural morphism⊕
s+t=r

Fs M/ Fs+1M︸ ︷︷ ︸
=E0s M

⊗ Ft N/ Ft+1 N︸ ︷︷ ︸
=E0t N

→
∑

s+t=r

Fs(M)⊗ Ft(N)/
∑

s+t=r+1

Fs(M)⊗ Ft(N)︸ ︷︷ ︸
=E0r(M⊗N)

is an isomorphism.

Proof. The proof of this lemma reduces to an elementary exercise of linear
algebra. �

This lemma gives our main argument in the proof of the following proposition:

Proposition 7.3.11. The canonical morphism M ⊗ N → M̂ ⊗ N̂ → M̂⊗̂N̂ ,
defined for any pair of filtered modules M,N ∈ f Mod, extends to an isomorphism

(M ⊗N)̂ �−→ M̂⊗̂N̂

in the category of complete filtered modules.

Proof. Lemma 7.3.10 implies that we have the identity

E0r(M ⊗N)̂= E0r(M ⊗N) =
⊕

s+t=r E
0
s M ⊗ E0t N
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as well as

E0r(M̂⊗̂N̂) = E0r(M̂ ⊗ N̂) =
⊕

s+t=r E
0
s M̂ ⊗ E0t N̂ =

⊕
s+t=r E

0
s M ⊗ E0t N,

for every r ∈ N. Besides, we immediately see that the morphism of the propo-
sition (M ⊗ N)̂→ M̂⊗̂N̂ induces the identity morphism at the level of these
weight graded modules. Proposition 7.3.7 immediately implies, therefore, that this
morphism is an isomorphism. �

In the next paragraphs §§7.3.12-7.3.13, we reinterpret these intermediate results
as the definition of symmetric monoidal functors between the symmetric monoidal
categories formed by the filtered modules, the complete filtered modules and the
weight graded modules.

7.3.12. The symmetric monoidal structure of the category of complete filtered
modules. We equip the category of complete filtered modules with the completed
tensor product

M⊗̂N = lim
r

M ⊗N/ Fr(M ⊗N)

of §7.3.9. We see that the ground field, for which we have k̂ = k, also defines
a unit for this tensor structure. Furthermore, we easily deduce from the result
of Proposition 7.3.11 that the completed tensor product inherits an associativity
isomorphism from the ordinary tensor product of filtered modules:

((K⊗̂L)⊗̂M) � ((K ⊗ L)⊗M)̂� (K ⊗ (L⊗M))̂� (K⊗̂(L⊗̂M)).

We also have an obvious symmetry isomorphism M⊗̂N � N⊗̂M which is induced
by the symmetry isomorphism of the category of filtered modules (we just use the
functoriality of completions in this case). Thus the category of complete filtered

modules f̂ Mod , equipped with our completed tensor product ⊗̂, has a full sym-
metric monoidal category structure. We immediately check, moreover, that the
tensor product of complete filtered modules distributes over colimits, as we require
in §0.9(a), since this is so in the category of filtered modules (see §7.3.9), the colim-
its of diagrams of complete filtered modules are given by the completions of their
counterparts in the category of filtered modules (see §7.3.4), and our completed
tensor product commutes with the completion operation (by Proposition 7.3.11).

The result of Proposition 7.3.11 and the definition of our symmetric monoidal
structure on complete filtered modules implies that the completion functor (−)̂ :
f Mod → f̂ Mod is symmetric monoidal.

7.3.13. The symmetric monoidal structure of the category of weight graded mod-
ules. We already briefly mentioned that the category of weight graded modules
inherits a symmetric monoidal structure as well. We make the definition of this
symmetric monoidal structure explicit in this paragraph. We use that the ten-
sor product of weight graded modules M,N ∈ w Mod inherits a canonical weight
decomposition M ⊗N =

⊕∞
r=0(M ⊗N)r where we set:

(M ⊗N)r =
⊕

s+t=r

Ms ⊗Nt,

for any r ∈ N (as in the case of the tensor product of graded modules in §4.4.1).
We equip the category of weight graded modules with this tensor product bifunctor
⊗ : w Mod ×w Mod → w Mod . The ground ring k, regarded as a weight graded
module of rank 1 concentrated in weight r = 0, represents a unit object for this ten-
sor product, and the associativity isomorphism of the tensor product of k-modules
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defines an associativity isomorphism for this tensor product of weight graded mod-
ules yet. We also consider the obvious symmetry isomorphism M ⊗N � N ⊗M ,
defined by the plain symmetry isomorphism of the category of k-modules (with no
sign involved), when M,N ∈ w Mod (while we follow the sign rule of differential
graded algebra to define the symmetry isomorphism of the symmetric monoidal
category of graded modules). The tensor product of weight graded modules clearly
distributes over colimits too.

By Lemma 7.3.10, we have an isomorphism of weight-graded module

E0(M ⊗N) � E0(M)⊗ E0(N),

for any M,N ∈ f Mod . We have an analogous result in the case of the completed
tensor product since the definition of the tensor product M⊗̂N as a completion
implies E0(M⊗̂N) = E0(M ⊗ N) (see §7.3.6). The mapping E0 : M �→ E0(M)
clearly preserves unit objects. Furthermore, our isomorphism E0(M⊗N) � E0(M)⊗
E0(N) satisfies the coherence constraints of a symmetric monoidal transformation
(see §3.3.1). In particular, we easily see that the isomorphism E0(M⊗N) � E0(N⊗
M) induced by the symmetry isomorphism of filtered modules is carried to the
symmetry isomorphism of the category of weight graded modules E0(M)⊗E0(N) �
E0(N)⊗E0(M) (of which definition was actually motivated by this correspondence)
when we apply our symmetric monoidal transformation. Thus, the mapping E0 :
M �→ E0(M) defines a symmetric monoidal functor from the category of filtered
modules (respectively, the category of complete filtered modules) to the category
of weight graded modules.

7.3.14. Hopf algebras in filtered, complete and weight graded modules. The def-
inition of the symmetric monoidal structures of the previous paragraphs enables
us to apply the concepts of the previous sections §§7.1-7.2 to the category of fil-
tered modules, to the category of complete filtered modules, and to the category of
weight graded modules. In particular, we can define Hopf algebras in any of these
categories.

We readily see that defining a Hopf algebra in the category of weight graded
modules amounts to giving a weight graded moduleH equipped with a Hopf algebra
structure (in the ordinary sense) such that the unit η : k → H, the product μ :
H ⊗ H → H, the counit ε : H → k, the coproduct Δ : H → H ⊗ H, and the
antipode map σ : H → H are weight preserving morphisms. We similarly see
that defining a Hopf algebra in the category of filtered modules H amounts to
giving a filtered module H equipped with a Hopf algebra structure (in the ordinary
sense) such that the unit η : k → H, the product μ : H ⊗ H → H, the counit
ε : H → k, the coproduct Δ : H → H ⊗H, and the antipode map σ : H → H are
filtration preserving morphisms. In the context of complete filtered modules, we
have to replace the plain tensor product by the completed tensor product ⊗̂ in the
definition of a Hopf algebra. The product can still be composed with the canonical
morphism H ⊗ H → H⊗̂H (associated to our completion) to give an ordinary
product on the Hopf algebra H (we go back to this observation in §7.3.21), but the
coproduct Δ : H → H⊗̂H does not factor through the ordinary tensor product in
general, and hence, is not equivalent to an ordinary coproduct.

The preservation of symmetric monoidal structures implies that the filtration
subquotient functor E0 : M �→ E0 M maps a Hopf algebra in filtered modules
(respectively, in complete filtered modules) to a Hopf algebra in weight graded
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modules. The completion functor (−)̂: M �→ M̂ similarly maps a Hopf algebra in
filtered modules to a Hopf algebra in complete filtered modules.

7.3.15. Connected weight graded Hopf algebras and complete Hopf algebras. In
order to follow usual conventions (see [145]), we say that a weight graded Hopf al-
gebra (for a Hopf algebra in weight graded modules) is connected when we have
H0 = k. In this case, the unit morphism of our Hopf algebra η : k → H (re-
spectively, the counit morphism ε : H → k) is necessarily given by the identity
morphism between the ground field k and the module H0 = k. We use the notation
w HopfAlg for the category formed by the connected weight graded Hopf algebras.

In the filtered module context, we analogously say that a filtered Hopf alge-
bra (for a Hopf algebra in filtered modules) is connected when we have E00 H =
H/ F1 H = k, and we use the notation f HopfAlg for this subcategory of the cate-
gory of Hopf algebras in filtered modules. In the case of Hopf algebras in complete
filtered modules, we suppose that the requirement E00 H = k is satisfied in all appli-
cations. Therefore we only use the name ‘complete Hopf algebra’ to refer to Hopf
algebras in complete filtered modules which satisfy our connectedness condition

E00 H = k. We also use the notation f̂ HopfAlg (with no further precision) for this
subcategory of complete Hopf algebras.

The requirement H/ F1 H = k implies that our category of connected filtered
(respectively, complete) Hopf algebras represents the preimage of the category of
connected weight graded Hopf algebras under the mapping E0 : H �→ E0 H. We
accordingly have a diagram of functors

f HopfAlg
(−)̂

E0

f̂ HopfAlg

E0

w HopfAlg

which summarizes the connections between our categories of Hopf algebras.
The following proposition motivates the introduction of the connectedness con-

dition for weight graded Hopf algebras:

Proposition 7.3.16. The connected weight graded Hopf algebras are locally
conilpotent in the sense of the definition of §7.2.15.

Proof. Let H be a connected weight graded Hopf algebra. We check that the
conditions of local conilpotence hold for the objects Km = H0 ⊕ · · · ⊕ Hm. We
obviously have colimm Km = H and the homogeneity of the coproduct implies the
inclusion relation Δ(Km) ⊂

∑
p+q=m Kp ⊗ Kq. We are therefore left to checking

the vanishing condition n > m ⇒ π(n)Δ(n)(Km) = 0.
Recall that the morphism π(n)Δ(n) represents the components of the n-fold

coproduct Δ(n) : H → H⊗n on the summand I(H)⊗n ⊂ H⊗n. In the case of a
connected weight graded Hopf algebra, for which we have H0 = k, the augmenta-
tion ideal I(H) = ker(ε : H → k) is identified with the sum I(H) =

⊕
r>0Hr. The

reduced n-fold coproduct π(n)Δ(n) is equivalently defined by dropping all terms
which involve at least one unit factor 1 ∈ H0 in the expansion of the n-fold co-
product of an element u ∈ H. The preservation of the grading by the coproduct
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implies

π(n)Δ(n)(Hr) ⊂
⊕

r1+···+rn=r
r1,...,rn>0

Hr1 ⊗ · · · ⊗Hrn ,

and we accordingly have n > r ⇒ π(n)Δ(n)(Hr) = 0. This observation finishes the
proof of our statement. �

7.3.17. Weight graded Lie algebras and Hopf algebras. We can formally ap-
ply the definitions and the constructions of §7.2 to the category of weight graded
modules M = w Mod since this symmetric monoidal category fulfills all our re-
quirements, including the distribution relation of §0.9(a) with respect to colimits.
We accordingly have a category of weight graded Lie algebras (for Lie algebras
in weight graded modules), an enveloping algebra functor which assigns a weight
graded Hopf algebra U(g) to any weight graded Lie algebra g, as well as a primitive
element functor P(H) which forms a right adjoint of this enveloping algebra functor
on weight graded Lie algebras. We basically get all constructions by applying the
definitions of §7.2 to the symmetric monoidal category of weight graded modules,
where we consider the tensor product operation of §7.3.13. We also have, by the
way, a weight graded version of the symmetric algebra S(M), of the tensor algebra
T(M), and of the free Lie algebra L(M) of §§7.2.3-7.2.4.

We immediately get, from the general definition of a Lie algebra in a symmet-
ric monoidal category, that a weight graded Lie algebra consists of a weight graded
module g together with a weight preserving morphism λ : g⊗ g → g which defines
a Lie structure (in the ordinary sense) on the module g. The preservation of the
weight grading is equivalent to the relation [gs, gt] ⊂ gs+t, for all s, t ∈ N, where
we use the Lie bracket notation [x, y] = λ(x⊗ y). We say that a weight graded Lie
algebra is connected when we have g0 = 0 and we use the notation w Lie for this
subcategory of the category of weight graded Lie algebras. We readily see that the
enveloping algebra functor maps a connected weight graded Lie algebra to a con-
nected weight graded Hopf algebra (in the sense of §7.3.15) and we have a converse
relation for the functor of primitive elements. We accordingly have adjoint functors
between our subcategories of connected objects U : w Lie � w HopfAlg : P and
the result of Proposition 7.2.23, which asserts that the enveloping algebra functor is
symmetric monoidal, holds in the weight graded setting. We also immediately see,
by the way, that the symmetric algebra R = S(M) associated to a weight graded
module M ∈ w Mod is connected in the sense that we have the relation R0 = k
when M0 = 0. We have a similar result M0 = 0 ⇒ T(M)0 = k for the tensor
algebra R = T(M), while we obtain M0 = 0 ⇒ L(M)0 = 0 for the free Lie algebra
R = L(M).

We record the following weight graded version of the main theorems of §7.2:

Theorem 7.3.18.
(a) The result of Theorem 7.2.16 (the Structure Theorem of Hopf algebras)

implies that we have an isomorphism of weight graded counitary cocommutative
coalgebras

e : SP(H)
�−→ H,

for any connected weight graded Hopf algebra H ∈ w HopfAlg.
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(b) The result of Theorem 7.2.17 (the Poincaré-Birkhoff-Witt Theorem) im-
plies that we have an isomorphism of weight graded counitary cocommutative coal-
gebras

e : S(g)
�−→ U(g),

for any connected weight graded Lie algebra g ∈ w Lie.
(c) The result of Theorem 7.2.19 (the Milnor-Moore Theorem) implies that the

weight graded versions of the enveloping algebra functor U : g �→ U(g) and of the
primitive element functor P : H �→ P(H) induce adjoint equivalences of categories

U : w Lie � w HopfAlg : P

between the category of connected weight graded Lie algebras w Lie and the category
of connected weight graded Hopf algebras w HopfAlg.

The third assertion of this theorem is actually the original version of the Milnor-
Moore theorem (see [145]).

Proof. These assertions are applications of the results of Theorem 7.2.16,
Theorem 7.2.17 and Theorem 7.2.19 since we established in Proposition 7.3.16 that
the connected weight graded Hopf algebras are locally conilpotent in the sense
of §7.2.15. �

We now review the applications of the concepts of §7.2 to the category of com-
plete filtered modules. We can formally apply the definitions and constructions
of §7.2 in this context since we observed in §7.3.12 that the tensor product of com-
plete filtered modules (and the tensor product of plain filtered modules similarly)
fulfill all our requirements, including the distribution relation of §0.9(a) with re-
spect to colimits. We use another approach in order to make these constructions
more explicit. In the next paragraphs, we precisely check that the complete ver-
sions of the free Lie algebra, of the symmetric algebra, of the tensor algebra and
of the enveloping algebra of a Lie algebra are identified with completions of their
ordinary counterpart. We examine the definition of the structure of a Lie algebra
first.

7.3.19. Lie algebras in filtered modules and in complete filtered modules. We
immediately get, from the definition of §7.2.1, that the structure a filtered Lie alge-
bra (for a Lie algebra in filtered modules) consists of a filtered module g equipped
with a Lie bracket λ : g⊗ g → g which defines a Lie structure (in the ordinary
sense) on g and preserves filtration. We explicitly assume [Fs g, Ft g] ⊂ Fs+t g, for
all s, t ∈ N, where we use the bracket notation [x, y] = λ(x ⊗ y). When we deal
with Lie algebras in complete filtered modules, we assume that g is a complete fil-
tered module ĝ = g and we replace the plain tensor product in the definition of the
Lie bracket by the completed one. We immediately see that any such Lie bracket
on the completion g ⊗̂ g = (g⊗ g)̂arises as the extension of an ordinary filtration
preserving Lie bracket on g:

g⊗ g
λ

g

g ⊗̂ g

λ̂

.

Hence, a Lie algebra in complete filtered modules is equivalent to a filtered Lie
algebra g whose underlying filtered module is complete ĝ = g. This observation
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implies that we have an embedding of the category of Lie algebras in complete
filtered modules into the category of Lie algebras in filtered modules. We see
that this embedding is a right adjoint of the functor induced by the completion
(−)̂: g �→ ĝ. We simply use the preservation of symmetric monoidal structures by
the completion functor (see §7.3.12) in order to check that the completion ĝ of a
Lie algebra in filtered modules g inherits a Lie algebra structure.

7.3.20. Connected filtered Lie algebras and complete Lie algebras. We say that
a filtered Lie algebra is connected when we have E00 g = g / F1 g = 0, so that the
filtration of our Lie algebra has the form g = F1 g ⊃ · · · ⊃ Fs g ⊃ · · · . We use the
notation f Lie for the subcategory of connected filtered algebras. In the case of Lie
algebras in complete filtered modules, we suppose that the requirement E00 g = 0
(equivalently, g = F1 g) is satisfied in all applications. Therefore we only use the
name ‘complete Lie algebra’ to refer to Lie algebras in complete filtered modules

which satisfy our connectedness condition E00 g = 0. We also use the notation f̂ Lie
(with no further precision) for this subcategory of complete Lie algebras.

The functor E0 : M �→ E0 M also preserves Lie algebra structures since we
observed in §7.3.13 that this functor is symmetric monoidal in the sense of §3.3. The
requirement E0 g = 0 implies that our category of connected filtered (respectively,
complete) Lie algebras represents the preimage of the category of connected weight
graded Lie algebras of §7.3.17 under the functor E0 : g �→ E0 g. We accordingly have
a diagram of functors

f Lie
(−)̂

E0

f̂ Lie

E0

w Lie

,

which summarizes the connections between our categories of lie algebras, and where
the horizontal arrows are the embedding and completion functors of §7.3.19.

We now revisit the construction of the symmetric algebras, tensor algebras, and
enveloping algebras of §7.2 in the setting of complete filtered modules. We then deal
with unitary associative algebras and unitary commutative algebras in complete
filtered modules. We examine the definition of these structures in a preliminary
step. We also deal, for our purpose, with auxiliary categories of unitary associative
algebras and of unitary commutative algebras in filtered modules.

7.3.21. Unitary associative and unitary commutative algebras in complete fil-
tered modules. We immediately see (as in the Lie algebra case) that a unitary
associative (respectively, commutative) algebra in filtered modules is equivalent to
a filtered module A equipped with a unit morphism η : k → A and with a product
morphism μ : A⊗A → A which provide A with a unitary associative (respectively,
commutative) structure (in the ordinary sense), and preserve filtrations (this con-
dition is void for the unit since we assume F1 k = 0). We also readily see that a
unitary associative (respectively, commutative) algebra in complete filtered mod-
ules is equivalent to a unitary associative (respectively, commutative) algebra in

filtered modules A which is complete as a filtered module A = Â, because we have

k̂ = k and any product in the symmetric monoidal category of complete filtered
modules μ̂ : A⊗̂A → A arises as the extension of an ordinary product of filtered
modules μ : A⊗A → A.
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We say that a unitary associative (respectively, commutative) algebra in fil-
tered modules is connected when we have E00 A = A/ F1 A = k. When we work in
the complete setting, we only use the phrase ‘complete unitary associative (respec-
tively, commutative) algebra for the unitary associative (respectively, commutative)
algebras in complete filtered modules which fulfill this connectedness requirement.
We adopt the notation f As+ (respectively, f Com+) for the subcategory of con-
nected filtered unitary associative (respectively, commutative) algebras, and the

notation f̂ As+ (respectively, f̂ Com+) for the subcategory of complete unitary as-
sociative (respectively, commutative) algebras. We use similar conventions for uni-
tary associative (respectively, commutative) algebras in weight graded modules and
we have a diagram, similar to the functor diagram of §7.3.20, which summarizes
the connections between these categories of algebras.

The observations of this paragraph imply that the completion functor (−)̂ :
A �→ Â induces a functor on filtered unitary associative (respectively, commutative)
algebras. We readily see that this functor on filtered unitary associative (respec-

tively, commutative) algebras (−)̂ : A �→ Â defines a left adjoint of the category

embedding i : f̂ As+ ↪→ f As+ (respectively, i : f̂ Com+ ↪→ f Com+).
7.3.22. The completion of free algebras. We can apply the general construc-

tion of §7.2.4 to get the definition of tensor (respectively, symmetric) algebras in
the category of filtered modules (and in the category of complete filtered modules
similarly). We can also use the general construction of §7.2.3 to get the definition
of free Lie algebras. In all case, we simply replace the generic direct sums and
tensor products of §7.2 by the coproduct and tensor product of our categories (the
complete direct sum ⊕̂ and the complete tensor product ⊗̂ in the complete filtered
module setting).

When we deal with plain filtered modules, we can identify the tensor alge-
bra T(M) with the standard tensor algebra associated to the module M , which
we equip with the filtration T(M) = F0 T(M) ⊃ · · · ⊃ Fs T(M) ⊃ · · · such that
Fs T(M) =

⊕∞
r=0 Fs(M

⊗r) and Fs(M
⊗r) =

∑
s1+···+sr=s Fs1 M ⊗ · · · ⊗ Fsr M . We

have a similar observation in the symmetric algebra and in the free Lie algebra case.
For a complete filtered module M = M̂ , we use the notation T̂(M) to refer

to the complete tensor algebra associated to M , and T(M) for the ordinary tensor
algebra (formed in the category of filtered modules). We adopt an analogous nota-

tion Ŝ(M) for the complete symmetric algebra associated to M , which we oppose

to the ordinary symmetric algebra S(M). We similarly set L̂(M) for the complete
free Lie algebra associated to M , and L(M) for the ordinary free Lie algebra in the
category of filtered modules.

In fact, by using the adjunction between unitary associative (respectively, com-
mutative) algebras in filtered modules and in complete filtered modules, we immedi-
ately get that the complete tensor (respectively, symmetric) algebra can be realized
as the completion of the ordinary tensor (respectively, symmetric) algebra. We more

generally have T̂(M̂) = T(M)̂ for any filtered module M ∈ f Mod . We similarly

have Ŝ(M̂) = S(M)̂ in the case of the symmetric algebra, and L̂(M̂) = L(M)̂ in
the case of the free Lie algebra. We can use this relationship to get an explicit rep-
resentation of the complete tensor algebra (respectively, of the complete symmetric
algebra, of the complete free Lie algebra).

Let R = S(M) (respectively, R = T(M)) denote the symmetric (respectively,
tensor) algebra associated to a filtered module M . We immediately see that the
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counit ε : R → k, the coproduct Δ : R → R⊗R, and the antipode σ : R → R in the
construction of Proposition 7.2.6 are filtration preserving morphisms and are identi-
fied with the canonical structure morphisms of our Hopf algebras R = S(M),T(M)
when we carry out the construction of Proposition 7.2.6 in the symmetric monoidal
category of filtered modules. In the complete case, the counit ε̂ : R̂ → k, the co-
product Δ̂ : R̂ → R̂⊗̂R̂ and the antipode σ̂ : R̂ → R̂, which define the Hopf algebra
structure of the complete algebras R̂ = Ŝ(M), T̂(M), are identified with the com-
pletion of these structure morphisms ε : R → k, Δ : R → R⊗R and σ : R → R on
the ordinary symmetric and tensor algebras R = S(M),T(M).

7.3.23. Connectedness assumptions and complete free algebras. We usually ap-
ply our complete tensor algebra construction to complete filtered modules M such
that E00 M = 0 ⇔ M = F1 M . We readily see that we have the implication M =

F1 M ⇒ E00 T̂(M) = E00 T(M) = k so that the complete tensor algebra T̂(M) asso-
ciated to a complete filtered modules M which satisfies this connectedness require-
ment E00 M = 0 forms a complete unitary associative algebra in the sense of §7.3.21.
We have similar results in the symmetric algebra and free Lie algebra case.

In the case E00 M = 0, we moreover have

Ŝ(M) =

∞∏
r=0

(M ⊗̂r)Σr
and T̂(M) =

∞∏
r=0

M ⊗̂r,

because this condition E00 M = 0 ⇔ M = F1 M implies that we have the inclusion
relation M⊗r = Fr(M

⊗r) ⊂ Fr T(M) for each r ∈ N, and similarly in the symmetric
algebra case. In other terms, the complete direct sums ⊕̂, which we usually have in
the expansion of the tensor and symmetric algebra, reduce to an ordinary product
when the module M is connected. We also have

L̂(M) =

∞∏
r=0

L̂r(M)

in the free Lie algebra case, where we take the completion of the homogeneous

summands of the ordinary free Lie algebra L̂r(M) = Lr(M)̂= (Lie(r) ⊗M ⊗̂r)Σr

in the expansion of §7.2.3.
7.3.24. The completed enveloping algebras of Lie algebras, primitive elements

and adjunctions. We can readily extend our analysis of the construction of sym-
metric and tensor algebras to enveloping algebras.

When we deal with a Lie algebra in filtered modules g, we can provide the usual
enveloping algebra associated to g (as explicitly defined §7.2.9) with a canonical
filtration so that this algebra U(g) naturally forms a unitary associative algebra in
the category of filtered modules and satisfies the adjunction relation of enveloping
algebras (see §7.2.7) in this category. When the Lie algebra is complete ĝ = g, we

adopt the notation Û(g) for the enveloping algebra in complete filtered modules
associated to g, as opposed to the ordinary enveloping algebra in filtered modules
U(g). We can actually identify the complete enveloping algebra Û(g) with the

completion of the ordinary enveloping algebra U(g). We more generally have Û(ĝ) =
U(g)̂ for any Lie algebra in filtered modules g.

We moreover easily see that the counit ε̂ : Û(g) → k, the coproduct Δ̂ :

Û(g) → Û(g)⊗̂Û(g) and the antipode σ̂ : Û(g) → Û(g), which define the Hopf
algebra structure of the enveloping algebra in the complete case, are identified with
the morphisms induced by the counit, coproduct and antipode of the ordinary
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enveloping algebra U(g) on the completion. We have besides E00 Û(g) = k as soon as
our Lie algebra satisfies E0 g = 0 ⇔ g = F1 g. Hence, we obtain that the complete
enveloping algebra functor induces a functor from the category of complete Lie

algebras f̂ Lie towards the category of complete Hopf algebras f̂ HopfAlg :

Û : f̂ Lie → f̂ HopfAlg .

In the converse direction, the image of a Hopf algebra H under the primitive
element functor P : H �→ P(H) is defined, in the complete case, as the submodule
such that:

P(H) = {x ∈ H|ε(x) = 0,Δ(x) = x⊗̂1 + 1⊗̂x},
and which we equip with the induced filtration of §7.3.1(b). Recall that this object
is complete and is identified with the appropriate kernel in the category of complete
filtered modules (see §7.3.4). In the case of a complete Hopf algebra, we moreover
have E00 H = k ⇒ E00 P(H) = 0 so that the mapping P : H �→ P(H) yields a functor

from the category of complete Hopf algebras f̂ HopfAlg towards the category of

complete Lie algebras f̂ Lie:

P : f̂ HopfAlg → f̂ Lie .

The adjunction of Proposition 7.2.13 between the enveloping algebra functor and
the primitive element functor also holds in the complete context.

The results of Proposition 7.2.14 also hold in the category of complete filtered
modules since this category fits the assumptions of §7.2. Thus, we have:

P T̂(M) = L̂(M).

In the rest of this section, we check the analogue of the structure theorems
of §7.2 for complete Hopf algebras. To start with, we observe that:

Theorem 7.3.25. In the complete setting, the symmetrization morphism of
Theorem 7.2.16 (the Structure Theorem of Hopf algebras) gives an isomorphism of
counitary cocommutative coalgebras

e : Ŝ P(H)
�−→ H,

for any complete Hopf algebra H ∈ f̂ HopfAlg (which satisfies the connectedness
requirement H/ F1 H = k of our definition).

Explanation and proof. In §7.2, we use a local conilpotence condition to
establish this statement in a general context. Recall that this assumption is essen-
tially used to have a limit decomposition of the endomorphism algebra End(H) and
to give a sense to formal sums in this object.

In the case of a complete Hopf algebra H, we rather use the relation H =
lims H/ Fs H to get a limit decomposition at the level of hom-objects Hom(−, H) =
lims Hom(−, H/ Fs H), and we can similarly take the decomposition Hom(−, H⊗̂H) =
lims Hom(−, H⊗H/ Fs(H⊗H)) when we have to deal with hom-objects with a tensor
product as target object. We easily check that the proof of Theorem 7.2.16 works
same when we take this limit decomposition instead of the one considered in §7.2.
We precisely use the connectedness condition H/ F1 H = k to give a sense to our
formal sums

∑
n λnπ

n. We therefore get a version of the result of Theorem 7.2.16
for complete Hopf algebras, as claimed in the present theorem. (Just note that we
have to take the complete direct sums of §7.3.4(a) instead of the ordinary direct
sums when we work in the category of complete filtered modules.) �
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This structure theorem is completed by the following analogues of the Poincaré-
Birkhoff-Witt and Milnor-Moore theorems:

Theorem 7.3.26.
(a) In the complete setting, the symmetrization morphism of Theorem 7.2.17

(the Poincaré-Birkhoff-Witt Theorem) gives an isomorphism of counitary cocom-
mutative coalgebras

e : Ŝ(g)
�−→ Û(g),

for any complete Lie algebra g ∈ f̂ Lie.
(b) In the complete setting, the result of Theorem 7.2.19 (the Milnor-Moore

Theorem) implies that the complete enveloping algebra functor Û : g �→ Û(g) and the
primitive element functor P : H �→ P(H) define adjoint equivalences of categories

Û : f̂ Lie � f̂ HopfAlg : P

between the category of complete Lie algebras f̂ Lie and the category of complete

Hopf algebras f̂ HopfAlg.

Proof. The claim of assertion (a) follows from the application of the statement
of Theorem 7.2.17 in the symmetric monoidal category of complete filtered modules
(just recall that our result remains valid in the general setting Q-additive symmetric
monoidal categories). The argument line of Theorem 7.2.19 does work and yields a
proof of assertion (b) as soon as we have the results of the Structure Theorem and of
the Poincaré-Birkhoff-Witt Theorem. In the case of complete filtered modules, these
results are provided by the statements of Theorem 7.3.25 and Theorem 7.3.26(a).

�

For the sake of completeness, we record the following relationship between the
complete version and the weight graded version of our functors:

Proposition 7.3.27.
(a) For any complete filtered module M ∈ f̂ Mod, we have identities E0 Ŝ(M) =

S(E0 M), E0 T̂(M) = T(E0 M), and E0 L̂(M) = L(E0 M).

(b) For a complete Hopf algebra H ∈ f̂ HopfAlg, we have E0 P(H) = P(E0 H).

(c) For a complete Lie algebra g ∈ f̂ Lie, we have E0 Û(g) = U(E0 g).

Proof. In fact, we prove that we have the relations E0 S(M) = S(E0 M) and
E0 T(M) = T(E0 M) at the level of plain filtered modules, and we use the general
identity E0(−)̂= E0(−) to get the complete case of these identities, as asserted in
our proposition.

The identity E0 T(M) = T(E0 M) follows from the preservation of the ten-
sor product (see §7.3.13) and from the preservation of direct sums (see Proposi-
tion 7.3.8) by the filtration subquotient functor E0 : f Mod → w Mod . In any Q-
additive symmetric monoidal category, the quotient map Tr(M) → Sr(M) from the
tensor product Tr(M) = M⊗r to the symmetric tensor product Sr(M) = (M⊗r)Σr

admits a natural section, for every r ∈ N, which is defined by the symmetrization
map e(x1 · . . . · xr) =

∑
σ∈Σr

xσ(1) ⊗ · · · ⊗ xσ(r). The functor E0 : M �→ E0 M pre-

serves this retraction diagram (because E0 preserves the symmetry isomorphism of
our symmetric monoidal structure). Therefore, we also have E0 Sr(M) = Sr(E

0 M)
for the symmetric tensor functor Sr(−), and we conclude that we have E0 S(M) =
S(E0 M). The case of the free Lie algebra follows from the same argument line by
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using the observation, established in Proposition 7.2.8, that the free Lie algebra
forms a natural retract of the tensor algebra.

The second and third assertions of the proposition readily follow from the iden-
tity E0 Ŝ(M) = S(E0 M) and from the result of the Structure Theorem of Hopf alge-
bras in weight graded modules (Theorem 7.3.18) and in complete filtered modules
(Theorem 7.3.25-7.3.26). �



CHAPTER 8

The Malcev Completion for Groups

In this chapter, we explain the definition of a category of Malcev complete
groups, which are groups endowed with power operations ga whose exponents a can
take values in any given ground field of characteristic zero k.

The main idea of our approach is to consider a complete version of the group
algebra functor of §7.1.13 and of the group-like element functor of §7.1.14. These
functors fit in an adjunction relation:

k[−]̂: Grp � f̂ HopfAlg : G,

like the ordinary group algebra and group-like element functors. We define our

category of Malcev complete groups f̂ Grp as the image of the category of complete

Hopf algebras under the group-like element functor G : f̂ HopfAlg → Grp (see §8.2).
We have an obvious Malcev complete group Ĝ, associated to any group G, which
is defined by the formula

Ĝ = Gk[G] ,̂

where we take the composite of the group-like element functor and of the complete
Hopf algebra functor of our adjunction relation.

The structure theorems of complete Hopf algebras imply that we have an equiv-
alence between the category of Malcev complete groups G = G(H) and the category
of complete Lie algebras g = P(H). We use this correspondence to get insights into
the structure of Malcev complete groups. To be specific, we will see that we can
use logarithm and exponential functions to get inverse bijections between the mod-
ule of primitive elements and the set of group-like elements in any complete Hopf
algebra. This observation implies that every element in a Malcev complete group
G can be represented by an exponential g = ex, where x belongs to the Lie algebra
g associated to G. The definition of general power operations ga in G, where a ∈ k,
follows from this exponential representation. Indeed, for an element g = ex, we can
simply set ga = eax.

We explain the definition of the complete group algebra associated to a group
and the definition of our group-like element functor for complete Hopf algebras in
the first section of the chapter §8.1. We also define our exponential correspondence
between primitive and group-like elements in this first section. We devote the second
section of the chapter §8.2 to the definition of the category of Malcev complete
groups and we make explicit the definition of our Malcev completion functor in the
third section §8.3.

We study the Malcev completion of free groups and of groups defined by gen-
erators and relations in the fourth section of the chapter §8.4. We then use the
correspondence between Hopf algebras and Lie algebras to give an explicit descrip-
tion, in terms of commutator expansions, of elements in the Malcev completion of

277
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a free group. We devote a fifth section §8.5 to a study of the Malcev completion of
semi-direct products of groups.

We assume throughout this chapter that the ground ring k is a field of charac-
teristic 0. We consider the category of modules associated to this field Mod , and

the corresponding category of complete filtered modules f̂ Mod (see §7.3).

8.1. The adjunction between groups and complete Hopf algebras

The main purpose of this section is to define the complete versions of the
group algebra functor and of the group-like element functor of §7.1. We use that
any ordinary algebra H inherits a canonical filtration, in the sense of §7.3.1. We
apply the completion process of §7.3.3 to the ordinary group algebra k[G], which
we equip with this canonical filtration, in order to get the complete Hopf algebra
k[G]̂ associated to any group G. We explain the definition of our filtration on a
Hopf algebra first.

8.1.1. The canonical completion of a Hopf algebra. Let H be any Hopf algebra
in the category of k-modules. Let I(H) = ker(ε : H → k) be the augmentation ideal
of H. Recall that H admits a splitting H = k 1 ⊕ I(H), where 1 ∈ H denotes the
unit of this algebra H. We consider the nested sequence of ideals

(1) H = I0(H) ⊃ I1(H) ⊃ · · · ⊃ In(H) ⊃ · · · ,

where In(H) denotes the nth power of I(H) in H. We provide H with the filtration
such that Fn H = In(H), for any n ∈ N.

The counit ε : H → k satisfies ε(I(H)) = 0 by definition, and hence, defines a
filtration preserving morphism with values in the ground field k, which we equip
with the filtration such that F0 k = k and Fs k = 0 for s > 0 (see §7.3.9). The
counit identities ε ⊗ id ·Δ(u) = id ⊗ε ·Δ(u) = u imply that the coproduct of any
element u ∈ I(H) has an expansion of the form:

(2) Δ(u) = u⊗ 1 + 1⊗ u︸ ︷︷ ︸
∈ I(H)⊗1+1⊗I(H)

+
∑′

(u)

u(1) ⊗ u(2)︸ ︷︷ ︸
∈ I(H)⊗I(H)

,

where we use the expression
∑′

(u) u(1) ⊗ u(2) to denote the terms of this coproduct

Δ(u) =
∑

(u) u(1) ⊗ u(2) which lie in module I(H) ⊗ I(H) ⊂ H ⊗ H. From this

expansion, we deduce that we have Δ(u) ∈ I1(H) ⊗ I0(H) + I0(H) ⊗ I1(H) when
u ∈ I(H). For an n-fold product u = u1 · . . . · un, we get the implication:

u = u1 · . . . · un ∈ In(H) ⇒ Δ(u) = Δ(u1) · . . . ·Δ(un) ∈
∑

p+q=n

Ip(H)⊗ Iq(H).

This relation proves that the coproduct of our Hopf algebra Δ : H → H ⊗H is a
filtration preserving morphism.

Recall that the preservation of filtrations is a void condition for the unit mor-
phism (see §7.3.21). The product μ : H ⊗ H → H of our Hopf algebra obviously
defines a filtration preserving morphism too since we have Ip(H) · Iq(H) = Ip+q(H)
by definition of the powers of an ideal. For the antipode, we have the implications
u ∈ I(H) ⇒ σ(u) ∈ I(H) and u = u1 · . . . ·un ∈ In(H) ⇒ σ(u) = σ(un) · . . . ·σ(u1) ∈
In(H) by Proposition 7.1.10. Hence, the antipode σ : H → H preserves our filtra-
tion as well.
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We also trivially have I(H) = ker(ε : H → k) ⇔ H/ I(H) = k 1. We con-
clude from these observations that our filtration by the powers of the augmentation
ideal (1) provides H with the structure of a connected filtered Hopf algebra in the
sense of §7.3.15. By observations of §§7.3.14-7.3.15, we can take the completion of
this filtered object (1) to get a complete Hopf algebra

(3) Ĥ = lim
n

H/ In(H)

canonically associated to H. We still have the relation:

(4) E0 Ĥ = E0 H =

∞⊕
n=0

In(H)/ In+1(H)

by general properties of the completion of filtered modules (see §7.3.6).
8.1.2. The complete group algebra and group-like element functors. We as-

sociate a complete group algebra k[G]̂ to any group G by taking the comple-
tion §8.1.1(3) of the ordinary group algebra of §7.1.13. We explicitly set

k[G]̂= lim
n

k[G]/ In k[G]

to get a functor k[−]̂: Grp → f̂ HopfAlg from the category of groups Grp towards

the category of complete Hopf algebras f̂ HopfAlg .
We use a complete analogue of the group-like element functor of §7.1.14 to

define a functor in the converse direction. To be explicit, we define the set of group-
like elements of a counitary cocommutative coalgebra in the category of complete
filtered modules by:

G(C) = {c ∈ C|ε(c) = 1,Δ(c) = c⊗̂c},
where the tensor c⊗̂c ∈ C⊗̂C, associated to any c ∈ C, represents the image
of the ordinary tensor product c ⊗ c ∈ C ⊗ C under the completion morphism
C ⊗C → C⊗̂C. We also have G(C) = Morf̂ Comc

+
(k, C), where we use the notation

f̂ Comc
+ for the category of counitary cocommutative coalgebras in complete filtered

modules.
In the case of a complete Hopf algebra C = H, we have the relations:

1 ∈ G(H),

g, h ∈ G(H) ⇒ gh ∈ G(H),

g ∈ G(H) ⇒ σ(g) ∈ G(H) and g σ(g) = σ(g) g = 1

(compare with Proposition 7.1.15), from which we deduce that the set of group-like
elements of a complete Hopf algebra G(H) forms a group naturally associated to H
(like the set of group-like elements of an ordinary Hopf algebra).

Proposition 7.1.16 has the following analogue in the context of complete Hopf
algebras:

Proposition 8.1.3. The complete group algebra functor k[−]̂: G �→ k[G]̂and
the complete group-like element functor G : H → G(H) define a pair of adjoint

functors k[−]̂ : Grp � f̂ HopfAlg : G between the category of groups Grp and the

category of complete Hopf algebras f̂ HopfAlg.

Proof. Let G ∈ Grp. Let H ∈ f̂ HopfAlg . In §7.3.21, we observe that the
completion functor defines a left adjoint of the obvious functor from the category of
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unitary associative algebras in complete filtered modules to the category of unitary
associative algebras in filtered modules. Thus, we have an equivalence between

the morphisms of complete unitary associative algebras φ̂ : k[G]̂→ H and the
morphisms of ordinary unitary associative algebras φ : k[G] → H which satisfy the
relation φ(In k[G]) ⊂ Fn H for all n ∈ N. Moreover, such a morphism φ : k[G] →
H is uniquely determined by fixing the images φ([g]) ∈ H of the basis elements
[g] ∈ k[G] of our group algebra k[G], for g ∈ G. The preservation of the unit and
of the product reduces to the usual equations φ(1) = 1 and φ([gh]) = φ([g])φ([h])
in H. The adjunction relation also implies that the preservation of augmentation
and coproducts by our morphism is equivalent to the verification of the identities
εφ([g]) = 1 and Δφ([g]) = φ([g])⊗̂φ([g]) in H, and hence, is equivalent to the
relation φ([g]) ∈ G(H). Finally, we readily see that for a complete Hopf algebra,
such that E00 H = k ⇔ I(H) = F1 H, the relation εφ([g]) = 1 ⇒ φ([g] − 1) ∈
F1 H automatically implies φ(In k[G]) ⊂ (F1 H)n ⊂ Fn H. Hence, we get that our
morphism automatically preserves the filtration of our Hopf algebras. �

8.1.4. Logarithms and exponentials. Recall that we assume the relation E00 H =
H/ F1 H = k for any complete Hopf algebra H. In the proof of Proposition 8.1.3, we
already observed that this condition implies F1 H = I(H) and I(H)n = (F1 H)n ⊂
Fn H, for any n ∈ N. We can use this observation to give a sense to a logarithm
map

log(1 + h︸ ︷︷ ︸
=g

) =
∞∑

n=1

(−1)n−1h
n

n

for h ∈ I(H) ⇔ ε(g) = ε(1 + h) = 1 and to an exponential map

exp(x) = ex =

∞∑
n=0

xn

n!

for x ∈ I(H) ⇔ ε(x) = 0. Formally, we consider the sequence of truncated power
series log〈r〉(1 + h) =

∑r
n=1(−1)n−1 · (1/n) · hn, for r ≥ 0. We use the relation

h ∈ I(H) ⇒ hr+1 ∈ Fr+1H ⇒ log〈r+1〉(1 + h) ≡ log〈r〉(1 + h)(mod Fr+1H), to
establish that these truncated power series correspond to each others in the quotient
algebras H/ Fr+1H and hence determine a well-defined element log(1+h) ∈ H such
that we have the relation log(1 + h) ≡ log〈r〉(1 + h)(mod Fr+1 H) in the quotient

module H/ Fr+1H, for any r ≥ 0. We use a similar construction to define the
exponential map exp(x) for any element such that x ∈ I(H) ⇔ ε(x) = 0.

We have the following general observation:

Proposition 8.1.5. In a complete Hopf algebra H, we have the relations

g ∈ G(H) ⇒ log(g) ∈ P(H) and x ∈ P(H) ⇒ exp(x) ∈ G(H)

so that the logarithm map log : g �→ log(g) and the exponential map exp : x �→
exp(x) define inverse bijections between the set of primitive elements and the set of
group-like elements of H.

Proof. The identity ε(log(g)) = 0 is obvious, for any g ∈ 1 + I(H), as well as
the identity ε(exp(x)) = 1, for any x ∈ I(H).

The definition of the coproduct as an algebra morphism Δ : H → H⊗̂H implies
that we have the relation Δ(log(g)) = log(Δ(g)), where on the right hand side we
consider the logarithm of the element Δ(g) in the tensor product of Hopf algebras
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H⊗̂H. For a group-like element, we have Δ(log(g)) = log(g⊗̂g), and according to
the usual logarithm addition formula, which we apply to the commutative product
(g⊗̂1) · (1⊗̂g) = g⊗̂g = (1⊗̂g) · (g⊗̂1), we have the relation:

Δ(log(g)) = log(g⊗̂g) = log((g⊗̂1) · (1⊗̂g))

= log(g⊗̂1) + log(1⊗̂g) = log(g)⊗̂1 + 1⊗̂ log(g).

Hence, we have g ∈ G(H) ⇒ log(g) ∈ P(H) as stated in the proposition.
In the case of the exponential of a primitive element x ∈ P(H), we argue

similarly to get:

Δ(exp(x)) = exp(x⊗̂1 + 1⊗̂x) = exp(x⊗̂1) · exp(1⊗̂x)

= (exp(x)⊗̂1) · (1⊗̂ exp(x)) = exp(x)⊗̂ exp(x).

Thus, we have x ∈ P(H) ⇒ exp(x) ∈ G(H).
The conclusion of the proposition follows from the fact that the logarithm and

the exponential are inverse to each other with respect to the composition of power
series. �

We use the result of this proposition to establish the following statement:

Proposition 8.1.6. The functor G : f̂ HopfAlg → Grp induces an injective
map on morphism sets

Morf̂ HopfAlg(A,B) ↪→ MorGrp(G(A),G(B)),

for all A,B ∈ f̂ HopfAlg, and hence, is faithful.

Proof. The group morphism G(f) : G(A) → G(B) associated to a morphism
of complete Hopf algebras f : A → B fits in a commutative diagram

P(A)
P(f)

exp �

P(B)

exp �

G(A)
G(f)

G(B)

,

where we consider the exponential correspondence of Proposition 8.1.5. Hence, if
we have G(f) = G(g) for morphisms of complete Hopf algebras f, g : A → B, then
we also have P(f) = P(g) and Theorem 7.3.26(b) (the Milnor-Moore Theorem)
implies that we have f = g as soon as this relation holds. �

We also use the exponential correspondence in the following proposition, where
we examine the first examples of applications of our adjunction between groups and
complete Hopf algebras:

Proposition 8.1.7.
(a) We consider the complete symmetric algebra H = Ŝ(M) associated to a

plain k-module M which we identify with a (complete) filtered module such that
F1 M = M and Fn M = 0 for n ≥ 2. We equip this complete symmetric algebra
with the (complete version of) the Hopf algebra structure of Proposition 7.2.5. We
then have an isomorphism:

exp : M
�−→ G Ŝ(M)
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between the underlying abelian group of our module and the group of group-like
elements of this complete Hopf algebra H = Ŝ(M).

(b) We now assume that A is an abelian. We use additive notation to identify
this abelian group with a Z-module. We then have an isomorphism of complete
Hopf algebras

ρ : k[A]̂ �−→ Ŝ(A⊗Z k),

where we consider the complete symmetric algebra generated by the k-module M =
A⊗Z k on the left-hand side, and we again take the filtration such that F1 M = M
and Fn M = 0 for n ≥ 2 in order to identify this k-module M = A ⊗Z k with an
object of the category of complete filtered modules.

Proof. We have M = P Ŝ(M) by the result of Proposition 7.2.14 (which we
apply to the category of complete filtered modules). We therefore obtain the first

assertion of this proposition as the particular case H = Ŝ(M) of the result of
Proposition 8.1.5.

We use additive notation for the abelian group A which we consider in the
second assertion of the proposition, but we keep multiplicative notation when we
work in the complete group algebra k[A] .̂ We accordingly have the identity [a]·[b] =
[a + b] when we consider the class of elements a, b ∈ A in k[A] .̂ We use that the

exponential exp : a �→ ea⊗1 defines a group morphism exp : A → G(Ŝ(A ⊗Z k))
(since we have the relation ea⊗1+b⊗1 = ea⊗1 · eb⊗1 as soon as we assume that
our group is abelian), and we use the adjunction relation of Proposition 8.1.3 to

define the morphism of our assertion ρ : k[A]̂→ Ŝ(A⊗Z k). We accordingly have
ρ([a]) = ea⊗1, for any element a ∈ A.

We have an obvious morphism which goes the other way round ψ : Ŝ(A⊗Zk) →
k[A]̂ and which is induced by the map ψ : A → k[A]̂ such that ψ(a) = log([a]).
We just use the addition formula of logarithms to check that this map does define a
morphism of Z-modules. We explicitly have log([a+ b]) = log([a] · [b]) = log([a]) +
log([b]) ⇒ ψ(a+ b) = ψ(a) + ψ(b), for all a, b ∈ A (since we assume that our group
is abelian again). We easily see that the map ψ : A → k[A]̂ induces a morphisms

of complete Hopf algebras on Ŝ(A ⊗Z k), because each a ∈ A defines a primitive

element in the symmetric algebra Ŝ(A⊗Z k) (by construction of our Hopf algebra
structure in Proposition 7.2.5) and we have the relation [a] ∈ G(k[A] )̂ ⇒ ψ(a) =
log([a]) ∈ P(k[A] )̂ for any such a ∈ A (by the observations of Proposition 8.1.5).

We clearly have ρψ(a) = log(ea⊗1) = a ⊗ 1 when we consider the image of
such generating elements a ∈ A under the composite of our morphisms, and we
conversely have the relation ψρ([a]) = exp(log([a])) = [a] in k[A] ,̂ for all a ∈ A.
We conclude from these computations (and an obvious application of adjunction
relations) that our morphisms are converse to each other, and hence, define iso-
morphisms between the complete group algebra k[A]̂ and the symmetric algebra

Ŝ(A⊗Zk). We therefore get the claim of the second assertion of our proposition. �

Recall that the category of Hopf algebras in a symmetric monoidal category
inherits a symmetric monoidal structure (see §7.2.22). We can apply this observa-
tion to the category of complete Hopf algebras which consists of Hopf algebras in
the category of complete filtered modules by definition. The category of groups is
also equipped with a symmetric monoidal structure (with the cartesian product as
tensor product operation). To complete the results of this section, we observe that:
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Proposition 8.1.8. The functors k[−]̂: Grp � f̂ HopfAlg : G are symmetric
monoidal, as well as the adjunction relation between them.

Proof. For the trivial group G = 1, we immediately obtain k[1] = k. For a
cartesian product G×H, we have a Hopf algebra identity k[G×H] = k[G]⊗ k[H],
and we can also readily check that the filtration by the powers of the augmentation
ideal of the group algebra k[G×H] agrees with the filtration of the tensor product
k[G]⊗k[H]. We explicitly have In k[G×H] =

∑
p+q=n Ip k[G]⊗ Iq k[H] for every n.

We immediately deduce from this relation that we have an isomorphism k[G×H]̂�
(k[G] ⊗ k[H])̂� k[G]̂̂⊗ k[H]̂ at the level of our completed group algebras. We
easily check that the isomorphisms which give these relations satisfy the coherence
constraints of §3.3.1.

We immediately see that the ground field k is identified with the terminal object
of the category of complete Hopf algebras. We easily check that a tensor product
of complete Hopf algebras is identified with a cartesian product in the category of
complete Hopf algebras. (We actually have these relations for any category of Hopf
algebras which we may form in an ambient symmetric monoidal category.) We
deduce from these observations that the group-like element functor is symmetric
monoidal, because this functor preserves final objects and cartesian products by
adjunction.

We easily check that the unit and augmentation of our adjunction commute
with the isomorphisms which make our functors symmetric monoidal. We there-

fore conclude that our functors k[−]̂ : Grp � f̂ HopfAlg : G define a symmetric
monoidal adjunction. �

8.2. The category of Malcev complete groups

We observed in Proposition 8.1.6 that the group-like element functor from

complete Hopf algebras to groups G : f̂ HopfAlg → Grp is faithful. We therefore

define our category of Malcev complete groups, which we denote by f̂ Grp, as the

faithful image of the category of complete Hopf algebras f̂ HopfAlg in the category
of groups:

f̂ Grp = G(f̂ HopfAlg).

We also say that a group G is Malcev complete when we have G = G(H) for some

H ∈ f̂ HopfAlg .
To give a first class of examples, the result of Proposition 8.1.7(a) implies

that a k-module admits a Malcev complete structure, and we easily deduce from
the functoriality of the construction of this proposition and the equivalence of the
Milnor-Moore Theorem (Theorem 7.3.26) that the morphisms of Malcev complete
groups between k-modules are exactly the k-module morphisms. Thus, our category
of Malcev complete groups can be interpreted as a non-abelian generalization of the
category of k-modules.

Most of this section is devoted to the study of natural structures which we asso-
ciate to Malcev complete groups G = G(H). Notably, we already briefly explained,
in the introduction of this chapter, that we can use the exponential correspondence
to define power operations ga with exponents in our ground field a ∈ k when g
represents the element of a Malcev complete group G = G(H). We explicitly have
g = ex, for some primitive element in the underlying complete Hopf algebra of our
group x ∈ P(H), and we just set ga = eax, for any a ∈ k. The morphisms of Malcev
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complete groups clearly preserve these extra power operations, and in the case of
k-modules (where we use additive notation for our group structure) we obviously
retrieve the action of the scalars on our object.

We first explain the definition of a general notion of filtration which we naturally
associate to Malcev complete groups.

8.2.1. Filtrations on groups. We use the notation (a, b) for the commutator
operation (a, b) = a−1b−1ab in a group G. When we have subgroups A,B ⊂ G, we
also use the notation (A,B) for the subgroup of G generated by the commutators
(a, b) ∈ G such that a ∈ A and b ∈ B. We consider general groups G equipped with
a filtration

G = F1 G ⊃ · · · ⊃ Fn G ⊃ Fn+1 G ⊃ · · ·(1)

by subgroups Fn G ⊂ G such that

(Fm G, Fn G) ⊂ Fm+n G for all m,n > 0.(2)

We are going to see that a Malcev complete group inherits a filtration of this form.
We may also readily check that the lower series filtration of a group, inductively
defined by Γ1 G = G and Γn G = (G, Γn−1(G)) for n > 1, gives a universal example
of a filtration which meets our requirement. To be more precise, our condition (2)
implies that any filtration (1) satisfies Γn G ⊂ Fn G for n > 0.

8.2.2. The weight graded Lie algebra associated to a group. Suppose we have
a group G equipped with a filtration of the form considered in the previous para-
graph §8.2.1(1) and that satisfies the commutator condition §8.2.1(2). This condi-
tion (2) implies that our filtration §8.2.1(1) consists of a nested sequence of normal
subgroups and that each subquotient Fn G/ Fn+1 G is abelian. We more precisely
see that the conjugation operation xg = g−1xg preserves each subgroup Fn G and
reduces to the identity morphism on the subquotient Fn G/ Fn+1 G, for all g ∈ G,
because we have the trivial relation xg = x · (x, g) and, under our assumptions, we
have x ∈ Fn G ⇒ (x, g) ∈ Fn+1 G, for all g ∈ G = F1 G.

We use additive notation for the abelian group structure of the subquotients
Fn G/ Fn+1 G. We explicitly set u + v = u · v, for any pair u, v ∈ Fn G, where we
use the notation g for the class of any element g ∈ Fn G in Fn G/ Fn+1 G. We also
adopt the notation E0 G for the connected weight graded Z-module such that:

E0 G =
∞⊕

n=1

Fn G/ Fn+1 G︸ ︷︷ ︸
=E0n G

,

where we consider the obvious extension, in the context of modules over a ring, of
the notion of weight graded module which we define in §7.3.5.

The inclusion relation (FmG, Fn G) ⊂ Fm+n G of §8.2.1(2) implies that we can

associate a well-defined element [u, v] = (u, v) ∈ Fm+n G/ Fm+n+1 G to any pair
u ∈ Fm G/ Fm+1 G and v ∈ Fn G/ Fn+1 G. The Philip Hall identities

(a, b) · (b, a) = 1,

(a, b · c) = (a, c) · (a, b) · ((a, b), c),
((a, b), ca) · ((c, a), bc) · ((b, c), ab) = 1,
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where (−,−) is our commutator operation and we set gh = h−1gh for any g, h ∈ G

(see [84, 113]), imply that the mapping [x, y] = (x, y) induces a biadditive operation

Fm G/ Fm+1 G︸ ︷︷ ︸
=E0m G

× Fn G/ Fn+1 G︸ ︷︷ ︸
=E0n G

[−,−]−−−→ Fm+n G/ Fm+n+1 G︸ ︷︷ ︸
=E0m+n G

for every m,n > 0. This operation satisfies the vanishing relation [x, x] = 0,
for all x ∈ E0 G, and the Jacobi relation [[x, y], z] + [[y, z], x] + [[z, x], y] = 0, for
x, y, z ∈ E0 G. (The vanishing relation is obvious and the Jacobi relation follows
from the Philip Hall identities.) Hence, the weight graded Z-module E0 G inherits
the structure of a connected weight graded Lie algebra, where we again consider an
obvious analogue, in the category of Z-modules, of the notion of weight graded Lie
algebra which we define §7.3.17 (since our subquotients E0n G = Fn G/ Fn+1 G are
just abelian groups in general).

In the case of a Malcev complete group, which is given by the group of group-
like element of a complete Hopf algebra G = G(H), we have the following result:

Proposition 8.2.3. Let H be any complete Hopf algebra with G = G(H) as
associated Malcev complete group.

(a) The sets

Fn G(H) = {g ∈ G(H)|g − 1 ∈ Fn H}, n > 0,

define a filtration of the group G = G(H) by a series of subgroups Fn G(H) ⊂
G(H) which fulfills the requirements of §8.2.1( 1-2). We moreover have the relation
G(H) = limn G(H)/ Fn G(H).

(b) The exponential map exp : P(H) → G(H) induces an isomorphism of
weight graded Lie algebras

exp : E0 P(H)
�−→ E0 G(H),

where:
– on the one hand, we consider the weight graded Lie algebra E0 P(H) associated

to the complete Lie algebra P(H) ⊂ H, which we equip with the filtration induced
by the natural filtration of the complete Hopf algebra H (see §§7.3.19-7.3.20);

– and, on the other hand, we consider the weight graded Lie algebra E0 G(H) which
we define by using the subquotients of our filtration G(H) = F1 G(H) ⊃ · · · ⊃
Fn G(H) ⊃ · · · of the group G = G(H) (see §8.2.2).

In the case of a k-module M = G(Ŝ(M)) (see Proposition 8.1.7), we trivially
get M = F1 M and Fn M = 0 for n ≥ 2.

The second assertion of this proposition implies that the weight graded Lie
algebra E0 G = E0 G(H) which we associate to a Malcev complete group G = G(H)
naturally forms a weight graded Lie algebra in the category of k-modules (and not
only in the category of Z-modules). The arguments which we give in our proof of
this proposition actually imply that the power operations of our Malcev complete
group ga, where we assume a ∈ k, preserve the filtration of the proposition, and
when we pass to the subquotients of our filtration E0m G = E0m G(H) these operations
trivially correspond to the action of the scalars on the Lie algebra E0 P(H) in the
second assertion of the proposition.

Recall that we also have the commutation relation E0 P(H) = P(E0 H) for every

complete Hopf algebra H ∈ f̂ HopfAlg (see Proposition 7.3.27). By combining this



286 8. THE MALCEV COMPLETION FOR GROUPS

relation with the result of the above proposition we get the identity P(E0 H) =
E0 G(H). In the next section, we use this relation in order to give a representation
of elements of the Malcev completion of free groups in terms of (infinite) products
of iterated commutators.

Proof. We use the exponential correspondence g = ex ⇔ x = log(g). We
readily deduce from the multiplicativity of the filtration of Hopf algebras that the
elements g ∈ Fn G(H) of the sets Fn G(H) of assertion (a) are given by the exponen-
tials g = ex of primitive elements x ∈ P(H) such that x ∈ P(H)∩ Fn H. Moreover,
we clearly have

x, y ∈ P(H) ∩ Fn H ⇒ ex, ey ≡ 1(mod Fn H) ⇒ exey ≡ 1(mod Fn H),

so that each Fn G(H) forms a subgroup of G(H).
Recall that we have Fn P(H) = P(H)∩Fn H for each weight n > 0 by definition

of the filtration of the submodule of a complete module. Let σ : H → H denote
the antipode of our Hopf algebra. For x ∈ Fm P(H) and y ∈ Fn P(H), we have:

ex = 1 + u and ey = 1 + v,

where u = ex − 1 ∈ Fm H and v = ey − 1 ∈ Fn H. If we use the implication
ξ ∈ P(H) ⇒ eξ ∈ G(H) ⇒ σ(eξ) = (eξ)−1 = e−ξ, then we moreover get:

e−x = σ(ex) = 1 + σ(u), e−y = σ(ey) = 1 + σ(v).

The antipode relation now implies

1 + u+ σ(u) + uσ(u) = 1 and 1 + v + σ(v) + vσ(v) = 1

and we use the multiplicativity of the filtration of the Hopf algebra to obtain

(ex, ey) ≡ 1 + uv − vu ≡ 1 + xy − yx(mod Fm+n+1 H) ≡ 1(mod Fm+n H).

This computation proves that we have the inclusion relation (Fm G(H), Fn G(H)) ⊂
Fm+n G(H), for all m,n > 0, and hence that our sequence of subgroups Fn G(H) ⊂
G(H) satisfies the requirements of §8.2.2. Note also that our requirementH/ F1 H =

k ⇔ I(H) = F1 H for a complete Hopf algebra H ∈ f̂ HopfAlg implies G(H) =
F1 G(H).

We now consider a collection of group elements gn ∈ G(H), n > 0, such that
we have the relation gn+1 ≡ gn in the quotient group G(H)/ Fn G(H), for each
n > 0 (thus, this collection represents an element of the limit of the tower of groups
G(H)/ Fn G(H), n > 0). We have gn = exn for some xn ∈ P(H). We use that the
relation gn+1 ≡ gn holds in G(H)/ Fn G(H) if and only if we have this relation in the
quotient H/ Fn H of our Hopf algebra, and equivalently, if and only if we have the
relation exn+1 = exn(mod Fn H), which gives xn+1 = xn(mod Fn H) when we take
the logarithm of these exponential elements in H. We then have xn ≡ x(mod Fn H)
for some x ∈ H by completeness of our Hopf algebra H. We also have x ∈ P(H)
since we have xn ∈ P(H) for every n > 0 and P(H) forms a subobject of H in
the category of complete filtered modules. We accordingly get that g = ex defines
a group-like element of H. We moreover have g ≡ gn in G(H)/ Fn G(H), for each
n > 0. This verification proves that the map G(H) → limn G(H)/ Fn G(H) is
surjective. We use similar computations to establish that this map is also injective.
We therefore have an identity G(H) = limn G(H)/ Fn G(H) and this observation
finishes the verification of the first part of the proposition.
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We now examine the second assertion of the proposition. We first assume x, y ∈
Fn P(H), for some n > 0. We easily check that we have the relation e−xe−yex+y ≡
1(mod Fn+1 H) in the quotientH/ Fn+1 H of our Hopf algebra. We deduce from this
observation that we have the identity ex+y ≡ exey in the quotient group E0n G(H) =
Fn G(H)/ Fn+1 G(H). If we assume x ∈ Fn P(H), y ∈ Fn+1 P(H), then we readily
get e−xex+y ≡ 1(mod Fn H), and this relation implies that we have the identity
ex+y ≡ exey in E0n G(H). We deduce from these verifications that the exponential
map induces a well-defined group morphism from E0n P(H) to E0n G(H), for each
weight n > 0. We use that the equivalence g = ex ∈ Fn G(H) ⇔ x ∈ Fn P(H) holds
for every weight n > 0 in order to check that this group morphism is bijective.

We then assume x ∈ Fm P(H) and y ∈ Fn P(H). We already observed that
we have the relation (ex, ey) ≡ 1 + xy − yx(mod Fm+n+1 H) in the Hopf alge-
bra H. We also have e[x,y] ≡ 1 + [x, y] ≡ 1 + xy − yx(mod Fm+n+1 H). We
readily deduce from these formulas that we have the relation (ex, ey)e−[x,y] ≡
1(mod Fm+n+1 H) in the Hopf algebra H and the identity (ex, ey) ≡ e[x,y] in the
quotient group E0m+n+1 G(H) = Fm+n G(H)/ Fm+n+1 G(H), from which we con-
clude that our map exp : E0 P(H) → E0 G(H) defines a morphism of weight graded
Lie algebras. This verification finishes the proof of the second assertion of the
proposition. �

The following proposition gives a generalization for Malcev complete groups of
the claim of Proposition 7.3.7 about the definition of isomorphisms in a category
of complete filtered modules:

Proposition 8.2.4. A morphism of Malcev complete groups defines an iso-
morphism

ψ : G
�−→ H

(in the category of Malcev complete groups) if and only if the morphism of weight
graded Lie algebras which we associate to this morphism forms an isomorphism

E0 ψ : E0 G
�−→ E0 H

(in the category of weight graded Lie algebras).

Explanations and proof. Recall that we define the category of Malcev com-
plete groups as the image of the category of complete Hopf algebras under the

group-like element functor G : f̂ HopfAlg → Grp. Consequently, when we define an
isomorphism of Malcev complete groups, we implicitly assume that our morphism
ψ : G → H is invertible in this category, and hence, that we have an inverse of our
morphism ψ−1 : H → G which comes from a morphism of complete Hopf algebras
as well. The morphism of weight graded Lie algebras E0 ψ : E0 G → E0 H, on the
other hand, defines an isomorphism if and only if this morphism defines an isomor-
phism componentwise. Thus, our statement actually implies that a morphism of
Malcev complete groups defines an isomorphism in the category of Malcev complete

groups ψ : G
�−→ H if and only if this morphism induces an isomorphism of groups

componentwise E0m ψ : E0mG
�−→ E0m H, m ≥ 1, when we consider the subquotients

of the filtration of Proposition 8.2.3.
The “only if” part of the proposition trivially follows from the functoriality of

the map E0 : ψ �→ E0 ψ. We therefore focus on the proof of the “if” part, and we
assume that E0 ψ : E0 G → E0 H defines an isomorphism in the category of weight
graded Lie algebras. Let φ : A → B be the morphism of complete Hopf algebras
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which underlies our group morphism ψ = G(φ). We deduce from the functoriality of
the correspondence of Proposition 8.2.3(b) that φ induces an isomorphism of weight
graded Lie algebra E0 P(φ) : E0 P(A) → E0 P(B) when we take the primitive part
of our Hopf algebras. By Proposition 7.3.7 this statement implies that P(φ) forms
an isomorphism of complete filtered modules, and hence, forms an isomorphism of
complete Lie algebras itself. We can then use the complete version of the Milnor-
Moore Theorem (see Theorem 7.3.26) to conclude that φ also forms an isomorphism
of complete Hopf algebras, and hence, that ψ defines an isomorphism of Malcev
complete groups as asserted in our proposition. �

Recall that every complete Hopf algebra is identified with the enveloping al-
gebra of a complete Lie algebra by the (complete version of) the Milnor-Moore
Theorem (see §7.3). We can also use this result to give an expression, in terms of
Lie algebras, of the tower of quotient groups which we consider in the statement of
Proposition 8.2.3:

Proposition 8.2.5. Let H = Û(g) be the complete enveloping algebra of a

complete Lie algebra g ∈ f̂ Lie. Let G = G(Û(g)). We have an isomorphism:

G/ Fm+1 G
�−→ G Û(g / Fm+1 g),

for each m ≥ 0, where we consider the tower of quotient groups qmG = G/ Fm+1 G
associated to the filtration of Proposition 8.2.3.

Proof. We naturally provide the quotient Lie algebra g / Fm+1 g with the fil-
tration such that:

Fn(g / Fm+1 g) =

{
Fn g / Fm+1 g, for n ≤ m,

0, otherwise,

in order to identify this Lie algebra with an object of the category of complete Lie
algebras. We adapt the argument lines of the proof of Proposition 8.2.3 to check
our claims, and we apply some of the relations established in the verification of
this previous statement to the complete Hopf algebra such that H = Û(g) ⇔ g =

P(H). We consider the obvious map G = G Û(g) → G Û(g / Fm+1 g) induced by the
quotient map of Lie algebras g → g / Fm+1 g. We use the commutative diagram:

g

exp �

g / Fm+1 g

exp �

G Û(g) G Û(g / Fm+1 g)

,

where the vertical maps are the bijections of the exponential correspondence.
We observed in the proof of Proposition 8.2.3 that the elements g ∈ Fm+1 G

are given by exponentials g = ex, where we assume x ∈ g∩ Fm+1 H, and such

elements become obviously trivial in G Û(g / Fm+1 g) (since we have Fm+1 g =
g∩ Fm+1 H). We deduce from this observation that our map induces a well-defined
morphism from the quotient group G/ Fm+1 G towards the group of group-like el-

ements G Û(g / Fm+1 g). We immediately deduce from the above diagram that this
group morphism is surjective too. We moreover see that an element g ∈ G such
that g = ex for some x ∈ g is carried to the unit in the group G Û(g / Fm+1 g) if and
only if x is carried to 0 in the quotient module g / Fm+1 g, and hence if and only if
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we have x ∈ Fm+1 g ⇔ g ∈ Fm+1 G. Thus, our map is also injective on G/ Fm+1 G

and induces a group isomorphism G/ Fm+1 G
�−→ G Û(g / Fm+1 g). �

This statement implies that the quotient groups qmG = G/ Fm+1 G of a Malcev
complete group G = G(H) naturally form Malcev complete groups. The mor-
phisms pm : G/ Fm+1 G → G/ Fm G in the tower decomposition of our group
G = limm G/ Fm+1 G define morphisms of Malcev complete groups too, and the
identity G = limm G/ Fm+1 G also holds in the category of Malcev complete groups.

Indeed, if we set H = Û(g) as in the statement our proposition, then we can obvi-
ously identify these morphisms pm : G/ Fm+1 G → G/ Fm G with the image of the

canonical morphisms of complete Hopf algebras pm : Û(g / Fm+1 g) → Û(g / Fm g)
under the group-like element functor. The result of Proposition 8.2.5 also admits
the following straightforward consequence:

Proposition 8.2.6. Any morphism of Malcev complete groups φ : G → qmH,
where we consider the mth quotient group of a Malcev complete group as target
object qmH = H/ Fm+1 H, admits a unique factorization:

G
φ

H/ Fm+1 H

G/ Fm+1 G

∃!φ̄

such that φ̄ is a morphism in the category of Malcev complete groups.

Proof. We assume G = G(Û(g)) and H = G(Û(h)) for some complete Lie

algebras g, h ∈ f̂ Lie as in the construction of Proposition 8.2.5. We use the corre-
spondence of this proposition and the complete version of the Milnor-Moore The-
orem (Theorem 7.3.26) to get that our diagram is equivalent to the diagram of Lie
algebras

g
φ

h / Fm+1 h

g / Fm+1 g

∃!φ̄

,

and the existence of the fill-in morphism is immediate in this case (go back to
the definition of the filtration on a quotient Lie algebra in the proof of Proposi-
tion 8.2.5). �

8.2.7. Remarks: Truncated filtrations and group-like elements. The group of
group-like elements of a complete Hopf algebra H also admits a natural tower
decomposition G(H) = limm G〈m〉(H), where G〈m〉(H) is the group formed by the
classes ḡ ∈ H/ Fm+1 H of elements g ∈ H which fulfill the equations of a group-like
element modulo terms of filtration ≥ m+ 1. We explicitly set:

(1) G〈m〉(H) = {ḡ ∈ H/ Fm+1 H | ε(g) = 1,Δ(g) ≡ g⊗̂g(mod Fm+1(H ⊗H))},
for each m ≥ 0, and we readily check, by relying on the same observations as in the
case of the group of group-like elements (see §8.1.2), that this set inherits a group
structure. We have an obvious group morphism G〈m〉(H) → G〈m−1〉(H) induced by
the quotient map pm : H/ Fm+1 H → H/ Fm H for each m ≥ 1, and we immediately
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see that a sequence of classes ḡm ∈ G〈m〉(H) such that gm ≡ gm−1(mod Fm H)
determines an element g ∈ H which fulfill the equations of a group-like element
in H. We therefore have the isomorphism G(H) = limm G〈m〉(H) specified at the
beginning of this remark. We immediately see that the morphism p : G(H) →
G〈m〉(H) cancels the subgroup Fm+1 G(H) in the filtration of Proposition 8.2.3. We
actually have an isomorphism

(2) G(H)/ Fm+1 G(H)
�−→ G〈m〉(H),

for each m ≥ 0. We use a truncated version of our constructions to establish this
claim.

We can consider the category f̂ 〈m〉 Mod formed by the filtered modules M

whose filtration satisfies Fm+1 M = 0. We trivially have M = M/ Fm+1 M =
limn M/ Fn+1 M when this vanishing condition is satisfied. We can therefore regard

this category f̂ 〈m〉 Mod as a full subcategory of the category of the category of

complete filtered modules f̂ Mod . We can moreover identify the quotient operation

qmM = M/ Fm+1 M with a functor qm : f̂ Mod → f̂ 〈m〉 Mod which defines a left

adjoint of the category embedding im : f̂ 〈m〉 Mod → f̂ Mod . We trivially have

qmimM = M , for any M ∈ f̂ 〈m〉 Mod . We equip the category f̂ 〈m〉 Mod with the

tensor product such that M⊗̂〈m〉N = M⊗̂N/ Fm+1(M⊗̂N), for any pair of objects

M,N ∈ f̂ 〈m〉 Mod . We readily check that the functor qm : f̂ Mod → f̂ 〈m〉 Mod is

(strongly) symmetric monoidal, while the category embedding im : f̂ 〈m〉 Mod ↪→
f̂ Mod is just unit-preserving and equipped with a monoidal transformation, which
is given by the obvious quotient map M⊗̂N → M⊗̂〈m〉N , for any pair of objects

M,N ∈ f̂ 〈m〉 Mod .
We can apply the constructions of the previous chapter §7 to this symmetric

monoidal category M = f̂ 〈m〉 Mod . We then use the notation f̂ 〈m〉 Lie for the

category of Lie algebras in M = f̂ 〈m〉 Mod which satisfy the same connectedness

condition E00 g = 0 ⇔ g = F1 g as in §7.3.20. This category f̂ 〈m〉 Lie also forms a

full subcategory of the category of complete Lie algebras f̂ Lie. We easily check

that the functor qm : f̂ Mod → f̂ 〈m〉 Mod preserves Lie algebra structures (since

we observed that this functor is symmetric monoidal) and induces a left adjoint of

the canonical embedding im : f̂ 〈m〉 Lie ↪→ f̂ Lie on the category of complete Lie

algebras f̂ Lie.

We also use the notation f̂ 〈m〉 HopfAlg for the category of Hopf algebras in

f̂ 〈m〉 Mod such that E00 H = k. We again readily check that our functor qm :

f̂ Mod → f̂ 〈m〉 Mod preserves Hopf algebra structures, and hence, induces a functor

on the category of complete Hopf algebras qm : f̂ HopfAlg → f̂ 〈m〉 HopfAlg , but

we do not have such statements for the category embedding im : f̂ 〈m〉 Mod ↪→
f̂ Mod (because this functor is only lax symmetric monoidal). We could check,

nevertheless, that the functor qm : f̂ HopfAlg → f̂ 〈m〉 HopfAlg has a left adjoint

i�m : f̂ 〈m〉 HopfAlg → f̂ HopfAlg .
We can easily define an analogue of the complete enveloping algebra functor

(3) U〈m〉 : f̂ 〈m〉 Lie → f̂ 〈m〉 HopfAlg
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on this category of truncated complete Lie algebras f̂ 〈m〉 Lie, as well as analogues of

the primitive element functor P〈m〉 : f̂ 〈m〉 HopfAlg → f̂ 〈m〉 Lie and of the functor of

group-like elements G〈m〉 : f̂ 〈m〉 HopfAlg → Grp. We use the same notation for the
obvious composite of these functors with the truncation operation qm : M �→ qmM
(on the source). We actually have

(4) U〈m〉(g) = qm U(g),

for any g ∈ f̂ Lie, where we consider the image of the standard complete enveloping

algebra of this Lie algebra U(g) ∈ f̂ HopfAlg under the truncation functor qm :

f̂ HopfAlg → f̂ 〈m〉 HopfAlg , while the group of group-like elements G〈m〉(H) is

given by the formula introduced at the beginning of this paragraph (1), and the
Lie algebra P〈m〉(H) consists of elements ξ ∈ H which have a trivial augmentation
ε(ξ) = 0 and are primitive modulo terms of filtration ≥ m+ 1.

The complete versions of the Structure Theorem of Hopf algebras, of the
Poincaré-Birkhoff-Witt Theorem, and of the Milnor-Moore Theorem (see Theo-

rem 7.3.26) also hold in this category of Hopf algebras f̂ 〈m〉 HopfAlg . The expo-
nential and logarithm maps still induce inverse bijections between the Lie algebra
P〈m〉(H) and the group G〈m〉(H). In this context, we can actually consider trun-

cated series exp〈m〉(u) =
∑m

n=0 u
n/n! and log〈m〉(1+u) =

∑m
n=1(−1)n−1un/n since

we have u ∈ F1 H ⇒ un ≡ 0(mod Fm+1H) for n ≥ m+ 1.

Let H be a complete Hopf algebra. We have H = Û(g) for some Lie alge-

bra g ∈ f̂ Lie by the Milnor-Moore Theorem for the category of complete Hopf

algebras f̂ HopfAlg . We already explained that qmÛ(g) = Û(g)/ Fm+1 Û(g) is
identified with the truncated complete enveloping algebra U〈m〉(g) = U〈m〉(qm g)

which we associate to the Lie algebra qm g = g / Fm+1 g in the category f̂ 〈m〉 Mod .

We consequently have P〈m〉 qmÛ(g) = qm g by the Milnor-Moore Theorem for the

Hopf algebras of the category f̂ 〈m〉 HopfAlg , and the truncated exponential map

exp〈m〉 : u �→ exp〈m〉(u) induces a bijection from this Lie algebra qm g = g / Fm+1 g

to the group G〈m〉(Û(g)) = G〈m〉(qmÛ(g)) which we consider in (2). By Proposi-

tion 8.2.5, we have on the other hand G/ Fm+1 G = G Û(g / Fm+1 g) = G Û(qm g)

where we set G = G Û(g) for short. We use the commutative diagram

qm g

exp

�
exp〈m〉

�

G Û(qm g) G〈m〉(Û(g))

,

where the diagonal arrows are the bijections given the exponential correspondence,
to establish that our map in (2) does form a group isomorphism, as stated.

8.2.8. Remarks: The equivalence with the category of complete Lie algebras and
the Baker-Campbell-Hausdorff formula. The category of Malcev complete groups
is, according to our definition, equivalent to the category of complete Hopf algebras,
with an equivalence of categories yielded by the group-like element functor from
complete Hopf algebras to groups.

We can obviously compose this equivalence with the equivalence of categories of
the Milnor-Moore Theorem to get an equivalence between the category of Malcev
complete groups and the category of complete Lie algebras. We then consider
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the functor which assigns the group G = G Û(g), to any complete Lie algebra

g ∈ f̂ Lie. Since we have g = P Û(g), the result of Proposition 8.1.5 implies that

the exponential map induces a natural bijection exp : g
�−→ G between the Lie

algebra g and the associated Malcev complete group G = G Û(g). In particular, for
a, b ∈ g, we have an identity eaeb = ec between the product of the elements ea and
eb in the group G and the exponential of a certain element c in the Lie algebra g.

We can use the functoriality of the exponential correspondence to get a uni-
versal formula, usually referred to as the Baker-Campbell-Hausdorff formula in the
literature, for this Lie algebra element (see for instance [34, §II.6]). We proceed as

follows. We first work within a free complete Lie algebra g = L̂(kx⊕ k y), where x
and y now represent abstract variables, and we use the exponential correspondence
to get a Lie power series φ(x, y) ∈ L̂(kx⊕ k y) that satisfies our relation

exey = eφ(x,y)

in the tensor algebra T̂(kx⊕k y) = ÛL̂(kx⊕k y). We also have φ(x, y) = log(exey)
and we can use the retraction of Proposition 7.2.8 to get an explicit definition of
this Lie power series. We obtain for the first terms:

φ(x, y) = x+ y +
1

2
[x, y] +

1

12
([[x, y], y] + [[y, x], x]) + · · · .

We then consider the Lie algebra morphism L(kx ⊕ k y) → g which maps our
variables (x, y) to given elements (a, b) of the Lie algebra g. We have the relation
eaeb = eφ(a,b), where we consider the Lie algebra element c = φ(a, b) defined by

performing the substitution (x, y) = (a, b) in our Lie power series φ(x, y) ∈ L̂(kx⊕
k y).

The Baker-Campbell-Hausdorff formula can be used to give a direct definition
of the Malcev complete group G associated to a Lie algebra g without referring to
Hopf algebras. This approach is used by Bourbaki [34] for instance. We then define
G as the set of formal exponential elements eξ, where ξ ∈ g, and we merely set
eaeb = eφ(a,b) to provide this set G = exp g with a group structure.

8.2.9. Remarks: The relationship with the notion of a unipotent algebraic group.
In the case where the Lie algebra g in §8.2.8 is finite dimensional, the exponential
map gives, for any choice of a basis on g, an identity between the underlying set
of the group G associated to g and the affine space kN , where we set N = dim g.
The identity g = limn g / Fn g also implies that we have the vanishing relation
Fm+1 g = 0 for some m ≥ 0. Hence, our Lie algebra g is nilpotent in the sense that
all Lie monomials of weight > m vanish in g. From this observation, we deduce
that the Baker-Campbell-Hausdorff formula reduces to a finite sum in g, and as
a consequence, is given by a polynomial expression in our choice of coordinates
G � kN . Thus, when we have dim g = N , we obtain that the group G associated
to g forms an algebraic group in the classical sense of algebraic geometry (see for
instance [33]).

Recall that an algebraic group is unipotent if and only if this group admits
an embedding into a group of upper triangular matrices with unit entries on the
diagonal. One can see that the algebraic group G which we associate to a finite
dimensional nilpotent Lie algebra g is unipotent. The embedding is provided by
the Ado Theorem (see for instance [151, Appendix A, Proposition 3.6(b)]). One
can conversely see that the Lie algebra of a unipotent group is nilpotent, and that a
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unipotent group is identified with the exponential group of this Lie algebra (see [55,
Chapter IV, Proposition 4.1]).

8.3. The Malcev completion functor on groups

We define the Malcev completion of a group G ∈ Grp by the formula Ĝ =
Gk[G] ,̂ where we consider the complete group algebra of G. This group is auto-
matically Malcev complete in our sense. We moreover have a natural morphism
η : G → Ĝ given by the unit of the adjunction between the complete group algebra
functor and the functor of group-like elements. In fact, we formally get that this
map G �→ Ĝ represents the left adjoint of the obvious forgetful functor from our
category of Malcev complete groups to the category of groups, and the morphism
η : G → Ĝ defines the unit of this adjunction relation. Equivalently, we obtain that
the object Ĝ is characterized by the following universal property:

Proposition 8.3.1. Any group morphism φ : G → H where H = G(A) is
Malcev complete admits a unique factorization

G
φ

H

Ĝ
φ̂

such that φ̂ is a morphism of Malcev complete groups.

Proof. This proposition is an immediate consequence of the adjunction re-
lation between the complete group algebra functor and the functor of group-like
elements. �

To give a first example, we can easily determine the Malcev completion of an
abelian group from the results of Proposition 8.1.7:

Proposition 8.3.2. We assume that A is an abelian group. We use additive
notation to identify this abelian group with a Z-module (as in Proposition 8.1.7).
We then have an identity:

Â = A⊗Z k

where we consider the Malcev completion of our group on the left-hand side and the
k-module M = A⊗Z k on the right-hand side.

Proof. The assertions of Proposition 8.1.7 give the identities k[A]̂= Ŝ(A⊗Z

k) ⇒ Â = G(Ŝ(A⊗Z k)) = A⊗Z k from which we deduce the claim of this proposi-
tion. �

In the case of the Malcev completion Ĝ = Gk[G]̂ of a group G ∈ Grp, the

weight graded Lie algebra E0 Ĝ = E0 P k[G]̂which we determine from the filtration

of the Malcev complete group Ĝ = G k[G]̂ in Proposition 8.2.3 has the following
additional feature:

Proposition 8.3.3. The weight graded Lie algebra E0 Ĝ = E0 P k[G]̂ is gener-
ated by its homogeneous component of weight one in the sense that every homoge-
neous element of this Lie algebra π ∈ E0m Ĝ, m ≥ 1, can be expressed as a linear

combination of iterated Lie brackets of homogeneous elements α ∈ E01 Ĝ.
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Proof. For short, we set H = k[G]̂all along this proof. Recall that we have
the relation E0 P(H) = P(E0 H) (see Proposition 7.3.27). We identify the object
M = E10 H with a weight graded module concentrated in weight one. We have
E00 H = k ⇒ E01 H ⊂ P(E0 H) for homogeneity reasons, and we accordingly have
the identity E01 P(H) = E01 H for the component of weight one of the weight graded
Lie algebra E0 P(H) = P(E0 H). We consider the morphism of weight graded Lie
algebras ρ : L(E10 H) → P(E0 H) induced by this inclusion E10 H ⊂ P E0 H. The claim
of the proposition is equivalent to the assertion that this morphism is surjective.

The identity E0 k[G]̂=⊕∞
n=0 In k[G]/ In+1 k[G] implies that the weight graded

Hopf algebra E0 H = E0 k[G]̂is generated by its homogeneous component of weight
one E01 k[G]̂= I k[G]/ I2 k[G] as an associative algebra. Equivalently, the morphism
of weight graded associative algebras ψ : T(E10 H) → E0 H induced by the inclusion
E10 H ⊂ E0 H, where we still identify this object M = E10 H with a weight graded
module concentrated in weight one, is surjective. We deduce our proposition from
this observation and from the weight graded versions of the Poincaré-Birkhoff-
Witt Theorem and of the Milnor-Moore Theorem which we establish in §7.3. We
then provide the tensor algebra L = T(E01 H) with the Hopf algebra structure of
Proposition 7.2.6, where the coproduct is determined by the formula Δ(α) = α ⊗
1 + 1 ⊗ α on generators α ∈ E01 H. We immediately see that our morphism ψ :
T(E10 H) → E0 H is a morphism of Hopf algebras.

Theorem 7.3.18(c) (the weight graded version of the Milnor-Moore Theorem)
implies that we have the identity E0 H = U P(E0 H) for the weight graded Hopf
algebra E0 H. We have on the other hand T(E01 H) = U L(E01 H) (see §7.2.7)
and, by composing adjunction relations, we can readily identify the morphism
ψ : T(E10 H) → E0 H with the morphism of enveloping algebras ψ : U L(E01 H) →
UP(E0 H) associated to our morphism of Lie algebras ρ : L(E01 H) → P(E0 H).
Theorem 7.3.18(b) (the weight graded version of the Poincaré-Birkhoff-Witt The-
orem) now implies that this morphism of Lie algebras ρ : L(E01 H) → P(E0 H)
forms a retract of ψ : T(E10 H) → E0 H, and, hence, we get that this morphism
ρ : L(E01 H) → P(E0 H) is surjective (as we require) as soon as the morphism of
associative algebras ψ : T(E10 H) → E0 H is so. �

Let us mention that the assertion of the previous proposition is part of the
conventions of [151, Appendix A, Definition 3.1] for the definition of the category
of Malcev groups (in the context of rational coefficients k = Q). To be more precise,
in the approach of this reference, the category of (rational) Malcev groups is defined
as the category of groups G equipped with a filtration G = F1 G ⊃ · · · ⊃ Fs G ⊃ · · ·
such that the conditions of §8.2.1 hold and where the weight graded Lie algebra
E0 G, which we determine from this filtration, forms a Q-module and is generated by
its homogeneous component of weight one E01 G ⊂ E0 G. For short, we also say that
the Lie E0 G is generated in weight one when this property holds. The main result
of [151, Appendix A, §3] implies that this category of Malcev groups is equivalent
to the subcategory of our category of Malcev complete groups G = G(H) whose
associated weight graded Lie algebra E0 G = E0 P(H) is generated in weight one.

8.3.4. Remarks: complements on the weight graded Lie algebra and on the fil-
tration of the Malcev completion of a group. We explained in §8.2.2 that we can
associate a weight graded Lie algebra (defined over Z) to any filtration of a group G
that satisfies the commutator conditions of §8.2.1. We consider the weight graded
Lie algebra E0 G =

⊕
m Γm G/ Γm+1 G defined by the subquotients of the lower



8.3. THE MALCEV COMPLETION FUNCTOR ON GROUPS 295

central series filtration of any group G (see §8.2.1) and the weight graded Lie al-

gebra E0 Ĝ =
⊕

m Fm Ĝ/ Fm+1 Ĝ associated to the Malcev completion of our group

Ĝ = G(k[G] )̂ (see Proposition 8.2.3). We have a natural morphism of Lie alge-

bras υ :
⊕

m Γm G/ Γm+1 G →
⊕

m Fm Ĝ/ Fm+1 Ĝ because the canonical morphism

η : G → Ĝ with values in the Malcev completion of our group Ĝ = G(k[G] )̂ carries

Γm G ⊂ G into Γm Ĝ ⊂ Fm Ĝ for each m ≥ 1. The main theorem of [153] asserts
that the extension of this morphism to our coefficient ring k defines an isomorphism
of Lie algebras:

(1) υ : (
⊕
m

ΓmG/ Γm+1 G)︸ ︷︷ ︸
=E0 G

⊗Z k
�−→ (
⊕
m

Fm Ĝ/ Fm+1 Ĝ)︸ ︷︷ ︸
=E0 Ĝ

,

for any group G.
By using this relation and the assertions of Proposition 8.2.4 and Proposi-

tion 8.2.5, we readily get that the natural morphism G/ Γm+1 G → Ĝ/ Fm+1 Ĝ
factors through an isomorphism of Malcev complete groups:

(2) (G/ Γm+1 G)̂ �−→ Ĝ/ Fm+1 Ĝ,

where we consider the Malcev completion of the quotient group G/ Γm+1 G on the

one hand and the quotient of the Malcev group Ĝ by the m + 1st layer of its
natural filtration on the other hand. If we take these isomorphisms (1-2) together,
then we conclude that our Malcev completion process carries the central extensions
1 → ΓmG/ Γm+1 G → G/ Γm+1 G → G/ Γm G → 1 to the short exact sequences

1 → E0m Ĝ → Ĝ/ Fm+1 Ĝ → Ĝ/ Fm Ĝ → 1 where we consider the subquotients E0m Ĝ

of this filtration of the group Ĝ. This observation also implies that our Malcev
completion functor, of which we borrow the definition from [151, Appendix A],
returns the same result as the initial definition of the classical Malcev completion
process in [132].

We use the observations of this paragraph in side remarks, but not really in
our main applications. We refer to [153] for the proof of the above isomorphism
relation (1), which we mainly recall for the sake of completeness.

8.3.5. Remark: The Malcev completion of nilpotent groups. Recall that a group
is G is nilpotent when we have Γs G = 1 for some s > 0. The main examples of
groups which we consider in this monograph (free groups, pure braid groups) are
not nilpotent, but we will take the case of nilpotent groups as a model for the other
examples of applications of the Malcev completion which we consider in this work.
We therefore give a short survey of the main results of the literature on the Malcev
completion of nilpotent groups. We refer to [151, Appendix A.3] for the proof of
the general statements which we recall in this overview.

First of all, we may check that the Malcev completion of a nilpotent group G
is still nilpotent. To be more precise, the identity of §8.3.4(2) implies that we have

the relation Γs G = 1 ⇒ Fs Ĝ = 1 for any group G, where we consider the natural
filtration of this Malcev complete group Ĝ. By [151, Appendix A, Proposition 3.5],

the vanishing relation Fs Ĝ = 1 also implies that we have an identity:

Fm Ĝ = Γm Ĝ

for every m ≥ 1, where we now consider the lower central series filtration of the
group Ĝ.
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If we take k = Q as coefficient ring for our Malcev completion process, then
we can also check that the Malcev completion functor is idempotent on nilpotent
groups. To be more explicit, in this case k = Q, we get that the Malcev completion
functor carries the universal morphism η : G → Ĝ associated to a nilpotent group
G to an isomorphism of Malcev complete groups:

η̂ : Ĝ
�−→ ˆ̂

G.

This observation implies that any group morphism ψ : Ĝ → H, where H = G(A)
is a Malcev complete group in our sense, defines a morphism of Malcev complete
groups and, hence, arises from a morphism of complete Hopf algebras φ : Q[G]̂→ A
(see Proposition 8.4.6 for the proof of an analogous result in the case of free groups
with a finite number of generators).

Recall that a group G is uniquely divisible when the equation gn = h has
a unique solution g ∈ G, for any h ∈ G and n ∈ Z \{0}. By [151, Appendix
A, Corollary 3.7] (see also [113, Theorem 4.15]), we actually have an equivalence
of categories between the category of uniquely divisible nilpotent groups and the
category formed by the Malcev complete groups G = G(H) whose filtration satisfies
Fs G = 1 for some s > 0 and whose associated weight graded Lie algebra E0 G is
generated by E01 G as a Lie algebra. (We still assume that we take k = Q as ground

ring in this case.) The group returned by our Malcev completion functor Ĝ actually
represents a universal uniquely divisible group associated to G (see [151, Appendix
A, Corollary 3.8]).

8.4. The Malcev completion of free groups

We now study the Malcev completion of free groups. We also briefly explain the
Malcev completion of groups defined by a presentation by generators and relations
in the concluding paragraph of this section.

We focus on the case of finitely generated groups and we use the notation
F(x1, . . . , xn) for the free group generated by an n-tuple of variables (x1, . . . , xn).
We consider the Malcev completion with coefficients in an arbitrary field of char-
acteristic zero k for the moment. We have the following result:

Proposition 8.4.1. For a free group F = F(x1, . . . , xn), we have an isomor-
phism of complete Hopf algebras

k[F(x1, . . . , xn)]̂ �−→ T̂(ξ1, . . . , ξn),

where T̂(ξ1, . . . , ξn) is a short notation for the complete tensor algebra associated
to the free k-module M = k ξ1 ⊕ · · · ⊕ k ξn equipped with the filtration such that
F1 M = M and Fs M = 0 for s > 1. This complete tensor algebra is equipped
with the canonical Hopf algebra structure of §7.2.6 (see also §7.3.22) so that each

generator ξi defines a primitive element in T̂(ξ1, . . . , ξn). We also have an identity:

Pk[F(x1, . . . , xn)]̂= L̂(ξ1, . . . , ξn)

when we pass to the primitive part, where L̂(ξ1, . . . , ξn) is again a short notation for
the free complete Lie algebra associated to the free k-module M = k ξ1 ⊕ · · · ⊕ k ξn.

Proof. The elements ξi are primitive by definition of the Hopf algebra struc-
ture of the tensor algebra, and the associated exponential elements eξi are group-like
by Proposition 8.1.5.
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We consider the group morphism φ : F(x1, . . . , xn) → G(T̂(ξ1, . . . , ξn)) such
that φ(xi) = eξi , for i = 1, . . . , n, and the associated morphism of complete Hopf

algebras φ� : k[F(x1, . . . , xn)]̂→ T̂(ξ1, . . . , ξn). We have a Hopf algebra morphism

in the conversion direction ψ : T̂(ξ1, . . . , ξn) → k[F(x1, . . . , xn)]̂which assigns the
logarithm log[xi] of the group-like elements [xi] in k[F(x1, . . . , xn)]̂to the generat-
ing elements of the tensor algebra ξi, i = 1, . . . , n.

We have φ�ψ(ξi) = log exp(ξi) = ξi for each i so that φ�ψ = id . We also
have G(ψ)(φ(xi)) = xi for each generator of the free group xi, where we consider
the morphism induced by our complete Hopf algebra morphism ψ on the sets of
group-like elements G(−). We have as a consequence G(ψ)φ = ι, where ι refers to
the standard morphism ι : F(x1, . . . , xn) → Gk[F(x1, . . . , xn)]̂that defines the unit
morphism of the adjunction between the complete group algebra functor and the
functor of group-like elements. We have G(ψ)φ = ι ⇒ ψφ� = id by adjunction. We
conclude from this result that φ� and ψ define inverse isomorphisms between the
complete group algebra of the free group and the complete tensor algebra, while the
second assertion of the proposition follows from the result of Proposition §7.2.14
(see also §7.3.24). �

8.4.2. Commutator expansions and the Malcev completion of the free group.
In what follows, we use the notation F̂(x1, . . . , xn) for the Malcev completion of
the free group F = F(x1, . . . , xn). The idea is that an element of this group g ∈
F̂(x1, . . . , xn) can be regarded as a group-like power series g = g(x1, . . . , xn) on the
variables (x1, . . . , xn). In a first step, we can use the result of Proposition 8.4.1 to

get that any such g ∈ F̂(x1, . . . , xn) is represented by the exponential of a Lie power
series h = h(ξ1, . . . , ξn) on variables (ξ1, . . . , ξn) such that ξi = log(xi) ⇔ xi = eξi ,
for i = 1, . . . , n.

We can also give an explicit representation of these group-like power series
in terms of iterated commutators on the variables (x1, . . . , xn) in the free group.
We review the statement of an analogous observation for the plain free group
F = F(x1, . . . , xn) before tackling the case of the Malcev complete group F̂ =

F̂(x1, . . . , xn). We use that the free Lie algebra L(ξ1, . . . , ξn) has a definition over Z
and forms a free Z-module (see [34, II.2.9] or [155, §0.3]). We can actually pro-
vide each homogeneous component of the free Lie algebra Lr(ξ1, . . . , ξn), r > 0,
with a basis H(r) = {h(ξ1, . . . , ξn)}, whose elements h = h(ξ1, . . . , ξn) ∈ H(r) are
Lie monomials of weight r > 0 on the variables ξ1, . . . , ξn (see [155] for a general
reference on this subject).

By a fundamental result of combinatorial group theory, the subquotients of the
lower central series filtration of a free group (see §8.2.1) form a free weight graded
Lie algebra (over Z):

(1)
⊕
s>0

Γs F(x1, . . . , xn)/ Γs+1 F(x1, . . . , xn) = L(ξ1, . . . , ξn),

where we assume that each generator ξi is homogeneous of weight 1 (see for in-
stance [34, §II.5.4] or [131, Theorem 5.12]). This statement implies that any el-
ement of the quotient F/ Γs+1 F = F(x1, . . . , xn)/ Γs+1 F(x1, . . . , xn) of the free
group F = F(x1, . . . , xn) has a unique representative

(2) gs(x1, . . . , xn) = xa1
1 · . . . · xan

n ·
∏

h∈H(r)
2≤r≤s

h(x1, . . . , xn)
ah ,
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where we assume a1, . . . , an ∈ Z and ah ∈ Z for h ∈ H(r). We replace the iterated
Lie brackets [−,−] of our Lie monomials h(ξ1, . . . , ξn) by iterated commutators
of the elements xi, i = 1, . . . , n, in the free group to form the factors of this
expansion h(x1, . . . , xn) ∈ F(x1, . . . , xr) (see [84] for the original statement of this
result, see [34, §II.5.4] or [131, Theorem 5.13A] for an account of this result in
our reference books on this subject). We perform this product in the increasing
direction of the weight index r > 0, and with respect to a fixed order within each
indexing set H(r).

Recall that the pro-nilpotent completion of a group G is defined by the limit
Ĝ = lims G/ Γs+1 G, where we consider the lower central series filtration of our
group. In our expansion (2), we obviously have h(ξ1, . . . , ξn) ∈ Lr(ξ1, . . . , ξn) ⇒
h(x1, . . . , xn) ∈ Γr F(x1, . . . , xn) and we can therefore take s → ∞ in order to get
a representation of the elements of the pro-nilpotent completion of the free group
F = F(x1, . . . , xn), and not only of the quotient groups F/ Γs+1 F .

We can now use the result of Proposition 8.4.1 together with the general results
of Proposition 7.3.27 and Proposition 8.2.3 in order to establish parallel statements
for the Malcev completion of the free group F̂ = F̂(x1, . . . , xn). We consider the
isomorphisms

(3) L(ξ1, . . . , ξn)
�−→ E0 L̂(ξ1, . . . , ξn)

�−→ E0 F̂(x1, . . . , xn)

given by the results of these propositions. We deduce from these isomorphisms that
the weight graded object E0 F̂ , which we construct by using the natural filtration
F̂ = F1 F̂ ⊃ · · · ⊃ Fs F̂ ⊃ · · · of the Malcev complete group F̂ = F̂(x1, . . . , xn), is
identified with a free weight graded Lie algebra, as in (1), but we now work over
our ground field k instead of the ring of integers Z.

We use this correspondence to check that each element g = g(x1, . . . , xn) of

the Malcev completion F̂ = F̂(x1, . . . , xn) has an expansion of the form (2) in

the quotient group F̂ / Fs+1 F̂ , where we consider the natural filtration of our Mal-
cev complete group again, but we now take our exponents in our coefficient field
a1, . . . , an ∈ k, ah ∈ k (and not only in Z). When we form this expansion, we also
set xi = eξi to identify our variables xi, i = 1, . . . , n, with the image of elements
of the complete free Lie algebra L̂(ξ1, . . . , ξn) under the map of Proposition 8.4.1.
We can still take s → ∞ in our expansion (2) to extend this representation to the

elements of the Malcev complete group itself F̂ = F̂(x1, . . . , xn). We then use the

identity F̂ = lims F̂ / Fs+1 F̂ . We can also identify Fs F̂ = Fs F̂(x1, . . . , xn) with the

subgroup of F̂ formed by the elements whose infinite expansion have a leading term
in weight r = s.

We also use the relationship between the weight graded Lie algebra E0 F̂ =
E0 F̂(x1, . . . , xn) and the free Lie algebra L = L(ξ1, . . . , ξn) in the proof of the
following proposition:

Proposition 8.4.3. For a free group F = F(x1, . . . , xn) with a finite number

of generators n ∈ N, we have an identity Fs F̂ = Γs F̂ , for every s > 0, where
we consider the natural filtration of the Malcev complete group F̂ = F̂(x1, . . . , xn)
on the left-hand side, and the lower central series filtration of the plain (abstract)

group underlying F̂ on the right-hand side.

Proof. We set F̂ = F̂(x1, . . . , xn) for short all along this proof. Recall that

our filtration automatically satisfies Γs F̂ ⊂ Fs F̂ (see §8.2.1). We aim to check
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that a converse inclusion relation holds. We prove that the image of any element
g = g(x1, . . . , xn) ∈ Fs F̂ in the quotient group F̂ / Ft F̂ has a representative of the
form:

(1) gt(x1, . . . , xn) =
∏

i2,...,is

((· · · ((hi
t, xi2), xi3), . . .), xis),

where the product ranges over all collections i = (i1, . . . , is−1) and where we have

the identity h
i
t+1 ≡ h

i
t in F̂ / Ft−s F̂ for all t ≥ s. We then have h

i
t ≡ hi for an

element of the Malcev complete group hi ∈ F̂ , and we can take t → ∞ in this

formula (1) to get the required expression of g = g(x1, . . . , xn) ∈ Fs F̂ in terms of

s-fold commutators in F̂ .
We use that the components Lt(ξ1, . . . , ξn), t > 0, of the free weight graded

Lie algebra L(ξ1, . . . , ξn) are spanned by Lie monomials [[· · · [[ξi1 , ξi2 ], ξi3 ], . . .], ξit ],
where we consider iterated Lie brackets of the same shape as the iterated commu-
tators of our expansions (1). We assume that we have established our formula (1)

up to some level t > 0. We then have g ≡ gtrt in F̂ / Ft+1 F̂ , for some element

rt ∈ Ft F̂ . We moreover have rt ≡ eρt , where ρt = ρt(ξ1, . . . , ξn) is a Lie polynomial
of weight t, which also admits an expansion of the form:

(2) ρt(ξ1, . . . , ξn) =
∑

i2,...,is

[[· · · [[σi
t, ξi2 ], ξi3 ], . . .], ξis ],

for some Lie polynomials σ
i
t ∈ Lt−s(ξ1, . . . , ξn). We use that the exponential map

carries Lie brackets to commutators when we pass to the subquotient E0t F̂ =

Ft F̂ / Ft+1 F̂ of the Malcev complete group F̂ (see Proposition 8.2.3) and that we

have θ
i
t = exp(σ

i
t) ∈ Ft−s F̂ . We accordingly have the identity:

(3) g ≡ gtrt ≡
∏

i2,...,is

((· · · ((hi
t, xi2), xi3), . . .), xis)

·
∏

i2,...,is

((· · · ((θit, xi2), xi3), . . .), xis)

in F̂ / Ft+1 F̂ . We can move the factors π = ((· · · ((θit, xi2), xi3), . . .), xis) in this

expansion without changing the value of our expression in F̂ / Ft+1 F̂ since we have

the relation π ∈ Ft F̂ ⇒ (h, π) ∈ Ft+1 F̂ ⇒ hπ = πh(h, π) ≡ πh(mod Ft+1 F̂ ), for

any h ∈ F̂ . We moreover have the relation

(4) ((· · · ((hi
t, xi2), xi3), . . .), xis) · ((· · · ((θ

i
t, xi2), xi3), . . .), xis)

≡ ((· · · ((θit · h
i
t, xi2), xi3), . . .), xis)

by the Philip Hall identities (see §8.2.2). We can therefore set h
i
t+1 = h

i
t · θ

i
t to

carry on our process. �

We use the result of this proposition in the proof of the following lemma:

Lemma 8.4.4. If we take k = Q as a ground ring, and we consider a free group
F = F(x1, . . . , xn) with a finite number of generators again n ∈ N, then we have
an isomorphism of complete Hopf algebras

ρ : Q[F̂(x1, . . . , xn)]̂ �−→ T̂(ξ1, . . . , ξn),
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where we consider the complete group algebra of the Malcev completion of our group
F = F(x1, . . . , xn) on the left hand side, and the completed tensor algebra of Propo-
sition 8.4.1 on the right hand side.

Proof. For short, we still set F̂ = F̂(x1, . . . , xn) all along this proof. We

use the identity F̂(x1, . . . , xn) = G T̂(ξ1, . . . , ξn) obtained in Proposition 8.4.4. The

morphism of complete Hopf algebras ρ : Q[F̂ ]̂→ T̂(ξ1, . . . , ξn) which we consider

in our statement is induced by the inclusion F̂ = G T̂(ξ1, . . . , ξn) ⊂ T̂(ξ1, . . . , ξn)
and represents the augmentation of the adjunction Q[−]̂ : Grp � f̂ HopfAlg : G
for the complete tensor algebra H = T̂(ξ1, . . . , ξn).

We have an obvious morphism of complete Hopf algebras which goes the other
way round ψ : T̂(ξ1, . . . , ξn) → Q[F̂ ]̂and which we explicitly define by the formula
ψ(ξi) = log[eξi ], for any generating element ξi, i = 1, . . . , n. We immediately see

that we have the identity ρψ(ξi) = log(eξi) = ξi in T̂(ξ1, . . . , ξn), for any i =
1, . . . , n, and we are left to check the validity of a converse relation ψρ([g]) = [g],

for any element g ∈ F̂ .
We consider the class of such an element g in the quotient group F̂ / Fs+1 F̂ . We

use the notation gs = gs(x1, . . . , xn) for the representative of this class defined by
the expansion of §8.4.2(2). Recall that we set xi = eξi to identify the variables xi,

i = 1, . . . , n, with group-like elements of the complete tensor algebra T̂(ξ1, . . . , ξn).
We have g = gshs, where hs ∈ Fs+1 F̂ , and the result of Proposition 8.4.3 implies

that this remainder hs belongs to Γs+1 F̂ .
We clearly have the identity ψρ([h(eξ1 , . . . , eξn)]) = [h(eξ1 , . . . , eξn)], for any

factor of our expansion §8.4.2(2) since each of these factors consist of iterated
commutators of the generating variables xi = eξi , i = 1, . . . , n. We moreover
have ψρ([h]) = [h] ⇔ ψρ([ha]) = [ha] for any rational exponent a = p/q and

any h ∈ G T̂(ξ1, . . . , ξn), because the element [hp/q] is characterized by the relation

[hp/q]q = [hp] = [h]p in G T̂(ξ1, . . . , ξn) ⊂ T̂(ξ1, . . . , ξn).
We deduce from these observations that we have the relation ψρ([gs]) = [gs],

for any s > 0. Recall that hs ∈ Fs+1 F̂ can be expressed as a product of (s + 1)-

fold commutators in F̂ by the result of Proposition 8.4.3. Now, we have the general
formula [(u, v)] = [u−1v−1](([u]−1)([v]−1)−([v]−1)([u]−1)) in the complete group

algebra Q[F̂ ] ,̂ for any commutator (u, v) = u−1v−1uv. We also have [u]−1, [v]−1 ∈
I Q[F̂ ]. For a product of (s + 1)-fold commutators such as hs ∈ Γs+1 F̂ , we obtain

by a straightforward induction that we have [hs] ∈ Is+1 Q[F̂ ] ,̂ where we consider

the (s + 1)th power of the augmentation ideal of the complete algebra Q[F̂ ] .̂ We

accordingly have g ≡ gs(mod Is+1 Q[F̂ ] )̂ and hence we have ψρ([gs]) = [gs] ⇒
ψρ([g]) ≡ [g](mod Is+1 Q[F̂ ] )̂, for any s > 0. We conclude from these relations that

we have the identity ψρ([g]) = [g] for our element g ∈ F̂ in the complete group

algebra Q[F̂ ] ,̂ and this result finishes the proof of the lemma. �

We use this lemma in the proof of the following statement:

Proposition 8.4.5. The Malcev completion with rational coefficients is idem-
potent on free groups with a finite number of generators. To be explicit, if we take
k = Q as coefficient ring for our Malcev completion process, then the Malcev com-
pletion functor carries the universal morphism η : F → F̂ associated to such a
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group F = F(x1, . . . , xn) to an isomorphism of Malcev complete groups:

η̂ : F̂
�−→ ˆ̂

F.

Proof. Recall that we have Q[F ]̂ = T̂(ξ1, . . . , ξn) for a free group F =

F(x1, . . . , xn) and the isomorphism of the previous lemma, which reads ρ : Q[F̂ ]̂ �−→
Q[F ] ,̂ represents the augmentation of the adjunction Q[−]̂: Grp � f̂ HopfAlg : G
for this complete group algebra Q[F ]̂ = T̂(ξ1, . . . , ξn). We have G(ρ)η̂ = id by
general properties of adjunction relations, and we conclude from this relation that
η̂ is an isomorphism, as claimed in our proposition. �

Let us emphasize that we forget about the Malcev complete group structure of
our object F̂ when we perform the completion a second time. In a sense, the idea
of this proposition is that the structures which we attach to the Malcev completion
of the group F̂ are determined by the group structure of our object. We have the
following observation which relies on the same idea:

Proposition 8.4.6. Let F = F(x1, . . . , xn) be a free group with a finite number
of generators as in Proposition 8.4.3. If we take k = Q as coefficient ring for our
Malcev completion process, then every group morphism ψ : F̂ → H, where H is
Malcev complete, automatically defines a morphism of Malcev complete groups in
our sense.

Proof. We consider the universal morphism η : F̂ → ˆ̂
F associated to the

group G = F̂ and the morphism of Malcev complete groups îd :
ˆ̂
F → F̂ which

extends the identity morphism of F̂ . We have the relations îd η̂ = id and îd η =
id by adjunction. We use that η̂ is an isomorphism of Malcev complete groups

(Proposition 8.4.5) and the first of these relations îd η̂ = id to get that îd forms an

isomorphism as well. We explicitly have îd = η̂−1. We then have îd η = id ⇒ η =

îd−1 and we deduce from this identity that η defines morphism of Malcev complete
groups itself. We now form the following diagram:

F̂

η

ψ
H

ˆ̂
F

∃ψ̂

,

where we consider the morphism of Malcev complete groups extending ψ. We even-

tually obtain that our morphism ψ = ψ̂η defines a morphism of Malcev complete
groups by composition. �

8.4.7. The Malcev completion of a group defined by a presentation by generators
and relations. The result of Proposition 8.4.1 can be used to determine the primitive
Lie algebra Pk[G]̂for a group given by a presentation by generators and relations
G = 〈x1, . . . , xn : w1

0 ≡ w1
1, . . . , w

r
0 ≡ wr

1〉. The definition of a group by such a
presentation can be formulated in terms of a reflexive coequalizer of free groups

F(x1, . . . , xn, z1, . . . , zr)︸ ︷︷ ︸
=F1

d0

d1

F(x1, . . . , xn)︸ ︷︷ ︸
=F0

ε

s0

〈x1, . . . , xn : wj
0 ≡ wj

1〉︸ ︷︷ ︸
=G

,
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where d0, d1 and s0 are both the identity on the generating elements xi, and we set
d0(zj) = wj

0(x1, . . . , xn), d1(zj) = wj
1(x1, . . . , xn) for the remaining variables.

The category of complete Lie algebras inherits a colimits from the base cate-
gory of complete filtered modules like any category of algebras over an operad in
a symmetric monoidal category whose tensor product distributes over colimits (see
Proposition 1.3.6). Moreover, the forgetful functor from complete Lie algebras to
complete filtered modules preserves the coequalizers which are reflexive in the base
category (see again Proposition 1.3.6). The category of complete Hopf algebras
inherits colimits too, since this category is equivalent to the category of complete
Lie algebras (by the Milnor-Moore Theorem for complete Hopf algebras, Theo-
rem 7.3.26). The primitive element functor, which we use to define this equivalence
of categories, obviously preserves colimits.

The functor k[−]̂ now preserves coequalizers by adjunction, and as a conse-
quence, we get a coequalizer in the category of complete Lie algebras

L̂(ξ1, . . . , ξn, ζ1, . . . , ζr)︸ ︷︷ ︸
=P k[F1 ]̂

(d0)∗

(d1)∗
L̂(ξ1, . . . , ξn)︸ ︷︷ ︸

=P k[F0 ]̂

ε

(s0)∗

P k[G]̂,
when we compose this functor with the primitive element functor (we also use
the result of Proposition 8.4.1 to replace the primitive Lie algebras P k[F ]̂of the
complete Hopf algebras associated to free groups F = F0, F1 by complete free
Lie algebras). The morphisms (d0)∗, (d1)∗ and (s0)∗ occurring in this coequalizer
are given by the identity on the generating elements ξi, and we deduce from the
exponential correspondence between group-like and primitive elements that we have
the formulas (d0)∗(ζj) = log(wj

0(e
ξ1 , . . . , eξn)) and (d1)∗(ζj) = log(wj

1(e
ξ1 , . . . , eξn))

for the remaining generators ζj . We therefore have a presentation (in the complete
sense) of the Lie algebra associated to our group.

This result implies that the Malcev completion Ĝ of the groupG = 〈x1, . . . , xn :

wj
0 ≡ wj

1〉 fits in a reflexive coequalizer in the category of Malcev complete groups

F̂(x1, . . . , xn, z1, . . . , zr)︸ ︷︷ ︸
=F̂1

(d0)∗

(d1)∗
F̂(x1, . . . , xn)︸ ︷︷ ︸

=F̂0

ε

(s0)∗

Ĝ ,

but this observation does not imply that we get a reflexive coequalizer in the cate-
gory of plain (abstract) groups when we perform this construction.

8.5. The Malcev completion of semi-direct products of groups

The purpose of this section is to study the Malcev completion of semi-direct
products of groups. For this purpose, we use that the semi-direct operation has
an analogue in the category of complete Hopf algebras and we check that, under
mild assumptions, the complete group algebra of a semi-direct product is given by
this corresponding semi-direct product operation in the category of complete Hopf
algebras. We also check that our equivalence of categories between complete Hopf
algebras and complete Lie algebras (the Milnor-Moore Theorem) makes the semi-
direct product of complete Hopf algebras correspond to the semi-direct product
operation in the category complete Lie algebras. We address this correspondence
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in the second part of the section. We will moreover check that the correspondence
between the semi-direct product of complete Hopf algebras and the semi-direct
product of Lie algebras passes to weight graded objects.

We explain the definition of semi-products in the category of Hopf algebras
first, and we check that the complete group algebra of a semi-direct product of
groups is identified with a semi-product of complete Hopf algebras afterwards.

8.5.1. Semi-direct products of Hopf algebras. The semi-direct product of Hopf
algebras, denoted by H�K (and also called the smash product in the literature),
is defined for any pair (H,K), where H is a Hopf algebra and K is another Hopf
algebra equipped with a right action of H. We explain the definition of this notion
of right action of Hopf algebras before tackling the definition of the semi-direct
product itself.

The construction works in any symmetric monoidal category M. We use the
symmetric monoidal structure of the category of counitary cocommutative coal-
gebras in M and that a Hopf algebra H is identified with a unitary associative
algebra (equipped with an extra antipode operation) in this category MComc

+

(see §7.1). We then consider the category of right modules over H in the cate-
gory MComc

+. We define the objects of this category as counitary cocommutative
coalgebras K ∈ MComc

+ equipped with a morphism ρ : K ⊗ H → K, formed in
the category of counitary cocommutative coalgebras MComc

+ as well, and which
satisfies the usual unit and associativity constraints of the action of an algebra on a
right module in this category. We follow our general convention to mark the struc-
ture morphism of a right module K by the corresponding object ρ = ρK whenever
necessary. In the context of a concrete symmetric monoidal category, we generally
use the product notation x · a = ρ(x⊗ a) for this action of H on K, for any a ∈ H
and x ∈ K. In this setting, the unit and associativity relations of the action are
equivalent to the standard relations x·1 = x and x·(ab) = (x·a)·b, while the preser-
vation of coalgebra structures is equivalent to the same equations ε(x ·a) = ε(x)ε(a)
and Δ(x · a) =

∑
(a),(x)(x(1) · a(1))⊗ (x(2) · a(2)) as in the definition of the product

of a bialgebra (see §7.1.6).
We easily check that the tensor productK⊗L, whereK and L are right modules

over a Hopf algebra H, forms a right module over H for the action determined by
the composite morphism

(1) K⊗L⊗H
id ⊗ id ⊗ΔH−−−−−−−−→ K⊗L⊗H ⊗H

(2 3)∗−−−−→ K⊗H ⊗L⊗H
ρK⊗ρL−−−−−→ K⊗L.

We just use an obvious restriction of structure, by using the coproduct of our
Hopf algebra H to provide the tensor product K ⊗ L with the structure of a right
module over this Hopf algebra H. We explicitly have the formula (x ⊗ y) · a =∑

(a)(x · a(1)) ⊗ (y · a(2)), for any a ∈ H and x ∈ K, y ∈ L, when we work in a

concrete symmetric monoidal category. We accordingly get that the category of
right modules over H in counitary cocommutative coalgebras forms a symmetric
monoidal category.

In the definition of a semi-direct product of Hopf algebrasH�K, we precisely as-
sume that the Hopf algebraK forms an algebra in the symmetric monoidal category
of right modules over H in the category of counitary cocommutative coalgebras,
for a unit morphism η : 1 → K and a product morphism μ : K ⊗ K → K given
by the plain Hopf algebra structure of this object K. Thus, we assume that these
structure morphisms of the Hopf algebra K define morphisms of right modules over
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H. We readily check that this requirement is equivalent to the following equations
in K (when our base category forms a concrete symmetric monoidal category):

(2) 1 · a = ε(a)1 and (xy) · a =
∑
(a)

(x · a(1))(y · a(2)),

for all a ∈ H and x, y ∈ K. We moreover easily see that the antipode of the Hopf
algebra K satisfies the relation σ(x ·a) = σ(x) ·a with respect to the action of H on
K, for all a ∈ H and x ∈ K (adapt the arguments of the proof of Lemma 7.1.11).

We now set H�K = H ⊗ K. We provide this object H�K with its natural
counitary cocommutative coalgebra structure (given by the symmetric monoidal
structure of the category of counitary cocommutative coalgebras), with the obvious
unit morphism η : 1 → H�K (given by the tensor product of the unit morphisms
of K and H), and with the product operation μ : H�K ⊗H�K → H�K such that:

(3) (a⊗ x)(b⊗ y) =
∑
(b)

ab(1) ⊗ (x · b(2))y,

for any a, b ∈ H and x, y ∈ K. We easily check that this construction provides
H�K with a well-defined bialgebra structure, and that we moreover have a (left
and right) antipode on H�K which is given by the formula

(4) σ(a⊗ x) =
∑
(a)

σ(a(1))⊗ (σ(x) · σ(a(2))),

for any a ∈ H and x ∈ K.
We immediately see that we have an identity k[H � K] = k[H]� k[K] for the

group algebra of a semi-direct product of groups G = H �K, where we extend the
right action of H on K by linearity to get a right action of the Hopf algebra k[H]
on k[K]. We can also form semi-direct products of Hopf algebras in the category of
complete filtered modules and in the category of weight graded modules. We then
have the following statement:

Proposition 8.5.2. We consider a semi-direct product of groups G = H �

K such that the action of H on K reduces to the identity on the abelianization
K/ Γ2 K = K/[K,K], where we take the quotient of K by the subgroup of commu-
tators Γ2 K = [K,K]. We then have an identity

k[H �K]̂= k[H] �̂ k[K]̂
in the category of complete Hopf algebras, for an action of k[H]̂on k[K]̂obtained
by completion of the natural action of k[H] on k[K].

Proof. We identify the elements of the group G = H�K with formal products
ax ∈ G, where a ∈ H and x ∈ K. We aim to check that the obvious coalgebra
isomorphism

(1) k[H]⊗ k[K]
�−→ k[H �K],

which carries any tensor [a] ⊗ [x], where a ∈ K, x ∈ H, to the basis element
[g] = [ax] of the group algebra k[H � K], preserves filtrations and extends to an
isomorphism on the completion of our objects.

We provide the tensor product k[H]⊗ k[K] with the filtration such that:

(2) Fs(k[H]⊗ k[K]) =
∑

m+n=s

Im k[H]⊗ In k[K] ⊂ k[H]⊗ k[K],
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for all s ≥ 1, where we consider the filtration of the group algebras k[H] and
k[K] by the powers of their augmentation ideals. We immediately see that our
isomorphism maps this module (2) to the module spanned by products of the form
� = ([a1] − 1) · · · ([am] − 1)([x1] − 1) · · · ([xn] − 1) inside Is k[H � K], where we
assume a1, . . . , am ∈ H and x1, . . . , xn ∈ K, for each s = m + n. We check that
any element of the submodule Is k[H � K] can conversely be expressed as a sum
of products of this form in the group algebra k[H �K]. In the case s = 1, where
we have a single factor [g] − 1 ∈ I k[H � K], with g = ax ∈ H � K, we have the
identity [g] − 1 = ([a] − 1)([x] − 1) + ([a] − 1) + ([x] − 1) which gives the desired
result. We assume by induction that our claim holds for the elements of the sth
power of the augmentation ideal Is k[H �K], for some s > 0, We accordingly have
� = ([a1] − 1) · · · ([am] − 1)([x1] − 1) · · · ([xn] − 1) for any such � ∈ Is k[H � K].
We form a product � · ([g] − 1) ∈ Is+1 k[H � K] with [g] − 1 ∈ I k[H � K]. We
check that we can permute the factor [a]−1 ∈ I k[H] in the just obtained expression
[g]− 1 = ([a]− 1)([x]− 1) + ([a]− 1) + ([x]− 1) of the element [g]− 1 ∈ I k[H �K]
with the last factor [xn] − 1 ∈ I k[H � K], xn ∈ K, of our reduced expression
of � ∈ Is k[H �K].

We have the formula ([xn]− 1)([a]− 1) = ([a]− 1)([xa
n] − 1) + ([xa

n] − [xn]) in
k[H �K], where we use the notation xa

n for the image of xn ∈ K under the action
of a ∈ H in the group K. We use the assumption on this action to get an identity
xa
n = xn(u1, v1) · · · (ul, vl), where we consider a product of commutators (ui, vi) =

u−1
i v−1

i uivi such that ui, vi ∈ K, for every i = 1, . . . , l. We now have the general
relation [(u, v)]−1 = [u−1v−1uv]−1 = [u−1v−1](([u]−1)([v]−1)−([v]−1)([u]−1))
in any group algebra. This formula implies that we can identify the difference
[(u, v)] − 1 with an element of the ideal I2 k[K]. We deduce from this general
observation that the difference [xa

n] − [xn] = [xn]([(u1, v1) · · · (ul, vl)] − 1) in our
formula is also identified with an element of the ideal I2 k[K]. We accordingly have
[xa

n]− [xn] =
∑

j cj([ξj ]−1)([ηj ]−1), where we assume ξj , ηj ∈ K and cj ∈ k, for all
j. We therefore have an identity � ·([a]−1) = �′ ·([a]−1)([xa

n]−1)+
∑

j cj�
′([ξj ]−

1)([ηj ]− 1), where we set �′ = ([a1]− 1) · · · ([am]− 1)([x1]− 1) · · · ([xn−1]− 1). We
can use our induction hypothesis to express �′ ·([a]−1) ∈ Is k[H�K] in the desired
form of a product of factors [bi] − 1, [yj ] − 1 ∈ I k[H �K], where bi ∈ H, yj ∈ K.
This result completes our rewriting process.

We therefore conclude that our isomorphism (1) carries the module (2) isomor-
phically onto Is k[H �K], and hence, induces an isomorphism

(3) k[H] ˆ̂⊗k[K]̂ �−→ k[H �K]̂
when we pass to completions. We immediately get that this isomorphism preserves
coalgebra structures since this is so for our initial isomorphism (1).

We similarly check that the morphism ρ : k[K] ⊗ k[H] → k[K] such that
ρ([x] ⊗ [a]) = [xa] which gives the right action of the Hopf algebra k[H] on k[K]
preserves filtrations and extends to the completion of our objects:

(4) ρ : k[K]̂̂⊗ k[H]̂→ k[K] .̂

We immediately get that the product operation of the complete group algebra k[H�

K]̂is identified with the product operation of the semi-direct product k[H] �̂ k[K]̂
which we get by considering this action of Hopf algebras (4) because this is so for
the product operation of the ordinary group algebra k[H � K] which determines
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this product operation by completion. We therefore have the identity of complete
Hopf algebras k[H �K]̂= k[H] �̂ k[K]̂asserted in the proposition. �

We then get the following result for the Malcev completion of a semi-direct
product of groups:

Proposition 8.5.3. We consider a semi-direct product of groups G = H �K
such that the action of H on K reduces to the identity when we take the quotient
of K by the subgroup of commutators Γ2 K = [K,K] (as in Proposition 8.5.2). We
then get an identity

Ĝ = Ĥ � K̂

when we take the Malcev completion of the group G = H �K. The action of the
group Ĥ on K̂ which we consider in this semi-direct product expression preserves
the natural filtration of the Malcev complete group K̂ and reduces to the identity
when we take the quotient of K̂ by the second subgroup of this filtration F2 K̂ ⊂ K̂.

We moreover have the identity Fs Ĝ = Fs Ĥ � Fs K̂, for every s > 0, where
we consider the natural filtration of the Malcev complete group Ĝ. We just take
the induced action of the group Fs Ĥ ⊂ Ĥ on the subgroup Fs K̂ ⊂ K̂ to form the
semi-direct products of this formula.

Proof. We use the isomorphism k[H�K]̂� k[H] �̂ k[K]̂of Proposition 8.5.2.
We easily check, by using the arguments as in Proposition 7.1.15, that the group-
like element functor G(−) from counitary cocommutative coalgebras in complete
filtered modules to sets carries the completed tensor products of complete couni-
tary cocommutative coalgebras to cartesian products of sets. We use this general
observation to check that the isomorphism of counitary cocommutative coalgebras
k[H �K]̂� k[H]̂⊗k[K]̂underlying our complete group algebras induces a bijec-
tion of sets G k[H�K]̂� G k[H] ×̂G k[K]̂when we apply the functor of group-like
elements G(−). We similarly see that the morphism ρ : k[K]̂̂⊗ k[H]̂→ k[K]̂which
gives the right action of the complete Hopf algebra k[H]̂on k[K]̂ induces a map

ρ : Gk[K] ×̂Gk[H]̂→ Gk[K] ,̂ which gives a right action of the group Ĥ = Gk[H]̂
on K̂ = Gk[K]̂when we pass to the sets of group-like elements. We readily check

that the multiplication of the group Ĝ = G k[H �K]̂ is identified with the semi-
direct product operation yielded by this action too. We therefore have an identity
Ĝ = Ĥ � K̂ in the category of groups.

Recall that the morphism ρ : k[K]̂̂⊗ k[H]̂→ k[K]̂ is yielded by the map
such that ρ([x] ⊗ [a]) = [xa] on plain group algebras, where we use the notation
xa ∈ K for the image of an element x ∈ K under the action of an element a ∈ H
in the group K. In the proof of Proposition 8.5.2 we used that we have a relation
[xa]− [x] =

∑
j([ξj ]− 1)([ηj ]− 1) ∈ I2 k[K] for any such xa ∈ K. We get the same

relation for our morphism on complete group algebras, and we accordingly have the
relation

gh ≡ g(mod I2 k[K] )̂

in k[K]̂ for any pair of group-like elements g ∈ Gk[K] ,̂ h ∈ Gk[H] ,̂ where we use
the notation gh = ρ(g⊗h) for the action in this case. This relation implies that we

have the identity gh ≡ g in the quotient group K̂/ F2 K̂. The rest of the proposition
follows from straightforward verifications from this result. �

We also have a classical notion of semi-direct product in the category of Lie
algebras. We already mentioned that the equivalence of categories provided by the
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Milnor-Moore Theorem makes semi-direct products of Hopf algebras correspond to
semi-direct products of Lie algebras. We check this assertion in the next proposition
after recalling the definition of a semi-direct product of Lie algebras.

8.5.4. Recollections on semi-direct products of Lie algebras. We go back to the
general setting of a Q-additive symmetric monoidal category M and we consider
the category of Lie algebras in M (see §7.2). We assume that the tensor product of
M distributes over colimits. We consider a pair of Lie algebras (h, k), where h acts
on k in the sense that we have an operation [−,−] : k⊗ h → k which satisfies the
relations of Lie brackets [x, [a, b]] = [[x, a], b] − [[x, b], a], for all x ∈ k, a, b ∈ h, and
[[x, y], a] = [[x, a], y] + [x, [y, a]], for all x, y ∈ k, a ∈ h. (We refer to §7.2.1 for the
correspondence between these relations and the classical Jacobi relation.) The first
relation [x, [a, b]] = [[x, a], b]− [[x, b], a] implies that our operation [−,−] : k⊗ h → k

provides the object k with the structure of a representation of the Lie algebra h

(in the sense of §7.2.9), while the second relation [[x, y], a] = [[x, a], y] + [x, [y, a]]
implies that k is equipped with a Lie bracket [−,−] : k⊗ k → k which defines a
morphism of representations of h, where we equip the tensor product k⊗ k with the
action of h such that [x ⊗ y, a] = [x, a] ⊗ y + x ⊗ [y, a], for x, y ∈ k, a ∈ h. This
formula [[x, y], a] = [[x, a], y] + [x, [y, a]] is also equivalent to the assertion that the
operation θa = [−, a] forms a derivation with respect to the Lie bracket of k.

We then set h� k = h⊕ k, and we provide this object with the Lie bracket such
that [(a, x), (b, y)] = ([a, b], [x, y] + [x, b] − [y, a]), for all a, b ∈ h and x, y ∈ k, in
order to define the semi-direct product of the Lie algebras h and k. We have the
following statement:

Proposition 8.5.5.
(a) If we have a semi-direct product of Lie algebras g = h� k, then the Hopf

algebra K = U(k) inherits an action of H = U(h), and we have the identity
U(h� k) = U(h)�U(k) in the category of Hopf algebras.

(b) If we have a semi-direct product of Hopf algebras L = H�K, then the
Lie algebra k = P(K) inherits an action of h = P(H) and we have the identity
P(H�K) = P(H)� P(K) in the category of Lie algebras.

Proof. We use the derivation formula [x1 · . . . ·xn, a] := x1 · . . . · [xi, a] · . . . ·xn,
for x1, . . . , xn ∈ k and a ∈ h, in order to extend the action of the Lie algebra h

to the enveloping algebra U(k) and in order to provide this object U(k) with the
structure of a representation of h (see §7.2.9). We then use the derivation relation
[[x, y], a] = [[x, a], y] + [x, [y, a]], for x, y ∈ k and a ∈ h, in order to check that this
morphism [−,−] : U(k)⊗h → U(k) preserves the defining relations of the enveloping
algebra U(k), while we easily check that the structure relation of a representation
[x, [a, b]] = [[x, a], b] − [[x, b], a] on the Lie algebra k implies the validity of this
relation for our extension of the action to the enveloping algebra U(k).

We use the isomorphism between the category of representations of a Lie algebra
and the category of right modules over the associated enveloping algebra to get a
morphism ρ : U(k)⊗U(h) → U(k) which extends this action of h on U(k) and which
provides K = U(k) with the structure of a right module over the associative algebra
H = U(h). We easily check that this right module structure satisfies the coherence
constraint of §8.5.1 with respect to the product of K = U(k), because we have
the derivation relation [uv, a] = [u, a]v + u[v, a], for all u, v ∈ U(k) and a ∈ h, by
construction of our action, and this relation is equivalent to our coherence constraint
(uv) ·a =

∑
(a)(u ·a(1))(v ·a(2)) for the Lie algebra elements a ∈ h which we identify
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with primitive generators of the enveloping algebra U(h). We easily check that our
morphism ρ : U(k) ⊗ U(h) → U(k) preserves coproducts too, and hence, forms a
morphism in the category of counitary cocommutative coalgebras, as we require
in §8.5.1. We can therefore form the semi-direct H�K = U(h)�U(k) of the Hopf
algebras H = U(h) and K = U(k).

We have a morphism of Lie algebra h� k → U(h)�U(k) given by the canonical
maps h ⊂ U(h) = U(h) ⊗ 1 and k ⊂ U(k) = 1 ⊗ U(k) on the factors of the semi-
direct product h� k = h⊕ k. We immediately see that this morphism carries h� k

into the primitive part of U(h)�U(k), and hence, extends to a morphism of Hopf
algebras U(h� k) → U(h)�U(k) (see Proposition 7.2.13). We have an obvious map
in the converse direction U(h)�U(k) → U(h� k), which is given by the morphism of
enveloping algebras induced by the obvious inclusions of Lie algebras h ⊂ h� k and
k ⊂ h� k on each factor of the tensor product U(h)�U(k) = U(h)⊗ U(k). We easily
check that this map defines an inverse morphism of our morphism of Hopf algebras
U(h� k) → U(h)�U(k), which is an isomorphism therefore, and this verification
finishes the proof of the first assertion of the proposition.

We now assume that we have a semi-direct product of Hopf algebras H�K as in
the second assertion of the proposition. We immediately see that the morphism ρ :
K⊗H → K which defines the right action of H on K preserves primitives elements
since we assume that this morphism preserves coalgebra structures in our definition
(see §8.5.1). We accordingly have a morphism [−,−] : P(K) ⊗ P(H) → P(K)
induced by ρ. We easily check that this morphism satisfies the relations of §8.5.4,
and we can therefore use this action to form a semi-direct product P(H)�P(K) in
the category of Lie algebras

We have H�K = H ⊗K if we forget about the product operation of the semi-
direct product H�K. We easily check that the primitive element functor on the
category of (coaugmented) counitary cocommutative coalgebras in §7.2.11 is right
adjoint to the obvious functor (−)+ : M → MComc

+ which carries any object M ∈
M to the coalgebra such that M+ = 1⊕M and where we take a trivial coproduct
on M . Recall that the tensor product is identified with the cartesian product in
the category of counitary cocommutative coalgebras (see §3.0.4). Hence, we have
an isomorphism in the base category P(H�K) � P(H)⊕ P(K) by adjunction.

We easily check that the Lie bracket of P(H�K) corresponds to the Lie bracket
of the semi-direct product P(H) � P(K) = P(H) ⊕ P(K) when we keep track of
the image of commutators under this isomorphism, and this verification finishes the
proof of the second assertion of the proposition. �

We can apply this proposition in the complete filtered module setting to get
an identity of complete Hopf algebras Û(h� k) = Û(h)�Û(h), for any semi-direct
product of complete Lie algebras g = h� k. We conversely have an identity of
complete Lie algebras P(H�K) = P(H)� P(K) when H and K are complete Hopf
algebras and we form the semi-direct product H�K in the category of complete
Hopf algebras.

8.5.6. Semi-direct products of weight graded Hopf algebras and Lie algebras. We
also easily check that the mapping E0 : M �→ E0 M which assigns a weight graded
object to any complete filtered module carries a semi-direct product of complete
Hopf algebras to a semi-direct product of weight graded Hopf algebras, and a semi-
direct product of complete Lie algebras to a semi-direct product of weight graded
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Lie algebras. We explicitly have an identity:

E0(H�K) = E0(H)� E0(K),(1)

for any semi-direct product of complete Hopf algebras L = H�K, and an identity:

E0(h� k) = E0(h)� E0(k)(2)

for any semi-direct product of complete Lie algebras g = h� k. We mainly use that
the functor E0 : M �→ E0 M is symmetric monoidal (and preserves direct sums) to
get these identities.

We use these observations in the proof of the following proposition:

Proposition 8.5.7. We consider a semi-direct product of groups G = H �K
such that the action of H on K reduces to the identity when we take the quotient
of K by the subgroup of commutators Γ2 K = [K,K] (as in Proposition 8.5.2 and
in Proposition 8.5.3). We then have an identity

E0 Ĝ = E0 Ĥ � E0 K̂

in the category of weight graded Lie algebras, where we consider the weight graded
Lie algebras of the Malcev complete groups associated to our groups (see §8.2.2).

Proof. We use the general relation Ĝ = Gk[G]̂⇒ E0 Ĝ � E0 Pk[G]̂of Propo-
sition 8.2.3(b) and the identity k[H �K]̂= k[H] �̂ k[K]̂of Proposition 8.5.2.

We apply the result of Proposition 8.5.5(b) to this semi-direct tensor product of
complete Hopf algebras. We then get the relation P k[H �K]̂= P k[H]̂� P k[K]̂
which implies E0 Pk[H �K]̂= E0 Pk[H]̂� E0 P k[K] ,̂ since we just observed that
the functor E0 : M �→ E0 M carries a semi-direct product of complete Lie algebras to
a semi-direct product of weight graded Lie algebras. We therefore get the relation
asserted in our proposition. �





CHAPTER 9

The Malcev Completion for Groupoids
and Operads

In the previous chapter §7, we reviewed the applications of the adjunction
between groups and Hopf algebras to the definition of a rationalization functor, the
Malcev completion, on the category of groups.

To be more explicit, recall that the free k-module k[G] associated to a group G
inherits a Hopf algebra structure such that the mapping k[−] : G �→ k[G] defines a
functor from the category of groups Grp to the category of Hopf algebras HopfAlg .
The other way round, we have a functor from Hopf algebras to groups which is
defined by observing that the set of group-like elements G(H) in a Hopf algebra H
inherits a group structure. We checked in §7.1 that this functor G : HopfAlg →
Grp forms a right adjoint of the group algebra functor k[−] : Grp → HopfAlg .
To define our Malcev completion functor in §8, we consider an extension of this
adjunction relation, where the category of plain Hopf algebras is replaced by a
category of complete Hopf algebras. The complete Hopf algebra k[G]̂associated to
a group G is precisely defined as the completion k[G]̂= limn k[G]/ In k[G] of the
Hopf algebra associated to G with respect to the powers of the augmentation ideal
I k[G] = ker(ε : k[G] → k) and the completion of the group G is defined by the set

of group-like elements Ĝ = Gk[G]̂associated to this completed Hopf algebra k[G] .̂
In §8, we also crucially assume that the ground ring k is a field of characteristic

0. The elements of the group Ĝ are then identified with exponentials g = ex such
that x belongs to the Lie algebra of primitive elements of k[G] .̂ This representation

enables us to define powers gα for arbitrary exponents α ∈ k in Ĝ. In the case
k = Q, our construction therefore returns a rationalization of the group G. The
case k = C of our construction will be used in the next chapter, for the definition
of the Knizhnik–Zamolodchikov associator.

We still take an arbitrary field of characteristic zero as ground ring k throughout
this chapter. Our first purpose is to check that the Malcev completion process for
groups extends to groupoids. Then we prove that the obtained completion functor
on groupoids preserves symmetric monoidal structures, and hence can be applied
to operads aritywise in order to yield a Malcev completion functor on the category
of operads in groupoids. Some care is necessary when we deal with groupoids, and
not all arguments are generalizable, because the morphism sets of groupoids, as
opposed to the underlying set of a group, are not naturally pointed.

In a preliminary section (§9.0), we explain the definition of the notion of a Hopf
groupoid as an analogue for groupoids of the notion of a Hopf algebra. We explain
the definition of our Malcev completion functor for groupoids in §9.1 and we tackle
the applications to operads in §9.2. We devote an appendix section §9.3 to the
statement of a local connectedness condition for complete Hopf groupoids.

311
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9.0. The notion of a Hopf groupoid

The goal of this section is to make the definition of a Hopf groupoid explicit.
In short, we define Hopf groupoids by replacing the morphism sets of ordinary
groupoids by coalgebras, and the cartesian products of morphism sets in the defi-
nition of the composition operation of a groupoid by tensor products.

We follow the same plan as in §7.1. To begin with, we make explicit the
definition of the notion of a Hopf category, which is a generalization of the notion
of a bialgebra. We give the definition of a Hopf groupoid afterwards and we explain
the definition of the extension of the group algebra functor of §7.1 to the category
of groupoids in order to complete the account of this section.

9.0.1. Hopf categories. In §7.1, we define (cocommutative) bialgebras as uni-
tary associative algebras (or monoids) in the category of counitary cocommutative
coalgebras. The Hopf categories which we consider in this chapter are small cate-
gories enriched in counitary cocommutative coalgebras, and are defined by applying
the general concepts of §0.13 to this instance of symmetric monoidal category Comc

+.
This definition makes sense within any base symmetric monoidal category in which
we can form our category of counitary cocommutative coalgebras. For the moment
we focus on the case of categories enriched in counitary cocommutative coalgebras
in k-modules Comc

+ = Mod Comc
+.

We then define a Hopf category H as a set of objects ObH together with a
collection of counitary cocommutative coalgebras HomH(x, y) ∈ Comc

+, associated
to each pair of objects x, y ∈ ObH, and equipped with unit morphisms

η : k → HomH(x, x), for x ∈ ObH,(1)

and composition morphisms

μ : HomH(y, z)⊗ HomH(x, y) → HomH(x, z), for x, y, z ∈ ObH,(2)

that satisfy the usual unit and associativity axioms of categories within the sym-
metric monoidal category of counitary cocommutative coalgebras (see §0.12).

We also refer to these hom-objects HomH(x, y) as the hom-coalgebras of our Hopf
category H, and we call ‘homomorphisms ’ the elements of these hom-coalgebras
(see §0.12). In applications, we also use the classical notation idx ∈ HomH(x, x)
for the homomorphisms idx = η(1), which represent the identity morphisms of our
hom-objects. We similarly use the notation f ◦g (or just fg) for the image of homo-
morphisms under the composition operation (2). Let us mention that the identity
homomorphisms idx ∈ HomH(x, x) are automatically group-like. We explicitly have
the relations ε(1) = 1 ⇒ ε(idx) = 1 and Δ(1) = 1 ⊗ 1 ⇒ Δ(idx) = idx ⊗ idx, for
all x ∈ ObH.

We consider the obvious notion of morphism of Hopf categories. In brief, a
morphism of Hopf categories φ : H → K consists of a map on the underlying
object-sets of our Hopf categories φ : ObH → ObK together with a collection of
coalgebra morphisms

(3) φ : HomH(x, y) → HomK(φ(x), φ(y)), for x, y ∈ ObH,

which preserve the unit and the composition operations of our hom-coalgebras.
9.0.2. Hopf groupoids. We define a Hopf groupoid as a Hopf category H where

we have extra operations on hom-objects

(1) σ : HomH(x, y) → HomH(y, x),
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which make the following diagrams commute:

HomH(x, y)
ε

Δ

k
η

HomH(x, x)

HomH(x, y)⊗ HomH(x, y)
σ⊗id

HomH(y, x)⊗ HomH(x, y)

μ

,(2)

HomH(x, y)
ε

Δ

k
η

HomH(y, y)

HomH(x, y)⊗ HomH(x, y)
id ⊗σ

HomH(x, y)⊗ HomH(y, x)

μ

,(3)

for all x, y ∈ ObH. We obviously assume in this definition that our operation σ is
defined by a morphism of counitary cocommutative coalgebras. We immediately
see that a Hopf algebra is identified with a Hopf groupoid with one object, and
our extra operations are obvious generalizations of the antipode of a Hopf algebra.
We therefore keep the same name, ‘antipode’, to refer to these morphisms (1).
We readily see that the endomorphism coalgebra EndH(x) = HomH(x, x) which we
associate to an object x ∈ H in a Hopf groupoidH inherits a Hopf algebra structure,
with the unit given by the identity homomorphism of our object idx ∈ EndH(x),
the product yielded by the composition product of our Hopf groupoid H, and the
antipode yielded by our antipode operation in H.

The relations which we express by the commutativity of the above diagrams are
obvious coalgebra analogues of the inversion relation of morphisms in groupoids.
For a group-like element f ∈ HomH(x, y), which has ε(f) = 1 and Δ(f) = f⊗f , these
relations read f ·σ(f) = id , σ(f)·f = id , and hence are equivalent to the requirement
that f is invertible with σ(f) = f−1 as inverse. We easily check, besides, that the
antipode operation of a Hopf groupoid is unique and satisfies the relation σ(idx) =
idx, for any x ∈ ObH, as well as the relation σ(f ◦ g) = σ(g) ◦ σ(f), for any pair
of composable homomorphisms f ∈ HomH(y, z), g ∈ HomH(x, y) (the proof of these
assertions follows from a straightforward generalization of the arguments which we
use in the context of Hopf algebras).

We define the category of Hopf groupoids as the full subcategory of the category
of Hopf categories generated by the Hopf groupoids. We use the notation Hopf Grd
for this category. We should simply observe that a morphism of Hopf categories
φ : G → H automatically preserves antipodes when G and H are Hopf groupoids
(this assertion is a variation of the uniqueness of antipodes in Hopf algebras). Recall
that we use the notation Grd for the category of groupoids.

9.0.3. The Hopf groupoid associated to a groupoid. We can easily extend the
definition of the group algebra functor in the groupoid context. To be explicit, to
any groupoid G, we associate the Hopf groupoid k[G] with the same set of objects as
our original groupoid Ob k[G] := ObG, and where we take the coalgebras associated
to the morphism sets S = MorG(x, y) as hom-objects:

Homk[G](x, y) := k[MorG(x, y)],

for all x, y ∈ ObG. Recall that k[S] denotes the free k-module associated to any set
S. We use the notation [f ] for the elements of this k-module which we associate to
the elements of our set f ∈ S, and we equip k[S] with the coalgebra structure such
that ε([f ]) = 1 and Δ([f ]) = [f ]⊗ [f ], for any f ∈ S (see §3.0.6).
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The unit morphism of the Hopf groupoid k[G] is defined by η(1) = [idx], for each
x ∈ ObG, where we consider the element of the hom-coalgebra [idx] ∈ k[MorG(x, x)]
associated the identity morphisms of our object x in G. The composition is defined
by the obvious linear extension of the composition operation of the groupoid G, and
the antipode is given by σ([f ]) = [f−1], for any f ∈ MorG(x, y).

9.0.4. The group-like element functor on Hopf groupoids. In the converse direc-
tion, we can use the group-like functor G : C �→ G(C) on the category of counitary
cocommutative coalgebras C ∈ Comc

+ (see §3.0.6) to construct a functor from the
category of Hopf groupoids to the category of groupoids. To be explicit, to any
Hopf groupoid H, we associate the groupoid G(H) with the same object set as our
original Hopf groupoid ObG(H) := ObH, and where we take the sets of group-like
elements of the coalgebras C = HomH(x, y) as morphism sets:

MorG(H)(x, y) := G(HomH(x, y)),

for all x, y ∈ ObH. We already observed that the identity homomorphisms of a
Hopf category are automatically group-like (see §9.0.1), and we readily check, as in
the case of Hopf algebras, that a composite of group-like homomorphisms remains
group-like. Recall also that for a group-like homomorphism f ∈ G(HomH(x, y)) the
antipode relations are equivalent to the identities σ(f) · f = idx and f · σ(f) =
idy, and hence, imply that our homomorphism f is invertible with respect to the
composition operation of our Hopf groupoid (see 9.0.2). Thus, the morphisms of
our category G(H) are all invertible.

9.0.5. The adjunction between groupoids and Hopf groupoids. We easily check
that the adjunction of §3.0.6 (between the free module functor from sets to couni-
tary cocommutative coalgebras and the group-like element functor) extends to an
adjunction between our Hopf groupoid functor on groupoids and the group-like
element functor on Hopf groupoids:

k[−] : Grd � Hopf Grd : G .

In short, for an object of the category of groupoids G ∈ Grd , we have an obvious
morphism ι : G → G(k[G]) defined by the identity map at the object set level and by
the obvious inclusions MorG(x, y) ⊂ G(k[MorG(x, y)]) at the morphism set level. For
a Hopf groupoid H ∈ Hopf Grd , we consider the morphism ρ : k[G(H)] → H which
is still defined by the identity map at the object set level and by the morphisms
of k-modules ρ : k[G(HomG(x, y))] → HomG(x, y) induced by the inclusion maps
G(HomG(x, y)) ⊂ HomG(x, y) at the hom-object level. (Thus, we just apply the unit
and the augmentation of the adjunction of §3.0.6 to the hom-coalgebras and to the
morphism sets of our objects.) We simply check that these natural transformations
preserve the structure operations of groupoids and of Hopf groupoids to conclude
that they still give the unit and the augmentation of an adjunction between the
category of groupoids and the category Hopf groupoids.

9.0.6. Geometrical, local and global connectedness of Hopf groupoids. We usu-
ally say that a groupoid G is connected when we have MorG(x, y) �= ∅, for all
x, y ∈ ObG. We then have the relation Homk[G](x, y) �= 0, for all x, y ∈ ObG, in
the Hopf groupoid k[G] associated to G. We also say that a Hopf groupoid H is
geometrically connected when we have this non-vanishing relation HomH(x, y) �= 0,
for all x, y ∈ ObH. By general structure results on coalgebras (see for instance [1,
Theorem 2.3.3], or [171, §8.0]), we then have G(HomH(x, y)⊗k l) �= ∅ for an algebraic
extension l of our ground field k. Hence, if we assume k = k̄, then the groupoid
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of group-like elements G = G(H) which we associate to a geometrically connected
Hopf groupoid H is connected in the ordinary sense.

We have examples of Hopf groupoids such that HomH(x, y) �= 0 but where we
have G(HomH(x, y)) = ∅ for some pairs of objects x, y ∈ ObH in the case where
the ground field is not algebraically closed k �= k̄. We therefore introduce new
notions of connectedness for Hopf groupoids. Namely, we say that a Hopf groupoid
H is locally connected (over k) when every non-zero hom-coalgebra HomH(x, y) �= 0
contains at least one group-like element (defined over k), and we say that H is
globally connected when we have G(HomH(x, y)) �= ∅ for all x, y ∈ ObH, so that
the groupoid of group-like elements associated to H is connected. Thus, the local
connectedness condition is void when k = k̄, and the geometrical connectedness
implies the global connectedness in this case.

9.1. The Malcev completion for groupoids

The goal of this section is to explain the definition of the Malcev completion
of a groupoid. The idea, as in the group context, is to perform a completion of
the Hopf groupoid which we associate to any groupoid in §9.0.5, and to go back to
groupoids by using a complete version of the group-like element functor from Hopf
groupoids to groupoids. To achieve this program, we need to introduce a suitable
notion of complete Hopf groupoid.

In §9.0, we mention that our definition of the notion of a Hopf groupoid makes
sense in any ambient symmetric monoidal category. We actually define our category
of complete Hopf groupoids as a subcategory of the category of Hopf groupoids in
complete filtered modules formed by objects which satisfy extra local connectedness
conditions. We make the definition of a Hopf groupoid in complete filtered modules
explicit first and we explain our local connectedness requirements for the definition
of the category of complete Hopf groupoids afterwards.

9.1.1. Hopf groupoids in complete filtered modules. We still define our category
of Hopf groupoids in complete filtered modules as a subcategory of a category of
Hopf categories in complete filtered modules. We just replace the category of or-
dinary counitary cocommutative coalgebras Comc

+ = Mod Comc
+ in the definition

of §§9.0.1-9.0.2 by the category of counitary cocommutative coalgebras in complete

filtered modules f̂ Comc
+ = f̂ Mod Comc

+ in order to get our definition of these com-
plete analogues of the concepts of §9.0. Thus, a Hopf category in complete filtered
modules H consists of an object set ObH together with a collection of hom-objects
with values in the category of complete counitary cocommutative coalgebras:

HomH(x, y) ∈ f̂ Comc
+,

for x, y ∈ ObH. We also consider the symmetric monoidal structure of the cat-
egory of complete counitary cocommutative coalgebras when we define the unit
morphisms §9.0.1(1) and the composition morphisms §9.0.1(2) associated to these
complete hom-coalgebras in a complete Hopf category H. We therefore replace the
ordinary tensor product by the completed tensor product of §7.3.12 in the definition
of these structure morphisms.

Then we define a Hopf groupoid in complete filtered modules as a Hopf cat-
egory in complete filtered modules H equipped with antipode morphisms, formed
within the category of complete counitary cocommutative coalgebras, and which
fulfill the relations of §9.0.2 in this category. We just have to replace the ordinary
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tensor products of our diagrams §9.0.2(2-3) by completed tensor products again in
order to get this complete version of the antipode relations. We observed in §9.0.2
that the endomorphism coalgebra of an object EndH(x) = HomH(x, x) in a Hopf
groupoid inherits a Hopf algebra structure. We similarly get that this endomor-
phism coalgebra EndH(x) forms a Hopf algebra in complete filtered modules when
we work in the complete setting.

Recall that the ground field k is identified with a complete filtered module
equipped with a trivial filtration and forms a unit for the completed tensor prod-
uct. The unit morphisms of a Hopf category in complete filtered modules are
therefore equivalent to ordinary unit morphisms of counitary cocommutative coal-
gebras §9.0.1(1). The preservation of filtration, which we require for morphisms
of complete filtered modules in general, is automatically fulfilled for these unit
morphisms. The preservation of counitary cocommutative coalgebra structures
is equivalent to the requirement that the element idx = η(1) associated to each
unit morphism η : k → HomH(x, x) is group-like as an element of the complete
counitary cocommutative coalgebra HomH(x, x). We explicitly have ε(idx) = 1
and Δ(idx) = idx ⊗̂ idx, where we use our definition of the notion of a group-like
element in the complete sense (see §8.1.2).

The composition operations of a Hopf category in complete filtered modules
can also be identified with extensions of ordinary filtration preserving composition
products μ : HomH(y, z) ⊗ HomH(x, y) → HomH(x, z) as in the Hopf algebra case
(see §7.3.14), but we have to consider the completed tensor product when we deal
with the coalgebra structure of our hom-objects.

We also define a morphism of Hopf groupoids in complete filtered modules
φ : G → H as a map of object sets φ : ObG → ObH together with a collection
of morphisms of complete counitary cocommutative coalgebras φ : HomG(x, y) →
HomH(φ(x), φ(y)) which preserve the units and the composition operations attached
to our objects. We still get that such a morphism automatically preserves the
antipode operations.

9.1.2. Local connectedness assumptions for complete Hopf groupoids. In §7.3.15,
we introduce a connectedness condition in the definition of the category of com-
plete Hopf algebras. Explicitly, we require that the augmentation of a complete
Hopf algebra H induces an isomorphism between the weight zero subquotient
E00 H = H/ F1 H of our filtration on H and the ground ring k. We equivalently
have an identity between the first layer of our filtration F1 H ⊂ H and the augmen-
tation ideal of our Hopf algebra I(H) = ker(ε : H → k).

In the Hopf groupoid context, we similarly assume that the augmentation
ε : HomH(x, y) → k of the hom-coalgebras such that HomH(x, y) �= 0 induces an
isomorphism from the weight zero subquotient of our filtration to the ground field:

E00 HomH(x, y) = HomH(x, y)/ F1 HomH(x, y)
�−→ k .

This is exactly the generalization of our connectedness condition for complete Hopf
algebras. Let us mention that for a (complete or ordinary) coalgebra the non-
vanishing relation C �= 0 implies ε �= 0 (because we have ε = 0 ⇒ idC = 0 ⇒ C = 0
by the counit relation ε⊗ id ·Δ = idC). Thus the augmentation ε : HomH(x, y) → k
is automatically surjective when HomH(x, y) �= 0 and our requirement is equivalent
to the relation

F1 HomH(x, y) = ker(ε : HomH(x, y) → k),
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for any x, y ∈ ObH, where we consider the first filtration layer of the coalgebra
HomH(x, y).

Besides this requirement on the filtration of our hom-coalgebras, we assume
that any non-zero complete hom-coalgebra in our Hopf groupoid HomH(x, y) �= 0
contains at least one group-like element (in the complete sense) g ∈ G(HomH(x, y)).
Explicitly, we assume that we have an element g ∈ HomH(x, y) such that ε(g) = 1
and Δ(g) = g⊗̂g. This assumption is obviously an analogue for Hopf groupoids in
complete filtered modules of our local connectedness condition for ordinary Hopf
groupoids (see §9.0.6).

We call complete Hopf groupoids the Hopf groupoids in complete filtered mod-
ules whose non-zero hom-coalgebras HomH(x, y) �= 0 satisfy the above connect-
edness conditions concerning the filtration E00 HomH(x, y) = k ⇔ F1 HomH(x, y) =
ker(ε : HomH(x, y) → k) (the filtration connectedness condition) as well as our lo-
cal connectedness conditions concerning the existence of group-like elements g ∈
G(HomH(x, y)) (the local connectedness condition). We use the notation f̂ Hopf Grd
for the subcategory of the category of Hopf groupoids in complete filtered modules
generated by the complete Hopf groupoids.

We immediately see that our filtration connectedness condition implies that
the endomorphism coalgebra EndH(x) = HomH(x, x) of any object x ∈ ObH in a
complete Hopf groupoid H satisfies the connectedness requirement of our definition
of a complete Hopf algebra (see §7.3.15) and hence forms a complete Hopf algebra
in our sense. We can conversely identify a complete Hopf algebra with a complete
Hopf groupoid with a single object.

Note that we allow the existence of null hom-coalgebras HomH(x, y) = 0 in this
definition. We just say that a complete Hopf groupoid is globally connected when
we have HomH(x, y) �= 0 for all x, y ∈ ObH. We have the following straightforward
proposition:

Proposition 9.1.3. Any complete Hopf groupoid H decomposes as a coproduct
H =
∐

α Hα (in the category of complete Hopf groupoids) such that each term Hα

is globally connected.

Proof. We define these objects Hα as the complete Hopf groupoids on the
maximal subsets of objects ObHα = Sα ⊂ ObH such that we have x, y ∈ Sα ⇒
HomH(x, y) �= 0 in the complete Hopf groupoid H, and we set HomHα

(x, y) =
HomH(x, y) for any such pair x, y ∈ Sα. �

9.1.4. Connected components and categorical equivalences of complete Hopf
groupoids. We obviously refer to the complete Hopf groupoidsHα in the decomposi-
tion of the previous proposition as the connected components of H. We also use the
notation π0 H for the set of these maximal subsets of objects ObHα = Sα ⊂ ObH

satisfying x, y ∈ Sα ⇒ HomH(x, y) �= 0 in the proof of the previous proposition.
We can abusively identify an element of this set Sα ∈ π0 H with the groupoid Hα

which this set determines. We therefore also refer to this set π0H as the set of
connected components of the complete Hopf groupoid H.

The map π0 : H → π0 H obviously defines a functor on the category of com-
plete Hopf groupoids. We can use this functor π0 : H → π0 H to define an analogue
of the classical notion of an equivalence of groupoids in the complete Hopf groupoid
context. We explicitly say that a morphism φ : A → B is an equivalence of complete
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Hopf groupoids if this morphism induces a bijection on the sets of connected compo-

nents π0φ : π0 A
�−→ π0 B and defines an isomorphism of complete counitary cocom-

mutative coalgebras at the hom-object level φ : HomA(x, y)
�−→ HomB(φ(x), φ(y)),

for each pair of objects x, y ∈ ObA. We use the notation φ : A
∼−→ B with the

extra mark ∼ to distinguish the class of equivalences among the morphisms of the
category of complete Hopf groupoids. We can obviously identify the isomorphisms
of complete Hopf groupoids with the equivalences which are defined by a bijection
at the object set level.

9.1.5. The determination of complete Hopf groupoids from a complete endo-
morphism Hopf algebra. Recall that an element g ∈ C in a complete counitary
cocommutative coalgebra C is group-like (in the complete sense) when we have
ε(g) = 1 and Δ(g) = g⊗̂g. For a group-like element in the hom-coalgebra of a
complete Hopf groupoid g ∈ HomH(x, y), the antipode relations read σ(g) · g = idx,
g ·σ(g) = idy, and therefore imply that the antipode represents an inverse of our ho-
momorphism σ(g) = g−1 with respect to the composition operation of our complete
Hopf groupoid.

We immediately see that the composition operation g∗ : u �→ g ◦ u determines

an isomorphism of complete counitary coalgebras g∗ : EndH(x)
�−→ HomH(x, y)

when g ∈ HomH(x, y) is group-like. We similarly have an isomorphism of complete

counitary coalgebras g∗ : EndH(y)
�−→ HomH(x, y) when we consider the composition

operation on the right g∗ : v �→ v ◦ g. We also write EndH(x, y) = g EndH(x) and
EndH(x, y) = EndH(y)g to express the identity of our hom-coalgebra with the image
of these translation isomorphisms.

We can use this observation to determine the structure of any complete Hopf
groupoid H from the collection of complete endomorphism Hopf algebras EndH(xα)
associated to the choice of an object xα ∈ ObHα in each connected component of
our complete Hopf groupoid Hα ⊂ H, together with group-like homomorphisms
gx ∈ G(HomH(xα, x)) which connect any object x ∈ ObH with one of our base
objects xα ∈ ObHα. We explicitly use the relation HomH(x, y) = gy EndH(xα)g

−1
x

to determine the hom-coalgebra associated to any pair of objects in H. We use
the formula (gzug

−1
y )(gyvg

−1
x ) = gz(uv)g

−1
x to determine the composite of homo-

morphisms f = gzug
−1
y ∈ HomH(y, z) and g = gyvg

−1
x ∈ HomH(x, y) from the com-

position of the factors u, v ∈ EndH(xα) in the complete endomorphism coalgebra
EndH(xα).

We can formalize the result of these observations as the following statement:

Proposition 9.1.6. Any complete Hopf groupoid H is isomorphic to a complete
Hopf groupoid H with ObH = ObH and which is determined by a partition of this
object set ObH =

∐
α∈I Sα together with a collection of complete Hopf algebras Hα,

α ∈ I, such that:

HomH(x, y) =

{
Hα, if x, y ∈ Sα for some α ∈ I,

0, otherwise.

Proof. We just take Hα = EndH(xα) in the construction of §9.1.5 and we
take the compositions φ : u �→ gyug

−1
x to define the morphisms of hom-coalgebras

φ : Hα → HomH(x, y) which determine our isomorphism of complete Hopf groupoids

φ : H
�−→ H. �
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We coin the phrase ‘locally constant complete Hopf groupoid ’ to refer to the
complete Hopf groupoids H of the form considered in this proposition. We can use
this proposition to deduce the proof of the validity of some constructions on com-
plete Hopf groupoids from corresponding statements on complete Hopf algebras,
but the isomorphism which we define in this proposition is by no way canonical in
general, and we crucially need functorial constructions when we tackle the appli-
cations of complete Hopf groupoids to operads. We therefore avoid to apply this
proposition in what follows.

9.1.7. The completion of Hopf groupoids. The natural filtration of Hopf alge-
bras, which is given by the tensor powers of the augmentation ideal, has a natural
generalization in the context of Hopf groupoids.

To be explicit, let H ∈ Hopf Grd be a Hopf groupoid. We equip the hom-
coalgebra HomH(x, y), associated to each pair of objects x, y ∈ ObH, with a filtration

HomH(x, y) = I0 HomH(x, y) ⊃ I1 HomH(x, y) ⊃ · · · ⊃ In HomH(x, y) ⊃ · · ·
such that In HomH(x, y) is the submodule of HomH(x, y) spanned by the n-fold com-
posites of homomorphisms f1 · . . . · fn satisfying ε(fi) = 0, for i = 1, . . . , n. Thus,
we assume that each factor of these composites fi, i = 1, . . . , n, lies in the ker-
nel of the augmentation of our hom-coalgebras ε : HomH(−,−) → k. For the
first layer of this filtration I HomH(x, y) ⊂ HomH(x, y), we have the trivial iden-

tity I HomH(x, y) = ker(HomH(x, y)
ε−→ k), for each pair of objects x, y ∈ ObH.

The preservation of the counitary cocommutative coalgebra structure by the
composition operations of H implies that we have the inclusion relation

Δ(In HomH(x, y)) ⊂
∑

p+q=n

Ip HomH(x, y)⊗ Iq HomH(x, y)

for each n ∈ N, as in the Hopf algebra case (see §8.1.1). Thus, the coproduct of
our hom-coalgebra Δ : HomH(x, y) → HomH(x, y) ⊗ HomH(x, y) defines a filtration
preserving morphism for this canonical choice of filtration on our object HomH(x, y).
The counit morphism ε : HomH(x, y) → k trivially defines a filtration preserving
morphism too.

Hence, each hom-object HomH(x, y) of our Hopf groupoidH canonically inherits
the structure of a counitary cocommutative coalgebra in filtered modules, of which
we perform the completion

HomH(x, y)̂= lim
n

HomH(x, y)/ In HomH(x, y)

to get a complete counitary cocommutative coalgebra HomH(x, y) ,̂ for each pair
of objects x, y ∈ ObH. Recall that the filtration associated to such a completed
module satisfies HomH(x, y) /̂ Fn HomH(x, y)̂= HomH(x, y)/ In HomH(x, y), for every
n ∈ N. In the case n = 1, we get I HomH(x, y) = ker(ε : HomH(x, y) → k) and
we have HomH(x, y)/ I HomH(x, y) = k as soon as HomH(x, y) �= 0. We deduce from
this relation that our completed hom-coalgebras HomH(x, y)̂ fulfill the filtration
connectedness condition of §9.1.2.

In §9.0.6, we briefly mention that any hom-coalgebra C = HomH(x, y) in a
Hopf groupoid H admits an extension of scalars Cl = HomH(x, y) ⊗k l such that
G(Cl) �= ∅. This observation follows from general structure theorems on coalgebras
(see the references cited in §9.0.6). The group-like element g ∈ G(Cl) which we may
form in such an extension Cl = C ⊗k l of the ordinary coalgebra C = HomH(x, y)
determines a group-like element in a scalar extension Cl̂ = HomH(x, y)l̂ of the
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completed coalgebra Ĉ= HomH(x, y) .̂ In the appendix section §9.3, we prove that
these completed hom-coalgebras HomH(x, y)̂ contain group-like elements defined
over our ground field g ∈ G(HomH(x, y) )̂ (and not only over an extension) as soon
as we can ensure the existence of group-like elements in a extension of scalars for
these completed hom-coalgebras. Thus, our completed hom-coalgebras HomH(x, y)̂
automatically fulfill the local connectedness condition of §9.1.2 besides the filtration
connectedness condition. (The verification of this condition is actually immediate
for the main examples of Hopf groupoids, like H = k[G], to which we apply our
completion process.)

The unit morphisms of the Hopf groupoid H have an obvious prolongment
η : k → HomH(x, x)̂ for all x ∈ ObH. The composition operations of H trivially
preserve the filtration of our counitary cocommutative coalgebras, and hence induce
composition operations at the level of our completed hom-objects HomH(−,−) .̂ The
relations satisfied by antipodes imply, as in the Hopf algebra case, that the antipodes
of our Hopf groupoid preserve filtrations too and hence admit an extension to the
completed hom-objects as well.

We define the completion of the Hopf groupoid H as the Hopf groupoid in com-

plete filtered modules Ĥ which has the same object set as our original Hopf groupoid

Ob Ĥ := ObH and the complete counitary cocommutative coalgebras defined in this
paragraph as hom-objects:

Hom
Ĥ
(x, y) := HomH(x, y) ,̂

for all pairs of objects x, y ∈ ObH. We use the previous observations to determine
the identity homomorphisms and the composition operations of this Hopf groupoid

in complete filtered modules Ĥ. We just observed that this Hopf groupoid Ĥ fulfills
the connectedness conditions of §9.1.2 too and hence does form a complete Hopf
groupoid according to our conventions §9.1.2.

Recall that the endomorphism coalgebra EndH(x) = HomH(x, x) which we asso-
ciate to any object x ∈ H in a Hopf groupoid H inherits a Hopf algebra structure,
with the identity homomorphism of our object idx ∈ EndH(x) as unit element, the
product yielded by the composition of homomorphisms in the Hopf groupoid H,
and the antipode yielded by the antipode operation of H (see §9.0.2). We have a
similar result in the case of a complete Hopf groupoid (see §§9.1.1-9.1.2). We have
the following observation:

Proposition 9.1.8. The complete endomorphism Hopf algebra End
Ĥ
(x) :=

EndH(x)̂ which we associate to any object x ∈ ObH in the completion Ĥ of a
Hopf groupoid H (in the sense of §9.1.7) is isomorphic to the completion of the
endomorphism Hopf algebra EndH(x) which we associate to this object x ∈ ObH

in the Hopf groupoid H and which we treat as an isolated object (to perform the
completion of §8.1.1).

Proof. We fix an object x ∈ ObH in our Hopf groupoid H. We check that
the filtration of §9.1.7, where we consider all composites of composable homomor-
phisms (with a null augmentation) in the Hopf groupoidH, agrees with the filtration
of §8.1.1 for the Hopf algebra EndH(x), where we only consider composites of endo-
morphisms of the objects x (with a null augmentation yet). The latter is obviously
included in the former. To check the converse inclusion, we consider a chain of
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composable homomorphisms x0
f1←− x1

f2←− · · · fn←− xn, which goes from x0 = x to
xn = x in the Hopf groupoid H, and where we have ε(f1) = · · · = ε(fn) = 0.

We assume f = f1 · f2 · . . . · fn �= 0. We accordingly have HomH(xi, x) �= 0
and HomH(x, xi) �= 0, for all intermediate objects in our chain xi ∈ ObH, i =
1, . . . , n − 1. We pick a homomorphism gi ∈ HomH(xi, x) such that ε(gi) = 1 for
each i = 1, . . . , n − 1. We form the coproduct of these homomorphisms Δ(gi) =∑

(gi)
gi(1) ⊗ gi(2) in the coalgebras HomH(xi, x), for i = 1, . . . , n − 1. We insert

the antipode relations
∑

(gi)
σ(gi(1)) · gi(2) = idxi

in our composite to express the

result of this composition operation as an n-fold composite of endomorphisms of
the object x in H:

f1 · f2 · . . . · fn =
∑

(g1),...,(gn−1)

(f1 · σ(g1(1))) · (g1(2) · f2 · σ(g2(1))) · . . . (gn−1(2) · fn).

Note that these endomorphisms trivially have a null augmentation and hence belong
to the augmentation ideal of the Hopf algebra EndH(x).

This verification completes the proof that the filtration of the hom-coalgebra
EndH(x) in the Hopf groupoid H, such as defined in §9.1.7, reduces to the filtration
of §8.1.1 when we treat the Hopf algebra EndH(x) as an isolated object. �

9.1.9. The complete Hopf groupoid and group-like element functors. We asso-
ciate a complete Hopf groupoid k[G]̂ to any groupoid G by taking the comple-
tion §9.1.7 of the Hopf groupoid k[G] of §9.0.3. This complete Hopf groupoid k[G]̂
has the same object set as our original groupoid Ob k[G]̂= ObG, and the completed
counitary cocommutative coalgebras

HomG(x, y)̂= k[MorG(x, y)]̂
as hom-objects. The map k[−]̂ : G �→ k[G]̂ defines a functor k[−]̂ : Grd →
f̂ Hopf Grd from the category of groupoids Grd to the category of complete Hopf

groupoids f̂ Hopf Grd .
In the converse direction, we see that the group-like element functor of §9.0.4

has an obvious complete analogue which enables us to associate a groupoid of
group-like elements G(H) to any complete Hopf groupoid H. This groupoid has
the same object set as our original complete groupoid ObG(H) = ObH and the sets
of group-like elements

G(HomH(x, y)) = {f ∈ HomH(x, y) | ε(f) = 1 and Δ(f) = f⊗̂f}

as morphism sets. The identity morphisms and the composition operation of this
groupoid are yielded by the identity elements and by the composition of the com-
plete Hopf groupoid H, as in the construction of §9.0.4. The inverse of morphisms
in G(H) is also given by the antipode operation on H.

The adjunction relation of §9.0.5 has the following analogue in the context of
complete Hopf groupoids:

Proposition 9.1.10. The complete Hopf groupoid functor k[−]̂ : G �→ k[G]̂
and the group-like functor G : H → G(H), given by the construction of the previous

paragraph (§9.1.9), define a pair of adjoint functors k[−]̂ : Grd � f̂ Hopf Grd : G
between the category of groupoids Grd and the category of complete Hopf groupoids

f̂ Hopf Grd.
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Proof. This proposition follows from a straightforward extension of the ar-
guments of Proposition 8.1.3 where we define the adjunction between groups and
complete Hopf algebras. �

Furthermore, we have the following generalization of the result of Proposi-
tion 8.1.6:

Proposition 9.1.11. The functor G : f̂ Hopf Grd → Grd induces an injective
map on morphism sets:

Morf̂ HopfGrd (A,B) ↪→ MorGrd (G(A),G(B)),

for all A,B ∈ f̂ Hopf Grd, and hence, is faithful.

Proof. Let φ, ψ : A → B be a pair of parallel morphisms such that G(φ) =
G(ψ). We implicitly assume that these morphisms φ, ψ : A → B agree on the
object sets of our Hopf groupoids when we make this assumption G(φ) = G(ψ). We
check that our morphisms agree on hom-objects too. We use the ideas of §9.1.5.
Proposition 8.1.6 implies that our morphisms agree on the complete endomorphism
Hopf algebra of each object in A. In the case of an arbitrary pair of objects x, y ∈ A

such that HomA(x, y) �= 0, we pick a group-like homomorphism f ∈ G(HomA(x, y))
by using our local connectedness requirement in the definition of a complete Hopf
groupoid. We form the commutative diagram

EndA(x)

f∗

φ=ψ
EndB(u)

φ(f)∗=ψ(f)∗

HomA(x, y)
φ

ψ
HomB(u, v)

,

where we set u = φ(x) = ψ(x), v = φ(y) = ψ(y) and we use the obvious com-
position as vertical maps, to conclude that our morphisms also agree on the hom-
coalgebra HomA(x, y). We therefore have φ = ψ. �

9.1.12. The category of Malcev complete groupoids. We now define the category

of Malcev complete groupoids f̂ Grd as the faithful image of the category of complete

Hopf groupoids f̂ Hopf Grd in the category of groupoids Grd :

f̂ Grd = G(f̂ Hopf Grd).

We also say that a groupoid G is Malcev complete when we have G = G(H), for

some H ∈ f̂ Hopf Grd . We moreover say that a morphism φ : G → H in this

category f̂ Grd is an equivalence of Malcev complete groupoids when this morphism
is the image of an equivalence of complete Hopf groupoids (see §9.1.4) under the

group-like element functor G : f̂ Hopf Grd → f̂ Grd . We again use the notation
φ : G

∼−→ H with the extra mark ∼ to distinguish the class of equivalences among
the morphisms of the category of Malcev complete groupoids. We can still identify
the isomorphisms of Malcev complete groupoids with the equivalences which are
given by a bijection at the object set level.

In the next paragraph, we explain a generalization, for our category of Malcev
complete groupoids, of the structures which we attach to the objects of the category
of Malcev complete groups in §8.2. Let us observe that a Malcev complete group in
the sense of §8.2 is identified with a Malcev complete groupoid with a single object.
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In the converse direction, we immediately see that the automorphism group of an
object AutG(x) = MorG(x, x) in a Malcev complete groupoid G = G(H) forms a
Malcev complete group since we have AutG(x) = G(EndH(x)) by definition of our
group-like functor on complete Hopf groupoids.

9.1.13. The tower decomposition of Malcev complete groupoids. We explained
in §8.2 that each Malcev complete group G is equipped with a natural filtration
G = F1 G ⊃ · · · ⊃ Fm G ⊃ · · · by normal subgroups Fm G ⊂ G such that G =
limm G/ Fm G.

In the case of a Malcev complete groupoid G, we have a tower decomposition
G = limm qm G which we use to extend this construction. We take Ob qm G :=
ObG for each m ≥ 0, and we define the morphism sets of this groupoid as the
quotients Morqm G(x, y) = MorG(x, y)/ ≡ of the morphism sets MorG(x, y) under
the equivalence relation such that f ≡ g if we have g = f · γ for an element
γ ∈ Fm+1 AutG(x) in the m + 1st layer of the canonical filtration of the Malcev
complete group G = AutG(x). We also use the notation

Morqm G(x, y) = MorG(x, y)/ Fm+1 AutG(x)

for the result of this quotient construction. We trivially have the group identity
Autqm G(x) = AutG(x)/ Fm+1 AutG(x) for the automorphism group of an object
x ∈ ObG in qm G and the relation AutG(x) = limm AutG(x)/ Fm+1 AutG(x), which
holds at the level of these Malcev complete groups G = AutG(x), immediately
implies that we have the relation MorG(x, y) = limm Morqm G(x, y) for all morphisms
sets MorG(x, y), x, y ∈ G, since the composition with any morphism f ∈ MorG(x, y)
induces a bijection f∗ : AutG(x) → MorG(x, y) in our groupoid.

Furthermore, we have Morq0 G(x, y) = pt if x and y belong to the same connected
component of the groupoid G and Morq0 G(x, y) = ∅ otherwise since our Malcev
complete groups G = AutG(x) satisfy G = F1 G ⇔ G/ F1 G = pt . Equivalently,
this groupoid q0 G is obtained by collapsing all non-trivial morphism sets in G to
a point. To express this relationship, we also abusively write q0 G = π0 G where
π0 G denotes the discrete groupoid (the set) of the connected components of the
groupoid G (actually, we have to take the pullback of this discrete groupoid along
the natural map of object sets q : ObG → π0 G in order to give a sense to this
identity).

Let us observe that the conjugation operation cf (γ) = f ·γ·f−1 with a morphism
f ∈ MorG(x, y) in our groupoid G comes from a morphism of complete Hopf algebras
cf : EndH(x) → EndH(y), where H denotes the complete Hopf groupoid such
that G = G(H). This conjugation operation accordingly defines a morphism of
Malcev complete groups cf : AutG(x) → AutG(y), and, as a consequence, we have
γ ∈ Fm+1 AutG(x) ⇒ f · γ · f−1 ∈ Fm+1 AutG(y). From this observation, we deduce
that we can equivalently take the equivalence relation such that f ≡ g when we have
g = γ′ · f for an element γ′ ∈ Fm+1 AutG(y) in the definition of the morphism sets
of our groupoid qm G. We also get that the composition of morphisms in MorG(x, y)
is compatible with this equivalence relation and, hence, does induce a composition
operation on the morphism sets of the groupoid qm G.

This construction is clearly functorial. Furthermore, we have the following
statement:

Proposition 9.1.14. The objects qm G in the tower decomposition of a Malcev
complete groupoid G form Malcev complete groupoids themselves and the identity
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G = limm qm G holds in the category Malcev complete groupoids. Besides, the mor-
phisms p : G → qn G, which we consider in this tower decomposition, induce iso-

morphisms of Malcev complete groupoids p∗ : qm G
�−→ qm(qn G) for all m ≤ n when

we apply our tower decomposition twice.

Proof. We assume G = G(H) for some complete Hopf groupoid H. We fix
m ≥ 0. We aim to define a complete Hopf groupoid qm H such that qm G = G(qmH).
We trivially take Ob qm H = ObH = ObG and our main purpose is to define the
hom-objects of this Hopf groupoid qmH.

In a first step, we consider the case of the complete endomorphism Hopf algebra
of an object x ∈ Ob qm H. Let:

gx := P(EndH(x)).(1)

By Proposition 8.2.5, we have an identity

AutG(x)/ Fm+1 AutG(x) = G(Û(gx / Fm+1 gx)),(2)

where we consider the quotient of this Lie algebra by its m + 1st filtration layer
Fm+1 gx ⊂ gx. We therefore set

Endqm H(x) := Û(gx / Fm+1 gx)(3)

to get a complete Hopf algebra such that Autqm G(x) = G(Endqm H(x)).
The idea is to define the underlying endomorphism coalgebra of the morphism

set Morqm G(x, y) = MorG(x, y)/ Fm+1 AutG(x), for any pair x, y ∈ ObG, by using
a counterpart, in the complete Hopf groupoid H, of the quotient construction
of §9.1.13. For this purpose, we use the identity of complete modules:

Û(gx / Fm+1 gx) = Û(gx)/Û(gx) · Fm+1 gx,(4)

where

Û(gx) · Fm+1 gx := im
(
Û(gx)⊗̂ Fm+1 gx

μ−→ Û(gx)
)

(5)

represents the left ideal (in the complete sense) generated by Fm+1 gx ⊂ gx in

the complete enveloping algebra Û(gx), for any object x ∈ ObH. To establish
this relation, we use that the commutator relation [gx, Fm+1 gx] ⊂ Fm+1 gx implies

that we have the identity Û(gx) · Fm+1 gx = Fm+1 gx ·Û(gx), where we consider a

symmetrically defined right ideal generated by gx in Û(gx). This identity implies
that our quotient complete module in (4) inherits a well-defined complete algebra
structure, and then we easily check that this algebra fulfills the universal property
of the complete enveloping algebra of the Lie algebra gx / Fm+1 gx.

We now set:

Homqm H(x, y) := HomH(x, y)/ HomH(x, y) · Fm+1 gx,(6)

for each pair of objects x, y ∈ ObG, where

HomH(x, y) · Fm+1 gx = im
(
HomH(x, y)⊗̂ Fm+1 gx

μ−→ HomH(x, y)
)

(7)

represents an analogue, in this complete filtered module HomH(x, y), of the left
ideal generated by Fm+1 gx ⊂ gx (in the complete sense yet). We easily deduce
from the primitive coproduct formula Δ(Fm+1 gx) ⊂ Fm+1 gx ⊗̂ idx + idx ⊗̂ Fm+1 gx
that this module I = HomH(x, y) ·Fm+1 gx satisfies the relation Δ(I) ⊂ I⊗̂C+C⊗̂I
in the coalgebra C = HomH(x, y) and this result implies that our quotient object (6)
inherits a well-defined counitary cocommutative coalgebra structure.
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We now prove that these quotient hom-coalgebras (6) inherit coherently defined
composition operations and antipodes. Let u ∈ HomH(x, y). Let γ ∈ Fm+1 gx. For
this purpose, we first consider the expression:

(8) γ′ =
∑
(u)

u(1) · γ · σ(u(2)),

where we use the Sweedler notation to express the coproduct of our homomorphism
Δ(u) =

∑
(u) u(1)⊗̂u(2) in the complete coalgebra HomH(x, y) and we apply the an-

tipode of the complete Hopf groupoid H to the second factor of this coproduct. We
easily check that we have the implication γ ∈ P(EndH(x)) ⇒ γ′ ∈ P(EndH(y)). We
clearly have the relation γ ∈ Fm+1 EndH(x) ⇒ γ′ ∈ Fm+1 EndH(y) too. Hence our
expression (8) returns an element in the m+1st layer Fm+1 gy = gy ∩ Fm+1 EndH(y)
of the filtration of the complete Lie algebra gy = P(EndH(y)) which we associate
to the object y ∈ ObH. We then have the identity:

(9) u · γ =
∑
(u)

u(1) · γ · σ(u(2))︸ ︷︷ ︸
∈Fm+1 gy

·u(3)

which implies that any element in our right translated module (7) is identified with
an element of the symmetrically defined left translated module Fm+1 gy · HomH(x, y),
and since this argument can be symmetrized, we conclude that we have an identity:

(10) HomH(x, y) · Fm+1 gx = Fm+1 gy · HomH(x, y),

for every pair of objects x, y ∈ ObH. The definition of our quotient composition
morphisms

(11) μ : Homqm H(y, z)⊗̂ Homqm H(x, y) → Homqm H(x, z)

readily follows. We check the definition of antipode operations similarly. We also
have an obvious morphism of complete Hopf groupoids H → qmH by construction
of our object.

We now immediately see that we have the relation

(12) Morqm G(x, y) = G(Homqm H(x, y))

for this quotient complete Hopf groupoid qm H, for every pair of objects x, y ∈
ObH, because this is so for x = y by the result of Proposition 8.2.5 and we can
pick group-like homomorphisms g ∈ G(HomH(x, y)) to relate our coalgebras. We
immediately see that the structure operations of the groupoid qm G also correspond
to the operations induced by the structure operations of the complete Hopf groupoid
qmH on group-like elements, because these operations are obtained by quotient of
the natural structure operations of the groupoid G.

Furthermore, our quotient complete Hopf groupoids qm H clearly fit in a tower:

(13) H → · · · → qm H → qm−1 H → · · · → q0 H,

which forms a counterpart, in the category of complete Hopf groupoids, of our tower
decomposition G = limm qm G of the Malcev complete groupoid G.

The second assertion of the proposition p∗ : qm G
�−→ qm(qn G) is a straightfor-

ward consequence of the obvious identities

(14) (gx / Fn+1 gx)/(Fm+1 gx / Fn+1 gx) = gx / Fm+1 gx

which hold for the complete Lie algebras associated to the complete endomorphism
Hopf algebras of the objects x ∈ G in our complete Hopf groupoids. �
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We already observed that the construction of §9.1.13 is functorial. We also
have the following result:

Proposition 9.1.15. Any morphism φ : G → qm H, where G and H are Malcev
complete groupoids, admits a unique factorization:

G
φ

qm H

qm G

∃!φ̄

,

where φ̄ is a morphism of Malcev complete groupoids.

Proof. The uniqueness of the factorization is clear, because the morphism
sets of the groupoid qm G are defined as quotients of the morphism sets of G. To
produce the factorization, we just form the diagram

G
φ

qm H

�

qm G
qmφ

qm(qmH)

,

where we use the functoriality of our tower decomposition and that the applications
of the tower decomposition twice returns isomorphic objects (Proposition 9.1.14).

�
9.1.16. The principal fibers of the tower decomposition of a Malcev complete

groupoid and local coefficient systems. In the case of a Malcev complete group G,
we observed in §8.2.2 that the subquotients of the filtration of our object E0m G =
Fm G/ Fm+1 G naturally inherit a k-module structure. We checked, besides, that
the conjugation operation cγ(x) = γ · x · γ−1, which we associate to any element
γ ∈ G, defines a filtration morphism on G which reduces to the identity map on
these filtration subquotients E0m G (see §8.2.2).

In the case of a Malcev complete groupoid G, we consider the collections of
subquotients E0m AutG(x) which we associate the automorphism group of each object
in our groupoid x ∈ ObG. We immediately see that the action of the automorphism
group AutG(x) on a morphism set MorG(x, y) in G descends to an action of the
subquotient module E0m AutG(x) on the morphism set Morqm G(x, y) of the groupoid
qm G in the tower decomposition of §9.1.13. Furthermore, a pair of morphisms
in this morphism set f, g ∈ Morqm G(x, y) have the same image in Morqm−1 G(x, y)
(when we go down by one level in our tower) if and only if we have f = g · γ̄ for
a class γ̄ ∈ E0m AutG(x). To express this relationship, we can regard the map pm :
Morqm G(x, y) → Morqm−1 G(x, y) as a principal fibration (of discrete spaces), and
the module E0m AutG(x) as the structure group of this principal fibration. In what
follows, we also say for short that the collection E0m G = {E0m AutG(x), x ∈ ObG}
represents the (principal) fiber of the groupoid morphism pm : qm G → qm−1 G in
the tower decomposition G = limm qm G of the Malcev complete groupoid G.

We already observed that the conjugation operation cf (γ) = f · γ · f−1 with a
morphism f ∈ MorG(x, y) in our groupoid G comes from a morphism of complete
Hopf algebras cf : EndH(x) → EndH(y), for any pair of objects x, y ∈ ObG, where
H denotes the complete Hopf groupoid such that G = G(H). We deduce from
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this representation that this conjugation operation preserves the filtration of our
automorphism groups and induces a morphism on the subquotients of our filtration
cf : E0m AutG(x) → E0m AutG(y), for all m ≥ 0. These conjugation operations are, in
an obvious sense, compatible with the action of the modules E0m AutG(x), x ∈ ObG,
on the morphism sets of the groupoid qm G.

We moreover have cf = cg, for all pairs of parallel morphisms f, g ∈ MorG(x, y),
since we have f = g · γ for some γ ∈ AutG(x) in this case, and we recalled at the
beginning of this paragraph that the inner automorphisms of a Malcev complete
group induce the identity map on our filtration subquotients. We conclude that the
collection E0m G = {E0m AutG(x), x ∈ ObG} forms a diagram over the groupoid q0 G.
We also use the name ‘local coefficient system ’, borrowed from algebraic topology,
for this structure.

We record the following statement:

Proposition 9.1.17. If a morphism of Malcev complete groupoids ψ : G → H

induces a bijection on the sets of connected components π0ψ : π0 G
�−→ π0 H and an

isomorphism on the fibers of the tower decomposition of our objects E0m ψ : E0m G
�−→

E0m H, for all m ≥ 1, then this morphism defines an equivalence of Malcev complete

groupoids ψ : G
∼−→ H (see §9.1.12).

Proof. We consider the morphism of complete Hopf groupoids φ : A → B such
that G(φ) = ψ. We fix an object x ∈ ObA first. By assumption, our morphism
φ : A → B induces an isomorphism on the subquotients of the groups of group-like
elements associated to the complete endomorphism Hopf algebras of the objects
x ∈ ObA and φ(x) ∈ ObB in our complete Hopf groupoids:

E0m G(φ) : E0m G(EndA(x))
�−→ E0m G(EndA(φ(x))),

for all m ≥ 1. By Proposition 8.2.3, this statement implies that φ : A → B induces
an isomorphism of weight graded Lie algebras

E0m P(φ) : E0 P(EndA(x))
�−→ E0 P(EndA(φ(x))),

when we consider the primitive part of these complete endomorphism Hopf algebras
EndA(x) and EndB(φ(x)). By Proposition 7.3.7, this result implies that P(φ) is an
isomorphism too. Then we can use the complete version of the Milnor-Moore
Theorem (Theorem 7.3.26) to conclude that our morphism defines an isomorphism
at the level of the complete endomorphism Hopf algebras of our object:

φ : EndA(x)
�−→ EndA(φ(x)).

We now consider the case of a pair of objects x, y ∈ ObA. We use our as-
sumption that our morphism induces a bijection on the sets of connected compo-
nents to check x and y belong to the same connected component of the complete
Hopf groupoid A if and only if their images belong to the same connected compo-
nent of the complete Hopf groupoid B. We then pick a group-like homomorphism
g ∈ G(HomA(x, y)) which connects x to y in our complete Hopf groupoid A, and we
form the commutative diagram

EndA(x) �
φ

g∗

EndB(φ(x))

φ(g)∗

HomA(x, y)
φ

HomB(φ(x), φ(y))

,
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where the vertical maps are given by the obvious composition operations, to con-
clude that our morphism φ also defines an isomorphism of counitary cocommutative
coalgebras on the hom-object associated to each pair x, y ∈ ObA. Recall simply
that the composition with a group-like homomorphism in a complete Hopf groupoid
defines an isomorphism of counitary cocommutative coalgebras (see §9.1.5). �

9.1.18. The Malcev completion of groupoids. We define the Malcev completion

of a groupoid G ∈ Grd by the formula Ĝ = G k[G] ,̂ where we consider the complete

Hopf groupoid which we associate to G in §9.1.9. We accordingly have Ob Ĝ = ObG

by construction and Mor
Ĝ
(x, y) = Gk[MorG(x, y)]̂for any pair of objects x, y ∈ ObG.

This groupoid Ĝ is automatically Malcev complete in our sense. We moreover have

a natural morphism η : G → Ĝ given by the unit of the adjunction of Propo-

sition 9.1.10 and we can see that Ĝ is characterized by the following universal
property:

Proposition 9.1.19. Any groupoid morphism φ : G → H, where H = G(A) is
Malcev complete, admits a unique factorization

G
φ

H

Ĝ

∃!φ̂

such that φ̂ is a morphism in the category of Malcev complete groupoids.

Proof. This proposition is an immediate consequence of the adjunction rela-
tion of Proposition 9.1.10. �

Recall that we use the notation AutG(x) = MorG(x, x) when we consider the
automorphism group of an object x in a groupoid G. We have the following obser-
vation:

Proposition 9.1.20. We have the relation Aut
Ĝ
(x) = AutG(x)̂ for any ob-

ject x ∈ ObG in a groupoid G, where we consider the automorphism group of this

object x in the Malcev complete groupoid Ĝ on the left-hand side and the Malcev
completion (in the sense of §8) of the group of automorphisms of x in the groupoid
G on the right-hand side.

Proof. This statement is an immediate consequence of the result of Propo-
sition 9.1.8 which, for the endomorphism Hopf algebra of our object Endk[G](x) =
k[AutG(x)] in the Hopf groupoid k[G], gives the relation Endk[G]̂ (x) = k[AutG(x)] ,̂
where we consider the completed group algebra of the group AutG(x) on the right-
hand side. We just pass to group-like elements to get the identity of Malcev com-
plete groups stated in the proposition. �

9.2. The Malcev completion of operads in groupoids

We now check that the Malcev completion process of the previous section de-
fines a symmetric monoidal functor on the category of groupoids and, as a con-
sequence, induces a functor from the category operads in groupoids to itself. We

actually prove that the adjunction k[−]̂ : Grd � f̂ Hopf Grd : G, which we use
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in our construction of the Malcev completion, is symmetric monoidal in the sense
of §3.3.3.

In a preliminary step, we explain the definition of a symmetric monoidal struc-
ture on (complete) Hopf groupoids. The idea is to combine the (cartesian) sym-
metric monoidal structures of categories with the symmetric monoidal structure of
(complete) counitary cocommutative coalgebras.

9.2.1. Symmetric monoidal structures on Hopf categories and Hopf groupoids.
In §5.2.1, we equip the category of categories with the symmetric monoidal structure
defined by the cartesian product of categories. In §3.0.4, we observe that the tensor
product defines the cartesian product in the category of counitary cocommutative
coalgebras.

To Hopf categories G and H, we associate the Hopf category G⊗H with the
cartesian product Ob(G⊗H) = ObG× ObH as object set, and the tensor products
of coalgebras HomG⊗H((u, x), (v, y)) = HomG(u, v)⊗ HomH(x, y) as hom-coalgebras.
These tensor products inherit identity morphisms and composition products from
the hom-coalgebras of G and H so that G⊗H forms a Hopf category. We moreover

have natural functors G
p←− G⊗H

q−→ H given by the natural projections ObG
p←−

ObG× ObH
q−→ ObH on object sets, and yielded by the tensor products with aug-

mentation morphisms HomG(u, v)
ε⊗id←−−− HomG(u, v) ⊗ HomH(x, y)

id ⊗ε−−−→ HomH(x, y)
on hom-coalgebras (see §3.0.4). This Hopf category G⊗H actually represents the
cartesian product of G and H in the category of Hopf categories (this assertion
follows from our analogous interpretation of the tensor product of counitary co-
commutative coalgebras in §3.0.4).

We can replace the plain tensor product by the completed one in order to define
an analogous tensor product construction G ⊗̂H for Hopf categories in complete
filtered modules. We readily see that the Hopf category in complete filtered modules
G ⊗̂H obtained by this operation represents the cartesian product of G and H in
the category of Hopf categories in complete filtered modules too.

In §5.2.1, we observed that the cartesian product of groupoids G×H, formed
in the category of small categories, defines a groupoid and represents the cartesian
product of G and H in the category of groupoids as well. In the context of Hopf
categories, we can similarly prove that the tensor product of Hopf groupoids G⊗H

forms a Hopf groupoid and represents the cartesian product of G and H in the
category of Hopf groupoids. We have the same statement for the completed tensor
product of complete Hopf groupoids.

The existence of these symmetric monoidal structures enables us to give a sense
to the notion of an operad in Hopf groupoids and in complete Hopf groupoids. We
also have the following result:

Proposition 9.2.2.
(a) The functors k[−]̂ : Grd → f̂ Hopf Grd and G : f̂ Hopf Grd → Grd are

symmetric monoidal and define a symmetric adjunction between the category of
groupoids and the category of complete Hopf groupoids.

(b) These functors can also be applied to operads aritywise in order to yield
functors between the category of operads in groupoids and the category of operads
in complete Hopf groupoids. Furthermore we still have an adjunction relation at
the level of these categories of operads:

k[−]̂: Grd Op � f̂ Hopf Grd Op : G .
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Proof. The functor G : f̂ Hopf Grd → Grd , which defines a right-adjoint

of k[−]̂ : Grd → f̂ Hopf Grd , preserves terminal objects and cartesian products
and is therefore symmetric monoidal since we observed that the (complete) ten-
sor product of (complete) Hopf groupoids represent the cartesian product in this
category.

The proof that the functor k[−]̂ : Grd → f̂ Hopf Grd is symmetric monoidal
follows from easy verifications. For the trivial one-point set groupoid pt , we obvi-
ously have k[pt ]̂= k. For a cartesian product of groupoids G×H, we can easily
check that the filtration of §9.1.7 satisfies

In k[MorG×H((u, x), (v, y))] =
∑

p+q=n

Ip k[MorG(u, v)]⊗ Iq k[MorH(x, y)]

inside the module

k[MorG×H((u, x), (v, y))] = k[MorG(u, v)× MorH(x, y)]

= k[MorG(u, v)]⊗ k[MorH(x, y)].

The isomorphism k[MorG×H((u, x), (v, y))] � k[MorG(u, v)]⊗k[MorH(x, y)] is there-
fore an identity of filtered modules which, as such, induces an isomorphism at the
level of completions

k[MorG×H((u, x), (v, y))]̂� k[MorG(u, v)]̂̂⊗k[MorH(x, y)]̂
(compare with the proof of Proposition 8.1.8, where we establish a similar result for
the Malcev completion of a cartesian product of groups). This verification proves
that the natural morphism k[G×H]̂ → k[G]̂̂⊗k[H]̂ induced by the canonical

projections G
p←− G×H

q−→ H (where we use the interpretation of the complete
tensor product as a categorical cartesian product) is an isomorphism. The definition
of this comparison isomorphism from categorical constructions immediately implies
the fulfillment of the unit, associativity and symmetry constraints of §3.3.1 (as

usual). We conclude that the functor k[−]̂ : Grd → f̂ Hopf Grd is symmetric
monoidal as asserted.

The proof that the adjunction unit (respectively, augmentation) associated to
our functors preserve symmetric monoidal structure reduces to straightforward ver-
ifications. The second assertion of the proposition is a consequence of the general
observations of Proposition 3.1.1 and Proposition 3.1.3. �

9.2.3. The category of operads in Malcev complete groupoids. The result of
Proposition 9.2.2 implies that the category of Malcev complete groupoids of §9.1.12
inherits a symmetric monoidal structure. We can therefore form operads in Malcev
complete groupoids by applying our general definition of the notion of an operad in

this symmetric monoidal category f̂ Grd . We can equivalently define the category
of operads in Malcev complete groupoids as the image of the category of operads in
complete Hopf groupoids under the aritywise application of the group-like functor

G : f̂ Hopf Grd → f̂ Grd . We use that this functor is faithful (see Proposition 9.1.11)
to check this category identity, which under our notation conventions reads:

(f̂ Grd)Op = G(f̂ Hopf Grd Op).

We can use the concepts of the previous section to define an analogue of the
notion of a categorical equivalence of operads in groupoids in the context of oper-
ads in complete Hopf groupoids (respectively, in Malcev complete groupoids). We
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explicitly say that a morphism φ : G → H defines a categorical equivalence of oper-
ads in complete Hopf groupoids (respectively, in Malcev complete groupoids) when
this morphism defines an equivalence of complete Hopf groupoids (respectively, of

Malcev complete groupoids) φ : G(r)
∼−→ H(r) in each arity r ∈ N. We still use the

notation φ : G
∼−→ H with the extra mark ∼ to distinguish this class of categorical

equivalences in the category of operads.
We study the applications of the other constructions of §9.1 to operads. We first

check the existence of operad structures on the tower decompositions of §9.1.13:

Proposition 9.2.4. Let G be an operad in the category of Malcev complete
groupoids. The collection qm G = {qm G(r), r ∈ N} where we apply the tower decom-
position construction of §9.1.13 to the components of our operad aritywise, forms an
operad in the category of Malcev complete groupoids, for each m ≥ 0, and we have
an identity G = limm qm G in the category of operads in Malcev complete groupoids.
This construction preserves non-unitary operad structures too, and we have an ob-
vious identity (qm G)+ = qm(G+) when we consider the unitary extension of an
operad.

Proof. Let H be the operad in complete Hopf groupoids such that G = G(H).
To warm up, we can easily check that we have a well-defined operad structure
on the collection of groupoids qm G(r), r ∈ N, which forms our object, when we
forget about Malcev complete structures. But we need to check that this operad
structure is defined at the level of the complete Hopf groupoids qm H(r), r ∈ N,
which underlie our objects qm G(r) = G(qm H(r)), and for this purpose, we have
to go back to the construction of these complete Hopf groupoids in the proof of
Proposition 9.1.14.

The definition of the action of symmetric groups is immediate from the func-
toriality of our construction. The definition of the operadic unit is obvious too.
We therefore focus on the definition of the operadic composition operations. Re-
call that we have Endqm H(r)(x) = Û(gx / Fm+1 gx), for any object x ∈ ObH(r),
where we consider the complete Lie algebra such that gx = P(Endqm H(r)(x)). The

composition operations ◦i : EndH(k)(x)⊗̂ EndH(l)(y) → EndH(k+l−1)(x ◦i y) of the
complete endomorphism Hopf algebras of our operad in complete Hopf groupoids
H are associated to composition operations defined on these complete Lie algebras
◦i : gx ⊕ gy → gx◦iy, because the category equivalence of the Milnor-Moore Theo-
rem is symmetric monoidal (we apply the result of Proposition 7.2.23 in the category
of complete filtered modules). These composition operations of complete Lie alge-
bras preserve filtrations (by definition of the morphisms of complete Hopf algebras)
and hence, carry the module Fm+1 gx ⊕ Fm+1 gy ⊂ gx ⊕ gy into Fm+1 gx◦iy ⊂ gx◦iy.
Recall that we also have Homqm H(r)(x, y) = HomH(r)(x, y)/ HomH(r)(x, y) · Fm+1 gx,
for any pair of objects x, y ∈ ObH(r), where HomH(r)(x, y) ·Fm+1 gx ⊂ HomH(r)(x, y)
denotes the image (in the complete sense) of the module HomH(r)(x, y) ⊗ Fm+1 gx

under the composition operation μ : HomH(r)(x, y)⊗̂ EndH(r)(x) → HomH(r)(x, y).
The preservation of the filtration by the composition products of our Lie alge-
bras ◦i : gx ⊕ gy → gx◦iy, readily implies that the composition products of the
hom-coalgebras of our complete Hopf groupoids H preserve this filtration of our
hom-coalgebras and do induce composition products on the corresponding quotient
objects.
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Hence, we obtain that the collection of complete Hopf groupoids qm H =
{qm H(r), r ∈ N} inherits a full operad structure from our complete Hopf groupoid
H such that we have the identity qm G = G(qm H) in the category of operads in
groupoids. �

We moreover have the following operadic counterpart of the claim of Proposi-
tion 9.1.15:

Proposition 9.2.5. Any morphism φ : G → qmH, where G and H are operads
in Malcev complete groupoids, admits a unique factorization:

G
φ

qm H

qm G

∃!φ̄

,

where φ̄ is a morphism of operads in Malcev complete groupoids.

Proof. We use the same argument as in the proof of Proposition 9.1.15. We
just observe that the morphism of operads in Malcev complete groupoids p : H →
qn H induces an isomorphism when we apply our decomposition twice p∗ : qm H →
qm(qn H), for all levels m ≤ n, since this is so aritywise in the category of Malcev
complete groupoids (see Proposition 9.1.14). �

9.2.6. Local coefficient system operads. We now study the structures which we
associate to the local coefficient systems E0m G(r) = {E0m AutG(x), x ∈ ObG(r)} which
define the structure groups of the principal fibers of the morphisms pm : qm G(r) →
qm−1 G(r) in the tower decomposition of the Malcev complete groupoids G(r) =
limm qm G(r) when G = {G(r), r ∈ N} is an operad. We already get, by the general
observations of §9.1.16, that any morphism f ∈ Morq0 G(r)(x, y) in the groupoid
q0 G(r) determines a conjugation operation:

(1) cf : E0m AutG(r)(x) → E0m AutG(r)(y),

and the local coefficient system E0m G(r) therefore forms a diagram over the groupoid
q0 G(r), for each r ∈ N.

By functoriality of our general construction in §9.1.16, the morphisms of Malcev
complete groupoids s∗ : G(r) → G(r), which define the action of permutations
s ∈ Σr on our operad, induce morphisms of k-modules:

(2) s∗ : E0m AutG(r)(x) → E0m AutG(r)(sx),

for each x ∈ ObG(r), where we consider the module E0m AutG(r)(sx) associated to
the image of our object x under the map s∗ : ObG(r) → ObG(r) on the target.
These morphisms moreover preserve the conjugation operations (1) on our objects.
To be explicit, for each f ∈ Morq0 G(r)(x, y), we have a commutative diagram:

(3) E0m AutG(r)(x)

cf

s∗
E0m AutG(r)(sx)

csf

E0m AutG(r)(y)
s∗

E0m AutG(r)(sy)

,

where, on the right-hand side, we consider the conjugation operation csf associated
to the image of our morphism sf under the action of the permutation s on the
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groupoid q0 G(r). In what follows, we also use the notation s∗ : γ �→ sγ for the map
defined by this operation on our subquotient modules (2).

The morphisms ◦i : G(k) × G(l) → G(k + l − 1), i = 1, . . . , k, which define the
composition operations of our operad similarly induce morphisms of k-modules:

(4) ◦i : E0m AutG(k)(x)⊕ E0m AutG(l)(y) → E0m AutG(k+l−1)(x ◦i y),
for each pair of objects x ∈ ObG(k), y ∈ ObG(k), where we consider the module
E0m AutG(k+l−1)(x ◦i y) associated to the image of our objects (x, y) under the map
◦i : ObG(k) × ObG(l) → ObG(k + l − 1). To check this assertion, we also use that

our subquotient construction satisfies the relation E0m(G×H)
�−→ E0m(G)⊕ E0m(H),

for any pair of Malcev complete groups G,H ∈ f̂ Grp, and defines a symmetric
monoidal functor in this sense. The verification of this assertion is an easy exercise.
These morphisms preserve the conjugation operations (1) too. To be explicit, for
each pair of morphisms f ∈ Morq0 G(k)(a, x), g ∈ Morq0 G(l)(b, y), we have a commu-
tative diagram:

(5) E0m AutG(k)(a)⊕ E0m AutG(l)(b)

(cf ,cg)

◦i
E0m AutG(k+l−1)(a ◦i b)

cf◦ig

E0m AutG(k)(x)⊕ E0m AutG(l)(y)
◦i

E0m AutG(k+l−1)(x ◦i y)

,

where, on the right-hand side, we consider the conjugation operation cf◦ig as-
sociated to the image of our morphisms (f, g) under the composition operation
◦i : q0 G(k)× q0 G(l) → q0 G(k + l − 1).

These operations (2-4) satisfy an obvious generalization of the equivariance,
unit and associativity axioms of operads. We use the phrase ‘local coefficient
system operad ’ to refer to this form of structure which we get on the collection
E0m AutG(r)(x), x ∈ ObG(r), r ∈ N. We should mention, to be precise, that
the operadic unit of our object is represented by the null morphism η : 0 →
E0m AutG(1)(1), which corresponds to the unit morphism of our operad in Malcev

complete groupoids η : pt → G(1), and where we consider the module E0m AutG(1)(1)
associated to the unit of our object-set operad 1 ∈ ObG(1).

By the construction of §9.1.16, the morphism set Morqm G(r)(x, y) in the category

qm G(r) inherits an action of the module E0m AutG(r)(x), for each pair of objects
x, y ∈ ObG(r). Furthermore, elements of this morphism set f, g ∈ Morqm G(r)(x, y)
become equal in qm−1 G(r) if and only if they differ by the action g = f · γ of the
class of a morphism in this subquotient γ ∈ E0m AutG(r)(x). We readily see that
this action is preserved by the structure operations of our operads. We explicitly
have s · (f · γ) = (sf) · (sγ), when we consider the action of a permutation and
(f · α) ◦i (g · β) = (f ◦i g) · (α ◦i β) for the composition products.

We can obviously adapt the constructions of this paragraph in the context of
non-unitary operads. We just drop arity zero components in this case. We also
see that, for the unitary extension of an operad G+, our subquotient construction
satisfies E0m(G+) = (E0m G)+, where (E

0
m G)+ is the object which we obtain by keeping

track of an extra arity zero component (E0m G)+(0) = 0 in the definition of our
structure. We then have composition operations (4) with a second term of arity
l = 0, and which can be non-trivial though this object is null (E0m G)+(0) = 0.

In the second volume, we use the tower decompositions of operads in Malcev
complete groupoids to compute the homotopy of mapping spaces of operads in
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simplicial sets. For the moment, we only use the elementary concept of a unitary
extension when we deal with unitary operads, but in these subsequent applications
we will rather use the concept of a Λ-operad (see §2.2) to encode unitary operad
structures.

We now study the analogue of the Malcev completion process for operads in
groupoids. We use the result of Proposition 9.2.2 to get the following statement:

Proposition 9.2.7. The Malcev completion functor on groupoids (−)̂: Grd →
f̂ Grd is symmetric monoidal (as a composite of symmetric monoidal functors) and
can be applied aritywise to operads in groupoids in order to yield a Malcev comple-

tion functor on operads (−)̂: Grd Op → f̂ Grd Op.

Explanations. To recap the construction of this proposition, we define the

Malcev completion of an operad in groupoids P ∈ Grd Op as the operad P̂ formed

by the collection P̂(r) = P(r) ,̂ where we consider the Malcev completion of each
groupoid P(r), r ∈ N. We also have P = G k[P ] ,̂ where k[P ]̂ is the operad in
complete Hopf groupoids defined by the completion of the Hopf groupoid k[P(r)]
associated to each P(r) ∈ Grd and G(−) refers to the aritywise application of the
group-like element functor on complete Hopf groupoids. Recall that the functors

k[−]̂ : Grd Op → f̂ Hopf Grd Op and G : f̂ Hopf Grd Op → Grd Op automatically
preserve unitary extensions of operads (see Proposition 3.1.1), and as a byproduct,
so does the composite functor (−)̂= Gk[−] .̂ In the notation of §2.2, we have the

identity (P+)̂= (P̂)+ for any unitary operad in groupoids P+. �
We also have the following operadic analogue of the result of Proposition 9.1.19:

Proposition 9.2.8. Any morphism of operads in groupoids φ : G → H, where
H = G(A) admits the structure of an operad in Malcev complete groupoids, has a
unique factorization

G
φ

H

Ĝ

∃!φ̂

such that φ̂ is a morphism of operads in the category of Malcev complete groupoids.

Proof. This proposition is again an immediate consequence of our adjunction
relations (see Proposition 9.2.2). �

9.3. Appendix: The local connectedness of complete Hopf groupoids

We check in this appendix section that group-like elements exist in any (non-
trivial) hom-coalgebra C = HomH(x, y) of a complete Hopf groupoid H as soon as
we can ensure the existence of such group-like elements in an extension of scalars
of this hom-coalgebra Cl = HomH(x, y)l.

We have not explained the definition of the extension of scalars for a couni-
tary cocommutative coalgebra in complete filtered modules yet. We use subscripts
in order to mark the changes of ground fields which we consider in this exten-
sion process. We notably use the notation Modk to distinguish our base module
category Mod = Modk from for the category of modules Mod l defined over the ex-
tension l of our base field k. We similarly use a subscript in the notation of tensor
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products in order to specify the field which we consider when we form our opera-
tions. We define the extension of scalars of a complete filtered module M by the
limit Ml = limn(M/ Fn+1 M)⊗k l, where we take the ordinary extension of scalars
(M/ Fn+1 M)l = (M/ Fn+1 M) ⊗k l of the tower of modules M/ Fn+1 M ∈ Modk

which we associate to our object M ∈ f̂ Modk. We clearly have a natural isomor-

phism (M⊗̂kN)l
�−→ Ml⊗̂lNl in the category f̂ Mod l when we take the extension

of scalars of the completed tensor product of objects M,N ∈ f̂ Modk. We deduce
from this observation that the extension of scalars Cl of a counitary cocommutative

coalgebra C ∈ f̂ Comc
+ forms a counitary cocommutative coalgebra in the category

of complete filtered modules over l.
For short, we also use the phrase ‘complete counitary cocommutative coalgebra’

to refer to counitary cocommutative coalgebras in the category of complete filtered
modules in what follows.

We can now make explicit our statement concerning the existence of group-like
elements in the hom-coalgebras of complete Hopf groupoids:

Proposition 9.3.1. Let H be a Hopf groupoid in the category of complete
filtered modules such that HomH(x, y) �= 0 ⇒ E00 HomH(x, y) = k for all x, y ∈ ObH

(see §9.1.2).
Let x, y ∈ ObH. If the hom-coalgebra C = HomH(x, y) admits an extension of

scalars Cl = HomH(x, y)l such that G(HomH(x, y)l) �= ∅, then this hom-coalgebra
C = HomH(x, y) automatically contains a group-like element g ∈ G(HomH(x, y))
defined over our ground field k (and not only over the extension l).

Thus, if we can ensure that the assumption of this proposition G(HomH(x, y)l) �=
∅ is valid for all hom-coalgebras such that HomH(x, y) �= 0, then our Hopf groupoid
H fully satisfies the connectedness requirements of §9.1.2, and hence forms a com-
plete Hopf groupoid in our sense. The result of this proposition notably applies to

the completion Ĥ of a Hopf groupoid H and implies that this object Ĥ does fulfill
our local connectedness condition in the definition of a complete Hopf groupoid
(see §9.1.7).

Proof. We use that the set of group-like elements in any complete counitary
cocommutative coalgebra C has a decomposition G(C) = limm G〈m〉(C), where we
set

G〈m〉(C) = {ḡ ∈ C/ Fm+1 C | ε(g) = 1,Δ(g) ≡ g⊗̂g(mod Fm+1(C⊗̂C))}
as in §8.2.7.

We fix a pair of objects x, y ∈ ObH. We set H = EndH(x) and C = HomH(x, y).
Each set G〈m〉(H) inherits a group structure, as we already observed in §8.2.7. Fur-
thermore, we easily check that the product μ : H ⊗C → C, which we determine by
the composition operation of our Hopf groupoid, induces a free and transitive action
of this group G〈m〉(H) on the set G〈m〉(C) as soon as we have G〈m〉(C) �= ∅, for any
m ≥ 0. The identity G〈m〉(H) = G(H)/ Fm+1 G(H), which we establish in §8.2.7,
implies that the morphisms pm : G〈m〉(H) → G〈m−1〉(H) in our decomposition of
the group G(H) are surjective. We use the existence of a group-like element g0 in a
scalar extension Cl of our complete coalgebra C to prove that a similar result holds
for the tower decomposition of the set of group-like elements in C.

We fix ḡ ∈ G〈m−1〉(C) for some m ≥ 1. We have ḡ = ḡ0 · h̄ for some class

h̄ ∈ G〈m−1〉(Hl), where we also consider the scalar extension Hl of the complete
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Hopf algebra H. We pick a class h̄′ ∈ G〈m〉(Hl) such that h′ ≡ h(mod Fm H) by
using the surjectivity of the group morphism pm : G〈m〉(Hl) → G〈m−1〉(Hl), and we
set g′ = g0h

′ to establish the existence of an element ḡ′ ∈ G〈m−1〉(Cl), defined over

l, which satisfies the equation of a group-like element Δ(g′) ≡ g′⊗̂lg
′ in the quotient

module (Cl⊗̂lCl)/ Fm+1(Cl⊗̂lCl) = (C⊗̂C/ Fm+1(C⊗̂C)) ⊗k l and the congruence
relation g′ ≡ g in Cl/ Fm Cl = (C/ Fm C)⊗k l.

If we now consider a general element of the form ḡ′ = ḡ+ū in the quotient mod-
ule C/ Fm+1C, for some class ū ∈ Fm C/ Fm+1 C so that we have the relation g′ ≡ g
in C/ Fm C, then we see that the equation Δ(g′) ≡ g′⊗̂g′ in C⊗̂C/ Fm+1(C⊗̂C)
is equivalent to the affine equation Δ(g) + Δ(u) ≡ (u⊗̂g + g⊗̂u) + (g⊗̂g) since
u ∈ Fm C ⇒ u⊗̂u ≡ 0(mod Fm+1(C⊗̂C)) when m ≥ 1. The existence of a solution
of this equation over l guarantees that the solution exists over k, and hence that
our map pm : G〈m〉(C) → G〈m−1〉(C) is surjective over the ground field yet.

We can now start with the relation C/ F1 C = E01 C = k ⇒ G〈0〉(C) = pt for our
hom-coalgebra C = HomH(x, y) to produce a sequence of elements gm ∈ G〈m〉(C)
such that pm(gm) = gm−1 for each level m ≥ 1. We eventually get a group-like
element g ∈ G(C) when we pass to the limit G(C) = limm G〈m〉(C), and this
construction completes the proof of our proposition. �



Part I(d)

The Operadic Definition of the
Grothendieck–Teichmüller Group





CHAPTER 10

The Malcev Completion of the Braid Operads and
Drinfeld’s Associators

We can apply our Malcev completion process to the operad of parenthesized
braids PaB and to the operad of colored braids CoB of §§5-6. We then get operads
in Malcev complete groupoids PaB̂ and CoB̂whose morphism sets are given by
the Malcev completion of the morphism sets of these operads PaB and CoB . We
devote this chapter to the study of these operads PaB̂and CoB .̂

Recall that the operad of parenthesized braids, defined in §6.2, is an operad in
groupoids PaB which has the magma operad Ω as object set operad ObPaB = Ω ,
and where the morphisms α ∈ MorPaB(r)(p, q) consist of braids α ∈ Br with contact
points centered on a diadic decomposition of the horizontal axis. The colored braid
operad CoB has the permutation operad Π, which governs the category of associa-
tive monoids in the category of sets, as underlying object set operad ObCoB = Π,
and has the same morphism sets as the parenthesized braid operad. We just con-
sider braids with equidistant contact points in this case, and we forget about the
diadic decomposition which we consider in the case of parenthesized braid operad,
because we only use this decomposition to reflect the composition structure of the
underlying object set operad of parenthesized braids.

We have a morphism ω : PaB → CoB given by the obvious morphism ω : Ω → Π
on the underlying object set operads of our operads in groupoids PaB ,CoB ∈
Grd Op, and by the identities MorPaB(r)(p, q) = MorCoB(r)(ω(p), ω(q)) at the mor-
phism set level, where we assume p, q ∈ ObPaB(r), r > 0. This morphism triv-
ially defines an equivalence of categories aritywise. We obviously have the same
relationship when we pass to the Malcev completion and we consider the mor-
phisms of operads in Malcev complete groupoids ω : PaB̂→ CoB̂ induced by
our morphism ω : PaB → CoB. This morphism is still given by the morphism
of set operads ω : Ω → Π at the object set level and reduces to the identities
MorPaB(r)̂ (p, q) = MorCoB(r)̂ (ω(p), ω(q)) at the morphism set level, for p, q ∈ Ω(r).

The group of automorphisms AutB(r)(p) of an object p ∈ ObB(r) in any of the
operads B = CoB ,PaB is identified with the pure braid group on r strands Pr,
where r is the arity. We therefore have the identity AutB(r)̂ (p) = P̂r, where P̂r

denotes the Malcev completion of the pure braid group P̂r, when we pass to the
operad in Malcev complete groupoids B̂= CoB ,̂PaB .̂

We work with a fixed coefficient field of characteristic zero k all through this
chapter. We devote a preliminary section §10.0 to the study of the Malcev com-
pletion of the pure braid groups P̂r. We make explicit weight graded Lie algebras,
the Drinfeld–Kohno Lie algebras p(r), such that we have an identity E0 P̂r = p(r),
where we consider the weight graded Lie algebra naturally associated the Malcev
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complete group P̂r. We also have an obvious complete analogue of the Drinfeld–
Kohno Lie algebras p̂(r) such that we have the relation E0 p̂(r) = p(r). We are
going to see that we actually have an isomorphism of Malcev complete groups
P̂r � G(Ûp̂(r)), between the Malcev completion of the pure braid group P̂r and the
group of group-like elements in the complete enveloping algebra of these complete
Lie algebras p̂(r).

We study the Malcev completion of the operads B = PaB ,CoB afterwards. We
check that the Drinfeld–Kohno Lie algebras p(r) form an operad in the category
of weight graded Lie algebras. The components of homogeneous weight m ≥ 1 of
these weight graded Lie algebras p(r)m inherit an additive operad structure in the
category of k-modules. We are going to see that this additive operad determine the
principal fibers of the natural tower decomposition B̂= limm qm B̂of the operads
in Malcev complete groupoids B̂= PaB ,̂CoB .̂ We retrieve the identities E0m P̂r =
p(r)m established in the preliminary section when we apply this relationship to the
automorphism sets of our operads. We explain this construction in §10.1.

We can obviously extend the operad structure of the Drinfeld–Kohno Lie al-
gebras p(r) to the completion of these Lie algebras p̂(r). The groups of group-like

elements G(Ûp̂(r)), which we associate to the enveloping algebras of these complete
Lie algebras, inherit an operad structure as well. We refer to this operad, which we
identify with an operad in Malcev complete groupoids with a single object, as the
operad of chord diagrams. We also use the notation CD̂for this object. This name
‘chord diagram’ comes from the applications of the enveloping algebras Ûp̂(r) in
the theory of Vassiliev invariants.

We check that we can define a morphism of operads φ : PaB̂→ CD̂which
gives the identity of the preliminary section of the chapter P̂r = G(Ûp̂(r)) when we
consider the automorphism set group of an object in these operads. We use the
interpretation of the operad of parenthesized braids as the operad governing braided
monoidal categories to reduce the definition of such a morphism φ : PaB̂→ CD̂to
the definition of a braiding and of an associativity isomorphism in the operad CD .̂
We are actually going to see that we retrieve the notion of associator introduced
by Drinfeld in quantum group theory when we perform this construction. We can
therefore rely on the existence of Drinfeld’s associators to check the existence of
a morphism which meets our requirements φ : PaB̂→ CD .̂ We review some
significant constructions, which are used to give a proof of this existence result,
in §§10.2-10.4. By the way, we explain the definition of the graded Grothendieck–
Teichmüller group, which acts on the sets of associators and which is used as an
auxiliary device to handle the solutions of our associator construction problem.

Recall that we use the notation B = PaB ,CoB for non-unitary operads (which
have no term in arity 0). In what follows, we also consider a unitary extension of
these operads B+ = PaB+,CoB+, which are given by B+(0) = pt and B+(r) = B(r)
for r > 0. The operad of chord diagram CD̂also admits a unitary extension CD+̂

and the results, which we mention in this introduction, have an extension in the
unitary context. In fact, we have to deal with the unitary extension of our operads
when we study the correspondence between operad morphisms φ : PaB̂→ CD̂
and Drinfeld’s associators.

Recall that we introduce the notion of an (augmented) Λ-operad to encode
the composition structure of a unitary operad P+ from the underlying non-unitary
operad P (see §2.2). We mainly use this concept in the next volume, when we
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apply methods of homotopy theory to operads. We express our constructions in
the language of unitary operads and unitary extensions for the moment. We just
consider the restriction operators ∂k : P(r) → P(r−1), k = 1, . . . , r, which are part
of the structure of an (augmented) Λ-operad, and which encode the composition
operations ∂k(p) = p◦k∗ of any element p ∈ P(r) with the extra arity zero operation
∗ ∈ P+(0) in the unitary extension of our operad P+. The composition structure
of the unitary extension P+ is fully determined by these restriction operators ∂k :
P(r) → P(r − 1), k = 1, . . . , r, and by augmentation morphisms ε : P(r) → 1
with values in the unit object of our symmetric monoidal category 1 ∈ M. In
the context of (Malcev complete) groupoids, we have 1 = pt , and we therefore
forget about these augmentations which are trivially given by the constant map
with values in the terminal object of this base category M = Grd .

10.0. The Malcev completion of the pure braid groups and the
Drinfeld–Kohno Lie algebras

Recall that the pure braid group on r strands Pr is the kernel of the natural
map p∗ : Br → Σr from the Artin braid group Br towards the symmetric group
Σr (see §5.0). We devote this section to the study of the Malcev completion of the
pure braid groups Pr. We survey the definition of a presentation of the pure braid
group by generators and relations first. We then make explicit the weight graded
Lie algebras p(r) such that p(r) = E0 P̂r, where we consider the weight graded Lie
algebra of the Malcev complete group associated to Pr. We aim to check that
we have an isomorphism of Malcev complete groups P̂r � G(Ûp̂(r)), where we
consider a completion p̂(r) of this weight graded Lie algebra p(r) and the group of

group-like elements in the complete enveloping algebra Ûp̂(r) (as we explain in the
introduction of the chapter).

The Lie algebra p(r) is usually called the Drinfeld–Kohno Lie algebra. The
name ‘Lie algebra of infinitesimal braids ’ is also used for these Lie algebras in the
literature. In what follows, we still refer to the complete Hopf algebra Ûp̂(r) as
the algebra of chord diagrams on r strands. This terminology is motivated by a
correspondence between the elements of this enveloping algebra and certain chord
diagrams that occur in the definition of universal Vassiliev invariants.

10.0.1. The presentation and the semi-direct product decomposition of the pure
braid groups. For each pair {i < j} ⊂ {1 < · · · < r}, we consider the element
xij ∈ Pr such that:

(1) xij =

i j

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · · .

Note that the ordering of the pair i < j is significant in this definition since we do
not get the same braid when we swap the positions of the strands (i, j). The pure
braid group Pr has a presentation with these elements as generators, and where the
generating relations read:
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(2) xklxijx
−1
kl =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xij , for k < l < i < j or i < k < l < j,

x−1
kj xijxkj , for k < l = i < j,

(xljxkj)
−1xij(xljxkj), for k = i < l < j,

(x−1
lj x−1

kj xljxkj)
−1xij(x

−1
lj x−1

kj xljxkj), for k < i < l < j.

Recall that the pure braid group Pr can also be defined as the fundamental
group of the configuration space of r points in the open disc F (D̊2, r). The above
presentation can be established by induction, by using the homotopy exact sequence
associated to the fibration f : F (D̊2, r) → F (D̊2, r− 1) which forgets about the last
point of a configuration. In the proof of Proposition 5.0.1, we already observed that
the fiber of this map is a disc with r−1 punctures D̊2 \{z01 , . . . , z0r−1}, and that our
homotopy exact sequence reduces to a short exact sequence of fundamental groups

(3) 1 → π1(D̊
2 \ {z01 , . . . , z0r−1}) → π1 F (D̊

2, r)︸ ︷︷ ︸
=Pr

→ π1 F (D̊
2, r − 1)︸ ︷︷ ︸

=Pr−1

→ 1.

The elements xir, i = 1, . . . , r− 1, in our presentation (1) actually represent gener-

ating elements of the fundamental group of the punctured disc D̊2 \ {z01 , . . . , z0r−1}
when we use the classical identity between this group π1(D̊2 \ {z01 , . . . , z0r−1}) and
the free group on r− 1 generators Fr−1. The map p : Pr → Pr−1 in our short exact
sequence (3) has an obvious section s : Pr−1 → Pr which is given by the insertion
of an extra vertical strand on the side of the diagram of any pure braid with r − 1
strands α = (α1, . . . , αr−1) ∈ Pr−1. The existence of this section implies that the
group Pr decomposes as a semi-direct product:

(4) Pr = Pr−1 � Fr−1.

We just compute the conjugates of the elements xir ∈ Fr−1, i = 1, . . . , r − 1 by
the other generators xij ∈ Pr−1 in the group Pr to determine our set of generating
relations (2) by induction on r. We refer to [26] for details on this computation.

We apply the completion construction of §8 to define the Malcev complete
version of the pure braid groups P̂r. We immediately see from the expression of our
relations (2) that the semi-direct products Pr = Pr−1�Fr−1 fulfill the assumptions
of Proposition 8.5.2, Proposition 8.5.3 and Proposition 8.5.7 in §8.5, where we study
the Malcev completion of semi-direct products. By the results of these propositions,
we have the relation:

(5) P̂r = P̂r−1 � F̂r−1

in the category of Malcev complete groups.

We now explain the definition of the Drinfeld–Kohno Lie algebras alluded to
in the introduction of this section.

10.0.2. The Drinfeld–Kohno Lie algebras. The rth Drinfeld–Kohno Lie algebra
p(r) is given by the presentation

p(r) = L(tij , 1 ≤ i �= j ≤ r)/〈[tij , tkl], [tij , tik + tjk]〉

where:
(1) we consider the free Lie algebra with a generator tij such that tij = tji associ-

ated to each pair {i �= j} ⊂ {1, . . . , r},
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(2) and we take the quotient of this free Lie algebra L(tij , 1 ≤ i �= j ≤ r) by the
ideal generated by the relations

[tij , tkl] = 0, [tij , tik + tjk] = 0,

which hold for all quadruples of (pairwise) distinct indices i, j, k, l ∈ {1, . . . , r}
in the first case, for all triples of (pairwise) distinct indices i, j, k ⊂ {1, . . . , r}
in the second case. We also use the notation i �= j �= k �= l and i �= j �= k
to specify these situations in which our relations holds. We refer to our first
set of relations [tij , tkl] = 0 as the commutation relations, while the relations
[tij , tik+ tjk] = 0 are usually called the Yang–Baxter relations in the literature.

These generating relations (2) are homogeneous with respect to the natural weight
grading of free Lie algebras. The Lie algebra p(r) accordingly inherits a weight
grading where we assume that the generating elements tij are homogeneous of
weight 1. The homogeneous component of weight m of the Lie algebra p(r) is given
by:

p(r)m = Lm /Lm ∩〈[tij , tkl], [tij , tik + tkj ]〉,
where we use the notation Lm for the homogeneous component of weight m of the
free Lie algebra L = L(tij , 1 ≤ i �= j ≤ r).

We have the following proposition, which gives a counterpart, for the Drinfeld–
Kohno Lie algebras, of the semi-direct product decompositions of the pure braid
groups §10.0.1(4):

Proposition 10.0.3. We have an isomorphism p(r) � p(r − 1) � L(tir, i =
1, . . . , r − 1), where we consider a semi-direct product of the r − 1th Drinfeld–
Kohno Lie algebra p(r − 1) with a free Lie algebra generated by the elements tir,
i = 1, . . . , r − 1, inside p(r).

Explanations and proof. We easily check that we have a well-defined mor-
phism of Lie algebras p∗ : p(r) → p(r − 1) such that:

p∗(tij) =

{
tij , if 1 ≤ i �= j ≤ r − 1,

0, otherwise.

This morphism has an obvious section s∗ : p(r− 1) → p(r) which identifies p(r− 1)
with the Lie subalgebra of p(r) generated by the elements tij ∈ p(r) such that
1 ≤ i �= j ≤ r − 1. We are going to see that this morphism p∗ : p(r) → p(r − 1)
represents a counterpart, for the Drinfeld–Kohno Lie algebras, of the morphism
p∗ : Pr → Pr−1 which forgets the last strand in the pure braid group Pr while
our section s∗ : p(r − 1) → p(r) represents a counterpart of the group inclusion
Pr−1 ⊂ Pr which we consider in our semi-direct product decomposition §10.0.1(4).

We also have an obvious morphism of Lie algebras i∗ : L(tir, i = 1, . . . , r−1) →
p(r) which carries the free Lie algebra L(tir, i = 1, . . . , r − 1) to the Lie subalgebra
generated by the elements tir inside p(r). We are going to see that this morphism
i∗ : L(tir, i = 1, . . . , r − 1) → p(r) represents a counterpart of the group morphism
i∗ : Fr → Pr which carries the free group on r generators Fr to the subgroup
generated by the elements xir, i = 1, . . . , r − 1, inside the pure braid group Pr.

We use the relations of our presentation §10.0.2(2) to determine an action of the
Lie algebra p(r− 1) on k = L(tir, i = 1, . . . , r − 1) from an action of the generating
elements of this Lie algebra tkl ∈ p(r − 1), 1 ≤ k �= l ≤ r − 1, on the generating
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elements tir of the free Lie algebra L(tir, i = 1, . . . , r − 1). We explicitly set:

[tir, tkl] =

⎧⎪⎨⎪⎩
−[tir, tlr], in the case 1 ≤ k = i �= l ≤ r − 1,

−[tir, tkr], in the case 1 ≤ k �= i = l ≤ r − 1,

0, otherwise.

We use the derivation relations of §8.5.4 to extend this action to our Lie algebras.
We just check that this construction carries the defining relations of the Lie algebra
p(r − 1) to zero.

We have an obvious morphism p(r − 1)� L(tir, i = 1, . . . , r − 1) → p(r) when
we consider the semi-direct product p(r− 1)� L(tir, i = 1, . . . , r− 1) associated to
this action p(r − 1) � L(tir, i = 1, . . . , r − 1), since we construct this action from
the defining relations of the Lie algebra p(r). We readily check that this morphism
has an inverse (and hence, defines an isomorphism) by considering the morphism
of Lie algebras p(r) → p(r−1)�L(tir, i = 1, . . . , r−1) which carries the generators
tij of p(r) such that 1 ≤ i �= j ≤ r − 1 to the corresponding elements of p(r − 1),
while the other generators tir are mapped to the corresponding generators of the
free Lie algebra L(tir, i = 1, . . . , r − 1). �

We use the previous proposition in the proof of the following theorem:

Theorem 10.0.4 (T. Kohno [106], M. Xicoténcatl [185]). We have an isomor-
phism of weight graded Lie algebras

υ : p(r)
�−→ E0 P̂r

defined on the generating elements of the Lie algebra p(r) by the mapping such that:

υ(tij) = x̄ij , for 1 ≤ i < j ≤ r,

where we use the notation x̄ij for the image of the generators of the pure braid

group xij ∈ Pr, 1 ≤ i < j ≤ r, in the subquotient E01 P̂r = F1 P̂r/ F2 P̂r of the Malcev
completion of Pr.

Proof. This result follows from the main theorem of [106], where methods of
rational homotopy theory are used to give a description of the Malcev completion
of the nilpotent quotients Pr/ Γs+1 Pr of the pure braid groups Pr. We give a more
elementary proof of this statement, which we borrow from [185], and which relies
on the semi-direct product decomposition of the pure braid groups.

Recall that we equip the weight graded module E0 P̂r =
⊕∞

s=1 Fs P̂r/ Fs+1 P̂r

with the Lie bracket induced by the commutator in P̂r. By using the relations (2)
of §10.0.1, we easily check that the classes of the elements xij ∈ Pr, 1 ≤ i < j ≤ r,

in this weight graded Lie algebra E0 P̂r satisfy the defining relations of the Drinfeld–
Kohno Lie algebra p(r). We therefore have a well-defined Lie algebra morphism

υ : p(r) → E0 P̂r given by the mapping of our statement.
By Proposition 8.5.7, the semi-direct product decomposition of the pure braid

group Pr = Pr−1�Fr−1 implies that we have a semi-direct product decomposition

E0 P̂r = E0 P̂r−1�E0 F̂r−1 for the weight graded Lie algebra E0 P̂r which we associate

to the Malcev completion of this group P̂r. By the result of Proposition 8.4.1, we
have the identity E0 F̂r−1 = L(tir, i = 1, . . . , r − 1) for the Malcev completion

of a free group F̂r−1 = F̂(xir, i = 1, . . . , r − 1). We use these observations and
the semi-direct product decomposition of the Drinfeld–Kohno Lie algebra p(r) �
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p(r−1)�L(tir, i = 1, . . . , r−1) of Proposition 10.0.3 to establish by induction that
our morphism defines an isomorphism, for each r > 0. �

Recall that the pure braid group Pr trivially forms a normal subgroup of the
Artin braid group Br since this group is identified with the kernel of the morphism
p∗ : Br → Σr which maps a braid α ∈ Br to its underlying permutation w ∈ Σr. Let
cα : Pr → Pr be the conjugation morphism cα(x) = αxα−1 which we associate to
any element of the Artin braid group α ∈ Br. This morphism induces a morphism
of Malcev complete groups when we pass to the Malcev completion cα : P̂r → P̂r,
and we have a morphism of weight graded Lie algebras cα : E0 P̂r → E0 P̂r which
we define by using that this morphism of Malcev complete groups preserves the
natural filtration associated to our objects. We have the following result:

Proposition 10.0.5. Let α ∈ Br by any element of the pure braid group.
Let w = p∗(α) ∈ Σr be the underlying permutation of this braid. The morphism

of weight graded Lie algebras cα : E0 P̂r → E0 P̂r induced by the conjugation with
α ∈ Br on the pure braid group Pr is determined by the formula

cα(tij) = tw(i)w(j)

when we use the identity E0 P̂r = p(r) of Theorem 10.0.4 and the presentation of
this Lie algebra p(r) by generators and relations in §10.0.2.

Proof. We can reduce the verification of this proposition to the case of the
standard generators of the Artin braid group α = τk (see §5.0.8) since the mapping
c : α �→ cα which associates the conjugation morphism cα(x) = αxα−1 to any
element in a group defines a group morphism in general.

We fix a pair 1 ≤ i < j ≤ r. We easily check that we have the following
formulas in Pr:

cτk(xij) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xi−1j , if k + 1 = i,

xii+1xi+1jx
−1
ii+1, if i = k < k + 1 < j,

xij−1, if i < k < k + 1 = j,

xij , if i = k < k + 1 = j,

xjj+1xij+1x
−1
jj+1, if i < j = k,

and we trivially have cτk(xij) = xij when {k, k + 1} ∩ {i, j} = ∅. We also have

cτk(xij) = xi+1j · (xi+1j , x
−1
ii+1) ⇒ cτk(xij) = xi+1j(mod Γ2 Pr) in the case i =

k < k + 1 < j, and we similarly get cτk(xij) = xij+1(mod Γ2 Pr) in the case
i < j = k. We immediately deduce from these formulas that we have the relation
cτk(x̄ij) = x̄tk(i)tk(j), for any pair 1 ≤ i �= j ≤ r, when we consider the class of the

generating elements xij ∈ Pr in the quotient group P̂r = P̂r/ F2 P̂r. We therefore

have cτk(tij) = ttk(i)tk(j) since these classes x̄ij ∈ P̂r/ F2 P̂r represent the generating
elements of the Drinfeld–Kohno Lie algebras tij ∈ p(r) in the correspondence of
Theorem 10.0.4, and this result finishes the proof of the proposition. �

10.0.6. The complete Drinfeld–Kohno Lie algebras. We now consider a com-
plete version of the Drinfeld–Kohno Lie algebras p̂(r), which we define by the com-
pletion p̂(r) = lims p(r)/ Fs p(r) of the ordinary Drinfeld–Kohno Lie algebras p(r)
with respect to the filtration such that Fs p(r) =

⊕
m≥s p(r)m, for s ≥ 1. We accord-

ingly have E0 p̂(r) = p(r) by construction. We actually have p(r) =
⊕∞

m=1 p(r)m ⇒
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p̂(r) =
∏∞

m=1 p(r)m, where we consider the product of the homogeneous compo-
nents of the weight graded Drinfeld–Kohno Lie algebra p(r)m (instead of the direct
sum which we consider in the natural expression of a weight graded object).

We can also define the complete Drinfeld–Kohno Lie algebra by the presentation

p̂(r) = L̂(tij , 1 ≤ i �= j ≤ r)/〈[tij , tkl], [tij , tik + tjk]〉,
where we take the same conventions as in Proposition 8.4.1 for the definition of the
free complete Lie algebra L̂(tij , 1 ≤ i �= j ≤ r).

We use these complete Lie algebras p̂(r), r > 0, in the following improvement
of the result of Theorem 10.0.4:

Theorem 10.0.7 (T. Kohno [106]). We have an isomorphism of Malcev com-
plete groups

φ̂ : P̂r
�−→ G(Ûp̂(r))

which induces the isomorphism of Theorem 10.0.4 when we pass to the weight graded
Lie algebras associated to these groups.

Proof (outline). This theorem is again a byproduct of the results of [106]
which are obtained by applying general statements of rational homotopy theory. We
outline a direct definition of a complex version of the isomorphism of the theorem
which involves the same crucial ingredient as the arguments of this reference. We
then take k = C as ground field. To construct our isomorphism, we use the mon-
odromy of a certain flat connection, which is called the Knizhnik–Zamolodchikov
connection after the work of these authors in conformal field theory [104] (see
also [60] for a reference book on this subject), and which takes values in the com-
plex coefficient version of the Drinfeld–Kohno Lie algebra p̂(r) = p̂(r)C.

In the context of rational homotopy theory, the existence of this flat connection
is equivalent to the statement that the configuration space of r points in the complex
plane is formal (see [41, 107]). By general results of the rational homotopy theory,
the formality property is independent from the ground field (see [85], and [170,
Theorem 12.1]), and this observation implies the existence of rational analogues of
the Knizhnik–Zamolodchikov connection. We may use this statement to define a
rational analogue of the isomorphism which we define in this proof, but we will give
another proof of the existence of such a rational isomorphism of Malcev complete
groups in §§10.2-10.4 when we explain the definition of Drinfeld’s associators. We
therefore focus on the complex coefficient case for the moment.

Preliminaries: The holonomy of the Knizhnik–Zamolodchikov connection. In
our process, we more precisely consider connections defined on trivial fiber bundles
X × G with G = G(Ûp̂(r)) as structure group. We use that such connections
are determined by connection forms ω ∈ Ω1(X, g) with values in the Lie algebra
g = p̂(r). We refer to [146] for a modern introduction to the theory of connections
in general fiber bundles. The Knizhnik-Zamolodchikov connection is defined on the
configuration space of r points in the complex plane F (C, r) = {(z1, . . . , zr)|zi �=
zj(∀i �= j)} by the complex 1-form such that:

(1) ωKZ =
∑

1≤i<j≤r

tij ⊗ d log(zi − zj) ∈ Ω1(F (C, r), p(r)),

where we set d log(u) = du/u.
We review the definition of holonomy transformations for this example of con-

nection. We assume that γ(s) = (z1(s), . . . , zr(s)) is a smooth loop γ : [0, 1] →
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F (C, r) based at a fixed point γ(0) = γ(1) = a0 of the configuration space F (C, r).
Let

(2) hγ : s �→ hγ(s) ∈ Û(p̂(r))

be the solution of the differential equation

(3)
dhγ

ds
=
∑

1≤i<j≤r

d log(zi − zj)

ds
· tij · hγ

with values in the complete enveloping algebra Û(p̂(r)) and such that hγ(0) = 1. We

see that the maps s �→ hγ(s)⊗ hγ(s) and s �→ Δhγ(s) with values in Ûp̂(r)⊗̂Ûp̂(r)
satisfy an identical differential equation, have the same initial value Δhγ(0) =
hγ(0)⊗hγ(0) = 1⊗1, and as a consequence, agree on all s ∈ [0, 1]. We deduce from
this observation that the element hγ(1) is group-like and hence defines an element

of our structure group G = G(Ûp̂(r)). The holonomy of our connection around the

loop γ is precisely defined by this group-like element hγ(1) ∈ G(Ûp̂(r)) associated
to γ. We can also interpret the isomorphism hγ(1) : {γ(0)} × G → {γ(1)} × G
determined by the action of hγ(1) ∈ G on the fibers of a trivial bundle F (C, r)×G

with structure group G = G(Ûp̂(r)) as a parallel displacement along the loop γ in
this fiber bundle (see [146, §6.3]).

Main construction: The definition of the isomorphism from the monodromy
of the Knizhnik–Zamolodchikov connection. The Knizhnik–Zamolodchikov connec-
tions are flat (see for instance [40, §16.2] or [100, §XIX.2] for the details of this ver-
ification) and as a consequence (see [146, §6.6]), we have an identity hα(1) = hβ(1)
for all homotopic loops α, β : [0, 1] → F (C, r) in the configuration space F (C, r).
We then set:

(4) φ([α]) = hα(1),

for any homotopy class of loop [α] ∈ π1(F (C, r), a0), in order to get a morphism

(5) Pr = π1(F (C, r), a
0)

φ−→ G(Ûp̂(r)),

the monodromy morphism, from the pure braid group Pr = π1(F (C, r), a0) to G =

G(Ûp̂(r)).
We easily check that we have the identity φ(xij) ≡ tij in the abelian quotient

G/ F2 G = E01 p̂(r) of our structure group G = G(Ûp̂(r)), where we take a represen-
tative of the generating element xij of the pure braid group Pr in π1(F (C, r), a0).
We can therefore take the extension of this morphism to the Malcev completion

(6) Pr
φ

G(Ûp̂(r))

P̂r

∃φ̂

in order to get the isomorphism of the theorem when we work over the field of
complex numbers k = C. �

We revisit the proof of this theorem in the next sections. We use that the pure
braid group Pr represents the group of automorphisms of objects in the component
PaB(r) of the parenthesized braid operad PaB . We explain that the isomorphism
of Theorem 10.0.7 is induced by an isomorphism of operads in groupoids.
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10.0.8. The algebras of chord diagrams. The enveloping algebra of the Drinfeld–
Kohno Lie algebra p(r) is identified with the associative algebra defined by the
presentation:

U p(r) = T(tij , 1 ≤ i �= j ≤ r)/〈[tij, tkl], [tij , tik + tkj ]〉,

where we consider the same relations as in the Lie algebra case, but the bracket
now refers to the commutator [a, b] = ab − ba. We have a similar presentation for

the complete algebra Ûp̂(r) which we associate to our completion of the Drinfeld–
Kohno Lie algebra p̂(r). We just take the completion of the tensor algebra in this
case.

This associative algebra U p(r) is also called the algebra of chord diagrams in
the literature (as we briefly explain in the introduction of this section). This phrase
refers to a representation of the monomials ti1j1 · . . . · timjm by chord diagrams on
r strands. In short, the diagrams corresponding to such a monomial is obtained by
drawing a chord between the strand ik and the strand jk, for each factor tikjk , so
that the composition ordering of the monomial, read from right to left, corresponds
to a downwards orientation of the diagram. For instance, we have:

t12t12t36t24 =

1 2 3 4 5 6

• •
• •

• •
• •

.

In this chord diagram representation, the commutation relation reads

i j k l

• •
• •

−
i j k l

• •
• •

= 0,

and the Yang–Baxter relation is equivalent to the identity:

i j k

• •
• •

+
i j k

• •
• •

−
i j k

• •
• •

−
i j k

• •
• •

= 0.

The latter equation is also called the four term relation (the 4T relation for short)
in the literature on Vassiliev’s invariants.

To complete our account, we check that the rational Malcev completion satisfies
the same idempotence property for the pure braid groups as in the case of free
groups. We check the following preliminary observation before proving this result:

Proposition 10.0.9. For the pure braid groups Pr, we have an identity Fs P̂r =
Γs P̂r, for every s > 0, where we consider the natural filtration of the Malcev com-
plete group P̂r on the left-hand side, and the lower central series filtration of the
plain (abstract) group underlying P̂r on the right-hand side.

Proof. This proposition follows from a straightforward induction. We just use
the identity Fs F̂r−1 = Γs F̂r−1 for the free groups F = Fr−1 (see Proposition 8.4.3)
and we apply the results of Proposition 8.5.3 to the semi-direct product Pr =
Pr−1 � Fr−1. �

Proposition 10.0.10. If we take k = Q as coefficient ring for our Malcev com-
pletion process, then the Malcev completion functor carries the universal morphism
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η : Pr → P̂r associated to the pure braid group Pr to an isomorphism of Malcev
complete groups:

η̂ : P̂r
�−→ ˆ̂

Pr,

for every r ∈ N.

Proof. This proposition follows from a straightforward induction again. We
just use the result established in Proposition 8.4.5 for the Malcev completion of free
groups, and we apply the results of Proposition 8.5.3 to the semi-direct products
Pr = Pr−1 � Fr−1. �

This proposition has also the following corollary which parallels the result of
Proposition 8.4.6 about the Malcev completion of free groups with a finite number
of generators:

Proposition 10.0.11. If we take k = Q as coefficient ring for our Malcev
completion process, then every group morphism ψ : P̂r → H, where H is Malcev
complete, automatically defines a morphism in the category of Malcev complete
groups (see §8.2), for any r ∈ N.

Proof. This proposition follows from the result of Proposition 10.0.10. We
use the same general arguments as in the case of free groups with a finite number
of generators which we address in Proposition 8.4.6. �

10.1. The Malcev completion of the braid operads and the
Drinfeld–Kohno Lie algebra operad

Recall that the pure braid group on r strands Pr defines the group of auto-
morphisms of any object p ∈ ObB(r) in the component of arity r of the operad of
parenthesized braids B = PaB and of the operad of colored braids B = CoB. We
accordingly have the identity AutB(r)̂ (p) = P̂r when we pass to the Malcev com-

pletion of these operads B̂= PaB ,̂CoB ,̂ and any morphism set of these operads
in groupoids MorB(r)̂ (p, q) is given by the translation of the Malcev complete group

P̂r by a morphism α ∈ MorB(r)(p, q).
We study the structure of these Malcev complete operads B̂= PaB ,̂CoB̂ in

this section. Recall that we have a categorical equivalence of operads in groupoids
ω : PaB

∼−→ CoB by definition of the parenthesized braid operad PaB as a pullback
of the colored braid operad CoB . We have a categorical equivalence of operads in
Malcev complete groupoids ω : PaB̂ ∼−→ CoB̂when pass to the completion. We
study the operads B̂= PaB ,̂CoB̂ in parallel and the results which obtain in this
section hold for both operads. We are mainly going to check that the Drinfeld–
Kohno Lie algebras p(r), of which we recall the definition in the previous section,
can be equipped with an operad structure, and that the collections p(−)m, m ≥ 1,
which we define by taking the components of homogeneous weight of these Lie
algebras, determine the fibers of the natural tower decomposition B̂= limm qm B̂
of our operads in Malcev complete groupoids B̂= PaB ,̂CoB .̂ We explain the
definition of this operad structure on the collection of the Drinfeld–Kohno Lie
algebras first.
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10.1.1. The definition of the operad structure on the Drinfeld–Kohno Lie alge-
bras. In §7.2.20, we explained that the direct sum of Lie algebras defines the tensor
product operation of a symmetric monoidal structure on the category of Lie alge-
bras. We use this symmetric monoidal structure to define the notion of an operad
in the category of Lie algebras. We accordingly define a (non-unitary) operad in the
category of Lie algebras as a collection of Lie algebras g = {g(r), r > 0} together
with an action of the symmetric group Σr on g(r), for each r > 0, a unit morphism
η : 0 → g(1), and composition operations ◦k : g(m)⊕g(n) → g(m+n−1) such that
all these structure operations are formed in the category of Lie algebras and satisfy
the axioms of operads in this category. We can also apply this definition to the cat-
egory of weight graded Lie algebras (the category of Lie algebras in weight graded
modules). The collection of the Drinfeld–Kohno Lie algebras p = {p(r), r > 0}
which we consider in this paragraph actually forms an operad in this category of
weight graded Lie algebras. We define the structure of this operad as follows:
(1) The action of a permutation s ∈ Σr on the Lie algebra p(r) is determined on

generating elements by the formula

s∗(tij) = ts(i)s(j),

for each pair {i, j} ⊂ {1, . . . , r}.
(2) The unit morphism η : 0 → p(1) is trivially given by the zero morphism (which

is also an isomorphism in this case since we have p(1) = 0),
(3) The composition operations are the Lie algebra morphisms ◦k : p(m)⊕ p(n) →

p(m+ n− 1), k = 1, . . . ,m, such that

tij ◦k 0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ti+n−1j+n−1, if k < i < j,

tij+n−1 + · · ·+ ti+n−1j+n−1, if k = i < j,

tij+n−1, if i < k < j,

tij + · · ·+ tij+n−1, if i < k = j,

tij , if i < j < k,

for any generating element tij ∈ p(m), and

0 ◦k tij = ti+k−1j+k−1 for all k,

for any generating element tij ∈ p(n), where we use the notation a ◦k b for
the image of an element (a, b) under any of these Lie algebra morphisms ◦k :
p(m)⊕ p(n) → p(m+ n− 1).

We give a graphical interpretation of these composition operations in the next
section. We then use the chord diagram representation of the elements of the
enveloping algebra of the Lie algebras p(r) (see §10.0.8).

Recall that the Lie algebra morphisms φ : g⊕ h → m are equivalent to pairs
of Lie algebra morphisms (f : g → m, g : h → m) such that [f(g), g(h)] = 0. In
the above definition (3), we implicitly assume that our assignments determine a
well-defined Lie algebra morphism on the direct sum p(m) ⊕ p(n). This assertion
follows from straightforward verifications by using the commutation relation and
the Yang–Baxter relation of the Drinfeld–Kohno Lie algebras. We also readily check
that our operations satisfy the operad axioms.

We refer to this operad p = {p(r), r > 0} as the (weight graded) Drinfeld–Kohno
Lie algebra operad. We will explain later on (in the next section) that the above
operations (1-3) extend to the collection of complete Drinfeld–Kohno Lie algebras
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p̂ = {p̂(r), r > 0} which forms an operad in complete Lie algebras therefore. We use
the phrase ‘complete Drinfeld–Kohno Lie algebra operad ’ to distinguish this operad
in complete Lie algebras from the operad in weight graded Lie algebras defined in
this paragraph.

10.1.2. The unitary extension of the Drinfeld–Kohno Lie algebra operad. We
have not been explicit about the component of arity zero of our operad in the
definition of the previous paragraph. By convention, we assume that we deal with a
non-unitary operad when we use the notation p. But our definition has an obvious
extension in the unitary setting. Hence, we also have a unitary operad in the
category of Lie algebras, which defines a unitary extension of our operad p, and
which we denote by p+ (with the usual + mark of unitary operads).

Recall that we have to adapt the concepts of §§2.2-2.3 when we work within
a symmetric monoidal category, like the category of Lie algebras, of which ten-
sor product does not distribute over colimits (see §§1.1.19-1.1.20). To be explicit,
in §§2.2-2.3, we use the convention that the arity 0 term of a non-unitary operad
is given by the initial object of the ambient category in order to identify the cate-
gory of non-unitary operad with a full subcategory of the category of all operads.
This correspondence does not work in our situation, and we therefore simply forget
about the terms of arity zero when we define non-unitary operads in Lie algebras.
In fact, since the initial object (the zero object) 0 is the tensor product unit in the
category of Lie algebras, we have p+(0) = 0 for the unitary operad p+ (and not the
converse).

The definition of the partial composition operations with this arity zero term
in p+ are given by a formal extension of the definition of §10.1.1. The restriction
operators ∂k : p(r) → p(r − 1), which we use to model these partial composition
operations ◦k : p+(r) ⊕ p+(0) → p+(r − 1), k = 1, . . . , r, are given on generating
elements by:

∂k(tij) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ti−1j−1, if k < i < j,

0, if k = i < j,

tij−1, if i < k < j,

0, if i < k = j,

tij , if i < j < k.

For any m ≥ 1, we consider the collection p(−)m = {p(r)m, r > 0} formed by
the homogeneous components of weight m of the Drinfeld–Kohno Lie algebras p(r).
We immediately see that this collection inherits an additive operad structure from
the Drinfeld–Kohno Lie algebra operad. We more precisely get that p(−)m forms
an operad in the category of k-modules where we take the direct sum as symmetric
monoidal structure operation instead of the tensor product. In what follows, we
use the phrase ‘additive operad ’ to distinguish this notion of operad in k-modules
from the usual category of operads in k-modules. We have an obvious extension of
these concepts in the context of unitary operads. We consider the operad p+(−)m
such that p+(0)m = 0 to form a unitary extension of the operad p(−)m.

We have the following statement:

Theorem 10.1.3. The structure group operads of the fibers of the natural tower
decomposition B̂= limm qm B̂ of the operads in Malcev complete groupoids B̂=
PaB ,̂CoB̂are isomorphic to the additive operads p(−)m, m ≥ 1, which we identify
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with constant local coefficient system operads on the operads in groupoids B̂ =
PaB ,̂CoB ,̂ and we have the same result when we pass to the category of unitary
operads.

Explanations and proof. We focus on the non-unitary version of this re-
sult. The extension of our constructions to unitary operads is straightforward.
Recall that the structure group operad of the mth fiber of the natural tower de-
composition B̂= limm qm B̂of the Malcev completion B̂of an operad B consists
of the collection of k-modules

N〈m〉(p) = E0m AutB(r)̂ (p),

which we associate to any object of our original operad p ∈ ObB(r) by taking the
mth subquotient E0m AutB(r)(p)̂= Fm AutB(r)(p) /̂ Fm+1 AutB(r)(p)̂of the natural
filtration of the Malcev complete automorphism group of this object AutB(r)̂ (p) =

AutB(r)(p)̂in the Malcev completion of our operad B .̂ This collection of k-modules
inherits:

– conjugation operations

cα : N〈m〉(p) → N〈m〉(q),

which we associate to the morphisms α ∈ MorB(r)̂ (p, q) of the operad B ;̂
– a symmetric structure, which we define by morphisms

s∗ : N〈m〉(p) → N〈m〉(sp)

associated to the permutations s ∈ Σr, for p ∈ ObB(r);
– an operadic unit, which is given by the identity N〈m〉(1) = 0 in arity r = 1,
and additive operadic composition operations

◦i : N〈m〉(p)⊕ N〈m〉(q) → N〈m〉(p ◦i q),

which are defined for all p ∈ ObB(k), q ∈ ObB(l), and where k, l > 0 and
i = 1, . . . , k.

These structure operations satisfy natural coherence relations and an obvious gen-
eralization of the equivariance, unit and associativity axioms of operads. In §9.2.6,
we use the phrase ‘local coefficient system operad ’ to refer to a structure of this
form.

For the operads B̂= PaB ,̂CoB ,̂ we have

AutB(r)(p) = Pr ⇒ N〈m〉(p) = E0m AutB(r)̂ (p) = E0m P̂r,

for all p ∈ ObB(r), where we consider the mth subquotient of the natural filtration

of the Malcev completion of the pure braid group on r strands P̂r. We now set
p(p)m := p(r)m, for all p ∈ ObB(r) and r > 0, in order to identify the operad
p(−)m with a constant local coefficient system operad on B .̂

Recall that we have ObCoB(r) = Π(r) = Σr so that any object p ∈ ObCoB(r)
in the component of arity r of the operad B = CoB is associated to a permutation
on r letters w ∈ Σr. In the case B = PaB , where we have ObPaB(r) = Ω(r), we
still have a natural map ω : Ω(r) → Π(r) (the forgetting of parenthesization) which
we can again use to associate a permutation w ∈ Σr to any object p ∈ ObPaB(r).
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For any such object p ∈ ObB(r), we consider the isomorphisms of k-modules

(∗) p(r)m

υp

w−1
∗

p(r)m
υ

E0m P̂r N〈m〉(p)
=

which we obtain by composing the isomorphism of Theorem 10.0.4 with the action
on the Drinfeld–Kohno Lie algebra operad of the inverse of the permutation w ∈ Σr

associated to our object p ∈ ObB(r).
Let α ∈ MorB(r)(p, q) be a morphism in the operad B = PaB,CoB . Let u ∈

Σr (respectively, v ∈ Σr) be the permutation associated to the source object p
(respectively, to the target object q) of this morphism. By definition of our operads
B = PaB,CoB , the morphism α is represented by a braid with w = v−1u as
underlying permutation. The morphism cα : E0m AutB(r)̂ (p) → E0m AutB(r)̂ (q) is
identified with the operation induced by the conjugation by this braid when we use
the identity AutB(r)̂ (p) = AutB(r)̂ (q) = P̂r ⇒ E0m AutB(r)̂ (p) = E0m AutB(r)̂ (q) =

E0m P̂r and we forget about the objects associated to our automorphism groups.
The result of Proposition 10.0.5 implies that this operation fits in a commutative
diagram:

p(r)m
u−1
∗

id

p(r)m

w∗

υ
E0m P̂r

cα

N〈m〉(p)

cα

=

p(r)m
v−1
∗

p(r)m
υ

E0m P̂r N〈m〉(q)
=

,

from which we deduce that our maps (∗) make the conjugation operation associated
to the morphism α ∈ MorB(r)(p, q) on the local coefficient system operad N〈m〉 corre-
spond to the identity map on the module p(r)m. We extend this correspondence to
the morphisms of the Malcev completion of our operads B̂= PaB ,̂CoB̂by using
that any such morphism f ∈ MorB(r)̂ (p, q) admits a decomposition f = αg, where

α ∈ MorB(r)(p, q) and g ∈ AutB(r)̂ (p) = P̂r. We simply use that the conjugation by

g ∈ P̂r reduces to the identity on E0m AutB(r)̂ (p) = E0m P̂r (see §8.2.2).
We immediately get that our maps intertwine the action of permutations too

(recall that this action is trivial on the braids which represent the morphisms of
the operads B = PaB ,CoB). We easily check that the formulas of §10.1.1(3) reflect
the operadic composition of the morphisms represented by the pure braids xij

with the morphisms represented by identity braids in the operads B = PaB ,CoB
when we use the mapping υ : tij �→ x̄ij of Theorem 10.0.4. We use that the
composition operation of the operads B = PaB ,CoB preserves commutators in
automorphism groups and that our maps (∗) preserve the action of symmetric
groups to conclude that our maps preserve all operadic composition operations.
This verification completes the proof that our maps (∗) define an isomorphism of
local coefficient system operads. �

To complete the study of this section, we prove that the Malcev completion
of the operads in groupoids B = PaB ,CoB satisfies the following idempotence
property:

Theorem 10.1.4. If we take k = Q as coefficient ring for our Malcev completion
process, then the Malcev completion functor carries the universal morphism η : B →
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B̂associated to the operad B = PaB ,CoB to an isomorphism of operads in Malcev
complete groupoids:

η̂ : B ̂ �−→ B ̂̂ ,
and we have the same result when we pass to unitary operads.

Proof. We form the following diagram:

B ̂
η

id
B ̂

B ̂̂ ∃îd

,

where we consider the morphism of operads in Malcev complete groupoids which

extends the identity of B ,̂ in order to get a morphism îd which goes in the converse

direction as the morphism of the theorem η̂. We have îd η̂ = id by adjunction.
Recall that we have ObB ̂̂ = ObB ̂= ObB by definition of our Malcev comple-

tion functor on operads in groupoids. The result of Proposition 10.0.10 implies that
our operad morphisms define converse bijections on the automorphism groups of
objects. We use that the morphism sets of our operads are defined by a translation
of these automorphism groups to deduce that our operad morphisms induce con-

verse bijections on any of these morphism sets. We therefore have both η̂ îd = id

and îd η̂ = id and our conclusion follows. We have a straightforward extension of
these arguments when we work in the context of unitary operads. �

This theorem has the following corollary:

Proposition 10.1.5. Let B̂= PaB ,̂CoB .̂ If we take k = Q as coefficient ring
for our Malcev completion process, then every morphism of operads in groupoids
ψ : B̂→ Q, where Q is an operad in Malcev complete groupoids, automatically
defines a morphism of operads in Malcev complete groupoids, and we have the same
result for the unitary extension of our operads B+̂ = PaB+̂,CoB+̂.

Proof. We focus on the non-unitary version of this result again since the
extension of our argument lines to unitary operads is straightforward. We consider
the universal morphism η : B ̂→ B ̂̂ associated to the operad P = B ̂ and the

morphism of operads in Malcev complete groupoids îd : B ̂̂ → B ̂which extends
the identity morphism of B ̂ as in the proof of Theorem 10.1.4. We also have

îd η = id by adjunction. From the relation îd η̂ = id together with the observation

that η̂ is an isomorphism of operads in Malcev complete groupoids with îd as
converse isomorphism (see Theorem 10.1.4), we conclude that η is identified with

the morphism of operads in Malcev complete groupoids îd−1 = η̂, and hence that η
defines a morphism of operads in Malcev complete groupoids itself. We then form
the following diagram:

B ̂
η

ψ
Q

B ̂̂ ∃ψ̂

,

where we consider the morphism of operads in Malcev complete groupoids that

extends ψ. We eventually obtain that our morphism ψ = ψ̂η defines morphism of
operads in Malcev complete groupoids by composition. �
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10.2. The operad of chord diagrams and Drinfeld’s associators

We aim to prove that the isomorphisms of Malcev complete groups P̂r �
G(Ûp̂(r)) which we define in Theorem 10.0.7, can be realized by a morphism of
operads in Malcev complete groupoids φ : PaB̂→ CD̂ from the Malcev com-
pletion of the operad of parenthesized braids PaB̂ towards an operad such that
CD(r)̂= G(Ûp̂(r)), where we regard the group G(Ûp̂(r)) as a groupoid with a sin-
gle object. We call this operad CD̂the operad of chord diagrams. This name refers
to our representation of the elements of the enveloping algebra Ûp̂(r) in terms of
(linear combinations of) chord diagrams on r strands (see §10.0.8).

We divide the proof of the existence of a morphism φ : PaB̂→ CD̂ in several
steps. We actually form our morphism in the category of unitary operads φ :
PaB+̂ → CD+̂. We therefore consider the (Malcev completion of the) unitary
version of the operad of parenthesized braid PaB+̂ and a unitary extension of the
operad of chord diagrams CD+̂. We use that such a morphism φ is given by the
extension to the completion PaB+̂ of a morphism defined on the (ordinary) unitary
operad of parenthesized braids φ : PaB+ → CD+̂. We rely on the observation that
PaB+ represents the operad governing braided monoidal categories with a strict
unit in order to establish that giving a morphism φ : PaB+ → CD+̂ amounts to
fixing a braiding isomorphism and an associativity isomorphism in the morphism
sets of the operad of chord diagrams CD+̂. We actually retrieve the notion of
associator introduced by Drinfeld in quantum group theory [57] when we apply
this correspondence.

We can therefore reduce the definition of our morphism φ : PaB+ → CD+̂ to the
choice of an element in the set of Drinfeld’s associators. We simply survey Drinfeld’s
definition of an associator from solutions of the Knizhnik–Zamolodchikov differen-
tial systems in order to complete our proof of the existence of such a morphism
φ : PaB+ → CD+̂. We call this associator the Knizhnik–Zamolodchikov associator
in what follows. We will see that the Knizhnik–Zamolodchikov associator is only
defined over the field of complex numbers k = C. Thus, we still have to refine our
arguments in order to prove the existence of morphisms φ : PaB+ → CD+̂ defined
over the field of rational numbers k = Q, and over any ground field of characteristic
zero k. We work out this rationality problem in a subsequent section (in §10.4),
after studying a natural tower decomposition of the set of Drinfeld’s associators.

We explain the definition of the chord diagram operad CD̂ in the first part of
this section. We first explain the definition of an operad structure on the collection
of ordinary enveloping algebras U p(r) which we associate to the weight graded
Drinfeld–Kohno Lie algebras p(r), r > 0. We check that this operad structure

extends to the complete enveloping algebras Ûp̂(r) afterwards and we define the
chord diagram operad CD̂by taking the groups of group-like elements associated
to these complete enveloping algebras CD (̂r) = G(Ûp̂(r)), for r > 0.

10.2.1. The operad structure on the algebras of chord diagrams. By Proposition
7.2.23, we have an isomorphism U(g)⊗ U(h) � U(g⊕ h), for all Lie algebras g, h ∈
Lie, so that the enveloping algebra functor defines a symmetric monoidal functor
from Lie algebras to Hopf algebras. This result implies, according to the general
statement of Proposition 3.1.1, that the collection of enveloping algebras U p =
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{U p(r), r > 0} which we associate to the Drinfeld–Kohno Lie algebras p(r), r > 0,
inherits the structure of an operad in the category of Hopf algebras. To be explicit:

– each Hopf algebra U p(r) inherits an action of the symmetric group from
the Lie algebra p(r) by functoriality of the enveloping algebra construction;

– we moreover have the relation p(1) = 0 ⇒ U p(1) = k so that our collection
has an obvious operadic unit;

– and we consider the Hopf algebra morphisms

U(p(m))⊗ U(p(n))
�−→ U(p(m)⊕ p(n))

◦k−→ U(p(m+ n− 1)),

induced by the Lie algebra morphism of §10.1.1(3) to define the composi-
tion operations of our operad.

We can obviously extend this construction to the unitary operad setting in order
to form a unitary version of our operad U p+ with U p+(0) = U(0) = k as arity zero
term. We can also use the functoriality of the enveloping algebra construction in
order to determine the restriction operators ∂k : U p(r) → U p(r − 1), k = 1, . . . , r,
which reflect the operadic compositions with the unit element 1 ∈ U p+(0) of the
extra arity zero term of this operad U p+, from the restriction operators of the
Drinfeld–Kohno Lie algebras ∂k : p(r) → p(r − 1) such as defined in §10.1.2.

Recall that we can also define the algebras U p(r), r > 0, by the presentation:

U p(r) = T(tij , 1 ≤ i �= j ≤ r)/〈[tij, tkl], [tij , tik + tjk]〉,
where we now use the notation [−,−] for the commutator [a, b] = ab − ba. Recall
also that we can associate any monomial ti1j1 ·. . .·timjm ∈ U p(r) to a chord diagram
with r strands in order to get a graphical representation of this associative algebra
(see §10.0.8).

In the chord diagram picture, the action of a permutation s ∈ Σr on U p(r)
corresponds to a strand renumbering operation. For instance, the permutation

s =

(
1 2 3 4 5 6
2 3 4 6 5 1

)
acts on the chord diagram given in §10.0.8

t12t12t36t24 =

1 2 3 4 5 6

• •
• •

• •
• •

by:

s∗(t12t12t36t24) =

2 3 4 6 5 1

• •
• •

• •
• •

=

1 2 3 4 5 6

• •
• •

• •
• •

.

The composition product operation ◦k is identified with a natural cabling operation
where a chord diagram on n strands v is plugged in the kth strand of an input chord
diagram u. The composite of these chord diagrams u◦k v is the sum of all diagrams
obtained by attaching the strings which join the kth strand of u to a strand of v.
To give a simple example, we have the formula

1 2 3

• •
• •

◦2
1 2

• • =

1 2 3 4

• •
• •
• •

+

1 2 3 4

• •
• •
• •



10.2. THE OPERAD OF CHORD DIAGRAMS AND DRINFELD’S ASSOCIATORS 357

in U p(4). The restriction operator ∂k : U p(r) → U p(r− 1) is given by the removal
of the kth strand in our diagram. If a chord is attached to this strand, then our
restriction operator vanishes. For instance, we have:

∂5(t12t12t36t24) =

1 2 3 4 5

• •
• •

• •
• •

,

while we get ∂k(t12t12t36t24) = 0 when k �= 5.
10.2.2. The operad structure on the completion of the algebras of chord dia-

grams. Recall that the complete Drinfeld–Kohno Lie algebras p̂(r) are defined by
the completion of the weight graded Drinfeld–Kohno Lie algebras p(r) with respect
to the filtration such that Fs p(r) =

⊕
m≥s p(r)m, for s ≥ 1. We immediately see

that the structure operations of the weight graded Drinfeld–Kohno Lie algebra op-
erad in §§10.1.1-10.1.2 preserve this filtration. We therefore get that the collection
of complete Drinfeld–Kohno Lie algebras p̂ = {p̂(r), r > 0} inherits the structure
of an operad in the category of complete Lie algebras which we can define by the
same formulas as in §§10.1.1-10.1.2 on the generating elements of these complete
Lie algebras.

We can use the same process as in the previous paragraph to define an operad
structure on the collection of complete enveloping algebras Ûp̂ = {Ûp̂(r), r > 0}
from this operad structure on the complete Drinfeld–Kohno Lie algebras. We get
that this collection forms an operad in complete Hopf algebras. Recall that these
complete enveloping algebras are also given by a presentation:

Ûp̂(r) = T̂(tij , 1 ≤ i �= j ≤ r)/〈[tij, tkl], [tij , tik + tjk]〉,
for each r > 0, where we replace the ordinary tensor algebra considered in the
previous paragraph by the completed one (see §10.0.8). Hence, the elements of

the algebra Ûp̂(r) can be represented by formal sums of monomials ti1j1 · . . . ·
timjm and we may actually use the same picture as in the previous paragraph to
represent the image of such monomials under the operations of our operad structure
on this collection of complete enveloping algebras Ûp̂(r), r > 0. In the above

presentation, the coproduct of the complete enveloping algebra Ûp̂(r) is determined

by the formula Δ(tij) = tij ⊗ 1 + 1⊗ tij for the generating elements tij ∈ Ûp̂(r).
We can obviously extend these constructions to get a unitary extension p̂+ of

the operad in complete Lie algebras p̂, and a corresponding unitary extension Ûp̂+

of our operad in complete Hopf algebras Ûp̂.
10.2.3. The operad in Hopf groupoids defined by the algebras of chord diagrams.

We can also regard the Hopf algebras U p(r) of §10.2.1 as the hom-objects of a
collection of Hopf groupoids A(r) such that

ObA(r) = pt and HomA(r)(pt , pt) = U p(r),

for each r > 0. We can provide this collection of Hopf groupoids with the structure
of an operad. We define the structure operations of this operad by trivial one-
point set maps at the object set level and we use the definitions of §10.2.1 for the
hom-objects.

We can also apply the completion process of §9.1 to get an operad in complete
Hopf groupoids Â such that A (̂r) = A(r)̂ from this operad in Hopf groupoids A.
We then take the completion of the hom-object HomA(r)(pt , pt) = U p(r) with respect
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to the filtration defined by the powers of the augmentation ideal of the enveloping
algebra U p(r). We readily see that the sth layer of this filtration Is U(p(r)) is
identified with the module spanned by monomials ti1j1 · . . . · timjm of length m ≥ s.
We therefore have an identity

HomA(r)̂ (pt , pt) = Ûp̂(r)

when we perform this construction. We also obviously retrieve the operad structure
of the collection of complete enveloping algebras Ûp̂(r), r > 0, when we apply the
construction of §9.1 to determine the action of permutations and the composition
operations ◦k : HomA(m)̂ (pt , pt)⊗̂ HomA(n)̂ (pt , pt) → HomA(m+n−1)̂ (pt , pt) associated

to the hom-objects of the operad in complete Hopf groupoids A .̂
To sum up this discussion, we can identify an operad in (complete) Hopf alge-

bras with an operad in (complete) Hopf groupoids with a single object, and we just

checked that we retrieve the operad Ûp̂ = {Ûp̂(r), r > 0} when we apply the comple-
tion process of operads in Hopf groupoids §9.1 to the object U p = {U p(r), r > 0}.
In what follows, we just use the notation A (respectively, A )̂ when we want to re-

gard these operads U p (respectively, Ûp̂) as operads in (complete) Hopf groupoids
with a single object rather than as operads in (complete) Hopf algebras.

We can obviously extend the correspondence studied in this paragraph to uni-
tary operads. We then consider a unitary extension A+̂ of the operad Â with
A+̂(0) = k as term of arity zero.

10.2.4. The operad of chord diagrams. The chord diagram operad is the operad
in Malcev complete groupoids CD̂ which we obtain by applying the group-like
element functor to the operad in complete Hopf groupoids defined in the previous
paragraph:

CD̂= G(A )̂

We also use the notation CD(r)̂= CD (̂r) for the components of this operad CD .̂
We accordingly have:

ObCD(r)̂= pt , AutCD(r)̂ (pt) = G(Ûp̂(r)),

for every r > 0, by definition of the operad of group-like elements associated to
an operad in complete Hopf groupoids (see §3.3), and we provide this collection of
groupoids CD (̂r) = CD(r) ,̂ r > 0, with the structure operations yielded by the

operad structure of the enveloping algebras Ûp̂(r) in §§10.2.1-10.2.2. We also abuse
notation and write:

CD(r)̂= G(Ûp̂(r))

when we identify the group G = G(Ûp̂(r)) with a groupoid with a single object
pt ∈ ObCD(r) .̂ We also deal with a unitary version of the chord diagram operad
CD+̂, which we associate to the unitary extension A+̂ of the operad in complete
Hopf groupoids A ,̂ and which has CD+̂(0) = pt as term of arity zero.

Proposition 8.1.5 (see also Lemma 9.1.20) gives a one-to-one correspondence

between the elements of the group u ∈ G(Ûp̂(r)) and the exponentials ep ∈ Ûp̂(r)
of the elements of the complete Drinfeld–Kohno Lie algebras p ∈ p̂(r), r > 0. We
moreover have the formula:

ep ◦k eq = ep◦kq

for the operadic composition operation ◦k : CD(m)̂× CD(n)̂→ CD(m+ n− 1) ,̂
for every p ∈ p̂(m) and q ∈ p̂(n). We just use that p ∈ p̂(m) and q ∈ p̂(n) define
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commuting elements in Ûp̂(m)⊗ Ûp̂(n) � Û(p̂(m)⊕ Ûp̂(n)) to get the identity ep ⊗
eq = e(p,0)+(0,q) = e(p,q) in the set of group-like elements of this enveloping algebra
Û(p̂(m) ⊕ p̂(n)), and we use, in turn, that the operadic composition operations of
the chord diagram operad are induced by the corresponding operadic composition
operations of the Drinfeld–Kohno Lie algebra operad. We have similar obvious
identities for the action of permutations and for the restriction operators. In what
follows, we use both the expression of the chord diagram operad in terms of the
group of group-like elements G(Ûp̂(r)) and this expression in terms of the group of
exponentials ep, p ∈ p(r).

Let us observe that we have a group morphism

ρ : k× → Autf̂ Grd Op(CD+̂)

which maps any scalar λ ∈ k× to the automorphism of the unitary operad of chord
diagrams ρλ : CD+̂ → CD+̂ induced by the map ρλ : tij �→ λtij on the Drinfeld–

Kohno Lie algebras p(r). Equivalently, for a group-like element g ∈ G(Ûp̂(r))
represented by a power series g = g(tij , 1 ≤ i �= j ≤ r) on the generators tij , 1 ≤ i �=
j ≤ r, of the chord diagram algebra Ûp̂(r) = T̂(tij , 1 ≤ i �= j ≤ r)/〈[tij, tkl], [tij , tik+
tjk]〉, we set

ρλ(g) = g(λtij , 1 ≤ i �= j ≤ r),

where the expression on the right-hand side represents the result of the substitution
operation ρλ : tij �→ λtij in this power series.

10.2.5. The definition of operad morphisms from parenthesized braids to chord
diagrams. We aim to establish an operadic counterpart of the result of Theo-
rem 10.0.7 and to define a categorical equivalence of unitary operads in Malcev
complete groupoids

φ : PaB+̂ → CD+̂

which links the Malcev completion of the operad of parenthesized braids PaB+̂ to
the operad of chord diagrams CD+̂.

By Proposition 9.1.19, any such morphism of unitary operads in the cate-
gory of Malcev complete groupoids φ : PaB+̂ → CD+̂ occurs as the extension,
to the completed operad PaB+̂, of a morphism of unitary operads in groupoids φ :
PaB+ → CD+̂, where we consider the ordinary operad of parenthesized braids PaB+

and we forget about the Malcev complete groupoid structure of the operad of
chord diagrams. By Theorem 6.2.4, the construction of such a morphism re-
duces, in turn, to the definition of a product operation in the chord diagram operad
m = m(x1, x2) ∈ ObCD(2) ,̂ of an associativity isomorphism a = a(x1, x2, x3) ∈
MorCD(3)̂ (m(m(x1, x2), x3),m(x1,m(x2, x3))), and of a braiding c = c(x1, x2) ∈
MorCD(2)̂ (m(x1, x2),m(x2, x1)), which respectively represent the image of the mul-

tiplication operation of the parenthesized braid operad μ ∈ ObPaB(2), of the as-
sociativity isomorphism α ∈ MorPaB(3)̂ ((x1x2)x3, x1(x2x3)), and of the braiding

τ ∈ MorCD(2)̂ (x1x2, x2x1) under our morphism φ : PaB+ → CD+̂.
In the general statement of Theorem 6.2.4, we also consider a unit object

e ∈ Q(0), which occurs in an extension of our construction to operads Q with
an arbitrary arity zero term. In our setting, and more generally when we deal with
a unitary operad Q = P+, this unit object is fixed by the assumption that the arity
zero term of our operad reduces to the one-point set P+(0) = pt . By definition of
the chord diagram operad, we moreover have ObCD(r)̂= pt for all r > 0, so that
the choice of the product operation m = φ(μ) ∈ ObCD(2)̂ is trivial too.
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Thus, we only have to specify the associativity isomorphism a = φ(α) and the
braiding c = φ(τ ) in order to determine our morphism φ : PaB+ → CD+̂. If we
make these isomorphisms explicit, then we get the following statement:

Proposition 10.2.6. A morphism of unitary operads φ : PaB+ → CD+̂ is
uniquely determined by a scalar parameter κ ∈ k and a group-like element of the
complete tensor algebra on two generators f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) such that we have
the following assignments in the morphism sets of the chord diagram operad CD+̂:

φ(τ ) = eκt12/2, φ(α) = f(t12, t23),

where τ and α respectively denote the braiding and the associativity isomorphism
of the parenthesized braid operad PaB+.

Explanations. We examine the structure of the morphism sets of the operad
CD+̂ in arity r = 2, 3 to determine the form of the braiding c = c(x1, x2) and of the
associativity isomorphism a = a(x1, x2, x3) which determine our map φ : PaB+ →
CD+̂.

In arity 2, we have p̂(2) = k t12 ⇒ MorCD(2)̂ (pt , pt) = exp(k t12) and our

braiding c = c(x1, x2) ∈ MorCD(2)̂ (pt , pt) is therefore given by an expression of the
form:

c(x1, x2) = exp(κt12/2) ∈ G(Ûp̂(2)),

for some parameter κ ∈ k.
In arity 3, we can see that the Lie algebra p̂(3) splits as a direct sum p̂(3) =

k z ⊕ L̂(t12, t23), where k z is a central Lie subalgebra, spanned by the element
z = t12 + t23 + t13, and we consider the free complete Lie algebra generated by the
elements t12, t23 ∈ p̂(3). We therefore have a(x1, x2, x3) = ecz ·ep(t12,t23), where c ∈ k
and p(t12, t23) ∈ L̂(t12, t23). We also have ÛL̂(t12, t23) = T̂(t12, t23), and therefore,
we may also write a(x1, x2, x3) = ecz · f(t12, t23), where f(t12, t23) = ep(t12,t23)

represents a group-like element of the complete Hopf algebra T̂(t12, t23).
The unit constraint a(x1, e, x3) = id of Theorem 6.2.4 is equivalent to the

equation ec∂2(z) · ∂2f(t12, t23) = 1, where we consider the restriction operator ∂2 :
p̂(3) → p̂(2). By definition of this restriction operator in the Drinfeld–Kohno Lie
algebra operad, we have ∂2(t12) = ∂2(t23) = 0 while ∂2(t13) = t12 (see §10.1.2). The
unit constraint a(x1, e, x3) = id therefore reduces to the equation ect12 = 1, from
which we deduce that the central factor ecz in our expression of the associativity
isomorphism a = a(x1, x2, x3) is trivial. Hence, we eventually obtain that this
isomorphism is given by an expression of the form:

a(x1, x2, x3) = f(t12, t23) ∈ G T̂(t12, t23),

for some group-like element of the complete tensor algebra on two generators
f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2). �

To complete this result, we write down the coherence constraints of Theo-
rem 6.2.4 in terms of this pair (κ, f(ξ1, ξ2)) which we associate to our operad mor-
phism φ : PaB+ → CD+̂. We obtain the following proposition:

Proposition 10.2.7. The assignments of Proposition 11.1.3:

φ(τ ) = eκt12/2, φ(α) = f(t12, t23),

where κ ∈ k and f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2), determine a well-defined morphism of
unitary operads φ : PaB+ → CD+̂ if and only if the power series f(ξ1, ξ2) satisfies:
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(1) the unit relations f(ξ1, 0) = 1 = f(0, ξ2),
(2) the involution relation f(ξ1, ξ2) · f(ξ2, ξ1) = 1,
(3) the hexagon equation eκξ1/2 · f(ξ3, ξ1) · eκξ3/2 · f(ξ2, ξ3) · eκξ2/2 · f(ξ1, ξ2) = 1,

where (ξ1, ξ2, ξ3) denotes a triple of variables such that ξ1 + ξ2 + ξ3 = 0,
(4) and the pentagon equation f(t12, t23+ t24) ·f(t13+ t23, t34) = f(t23, t34) ·f(t12+

t13, t24 + t34) · f(t12, t23) in the group P̂4 = G(Ûp̂(4)).

Proof. We go back to the definition of the composition structure of the chord
diagram operad (see §10.2.4) in order to make explicit the unit, the pentagon and
the hexagon constraint of Theorem 6.2.4(b-c) for the braiding isomorphism c =
eκt12/2 and for the associativity isomorphism a = f(t12, t23) given in the proposition.

We use the expression of the restriction operators on p(3) to get the unit re-

lations f(t12, 0) = 1 = f(0, t12) in G(Ûp̂(2)) = G T̂(t12). The equivalence between
the pentagon constraint, such as expressed by the commutation of the diagram of
Figure 6.1, and the equation of the proposition is also immediate (we just expand
the expression of the pentagon equation).

Recall that we have f(ξ1, ξ2) = ep(ξ1,ξ2) for an element of the free complete

Lie algebra on two generators p(ξ1, ξ2) ∈ L̂(ξ1, ξ2). We also have f(ξ1, 0) = 1 =
f(0, ξ2) ⇔ p(ξ1, 0) = 0 = p(0, ξ2), and this relation is equivalent to the requirement

that this Lie power series p(ξ1, ξ2) ∈ L̂(ξ1, ξ2) =
∏

m≥1 L(ξ1, ξ2) has no component
in weight m = 1. We use this observation in our next argument lines.

The hexagon relations have the following expression:

eκt13/2 · f(t12, t13) · eκt12/2 = f(t23, t13) · eκ(t12+t13)/2 · f(t12, t23),
eκt13/2 · f(t13, t23)−1 · eκt23/2 = f(t13, t12)

−1 · eκ(t13+t23)/2 · f(t12, t23)−1.

We set ξ1 = t13, ξ2 = t23 in the first equation. We then have t12 = ξ3+ z, where we
set ξ3 = −ξ1−ξ2 and z = t12+t23+t13 denotes the central element of p(3) considered
in §10.2.5. We use the vanishing relation [z,−] = 0 for this central element and that
the power series p(−,−) such that f(−,−) = ep(−,−) has no component in weight
1 to obtain that we have the identities p(ξ3 + z,−) = p(ξ3,−) ⇒ f(ξ3 + z,−) =
f(ξ3,−) and p(−, ξ3+z) = p(−, ξ3) ⇒ f(−, ξ3+z) = f(−, ξ3) in the complete Hopf

algebra Ûp̂(3). We can also collect the factors eκz/2 in our equation. We eventually
get that our first hexagon relation is equivalent to the following equations:

eκξ1/2 · f(ξ3, ξ1) · eκξ3/2 = f(ξ2, ξ1) · e−κξ2/2 · f(ξ3, ξ2)
⇔f(ξ2, ξ1) = eκξ1/2 · f(ξ3, ξ1) · eκξ3/2 · f(ξ3, ξ2)−1 · eκξ2/2.

We similarly get that our second hexagon relation, where we set ξ1 = t12 and
ξ2 = t23, so that t13 = ξ3 + z for ξ3 = −ξ1 − ξ2, is equivalent to the equations:

eκξ3/2 · f(ξ3, ξ2)−1 · eκξ2/2 = f(ξ3, ξ1)
−1 · e−κξ1/2 · f(ξ1, ξ2)−1

⇔f(ξ1, ξ2)
−1 = eκξ1/2 · f(ξ3, ξ1) · eκξ3/2 · f(ξ3, ξ2)−1 · eκξ2/2.

These equations are clearly equivalent to the combination of the identities given in
our statement:

f(ξ2, ξ1) = f(ξ1, ξ2)
−1,

eκξ1/2 · f(ξ3, ξ1) · eκξ3/2 · f(ξ2, ξ3) · eκξ2/2 · f(ξ1, ξ2) = 1,

and this result completes the verification of our assertions. �
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We easily see that the scalar parameter κ ∈ k which we associate to our mor-
phism of unitary operads φ : PaB+ → CD+̂ in Proposition 10.2.6 is necessarily
invertible when we assume that this morphism extends to a categorical equivalence
on the Malcev completion of the parenthesized braid operad PaB+̂. To check this
claim, we use that the morphism of Malcev complete groups φ : AutPaB(2)̂ (μ) →
AutCD(2)̂ (pt) induced by this morphism φ : PaB+̂ → CD+̂ is identified with the map

φ : τ2ν �→ eκνt12 when we use the identities AutPaB(2)̂ (μ) = P̂2 = {τ2ν , ν ∈ k} and

AutCD(2)̂ (pt) = exp p̂(2) = exp(k t12). We prove in the next proposition that this

condition κ ∈ k× actually suffices to ensure that our morphism φ : PaB+̂ → CD+̂

defines a categorical equivalence:

Proposition 10.2.8. The morphism of unitary operads in Malcev complete
groupoids φ : PaB+̂ → CD+̂ which we determine by the assignments of Proposi-
tion 10.2.6 defines a categorical equivalence of unitary operads in Malcev complete
groupoids if and only if the scalar parameter which we associate to this morphism
in our correspondence is invertible κ ∈ k×.

Proof. We only examine the “if” part of the proposition since we already
checked the “only if” part. We therefore assume κ ∈ k×. We fix an object
p ∈ ObPaB(r) in the operad of parenthesized braids PaB, for some r > 0. We
aim to check that the morphism φ : PaB+̂ → CD+̂, which we determine by our
assignments φ(τ ) = eκt12 , φ(α) = f(t12, t23), induces an isomorphism of Mal-
cev complete groups from the automorphism group of this object in the Malcev
completion of the parenthesized braid operad AutPaB(r)̂ (p) = AutPaB(r)(p)̂ to the

group CD(r)̂= G(Ûp̂(r)) which represents the automorphism group of the object
pt ∈ ObCD(r)̂ in the chord diagram operad.

We use the identity AutPaB(r)(p) = Pr ⇒ AutPaB(r)̂ (p) = P̂r, which follows

from the definition of the operad PaB ,̂ and the isomorphism

(1) υ : p(r)
�−→ E0 P̂r

between the Drinfeld–Kohno Lie algebra p(r) and the weight graded Lie algebra as-
sociated to the Malcev completion of the pure braid group Pr (see Theorem 10.0.7).

Recall that this isomorphism associates the element x̄ij ∈ E0 P̂r to the generator
tij of the Drinfeld–Kohno Lie algebra. By Proposition 8.1.5, we also have an iso-
morphism

(2) p(r) = E0 p̂(r)
�−→ E0 G(Ûp̂(r)),

which is induced by the exponential correspondence between the complete Lie
algebra p̂(r) = P(Ûp̂(r)) and the group of group-like elements of the complete

Hopf algebra Ûp̂(r). We check that the morphism of weight graded Lie alge-
bras E0 φ : E0 AutPaB(r)̂ (p) → E0 AutCD(r)̂ (pt) induced by our operad morphism

φ : PaB+̂ → CD+̂ is an isomorphism to get our result.
For this aim, we use that the element of the automorphism group AutPaB(r)̂ (p)

which corresponds to the generator xij of the pure braid group Pr can be expressed
as a composite morphism:

(3) uij = β · π(x1, . . . , τ
2(xi, xj), . . . , x̂j , . . . , xr) · β−1,

where β is given by a composite of braidings and associativity isomorphisms in
PaB, while π(x1, . . . , τ

2(xi, xj), . . . , x̂j , . . . , xr) represents the morphism of PaB(r)
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obtained by plugging the morphism τ2 ∈ MorPaB(2)(μ, μ) in a parenthesized word
on r − 1 variables π ∈ Ω(r − 1) = ObPaB(r − 1). We have

(4) φ(uij) = φ(β) · eκtij · φ(β)−1,

and we use the general relation g · u · g−1 ≡ u(mod F2 G), valid in any Malcev
complete group (see §8.2.2 and Proposition 8.2.3), to deduce from this formula

that we have the identity φ(uij) ≡ eκtij in E0 G(Ûp̂(r)). The exponential element
eκtij corresponds to κtij in p̂(r). Hence, we finally obtain that the map of weight
graded Lie algebras E0 φ : E0 AutPaB(r)̂ (p) → E0 AutCD(r)̂ (pt) induced by our operad

morphism φ : PaB+̂ → CD+̂ carries the element ūij ∈ E0 AutPaB(r)̂ (p), which

corresponds to the class of the pure braid group generator xij in E0 P̂r, to the
multiple κtij of the generator tij in the Drinfeld–Kohno Lie algebra p(r). Thus, we
just retrieve the inverse map of the above isomorphism (1), up to the scalar factor
κ ∈ k×. We conclude from this relation that our map defines an isomorphism:

E0 φ : E0 AutPaB(r)̂ (p)
�−→ E0 AutCD(r)̂ (pt)

as requested. �
We eventually get the following theorem:

Theorem 10.2.9 (Equivalence between the operadic definition and Drinfeld’s
original definition of associators [57, §5]). The correspondence of Proposition 10.2.6
induces a bijection between the categorical equivalences of unitary operads in Malcev
complete groupoids φ : PaB+̂ → CD+̂ and the set of pairs (κ, f(ξ1, ξ2)), where κ

is an invertible scalar parameter κ ∈ k×, as we require in Proposition 10.2.8, and
f(ξ1, ξ2) is a group-like element of the complete tensor algebra on two generators

f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) which satisfies the unit, involution, hexagon and pentagon
relations ( 1-4) of Proposition 10.2.7. �

In [57, §5], the set of Drinfeld’s associators associated to the parameter λ ∈ k×

is precisely defined as the set of group-like power series f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) which
satisfy these constraints (1-4) of Proposition 10.2.7. The above theorem therefore
gives an equivalence between this definition and our approach in terms of categorical
equivalences of operads in Malcev complete groupoids φ : PaB̂→ CD .̂ In the rest
of this section, we go back to Drinfeld’s definition in order to check the existence
of associators in the complex coefficient case k = C.

10.2.10. Remark. Let again p(ξ1, ξ2) = aξ1 + bξ2 + c[ξ1, ξ2] + · · · ∈ L̂(ξ1, ξ2)
be the Lie power series associated to our group-like element f(ξ1, ξ2) = ep(ξ1,ξ2)

in Proposition 10.2.7. In the proof of this statement, we observed that the unit
relations f(ξ1, 0) = 1 = f(0, ξ2) ⇔ ep(ξ1,0) = 1 = ep(0,ξ2) imply that this Lie power
series p(ξ1, ξ2) has no term in weight one, and hence that we have a = b = 0 in
the above expansion. By a theorem of Furusho (see [70]), any element f(ξ1, ξ2) ∈
G T̂(ξ1, ξ2) that satisfies the pentagon equation (4) of Proposition 10.2.7 also satisfies
the hexagon equation (3) for a parameter κ ∈ k determined by the coefficient c ∈ k
of our Lie power series.

10.2.11. The set of Drinfeld’s associators. We adopt the notation Assκ(k) for
the set of group-like power series f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) which satisfy the unit,
involution, hexagon and pentagon constraints (1-4) of Proposition 10.2.7, for a
fixed value of the scalar parameter κ ∈ k. We refer to this set Assκ(k) as the set
of Drinfeld’s associators associated to the parameter κ ∈ k. We use the study of
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Proposition 10.2.6 to identify such a power series with an associativity isomorphism
in the chord diagram operad a(x1, x2, x3) = f(t12, t23), where we also consider the
braiding isomorphism c(x1, x2) = exp(κt12/2) determined by our parameter κ ∈ k.
Recall that we use this correspondence in Proposition 10.2.6-10.2.7 in order to define
a bijection between the morphisms of unitary operads in Malcev complete groupoids
φ : PaB+̂ → CD+̂ and the pairs (κ, f(ξ1, ξ2)) such that f(ξ1, ξ2) ∈ Assκ(k).

We also use the notation

Ass(k) = {(κ, f(ξ1, ξ2)) ∈ k× ×G T̂(ξ1, ξ2)|f(ξ1, ξ2) ∈ Assκ(k)},
for the union of the sets of associators associated an invertible value of this scalar
parameter κ ∈ k×. We are mainly interested in this case, as we explain in Theo-
rem 10.2.9, since the result of Proposition 10.2.8 implies that the correspondence of
Proposition 10.2.6-10.2.7 induces a bijection between the categorical equivalences of
unitary operads in Malcev complete groupoids φ : PaB+̂

∼−→ CD+̂ and the elements
of this set Ass(k).

Let λ ∈ k×. We immediately see that the re-scaling operation ρλ : f(ξ1, ξ2) �→
f(λ ξ1, λ ξ2) carries a group-like power series f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) which satisfies
the equations of an associator in Proposition 10.2.7, for some value of the scalar pa-
rameter κ ∈ k×, to a group-like power series ρλf(ξ1, ξ2) = f(λ ξ1, λ ξ2) ∈ G T̂(ξ1, ξ2)
which satisfies the equations of an associator for the scalar parameter such that
κ′ = λκ ∈ k×. We therefore have bijections:

ρλ : Assκ(k)
�−→ Assλκ(k),

that relate the sets of associators associated to different invertible scalar values
κ ∈ k×.

We observed in §10.2.4 that the (unitary) operad of chord diagrams CD+̂ in-

herits an action of the multiplicative group k×. We may actually see that the
operation (ρλ)∗ : φ �→ ρλ ◦ φ, which we obtain by composing a categorical equiv-
alence of unitary operads in Malcev complete groupoids φ : PaB+̂ → CD+̂ with
the automorphism of the chord diagram operad ρλ : CD+̂ → CD+̂ associated to

a scalar λ ∈ k×, corresponds to the map ρλ : Assκ(k) → Assλκ(k) given by our
re-scaling operation ρλ : f(ξ1, ξ2) �→ f(λ ξ1, λ ξ2) on the sets of associators Assκ(k),
κ ∈ k×.

We aim to check that these sets Assκ(k) are not empty in order to prove
the existence of categorical equivalences of unitary operads in Malcev complete
groupoids which connect the Malcev completion of the parenthesized braid operad
to the operad of chord diagrams. We have the following first result:

Theorem 10.2.12 (V. Drinfeld [57, §2]). We have a group-like power series with

complex coefficients fKZ(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) which satisfies the constraints ( 1-4)
of Proposition 10.2.7, for any value κ �= 0 of the scalar parameter κ ∈ C×, and
which therefore defines an element of the set of associators Assκ(C) when we take
k = C as ground field.

Proof (outline). We adapt the construction of the isomorphism of Theo-
rem 10.0.7, where we use the monodromy of the Knizhnik–Zamolodchikov connec-
tion in order to define an isomorphism from the Malcev completion of the pure
braid group P̂r towards the group of group-like elements of the enveloping algebra
of the complete Drinfeld–Kohno Lie algebra G(Ûp̂(r)), for each r > 0. In short,
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the group-like element fKZ(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) can be defined by using the holo-
nomy of the Knizhnik–Zamolodchikov connection along paths that connect certain
asymptotic zones of the space of configurations of 3 points in the plane F (C, 3).
(We just have to discard logarithmic divergences, which appear in our asymptotic
expansions, in order to get a well-defined element in our algebra of chord diagrams.)

We can also define this group-like element fKZ(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) directly by using
the monodromy of solutions of the differential system associated to the Knizhnik–
Zamolodchikov connection. We adopt this approach, which we borrow from [57,
§2], and we closely follow the explanations of this reference.

The purpose of our account is just to give an overview of the main steps of
the definition of this associator fKZ(ξ1, ξ2). Besides Drinfeld’s original article [57,
§2], we also refer to the books [40, 42, 100, 160] for a detailed account of this
construction.

We fix some r ≥ 2. We consider the system of differential equations

(1)
∂w

∂zi
=
∑
i �=j

� · tij ·
w

zi − zj
,

for a parameter � ∈ C, and where w is a function defined on a subdomain of the
configuration space F (C, r) and with values in the algebra Ûp̂(r).

We see that the equations (1) are invariant under the action of the group of
affine transformations z �→ az + b, where a ∈ C×, b ∈ C, and as a consequence,
any solution of this system (1) is determined by a solution of a system depending
on r − 2 variables (we refer to [160, §12.2] for a nice and detailed analysis of this
dependence). When we take r = 3, we obtain

(2) w(z1, z2, z3) = (z3 − z1)
�(t12+t23+t13) ·G

(z2 − z1
z3 − z1

)
,

where G(z) is a solution of the differential equation

(3) G′(z) = � ·
(ξ1
z

+
ξ2

z − 1

)
·G(z)

in the completed tensor algebra T̂(ξ1, ξ2) = T̂(t12, t23).
Let C = {z = x + iy|y �= 0 or 0 < x < 1}. The classical theory of Fuchsian

equations (see for instance [178, §4.3]) implies that this differential equation (3) has
a unique analytic solutionG0(z), defined for z ∈ C, and such thatG0(z) ∼z→0 z�t12 .
We also have an analytic solution G1(z) such that G1(z) ∼z→1 (1 − z)�t12 . The
solutions w0 and w1 of the Knizhnik–Zamolodchikov system (1) associated to these
functions are determined by asymptotic behaviors of the form:

w0(z1, z2, z3) ∼ (z2 − z1)
�t12(z3 − z1)

�(t13+t23), for |z2 − z1| � |z3 − z1|,(4)

w1(z1, z2, z3) ∼ (z3 − z2)
�t23(z3 − z1)

�(t12+t13), for |z3 − z2| � |z3 − z1|.(5)

The solutions G0(z) and G1(z) of equation (3) differ by a constant factor of the
variable z. We precisely take this factor, such that G1(z) = G0(z) · fKZ(ξ1, ξ2), to

define our group-like element fKZ(ξ1, ξ2) ∈ G T̂(ξ1, ξ2). This element fKZ(ξ1, ξ2) ∈
G T̂(ξ1, ξ2) can equivalently be characterized by the relation

(6) w1(z1, z2, z3) = w0(z1, z2, z3) · fKZ(t12, t23),

where we consider the solutions of the Knizhnik–Zamolodchikov system (1) with
the asymptotic behavior prescribed in (4-5).
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We aim to check that our element fKZ(ξ1, ξ2) satisfies the constraints of Propo-
sition 10.2.7, for a given scalar parameter κ ∈ C such that � = κ/2iπ. We give a
brief survey of the argument lines of [57, §2] to establish this claim. We immedi-
ately see that the reduction t12 = t13 = 0 makes our functions w0 and w1 equal.
We have a similar result when we perform the reduction t13 = t23 = 0. We deduce
from these observations that our power series fKZ(ξ1, ξ2) satisfies the unit relation
fKZ(ξ1, 0) = fKZ(0, ξ2) = 1. The involution relation fKZ(ξ1, ξ2) · fKZ(ξ2, ξ1) = 1
follows from an easy inspection too. To establish the pentagon equation, we con-
sider asymptotic zones

x2 − x1 � x3 − x1 � x4 − x1,

x3 − x2 � x3 − x1 � x4 − x1,

x2 − x1 � x4 − x1 and x4 − x3 � x4 − x1,

x3 − x2 � x4 − x2 � x4 − x1,

x4 − x3 � x4 − x2 � x4 − x1,

(7)

in the range of variation formed by real variables such that {x1 < x2 < x3 <
x4}. Each of these zone is associated to a vertex of the Mac Lane pentagon (see
Figure 6.1), with the rule that we have xj−xi � xl−xk whenever we can retrieve the
pattern xk · · · (xi · · ·xj) · · ·xl after removing some groupings in the parenthesized
word corresponding to our vertex. For instance, we associate the zone such that
x3 − x2 � x3 − x1 � x4 − x1 to the word (x1(x2x3))x4. For r = 4, the Knizhnik–
Zamolodchikov system (1) admits solutions wi = wi(x1, x2, x3, x4), i = 1, . . . , 5,
with an asymptotic behavior of the form:

w1 ∼ (x2 − x1)
�t12 · (x3 − x1)

�(t13+t23) · (x4 − x1)
�(t14+t24+t34),

w2 ∼ (x3 − x2)
�t23 · (x3 − x1)

�(t12+t13) · (x4 − x1)
�(t14+t24+t34),

w3 ∼ (x2 − x1)
�t12 · (x4 − x3)

�t34 · (x4 − x1)
�(t13+t23+t14+t24),

w4 ∼ (x3 − x2)
�t23 · (x4 − x2)

�(t24+t34) · (x4 − x1)
�(t12+t13+t14),

w5 ∼ (x4 − x3)
�t34 · (x4 − x2)

�(t23+t24) · (x4 − x1)
�(t12+t13+t14)

(8)

in the zones (7).
The factors (xl − xk) which we consider in these asymptotic expansions cor-

respond to the groupings of variables (xk · · ·xl) which occur in the parenthesized
words associated to the asymptotic zones. The exponent of the factor (xl − xk) is
the sum

∑
ij tij which ranges over the pairs i < j such that the variables (xi, xj)

belong to separate groupings (xk · · ·xi · · · )(· · ·xj · · ·xl) in the parenthesization of
the word (xk . . . xl). The notation ∼ asserts that the function wi, i = 1, . . . , 5,
differs from the given expansion by a function φ(u, v) which depends analytically
on the factors (xl − xk)/(x4 − x1) in our asymptotic zone. The existence of such
functions follows from the theory of differential equations (we refer to [60] for the
detailed argument). One can prove identities

(9) w2 = w1 · fKZ(t12, t23), w4 = w2 · fKZ(t12 + t13, t24 + t34),

w5 = w4 · fKZ(t23, t34), w3 = w1 · fKZ(t13 + t23, t34),

and w5 = w3 · fKZ(t13 + t23, t34)
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by checking that regularized forms of these functions (where we multiply by some
asymptotic factors to eliminate divergences) satisfy the same differential equations,
and agree at some initial value of the cyclically ordered quadruple x1 < · · · < x4

on the projective line RP1 (see [57, §2], or [160, §12.4] for a detailed account of this
proof). By combining these identities, we get the pentagon equation fKZ(t12, t23+
t24) · fKZ(t13 + t23, t34) = fKZ(t23, t34) · fKZ(t12 + t13, t24 + t34) · fKZ(t12, t23) of
Proposition 10.2.7(4).

The hexagon equation of Proposition 10.2.7(3) is established by the same line of
arguments (see for instance [160, §12.4] for full details on this verification), and this
verification completes the definition of the Knizhnik-Zamolodchikov associator. �

In [175], Tamarkin uses the existence of Drinfeld’s associators to prove that
the chain operad of little 2-discs is formal as an operad in chain complexes. In the
second volume, we will explain that we can upgrade this construction in the context
of rational homotopy theory and use the existence of this associator to prove that
the operad of little 2-discs is formal in the sense of our rational homotopy theory
of operads (see §II.14.2). In [108], Kontsevich gives another proof of the formality
of the little discs operads, which works for all dimensions n ≥ 2. His approach
relies on a commutative dg-algebra, formed by a complex of graphs, which defines
a model in the sense of rational homotopy theory of the cohomology of the operad
of little n-discs. There is another known explicit construction of associator, given in
articles of Alekseev-Torossian [6] and Ševera-Willwacher [159], which is related to
this proof of the formality of the little discs operads. This associator, usually called
the Alekseev-Torossian associator in the literature, is defined by the monodromy
of a connection with values in a homotopy Lie algebra (an L∞-algebra) which is
defined by a subcomplex of connected graphs inside the graph complex considered
by Kontsevich. We refer to [159] for details on this construction.

The construction outlined in this proof returns a complex solution of the associ-
ator existence problem. To be specific, in the case κ = 2iπ (which corresponds to the
case � = 1 of the construction), one can see that the coefficients of the monomials

ξk1−1
1 ξ2ξ

k2−1
1 ξ2 · · · ξkr−1

1 ξ2 such that k1 ≥ 2 in the expansion of fKZ(ξ1, ξ2) are given

by the value of the multizeta series ζ(k1, . . . , kr) =
∑

n1>···>nr>0 1/(n
k1
1 · . . . · nkr

r )
(up to a sign). The coefficients of the other monomials can be determined from
these multizeta values by a regularization procedure (see [115]). If we fix κ = 1, then
we get a multiple of these numbers by the factor 1/(2iπ)k1+···+kr . In particular,
for κ = 1, the coefficient of the term ξ21ξ2 in the Knizhnik–Zamolodchikov associa-
tor is given by the number c = ζ(3)/(2iπ)3 (see [57, §2]). The Alekseev-Torossian
associator is defined over the reals, but has non-rational coefficients too.

Nevertheless, we are going to see that the set of associators Ass(k) is not
empty for every characteristic zero ground field k. In [57, Proposition 5.1-5.2],
a first proof of this rationality statement is given by using that the existence
of associators f ∈ Ass(k) is equivalent to the surjectivity of a character map
λ : GT (k) → k× on the pro-unipotent version of the Grothendieck–Teichmüller
group GT (k) which we study in the next chapter. The paper [57] gives another
proof of the existence of associators by using the structure of an auxiliary group,
the graded Grothendieck–Teichmüller group GRT (k), which operates simply and
transitively on Ass(k). The idea is to consider a tower decomposition of the set of
associators Ass(k) = limm Ass〈m〉(k) and a parallel tower decomposition of the



368 10. THE MALCEV COMPLETION OF THE BRAID OPERADS

graded Grothendieck–Teichmüller group GRT (k) = limmGRT 〈m〉(k) such that
each GRT 〈m〉(k) forms an (affine) algebraic group acting on Ass〈m〉(k).

We are more precisely going to see that each set Ass〈m〉(k) forms a torsor
under the action of this algebraic group GRT 〈m〉(k). We will check that each mor-
phism pm : GRT 〈m〉(k) → GRT 〈m−1〉(k) in the tower decomposition of the graded
Grothendieck–Teichmüller group GRT (k) is surjective. We can then use the exis-
tence of the (complex) Knizhnik–Zamolodchikov associator fKZ(ξ1, ξ2) ∈ Ass(C) in
the limit of the tower Ass(C) = limm Ass〈m〉(C) and the algebraic structure of our
objects Ass〈m〉(k) to establish that each morphism pm : Ass〈m〉(k) → Ass〈m−1〉(k)
in the tower decomposition of the set of associators Ass(k) is surjective too, for any
choice of characteristic zero ground field k.

We actually use the natural tower decomposition CD+̂ = limm qm CD+̂ (which
comes from the Malcev complete groupoid structure of the components of the chord
diagram operad CD+̂) to define the tower decomposition of the set of associa-
tors Ass(k). The object Ass〈m〉(k) explicitly consists of morphisms φ : PaB+ →
qm CD+̂ which induce a categorical equivalence from the quotient qm PaB+̂ of the
Malcev completion of the parenthesized braid operad PaB+̂ to qm CD+̂. The
tower decomposition of the graded Grothendieck–Teichmüller group GRT (k) =
limm GRT 〈m〉(k) is defined analogously. The surjectivity of the morphisms pm :
Ass〈m〉(k) → Ass〈m−1〉(k) implies that we can construct our desired operad mor-
phism φ : PaB+ → CD+̂, which defines a categorical equivalence when we pass to
the Malcev completion of the parenthesized braid operad, by solving a sequence of
lifting problems in the category of unitary operads in groupoids:

...

...

qm CD+̂

...

qm−1 CD+̂

...

PaB+

∃?

∃?

q1 CD+̂

.

We explain the definition of the graded Grothendieck–Teichmüller group in the
next section. We go back to the construction of associators and we study these
tower decompositions of the set of associators and of the graded Grothendieck–
Teichmüller group afterwards.

10.3. The graded Grothendieck–Teichmüller group

The graded Grothendieck–Teichmüller group GRT (k) was introduced by Drin-
feld in [57] and the purpose of this section is to revisit Drinfeld’s original defini-
tion from an operadic viewpoint, as we did for the definition of associators in the
previous section. In short, we define the graded Grothendieck–Teichmüller group
GRT (k) as a group of operad automorphisms associated to a parenthesized ver-
sion PaCD+̂ of the operad of chord diagrams CD+̂. We first explain the definition
of this auxiliary operad PaCD+̂ which represents the image of the chord diagram
operad CD+̂ under a pullback operation in the category of operads in Malcev com-
plete groupoids. We deal with unitary operads when we address the definition of
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the graded Grothendieck–Teichmüller group GRT (k). But, as usual, we explain the
definition of a non-unitary operad PaCD̂ underlying this unitary operad PaCD+̂

first, and we check that this non-unitary operad PaCD̂admits a unitary extension
afterwards.

In the concluding paragraph of the previous section, we briefly mentioned that
GRT (k) occurs as the limit of a tower of affine algebraic groups GRT 〈m〉(k), m ≥ 0.
We say that GRT (k) forms a pro-algebraic group to express this feature. We can
use this pro-algebraic group structure to associate a Lie algebra grt to GRT (k). We
make the definition of this Lie algebra explicit in the next chapter. We will see that
this Lie algebra grt, which we associate to the pro-algebraic group GRT (k), admits
a decomposition grt =

∏
m grtm such that [grtm, grtn] ⊂ grtm+n and is identified

with the completion of a Lie algebra in the category of weight graded modules
(a weight graded Lie algebra). We go back to this subject in the next chapter.
We will see at this moment that the homogeneous components of our Lie algebra
grtm are isomorphic to the subquotients E0m GT (k) = Fm GT (k)/ Fm+1 GT (k) of
a pro-unipotent version of the Grothendieck–Teichmüller group GT (k). (We have
an analogous result for the group GRT (k).) This relationship motivates the name
‘graded Grothendieck–Teichmüller group’ which we give to the group GRT (k).

In §6, we mentioned that Bar-Natan uses the name ‘parenthesized braid’ and
the notation PaBr for objects that differ from the groupoids PaB(r) in our definition
of the operad of parenthesized braids PaB . He actually deals with homogeneous
components of the free algebra on one variable associated to this operad (in the
linear context). Bar-Natan also considers categories of parenthesized chord dia-
grams in his work [16]. These categories, which Bar-Natan denotes by PaCDr, also
differ from our categories of parenthesized chord diagrams PaCD(r)̂ and consist,
as in the case of parenthesized braids, of the homogeneous components of the free
algebra on one variable which we associate to the operad PaCD .̂

10.3.1. The operad in complete Hopf groupoids underlying the parenthesized
chord diagram operad. We follow the same overall plan as in our study of the
operad of chord diagrams. Recall that we use the notation Â for the operad in
complete Hopf groupoids which underlies the operad of chord diagrams CD .̂ We
define an operad in complete Hopf groupoids PaÂwhich underlies our operad of
parenthesized chord diagrams PaCD̂first. In §10.2.3, we explain that the operad
Âcan also be defined as the completion of an operad in ordinary Hopf groupoids
A such that ObA(r) = pt and HomA(r)(pt , pt) = U p(r), for each r > 0. The operad
PaÂ is similarly identified with the completion of an operad in ordinary Hopf
groupoids which we denote by PaA. But we prefer to define both operads PaA and
PaÂ in parallel as pullbacks of the operads in (complete) Hopf groupoids A and
Âwhich we consider in the definition of the chord diagram operad CD .̂ For this
aim, we use a straightforward extension, to operads in (complete) Hopf groupoids,
of the pullback operation of §6.1.5.

To be explicit, we consider the obvious morphism of operads in sets ω : Ω →
ObA, which is defined by the constant map Ω(r) → ObA(r) = pt in each arity
r > 0, and which sends the generating element of the magma operad μ ∈ Ω(2)
to the unique arity two object m = φ(μ) of the operad A. Recall that we have
ObÂ= ObA by definition of the completion. We then set

PaA = ω∗ A and PaÂ= ω∗ A ,̂
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Figure 10.1. The picture of a homomorphism in the operad in
Hopf groupoids underlying the parenthesized chord diagram op-
erad.

where ω∗ A (respectively, ω∗ A )̂ denotes the pullback of the operad A (respectively,
ω∗ A )̂ along the morphism ω : Ω → ObA (see §6.1.5).

Thus, each Hopf groupoid PaA(r) satisfies ObPaA(r) = Ω(r) by construction,
and we have the identity of hom-objects

HomPaA(r)(p, q) = HomA(r)(pt , pt) = U p(r)

for each pair p, q ∈ Ω(r). The symmetric group actions, the unit, and the composi-
tion operations that define the operad structure of this collection of Hopf groupoids
are, as usual, inherited from the magma operad at the object set level and from
the corresponding structure operations of the operad A at the hom-object level
(see §6.1.5). We have similar identities in the complete setting. We also readily
check that the pullback operation commutes with the completion. We can there-
fore identify the operad PaÂwith the aritywise completion of the operad in plain
groupoids PaA, as alluded to at the beginning of this paragraph. We therefore also
use the notation PaA(r)̂= PaA (̂r) for the components of this operad PaA .̂

We can combine the chord diagram picture of §10.0.8 and the conventions
of §6.2.1 to get a graphical representation of the homomorphisms of the operad
PaA. We basically use that each homomorphism f ∈ HomPaA(r)(p, q) has a canon-
ical decomposition f = g · u such that g ∈ HomPaA(r)(p, q) is represented by the
unit element 1 in the Hopf algebra U p(r), and u is an endomorphism of the ob-
ject p ∈ Ω(r) which captures the element of the enveloping algebra corresponding
to f when we use the identity HomPaA(r)(p, q) = U p(r). We represent this fac-
tor u ∈ HomPaA(r)(p, p) = U p(r) by a chord diagram on r strands arranged on
the centers of the diadic decomposition of the interval corresponding to our ele-
ment p ∈ Ω(r). We identify the factor g ∈ HomPaA(r)(p, q) of our morphism with
a correspondence, marked by lines in our figure, between the centers of the diadic
decompositions associated to p and q. We use a similar picture in the case of the
completed operad PaA .̂ Figure 10.1 gives an instance of this representation for a
homomorphism f = g · u ∈ HomPaA(r)(((x2x4)x3)x1, x3((x4x1)x2)).

The morphism ω : Ω → ObA trivially admits a unitary extension ω : Ω+ →
ObA+ and we can perform a unitary extension of our pullback construction (see
§6.1.5) to get a unitary extension PaA+ of the operad PaA such that PaA+ = ω∗ A+.
The restriction operators ∂k : PaA(r) → PaA(r − 1), which reflect the composition
operations with the extra arity zero term PaA+(0) = pt of this unitary operad PaA+,
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are given by the restriction operators of the magma operad ∂k : Ω(r) → Ω(r − 1)
at the object set level (see §6.1.4 for the explicit definition of these restriction
operators) and by a straightforward generalization of the strand removal operation
of the algebras of chord diagrams at the hom-object level. We have a similar result
in the complete setting.

10.3.2. The operad of parenthesized chord diagrams. We define the operad of
parenthesized chord diagrams PaCD̂as the operad in Malcev complete groupoids
which we obtain by applying the group-like element functor to the operad in com-
plete Hopf groupoids of the previous paragraph:

PaCD̂= G(PaA )̂.

We accordingly have ObPaCD̂= ObPaÂ= Ω . In what follows, we also use the
notation PaCD(r)̂= PaCD (̂r) for the components of this operad PaCD .̂

Recall that we have ObCD(r)̂ = ObA(r)̂ = pt by definition of the chord
diagram operad. We can also trivially identify the operad PaCD̂with the pullback
of the chord diagram operad along the same obvious morphism of operads in sets
ω : Ω → ObCD̂as in the construction of the operad PaA :̂

PaCD̂= ω∗ CD .̂

We accordingly have MorPaCD(r)̂ (p, q) = MorCD(r)̂ (pt , pt) = G(Ûp̂(r)), for all p, q ∈
Ω(r). Furthermore, we can explicitly determine the symmetric group actions, the
unit, and the composition operations which define the operad structure of this
collection of groupoids PaCD(r)̂by the corresponding structure operations of the
magma operad at the object set level and by the corresponding structure operations
of the enveloping algebras Ûp̂(r) at the morphism set level.

We also have an obvious unitary version of the parenthesized chord diagram
operad such that PaCD+̂ = G(PaA+̂) and PaCD+̂ = ω∗ CD+̂. The restriction
operators ∂k : PaCD(r)̂→ PaCD(r − 1)̂which reflect the composition operations
with the extra arity zero term PaCD+̂(0) = pt in this unitary operad PaCD+̂ are,
as in the case of the operad PaA, given by the restriction operators of the magma
operad ∂k : Ω(r) → Ω(r − 1) at the object set level and by a straightforward
generalization of the strand removal operation of the algebras of chord diagrams at
the morphism set level.

Recall that we use the notation PaS for the operad of parenthesized symmetries
which is formed by pulling back the operad of commutative monoids Γ (r) = pt
(regarded as an operad in discrete groupoids) along the morphism ω : Ω → Γ .
Thus, the operad of parenthesized symmetries PaS is an operad in groupoids with
ObPaS = Ω as object set operad, and with MorPaS(r)(p, q) = pt as morphism sets,
for all p, q ∈ ObPaS(r), r > 0. We have an obvious embedding of operads in
groupoids σ : PaS ↪→ PaCD̂which identifies the operad PaS with the suboperad
of the operad of parenthesized chord diagrams PaCD̂which has the same objects
as this operad in each arity r > 0, but whose morphisms reduce to the factors
g ∈ MorPaCD(r)̂ (p, q) that correspond to the unit element of the enveloping algebras

Ûp̂(r) in the decomposition of the morphisms of the parenthesized chord diagram
operad f = g · u (see Figure 10.1).

We have a morphism in the converse direction ρ : PaCD̂→ PaS , which carries
the factor u ∈ G(Ûp̂(r)) of our morphisms f = g · u to an identity morphism. We
trivially have ρσ = id so that the operad of parenthesized symmetries actually
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forms a retract of the operad of parenthesized chord diagrams. We have an obvious
extension of these morphisms and of this retract relation in the unitary setting.

10.3.3. The associativity isomorphism, the symmetry isomorphism, and the in-
finitesimal braiding in the Hopf groupoids of parenthesized chord diagrams. In the
previous section, we use that the completed operad of parenthesized braids PaB̂
arises as the completion of an operad in plain groupoids PaB to define morphisms
on this operad φ : PaB̂→ Q. In the case of the operad of parenthesized chord
diagrams PaCD ,̂ we rather define our morphisms at the level of the operad in
complete Hopf groupoids PaÂwhich determines PaCD .̂

The hom-objects of this operad PaÂ inherit an associativity homomorphism
(whose representation is the same as in the parenthesized braid operad case):

α =

1 2 3

321

∈ HomPaA(3)̂ ((x1x2)x3, x1(x2x3)),(1)

a symmetry homomorphism:

τ =

1 2

2 1

∈ HomPaA(2)̂ (x1x2, x2x1),(2)

and the following homomorphism:

θ =

1 2

21

• • ∈ HomPaA(2)̂ (x1x2, x1x2),(3)

which we call the infinitesimal braiding. Note that the associativity and the sym-
metry homomorphisms (1-2) define group-like elements in the hom-objects of the
operad PaA ,̂ while the infinitesimal braiding (3) is primitive. Hence, we can iden-
tify the associativity and symmetry homomorphisms with morphisms of the operad
in groupoids PaCD̂= G(PaA )̂, while we have to take the exponential of the infin-
itesimal braiding in order to get an element of the morphism set PaCD(2) .̂

The above associativity and symmetry homomorphisms (1-2) obviously repre-
sent the image of the associativity and symmetry isomorphisms of the operad of
parenthesized symmetries PaS (see §6.3) in the operad of parenthesized chord dia-
grams PaCD̂= G(PaA )̂. Hence, these homomorphisms satisfy the same relations
as the associativity and symmetry isomorphisms of the operad of parenthesized
symmetries. In particular, we have the involution relation τ (x1, x2)τ (x2, x1) = id
in the operad PaCD .̂ Recall that the other relations of the associativity and sym-
metry isomorphisms of the parenthesized symmetry operad reduce to the pentagon
relation (see Figure 6.1 for the corresponding diagram) and to the hexagon rela-
tions (see Figure 6.6 for the corresponding diagrams). Recall also that the hexagon
relations are equivalent to each other when our symmetry isomorphism satisfies the
involution relation τ (x1, x2)τ (x2, x1) = id .
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We now examine the relations satisfied by the infinitesimal braiding (3). We
readily see that we have the invariance relation:

1 2

21

• • = τ (x1, x2)
−1 ·

12

2 1

• • · τ (x1, x2),(4)

where we consider the image of the infinitesimal braiding under the action of the
transposition t ∈ Σ2 on PaA(2) ,̂ and we have the following composition formula:

1 2

2 1

• • ◦1

1 2

21

=

1 2 3

1 23

• •

+

1 2 3

1 23

• •

,(5)

when we consider the composite of the symmetry isomorphism (2) with the infini-
tesimal braiding (3) in PaA(2) :̂

τθ =

1 2

2 1

• • ∈ HomPaA(2)̂ (x1x2, x2x1).(6)

We refer to the latter equation (5) as the semi-classical hexagon relation. We im-
mediately see that the invariance equation reads θ(x1, x2) = τ (x1, x2)

−1 · θ(x2, x1) ·
τ (x1, x2), where we use the notation θ(x2, x1) for the image of the infinitesimal
braiding θ = θ(x1, x2) under the action of the transposition tθ = θ(x2, x1), while
the semi-classical hexagon relation reads (we omit the input variables of associativ-
ity isomorphisms to simplify the expression of our formula):

(7) τθ(μ(x1, x2), x3)) = α · μ(τθ(x1, x3), x2) · α−1 · μ(x1, τ (x2, x3)) · α
+ α · μ(τ (x1, x3), x2) · α−1 · μ(x1, τθ(x2, x3)) · α.

We still have the relations α(∗, x1, x2) = α(x1, ∗, x2) = α(x1, x2, ∗) = idμ(x1,x2)

and τ (∗, x1) = τ (x1, ∗) = idx1
(which we can also express by the restriction formulas

∂1α = ∂2α = ∂3α = idμ and ∂1τ = ∂2τ = id1) when we deal with the unitary
extension of the parenthesized chord diagram operad PaCD+̂. We also have the
identities

θ(∗, x1) = θ(x1, ∗) = 0 ⇔ ∂1θ = ∂2θ = 0

for the infinitesimal braiding (3).
We have the following analogue of the result of Theorem 6.2.4:

Theorem 10.3.4 (Bar-Natan [16, Proposition 4.5, Proposition 4.8]). Let R be
an operad in complete Hopf groupoids. Let Q = G(R) be the operad in complete
Malcev groupoids associated to this operad.

(a) Let

m = m(x1, x2) ∈ ObR(2),
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be an object in the component of arity 2 of this operad. In what follows, we also set

m(x1, x2) = x1 � x2

and we use classical algebraic notation (rather than operadic notation) to represent
the composites of this object in our operad R. Let

a = a(x1, x2, x3) ∈ G
(
HomR(3)(((x1 � x2) � x3), (x1 � (x2 � x3)))

)
be a group-like associativity homomorphism which connects the operadic composites

(m ◦1 m)(x1, x2, x3) = (x1 � x2) � x3 ∈ ObR(3)

and (m ◦2 m)(x1, x2, x3) = x1 � (x2 � x3) ∈ ObR(3)

in the enriched category R(3). Let

c = c(x1, x2) ∈ G
(
HomR(2)(x1 � x2, x2 � x1)

)
be a group-like symmetry homomorphism which connects the object m(x1, x2) =
x1 � x2 ∈ ObR(2) to its transposite (1 2)m(x1, x2) = x2 � x1 ∈ ObR(2), and which
satisfies the involution relation c(x1, x2)c(x2, x1) = id, where (1 2)c = c(x2, x1)
represents the image of this homomorphism c = c(x1, x2) under the action of the
transposition (1 2) ∈ Σ2 on R(2).

If these homomorphisms a = a(x1, x2, x3) and c = c(x1, x2) make the pentagon
diagram of Figure 6.1 commute in the enriched category R(4) as well as (any one
of) the hexagon diagrams of Figure 6.6 in R(3), and if we moreover have a primitive
homomorphism

h(x1, x2) ∈ P
(
HomR(2)(x1 � x2, x2 � x1)

)
which satisfies the invariance relation h(x1, x2) = c(x1, x2)

−1 · h(x2, x1) · c(x1, x2)
in R(2) and the semi-classical hexagon relation

c(x1 � x2, x3) · h(x1 � x2, x3)

=a(x3, x1, x2) · (c(x1, x3) � x2) · (h(x1, x3) � x2) · a(x1, x3, x2)
−1

· (x1 � c(x2, x3)) · a(x1, x2, x3)

+a(x3, x1, x2) · (c(x1, x3) � x2) · a(x1, x3, x2)
−1

· (x1 � c(x2, x3)) · (x1 � h(x2, x3)) · a(x1, x2, x3)

in R(3) (where we again use algebraic notation, as in Figure 6.1-6.6, for the operadic
composition of homomorphisms in R), then we have a morphism of operads in
complete Hopf groupoids φ : PaÂ→ R, uniquely determined by the assignments

φ(μ) = x1 � x2, φ(α) = a(x1, x2, x3), φ(τ ) = c(x1, x2), φ(θ) = h(x1, x2)

in the operad R, and which, in turn, induces a morphism

φ : PaCD̂→ Q

in the category of operads in Malcev complete groupoids.
(b) In the construction of ( a), if we moreover assume the existence of an object

e ∈ ObR(0)
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which satisfies the relation e � x1 = x1 = x1 � e at the object set level (with the
same notation conventions as above), together with the identities

a(e, x1, x2) = a(x1, e, x2) = a(x1, x2, e) = idm(x1,x2),

c(e, x1) = c(x1, e) = idx1
,

h(e, x1) = h(x1, e) = 0

at the hom-object level, then the morphism φ : PaÂ→ R has a unitary extension
φ+ : PaA+̂ → R+, which maps the distinguished arity 0 element of the unitary
operad PaA+ to this object e ∈ ObR(0), and this morphism determines a morphism
of unitary operads in Malcev complete groupoids yet:

φ : PaCD+̂ → Q+ .

Proof. We outline a proof of this theorem which parallels the proof of the
result of Theorem 6.2.4 about the definition of morphisms on the parenthesized
braid operad. The cited reference [16, Proposition 4.5, Proposition 4.8] gives an
equivalent result by using the free categories associated to the operad PaA.

We use operadic notation in this proof rather than the algebraic notation which
we adopt in the statement of our theorem. We rely on the coherence theorem
for the parenthesized symmetry operad PaS , which implies that the associativity
isomorphism a and the symmetry isomorphism c of the operad Q = G(R) determine
a well-defined morphism of operads in groupoids φ : PaS → Q when the constraints
of our theorem hold. We also consider the obvious morphism of operads in sets
φ : Ω → ObR , which underlies this morphism of operads in groupoids at the object
set level, and which is determined by the assignment φ(μ) = m by using that the
magma operad Ω represents the free operad generated by the operation μ ∈ Ω(2).

We aim to extend the morphism φ : PaS → Q to the whole operad PaÂby using
that the operad of parenthesized symmetries PaS is identified with a suboperad of
group-like homomorphisms in the operad in complete Hopf groupoids PaA .̂ To
be more precise, recall that each homomorphism f of the operad PaÂ admits a
canonical decomposition f = g · u, where we have u ∈ Ûp̂(r) and the factor g is a
group-like homomorphism which is identified with a morphism of the parenthesized
symmetry operad (see §10.3.1).

Step 1: The decomposition of homomorphisms in the operad PaA .̂ In a first
step, we use the presentation of the complete enveloping algebra Ûp̂(r) to express
any such homomorphism f ∈ HomPaA(r)̂ (p, q) as a composite of (operadic compo-

sitions of) the infinitesimal braiding θ and of morphisms which come from the
parenthesized symmetry operad PaS . We give an example of such a decomposition
in Figure 10.2. We suggest the reader to follow our process on this example. We ex-
plicitly pick a factorization f = f1 · · · fn of the homomorphism f ∈ HomPaA(r)̂ (p, q)

where each factor fi ∈ HomPaA(r)̂ (pi−1, pi) reduces to a single generating factor tkili

in the complete enveloping algebra Ûp̂(r).
To relate these factors to the infinitesimal braiding, we pick a parenthesized

word κi which gathers the strands (ki, li) in the magma operad:

κi = πi(x1, . . . , μ(xki
, xli), . . . , x̂li , . . . , xr) ∈ Ω(r).

We consider the morphisms ρi ∈ MorPaS(r)(pi−1, κi) and σi ∈ MorPaS(r)(pi, κi) which
connect this parenthesized word κi to the objects pi−1 and pi in the parenthesized
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Figure 10.2. The decomposition of a homomorphism in the op-
erad PaA.

symmetry operad. We then get an obvious decomposition of the morphism fi

fi = σ−1
i · πi(x1, . . . , θ(xki

, xli), . . . , x̂li , . . . , xr) · ρi
where the medium factor reduces to the application of an infinitesimal braiding θ
within the parenthesized word κi, while ρi and σi are morphisms coming from the
parenthesized symmetry operad PaS .

Step 2: The construction of the morphisms of complete Hopf groupoids φ :
PaA(r)̂→ R(r). We use the existence of the decompositions established in Step 1 to
determine the value of our morphism φ : PaA(r)̂→ R(r) on any homomorphism f ∈
HomPaA(r)̂ (p, q) of the operad PaÂ from the value of this morphism φ : PaA(r)̂→
R(r) on the parenthesized symmetry operad PaS ⊂ PaCD and from the assignment
φ(θ) = h for the infinitesimal braiding θ. For instance, in the case of the morphism
of Figure 10.2, we obtain the expression:

φ(f) = g1 ·m(m(x2, x4), h(x3, x1)) · g2 ·m(m(x2, x3), h(x4, x1))

· g3 ·m(m(x4, h)(x2, x3), x1) · g4,
where g1, g2, g3 and g4 can be determined by taking appropriate composites of the
associativity isomorphism and of the symmetry isomorphism in R .

The main purpose of our verifications is to establish that the mapping φ :
PaA(r)̂→ R(r) which we determine from these decompositions does not depend
on choices. First, we can readily adapt the argument of the proof of Theorem 6.2.4
(Step 2) to check that our homomorphism φ(f) does not depend on the choice of
the intermediate objects κi, i = 1, . . . , n, of our decomposition. In short, different
choices of such parenthesized words are linked by a composite of isomorphisms in
the parenthesized symmetry operad which fixes the internal grouping μ(xki

, xli) of
our object. In order to check that different choices of decompositions connected by
such isomorphisms give equal results, we use the coherence of the definition of our
morphism on the parenthesized symmetry operad PaS and the bifunctoriality of
the composition products of the operad R . By the way, we readily deduce from the
invariance relation h(x1, x2) = c(x1, x2)

−1 · h(x2, x1) · c(x1, x2) that the outcome of
our construction does not depend on the choice of the ordering on the pair (ki, li)
in our gathering process either.



10.3. THE GRADED GROTHENDIECK–TEICHMÜLLER GROUP 377

We then check that our map does not depend on the choice of the monomial de-
composition which we use to factorize our homomorphisms in the complete envelop-
ing algebra Ûp̂(r). We can still reduce the proof of this claim to the verification that
our map returns equal results when we consider the generating relations of the chord
diagram algebra. We can use the same argument as in the proof of Theorem 6.2.4
to check the case of the commutation relation tijtkl = tkltij , while the coherence
of our map with respect to the 4T relation tijtik + tijtjk = tiktij + tjktij follows
from the semi-classical hexagon relation and from the bifunctoriality of the operadic
composition product in R . To be explicit, we can focus on the case where we apply
this relation within the endomorphism coalgebra of the object μ(μ(xi, xj), xk) in
a parenthesized word, and we can rephrase the 4T relation as the commutation
relation f1f2 = f2f1 of the homomorphisms f1 = tij and f2 = tik + tjk in the
endomorphism coalgebra of this object μ(μ(xi, xj), xk).

We use the following graphical identity to compute the image of the factor
f2 = tik + tjk under our map φ : PaA(3) → R(3):

f2 = • •

i j k

+ • •

i j k

= • •

i j k

+

i j k

• • .

We easily see that the terms of the right-hand side are equivalent to the terms
of the semi-classical hexagon relation up to a composition with isomorphisms of
the parenthesized symmetry operad (but we already checked that our mapping is
coherent with respect to such operations). We can therefore identify the image of
f2 under our map φ : PaA(3) → R(3) with the operadic composite φ(f2) = h◦1 idm

returned by the semi-classical hexagon relation. We immediately get, on the other
hand, that the image of the homomorphism

f1 = ••

i j k

under our map is given by the operadic composite φ(f1) = idm ◦1h in R . We have
φ(f1f2) = φ(f1)φ(f2) and φ(f2f1) = φ(f2)φ(f1) by construction of our map. We
just use the identity

(idm ◦1h) · (h ◦1 idm) = h ◦1 h = (h ◦1 idm) · (idm ◦1h),

which follows from the bifunctoriality of the operadic composition, to conclude
that our map φ : PaA(3) → R(3) carries both sides of our commutation relation
f1f2 = f2f1 to the same homomorphism of R(3).

This verification finishes the proof that our construction gives a well-defined
map φ : PaA(r) → R(r) on the complete Hopf groupoid PaA(r). The independence
of the result of our construction with respect to choices also implies that this map
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preserves categorical composites, and hence does define a morphism in the category
of complete Hopf groupoids φ : PaA(r) → R(r) in each arity r > 0.

Step 3: The preservation of operadic composition structures. The morphisms of
complete Hopf groupoids φ : PaA(r) → R(r) constructed in Step 2 trivially preserve
the action of symmetric groups on our operads and the operadic unit. We check
that these morphisms preserve the composition products too. We can argue as in
the proof of Theorem 6.2.4 to reduce our verifications to the case of a composition
product of homomorphisms f ◦k g, where f is given by a generator of the chord
diagram algebra f = tij while g is the identity homomorphism g = id , or where
f is the identity f = id while g is a generator g = tij . The verification of the
relation φ(f ◦k g) = φ(f) ◦k φ(g) is again immediate in the case f = id . Thus we
focus on the case where f = tij and g = id is the identity homomorphism of a
parenthesized word λ ∈ Ω(n). We can still assume that this word reduces to the
generating object of the magma operad λ = μ ∈ Ω(2) (by the same induction as
in the proof of Theorem 6.2.4), and we only face a non-trivial verification when
the operadic composition f ◦k g inserts this homomorphism g = idμ on the strands
k = i, j of the chord diagram f = tij . If we perform the composition f ◦k idμ, then
we retrieve a sum of chord diagrams which is similar to the expression considered
in our study of the 4T relation in Step 2, and we can rely on the same arguments
as in this previous verification to conclude that the image of the homomorphism
f ◦k idμ under our map is equal to the composite φ(f ◦k idμ) = φ(f) ◦k φ(idμ) in
the operad R .

This verification completes the proof of the first assertion of the theorem.
Step 4: The definition of the unitary extension of our morphism. To address the

proof of the second assertion of the theorem, we observe again that the assumptions
of this assertion are equivalent to the requirement that the assignment φ : ∗ �→ e
is coherent with respect to the action of the restriction operators ∂k = − ◦k ∗ on
the generator of the magma operad μ ∈ Ω(2) and on the homomorphisms α, τ ,
θ of PaA. We use our decomposition process to deduce from this verification that
φ carries any restriction operator in PaA to the corresponding composite with the
object e in the operad R . �

We explain the operadic definition of the graded Grothendieck–Teichmüller
group in the next paragraph. We use the previous theorem to relate this operadic
approach to Drinfeld’s original definition.

10.3.5. The graded Grothendieck–Teichmüller group as a group of operad auto-
morphisms. We define the graded Grothendieck-Teichmüller group GRT (k) as the
group formed by the automorphisms of the unitary operad of parenthesized chord
diagrams

φ : PaCD+̂
�−→ PaCD+̂

which reduce to the identity map on the object sets ObPaCD(r)̂= Ω(r) and fix
the symmetry isomorphism τ ∈ MorPaCD(2)̂ (x1x2, x2x1). Recall that PaCD+̂ is a
unitary operad in the category of Malcev complete groupoids by construction, and
we naturally assume that our automorphisms φ belong to this category of operads
in this definition. We can accordingly determine φ by giving an automorphism of
the operad in complete Hopf groupoids PaA+̂ which underlies PaCD+̂.

By Theorem 10.3.4, the construction of a morphism φ : PaA+̂
�−→ PaA+̂ re-

duces to the definition of a product operation m = m(x1, x2), of an associativity
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isomorphism a = a(x1, x2, x3), of a symmetry isomorphism c = c(x1, x2), and of an
infinitesimal braiding h = h(x1, x2) which respectively represent the image of the
multiplication operation μ, of the associativity isomorphism α, of the braiding τ
and of the infinitesimal braiding θ under our morphism φ : PaA+̂ → PaA+̂. In our
statement, we also consider a unit object e ∈ Q(0). In our setting, this unit object
is fixed by the assumption that the arity zero term of our operad reduces to the
ground field PaA+(0) = k.

We just fix m = μ ⇒ φ(μ) = μ and c = τ ⇒ φ(τ ) = τ , since we restrict our-
selves to morphisms that reduce to the identity on object sets and fix the braiding in
the definition of GRT (k). We only leave choice on the definition of the associativity
homomorphism a = a(x1, x2, x3) and of the infinitesimal braiding h = h(x1, x2) in
the hom-objects of the operad PaA .̂ We then have the following statement:

Proposition 10.3.6. The morphisms of unitary operads in complete Hopf
groupoids φ : PaA+̂ → PaA+̂ which reduce to the identity map on the object sets
ObPaA(r)̂= Ω(r), r > 0, and fix the symmetry isomorphism

φ(τ ) = τ

as in the definition of the graded Grothendieck-Teichmüller group (§10.3.5) are uni-
quely determined by a scalar parameter κ ∈ k and a group-like element of the
complete tensor algebra on two generators f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) such that we have
the following assignments

φ(θ) = λθ, φ(α) = α · f(t12, t23),
in the hom-objects of the operad PaA+̂.

Explanations. We examine the structure of the hom-objects of the operad
PaA+̂ in arity r = 2, 3 in order to determine the form of the homomorphisms
h = φ(θ) and a = φ(α) which determine our morphism φ : PaA+̂ → PaA+̂.

In arity 2, we have p̂(2) = k t12 ⇒ P(HomPaA(2)̂ (μ, μ)) = P(Ûp̂(2)) = p̂(2) =

k t12. We deduce from this relation that our infinitesimal braiding h = h(x1, x2)
has an expression of the form

h(x1, x2) = λt12

in p̂(2), for some parameter λ ∈ k.
In arity 3, we use the Lie algebra decomposition p̂(3) = k z ⊕ L̂(t12, t23) to

obtain, as in the proof of Proposition 10.2.6, that our associativity homomorphism
is given by an expression of the form a(x1, x2, x3) = α · ecz · ep(t12,t23), for some

parameter c ∈ k and a Lie power series p(t12, t23) ∈ L̂(t12, t23). We can yet identify
this exponential Lie power series f(t12, t23) = ep(t12,t23) with a group-like element of

the complete Hopf algebra T̂(t12, t23) = ÛL̂(t12, t23). We still use the unit relation
a(x1, ∗, x3) = 0 to obtain c = 0 and we eventually conclude that our associativity
homomorphism has an expression of the form:

a(x1, x2, x3) = f(t12, t23) ∈ G T̂(t12, t23),

for some group-like element of the complete tensor algebra on two generators
f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2). �

To complete this result, we still write down the coherence constraints of The-
orem 10.3.4 in terms of this pair (λ, f(ξ1, ξ2)) which we associate to our operad
morphism φ : PaA+̂ → PaA+̂. We focus on the case where λ is invertible, because
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we are going to see that we need this assumption λ ∈ k× in order to ensure that
our morphism φ : PaA+̂ → PaA+̂ is invertible, and hence, does define an element
of the graded Grothendieck–Teichmüller group GRT (k). We obtain the following
proposition:

Proposition 10.3.7. The assignments of Proposition 10.3.6

φ(τ ) = τ, φ(θ) = λθ, φ(α) = α · f(t12, t23),
where we assume λ ∈ k× and f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2), determine a well-defined
morphism of unitary operads in complete Hopf groupoids φ : PaA+̂ → PaA+̂ if and
only if the power series f(ξ1, ξ2) satisfies:
(1) the unit relations f(ξ1, 0) = 1 = f(0, ξ2),
(2) the involution relation f(ξ1, ξ2) · f(ξ2, ξ1) = 1,
(3) the hexagon equation f(ξ3, ξ1) ·f(ξ2, ξ3) ·f(ξ1, ξ2) = 1, where (ξ1, ξ2, ξ3) denotes

a triple of variables such that ξ1 + ξ2 + ξ3 = 0,
(4) the semi-classical hexagon equation ξ1 + f(ξ1, ξ2)

−1 · ξ2 · f(ξ1, ξ2)+ f(ξ1, ξ3)
−1 ·

ξ3 · f(ξ1, ξ3) = 0, where (ξ1, ξ2, ξ3) is again a triple of variables such that ξ1 +
ξ2 + ξ3 = 0,

(5) and the pentagon equation f(t12, t23+ t24) ·f(t13+ t23, t34) = f(t23, t34) ·f(t12+
t13, t24 + t34) · f(t12, t23) in the complete Hopf algebra Ûp̂(4).

Proof. We go back to the definition of the composition structure of the op-
erad PaÂ in §10.3.1 in order to make explicit the coherence constraints of The-
orem 10.3.4 for the braiding c = τ , for the infinitesimal braiding h = θ, and for
the associativity isomorphism a = α · f(t12, t23) given in this proposition. We
use the expression of the restriction operators on p(3) to get the unit relations

f(t12, 0) = 1 = f(0, t12) in HomPaA(2)̂ (μ, μ) = G(Ûp̂(2)) as in the proof of Proposi-
tion 10.2.7. We expand the expression of the factors in the pentagon diagram of
Figure 6.1 to get the pentagon equation of the proposition similarly.

In our argument lines, we still use that our group-like power series f(ξ1, ξ2) ∈
G T̂(ξ1, ξ2) can be expressed as the exponential f(ξ1, ξ2) = ep(ξ1,ξ2) of an element

of the free complete Lie algebra on two generators p(ξ1, ξ2) ∈ L̂(ξ1, ξ2), and that
the relation f(ξ1, 0) = 1 = f(0, ξ2) ⇔ p(ξ1, 0) = 0 = p(0, ξ2) is equivalent to the

requirement that this Lie power series p(ξ1, ξ2) ∈ L̂(ξ1, ξ2) =
∏

m≥1 L(ξ1, ξ2) has no
component in weight m = 1.

Recall that the hexagon constraints are equivalent when the symmetry iso-
morphism, such as c = τ , satisfies the involution relation τ (x1, x2)τ (x2, x1) = 1.
We therefore focus on the first hexagon relation, which reads μ(x2, τ (x1, x3)) · α ·
f(t21, t13) ·m(τ (x1, x2), x3) = α · f(t23, t31) · τ (x1, μ(x2, x3)) · α · f(t12, t23) for the
symmetry isomorphism c = τ and the associativity isomorphism a = α · f(t12, t23)
of the proposition. We factorize the associativity isomorphisms α and we simplify
the permutation operators which occur in this relation to get the following reduced
equation

(1) f(t12, t13) = f(t23, t13) · f(t12, t23)
in Ûp̂(3).

We set ξ1 = t12, ξ2 = t23, and ξ3 = −ξ1 − ξ2 ⇔ t13 = ξ3 + z, where z denotes,
as usual, the central element z = t12 + t13 + t23 of the Lie algebra p(3). We use
the relation [z,−] = 0 as in the proof of Proposition 10.2.7 and the observation
that the Lie power series p(−,−) underlying f(−,−) has no component in weight
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m = 1 to get the identities p(ξ3 + z,−) = p(ξ3,−) ⇒ f(ξ3 + z,−) = f(ξ3,−),
p(−, ξ3 + z) = p(−, ξ3) ⇒ f(−, ξ3 + z) = f(−, ξ3), and to obtain the formula

(2) f(ξ1, ξ3) = f(ξ2, ξ3) · f(ξ1, ξ2)
from Equation (1). If we perform the transposition of the variables (ξ1, ξ2) in this
equation, then we obtain f(ξ2, ξ3) = f(ξ1, ξ3) · f(ξ2, ξ1), If we substitute f(ξ2, ξ3)
by this expression in the above equation, then we obtain the relation f(ξ1, ξ3) =
f(ξ1, ξ3)·f(ξ2, ξ1)·f(ξ1, ξ2) which gives the involution relation f(ξ2, ξ1)·f(ξ1, ξ2) = 1
when we mod out the factor f(ξ1, ξ3). In turn, we get the hexagon relation of the
proposition f(ξ3, ξ1) · f(ξ2, ξ3) · f(ξ1, ξ2) = 1 when we carry this factor f(ξ1, ξ3) =
f(ξ3, ξ1)

−1 to the right hand side in the above equation (2).
We factorize and simplify permutation operators, as in the case of the hexagon

relation, to obtain the reduced equation

(3) λ (t13 + t23) = f(t31, t12) · λt13 · f(t13, t32)−1 · f(t12, t23)
+ f(t31, t12) · f(t13, t32)−1 · λt23 · f(t12, t23)

from the semi-classical hexagon relation of Theorem 10.3.4. We again set ξ1 = t12,
ξ2 = t23, ξ3 = −ξ1 − ξ2 = t13 − z ⇔ t13 = z+ ξ3, and we use the same argument as
in the case of the hexagon equation to obtain the formula

(4) λ (z − ξ1) = f(ξ3, ξ1) · λ (z + ξ3) · f(ξ3, ξ2)−1 · f(ξ1, ξ2)
+ f(ξ3, ξ1) · f(ξ3, ξ2)−1 · λξ2 · f(ξ1, ξ2)

from the above equation. We can drop the scalar factor from this equation since we
assume λ ∈ k×. We use the involution and the hexagon equation to get the identities
f(ξ3, ξ1) = f(ξ1, ξ3)

−1, f(ξ3, ξ2)
−1 · f(ξ1, ξ2) = f(ξ1, ξ3), f(ξ3, ξ1) · f(ξ3, ξ2)−1 =

f(ξ1, ξ2)
−1, and we use that z is central to check that these terms vanish in our

formula. We eventually get the relation of the proposition ξ1 + f(ξ1, ξ2)
−1 · ξ2 ·

f(ξ1, ξ2) + f(ξ1, ξ3)
−1 · ξ3 · f(ξ1, ξ3) = 0. �

We already mentioned that the scalar parameter λ ∈ k which we associate to
a morphism of unitary operads in Proposition 10.3.6 is necessarily invertible when
we assume that this morphism φ : PaA+̂ → PaA+̂ is an isomorphism. To check this
claim, we use that the multiplication by this scalar parameter represents the map
induced by our morphism on the k-module P(HomPaA(2)̂ (μ, μ)) = P(Ûp̂(2)) = k t12

in the component of arity two of our operad. We prove that this condition λ ∈ k×

actually suffices to ensure that our morphism is an automorphism:

Proposition 10.3.8. The morphism of unitary operads in complete Hopf group-
oids φ : PaA+̂ → PaA+̂ which we determine by the assignments of Proposition 10.3.6
is an isomorphism if and only if the scalar parameter which we associate to this
morphism in our correspondence is invertible λ ∈ k×.

Proof. We adapt the argument lines of the proof of Proposition 10.2.8, where
we check that the categorical equivalences of operads in Malcev complete groupoids
from the Malcev completion of the parenthesized braid operad to the operad of
chord diagrams are characterized by the same condition. We again only examine
the “if” part of the proposition since we already checked the “only if” part. We
therefore assume λ ∈ k×.

We fix a parenthesized word π ∈ Ω(r), r > 0. We have HomPaA(r)̂ (π, π) = Ûp̂(r)

and E0 HomPaA(r)̂ (π, π) = U p(r), where we consider the enveloping algebra of the
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weight graded Lie algebra p(r) instead of the complete Drinfeld–Kohno Lie algebra.
We just check that our morphism φ : PaA+̂ → PaA+̂ induces an isomorphism on this
graded object. We determine the image of the endomorphism of the object π which
we associate to the generator tij of the complete algebra Ûp̂(r). To explain our
argument, we adopt the convention to use the notation uij for this endomorphism of
the object π, while we keep the notation tij for the endomorphism of a parenthesized
word where we have gathered the variables (xi, xj). We have uij = g · tij · g−1,
where g is the composite of associators and symmetry operators which we use in
this gathering process, and φ(uij) = φ(g) · λtij · φ(g)−1 by construction of our
morphism.

We already observed that the unit condition f(ξ1, 0) = 1 = f(0, ξ2) in Propo-
sition 10.3.7 implies that the Lie power series p(ξ1, ξ2) which we associate to our
associativity isomorphism φ(α) = α · f(t12, t23) = α · ep(t12,t23) has no component

in weight one. We equivalently have f(t12, t23) ≡ 1(mod F2 Ûp̂(3)). To perform

our verifications, we only need the weaker relation f(t12, t23) ≡ 1(mod F1 Ûp̂(3)),

which implies φ(α) = α · f(t12, t23) ≡ α(mod F1 Ûp̂(3)). Since we also require
φ(τ ) = τ in the definition of our morphism φ : PaA+̂ → PaA+̂, we get the rela-

tion φ(g) ≡ g(mod F1 Ûp̂(r)), for our operator g. We consequently have φ(uij) ≡
g · λtij · g−1 ≡ λuij(mod F2 U p(r)). We conclude from this computation that φ is

given by the multiplication by the scalar λ ∈ k× on the weight graded associative
algebra E0 HomPaA(r)̂ (π, π), and hence, defines an isomorphism at this level. The
result follows. �

We now study the composite φ ◦ ψ : PaA+̂ → PaA+̂ of automorphisms φ, ψ :

PaA+̂
�−→ PaA+̂ in the graded Grothendieck–Teichmüller group GRT (k). We as-

sume that these automorphisms are, under the correspondence of Proposition 10.3.6,
associated to the pairs (λ, f(ξ1, ξ2)), (μ, g(ξ1, ξ2)) ∈ k× ×G T̂(ξ1, ξ2). We have the
following statement:

Proposition 10.3.9. The composite φ ◦ ψ : PaA+̂ → PaA+̂ of the above mor-
phisms φ, ψ : PaA+̂ → PaA+̂ satisfies

(φ ◦ ψ)(θ) = λμ θ,

(φ ◦ ψ)(α) = α · f(t12, t23) · g(λ t12, f(t12, t23)
−1 · λ t23 · f(t12, t23)).

Proof. We trivially have (φ ◦ ψ)(θ) = φ(μ θ) = λμ θ and (φ ◦ ψ)(α) = φ(α ·
g(t12, t23)) = φ(α)·φ(g(t12, t23)). We use that the factor g(t12, t23) in this expression
represents an endomorphism of the object π = μ(μ(x1, x2), x3) in the complete
Hopf groupoid PaA(3) .̂ We have φ(g(t12, t23)) = g(φ(t12), φ(t23)), and from the
construction of Theorem 10.3.4, we easily check that we have the formulas φ(t12) =
λ t12 and φ(t13) = f(t12, t23)

−1 ·λ t23 ·f(t12, t23) in this hom-object HomPaA(3)̂ (π, π).

We eventually get the expression of the proposition for (φ ◦ ψ)(α). �

We summarize our results in the following theorem:

Theorem 10.3.10 (Equivalence between the operadic approach and Drinfeld’s
definition of the graded Grothendieck–Teichmüller group [57, §5]). The correspon-
dence of Proposition 10.3.6 gives a one-to-one correspondence between the automor-
phisms of the graded Grothendieck–Teichmüller group GRT (k) and the set of pairs
(λ, f(ξ1, ξ2)), where λ is an invertible scalar parameter λ ∈ k×, as we require in
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Proposition 10.3.8, and f(ξ1, ξ2) is a group-like power series f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2)
which satisfies the unit, involution, hexagon, semi-classical hexagon and pentagon
relations ( 1-5) of Proposition 10.3.7.

Furthermore, the composition operation of the group GRT (k) corresponds on
this set of pairs to the operation:

(λ, f(ξ1, ξ2)) � (μ, g(ξ1, ξ2)) := (λμ, f(ξ1, ξ2) · g(λ ξ1, f(ξ1, ξ2)
−1 · λ ξ2 · f(ξ1, ξ2)))

determined in Proposition 10.3.9. �

We note that the parameter λ ∈ k× does not occur in the equations of Propo-
sition 10.3.7. We give an interpretation of this observation in terms of the group
GRT (k) in the next paragraph.

10.3.11. The semi-direct product decomposition of the graded Grothendieck–
Teichmüller group. We have an obvious morphism λ : GRT (k) → k× which maps
any element of the graded Grothendieck–Teichmüller group φ ∈ GRT (k) repre-
sented by an automorphism φ : PaÂ→ PaÂ to the scalar λ ∈ k× such that
φ(θ) = λθ. We then set:

GRT 1(k) := ker(λ : GRT (k) → k×).

We can equivalently define this group GRT 1(k) as the subgroup of the graded
Grothendieck–Teichmüller group formed by the automorphisms φ : PaA+̂ → PaA+̂

which fix the infinitesimal braiding φ(θ) = θ in addition to the symmetry homo-
morphism φ(τ ) = τ .

We explained in §10.2.4 that the multiplicative group operates on the chord
diagram operad through automorphisms of unitary operads in Malcev complete
groupoids ρλ : CD+̂ → CD+̂, for each λ ∈ k×. We can trivially lift this action to
the operad of parenthesized chord diagrams to associate an element of the graded
Grothendieck–Teichmüller group ρλ ∈ GRT (k) to any scalar λ ∈ k×. This mor-
phism ρ : k× → GRT (k) clearly defines a section of our map λ : GRT (k) → k×.
The full graded Grothendieck–Teichmüller group accordingly admits a semi-direct
product decomposition:

GRT (k) = k×
�GRT 1(k),

with the group GRT 1(k) as normal factor.
In the description of Proposition 10.3.6-10.3.7 the elements of this subgroup

GRT 1(k) correspond to the pairs (λ, f(ξ1, ξ2)) such that λ = 1. Furthermore, the
section ρ : k× → GRT (k) of our morphism λ : GRT (k) → k× maps the scalar
λ ∈ k× to the element of the graded Grothendieck–Teichmüller group represented
by the pair (λ, 1) where we consider the trivial power series f(ξ1, ξ2) ≡ 1. We
easily check that the action of the multiplicative group k× on GRT 1(k) which we
associate to this section corresponds to the operation cλ : f(ξ1, ξ2) �→ f(λ ξ1, λ ξ2),

λ ∈ k×, on the set of group-like power series f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2).
We will explain in the next section that GRT (k) admits a decomposition

GRT (k) = limm GRT 〈m〉(k), where each GRT 〈m〉(k) forms an algebraic group. We

similarly have GRT 1(k) = limm GRT 1
〈m〉(k) for our subgroup GRT 1(k), One may

see that the terms of this decomposition GRT 1
〈m〉(k) are unipotent algebraic groups

(see §10.4.5 and §10.4.12). We say that GRT 1(k) has a pro-unipotent structure to
express this feature.
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To complete our account, we explain the definition of an action of the graded
Grothendieck–Teichmüller group on the set of associators. We rely on the following
proposition which is a straightforward variation on the observation of Proposi-
tion 6.1.10:

Proposition 10.3.12. Each categorical equivalence of operads in Malcev com-
plete groupoids φ : PaB+̂ → CD+̂, which we associate to an element of the set of
Drinfeld’s associators Ass(k), admits a unique lifting

PaCD+̂

PaB+̂

∃!

φ
CD+̂

given by the identity map at the object set level and which defines an isomorphism

φ : PaB+̂
�−→ PaCD+̂ from the Malcev completion of the parenthesized braid operad

PaB+̂ to the operad of parenthesized chord diagrams PaCD+̂. �
We use the obvious composition operation

PaCD+̂

φ
PaCD+̂

PaB+̂

∃!

φ◦ψ

ψ
CD+̂ CD+̂

to determine the action of an automorphism φ : PaCD+̂
�−→ PaCD+̂, which repre-

sents an element of the graded Grothendieck–Teichmüller group GRT (k), on the
categorical equivalence of operads in Malcev complete groupoids ψ : PaB+̂ → CD+̂,
which we use to represent an element of the set of Drinfeld’s associator Ass(k). We
easily check that:

Proposition 10.3.13. The above construction gives a simply transitive action
of the graded Grothendieck–Teichmüller group GRT (k) on the set of Drinfeld’s
associator Ass(k).

Furthermore, if we assume that the automorphism φ : PaCD+̂
�−→ PaCD+̂ which

defines our element of the graded Grothendieck–Teichmüller group GRT (k) is rep-
resented by the pair (λ, f(ξ1, ξ2)) in the correspondence of Proposition 10.3.6, while
the categorical equivalence of operads ψ : PaB+̂ → CD+̂, which defines our element
of the set of associators Ass(k), is represented by the pair (μ, g(ξ1, ξ2)) in the cor-
respondence of Proposition 10.2.6, then our composition operation on morphisms
φ ◦ ψ : PaB+̂ → CD+̂ corresponds to the operation on pairs such that:

(λ, f(ξ1, ξ2)) � (μ, g(ξ1, ξ2)) := (λμ, f(ξ1, ξ2) · g(λ ξ1, f(ξ1, ξ2)
−1 · λ ξ2 · f(ξ1, ξ2))).

Proof. The first assertion of this proposition is immediate from our construc-
tion of this action in terms of the composition of morphisms. To check that the
action is simply transitive, we just use that two isomorphisms of operads in Malcev
complete groupoids from PaB+̂ to PaCD+̂ differ by an automorphism of the operad
PaCD+̂ (which is also defined by the identity map at the object set level when this
is the case of our isomorphisms).
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The second claim of the proposition follows from the same straightforward
inspection as in Proposition 10.3.9, where we determine the product operation of
the graded Grothendieck–Teichmüller group. We leave the details of this verification
as an exercise. �

We easily see that the subset Assκ(k) of the set of associators Ass(k) asso-
ciated to a fixed value of the parameter κ ∈ k× inherits a simply transitive ac-
tion of the subgroup GRT 1(k) of §10.3.11, while we retrieve the bijections ρλ :

Assκ(k)
�−→ Assλκ(k) of §10.2.11 when we consider the action of the automorphisms

ρλ ∈ GRT (k), λ ∈ k×, which we associate to our section of the multiplicative group
in GRT (k).

10.4. Tower decompositions, the graded Grothendieck–Teichmüller Lie
algebra and the existence of rational Drinfeld’s associators

In the concluding paragraph of §10.2, we briefly explained that we can use the
natural tower decomposition of the chord diagram operad CD+̂ = limm qm CD+̂ to
get a tower decomposition of the set of associators Ass(k) = limm Ass〈m〉(k). We
are going to use this tower in order to prove the existence of elements defined over
any ground field of characteristic zero k in the set of associators Ass(k).

In the overview of §10.2, we mentioned that the graded Grothendieck–Teich-
müller group is also endowed with a decomposition GRT (k) = limm GRT 〈m〉(k),
where each GRT 〈m〉(k) is an algebraic group acting on Ass〈m〉(k). We actu-
ally prove that the morphisms pm : GRT 〈m〉(k) → GRT 〈m−1〉(k) which occur
in this tower decomposition of the graded Grothendieck–Teichmüller group are
surjective in order to establish that the same statement holds for the morphisms
pm : Ass〈m〉(k) → Ass〈m−1〉(k) which define the tower decomposition of the set of
associators. We explain the definition of these tower decompositions and we check
these surjectivity statements in this section. By the way, we determine the Lie
algebra grt〈m〉 of the algebraic groups GRT 〈m〉(k), as well as the Lie algebra of the

pro-algebraic group GRT (k), which we define by grt = limm grt〈m〉. We revisit the
definition of this Lie algebra grt in the next chapter. We then check that this ob-
ject naturally occurs as the weight graded Lie algebra associated to a pro-unipotent
version of the Grothendieck–Teichmüller group (see §11.4).

We examine the definition of the tower decomposition of the chord diagram op-
erad CD+̂ = limm qm CD+̂ first. We also deal with an analogous decomposition of
the operad of parenthesized braids PaCD+̂ = limm qm PaCD+̂ and with a counter-
part of these tower decompositions for the operads in complete Hopf groupoids Â
and PaÂunderlying CD+̂ and PaCD+̂. We explain the definition of these decom-
positions in the context of non-unitary operads first, and we check the extension of
our constructions to unitary operads afterwards, as usual.

10.4.1. The tower decomposition of the chord diagram operad. In §9.2, we ex-
plain a general definition of tower decomposition for operads in the category of
Malcev complete groupoids. We can simplify this construction in the case of the
chord diagram operad CD̂ since the components of this operad CD(r) ,̂ r > 0,

are defined by the Malcev complete groups G = G(Ûp̂(r)) which we identify with

groupoids with a single object. Recall that we also write CD(r)̂= G(Ûp̂(r)) when
we use this identity. We merely set:

qm CD(r)̂= G(Ûp̂(r))/ Fm+1 G(Ûp̂(r)),
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for each arity r > 0, where we consider the natural filtration G = F1 G ⊃ · · · ⊃
Fm G ⊃ · · · of our Malcev complete group G = G(Ûp̂(r)), and we again identify the
quotient groups associated to this filtration qmG = G/ Fm+1 G with groupoids with
a single object. We readily check that the collection qm CD̂= {qm CD(r) ,̂ r > 0}
inherits an operad structure so that we have an identity CD̂= limm qm CD̂ in the
category of operads, because the operations which define the structure of the chord
diagram operad CD̂ are determine by filtration preserving morphisms (since we
form this operad in the category of Malcev complete groups). In what follows, we
also write:

qm CD̂= CD̂/ Fm+1 CD̂
when we use this definition of the operad qm CD .̂ We moreover set:

Fm+1 CD(r)̂= Fm+1 G(Ûp̂(r)),

for each r > 0. We use that this collection of groups Fm+1 CD̂= {Fm+1 CD(r) ,̂ r >
0} inherits an operad structure and we regard the object qm CD̂ as an aritywise
quotient of the operad of chord diagrams CD̂by this suboperad in the category of
groups Fm+1 CD .̂

We can also retrieve the natural tower decomposition of the operad of paren-
thesized chord diagrams PaCD̂= limm qm PaCD̂by applying our pullback process
P �→ ω∗ P levelwise to the tower decomposition of the chord diagram operad CD̂=
limm qm CD .̂ We explicitly have qm PaCD̂= ω∗qm CD ,̂ for each level m ≥ 1, so
that this operad qm PaCD̂= {qm PaCD(r) ,̂ r > 0} is identified with the operad
in groupoids which has the magma operad as operad of objects Ob qm PaCD̂= Ω ,
and whose morphism sets are defined by Morqm PaCD(r)̂ (p, q) = Morqm CD(r)̂ (pt , pt),

for each pair of parenthesized words p, q ∈ Ω(r).
We can moreover use the result of Proposition 8.2.5 to identify the operads

qm CD̂with the image of an operad in complete Hopf algebras under the group-
like element construction of §9.2. We explicitly have

qm CD̂= G(qm A )̂,

for the operad in complete Hopf algebras qm Â= {qm A(r) ,̂ r > 0} such that:

qm A(r)̂= Û(p̂(r)/ Fm+1 p̂(r)),

for each arity r > 0, where we consider the natural filtration ĝ = F1 ĝ ⊃ · · · ⊃ Fm ĝ ⊃
· · · of the complete Drinfeld–Kohno Lie algebras ĝ = p̂(r). We again identify these
complete Hopf algebras with complete Hopf groupoids with a single object. We
still use that the structure morphisms of the Drinfeld–Kohno Lie algebra operad
preserve filtrations in order to check that each of these collections of complete Hopf
algebras qm Â= {qm A(r) ,̂ r > 0} inherits an operad structure. We accordingly
have a tower decomposition Â= limm qm Âin the category of operads in complete
Hopf groupoids.

We can apply our pullback process to these operads levelwise in order to retrieve
a tower of operads in complete Hopf groupoids qm PaÂ= ω∗qm A, which have the
magma operad as object set operad Ob qm PaÂ = Ω for all m ≥ 0, and which
define a counterpart, in the category of operads in complete Hopf groupoids, of
the tower decomposition of the parenthesized chord operad PaCD .̂ We explicitly
have qm PaCD̂ = G(qm PaA )̂ for each level m ≥ 1, and we have the identity
PaÂ = limm qm PaÂ which gives PaCD̂ = limm qm PaCD̂ when we apply the
group-like element functor.
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We have an obvious extension of these tower decompositions for the unitary
operads CD+̂, A+̂, PaCD+̂ and PaA+̂.

We now have the following assertions:

Proposition 10.4.2.
(a) Let φ : PaB+̂ → qm CD+̂ be any morphism of operads in Malcev complete

groupoids. This morphism admits a factorization:

PaB+̂

φ
qm CD+̂

qm PaB+̂

∃!φ̄

,

where we consider the quotient qm PaB+̂ of the Malcev completion of the operad of
parenthesized braids PaB+̂.

(b) Every morphism φ : PaCD+̂ → qm PaCD+̂ similarly admits a factorization

PaCD+̂

φ
qm PaCD+̂

qm PaCD+̂

∃!φ̄

,

where we consider the quotient qm PaCD+̂ of the operad of parenthesized chord
diagrams PaCD+̂, and we have an analogous statement for the morphism of unitary
operads in complete Hopf groupoids φ : PaA+̂ → qm PaA+̂ which underlies such a
morphism φ : PaCD+̂ → qm PaCD+̂.

Proof. We apply the general result of Proposition 9.2.5 to the operads G =
PaB+̂,PaCD+̂ and H = CD+̂,PaCD+̂ in order to get the assertions of this propo-
sition. �

10.4.3. The tower decomposition of the set of associators. We now consider
the set of operad morphisms φ : PaB+̂ → qm+1 CD+̂ such that the factorization of
Proposition 10.4.2(a) induces a categorical equivalence of operads in Malcev com-
plete groupoids from qm+1 PaB+̂ to qm+1 CD+̂. We still use that any such morphism
φ : PaB+̂ → qm+1 CD+̂ occurs as the unique extension, to the Malcev complete op-
erad PaB+̂, of a morphism of operads in groupoids φ : PaB+ → qm+1 CD+̂ which is
defined on the ordinary operad of parenthesized braids PaB+. Then we can apply
the result of Theorem 6.2.4 in order to determine such a morphism by giving the
image of the braiding isomorphism and of the associativity isomorphism of PaB+ in
the operad qm+1 CD+̂. Furthermore, we can obviously adapt the analysis of §10.2
to the case of the operads Q = qm+1 CD+̂ in order to make this correspondence
explicit.

We first get, as in Proposition 10.2.6, that a morphism of unitary operads in
groupoids φ : PaB+ → qm+1 CD+̂ is determined by a pair (κ, f(ξ1, ξ2)), where κ is

a scalar parameter such that φ(τ ) = eκt12/2, and where f(ξ1, ξ2) now represents the

class of a group-like power series in the quotient group G T̂(ξ1, ξ2)/ Fm+2 G T̂(ξ1, ξ2)
so that we have the identity:

φ(α) ≡ f(t12, t23) (mod Fm+2 G(Ûp̂(3)))
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in Morqm+1 CD(3)̂ (pt , pt) = G(Ûp̂(3))/ Fm+2 G(Ûp̂(3)). We also get that this group-

like power series f(ξ1, ξ2) has to satisfy the relations of Proposition 10.2.7 modulo
factors of filtration ≥ m + 2 in the Malcev complete groups where we express
these relations. Moreover, we easily check that the morphism of operads in Malcev
complete groupoids φ : PaB+̂ → qm+1 CD+̂ which extends such a morphism φ :
PaB+ → qm+1 CD+̂ induces a categorical equivalence of operads from qm+1 PaB+̂

to qm+1 CD+̂ if and only if the scalar parameter which we associate to this morphism

is invertible κ ∈ k×.
We define Assκ〈m〉(k) as the set of (classes of) group-like power series f(ξ1, ξ2) ∈

G T̂(ξ1, ξ2)/ Fm+2 G T̂(ξ1, ξ2) which fulfill the equations of Proposition 10.2.7 modulo
factors of filtration ≥ m + 2. We also define Ass〈m〉(k) as the union of the sets

Assκ〈m〉(k) associated to an invertible parameter κ ∈ k×. We still have a bijection

ρλ : Assκ〈m〉(k)
�−→ Assλκ〈m〉(k), for every invertible scalar λ ∈ k×, which is yielded

by the re-scaling operation ρλ : f(ξ1, ξ2) �→ f(λ ξ1, λ ξ2) at the power series level,
and which reflects the action of the group k× on the chord diagram operad CD+̂

(see §10.2.4).
We observed in the proof of Proposition 10.2.7 that the unit relations of the

definition of an associator forces the vanishing of our power series f(ξ1, ξ2) in weight
1. We accordingly get that any morphism φ : PaB+ → q1 CD+̂, where we consider
the first quotient q1 CD+̂ of the chord diagram operad CD+̂, is uniquely determined
by the value of the scalar parameter κ ∈ k such that φ(τ ) = exp(κt12/2). We
equivalently have an identity:

MorGrd Op(PaB+, q1 CD+̂) = exp(k t12),

when we consider the morphism set associated to these objects PaB+ and q1 CD+̂

in the category of unitary operads in groupoids, while the construction of the set
Ass〈m〉(k) implies that we have a fibered product decomposition:

Ass〈m〉(k) = MorGrd Op(PaB+, qm+1 CD+̂)×exp(k t12) exp(k
× t12)

for each level m ≥ 0.
We consider the obvious composition with the morphisms of the tower decom-

position of the chord diagram operad CD+̂ → · · · → qm CD+̂ → · · · → q1 CD+̂

to define the morphisms of our tower decomposition of the set of associators. We
easily see that these morphisms correspond to the obvious reduction operation in
our power series description of the sets Ass〈m〉(k), m ≥ 0. We have the relation

CD+̂ = lim
m

qm CD+̂ ⇒ MorGrd Op(PaB+,CD+̂) = lim
m

MorGrd Op(PaB+, qm+1 CD+̂)

at the morphism set level. From this relation, we readily get the identity:

Ass(k) = lim
m

Ass〈m〉(k)

when we pass to the set of associators. We can also deduce this relation from our
power series description. We have a similar relation Assκ(k) = limm Assκ〈m〉(k) for

the set of associators Assκ(k) associated to a fixed parameter κ ∈ k×.
10.4.4. The tower decomposition of the graded Grothendieck–Teichmüller group.

We proceed as in the previous paragraph to define the tower decomposition of
the graded Grothendieck–Teichmüller group. To be explicit, we define the term
GRT 〈m〉(k) of this tower decomposition GRT (k) = limm GRT 〈m〉(k) as the set of
morphisms of operads in Malcev complete groupoids φ : PaCD+̂ → qm+1 PaCD+̂
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which are the identity at the object set level, fix the symmetry isomorphism φ(τ ) =
τ , and are such that the factorization of Proposition 10.4.2(b) induces an isomor-
phism from the operad qm+1 PaCD+̂ to itself. We provide this group GRT 〈m〉(k)
with the obvious composition operation, which we form at the level of the auto-
morphism group of the operad qm+1 PaCD+̂.

We can also use that a morphism of operads in Malcev complete groupoids
φ : PaCD+̂ → qm+1 PaCD+̂ is determined by an underlying morphism of operads in
complete Hopf groupoids φ : PaA+̂ → qm+1 PaA+̂. We then apply the result of The-
orem 10.3.4 to determine these morphisms by fixing the image of the infinitesimal
braiding and of the associativity homomorphism of PaA+̂ in the operad qm+1 PaA+̂.
We adapt the analysis of §10.3 to the case of these operads Q = qm+1 PaA+̂ in order
to make this correspondence explicit. We first get, as in Proposition 10.3.6, that our
morphisms of unitary operads in complete Hopf groupoids φ : PaA+̂ → qm+1 PaA+̂

are determined by pairs (λ, f(ξ1, ξ2)), where λ is a scalar parameter such that
φ(θ) = λθ, and where f(ξ1, ξ2) now represents the class of a group-like power series
such that we have the identity:

φ(α) = α · f(t12, t23) (modFm+2 G(Ûp̂(3)))

in the quotient set:

G
(
Homqm+1 PaA(3)̂ ((x1x2)x3, x1(x2x3))

)
= α · G

(
Û(p̂(3)/ Fm+2 p̂(3))

)
= α · G

(
Ûp̂(3)
)
/ Fm+2 G

(
Ûp̂(3)
)
.

We similarly see that this group-like power series f(ξ1, ξ2) has to satisfy the equa-
tions of Proposition 10.3.7 modulo factors of filtration ≥ m + 2 in the Malcev
complete groups where we express these relations. Moreover, we easily check that
this morphism of operads in complete Hopf groupoids φ : PaA+̂ → qm+1 PaA+̂ in-
duces an automorphism on the operad qm+1 PaA+̂ if and only if the scalar parameter

which we associate to this morphism is invertible λ ∈ k×.
We consider the obvious composition operation with the morphisms of the

tower decomposition of the parenthesized chord diagram operad PaCD+̂ → · · · →
qm PaCD+̂ → · · · → q1 PaCD+̂ to define the morphisms of our tower decomposition
of the graded Grothendieck–Teichmüller group GRT (k) → · · · → GRT 〈m〉(k) →
· · · → GRT 〈0〉(k). We can identify these morphisms with the obvious reduction
operation in our power series description of the groups GRT 〈m〉(k) and we easily
deduce the relation GRT (k) = limm GRT 〈m〉(k) from this description. We also
have the identity:

GRT 〈0〉(k) = k×,

which still follows from the observation that the unit relations of Proposition 10.3.7
forces the vanishing relation f(ξ1, ξ2) ≡ 1 in the group G T̂(ξ1, ξ2)/ F2 G T̂(ξ1, ξ2)
(see the proof of Proposition 10.3.7 for details).

We readily check, from our operadic constructions, that the action of the graded
Grothendieck–Teichmüller group GRT (k) on the set of associators Ass(k) decom-
poses as a levelwise action of the groups GRT 〈m〉(k) on the sets Ass〈m〉(k) which
define the tower decomposition of our object Ass(k) = limm Ass(k). We easily see
that this action is simply transitive at each level too.

We can readily adapt the definition of the tower decomposition GRT (k) =
limm GRT 〈m〉(k) to the group GRT 1(k) of §10.3.11 which can accordingly be iden-

tified with the limit GRT 1(k) = limm GRT 1
〈m〉(k) of a tower of groups such that
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GRT 1
〈m〉(k) = ker(λ : GRT 〈m〉(k) → k×), where we consider an obvious analogue

on the group GRT 〈m〉(k) of the morphism λ : GRT (k) → k× of §10.3.11. We also

have an identity GRT 〈m〉(k) = k×
�GRT 1

〈m〉(k) at each level of our tower, and

we can check that the action of the group GRT 〈m〉(k) on Ass〈m〉(k) restricts to

a simply transitive action of the group GRT 1
〈m〉(k) on the set Assκ〈m〉(k), for any

κ ∈ k×.
10.4.5. Pro-algebraic group structures. In §10.3, we use the relation T̂(ξ1, ξ2) =

ÛL̂(ξ1, ξ2) and the exponential mapping to get that the group-like power series

f(ξ1, ξ2) ∈ G T̂(ξ1, ξ2) in our description of the graded Grothendieck–Teichmüller
group GRT (k) is determined by the exponential f(ξ1, ξ2) = ep(ξ1,ξ2) of a Lie power

series p(ξ1, ξ2) ∈ L̂(ξ1, ξ2).
For the quotient group G = G T̂(ξ1, ξ2)/ Fm+2 G T̂(ξ1, ξ2), which we use in the

description of the groups GRT 〈m〉(k), we have an identity G = G Û(L), where we set

L = L̂(ξ1, ξ2)/ Fm+2 L̂(ξ1, ξ2) (see Proposition 8.2.5). We deduce from this expres-
sion that the class of the group-like power series f(ξ1, ξ2) which we consider in our
description of GRT 〈m〉(k) can be represented by the exponential f(ξ1, ξ2) = ep(ξ1,ξ2)

of an element of this truncated free Lie algebra on two generators p(ξ1, ξ2) ∈ L.
Let us observe that this truncated Lie algebra forms a module of finite rank over
the ground field, since we have L =

∏m+1
s=1 Ls(ξ1, ξ2), where we use the nota-

tion Ls(ξ1, ξ2) for the homogeneous component of weight s of the free Lie algebra
L(ξ1, ξ2) (as usual).

The elements of the group GRT 〈m〉(k) are therefore parameterized by a finite
number of variables. We easily see that the relations of Proposition 10.3.7 and the
composition operation of Proposition 10.3.9 have an algebraic expression in terms
of these variables. Each group GRT 〈m〉(k) therefore inherits the structure of an
algebraic group. We can use similar observations to check that Ass〈m〉(k) forms an
algebraic torsor under the action of this group GRT 〈m〉(k) in the sense of algebraic
group theory (see the textbook [144, §III.4], for instance, for the explicit definition
of the notion of a torsor).

In the case of the subgroup GRT 1
〈m〉(k) = ker(λ : GRT 〈m〉(k) → k×), one can

observe further that this algebraic structure provides GRT 1
〈m〉(k) with the structure

of a unipotent algebraic group in the sense of §8.2.9 (see the overview of §10.4.12
for a hint on the proof of this observation). In what follows, we say that the
group GRT (k) is pro-algebraic to assert that this group decomposes as the limit
GRT (k) = limm GRT 〈m〉(k) of a tower of algebraic groups GRT 〈m〉(k), m ≥ 0,

while we say that the group GRT 1(k) is pro-unipotent.
10.4.6. The graded Grothendieck–Teichmüller Lie algebra. We use the notation

grt〈m〉 for the Lie algebra of the algebraic group GRT 〈m〉(k), for each m ≥ 0. We
also set grt = limm grt〈m〉 to define the Lie algebra of the pro-algebraic group

GRT (k). We adopt similar conventions for the tower of Lie algebras associated to
the groups GRT 1

〈m〉(k), m ≥ 0. We have an identity grt = k� grt1 which reflects the
semi-direct product decomposition of the graded Grothendieck–Teichmüller group
GRT (k) = k×

�GRT 1(k), and we similarly have grt〈m〉 = k� grt1〈m〉, at each level
m ≥ 0.

We can easily get a description of these Lie algebras by using the explicit
definition of the elements of the graded Grothendieck–Teichmüller group as pairs
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(λ, f(ξ1, ξ2)), where λ ∈ k× and we assume f(ξ1, ξ2) = ep(ξ1,ξ2) for a Lie power

series p(ξ1, ξ2) ∈ L̂(ξ1, ξ2). We use standard methods of algebraic group theory to
determine our Lie algebras from this representation (see for instance [180, §12.2]).
In short, we consider a group-like element fε(ξ1, ξ2) = eεp(ξ1,ξ2), where ε is a formal
parameter such that ε2 = 0, and we expand the relations of Proposition 10.3.7 in
terms of this parameter ε to get the defining equations of our Lie algebra.

We easily obtain that the Lie algebra grt1 consists of the Lie power series
p(ξ1, ξ2) ∈ L̂(ξ1, ξ2) which satisfy:
(1) the unit relations p(ξ1, 0) = 0 = p(0, ξ2),
(2) the involution relation p(ξ1, ξ2) + p(ξ2, ξ1) = 0,
(3) the hexagon equation p(ξ3, ξ1) + p(ξ2, ξ3) + p(ξ1, ξ2) = 0, where (ξ1, ξ2, ξ3) de-

notes a triple of variables such that ξ1 + ξ2 + ξ3 = 0,
(4) the semi-classical hexagon equation [ξ2, p(ξ1, ξ2)] + [ξ3, p(ξ1, ξ3)] = 0, where

(ξ1, ξ2, ξ3) is again a triple of variables such that ξ1 + ξ2 + ξ3 = 0,
(5) and the pentagon equation p(t12, t23 + t24) + p(t13 + t23, t34) = p(t23, t34) +

p(t12 + t13, t24 + t34) + p(t12, t23) in the complete Lie algebra p̂(4).

We just consider truncated Lie power series p(ξ1, ξ2) ∈ L̂(ξ1, ξ2)/ Fm+2 L̂(ξ1, ξ2) in
the case of the Lie algebras grt1〈m〉, and we assume that the above equations are

satisfied modulo terms of filtration ≥ m+ 2 in the complete Lie algebras where we
express these relations.

We can also get the expression of the Lie bracket on grt1 in terms of this
description by computing the differential of the adjoint action of the pro-algebraic
group GRT 1(k) on grt1 (see for instance [33, §§3.13-3.14]). We use the notation
〈−,−〉 for this Lie bracket which differs from the natural Lie bracket [−,−] of Lie
power series. We explicitly have the relation:

〈p(ξ1, ξ2), q(ξ1, ξ2)〉 = [p(ξ1, ξ2), q(ξ1, ξ2)] +Dpq(ξ1, ξ2)−Dqp(ξ1, ξ2),

for any p(ξ1, ξ2), q(ξ1, ξ2) ∈ grt1, where Dp : L̂(ξ1, ξ2) → L̂(ξ1, ξ2) denotes the
derivation of the free complete Lie algebra such that Dp(ξ1) = 0 and Dp(ξ2) =

[p(ξ1, ξ2), ξ2], for any p = p(ξ1, ξ2) ∈ L̂(ξ1, ξ2). For the semi-direct product grt =
k� grt1, we get:〈
(λ, p(ξ1, ξ2)), (μ, q(ξ1, ξ2))〉 =

(
0, 〈p(ξ1, ξ2), q(ξ1, ξ2)〉+ λDq(ξ1, ξ2)− μDp(ξ1, ξ2)

)
for any (λ, p(ξ1, ξ2)), (μ, q(ξ1, ξ2)) ∈ grt, whereD : L̂(ξ1, ξ2) → L̂(ξ1, ξ2) now denotes

the derivation of the free complete Lie algebra L̂(ξ1, ξ2) such that Dqn(ξ1, ξ2) =
nqn(ξ1, ξ2), for any Lie polynomial qn(ξ1, ξ2) ∈ Ln(ξ1, ξ2) of homogeneous weight
n ≥ 1. This Lie bracket is often called the Ihara Lie bracket in the literature,
because it corresponds to a Lie bracket introduced by Ihara for the study of ac-
tions of the absolute Galois group on a pro-l-version of the fundamental group of
P1 \{0, 1,∞} (see [93]).

We do not really use the expression of the Ihara Lie bracket in this book. We
only use the defining equations (1-5) of the Lie algebra. We therefore skip the
verification of the above formulas and we leave this computation as an exercise.

We are going to see that this Lie algebra grt actually decomposes as a product
of homogeneous components grt =

∏
m grtm and can therefore be identified with
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the obvious complete Lie algebra associated to a weight graded Lie algebra. We
rely on the following observation:

Theorem 10.4.7 (V. Drinfeld [57, Proposition 5.7]). The semi-classical hexa-
gon equation ( 4) in the description of the graded Grothendieck–Teichmüller Lie
algebra grt1 in §10.4.6 is a consequence of the other relations ( 1), ( 2), ( 3), and
( 5).

Proof (ideas and references). We give a summary of the ideas of the
cited reference [57, Proposition 5.7]. We consider the Lie power series

s(ξ2, ξ3) = [ξ2, p(ξ1, ξ2)] + [ξ3, p(ξ1, ξ3)] ∈ L̂(ξ2, ξ3),

where we use the identity ξ1 = −ξ2 − ξ3. We trivially have s(ξ2, ξ3) = s(ξ3, ξ2).
This Lie power series s(ξ2, ξ3) vanishes in weight 2, because the unit relation (1)
implies that the Lie power series p(ξ1, ξ2) vanishes in weight 1 (see the proof of
Proposition 10.2.7 for the detailed argument).

The first step of the proof of Theorem 10.4.7 consists in proving that this Lie
power series satisfies the cocycle relation

∂s(t14, t24, t34) = s(t14, t24)− s(t14, t24 + t34) + s(t14 + t24, t34)− s(t24, t34) = 0

in the complete free Lie algebra L̂(t14, t24, t34). We use a suitable combination of
involution, pentagon and hexagon relations to get this result (see [57, Proposition
5.7] and [16, §4.5] for details on this verification). This equation asserts that the Lie
power series s(ξ2, ξ3) represents a cocycle of degree 2 in Lazard’s complex of the Lie
analyzer (see [114, §8]). This cocycle is automatically a coboundary, because the
degree n cohomology of an analyzer vanishes in weight m �= n when we work over
a field of characteristic zero (see [114, Théorème 10.1bis]), and we already observed
that our Lie power series s(ξ2, ξ3) has only components of weight m �= 2. Hence,
we have the coboundary relation s(ξ2, ξ3) = q(ξ2 + ξ3)− q(ξ2)− q(ξ3) = ∂q(ξ2, ξ3),

for some Lie power series on one variable q(ξ) ∈ L̂(ξ), which necessarily reduces to
a term of weight one q(ξ) = kξ since the complete free Lie algebra on one generator

L̂(ξ) vanishes outside this range. The conclusion s(ξ2, ξ3) = 0 follows. �

We study the weight decomposition of the Lie algebra grt more thoroughly in
a subsequent paragraph (see §10.4.12). We just use the following consequence of
the result of Theorem 10.4.7 for the moment:

Proposition 10.4.8 (V. Drinfeld [57, Proof of Proposition 5.8], see also [16,
Proof of Theorem 4]). The morphisms pm : grt〈m〉 → grt〈m−1〉 in the tower decom-
position of the graded Grothendieck–Teichmüller Lie algebra grt are surjective. The
same is true for the morphisms pm : GRT 〈m〉(k) → GRT 〈m−1〉(k) in the tower de-
composition of the graded Grothendieck–Teichmüller group GRT (k), for any charac-
teristic zero ground field k, and we have obvious analogous results for the tower de-
composition of the Lie algebra grt1 of the group GRT 1(k) = ker(λ : GRT (k) → k×).

Proof. We can focus on the case of the Lie algebra grt1 and of the group
GRT 1(k) since we have the semi-direct product decompositions grt〈m〉 = k� grt1〈m〉
and GRT 〈m〉(k) = k×

�GRT 1
〈m〉(k) for each level m ≥ 0.

We use that the relations of §10.4.6 decompose as a system of equations of
homogeneous weight. We get that the verification of these equations modulo terms
of filtration ≥ m + 2 in the definition of the Lie algebra grt1〈m〉 is equivalent to
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the verification of the homogeneous components of our equations in each weight
n ≤ m+ 1.

We see that the homogeneous components of weight n of the unit relations (1),
of the involution relation (2), of the hexagon relation (3), and of the pentagon
relation (5) of §10.4.6 only depend on the homogeneous component of weight n
of our Lie power series p(ξ1, ξ2) =

∑
n pn(ξ1, ξ2), while the homogeneous compo-

nent of weight n of the semi-classical hexagon relation (4) depends on the com-
ponent pn−1(ξ1, ξ2) of weight n − 1. We can trivially extend a truncated Lie

power series p(ξ1, ξ2) =
∑m

n=2 pn(ξ1, ξ2) ∈ L̂(ξ1, ξ2)/ Fm+1 L̂(ξ1, ξ2) which satis-
fies these equations in weight n ≤ m by zero pm+1(ξ1, ξ2) = 0 to get a truncated
power series which satisfies these equations in all weights n ≤ m + 1, including
n = m+ 1, since the Lie polynomial pm(ξ1, ξ2) satisfies the semi-classical hexagon
relation (4) as soon as it satisfies the other relations by Theorem 10.4.7. We
conclude that the element of grt1〈m−1〉 represented by this truncated power series

p(ξ1, ξ2) =
∑m

n=2 pn(ξ1, ξ2) ∈ L̂(ξ1, ξ2)/ Fm+1 L̂(ξ1, ξ2) has a pre-image in grt1〈m〉,

and hence, that the map pm : grt1〈m〉 → grt1〈m−1〉 is surjective.

By general results of algebraic group theory (see for instance [180, Chapter
11-12]), this statement implies that the group morphism pm : GRT 1

〈m〉(k) →
GRT 1

〈m−1〉(k) is surjective too. �

We use this proposition in the proof of the following statement:

Proposition 10.4.9 (V. Drinfeld [57, Proposition 5.8], see also [16, Theorem
4, Corollary 4.1]). The morphisms pm : Assκ〈m〉(k) → Assκ〈m−1〉(k) in the tower

decomposition of the set of associators Assκ(k) = limm Assκ〈m〉(k) are surjective,
for any choice of characteristic zero ground field k, and for every value of the
scalar parameter κ ∈ k×.

Proof. We check the case k = C first. We fix fm−1(ξ1, ξ2) ∈ Assκ〈m−1〉(C).

We have fm−1(ξ1, ξ2) = φm−1 ◦ fKZ(ξ1, ξ2) for some φm−1 ∈ GRT 1
〈m−1〉(C), where

we consider the image of the Knizhnik–Zamolodchikov associator fKZ(ξ1, ξ2) ∈
Assκ(C) in Assκ〈m−1〉(C). By Proposition 10.4.8, we have φm−1 = pm(φm) for some

φm ∈ GRT 1
〈m〉(C), and we can just set fm(ξ1, ξ2) = φm ◦ fKZ(ξ1, ξ2) to a get a

pre-image of fm−1(ξ1, ξ2) ∈ Assκ〈m−1〉(C) in Assκ〈m〉(C).
We now consider the case where k is an arbitrary ground field of characteristic

zero. We fix fm−1(ξ1, ξ2) ∈ Assκ〈m−1〉(k). We aim to prove the existence of a

group-like element fm(ξ1, ξ2) ∈ G T̂(ξ1, ξ2)/ Fm+2 G T̂(ξ1, ξ2) such that fm(ξ1, ξ2) ≡
fm−1(ξ1, ξ2) (modFm+1 G T̂(ξ1, ξ2)) which satisfies the relations of associators up to
factors of filtration ≥ m+2 in the Malcev complete groups where we express these
relations (see §10.4.3).

We also have fm−1(ξ1, ξ2) = exp(
∑m

n=2 pn(ξ1, ξ2)) for a truncated Lie power

series p(ξ1, ξ2) =
∑m

n=2 pn(ξ1, ξ2) ∈ L̂(ξ1, ξ2)/ Fm+1 L̂(ξ1, ξ2). We just have to
add an extra term pm+1(ξ1, ξ2)) to this Lie power series in order to get the ex-

ponential expression fm(ξ1, ξ2) = exp(
∑m+1

n=2 pn(ξ1, ξ2)) of our lifting fm(ξ1, ξ2) ∈
G T̂(ξ1, ξ2)/ Fm+2 G T̂(ξ1, ξ2). We take this extra term pm+1(ξ1, ξ2) as unknown vari-
able.

The relation fm−1(ξ1, ξ2) ∈ Assκ〈m−1〉(k) implies that our equations are sat-

isfied modulo error terms in the subquotients E0m+1 G = Fm+1 G/ Fm+2 G of the
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Malcev complete groups where we express these relations. We use the exponential
correspondence (see §8.1.4 and Proposition 8.2.3) to express these error terms in
terms of the graded Lie algebras of our Malcev complete groups. We readily check
that the unknown variable pm+1(ξ1, ξ2) fits in a system of linear equations with
rational coefficients whose second member is algebraically determined by the pre-
vious terms pn(ξ1, ξ2), n ≤ m, of our Lie power series p(ξ1, ξ2). We use that this
system has a complex solution (according to the first verification of this proof) and
we apply arguments of basic linear algebra to conclude from this result that our
equations have a solution defined over the ground field k as well. �

This proposition has the following immediate corollary:

Theorem 10.4.10 (V. Drinfeld [57, §5]). The set of associators Assκ(k) is not
empty, for any choice of characteristic zero ground field k, and for every value of
the scalar parameter κ ∈ k×. �

From which we conclude:

Theorem 10.4.11. There exists a categorical equivalence of unitary operads in
Malcev complete groupoids φ : PaB+̂

∼−→ CD+̂ between the Malcev completion of the
parenthesized braid operad PaB+̂ and the operad of chord diagrams CD+̂, for any
choice of ground field of characteristic zero k. �

10.4.12. The weight decomposition of the graded Grothendieck–Teichmüller Lie
algebra and the filtration of the graded Grothendieck–Teichmüller group. In the
proof of Proposition 10.4.8, we observe that the unit relations (1), the involution
relation (2), the hexagon relation (3), and the pentagon relation (5) of the definition
of the Lie algebra grt §10.4.6 decompose as a system of equations of homogeneous
weight n which only depend on the homogeneous components of the same weight n
of our Lie power series p = p(ξ1, ξ2). The semi-classical hexagon equation §10.4.6(4),
does not have this homogeneity property, but we can drop this equation since we
checked in Theorem 10.4.7 that the semi-classical hexagon relation follows from the
others equations of our system.

We can accordingly decompose the module grt as a product of homogeneous
components

grt =
∏∞

m=0 grtm,

where grt0 = k captures the scalar factor λ ∈ k which we consider in our de-
scription of §10.4.6, while grtm consists of the homogeneous Lie polynomials pm =
pm(ξ1, ξ2) ∈ Lm(ξ1, ξ2) which satisfy our equations when m ≥ 1. We also have
grt1 =

∏∞
m=1 grtm when we consider the Lie algebra grt1 ⊂ grt. We easily check

that the Lie bracket of §10.4.6 satisfies [grtm, grtn] ⊂ grtm+n, for all m,n ≥ 0. We
can therefore identify the Lie algebra grt with the completion of the weight graded
Lie algebra such that E0 grt =

⊕∞
m=0 grtm with respect to the obvious filtration.

We have a similar observation for the Lie algebra grt1 ⊂ grt. We moreover have:

grt〈m〉 = grt / Fm+1 grt,

for each m ≥ 0, where we consider the Lie algebra filtration grt = F0 grt ⊃ F1 grt ⊃
· · · ⊃ Fm grt ⊃ · · · such that Fm grt =

∏
n≥m grtn, and the argument line of

Proposition 10.4.8 can be rephrased as the application of the splitting formula
grt〈m〉 = grt〈m−1〉⊕ grtm in the category of k-modules.
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We can also relate the weight graded Lie algebra E0 grt1 =
⊕∞

m=1 grtm to the

subquotients of a natural filtration of the group GRT 1(k). We just give a brief out-
line of this relationship in order to complete the account of this paragraph. We give
more details in the case of an analogous result for the pro-unipotent Grothendieck–
Teichmüller group in the next section. We consider the full graded Grothendieck–
Teichmüller group first. The surjectivity of the map p : GRT (k) → GRT 〈m〉(k)
implies that we have the levelwise identity:

GRT 〈m〉(k) = GRT (k)/ Fm+1 GRT (k),

for a nested sequence of subgroups of the Grothendieck–Teichmüller group

GRT (k) = F0 GRT (k) ⊃ · · · ⊃ Fm GRT (k) ⊃ · · ·
such that Fm+1 GRT (k) = ker(p : GRT (k) → GRT 〈m〉(k)), for each m ≥ 0. We
have GRT (k) = limm GRT 〈m〉(k) ⇔ GRT (k) = limm GRT (k)/ Fm GRT (k), and
we may check that this filtration satisfies the commutator relation

(Fm GRT (k), Fn GRT (k)) ⊂ Fm+n GRT (k),

for all m,n ≥ 0 (see Proposition 11.4.2 for the detailed verification of an analogous
statement in the case of the pro-unipotent Grothendieck–Teichmüller group).

We have GRT 〈0〉(k) = k× ⇔ GRT 1(k) = F1 GRT (k), and we now focus on the

truncated filtration of this subgroup GRT 1(k). We can then use the commutator
relation (FmGRT (k), Fn GRT (k)) ⊂ Fm+n GRT (k) to check that the pro-algebraic
group GRT 1(k) is actually pro-unipotent, as we assert in §10.3.11. This commu-
tator condition moreover implies that the weight graded module E0 GRT 1(k) =⊕

m≥1 E
0
m GRT (k), where we consider the filtration subquotients E0m GRT (k) =

Fm GRT (k)/ Fm+1 GRT (k), inherits a Lie algebra structure (see §8.2.2). We also
have an identity:

E0m GRT (k) = Fm GRT (k)/ Fm+1 GRT (k) = grtm

for each weight m ≥ 1. We moreover have the identity E0 grt1 = E0 GRT 1(k) in the
category of weight graded Lie algebras when we put these subquotients E0m GRT (k)
together and we again consider the weight graded Lie algebra E0 grt1 underlying
grt1. We give a detailed proof of an analogous relationship E0m GT (k) = grtm for
the subquotients of the pro-unipotent Grothendieck–Teichmüller group in §11.1.
We can deduce the above identity from similar argument lines, or from general
results about the Lie algebra of unipotent (and of pro-unipotent) algebraic groups.

We explained in §9.2.6 the definition of a general notion of principal fiber for
the natural tower decomposition G = limm qm G of an operad in Malcev complete
groupoids G. We can actually relate the modules grtm = Fm GRT (k)/ Fm+1 GRT (k)
to sets of morphisms with values in these principal fibers for the tower decomposi-
tion of the operad PaCD̂which we consider in our definition of the tower decom-
position GRT (k) = limm GRT 〈m〉(k) of the group GRT (k). We explicitly have an
identity between grtm and the image of the group GRT 〈m〉(k) in the set of mor-
phisms with values in the principal fiber of the morphism qm PaCD̂→ qm−1 PaCD̂
at the mth level of our tower decomposition. We have an analogue of this identity
for the pro-unipotent Grothendieck–Teichmüller group GT (k). We explain this
case with full details in the next chapter. We can also relate the module grtm
to the fibers of the tower decomposition of the operad CD ,̂ which we consider in
our definition of the tower decomposition Ass(k) = limmAss〈m〉(k) of the set of
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associators Ass(k). We just explain the latter interpretation of the module grtm
to complete the account of this section. We determine the principal fibers of the
tower decomposition of the chord diagram operad CD̂= lim qm CD̂first.

10.4.13. The fibers of the tower decomposition of the chord diagram operad.
In §10.4.1, we explain that the terms qm CD̂ of the tower decomposition of the
chord diagram operad CD̂= limm qm CD̂can be defined by the formula

qm CD(r)̂= G(Ûp̂(r))/ Fm+1 G(Ûp̂(r)),

where, for any arity r > 0, we consider the quotient of the Malcev complete
group G = G(Ûp̂(r)) by the m + 1st layer of its canonical filtration Fm+1 G =

Fm+1 G(Ûp̂(r)). We then use that the groupoids which form this operad CD̂
are groups, identified with groupoids with a single object, to simplify the gen-
eral construction of §9.1.13. Recall that we also use the notation Fm+1 CD(r)̂=
Fm+1 G(Ûp̂(r)) for this collection of subgroups.

We can similarly simplify the definition of the principal fibers of this tower
of operads in groupoids. We obtain that these principal fibers are defined by the
subquotients of the filtration of our group

E0m CD(r)̂= Fm G(Ûp̂(r))/ Fm+1 G(Ûp̂(r)),

which we regard as a constant local coefficient system operad over the operad in
groupoids with a single object CD .̂

We can moreover check that these objects are isomorphic to the homogeneous
components of the weight graded Drinfeld–Kohno Lie algebra operad p(−)m. We
use that each of these collections p(−)m = {p(r)m, r > 0} inherits the structure of
an additive operad in k-modules, and can also be identified with a constant local
coefficient system operad over CD .̂ Recall that we have p(r)m = E0 P(Ûp̂(r)), for
each r > 0, by the version of the Milnor Moore Theorem for complete Hopf algebras
(see Theorem 7.3.26). The exponential map induces an isomorphism from this k-
module p(r)m to the filtration subquotient E0m G = Fm G/ Fm+1 G of our group

G = G(Ûp̂(r)) (see Proposition 8.2.3):

p(r)m
exp−−→
�

E0m G(Ûp̂(r)) = E0m CD(r) ,̂

and these maps clearly intertwine the structure operations of our operads.
We have an obvious generalizations of these identities in the unitary operad

setting. We can moreover use these observations and the result of Theorem 10.4.11
to retrieve the claim of Theorem 10.1.3 because the morphism of unitary operads
φ : PaB+̂ → CD+̂ which we define in this theorem is a categorical equivalence
of operads in Malcev complete groupoids if and only if this morphism induces
an isomorphism on the principal fibers of our tower decomposition (see Proposi-
tion 9.1.16).

10.4.14. The fibers of the tower decomposition of the set of associators. We
now consider the morphism sets of operads MorGrd Op(PaB+, p+(−)m), where we
identify the additive operad p+(−)m with an operad in groupoids with a single
object. We see that this morphism set MorGrd Op(PaB+, p+(−)m) inherits a k-
module structure, which is given by the underlying k-module structure of our target
object p+(−)m. We moreover get that this k-module MorGrd Op(PaB+, p+(−)m)
operates on the morphism set MorGrd Op(PaB+, qm CD+̂), for each m ≥ 1, through

the aritywise translation action of the group p(r)m
�−→ E0m CD(r)̂on qm CD(r)̂=



10.4. TOWER DECOMPOSITIONS 397

CD(r) /̂ Fm+1 CD(r) .̂ Besides, a pair of elements in this morphism set φ, ψ ∈
MorGrd Op(PaB+, qm CD+̂) have the same image in MorGrd Op(PaB+, qm−1 CD+̂) if
and only if these morphisms differ by the action ψ = φ · exp(θ) of such a morphism
θ : PaB+ → p+(−)m+1 with value in the additive operad p+(−)m+1.

We can use the identity Ass〈m〉(k) = MorGrd Op(PaB+, qm+1 CD+̂) ×exp(k t12)

exp(k× t12) (see §10.4.3) to check that similar observations hold for the sets of
associators Ass〈m〉(k) provided that we restrict ourselves to the case m ≥ 1. To
sum up, we can regard each surjective map of sets pm : Ass〈m〉(k) → Ass〈m−1〉(k)
as a principal fibration with this k-module

E0mAss(k) = MorGrd Op(PaB+, p+(−)m+1)

as structure group. In the formalism of algebraic geometry, we actually get that
the variety Ass〈m〉(k) over Ass〈m−1〉(k) forms a torsor (in the relative sense) under

the action of the group E0m Ass(k).

We have the following additional observation:

Proposition 10.4.15. We have an identity MorGrd Op(PaB+, p+(−)m+1) =
grtm, for each m ≥ 0, and hence we have E0mAss(k) = grtm, when m ≥ 1.

Proof. We again use the result of Theorem 6.2.4 to get a description of the
morphisms φ : PaB+ → p+(−)m+1.

In the case m = 0, we easily check that we have φ(τ ) = λt12, for a scalar λ ∈ k,
while the unit relation for the associativity isomorphism α implies φ(α) = 0. We
therefore have MorGrd Op(PaB+, p+(−)1) = k = grt0.

In the case m ≥ 1, we have p(2)m+1 = L(t12)m+1 = 0 and p(3) = k(t12 + t23 +
t13) ⊕ L(t12, t23) ⇒ p(3)m+1 = Lm+1(t12, t23). We accordingly get that our mor-
phism is determined by a homogeneous Lie polynomial pm+1(ξ1, ξ2) ∈ L(ξ1, ξ2) such
that φ(α) = pm+1(t12, t23), while we trivially have φ(τ ) = 0. We easily check that
the coherence constraints of Theorem 6.2.4 are equivalent, for this Lie polynomial,
to the unit, involution, hexagon, and pentagon equations (1, 2, 3, 5) of §10.4.6.
We then use that the semi-classical equation (4) is implied by these equations (the
result of Theorem 10.4.7) to get the identity MorGrd Op(PaB+, p+(−)m+1) = grtm
asserted in the proposition in this case m ≥ 1. �

We can use the levelwise action of the tower decomposition of the graded
Grothendieck–Teichmüller groups GRT (k) = limm GRT 〈m〉(k) on the tower decom-
position of the set of associators Ass(k) = limm Ass〈m〉(k) to prolong the identities

of this proposition to the subquotients E0m GRT (k) of our filtration on GRT (k). We
use a similar idea in the next chapter to get the relation

E0m GT (k) = grtm

for the pro-unipotent Grothendieck–Teichmüller group GT (k), for each weight m ≥
1 (see Theorem 11.4.6).





CHAPTER 11

The Grothendieck–Teichmüller Group

We have several variants of the Grothendieck–Teichmüller group. We mostly
deal with a pro-unipotent version of this group GT (k), defined over any charac-
teristic zero field k, and which, for us, occurs as a group of operad automorphisms
of the Malcev completion of the unitary operad of parenthesized braids PaB+̂. We
also use the phrase ‘Grothendieck–Teichmüller group’ (with no further precision)
to refer to this pro-unipotent version of the Grothendieck–Teichmüller group in
what follows. This pro-unipotent Grothendieck–Teichmüller group GT (k) was in-
troduced by Drinfeld in quantum group theory (see [57]). The idea of this definition
comes from Grothendieck’s program in Galois theory, where the goal is to encode
the relations satisfied by the action of the absolute Galois group on curves. The
group which encodes this information is a profinite analogue of our pro-unipotent
Grothendieck–Teichmüller group. We only give a brief overview of the definition of
this profinite Grothendieck–Teichmüller group and of the Grothendieck program in
the next chapter.

Our first purpose, in this chapter, is to revisit Drinfeld’s definition from an
operadic viewpoint and to check the equivalence between our operadic definition of
the group GT (k) and Drinfeld’s original definition. We devote the first section of
the chapter §11.1 to this subject.

In §10.3, we already explained the definition of an analogous group, the graded
Grothendieck-Teichmüller group GRT (k), which represents a (subgroup of the)
group of automorphisms of a chord diagram counterpart of the operad of parenthe-
sized braids PaCD+̂. We mainly use the graded Grothendieck–Teichmüller group
as an auxiliary device, in order to prove the existence of rational categorical equiva-
lences of operads in Malcev complete groupoids between the operad of parenthesized
braids PaB+̂ and the operad of chord diagrams CD+̂, and in order to determine
the subquotients of a natural filtration of the Grothendieck–Teichmüller group. We
tackle the latter question in this chapter too. To be more specific, we are going
to see that the Lie algebra of the graded Grothendieck–Teichmüller group, such as
defined in §10.4.6, is identified with the weight graded Lie algebra associated to a
natural filtration of the group GT (k). (We use this relationship in the next volume
when we determine the homotopy automorphisms of E2-operads.) We are also going
to see that the existence of a categorical equivalence of operads in Malcev complete
groupoids between the operad of parenthesized braids PaB+̂ and the operad of
chord diagrams CD+̂ implies the existence of an isomorphism between the pro-
unipotent Grothendieck–Teichmüller group GT (k) and the graded Grothendieck–
Teichmüller group GRT (k). We explain this construction in the second section of
the chapter §11.2. We then define an analogue, for the group GT (k), of the tower
decomposition of the graded Grothendieck–Teichmüller group studied in §10.4. We
determine the weight graded Lie algebra associated to the group GT (k) afterwards,

399
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by observing that the components of this weight graded Lie algebra E0m GT (k) are
isomorphic to the kernels of the morphisms pm : GT 〈m〉(k) → GT 〈m−1〉(k) which
occur in our tower decomposition GT (k) = limmGT 〈m〉(k). We devote the third
and fourth section of the chapter §§11.3-11.4 to this subject. We work with a fixed
ground field of characteristic zero k all along this chapter and we carry out all our
constructions in this setting.

11.1. The operadic definition of the Grothendieck–Teichmüller group

The pro-unipotent Grothendieck–Teichmüller group GT (k) is defined by Drin-
feld in [57] as a group of power series that satisfy certain equations in the Malcev
completion of the pure braid groups. The goal of this section, as we explain in the
introduction of this chapter, is to revisit Drinfeld’s approach and to explain that
this group GT (k) can be interpreted as the group of automorphisms associated to
the Malcev completion of the operad of parenthesized braids PaB .̂ We give this op-
eradic definition first. We prove the equivalence with Drinfeld’s original definition
afterwards.

We are going to see that the group GT (k) is endowed with a split surjec-
tive morphism λ : GT (k) → k×, like the graded Grothendieck–Teichmüller group
GRT (k). We accordingly have GT (k) = k×

�GT 1(k), where we set GT 1(k) =
ker(λ : GT (k) → k×) as in the case of GRT (k). This is this group GT 1(k) which
is actually pro-unipotent. We just abusively refer to GT (k) as the pro-unipotent
Grothendieck–Teichmüller group in order to distinguish this group from the other
versions of the Grothendieck–Teichmüller group. This name is also motivated by
the consideration of the Malcev completion of the pure braid groups (which form
unipotent groups) in the definition of the group GT (k).

11.1.1. Recollections on the operad of parenthesized braids. We consider the
Malcev completion of the operad of parenthesized braids PaB̂and the associated
unitary operad PaB+̂. Recall that we have PaB+̂(r) = PaB(r)̂ for all r > 0
and PaB+̂(0) = pt by definition of the unitary extension of an operad. For our
constructions, we rely on the study of these operads in Malcev complete of groupoids
(see §10), and on our study of the ordinary operad of parenthesized braids (see §6).

Briefly recall that we have the identity ObPaB̂= ObPaB = Ω by construction,
where we use the notation Ω for the magma operad (see §6.1.1), and that the
automorphism group of any object in PaB(r) (respectively, in PaB(r) )̂ is identified
with the pure braid group on r strands Pr (respectively, with the Malcev completion

of the pure braid group on r strands P̂r). In what follows, we also use the generating
elements of the pure braid group Pr given in §10.0.1(1). Recall that we modify the
picture of the elements of the braid groups by attaching the strands of our braids to
the centers of a diadic decomposition of the interval (instead of the usual equidistant
contact points) in order to materialize the source and target of morphisms in the
parenthesized braid operad (see §6.2.1). We review specific examples of applications
of this representation when we study the definition of elements in the Grothendieck–
Teichmüller group (see the proof of Proposition 11.1.3).

Recall also that we use the notation μ(x1, x2) = x1x2 for the generator of the
magma operad Ω(r). The morphism sets of the parenthesized braid operad contain
an associativity isomorphism, which we denote by α and which makes this operation
associative, together with a braiding morphism which we denote by τ and which
relates the operation μ(x1, x2) = x1x2 to its transposite (1 2)μ(x1, x2) = x2x1.
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Recall that these morphisms are given by the following pictures

α =

1 2 3

1 2 3

and τ =

1 2

12

in our representation of the parenthesized braid operad (see §6.2).
11.1.2. The Grothendieck–Teichmüller group as a group of operad automor-

phisms. We precisely define the Grothendieck–Teichmüller group GT (k) as the
group formed by the automorphisms of the Malcev completion of the operad of
parenthesized braid

ψ : PaB+̂
�−→ PaB+̂

which reduce to the identity map on the object sets of our operad ObPaB (̂r) =
Ω(r), for r > 0.

We use the same ideas as in our study of Drinfeld’s associators in §10.2 in order
to get an explicit description of these automorphisms which define the elements
of the Grothendieck–Teichmüller group GT (k). We first use that any morphism
of unitary operads in Malcev complete groupoids ψ : PaB+̂ → Q occurs as the
extension of a morphism

ψ : PaB+ → Q,

where we consider the ordinary operad of parenthesized braids PaB+ (Proposi-
tion 9.1.19). We then apply the result of Theorem 6.2.4 to reduce the construction
of such a morphism ψ : PaB+ → Q to the definition of a product operation

m = m(x1, x2) ∈ ObQ(2),

of an associativity isomorphism

a = a(x1, x2, x3) ∈ MorQ(3)(m(m(x1, x2), x3),m(x1,m(x2, x3))),

and of a braiding

c = c(x1, x2) ∈ MorQ(2)̂ (m(x1, x2),m(x2, x1)),

which respectively represent the image of the multiplication operation μ, of the
associativity isomorphism α, and of the braiding τ of the parenthesized braid operad
under our morphism ψ : PaB+ → Q. We just set

m = μ ⇒ ψ(μ) = μ

in our case since we assume that our morphism reduces to the identity map at the
object set level.

In the general statement of Theorem 6.2.4, we also consider a unit object e in
arity 0 in order to define the unitary extension of a morphism ψ : PaB → Q with
values in an arbitrary operad Q. In our case where Q = PaB+̂ (and, more generally,
when we assume that Q is a unitary operads) the image of this arity zero object is
just fixed by the assumption that the groupoid PaB+̂(0) reduces to the one-point
set pt .
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Thus, we only have to specify the image of the associativity isomorphism a =
ψ(α) and of the braiding c = ψ(τ ) in order to determine our morphisms ψ : PaB+ →
PaB+̂. We have the following more explicit statement:

Proposition 11.1.3. A morphism of unitary operads ψ : PaB+ → PaB+̂ which
is the identity map on object sets is uniquely determined by a scalar parameter
λ = 1 + 2ν ∈ k and an element of the Malcev completion of the free group on two
generators g(x1, x2) ∈ F̂(x1, x2) such that we have the assignments:

ψ(τ ) =

1 2

12︸ ︷︷ ︸
=τ

·

⎛⎜⎜⎜⎝
1 2

1 2

⎞⎟⎟⎟⎠
ν

︸ ︷︷ ︸
=τ2ν

,

ψ(α) =

1 2 3

1 2 3︸ ︷︷ ︸
=α

· g

⎛⎜⎜⎜⎝
1 2 3

1 2 3

,

1 2 3

1 2 3

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=g(x12,x23)

for the symmetry isomorphism τ ∈ MorPaB(2)(x1x2, x2x1) and for the associativity
isomorphism α ∈ MorPaB(3)((x1x2)x3, x1(x2x3)) of the parenthesized braid operad
PaB+.

Explanations. We examine the structure of the morphism sets of the operad
Q = PaB+̂ in arity r = 2, 3 in order to determine the form of the isomorphisms

a(x1, x2, x3) = ψ(α) ∈ MorPaB(3)̂ ((x1x2)x3, x1(x2x3))(1)

c(x1, x2) = ψ(τ ) ∈ MorPaB(2)̂ (x1x2, x2x1)(2)

which determine our morphism ψ : PaB+ → PaB+̂. We use the same ideas as in
Proposition 10.2.6 and Proposition 10.3.6, where we examine the operadic definition
of the set of Drinfeld’s associators and of the graded Grothendieck–Teichmüller
group. We mainly have to deal with the Malcev completion of the pure braid
groups instead of the algebras of the chord diagrams. We then use the relation
AutPaB(r)̂ (p) = P̂r, which holds for any parenthesized word p ∈ Ω(r) (as we recall

in §11.1.1), and we combine this relation with translation operations to represent the
morphism set MorPaB(r)̂ (p, q) associated to an arbitrary pair of objects p, q ∈ Ω(r).

In arity r = 2, we have AutPaB(2)̂ (x1x2, x1x2) = P̂2 and we accordingly get

MorPaB(2)(x1x2, x2x1) = τ · P̂2, where we consider the Malcev completion of the

pure braid group on 2 strands P̂2 and the translation of this group by the morphism
τ ∈ MorPaB(2)̂ (x1x2, x2x1) in the groupoid PaB(2) .̂ We moreover have P2 = 〈x12〉
for a generating element x12 such that x12 = τ2:

(3) x12 = =
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(see §10.0.1). We accordingly have P̂2 = {xν
12, ν ∈ k} = {τ2ν , ν ∈ k}, and we get

c(x1, x2) = τ · τ2ν = τλ, for a formal exponent λ ∈ k such that λ = 1+2ν for some
ν ∈ k.

In arity r = 3, we similarly have MorPaB(3)̂ ((x1x2)x3, (x1x2)x3) = P̂3 and

we therefore get MorPaB(3)̂ ((x1x2)x3, (x1x2)x3) = α · P̂3, where we consider the

translation of the Malcev completion of the pure braid group on 3 strands P̂3 by
the morphism α ∈ MorPaB(3)̂ ((x1x2)x3, (x1x2)x3) in the groupoid PaB(3) .̂ Recall
that the pure braid group on 3 strands P3 is generated by the elements:

(4) x12 = , x23 = , x13 = .

In §10.0.1 we also explain that the group P3 is identified with the semi-direct
product of the group P2, which we identify with the subgroup generated by x12

inside P3, and of a free group, which is generated by the elements x13 and x23

inside P3. We can consider the pair of generators (x12, x23) instead of (x13, x23)
in this semi-direct product decomposition. We can easily rely on this result to
establish that P3 is also isomorphic to the cartesian product of the free group
generated by the elements x12 and x23 with a central cyclic subgroup 〈z〉 generated
by the element

(5) z =

such that z = x12x23x13 (see for instance [101, §1.3]).
We therefore have a(x1, x2, x3) = zρg(x12, x23), for some formal exponent ρ ∈

k of the central element z, and where g(x12, x23) is an element in the Malcev
completion of the free group generated by the pure braids x12 and x23. The unit
relation a(x1, e, x2) = idμ(x1,x2) in the correspondence of Theorem 6.2.4 implies

that we have the relation ∂2(z)
ρg(1, 1) = ∂2(z)

ρ = 1 in P̂2, where ∂2(z) denotes
the result of the omission of the second strand in z. We easily get ∂2(z) = τ2

and we deduce from this observation that the identity ∂2(z)
ρ = 1 implies ρ = 0.

We conclude from this result that the expression of our element a = a(x1, x2, x3)
reduces to the factor g = g(x12, x23) in the Malcev completion of the free group
F(x12, x23). �

To complete this proposition, we write down the coherence constraints of The-
orem 6.2.4 in terms of this pair (λ, F (x12, x23)) which we associate to a morphism
of unitary operads ψ : PaB+ → PaB+̂. We obtain the following proposition:

Proposition 11.1.4. The assignments of Proposition 11.1.3:

ψ(τ ) = τ1+2ν = τλ, ψ(α) = α · g(x12, x23),

where we assume λ = 1+2ν ∈ k and g(x1, x2) ∈ F̂(x1, x2), determine a well-defined
morphism of unitary operads ψ : PaB+ → PaB+̂ if and only if the element of the

Malcev completion of the free group g = g(x1, x2) ∈ F̂(x1, x2) satisfies:
(1) the unit relations g(x1, 1) = 1 = g(1, x2),
(2) the involution relation g(x1, x2)g(x2, x1) = 1,
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g

⎛⎝ ,

⎞⎠ · g

⎛⎝ ,

⎞⎠ · g

⎛⎝ ,

⎞⎠
= g

⎛⎝ ,

⎞⎠ · g

⎛⎝ ,

⎞⎠
Figure 11.1. The pentagon constraints for the element of the
Malcev completion of the free group g = g(x1, x2) associated
to an element of the Grothendieck–Teichmüller group GT (k).
The relation holds in the Malcev completion of the pure braid
group P̂4. The factors of this relation are obtained by applying
g = g(x1, x2) to the braids β ∈ P4 represented in the picture.
The relation also reads g(x23, x34)g(x13x12, x34x24)g(x12, x23) =
g(x12, x24x23)g(x23x13, x34) when we make explicit the expression
of these braids in terms of the generators of the pure braid group.

(3) the hexagon equation g(x1, x2)x
ν
1g(x3, x1)x

ν
3g(x2, x3)x

ν
2 = 1, where (x1, x2, x3)

denotes a triple of variables such that x3x2x1 = 1,
(4) and the pentagon relation of Figure 11.1.

Proof. The claims of this proposition parallel the results of Proposition 10.2.7
and Proposition 10.3.7, where we examine the coherence constraints which arise
from the operadic definition of Drinfeld’s associators and from the operadic defini-
tion of elements in the graded Grothendieck–Teichmüller group. We make explicit
the unit, pentagon and hexagon relations of Theorem 6.2.4(b-c) for the symmetry
isomorphism c = τ1+2ν and the associativity isomorphism a = α · g(x12, x23) given
in Proposition 11.1.3.

The reduction of the unit relation of Theorem 6.2.4 to the relation g(x1, 1) =
1 = g(1, x2) is immediate. The equivalence between the pentagon relation, ex-
pressed by the commutativity of the diagram of Figure 6.1, and the equation of
Figure 11.1 is immediate too (we just expand the expression of the factors in this
equation).

The hexagon relations, expressed by the commutativity of the diagrams of
Figure 6.6, are equivalent to the identities:

a = m(1, c)−1a · c(1,m) · a ·m(c, 1)−1,(1)

a−1 = m(c, 1)−1 · a−1 · c(m, 1) · a−1 ·m(1, c)−1.(2)

The morphism sets where these equations are defined can be identified with P̂3 and
we easily get that the above identities reduce to the relations:

g(x12, x23) = x−ν
23 τ−1

2 · g(x12, x23) · τ2(x12x23)
ντ1 · g(x12, x23)τ

−1
1 x−ν

12(3)

g(x12, x23)
−1 = x−ν

12 τ−1
1 · g(x12, x23)

−1 · τ1τ2(x23x13)
ν

·g(x12, x23)
−1 · x−ν

23 τ−1
2

(4)
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where we consider the standard generators of the braid group B3:

τ1 = , τ2 = .(5)

We can also rewrite Equation (4) as:

τ−1
2 g(x12, x23)

−1τ2 = τ−1
2 x−ν

12 τ2 · (τ1τ2)−1g(x12, x23)
−1(τ1τ2)

·(x23x13)
ν · g(x12, x23)

−1 · x−ν
23 .

(6)

We have the relation βg(x12, x23)β
−1 = g(βx12β

−1, βx23β
−1) in P̂3 for every

β ∈ B3, and by Proposition 10.0.5:

τ1 · x12 · τ−1
1 = x12, τ1 · x23 · τ−1

1 = x13,(7)

τ−1
2 · x12 · τ2 = x13, τ−1

2 · x23 · τ2 = x23,(8)

(τ1τ2)
−1 · x12 · (τ1τ2) = x13, (τ1τ2)

−1 · x23 · (τ1τ2) = x12.(9)

We therefore get that Equation (3) and Equation (6) are equivalent to the identities:

g(x12, x23) = x−ν
23 g(x13, x23)(x12x23)

νg(x12, x13)x
−ν
12 ,(10)

g(x13, x23)
−1 = x−ν

13 g(x13, x12)
−1(x23x13)

νg(x12, x23)
−1x−ν

23 ,(11)

which also give:

g(x12, x13) = xν
13g(x13, x23)

−1z−νxν
23g(x12, x23)x

ν
12,(12)

g(x13, x12)
−1 = xν

13g(x13, x23)
−1z−νxν

23g(x12, x23)x
ν
12,(13)

where we consider the central element z = x12x23x13 of the pure braid group
(which we can permute with any formal expression in P̂3) and we use the relations
x12x23 = zx−1

13 and x23x13 = x−1
12 z in P3. We accordingly have:

g(x12, x13) = g(x13, x12)
−1,(14)

and we eventually get that the hexagon relations are equivalent to the combination
of this identity with the equation:

g(x13, x12)x
ν
13g(x13, x23)

−1z−νxν
23g(x12, x23)x

ν
12 = 1.(15)

The elements x1 = x12 and x2 = x13 generate a free group in P3 (like x12 and
x23). We also have z = x12x23x13 ⇒ z−1x23 = x−1

12 x
−1
13 . We already used that we

can permute this central element z with any formal expression of P̂3, and that we
have the identity (zγ)ν = zνγν , for any γ ∈ P̂3. We also have g(x13, z

−1x23) =
g(x13, x23), because the relation g(x1, 1) = g(1, x2) = 1 implies that the expansion

of the element g(x1, x2) ∈ F̂(x1, x2) starts with commutators in the representation
of §8.4.2, and the central element z−1 obviously vanishes in such commutators. We
similarly get g(x12, z

−1x23) = g(x12, x23). We can therefore rewrite Equation (15)
under the form stated in the proposition by setting x1 = x12, x2 = x13, and
x3 = z−1x23. �

We easily see that the scalar parameter λ ∈ k which we associate to our mor-
phism of unitary operads ψ : PaB+ → PaB+̂ in Proposition 11.1.3 is necessarily
invertible when we assume that this morphism extends to an isomorphism on the
Malcev completion of the parenthesized braid operad PaB+̂. We use the same ar-
gument as in our study of Drinfeld’s associators to check this claim: we consider
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the morphism of Malcev complete groups ψ : AutPaB(2)̂ (μ) → AutPaB(2)̂ (μ) in-

duced by our operad morphism ψ : PaB+̂ → PaB+̂ and we just observe that this

morphism is identified with the map ψ : τ2κ �→ τ2λκ when we use the identity
AutPaB(2)̂ (μ) = P̂2 = {τ2κ, κ ∈ k}. We prove in the next proposition that this

condition λ ∈ k× actually suffices to ensure that this morphism ψ : PaB+̂ → PaB+̂

defines a categorical equivalence (as in the associator case):

Proposition 11.1.5. The morphism of unitary operads in Malcev complete
groupoids ψ : PaB+̂ → PaB+̂ which we determine by the assignments of Proposi-
tion 10.2.6 is an isomorphism if and only if the scalar parameter which we associate
to this morphism in our correspondence is invertible λ ∈ k×.

Proof. We only examine the “if” part of the proposition since we already
checked the “only if” part. We therefore assume λ ∈ k×. We fix an object p ∈
ObPaB(r) in the operad of parenthesized braids, for some r > 0. We aim check
that the morphism ψ : PaB+̂ → PaB+̂, which we determine by our assignments

ψ(τ ) = τλ, ψ(α) = α · g(x12, x23), induces an isomorphism of Malcev complete
groups on the automorphism group of this object in the Malcev completion of the
parenthesized braid operad AutPaB(r)̂ (p) = AutPaB(r)(p) .̂

We adapt the arguments of Proposition 10.2.8 and of Proposition 10.3.8 where
we establish analogous results for the study of Drinfeld’s associators and for the
definition of elements of the graded Grothendieck–Teichmüller group. We use the
identity AutPaB(r)(p) = Pr ⇒ AutPaB(r)̂ (p) = P̂r, which follows from the definition

of the operad PaB ,̂ and we use the isomorphism υ : p(r)
�−→ E0 P̂r between the

Drinfeld–Kohno Lie algebra p(r) and the weight graded Lie algebra associated to the
Malcev completion of the pure braid group Pr, as in the proof of Proposition 10.2.8.
We just apply this relationship on both the source and the target of our morphism
(while the target of the morphism studied in Proposition 10.2.8 is identified with
the exponential group of the Lie algebra p(r)). Recall that this isomorphism υ :

p(r)
�−→ E0 P̂r associates the element x̄ij ∈ E0 P̂r to the generator tij of the Drinfeld–

Kohno Lie algebra (see Theorem 10.0.7). We check that the morphism of weight
graded Lie algebras E0 ψ : E0 AutPaB(r)̂ (p) → E0 AutPaB(r)̂ (p) induced by our operad

morphism ψ : PaB+̂ → PaB+̂ is an isomorphism to get our result.
We again use that the element of the automorphism group AutPaB(r)̂ (p) which

corresponds to the generator xij of the pure braid group Pr can be expressed as a
composite morphism:

uij = β · π(x1, . . . , τ
2(xi, xj), . . . , x̂j , . . . , xr) · β−1,

where β is a composite of braidings and associativity isomorphisms which we use
to gather the variables (xi, xj) in the word p = p(x1, . . . , xr), while the expression
π(x1, . . . , τ

2(xi, xj), . . . , x̂j , . . . , xr) represents the morphism of PaB(r) obtained by
plugging the morphism τ2 ∈ MorPaB(2)(μ, μ) in the parenthesized word on r − 1
variables π ∈ Ω(r − 1) = ObPaB(r − 1) which we form in this gathering process.
We have

ψ(uij) = ψ(β) · π(x1, . . . , τ
2λ(xi, xj), . . . , x̂j , . . . , xr) · ψ(β)−1.

We can moreover write ψ(β) = βγ, where γ is an automorphism of the object
π(x1, . . . , μ(xi, xj), . . . , x̂j , . . . , xr) in the groupoid PaB(r) .̂ We again use the gen-
eral relation γ · u · γ−1 ≡ u (mod F2 G), valid in any Malcev complete group (see
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Proposition 8.2.3 and §8.2.2), to obtain the relation:

γ ·π(x1, . . . , τ
2λ(xi, xj), . . . , x̂j , . . . , xr) ·γ−1 ≡ π(x1, . . . , τ

2λ(xi, xj), . . . , x̂j , . . . , xr)

in the quotient group P̂r/ F2 P̂r. We deduce from this identity that we also have

the relation ψ(uij) ≡ xλ
ij in P̂r/ F2 P̂r when we consider the element of the group

P̂r which underlies our morphism. We eventually obtain that the map of weight
graded Lie algebras E0 ψ : E0 AutPaB(r)̂ (p) → E0 AutPaB(r)̂ (p) induced by our operad

morphism ψ : PaB+̂ → PaB+̂ is given by the mapping E0 ψ : ūij �→ λūij , for the
element ūij ∈ E0 AutPaB(r)̂ (p) which corresponds to the class of the pure braid

group generator xij in E0 P̂r and to the generating element of the Drinfeld–Kohno
Lie algebra tij in p(r). We accordingly have E0 ψ = λ Id .

We conclude that this morphism E0 ψ : E0 AutPaB(r)̂ (p) → E0 AutPaB(r)̂ (p) is an
isomorphism as requested. �

We now consider the composite φ ◦ ψ : PaB+̂ → PaB+̂ of automorphisms

φ, ψ : PaB+̂
�−→ PaB+̂ in the Grothendieck–Teichmüller group GT (k). We assume

that these automorphisms are, under the correspondence of Proposition 11.1.3,
associated to the pairs (λ, f(x1, x2)), (μ, g(x1, x2)) ∈ k× ×F̂(x1, x2). We have the
following statement:

Proposition 11.1.6. The composite φ ◦ ψ : PaB+̂ → PaB+̂ of our morphisms
φ, ψ : PaB+̂ → PaB+̂ satisfies:

(φ ◦ ψ)(τ ) = τλμ,

(φ ◦ ψ)(α) = α · f(x1, x2) · g(xλ
1 , f(x1, x2)

−1 · xλ
2 · f(x1, x2)).

Proof. This proposition follows from a straightforward inspection which is
similar to the one carried out in the proof of Proposition 10.3.9 (where we determine
the product operation of the graded Grothendieck–Teichmüller group). In short,
we just go back to the construction of Theorem 6.2.4 in order to determine the
image of the morphisms of the Malcev completion of the parenthesized braid operad
ψ(τ ) = τλ and ψ(α) = α · g(x12, x23) under the morphisms φ : PaB+̂ → PaB+̂, and
we easily check that we obtain the result stated in the proposition. �

We summarize our results in the following theorem:

Theorem 11.1.7 (Equivalence between the operadic approach and Drinfeld’s
definition of the Grothendieck–Teichmüller group [57, §4]). The correspondence of
Proposition 10.3.6 gives a one-to-one correspondence between the automorphisms of
the Grothendieck–Teichmüller group GT (k) and the set of pairs (λ, g(x1, x2)), where
λ is an invertible scalar parameter λ ∈ k×, as we require in Proposition 11.1.5,
and g(x1, x2) is an element of the Malcev completion of the free group g(x1, x2) ∈
F̂(x1, x2) which satisfies the unit, involution, hexagon, and pentagon relations ( 1-4)
of Proposition 11.1.4.

Furthermore, the composition operation of the group GT (k) corresponds on this
set of pairs to the operation:

(λ, f(x1, x2)) � (μ, g(x1, x2)) := (λμ, f(x1, x2) · g(xλ
1 , f(x1, x2)

−1 · xλ
2 · f(x1, x2)))

determined in Proposition 11.1.6. �
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We mentioned in the introduction of this section that the group GT (k) ad-
mits a semi-direct product decomposition GT (k) = k×

�GT 1(k), for a subgroup
GT 1(k) equipped with a pro-unipotent structure. We explicitly define this group
GT 1(k) as the kernel of the obvious morphism λ : GT (k) → k× which maps any
element of the Grothendieck–Teichmüller group ψ ∈ GT (k) to the scalar factor of
the above description λ ∈ k×, and the existence of the semi-direct product decom-
position GT (k) = k×

�GT 1(k) is equivalent to the observation that this morphism
λ : GT (k) → k× is split surjective. We establish this result in the next section,
after checking that the Grothendieck–Teichmüller group GT (k) acts simply and
transitively on the set of Drinfeld’s associators.

11.2. The action on the set of Drinfeld’s associators

We explained in the previous chapter that the set of Drinfeld’s associators
Ass(k) inherits a simply transitive action of the graded Grothendieck–Teichmüller
group GRT (k). The first purpose of this section is to check that an analogous
statement holds for the pro-unipotent Grothendieck–Teichmüller group GT (k).
We observe that this action of GT (k) on the set of Drinfeld’s associators Ass(k)
commutes with the action of GRT (k) and we use this result to establish that
the pro-unipotent Grothendieck–Teichmüller group GT (k) is actually isomorphic
to the graded Grothendieck–Teichmüller group GRT (k). We also use the ac-
tion of GT (k) on associators to construct the semi-direct product decomposition
GT (k) = k×

�GT 1(k) alluded to in the concluding paragraph of the previous
section.

We rely on our operadic interpretation of the Grothendieck–Teichmüller group
and of the set of associators. We more precisely use that an element of the

Grothendieck–Teichmüller group GT (k) represents an automorphism ψ : PaB+̂
�−→

PaB+̂ of the Malcev completion of the operad of parenthesized braids PaB+̂, while
an element of the set of Drinfeld’s associators Ass(k) represents a categorical equiv-

alence φ : PaB+̂
∼−→ CD+̂ from this operad PaB+̂ to the operad of chord diagrams

CD+̂. We just consider the obvious composition operation

PaB+̂

ψ

φ◦ψ

PaB+̂

φ
CD+̂

in our morphisms sets and we immediately get our result:

Proposition 11.2.1. The above construction gives a simply transitive action of
the pro-unipotent Grothendieck–Teichmüller group GT (k) on the set of Drinfeld’s
associator Ass(k).

Furthermore, if we assume that the automorphism ψ : PaB+̂
�−→ PaB+̂ which

represents our element of the Grothendieck–Teichmüller group GT (k) is associated
to the pair (λ, g(x1, x2)) in the correspondence of Proposition 11.1.3, while the cat-

egorical equivalence of operads φ : PaB+̂
∼−→ CD+̂, which represents our element

of the set of associators Ass(k), is associated by the pair (κ, f(ξ1, ξ2)) in the cor-
respondence of Proposition 10.2.6, then our composition operation on morphisms
φ ◦ ψ : PaB+̂ → CD+̂ corresponds to the operation on these pairs such that:

(κ, f(ξ1, ξ2)) � (λ, g(x1, x2)) := (κλ, f(ξ1, ξ2) · g(eκξ1 , f(ξ1, ξ2)−1 · eλξ2 · f(ξ1, ξ2))).
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Proof. The fact that our action is simple and transitive is a consequence of
the result of Proposition 10.3.12, where we check that any categorical equivalence
of operads in Malcev complete groupoids φ : PaB+̂

∼−→ CD+̂ uniquely lifts to an

isomorphism φ̃ : PaB+̂
�−→ PaCD+̂ which is defined by the identity map on the

object sets of our operads. Indeed, the action of the Grothendieck–Teichmüller
group GT (k) on the set of associators Ass(k) corresponds to the obvious translation
action of the automorphisms of the Grothendieck–Teichmüller group ψ : PaB+̂

�−→
PaB+̂ on this set of isomorphisms φ̃ : PaB+̂

�−→ PaCD+̂, and this translation action
is clearly simple and transitive.

To get the second claim of the proposition, we compute the image of the
braiding τ and of the associativity isomorphism α under our composite morphisms
φ ◦ψ : PaB+̂ → CD+̂. We get the formula given in the proposition after a straight-
forward inspection of our correspondence as usual. �

We can now check the claims asserted in the introduction of this section:

Proposition 11.2.2.
(a) Each element of the set of Drinfeld’s associators φ ∈ Ass(k) determines a

section sφ : k× → GT (k) of the natural morphism λ : GT (k) → k× (the morphism
which maps any element of the Grothendieck–Teichmüller group to the correspond-
ing scalar factor λ ∈ k× in the description of Theorem 11.1.7).

(b) Each element of the set of Drinfeld’s associators φ ∈ Ass(k) determines
an isomorphism

υφ : GRT (k)
�−→ GT (k)

between the graded Grothendieck–Teichmüller group GRT (k) and the pro-unipotent
Grothendieck–Teichmüller group GT (k).

Explanations and references. We already observed in §10.3.11 that the
morphism λ : GRT (k) → k× analogous to λ : GT (k) → k× admits a section
when we work with the graded Grothendieck–Teichmüller group GRT (k). We can
use this result to deduce the first claim of this proposition from the second one,
but we prefer to give a proof of our claim which is independent of this statement.
We use the action of the multiplicative group on the set of associators. We ex-
plain in §10.2.11 that this action corresponds to the composition of the categorical
equivalences φ : PaB+̂

∼−→ CD+̂, which represent the elements of the set of as-

sociators, with automorphisms of the chord diagram operad ρλ : CD+̂
�−→ CD+̂,

which we associate to any scalar parameter λ ∈ k×. We immediately get that
this action of the multiplicative group k× on Ass(k) commutes with the action
of the Grothendieck–Teichmüller group GT (k), because the former is defined by
composition of morphisms on the left φ �→ ρλ ◦ φ while the latter is given by a
composition of morphisms on the right φ �→ φ ◦ ψ, for any categorical equivalence
φ : PaB+̂

∼−→ CD+̂ which we use to represent an element of the set of associators
Ass(k).

We fix such a categorical equivalence φ : PaB+̂
∼−→ CD+̂, which represents an

element of the set of associators Ass(k). To a scalar parameter λ ∈ k×, we associate
the element of the Grothendieck–Teichmüller group ψλ ∈ GT (k) determined by the
equation:

ρλ ◦ φ = φ ◦ ψλ,
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where we use that GT (k) acts simply and transitively on the set of associators
Ass(k). We easily check that this mapping sφ : λ �→ ψλ defines a group morphism.
(We mainly use that our composition actions commute to each other to establish
this assertion.) We immediately see that this mapping sφ : λ �→ ψλ defines a section

of the canonical morphism λ : GT (k) → k× too.

We adapt this argument line to associate a group isomorphism υφ : GT (k)
�−→

GRT (k) to any associator φ ∈ Ass(k). We then use the action of the group GRT (k)
on Ass(k). Recall that this action is given by the composition of the automorphisms
ρ : PaCD+̂ → PaCD+̂ which represent the elements of the graded Grothendieck–
Teichmüller group GRT (k) with a lifting, to the operad of parenthesized chord
diagrams PaCD+̂, of the categorical equivalences φ : PaB+̂ → CD+̂ which represent
the elements of the set of associators. We easily check that the composition with the
automorphisms of the pro-unipotent Grothendieck–Teichmüller group commutes
with this lifting operation (we already used this observation in the proof of Propo-
sition 11.2.1). We again get that the action of the groups GRT (k) and GT (k) on
Ass(k) commute to each other since we take a composition of morphisms on the
left in one case, and a composition on the right in the other case.

We then determine the element of the pro-unipotent Grothendieck–Teichmüller
group ψρ ∈ GT (k) which we associate to any ρ ∈ GRT (k) by the equation:

ρ ◦ φ = φ ◦ ψρ,

where we again use that GT (k) acts simply and transitively on the set of associators
Ass(k). We still check that this mapping υφ : ρ �→ ψρ defines a group morphism,
and this morphism is clearly bijective too, since both actions considered in our
equation are simple and transitive.

We immediately see that this isomorphism fits in a commutative diagram

GRT (k) �
υφ

λ

GT (k)

λ

k×

sφ

,

when we consider the morphisms defined on our groups which take values in the
multiplicative group k× and their sections. We can therefore retrieve the construc-
tion of the first assertion of the proposition from the construction of our second
assertion. �

The mapping s : φ �→ sφ, given by the construction of this proposition, actually
gives a one-to-one correspondence between the set of associators Ass(k) and the set
of sections of the morphism λ : GT (k) → k×. In [57, Proposition 5.2-5.3], Drinfeld
uses this observation (and arguments of algebraic group theory) in order to give a
second proof of the existence of rational associators. In short, one can prove that
the existence of a section defined over the field of complex numbers k = C (which
we may associate to the Knizhnik–Zamolodchikov associator) implies the existence
of a section over any characteristic zero ground field k.

11.2.3. The semi-direct product decomposition of the Grothendieck–Teichmüller
group. We already briefly explained that we take the kernel of the obvious morphism
λ : GT (k) → k× to define an analogue of the subgroup GRT 1(k) of the graded
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Grothendieck–Teichmüller group GRT (k) in GT (k):

GT 1(k) := ker(λ : GT (k) → k×).

We can equivalently define this group GT 1(k) as the subgroup of the Grothendieck–
Teichmüller group GT (k) formed by the automorphisms ψ : PaB+̂ → PaB+̂ which

fix the braiding isomorphism φ(τ ) = τ . We clearly see that this subgroup GT 1(k)
correspond to the pairs (λ, f(x1, x2)) such that λ = 1 in the description of Propo-
sition 11.1.3.

We use the result of Proposition 11.2.2(a) to get the semi-direct product de-
composition of the group GT (k) alluded to in the introduction of this chapter:

GT (k) = k×
�GT 1(k).

We also mentioned that the group GT 1(k) has a pro-unipotent structure in the
introduction of this chapter. In a first step, one can see that the group GT (k)
admits a tower decomposition GT (k) = limm GT 〈m〉(k), whose terms GT 〈m〉(k)
form (affine) algebraic groups. (We define this decomposition of the group GT (k) in
the next section.) We have an analogous decomposition GT 1(k) = limm GT 1

〈m〉(k)

for our subgroup GT 1(k) ⊂ GT (k). Then one can observe that the terms of this
tower decomposition of the Grothendieck–Teichmüller group GT (k) are identified
with the quotient groups qm GT (k) = GT (k)/ Fm+1 GT (k) associated to a filtration
GT (k) = F0 GT (k) ⊃ F1 GT (k) ⊃ · · · ⊃ Fn GT (k) ⊃ · · · which satisfies the
commutator condition (Fm GT (k), Fn GT (k)) ⊂ Fm+n GT (k). (We establish this
result in §11.4.) We can actually identifyGT 1(k) with the first layer of this filtration
F1 GT (k) ⊂ GT (k). We moreover have GT 1

〈m〉(k) = GT 1(k)/ Fm+1 GT (k) =

F1 GT (k)/ Fm+1 GT (k). We just put these results together to conclude that each
group GT 1

〈m〉(k) forms a unipotent algebraic group in the sense of algebraic group

theory (see §8.2.9).
We just consider the basic description of our tower decomposition and of the

filtration of the group GT (k) in what follows. We therefore focus on this side of
the subject and we leave the study of the algebraic group structure of our objects
to interested readers.

11.3. Tower decompositions

We study a counterpart, for the pro-unipotent Grothendieck–Teichmüller group
GT (k), of the tower decompositions which we associate to the graded Grothendieck–
Teichmüller group GRT (k) and to the set of associators Ass(k) in §10.4. We
check that the action of the pro-unipotent Grothendieck–Teichmüller group on the
set of associators, which we define in the previous section, restricts to a level-
wise action on this tower, and we use this observation to establish that the re-
sults, which we prove for the tower decomposition of the graded Grothendieck–
Teichmüller group in §10.4, also hold for the tower decomposition of the pro-
unipotent Grothendieck–Teichmüller group. To be specific, we prove that the mor-
phisms pm : GT 〈m〉(k) → GT 〈m−1〉(k) in this tower are surjective.

We follow the same overall plan as in §10.4. We use the natural tower decom-
position of the Malcev completion of the operad of parenthesized braids PaB+̂ =
limm qm PaB+̂ to give an operadic definition of our tower decomposition of the
Grothendieck–Teichmüller group. We give a brief reminder on the definition of
this operadic tower decomposition PaB+̂ = limm qm PaB+̂ first. Recall that we
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already studied this particular example of the tower decomposition of an operad
in §10.1 and that the weight graded Drinfeld-Khono Lie algebra operad p naturally
occurs as the object which determines the fibers of this tower of operad morphisms
· · · → qm PaB+̂ → qm−1 PaB+̂ → · · · → q0 PaB+̂. We refer to this first study §10.1
for more details on the background of our constructions.

11.3.1. Reminders on the tower decomposition of the operad of parenthesized
braids. We focus on the case of the non-unitary operad PaB̂ underlying PaB+̂

since the tower decomposition of such a unitary operad occurs as an obvious unitary
extension of the tower decomposition of its underlying non-unitary operad.

Recall that we have the identity Ob qm PaB(r) = ObPaB(r) at the object set
level, for each r > 0, by definition of the tower decomposition of an operad in Malcev
complete groupoids. The automorphism group of an object p ∈ ObPaB(r) in the

groupoid qm PaB(r)̂ is defined by Autqm PaB(r)̂ (p) = P̂r/ Fm+1 P̂r, for any m ≥ 0,

where we use the identity AutPaB(r)̂ (p) = P̂r and we consider the quotients of the

Malcev completion of the pure braid group qmP̂r = P̂r/ Fm+1 P̂r by the subgroups

of its natural filtration P̂r = F1 P̂r ⊃ · · · ⊃ Fm P̂r ⊃ · · · . In general, the morphism
set Morqm PaB(r)̂ (p, q), which we associate to a pair of objects p, q ∈ ObPaB(r),

is identified with the quotient of the completed morphism set MorPaB(r)̂ (p, q) =

MorPaB(r)(p, q)̂by the equivalence relation such that f ≡ g if we have f = gγ for

some γ ∈ Fm+1 P̂r. (We then use the identity P̂r = AutPaB(r)̂ (p).) We use the

notation f ≡ g(mod Fm+1 P̂r) for this equivalence relation on MorPaB(r)̂ (p, q).

In our constructions, we also use the following assertion which, like the anal-
ogous statement of Proposition 10.4.2, occurs as a particular case of the general
functoriality claims of §9.2.5:

Proposition 11.3.2. Every morphism of operads in Malcev complete groupoids
φ : PaB+̂ → qm PaB+̂ with values in the quotient qm PaB+̂ of the Malcev completion
of the operad of parenthesized braids PaB+̂ admits a factorization:

PaB+̂

φ
qm PaB+̂

qm PaB+̂

∃!φ̄

,

where we consider the natural quotient map πm : PaB+̂ → qm PaB+̂ on the left-hand
side. �

11.3.3. The tower decomposition of the Grothendieck–Teichmüller group. We
define the term GT 〈m〉(k) of the tower decomposition GT (k) = limm GT 〈m〉(k) of
the pro-unipotent Grothendieck–Teichmüller group GT (k) as the set of morphisms
of operads in Malcev complete groupoids φ : PaB+̂ → qm+1 PaB+̂ which are given
by the identity map at the object set level and whose factorization through the
operad qm+1 PaB+̂ defines an automorphism of this object. (We use the result of
Proposition 11.3.2 to ensure the existence of this factorization.) We provide this
group GT 〈m〉(k) with the obvious composition operation, which we deduce from
the composition of automorphisms for the operad qm+1 PaB+̂.

We again use that each morphism φ : PaB+̂ → qm+1 PaB+̂ occurs as the ex-
tension of a morphism of operads in groupoids φ : PaB+ → qm+1 PaB+̂, where we
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consider the ordinary operad of parenthesized braids PaB+. The result of The-
orem 6.2.4 implies that such a morphism is determined by giving the image of
the braiding isomorphism and of the associativity isomorphism of PaB+ in the op-
erad qm+1 PaB+̂. We can adapt the analysis of §11.1 to the case of the operads
Q = qm+1 PaB+̂ in order to make this correspondence explicit.

We first get that our morphism of unitary operads in Malcev complete groupoids
φ : PaB+̂ → qm+1 PaB+̂ is determined by a pair (λ, f(x1, x2)), where λ is a scalar

parameter such that φ(τ ) = τλ, and where f(x1, x2) now represents the class of

an element of the Malcev completion of the free group on two generators F̂(x1, x2)
such that we have the identity

φ(α) ≡ α · f(x12, x23) (mod Fm+2 P̂3)

in the morphism set

Morqm+1 PaB(3)̂ ((x1x2)x3, x1(x2x3)) = α · P̂3/ Fm+2 P̂3.

We then check that this group-like power series f(x1, x2) has to satisfy the relations
of Proposition 11.1.4 modulo factors of filtration ≥ m + 2 in the Malcev complete
groups where we express these relations. We get, besides, that our morphism of
operads in Malcev complete groupoids φ : PaB+̂ → qm+1 PaB+̂ induces an isomor-
phism when we pass to the operad qm+1 PaB+̂ if and only if the scalar parameter

associated to this morphism is invertible λ ∈ k×.
We use the obvious composition with the morphisms of the tower decomposi-

tion of the Malcev completion of the parenthesized braid operads PaB+̂ → · · · →
qm PaB+̂ → · · · → q1 PaB+̂ to define the morphisms of our tower decomposi-
tion of the Grothendieck–Teichmüller group GT (k) → · · · → GT 〈m〉(k) → · · · →
GT 〈0〉(k). We can identify these morphisms with the obvious reduction operation
in the above power series description of the groups GT 〈m〉(k) and we can also use
this approach to check the relation GT (k) = limmGT 〈m〉(k). We moreover have
the identity:

GT 〈0〉(k) = k×,

which still follows from the observation that the unit relations of Proposition 11.1.4
force the vanishing relation f(x1, x2) ≡ 1 in the group F̂(x1, x2)/ F2 F̂(x1, x2) (see
the proof of Proposition 11.1.4 for details).

We readily check, from our operadic definitions, that the action of the Grothen-
dieck-Teichmüller group GT (k) on the set of associators Ass(k) decomposes as a
levelwise action of the groups GT 〈m〉(k) on the sets Ass〈m〉(k) which define the
tower decomposition of this object Ass(k) = limm Ass(k). We easily see that this
action is simple and transitive at each level too.

We can readily adapt the definition of the tower decomposition GT (k) =
limm GT 〈m〉(k) to the group GT 1(k) of §11.2.3, which can accordingly be iden-

tified with the limit GT 1(k) = limm GT 1
〈m〉(k) of a tower of groups such that

GT 1
〈m〉(k) = ker(λ : GT 〈m〉(k) → k×). We then consider an obvious analogue, for

the group GT 〈m〉(k), of the morphism λ : GT (k) → k× of §11.2.3. We also have an

identity GT 〈m〉(k) = k×
�GT 1

〈m〉(k) at each level of our tower, and we can check

that the action of the group GT 〈m〉(k) on Ass〈m〉(k) restricts to a simply transitive

action of the group GT 1
〈m〉(k) on the set Assκ〈m〉(k), for any κ ∈ k×.
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We have the following result:

Proposition 11.3.4. The morphisms pm : GT 〈m〉(k) → GT 〈m−1〉(k) which
we consider in the tower decomposition of the Grothendieck–Teichmüller group
GT (k) = limm GT 〈m〉(k) are surjective, for any characteristic zero ground field
k, and we have an obvious counterpart of this result for the tower decomposition of
the group GT 1(k) = ker(λ : GT (k) → k×).

Proof. We use the counterpart of these surjectivity claims for the tower de-
composition of the set of associators Ass(k) = limm Ass〈m〉(k). We also fix some
element in this set φ ∈ Ass(k). We assume ψm−1 ∈ GT 〈m−1〉(k). We pick an ele-
ment φm ∈ Ass〈m〉(k) such that pm(φm) = φ◦ψm−1, where we consider the action of
ψm−1 on the image of our associator φ in Ass〈m−1〉(k). We then have φm = φ◦ψm,
for some ψm ∈ GT 〈m〉(k), and pm(φ◦ψm) = φ◦p(ψm) = φ◦ψm−1 ⇒ p(ψm) = ψm−1.

We argue similarly in the case of the group GT 1(k) by using that our actions fix
the value of the parameter κ ∈ k× which we associate to our element of the set of
associators φ ∈ Ass(k). �

We moreover have the following statement:

Proposition 11.3.5. The isomorphism υφ : GRT (k)
�−→ GT (k), which we

associate to an element of the set of associators φ ∈ Ass(k) in Proposition 11.2.2,
induces a levelwise isomorphism

υφ : GRT 〈m〉(k)
�−→ GT 〈m〉(k)

between our tower decomposition of the graded Grothendieck–Teichmüller group
GRT (k) and the parallel tower decomposition of the pro-unipotent Grothendieck–
Teichmüller group GT (k). We have a similar result when we pass to the subgroups
GRT 1(k) ⊂ GRT (k) and GT 1(k) ⊂ GT (k).

Proof. We can readily adapt the construction of Proposition 11.2.2(b) to as-

sociate an isomorphism υφm
: GRT 〈m〉(k)

�−→ GT 〈m〉(k) to each element φm ∈
Ass〈m〉(k) in the tower decomposition of the set of associators Ass(k) = Ass〈m〉(k).
We easily check that these isomorphisms define a tower decomposition of the iso-
morphism of Proposition 11.2.2(b) when we take the image of our element of the
set of associators φ ∈ Ass(k) in Ass〈m〉(k) for each φm ∈ Ass〈m〉(k). We ar-

gue similarly in the case of the pro-unipotent subgroups GRT 1(k) ⊂ GRT (k) and
GT 1(k) ⊂ GT (k). �

We can use this result to retrieve that the morphisms pm : GT 〈m〉(k) →
GT 〈m−1〉(k) in the tower decomposition of the Grothendieck–Teichmüller group
GT (k) = limm GT 〈m〉(k) are surjective (see Proposition 11.3.4) since we already
checked that an analogous statement holds for the morphisms pm : GRT 〈m〉(k) →
GRT 〈m−1〉(k) in the tower decomposition of the graded Grothendieck–Teichmüller
group GRT (k) = limm GRT 〈m〉(k) (in Proposition 10.4.8).

11.4. The graded Lie algebra of the Grothendieck–Teichmüller group

The results of the previous section implies that the morphism p : GT (k) →
GT 〈m〉(k) from the Grothendieck–Teichmüller group GT (k) towards a term of our



11.4. THE GRADED LIE ALGEBRA 415

tower decomposition GT (k) = limm GT 〈m〉(k) forms a surjective group morphism,
for each level m ≥ 0. We equivalently have a levelwise identity:

GT 〈m〉(k) = GT (k)/ Fm+1 GT (k),

for a nested sequence of subgroups of the Grothendieck–Teichmüller group

GT (k) = F0 GT (k) ⊃ · · · ⊃ FmGT (k) ⊃ · · ·

such that Fm+1 GT (k) = ker(p : GT (k) → GT 〈m〉(k)), for each m ≥ 0.
We devote this section to the study of this filtration GT (k) = F0 GT (k) ⊃ · · · ⊃

Fm GT (k) ⊃ · · · of the Grothendieck–Teichmüller group GT (k). We mainly check
that the subquotient groups E0m GT (k) = Fm GT (k)/ Fm+1 GT (k) are isomorphic to
the components of the graded Grothendieck–Teichmüller Lie algebra grt =

∏
m grtm

when m ≥ 1, while we have an identity GT (k)/ F1 GT (k) = k× ⇔ F1 GT (k) =
GT 1(k) in weight m = 0.

We also check that our filtration satisfies the commutator condition of §8.2.1.
We can therefore apply the constructions of this previous chapter to get a natural
Lie algebra structure on the weight graded object which we form by taking the
sum of the subquotients E0m GT (k) = Fm GT (k)/ Fm+1 GT (k) of the group GT (k).
We just need to start with the first layer of our filtration F1 GT (k) = GT 1(k)
and to forget about the factor GT (k)/ F1 GT (k) = k× in weight m = 0 in order
to fulfill our general connectedness requirements of §7.3 for Lie algebras in weight
graded modules. Thus, we actually consider a weight graded Lie algebra E0 GT 1(k)
associated to the subgroup GT 1(k) ⊂ GT (k) rather than to the full Grothendieck–
Teichmüller group GT (k). We similarly consider the weight graded Lie algebra
E0 grt1 =

⊕
m≥1 grtm whose completion gives the Lie algebra grt1 associated to

the group GRT 1(k). In fact, the weight graded module of subquotients E0 GT 1(k)
is isomorphic to E0 grt1 as a weight graded Lie algebra, and not only as a weight
graded module. We just give a few hints on the verification of this statement.

We give a self-contained definition of our filtration first. We only use the
relationship with the tower decompositions of the previous section in a second step,
when we tackle the computation of our filtration subquotients.

11.4.1. The definition of the filtration of the Grothendieck–Teichmüller group.
We go back to the tower decomposition of the Malcev completion of the operad
of parenthesized braids PaB+̂ = limm qm PaB+̂. We use the conventions recalled
in §11.3.1 and we consider the canonical morphism of operads πm : PaB+̂ →
qm PaB+̂ which we get in this tower decomposition PaB+̂ = limm qm PaB+̂, for
each m ≥ 0. We set:

(1) Fm GT (k) := {ψ ∈ GT (k)|πm ◦ ψ = πm},

where we use the definition of the elements ψ ∈ GT (k) in terms of morphisms
of unitary operads in Malcev complete groupoids ψ : PaB+̂ → PaB+̂. We can
equivalently define Fm GT (k) as the subgroup of the Grothendieck–Teichmüller
group GT (k) formed by the morphisms of unitary operads ψ : PaB+̂ → PaB+̂ such
that we have

(2) ψ(β) ≡ β(mod Fm+1 P̂r),

for every morphism β ∈ MorPaB(r)̂ (p, q), where p, q ∈ ObPaB(r).
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From this second definition, we immediately see that Fm GT (k) is preserved by
conjugation and hence forms a normal subgroup of GT (k). Furthermore, we have
q0 PaB̂= pt ⇒ GT (k) = F0 GT (k), and the following proposition holds:

Proposition 11.4.2. The collection Fm GT (k) ⊂ GT (k), m ≥ 0, defines a
filtration of the Grothendieck–Teichmüller group GT (k) = F0 GT (k) ⊃ F1 GT (k) ⊃
· · · ⊃ Fm GT (k) ⊃ · · · such that we have the commutator relation

(Fm GT (k), Fn GT (k)) ⊂ Fm+n GT (k),

for all m,n ≥ 0. We moreover have GT (k) = limm GT (k)/ FmGT (k).

Proof. We use that the morphism sets of the operad qm PaB+̂ are identified
with quotients of the morphisms sets of the operad PaB+̂ under a natural translation

action of the group Fm+1 P̂r ⊂ P̂r on these morphism sets, where we consider

the natural filtration of the Malcev completion of the pure braid groups P̂r =
F1 P̂r ⊃ · · · ⊃ Fm P̂r ⊃ · · · (see our reminder on the definition of this operadic
tower decomposition PaB+̂ = limm qm PaB+̂ in §11.3.1).

Recall that φ ∈ Fm GT (k) if we have the relation φ(β) ≡ β(mod Fm+1 P̂r), for

every β ∈ MorPaB(r)̂ (p, q). From this property, we get the relation γ ∈ Fn+1 P̂r ⇒
φ(γ) ≡ γ(mod Fm+n+1 P̂r). This claim can be deduced from the observation that γ

consists of n-fold commutators of elements of P̂r (by Proposition 10.0.9), or from
the weaker statement that γ consists of n-fold commutators up to factors of higher
order in the filtration of the group P̂r (see Proposition 8.3.3). Recall simply that
an element φ ∈ GT (k) is defined by a morphism of operads in Malcev complete
groupoids φ : PaB̂→ PaB ,̂ and that this morphism preserves the filtration of the
automorphism groups of objects by definition.

We now assume φ ∈ Fm GT (k) and ψ ∈ Fn GT (k). We fix any morphism
β ∈ MorPaB(r)̂ (p, q) in the groupoid PaB(r) .̂ We then have ψ(β) = βδ for some

δ ∈ Fn+1 P̂r and φ(δ) = δ(mod Fm+n+1 P̂r). We similarly have φ(β) = βγ for some

γ ∈ Fm+1 P̂r and ψ(γ) = γ(mod Fm+n+1 P̂r), from which we also get ψ−1(γ) =

γ(mod Fm+n+1 P̂r), while we have ψ(β) = βδ ⇒ ψ−1(βδ) = β. We use these identi-

ties and the relation γδ ≡ δγ(mod Fm+n+1 P̂r), which follows from the properties of

our filtration on P̂r, to compute the image of the element β ∈ MorPaB(r)̂ (p, q) under

the commutator (φ, ψ) = φ−1ψ−1φψ of our automorphisms φ, ψ : PaB̂→ PaB .̂
We explicitly get:

φ−1ψ−1φψ(β) ≡ φ−1ψ−1(βγδ)(mod Fm+n+1 P̂r)

≡ φ−1ψ−1(βδγ)(mod Fm+n+1 P̂r)

≡ φ−1(βγ)(mod Fm+n+1 P̂r)

≡ β(mod Fm+n+1 P̂r).

We conclude from this computation that we have (φ, ψ) ∈ Fm+nGT (k). We there-
fore have the relation (Fm GT (k), Fn GT (k)) ⊂ Fm+n GT (k) asserted in our propo-
sition.

We deduce the identity GT (k) = limm GT (k)/ Fm GT (k) from the relation

Morf̂ Grd Op(PaB+̂,PaB+̂) = lim
m

Morf̂ Grd Op(PaB+̂, qm PaB+̂),
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which is a formal consequence of the identity PaB+̂ = limm qm PaB+̂ in the category
of unitary operads in Malcev complete groupoids. To be explicit, we fix a collection
φm ∈ GT (k), m ≥ 0, such that we have φm+1 = φm ◦θm, for some θm ∈ Fm GT (k),
for every m ≥ 0. We then have the relation πm ◦φm+1 = πm ◦φm ◦ θm ◦φ−1

m ◦φm =
πm ◦ φm in the morphism set Morf̂ Grd Op(PaB+̂, qm PaB+̂), for every m ≥ 0, since

θm ∈ Fm GT (k) ⇒ φm ◦ θm ◦φ−1
m ∈ FmGT (k) ⇒ πm ◦φm ◦ θm ◦φ−1

m = πm. We can
accordingly form a morphism φ ∈ Morf̂ Grd Op(PaB+̂,PaB+̂) such that πm ◦ φm =

πm ◦φ for each m ≥ 0. We easily check that this morphism is invertible, because we
can use the same argument to produce a morphism ψ ∈ Morf̂ Grd ΛOp(PaB ,̂PaB )̂

such that πm ◦φ−1
m = πm ◦ψ for each m ≥ 0, and we readily check that we have the

relations πm◦φ◦ψ = πm = πm◦ψ◦φ, for all m ≥ 0, which imply φ◦ψ = id = ψ◦φ.
We consequently have φ ∈ GT (k) and this argument line proves that we do have
a one-to-one correspondence between the elements of the group GT (k) and the
elements of the limit limm GT (k)/ Fm GT (k), which we represent by the collections
φ̄m ∈ GT (k)/ Fm GT (k), where we consider the classes of our elements φm in the
quotient groups GT (k)/ Fm GT (k). �

In fact, the formula §11.4.1(1) is just a rephrasing of the definition of the kernel
ker(p : GT (k) → GT 〈m−1〉(k)), because the composite πm ◦ ψ : PaB+̂ → qm PaB+̂

represents the image of the element ψ ∈ GT (k) in GT 〈m−1〉(k) (see §11.3.3). We
therefore have the relation Fm+1 GT (k) = ker(p : GT (k) → GT 〈m〉(k)), for each
m ≥ 0, while the surjectivity of the morphisms in the tower decomposition of GT (k)
implies, as we mention in the introduction of this section, that we have an identity
GT 〈m〉(k) = GT (k)/ Fm+1 GT (k), for each m ≥ 0. (We can also use this relation
to retrieve the identity GT (k) = limm GT (k)/ Fm GT (k) which we proved by a
direct inspection in the previous proposition.)

We have the following equivalent statements when we pass to the set of associ-
ators:

Proposition 11.4.3.
(a) We can identify the group Fm+1 GT (k) ⊂ GT (k) with the subgroup of

the Grothendieck–Teichmüller group formed by the elements which act trivially on
the term Ass〈m〉(k) of the tower decomposition of the set of Drinfeld’s associators
Ass(k) = limm Ass〈m〉(k), for each m ≥ 0.

(b) We can identify the set Ass〈m〉(k) with the quotient of the set of associators
Ass(k) by the relation such that ρ ≡ φ when we have ρ = φ ◦ ψ for some ψ ∈
Fm+1 GT (k).

Proof. The assertions of this proposition are immediate consequences of the
relation Fm+1 GT (k) = ker(p : GT (k) → GT 〈m〉(k)) and of the observation that
the action of the Grothendieck–Teichmüller group GT (k) on the set of associa-
tors Ass(k) decomposes as a levelwise action of the groups GT 〈m〉(k) on the sets
Ass〈m〉(k) together with the fact that this action is simple and transitive levelwise.
We also use the surjectivity of the map p : Ass(k) → Ass〈m〉(k) in the second claim
of the proposition. �

11.4.4. From the filtration subquotients of the Grothendieck–Teichmüller group
to the fibers of the tower decomposition of the operad of parenthesized braids. Recall
that the collection p(−)m = {p(r)m, r > 0}, where we consider the homogeneous
components of a fixed weight m ≥ 1 of the Drinfeld–Kohno Lie algebra operad p,
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inherits the structure of an additive operad in the category of k-modules. In what
follows, we also consider the obvious unitary extension of this operad p+(−)m,
which we define by considering an extra null term in arity zero p+(0)m = 0.

In Theorem 10.1.3, we explain that the additive operads E0m p̂ represent the
fibers of the tower decomposition of the Malcev completion of the operad of paren-
thesized braids PaB̂= limm qm PaB .̂ We then regard this additive operad p(−)m
as a constant local coefficient system operad over the Malcev completion of the op-
erad of parenthesized braids PaB+̂. In short, our claim is that we have a collection
of isomorphisms of k-modules

υp : p(r)m
�−→ E0m AutPaB(r)̂ (p)

associated to the objects p ∈ ObPaB(r), such that the additive operad structure
of the collection p(−) = {p(r)m, r > 0} reflects structure operations attached to
the subquotients of the automorphism groups AutPaB(r)̂ (p) in the Malcev com-
pletion of the operad of parenthesized braids, while the conjugation operations
cβ : E0m AutPaB(r)̂ (p) → E0m AutPaB(r)̂ (q) which we associate to the morphisms

β ∈ MorPaB(r)̂ (p, q) of the groupoid PaB(r) ,̂ for each r > 0, correspond to identity

maps on the object p(r)m. We have an analogous statement in the unitary setting.
Let ψ ∈ Fm GT (k). Let β ∈ MorPaB(r)̂ (p, q) with p, q ∈ ObPaB(r) be a mor-

phism in the Malcev completion of the parenthesized braid operad. The relation
πm ◦ ψ = πm implies that we have an identity:

ψ(β) ≡ β · υpθψ(β)
inMorqm+1 PaB(r)̂ (p, q), where we consider the action of an element θψ(β) ∈ p(r)m+1

on the class of the morphism β in this groupoid qm+1 PaB(r) .̂
We may see that the map θψ : β �→ θψ(β) defines a morphism of Malcev

complete groupoids θψ : PaB(r)̂→ p(r)m+1, in each arity r > 0, where we use that
the k-module p(r)m+1 (which we identify with a groupoid with a single object)
is equipped with a canonical Malcev complete group structure (see §8.2). These
maps θψ : β �→ θψ(β) moreover preserve the operad structure which we attach to
our objects, and hence define a morphism of operads in Malcev complete groupoids
θψ : PaB̂→ p(−)m+1, where we regard the additive operad p(−)m+1 as an operad
in Malcev complete groupoids with a single object. This operad morphism has
clearly a unitary extension θψ : PaB+̂ → p+(−)m+1 too.

We then consider the morphism

θψ : PaB+ → p+(−)m+1,

defined on the ordinary operad of parenthesized braids PaB+, which underlies this
morphism of operads in Malcev complete groupoids. We only consider this mor-
phism of operads in ordinary groupoids in what follows. We can therefore skip the
verification that our maps θψ : β �→ θψ(β) define morphisms of Malcev complete
groupoids θψ : PaB(r)̂→ p(r)m+1, for each arity r > 0. We only need to check that
our maps preserve the operad structure of our objects, which is straightforward.

We now assume m ≥ 1. We check that the map θ : ψ �→ θψ, which carries any
element ψ ∈ FmGT (k) to this operad morphism θψ : PaB+ → p+(−)m+1, preserves
group structures in the sense that we the identity θφψ = θφ+θψ, for each pair φ, ψ ∈
Fm GT (k), where we consider the obvious additive group operation inherited from
the target object p+(−)m+1 in the morphism set MorGrd Op(PaB+, p+(−)m+1). We
argue as follows. We observed in the proof of Proposition 11.4.2 that, for an element
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φ ∈ FmGT (k), we have the relation γ ∈ Fn+1 P̂r ⇒ φ(γ) ≡ γ(mod Fm+n+1 P̂r). For
a representative of the element γ = υpθψ(β), this relation implies φ(υpθψ(β)) ≡
υpθψ(β)(mod Fm+m+1 P̂r), and hence, we get φ(υpθψ(β)) ≡ υpθψ(β)(modFm+2 P̂r)
when m ≥ 1, from which we deduce the relation φ ◦ ψ(β) ≡ βυpθφ(β)υpθψ(β). We
therefore have the identity θφψ(β) = θφ(β) + θψ(β) when we pass to the module
p(r)m, for any β ∈ MorPaB(r)̂ (p, q) and p, q ∈ ObPaB(r).

We clearly have ψ ∈ Fm+1 GT (k) ⇔ θψ = 0. Hence, the construction of this
paragraph gives an injective group morphism:

E0mGT (k) = Fm GT (k)/ Fm+1 GT (k)
θ−→ MorGrd Op(PaB+, p+(−)m+1),

where we consider the subquotient associated to our filtration of the group GT (k),
for each weight m ≥ 1.

In §11.4.2, we explained that the modules MorGrd Op(PaB+, p+(−)m+1) deter-
mine the fibers of the tower decomposition of the set of associators too. To be more
explicit, we observed that the term Ass〈m〉(k) of this tower decomposition inherits

an action of this module E0m Ass(k) = MorGrd Op(PaB+, p+(−)m+1) which is yielded
by the aritywise exponential action of the Lie algebras p(r)m+1 on the Malcev com-

plete group qm+1 CD(r)̂= G Û(p(r)/ Fm+2 p(r)), for any m ≥ 1. Furthermore, a
pair of elements φ, ψ ∈ Ass〈m〉(k) have the same image in the next level of our
tower Ass〈m−1〉(k) if and only if they differ by the action ψ = φ · exp(θ) of such a
morphism θ : PaB+ → p+(−)m+1.

We use the action of the Grothendieck–Teichmüller group on the set of as-
sociators to relate the construction of the previous paragraph §11.4.4 to this cor-
respondence E0mAss(k) = MorGrd Op(PaB+, p+(−)m+1), and we get the following
statement:

Proposition 11.4.5. The map constructed in §11.4.4 is an isomorphism

E0m GT (k) = Fm GT (k)/ Fm+1 GT (k)
�−→ MorGrd Op(PaB+, p+(−)m+1),

for each weight m ≥ 1.

Proof. We fix an element in the set of associators φ ∈ Ass(k) and we use the
action of the group GT (k) on this element. For ψ ∈ Fm GT (k), we have the relation
φ ◦ ψ ≡ φ · exp(ρψ) in the set Ass〈m〉(k), for a morphism ρψ : PaB+ → p+(−)m+1.
We use that Fm GT (k) represents the subgroup of GT (k) formed by the elements
which act trivially on Ass〈m−1〉(k) while GT 〈m〉(k) = GT (k)/ Fm+1 GT (k) acts
simply and transitively on Ass〈m〉(k) (see §10.4.4) to check that this mapping

ρ : ψ → ρψ induces a bijection from E0mGT (k) = Fm GT (k)/ Fm+1 GT (k) to
MorGrd Op(PaB+, p+(−)m+1).

We observed in the proof of Proposition 10.2.8 that the morphism φ : PaB+̂ →
CD+̂, which our element of the set of associators represents, reduces to the in-

verse of the standard isomorphism υ : p(r)
�−→ E0 P̂r when we pass to the sub-

quotients of the automorphism groups of objects in the operad PaB+̂ (up to the

scalar factor κ ∈ k× associated to our associators). We can use this observation
to check that the map θ : ψ �→ θψ of §11.4.4 agrees with the above mapping

ρ : ψ �→ ρψ (up to this scalar factor κ ∈ k×), and hence, induces a bijection from
E0m GT (k) = Fm GT (k)/ Fm+1 GT (k) to MorGrd Op(PaB+, p+(−)m+1) as asserted in
our proposition. �
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In §10.4, we also observe that the module MorGrd Op(PaB+, p+(−)m+1) is iso-
morphic to the component of weight m of the graded Grothendieck–Teichmüller
Lie algebra grtm (see Proposition 10.4.15). By combining this observation with the
result of Proposition 11.4.5, we obtain the following statement:

Theorem 11.4.6. We have E0m GT (k) = grtm, for each weight m ≥ 1. �

We already observed that we have an identity GT 1(k) = ker(p : GT (k) →
GT 〈0〉(k)). We therefore have GT 1(k) = F1 GT (k) and E0mGT 1(k) = E0m GT (k)
for m ≥ 1. The result of Proposition 11.4.2 implies that the commutator (−,−)
induces a Lie bracket on the weight graded module E0 GT 1(k) =

⊕
m≥1 E

0 GT (k).
We can check that this Lie bracket agrees with the Lie bracket of the Lie algebra
grt. We can perform this verification by a direct inspection of our constructions.
We accordingly have an identity of weight graded Lie algebras E0 GT 1(k) = grt1,
where we consider the Lie subalgebra grt1 of the graded Grothendieck–Teichmüller
Lie algebra grt.

We have an analogue of the results of this section for the graded Grothendieck–
Teichmüller group. We explicitly have the identity E0 GRT 1(k) = grt1 in the cat-
egory of weight graded Lie algebras. We can use the definition of grt1 as the Lie
algebra associated to the pro-algebraic group GRT 1(k) and the observation that
this Lie algebra grt1, which we define by a construction of algebraic group theory,
naturally splits as a weight graded module equipped with a homogeneous Lie struc-
ture in order to check this result. We may also retrieve our claim E0 GT 1(k) = grt1

from this identity, by using that the group isomorphism υφ : GRT (k)
�−→ GT (k),

which we associate to any associator φ ∈ Ass(k), induces an isomorphism between
the weight graded Lie algebras which we associate to these groups.



CHAPTER 12

A Glimpse at the Grothendieck Program

Beyond the applications to quantum group theory, the definition of the Grothen-
dieck–Teichmüller group by Drinfeld in [57] was motivated by ideas of the Grothen-
dieck program which aims to give a geometrical picture of the absolute Galois group
GQ = Gal(Q̄|Q). The purpose of this concluding chapter is to give an overview of
this arithmetic side of the Grothendieck–Teichmüller theory.

In Grothendieck’s proposal [83], the fundamental objects are the moduli spaces
of marked curves Mgn. In this book, we already considered these objects, in the
genus zero case, in our study of variations of the little discs operads (see §4.3.5).
We mostly deal with this case g = 0 yet. We then have

M0r+1 = F (P1(C), r + 1)/PGL2(C),

where we consider the diagonal action of the group PGL2(C) on the configuration
space of points in the projective line P1(C). In previous chapters, we used the
notation CP1, borrowed from topology, for the projective line. In what follows,
we prefer to adopt the notation of algebraic geometry P1(C) which stresses the
existence of a scheme P1 underlying this topological space P1(C) = CP1.

For r ≥ 2, we have an identityM0r+1 = F (P1(C)\{∞, 0, 1}, r−2) since, for each
element of the configuration space (z0, . . . , zr) ∈ F (P1(C), r + 1), we have one and
only one transformation g ∈ PGL2(C) which maps the points of our configuration
z = (z0, . . . , zr) to a configuration of the form g · z = (∞, 0, 1, z′3, . . . , z

′
r) in the

space F (P1(C), r+1). We can use this identity to regard each space M0r+1, r ≥ 2,
as a scheme defined over Q in the sense of algebraic geometry. In the particular case
r = 4, we obtain M04 = P1(C) \ {∞, 0, 1}. We refer to [87] for a modern textbook
on moduli spaces of curves, addressed from the viewpoint of algebraic geometry.
We also refer to the book [133] for an account of the connections between moduli
spaces, the theory of Gromov-Witten invariants, and the theory of operads.

To start our survey, we recall the construction of an action of the absolute
Galois group GQ = Gal(Q̄|Q) on the profinite fundamental group of the moduli
spaces π̂1(M0r+1) and we review the relationship between the definition of this
action and the definition of the Grothendieck–Teichmüller group.

The action of the absolute Galois group on the fundamental group of algebraic
varieties. We first consider the homotopy exact sequence

(1) 1 → πet
1 (X ×k ks) → πet

1 (X) → Gal(ks|k) → 1,

which relates:

– the étale fundamental group πet
1 (X) associated to any integral scheme X

over a field k,
– the étale fundamental group πet

1 (X ×k ks) associated to the scheme X̄ =
X ×k ks, where ks denotes the separable closure of the field k,

421
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– and the absolute Galois group Gal(ks|k).
We refer to [82] for the definitions of the étale fundamental group of a scheme and
of the above short exact sequence. We also refer to the books [144, §I.5] and [172,
§5] for good introductions to these topics.

Let Out(πet
1 (X×k ks)) be the outer automorphism group of the group πet

1 (X×k

ks). For any g ∈ πet
1 (X), we consider the automorphism cg : πet

1 (X ×k ks) →
πet
1 (X ×k ks) induced by the conjugation operation cg(x) = gxg−1 in the group

πet
1 (X). We have a group morphism ρX : Gal(ks|k) → Out(πet

1 (X ×k ks)) which
we define by applying the map ρ : g �→ cg to the pre-image of the elements of the
Galois group Gal(ks|k) in the étale fundamental group πet

1 (X).
We assume k = Q, so that ks = Q̄, and we set GQ = Gal(Q̄|Q). We consider the

analytic space X(C) associated to the scheme X, and we assume that X is locally
of finite type over Q. We then have an identity (see [82, §§XII.5.1-5.2]):

(2) πet
1 (X ×k ks) = π̂1(X(C)),

where π̂1(X(C)) denotes the profinite completion of the fundamental group of the
space X(C). We therefore have a group morphism

(3) ρX : GQ → Out(π̂1(X(C))),

naturally associated to the scheme X, and which we deduce from the homotopy
exact sequence (1).

The Teichmüller tower. The main idea of the Grothendieck program [83] is to
get information on the absolute Galois group GQ from the morphisms (3) associated
to the moduli spaces X = Mgn by using the geometry of the topological curves
Σ = Σgn which we associate to the geometrical points of these spaces C ∈ Mgn.

The morphism ρX is injective for X = M04 = P1 \{∞, 0, 1} (by a theorem of
Belyi [22], see also [172, §§4.7.6-4.7.7] for an account of the arguments). The issue
is therefore to characterize the image of the absolute Galois group GQ within the

fundamental group π̂1(P
1(C) \ {∞, 0, 1}).

The (topological) fundamental group π1(Mgn) is identified with the mapping
class group Γgn of the surface Σgn (up to elements of finite order). We refer to [26,
§4] for a classical introduction to this subject. Recall that this group Γgn, explicitly
defined as the group of isotopy classes of orientation preserving diffeomorphisms on
Σgn, is generated by Dehn twists along curves drawn on Σgn. We can also use
decompositions of the surface Σgn along curves in order to determine this group
Γgn from smaller pieces involving the mapping class group of surfaces with bound-
ary components. The proposal of [83] is to use an algebraic counterpart of the
combinatoric of these surface decompositions in order to understand the relations
satisfied by the image of the absolute Galois group GQ in the outer automorphism
groups Out(π̂1(Mgn)). These ideas are put in applications in [88] and in [147] with
as main outcome a lifting of the morphisms ρ : GQ → Out(π̂1(Mgn)) to the auto-
morphism groups Aut(π̂1(Mgn)) and the determination of relations satisfied by the
image of the absolute Galois group in Aut(π̂1(Mgn)).

In the previous paragraph, we have not been precise about the base points which
are taken in the definition of the étale fundamental groups. In basic references on
the subject, the base point is just a fixed geometric point of the scheme. But this
choice does not enable us to get a counterpart, at the level of étale fundamental
groups, of the operations on mapping class groups associated to surface decom-
positions. To handle the problems, one idea is to consider the Deligne–Mumford
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compactification Mgn of the moduli space Mgn and to take tangent vectors at the
infinity of the compactification as base points for the étale fundamental groups
of the schemes Mgn. This notion of tangential base point was introduced by P.
Deligne in [52, §15]. We also consider fundamental groupoids rather than funda-
mental groups. In [94, 95], Ihara gives a definition of an action of the absolute
Galois group on the tower of fundamental groupoids with tangential base points.
He uses this approach to give a proof of the relations satisfied by the image of the
absolute Galois group in the étale fundamental groups in the genus zero case g = 0.

The definition of the profinite Grothendieck–Teichmüller group. We go back
to the case of the space M04 = P1 \{∞, 0, 1} and we consider the morphism ρ =
ρP1 \{∞,0,1} from the absolute Galois group GQ to the outer automorphism group

of the étale fundamental group of this scheme P1 \{∞, 0, 1}.
The topological fundamental group associated to this space is identified with the

free group F(x, y), where x (respectively, y) is a loop turning around 0 (respectively,

1). We accordingly have πet
1 (P1 \{∞, 0, 1}) = F̂(x, y), where the notation F̂(x, y)

now refers to the profinite completion of the free group on two generators (x, y).
In the tangential base point approach of [94, 95], one considers a loop x based

at the tangent vector
−→
01, the image of this loop under the map θ(z) = 1− z (which

forms a loop θ(x) based at
−→
10 in the fundamental groupoid), and the straight path

p, which goes from
−→
01 to

−→
10. The loops x and y = p−1θ(x)p correspond to the

previously considered generators of the fundamental group π̂1(P
1(C) \ {∞, 0, 1}),

based at a point near 0.
We already mentioned that the morphisms ρ : GQ → Out(π̂1(Mgn)) can be lifted

to the étale fundamental groupoids of the moduli spaces equipped with tangential
base points. In the case (g, n) = (0, 4), which we now examine with more details,

this approach can also used to prove that the morphism ρ : GQ → Out(F̂(x, y)) ad-
mits a lifting to the group of automorphisms of the free group F̂(x, y). To be more

precise, one can prove that we have an automorphism ρ(σ) : F̂(x, y) → F̂(x, y),
canonically associated to any element σ ∈ GQ, such that we have ρ(σ)(x) = xλ

for our first generator x ∈ πet
1 (P1 \{∞, 0, 1}), where λ = χ(σ) denotes the im-

age of σ under the cyclotomic character χ : GQ → Ẑ×, and we have ρ(σ)(y) =

fσ(x, y)
−1yλfσ(x, y) for our second generator y ∈ πet

1 (P1 \{∞, 0, 1}), for some

fσ = fσ(x, y) ∈ F̂(x, y). Furthermore, by using paths in the moduli spaces M04 =
P1 \{∞, 0, 1} and M05 = (P1 \{∞, 0, 1}×P1 \{∞, 0, 1})\Δ, one can prove that this
group element fσ(x, y) satisfies profinite analogues of the unit, involution, penta-
gon and hexagon relations of §11.1. The profinite Grothendieck–Teichmüller group
GT ,̂ such as defined by Drinfeld in [57], precisely consists of the group automor-

phisms φ : F̂(x, y) → F̂(x, y) of the form:

(4) φ(x) = xλ,

φ(y) = f(x, y)−1 · yλ · f(x, y),

where we consider any pair (λ, f(x, y)) such that f(x, y) satisfies these profinite
analogues of the unit, involution, pentagon and hexagon relations of §11.1. The
construction of the action of the absolute Galois group GQ on the étale fundamental
group of the moduli spaces M0r+1 therefore yields an injective group morphism
ρ : GQ ↪→ GT .̂
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The proof of the Drinfeld involution, pentagon and hexagon relations for the
pair (λ, fσ(x, y)) associated to a Galois group element σ ∈ GQ is given by Y. Ihara
in [94, 95] by using the fundamental groupoid with tangential base points approach.
We refer to the work of P. Lochak and L. Schneps [123] for another approach, which
relies on a cohomological interpretation of Drinfeld’s relations, of this question. Let
us mention that the above formulas (4) can also be used to describe the action of the
Galois group GQ on inertia subgroups of a stacky version of the étale fundamental
groups of the moduli spaces of curves (see [48, 47] for this subject).

We note that the group GT̂ encodes the geometric information captured by
the action of the absolute Galois group in genus zero only. We have a generalization
of this group, defined by considering the whole collection of moduli spaces Mgn,
which has been introduced by P. Lochak, H. Nakamura, and L. Schneps in [122].
We do not go further into applications of Grothendieck–Teichmüller groups in the
profinite setting. We refer to the cited articles for the reader willing to learn more
about this subject.

The category of mixed Tate motives. We now give a brief survey on the def-
inition of an analogue, for the pro-unipotent groups of §11, of this relationship
between the absolute Galois group GQ and the profinite Grothendieck–Teichmüller
group GT .̂ We then replace the absolute Galois group by Galois groups of motives.

Briefly recall that the idea of a motive was introduced by Grothendieck as an
attempt to unify the cohomology theories that occur in algebraic geometric: the
singular cohomology of the topological space underlying any algebraic variety (the
Betti cohomology in the language of algebraic geometry), the de Rham cohomol-
ogy, the l-adic cohomologies, the crystalline cohomology, and more generally, any
suitable cohomology theory that satisfies the Weil axioms. Motives are supposed
to form an abelian category under the category of algebraic varieties such that the
mapping M : X �→ M(X), which assigns a motive M(X) to any algebraic variety
X, defines a universal Weil cohomology theory. We refer to [7] for a comprehensive
introduction to this subject.

The definition of a conjectural category of pure motives (well suited when we
restrict ourselves to smooth projective varieties) was initially proposed by Grothen-
dieck (see [7] for a survey of this approach). For more general varieties, we have
Deligne’s language of realization systems, which formalizes the structures carried
by the images of a motive under a cohomology theory, as well as Hanamura’s
[86], Levine’s [119] and Voevodsky’s [179] triangulated categories of mixed motives,
which define candidates for the derived category of the abelian category of mixed
motives. The definition an abelian category of mixed motives has also been pro-
posed by Nori, by relying on the Tannakian formalism. We refer to [120] for a
survey of this construction and to the book [92] for a more detailed account. The
Tannakian constructions have a counterpart in Voevodsky’s approach which has
been studied by Ayoub in [13, 14]. The main outcome of Ayoub’s work is a new
definition of a Tannakian category of mixed motives which turns to be equivalent
to the category of mixed motives defined by Nori (see [43]).

The connection between Grothendieck–Teichmüller groups and motives is made
precise in the work of Deligne–Goncharov [54] and in the work of Terasoma [176].
We then mostly consider a category of (rational) mixed Tate motives, which is
defined as a subcategory of the category of mixed motives. We follow [54] for our
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account. We consider varieties and motives defined over a field k of characteristic
zero.

Recall that the Tate motive T is classically defined as the tensor inverse T =
L−1 of a motive L such that M(P1) = 1⊕L, where we consider a splitting of the
motive associated to the projective line P1. The triangulated category of rational
Tate motives, denoted by DMT (k)Q, is generated by iterated extensions of shifted
objects Q(n) in any of our rational triangulated categories of mixed motives, where
Q(1) = T ⊗Q denotes the object that represent the Tate motive in this triangulated
category and we set Q(n) = Q(1)⊗n. This category DMT (k)Q is actually identified
with the derived category of an abelian category MT (k) as soon as the Beilinson-
Soulé vanishing conjecture holds, which is at least the case when k is a number field
(see [118]). We refer to this category MT (k) as the abelian category of mixed Tate
motives over k.

Let OS be a ring of S-integers in the number field k. In [54], a subcategory of
mixed Tate motives over OS , denoted by MT (OS), is also defined within MT (k).
One can apply the Tannakian formalism to identify this category MT (OS) with the
category of representations of an affine group scheme Gω associated to a realization
functor ω : MT (OS) → ModQ. Deligne and Goncharov also define an affine group
scheme GMT(OS) in the category MT (OS) such that ω(GMT(OS)) = Aut(ω), where
Aut(ω) denotes the group of natural automorphisms of this realization functor ω
on the category MT (OS). They refer to this object GMT(OS) as the fundamental
group of the category of mixed Tate motives MT (OS). This is this group GMT(OS)

and its realizations ω(GMT(OS)) = Aut(ω) that replace the absolute Galois in the
pro-unipotent setting.

The motivic fundamental group of Tate motives. We now assume k = Q and
OS = Z. Deligne–Goncharov [54] and Terasoma [176] have defined a motivic coun-
terpart πmot

1 (P1 \{∞, 0, 1}), in the category MT (Z), of the fundamental group of
the variety P1 \{∞, 0, 1}. This motivic fundamental group πmot

1 (P1 \{∞, 0, 1}) has
a Betti realization πB

1 (P1 \{∞, 0, 1}), which is identified with the prounipotent com-
pletion of the fundamental group of the topological space P1(C)\{∞, 0, 1}), as well
as a de Rham realization πDR

1 (P1 \{∞, 0, 1}) (we refer to [52, §10] for the original
definition of this de Rham realization of fundamental groups).

We use the notationGB
MT(Z) for the Betti realization of the motivic fundamental

group GMT(Z) of the integral category of mixed Tate motives MT (Z). We have a

group morphism ρ : GB
MT(Z) → Aut(πB

1 (P1 \{∞, 0, 1})) which defines a motivic

analogue, in the Betti realization, of the previously considered morphism ρ : GQ →
Aut(π̂1(P

1 \{∞, 0, 1})), where we consider the usual Galois group GQ = Gal(Q̄|Q).
We also have πB

1 (P1 \{∞, 0, 1}) = F̂(x, y), the prounipotent completion of the free
group with two generators, and one can prove, just as in the profinite setting,
that the morphism ρ factors through the Grothendieck–Teichmüller group GT (Q)
regarded as a subset of the automorphism group of this free group F̂(x, y) (see [177]
for an outline of the arguments).

The obtained morphism

(5) ρ : GB
MT(Z) → GT (Q)

is conjecturally an isomorphism (Deligne–Ihara). A result of F. Brown [37] gives
the injectivity of this morphism.
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Let us mention that the group GB
MT(Z) is, according to a statement of [54], the

semi-direct product of the multiplicative group with the prounipotent completion
of a free group on a sequence of generators s3, s5, . . . , s2n+1, . . . . The Deligne–
Ihara conjecture is therefore equivalent to the conjecture that we have an identity
between:

– the Lie algebra gt1 of the pro-unipotent Grothendieck–Teichmüller group
GT 1(Q) (see §11.2.3), or equivalently, the Lie algebra grt1 of the graded
Grothendieck–Teichmüller group GRT 1(Q) (see §§10.4.5-10.4.6),

– and a free complete Lie algebra L̂(s3, s5, . . . , s2n+1, . . . ).

The Knizhnik–Zamolodchikov associator and multizetas. The Knizhnik-Zamo-
lodchikov associator of Theorem 10.2.12 has also an interpretation in terms of a
period isomorphism connecting the Betti realization and the de Rham realization
of the motivic fundamental group πmot

1 (P1 \{∞, 0, 1}) (see [177] for an introduction
to this subject).

The Knizhnik–Zamolodchikov associator actually represents a generating power
series of the multizeta values

(6) ζ(k1, . . . , kr) =
∑

n1>···>nr>0

1

nk1
1 · . . . · nkr

r

(as we already briefly explained in §10). These numbers ζ(k1, . . . , kr) precisely ap-
pear (with a correcting sign) as the coefficients of the terms xk1−1yxk2−1y · · · yxkr−1

in the expansion of the power series of the Knizhnik–Zamolodchikov associator
Φ(x, y) ∈ G T̂(x, y) in the completed tensor algebra T̂(x, y). The other terms of this
expansion can be obtained from multizetas by an explicit procedure (see [115]).

Multizeta values are instances of periods in the sense of Kontsevich–Zagier [108,
110]. The multizeta values form an algebra. The result established by F. Brown
in [37] actually asserts that a motivic counterpart of this algebra, where we only
retain relations underlying an algebraic definition of multizetas in terms of motivic
periods (see [80]), is isomorphic to the completed tensor algebra underlying the free
Malcev complete group GB

MT(Z). The injectivity of the map (5) in the Deligne–Ihara

conjecture follows from this result. This relationship between the motivic Galois
group GB

MT(Z) and the algebra of multizetas has also a conceptual interpretation in

terms of an action of motivic Galois groups on periods. We just refer to [108] for
the definition of such actions in terms of Nori’s category of mixed motives (see also
the book [92] for a detailed account of this correspondence and for a comprehensive
reference on this subject).
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APPENDIX A

Trees and the Construction of Free Operads

The main purpose of this appendix is to explain an explicit construction of
free operads. This construction works in any base symmetric monoidal category M

whose tensor product ⊗ : M×M → M distributes over colimits (see §0.9).
We basically check that the free operad Θ(M) associated to a symmetric se-

quence M is spanned by tensor products of components of the object M arranged on
trees. Intuitively, these trees give the pattern of all composites that can be formed
within an operad. The general construction of free objects which we give in this ap-
pendix can be handled in the category of all operads without any restriction on the
arity zero term. Nevertheless, we prefer to focus on the study of free objects in the
category of non-unitary operads, for which we assume P(0) = ∅, since we mainly
deal with this subcategory of operads in this book. By the way, we also examine
the definition of free objects in the category of augmented non-unitary Λ-operads
which we use to model unitary operad structures (see §I.2.2). We formally check
that our plain free operad functor admits a lifting to the category of augmented
non-unitary Λ-operads, and we check that this lifting fulfills the natural adjunction
relation which we attach to a free object in this category of operads (see §I.2.3).

In §I.1.2, we define the free operad as the left adjoint of the obvious forgetful
functor from operads to symmetric sequences. In the verifications which we carry
out in this appendix, we rather give an explicit definition of the free operad functor
in terms of trees first, and we check that this functor solves the adjunction problem
of §I.1.2 in a second step.

We review the formal definition of a tree in a preliminary section (§A.1). We
explain the definition of the treewise tensor product of a symmetric sequence and
we address the construction of the free operad functor itself afterwards (§§A.2-A.3).

We devote an extra section to the construction of free objects in the category
of connected (non-unitary) operads (§A.4). Recall that a non-unitary operad P , for
which we assume P(0) = ∅, is connected in our sense when we also have the relation
P(1) = 1 in arity one (see §I.1.1.21 and §I.1.2.13). In this setting, we consider the
symmetric sequence P̄ which obtain by dropping the unit term P(1) = 1 from the
operad P, and where we take P̄(1) = ∅ instead. We refer to this object P̄ as the
augmentation ideal of the operad P, because it is identified with the kernel of a
natural augmentation ε : P → I associated to P (at least, when the base category
is pointed). Recall that I denotes the initial object of the category of operads. We
have I (1) = 1 and I (r) = ∅ for r > 1. In §I.1, we call this object I the unit operad
(see §I.1.2.3). In §I.1.2, we explain that the free operad functor also induces a left
adjoint of the map ω̄ : P �→ P̄ when we work in the category of connected operads.
In §A.4, we go back to the proof of this result, and we check that the free objects of
the category of connected operads admit a reduced expansion over a subcategory
of reduced trees, where each vertex has at least two ingoing edges. By the way, we
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also examine the definition of free objects in the context of augmented connected
Λ-operads. In short, we just check that this free object functor can be obtained
by lifting the plain free object functor, which goes from the category of connected
sequences to the category of (ordinary) operads, as in the case of augmented non-
unitary Λ-operads, but we have to amend our construction when we work in the
connected setting.

To complete our account, we give an explicit definition, by using an extension
of our treewise tensor product constructions, of coproducts of the form P ∨Θ(M)
in the category of operads. We address this subject in a last section (§A.5).

We actually use the formalism of symmetric collections (see §I.2.5) in this ap-
pendix rather than the equivalent formalism of symmetric sequences (which we
most usually consider in this book). We also use the definition of a (non-unitary)
operad P in terms of partial composition products ◦ik : P(m)⊗ P(n) → P(m ◦ik n)
where m and n are (non-empty) finite sets, we assume ik ∈ m, and m ◦ik n refers to
the operadic composition of finite sets (see §I.2.5.5).

For simplicity, we assume all through this appendix that we work in a fixed base
symmetric monoidal categoryM where colimits exist and we assume that the tensor
product of this symmetric monoidal category distributes over colimits. Nonetheless,
we do not form any colimit until we really tackle the construction of the free operad
in §A.3 and all results established in §A.2, among which the equivalence between
full composition products and partial composition products (§A.2.10), hold without
this extra condition on M.

We do no prove any original result in this appendix, and most constructions
which we explain (except the applications to Λ-operads) are borrowed from the
literature. In particular, we refer to Ginzburg–Kapranov’s article [78] for the tree-
wise definition of the free operad which we use in this monograph. The book [138,
§II.1.9] includes a survey of this construction of free operads. We also refer to the
book [186] for a detailed survey on these applications of trees in operad theory,
and to the book [187] for a comprehensive study of generalizations of trees in the
context of PROPs. Trees actually occur in the early developments of the theory of
operads. To be specific, let us mention that trees give the shape of the Stasheff asso-
ciahedra, which Stasheff introduced to formulate his recognition theorem for single
loop spaces (see [167]), and of the Boardman–Vogt W -construction, which general-
izes the Stasheff operad of associahedra, and which Boardman–Vogt introduced to
define homotopy invariant structures in topology (see [28]).

A.1. Trees

The aim of this first section, as we just explain, is to survey fundamental
definitions on trees which we use in our construction of free operads. By the way,
we check that our trees form an operad. We introduce more constructions on trees
later on in this appendix for the purpose of specific applications. We only explain
fundamental definitions in this section and all assertions which we make in the
course of our account follow from straightforward verifications.

To begin with, we explain the definition of our trees. We essentially adapt a
standard description of the structure of a 1-dimensional cell complex, but since we
only use the abstract notion of a tree, we only give the abstract definition of our
objects. We will give references to the literature for the topological interpretation
of the notions which we introduce in this section.
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Figure A.1. The picture of a tree structure. The input set is
r = {i1, . . . , i8}, the vertex set is V (T) = {v0, . . . , v4}, and the
edge set is E(T) = {e0, eα1

, . . . , eα4
, ei1 , . . . , ei8}. The notation 0

marks the output of the tree. The edge e0 is the outgoing edge
of the tree, the edges ei1 , . . . , ei8 are the ingoing edges, and the
edges eα1

, . . . , eα4
are the inner edges (see §§A.1.1-A.1.2). The

edges eα1
, . . . , eα4

form the outgoing edges of the vertices v1, . . . , v4
(see §A.1.1). The edge e0 is identified with the outgoing edge of
the vertex v0.

A.1.1. The formal definition of a tree structure. To summarize, the trees that
we consider in this appendix have a finite number of inputs, indexed by a given set
r = {i1, . . . , ir}, and an output, usually marked by the symbol 0. We use the phrase
‘r-tree’ when we need to specify the indexing set r of the ingoing edges of our trees.

To begin with an example, we have represented a tree with eight inputs indexed
by r = {i1, . . . , i8} in Figure A.1. The set V (T) = {v0, . . . , v4} defines the vertex
set of this tree and the set E(T) = {e0, eα1

, . . . , eα4
, ei1 , . . . , ei8} defines the edge

set. In general, we do not specify the “name” of the edges in the representation
of a tree, but we prefer to give this indication throughout this preliminary section
in order to help the understanding of our general definitions. The “name” of the
vertices can be omitted too.

Formally, an r-tree T consists of a set of vertices, denoted by V (T), and a
set of edges e ∈ E(T), oriented from a source s(e) ∈ V (T) � r towards a target
t(e) ∈ V (T) � {0}, such that the following conditions hold:
(1) There is one and only one edge e0 ∈ E(T), the outgoing edge of the tree, such

that t(e0) = 0.
(2) For each i ∈ r, there is one and only one edge ei ∈ E(T), the ingoing edge of

the tree indexed by i, such that s(ei) = i.
(3) For each vertex v ∈ V (T), there is one and only one edge ev ∈ E(T), the

outgoing edge of the vertex v, such that s(ev) = v.
(4) Each vertex v ∈ V (T) is connected to the output 0 by a chain of edges ev,

evn−1
, . . . , ev1 , ev0 such that v = s(ev), t(ev) = s(evn−1

), t(evn−1
) = s(evn−2

),
. . . , t(ev2) = s(ev1), t(ev1) = s(ev0) and t(ev0) = 0.
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This definition corresponds to the general shape of free operads with a possible
term in arity zero. But as we explain in the introduction of this appendix, we focus
on the definition of free objects of the category of non-unitary operads because we
most usually deal with non-unitary operads in this monograph. The trees which
we consider in this context fulfill the following additional property:
(5) For each vertex v ∈ V (T), we have at least one edge e ∈ E(T) such that

t(e) = v.
We take this additional requirement in our definition of a tree. We also say

in this appendix that our trees are open in order to stress this condition (this
terminology is motivated by the topological interpretation of our objects which we
explain soon). We just examine examples of trees with a non-empty set of terminal
vertices (which do not fulfill the above condition) in a few side remarks.

In the graphical representation, the edges e are materialized by arrows oriented
from their source x = s(e) to their target y = t(e). In the example of Figure A.1,
the edge ei3 (for instance) satisfies s(ei3) = i3 and t(ei3) = v2.

The chain of edges connecting a vertex v to the output 0 in condition (4) has
a representation of the form:

v ev vl evl · · · ev1 v0 ev0 0 .

Note that condition (3) implies that this chain is unique. For an input i, we also have
one and only one chain of edges going from i to the output of the tree 0. In general,
in an r-tree T, we have at most one chain of edges going from a given vertex u to
another one v, or from a given input i to a given vertex v. From similar observations,
we also obtain that any chain of edges (followed in the upward direction) eventually
leads to an input i ∈ r (assuming, as we require in our conventions, that all vertices
of a tree have at least one ingoing edge).

In the standard topological language (we refer to [139, §VIII.3, §IX.6] or [166,
§3.7]), our trees are open subspaces of oriented contractible regular 1-dimensional
finite cell complexes. To be more precise, the trees which we consider in our con-
structions are identified with the spaces which we form by removing some boundary
(0-dimensional) cells in such a cell complex. The 0-dimensional cells which we keep
in our subspace define the set of vertices of our tree. The 1-dimensional cells de-
fine the edges. In our convention, we remove the maximal vertex of the ambient
complex (with respect to the order relation determined by the orientation) when
we form our subspace. The unique non-compact 1-dimensional cell of our complex
which has this maximal vertex as target represents the outgoing edge of our tree.
The 1-dimensional cells whose source is exterior to our tree symmetrically represent
the set of ingoing edges of our tree. The extra condition (5), disallowing terminal
vertices in our definition of a tree, is equivalent to the requirement that we remove
all boundary vertices of the ambient 1-dimensional finite cell complex in our trees.

A.1.2. Inner edges of trees and conventions on edges. In what follows, we call
inner edges of a tree T the edges which are neither an ingoing edge nor an outgoing
edge, or equivalently, the edges e for which we have s(e), t(e) ∈ V (T). We use the

notation E̊(T) ⊂ E(T) for this subset of inner edges. In the example of Figure A.1,

we have E̊(T) = {eα1
, eα2

, eα3
, eα4

}. The axioms readily imply that the subset of
inner edges of a tree is empty if and only if the vertex set of our tree has at most
one element. (We analyze the structure of trees with at most one vertex in §A.1.4.)
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By convention, we use the letter e (or f , or . . . ) to denote an edge of any kind.
Usually, if we want to specify an ingoing edge of a tree T, then we use an expression
of the form ei (or fi, or . . . ), with a distinguishing roman index i referring to the
input of this edge i = s(ei). To specify the outgoing edge of a tree, we will use an
expression of the form e0 (or f0, or . . . ), with the distinguishing mark 0 which we
associate to the output. If we need to specify the outgoing edge of a vertex v in a
tree, then we use an expression of the form ev (or fv, or . . . ), with the vertex v as
distinguishing index, and we use expressions of the form eα1

, eα2
, . . . (or fβ1

, fβ2
,

or . . . ), with Greek alphabet indices, when we need to distinguish a set of inner
edges in our tree.

A.1.3. Ingoing edges of vertices and reduced trees. Recall that the outgoing
edge of a vertex v in a tree T is the unique edge ev such that s(ev) = v. To a
vertex, we also associate a set of ingoing edges rv defined by:

rv =
{
e ∈ E(T) | t(e) = v

}
.

In the case of Figure A.1, we have for instance rv2 = {ei3 , eα4
}.

The extra condition (5) in our definition of an (open) tree §A.1.1 is equivalent to
the requirement that we have card(rv) ≥ 1, for every v ∈ V (T). In the construction
of connected free operads and of cofree cooperads, we also consider trees T satisfying
card(rv) ≥ 2, for every vertex v ∈ V (T). To depict this situation, we usually say
that the tree T is reduced. The tree of Figure A.1 for instance is reduced.

A.1.4. Fundamental examples. The set of vertices of a tree can be empty. In
this case, our tree, which we call ‘unit tree’ and for which we adopt the distinguish-
ing notation ↓, has necessarily the form

1

0

,

with a single edge e going straight from the input 1 to the output 0. The input
set of such a tree is also necessarily reduced to a single element 1. We may see
that the unit tree is essentially unique. We soon introduce a notion of isomorphism
of trees to formalize this idea (see §A.1.8). We can precisely check that the trees
with an empty set of vertices form an isomorphism class in the category of trees,
and when we use the phrase ‘unit tree’ we actually refer to a representative of this
distinguished isomorphism class of trees.

The form of a tree with a single vertex is fully determined by the axioms too.
Indeed, for an r-tree Y such that V (Y) = {v}, we necessarily have E(Y) = {ei, i ∈
r} � {e0}, because the outgoing edge of the tree e0 defines the outgoing edge of
our vertex v, the other edges e �= e0 necessarily arise from an input i, and hence,
necessarily form ingoing edges e = ei of our tree. Moreover, for these edges e = ei,
we obviously have t(ei) = v. Hence, we finally obtain that our tree Y has the form:

i1 · · · ir

v

0

.

Throughout this book, we reserve the notation Y and we use the phrase ‘r-corolla’
to refer to a tree of this form. We also specify the indexing set of the inputs r as a
subscript in our notation of a corolla Y = Yr when necessary.
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i3

ei3

i4

ei4

i5

ei5

i1

ei1

i2

ei2

v4
eα4

i6
ei6

i7
ei7

i8
ei8

v1

eα1

v2

eα2

v3

eα3

v0

e0

0

Figure A.2. The picture of a subtree drawn in the tree of
Figure A.1. The subtree is materialized by the circled array
in the picture. The vertices {v0, v2, v3} (respectively the edges
{eα2

, eα3
}) included in this array form the set of vertices (re-

spectively, the set of internal edges) of the subtree. The edges
{eα1

, ei3 , eα4
, ei6 , ei7 , ei8}, getting into the array, form the set of

ingoing edges of the subtree, and the edge e0, getting out, defines
the outgoing edge (see §A.1.5).

From the above analysis, we deduce that the set of inputs rv which we associate
to the vertex v of an r-corolla Y = Yr is endowed with a canonical bijection rv � r.
This observation can be used to check that the r-trees with a single vertex Y = Yr

form an isomorphism class in the category of r-trees (like the trees with an empty
set of vertices), for each finite set r, though the underlying vertex and edge sets of
these trees may themselves vary within the category of sets.

We examine the definition of trees with two vertices in the next section. We use
such trees to represent the (partial) composition products of an operad. We already
gave an introduction to this treewise representation of the composition products of
an operad in §§I.2.1.4-2.1.5 (see also §I.2.5.8). We mainly use our definition of a
tree in order to formalize this construction which we informally used in Part I.

A.1.5. Subtrees. We have a natural notion of subtree associated to our notion
of tree. Intuitively, a subtree Σ of a given r-tree T represents an open connected
subspace of the cell complex defined by T. In a figure, we specify a subtree Σ by
circling an array which circumscribes Σ in the ambient r-tree T. An example is
given in Figure A.2. Formally, a subtree Σ of T consists
(1) of a vertex set V (Σ) ⊂ V (T),
(2) of an edge set E(Σ) ⊂ E(T),
(3) together with an input set rΣ ⊂ V (T) � r, disjoint from V (Σ),

(4) and an output element 0Σ ∈ V (T)� {0}, also disjoint from V (Σ),
such that we have 0Σ = t(e), for a unique edge e ∈ E(Σ), and where an edge
e ∈ E(T) belongs to E(Σ) ⊂ E(T) if and only if we have the source and target
relations

s(e) ∈ V (Σ) � rΣ and t(e) ∈ V (Σ)� {0Σ}
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in the tree T. In the example of Figure A.2, we have:

V (Σ) = {v0, v2, v3}, E(Σ) = {e0, eα1
, eα2

, eα3
, eα4

, ei3 , ei6 , ei7 , ei8},
rΣ = {v1, v4, i3, i6, i7, i8}, and 0Σ = 0.

Our requirements ensure that Σ inherits a tree structure from the ambient
tree T, with rΣ as input set, the element 0Σ as output, and the source and target
maps given by the obvious restrictions of the source and target maps of T. Indeed,
conditions §A.1.1(1-3) in the definition of a tree are clearly fulfilled and so does
our extra condition §A.1.1(5) which we use to define our class of open trees. To
check the remaining connectedness condition §A.1.1(4), we consider the chain of
edges connecting a given vertex v ∈ V (Σ) to the output 0 of the ambient tree T.
By following this chain downwards from v, we get edges e satisfying s(e) ∈ V (Σ)
and e ∈ E(Σ) until we get t(e) �∈ V (Σ). Then our requirement e ∈ E(Σ) ⇒ t(e) ∈
V (Σ)�{0Σ} implies that t(e) is necessarily the output 0Σ of the tree Σ. Hence, we
do have a chain connecting v ∈ V (Σ) to 0Σ in Σ.

In our definition, we require that the outgoing edge and all ingoing edges at-
tached to a given vertex v belong to the subtree Σ when v ∈ V (Σ). Hence, in the
example of Figure A.2, the sets V = {v0} and E = {e0}, consisting of the outgoing
edge of the tree and its source, do not define an allowable subtree in our sense.

By convention, we will also assume that the vertex set of a subtree Σ ⊂ T is
not empty V (Σ) �= ∅. This requirement implies that we discard unit trees ↓ from
allowable subtrees.

A.1.6. Subtrees determined by vertices or edges. We note that a subtree Σ ⊂ T
is fully determined by the associated edge set E(Σ) ⊂ E(T) or by the associated
vertex set V (Σ) ⊂ V (T) (provided that this set is non-empty as we require in our
conventions). Indeed, if we have E(Σ) ⊂ E(T), then we can identify V (Σ) with
the subset of vertices v ∈ V (T) that satisfy v = s(e) and v = t(f) for some edges
e, f ∈ E(Σ). In the case where V (Σ) ⊂ V (T) is given, we can identify E(Σ) with the
subset of edges e ∈ E(T) satisfying s(e) ∈ V (Σ) or t(e) ∈ V (Σ). Then, once we have
V (Σ) and E(Σ) together, we can use the relation {s(e), e ∈ E(Σ)} = V (Σ) � rΣ,
to determine the input set of our subtree, while the output is determined by the
relation {t(e), e ∈ E(Σ)} = V (Σ)� {0Σ}.

Naturally, not all subsets E(Σ) ⊂ E(T) (respectively V (Σ) ⊂ V (T)) are asso-
ciated to subtrees Σ ⊂ T. For instance, the edges {eα1

, eα4
} in Figure A.1 do not

form the edge set of a subtree Σ ⊂ T. Similarly, the vertex set {v2, v3, v4} ⊂ V (T)
is not associated to a subtree of the tree of Figure A.1. Nonetheless, in the special
case of a one-point set {v} ⊂ V (T), we automatically have a subtree Yv, associated
to v, such that V (Yv) = {v}. The edge set of this subtree E(Yv) consists of the
ingoing edges and of the outgoing edge of the vertex v in the ambient tree T. This
subtree Yv obviously forms a corolla, which we call the star of the vertex v in T.

The subtrees Σ ⊂ T such that Σ �= Y are also fully determined by their set of
inner edges E̊(Σ) ⊂ E̊(T), because under this condition Σ �= Y, which is equivalent

to E̊(Σ) �= ∅, we have v ∈ V (Σ) if and only if v = s(e) for some e ∈ E̊(Σ) or

v = t(f) for some f ∈ E̊(Σ). Not all subsets E̊(Σ) ⊂ E̊(T) are associated to
subtrees Σ ⊂ T again. Nonetheless, in the special case of a one-point set {e},
e ∈ E̊(T), we automatically have a subtree Σ = Γe, associated to e, such that

E̊(Γe) = {e}. In this case, we have V (Γe) = {s(e), t(e)} and the edge set E(Γe)
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consists of the ingoing edges of the vertex v = s(e) together with the ingoing edges
and the outgoing edge of the vertex u = t(e) (among which we have the edge e).

A.1.7. The over-subtree of an edge. To any edge e ∈ E(T) (which is not an
ingoing edge) of an r-tree T, we also associate an over-tree Υe ⊂ T which, in short,
consists of the edges and of the vertices that lie above e in the tree T. Formally,
this tree Υe consists of the edges and vertices that occur in the open chains

(∗) i ei vl evl · · · ev1 v0 e t(e)

of which last element is our edge e ∈ E(T). The assumption that e is not an
ingoing edge implies v0 = s(e) ∈ V (T) and ensures that this definition returns an
allowable subtree of the tree T in our sense V (Υe) �= ∅. The input set of this
subtree satisfies rΥe

⊂ r and consists of the indices i ∈ r which label the ingoing

edge of our chains (∗). We also have 0Υe
= t(e).

We have an obvious extension of our definition of the over-tree Υe in the case
where e = ei is the ingoing edge associated to an input i ∈ n of the tree T. We
basically assume that Υe is the unit tree i → 0 with i ∈ r as input label in this case
e = ei (and, hence, we just do not get an allowable subtree in our sense). We use
the general definition of the over-tree of an edge in our construction of restriction
operators on trees.

To give an example, the over-tree of the edge e = eα2
in the tree of Figure A.1

has E(Υeα2
) = {eα2

, eα4
, ei3 , ei4 , ei5} as edge set and V (Υeα2

) = {v2, v4} as vertex

set. We moreover have rΥeα2

= {i3, i4, i5}.
A.1.8. Tree isomorphisms. In the definition of a tree T, we give a fixed edge

set E(T) and a fixed vertex set V (T) in order to give a sense to our objects. But
the edge and vertex naming is of course not meaningful and we have to consider
a natural notion of isomorphism, attached to r-trees, in order to handle this non-
essential information.

Formally, an isomorphism of r-trees f : S
�−→ T consists of a bijection of vertex

sets fV : V (S)
�−→ V (T) together with a bijection of edge sets fE : E(S)

�−→ E(T)
that preserves the source and target of edges. If we have S,T �= ↓, then this
preservation requirement reads as follows:
(1) For the outgoing edge e = e0 of the tree S, for which we have t(e) = 0, we

assume s(fE(e)) = fV (s(e)) and t(fE(e)) = 0.
(2) For an ingoing edge e = ei, which we associate to some input index i ∈ r, so

that s(e) = i, we assume s(fE(e)) = i and t(fE(e)) = fV (t(e)).

(3) For an inner edge e ∈ E̊(S), for which we have s(e), t(e) ∈ V (S), we assume
s(fE(e)) = fE(s(e)) and t(fE(e)) = fE(t(e)).

In the graphical representation, applying an isomorphism f : S
�−→ T simply

amounts to renaming the vertices and edges of our tree, as in the following pic-
ture:

i2
ei2

i3
ei3

i1
ei1

v1
eα

v0
e0

0

�→

i2
fi2

i3
fi3

i1
fi1

w1

fβ

w0

f0

0

,

where we apply fE(eik) = fik , fE(eα) = fβ, fE(e0) = f0 and fV (vk) = wk.
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In the next sections, we use these isomorphisms to handle symmetries in the
construction of free operads. In the course of this study, we will check that the
group of automorphisms of an r-tree T is reduced to the identity as soon as we
assume card(rv) ≥ 1, for all v ∈ V (T) (see §A.1.3). This observation will enable us
to pick representatives of isomorphism classes of r-trees in order to give a reduced
expansion of free objects in the category of non-unitary operads. But this reduced
expansion is not canonical. Therefore, in general, we prefer not to fix the underlying
edge and vertex sets of our trees, and instead, we use isomorphisms in order to relate
the tree structures which we need to compare.

Let us mention that non-trivial isomorphism can occur if we drop our extra-
condition (5) of the definition of an open tree in §A.1.1. The tree

v1
eα1

v2
eα2

v0
e0

0

,

for instance, admits an automorphism f �= id which we define by the bijection
fV (v0) = v0, fV (v1) = v2, fV (v2) = v1 on vertices and by the bijection fE(e0) =
e0, fE(eα1

) = eα2
, fE(eα2

) = eα1
on edges. Because of this example, in the

general context where we do not assume that the arity zero term of our symmetric
collections vanishes, we absolutely need to use tree isomorphisms in order to handle
symmetry relations which naturally occur in the construction of free operads.

A.1.9. The symmetric collection of trees. The class of r-trees, where r is any
(non-empty) finite set, is denoted by Tree(r). In what follows, we also use the
notation Tree(r)iso when we need to refer to the groupoid formed by r-trees and
their isomorphisms.

We have an obvious reindexing functor u∗ : Tree(m)iso → Tree(n)iso, associated

to each bijection of finite sets u : m
�−→ n, so that the collection of tree groupoids

Tree(r)iso forms a symmetric collection Treeiso. Note that the extra condition (5)
in our definition of an open tree §A.1.1 implies Tree(0) = ∅. We therefore consider

a non-unitary symmetric collection of trees Treeiso = {Tree(r), r > 0} (with no
arity-zero term) in our setting.

Formally, the image of a tree T ∈ Tree(m) under u∗ has the same vertex and
edge sets as T. In u∗(T), we just change the source of the ingoing edges of T by

an application of the bijection u : m
�−→ n. In the graphical representation, the

image of a tree T ∈ Tree(m) under the map u∗ : Tree(m) → Tree(n) is given by an
application of our re-indexing bijection u to the input labeling of the tree, as in the
following example:

i2
ei2

i3
ei3

i1
ei1

v1
eα

v0
e0

0

�→

u(i2)
ei2

u(i3)
ei3

u(i1)
ei1

v1
eα

v0
e0

0

.

We soon explain the definition of restriction operators u∗ : Tree(n)iso →
Tree(m)iso, associated to the injective maps u : {i1, . . . , im} → {j1, . . . , jn}, and
which extend this symmetric structure of the collection of tree groupoids. We just
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i2

ei2

i3

ei3

i1

ei1

v2

eα

v1

e0

0

◦i1

j2

fj2

j3

fj3

j1

fj1

w2

fβ

w1

f0

0

=

j2

fj2

j3

fj3

j1

fj1

w2

fβ

i2

ei2

i3

ei3

w1

ei1
≡f0

v2

eα

v1

e0

0

Figure A.3. An operadic composition of trees.

check that the groupoids of trees inherit the composition structure of an operad
before tackling the construction of these restriction operators.

A.1.10. The operadic composition of trees. We explicitly check that we have
composition operations

◦ik : Tree(m)iso × Tree(n)iso → Tree(m ◦ik n)iso,

defined for all m, n �= 0, and for every ik ∈ m. We will see that these composition
operations give the shape of the composition products of free operads.

Intuitively, the operadic composite of an m-indexed tree S ∈ Tree(m) with an
n-indexed tree T ∈ Tree(n) at the input ik ∈ m is the tree S ◦ik T ∈ Tree(m ◦ik n)
which we form by plugging the outgoing edge of T in the ingoing edge of S indexed
by ik. An example is represented Figure A.3.

The vertex set of the composite tree S ◦ik T is formally defined by the coproduct
V (S ◦ik T) = V (S) � V (T). Let f0 be the outgoing edge of T. Let eik be the ikth
ingoing edge of S. We define the edge set of S ◦ik T as the quotient E(S ◦ik T) =
E(S)�E(T)/ ≡ under the relation eik ≡ f0 which identifies f0 with eik . The source
(respectively, the target) of an edge e in S ◦ik T is defined by:

– the source (respectively, the target) of e in S when e ∈ E(S) \ {eik};
– the source (respectively, the target) of e in T when e ∈ E(T) \ {f0};
– the source of f0 in T (respectively, the target of eik in S) when e is the
edge produced by the merging operation eik ≡ f0.

Note that the set of ingoing edges rv attached to a vertex v ∈ V (S) (respectively,
to a vertex v ∈ V (T)) in the composite tree S ◦ik T is canonically in bijection with
the set of ingoing edges of v in S (respectively, in T).

The trees S and T are identified with subtrees of the composite S ◦ik T. To be
more precise, if we apply the definitions of §§A.1.5-A.1.6, then we readily see that
the vertex subset V (S) (respectively, V (T)) in V (S ◦ik T) = V (S)�V (T) determines
a subtree of S ◦ik T together with a natural input set rS (respectively, rT) canonically

in bijection with m (respectively, n) and this subtree is canonically isomorphic to S
(respectively, T) as an m-tree (respectively, as an n-tree).

We immediately see that our composition operations are equivariant with re-
spect to the action of bijections on the groupoids of trees. The composition of trees
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also satisfies the associativity relations of operads. We explicitly have the identity:

(R ◦ik S) ◦jl T = R ◦ik(S ◦jl T),(1)

for all trees R ∈ Tree(r), S ∈ Tree(s), T ∈ Tree(t), when we fix ik ∈ r, jl ∈ s, and
we similarly have:

(R ◦ik S) ◦il T = (R ◦il T) ◦ik S,(2)

for all trees R ∈ Tree(r), S ∈ Tree(s), T ∈ Tree(t), when we fix {ik �= il} ⊂ r. The
composition of trees also satisfies unit relations. In this case, we more precisely get
that the composition of trees with the unit tree ↓ ∈ Tree(1) of §A.1.4 fulfills the
unit relations of operads up to canonical isomorphisms in the category of trees:

(3) S ◦ik ↓ � S and ↓ ◦1 T � T .

These unit isomorphisms are functorial in all possible senses (with respect to the
action of tree isomorphisms and with respect to the action of reindexing bijections).
The unit isomorphisms of trees moreover satisfy natural coherence relations when
we combine them with other composition operations.

A.1.11. The restriction operators on trees. We now explain the definition of
restriction operators

u∗ : Tree(n)iso → Tree(m)iso,

which we associate to the injective maps u ∈ MorInj (m, n) and which we use to
shape the restriction structure of free objects in the Λ-operad context. We also
have a trivial augmentation ε : Tree(r)iso → pt , for any r > 0, where we consider
the one-point set groupoid pt . We still identify this augmentation map with an
extra restriction operator ε = o∗, which we associate to the empty map o : 0 → r,
for any r > 0 (see §I.2.2.1).

To define these restriction operators on trees, we elaborate on the ideas of §I.2.3,
where we outline the definition of the restriction operators of free objects in the cate-
gory of augmented non-unitary Λ-operads. In short, the image of a tree T ∈ Tree(n)
under our restriction map u∗ : Tree(n) → Tree(m) is obtained by re-indexing the
inputs of this tree by the indices ik such that u(ik) = jl when jl ∈ n lies in the
image of our map u : {i1, . . . , im} → {j1, . . . , jn}, by filling in the other inputs
with the mark ∗, and by performing a reduction process in order to remove these
void inputs in the outcome of our re-indexing operation. We give an instance of
application of this procedure in Figure A.4. We then consider the tree:

(∗) T =

j3
ej3

j4
ej4

j5

ej5

j2
ej2

v3

eα3

j1
ej1

j6
ej6

v1

eα1

v2

eα2

v0

e0

0

∈ Tree(6),

which we initially introduced in §I.1.2(∗) to outline the definition of free operads and
which we also used in §I.2.3 to outline our construction of free objects of the category
of augmented non-unitary Λ-operads. We also consider the map u ∈ MorInj (3, 6)
such that u(i1) = j1, u(i2) = j2, and u(i3) = j5.
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u∗ T =

∗
ej3

∗
ej4

i3

ej5

i2
ej2

v3

eα3

i1
ej1

∗
ej6

v1

eα1

v2

eα2

v0

e0

0

=

i3
ej5

i2
ej2

i1
ej1

v1

eα1

v2

eα2

v0

e0

0

Figure A.4. An operadic restriction operator on trees.

The reduction process, which we use in this construction, basically consists in
removing some vertices and edges in the tree T. We use the over-trees Υe which we
associate to the edges e ∈ E(T) in order to formalize this construction. We explicitly
define the set of edges E(u∗ T), which we associate to the tree u∗ T, as the subset
of edges e ∈ E(T) satisfying u−1(rΥe

) �= ∅, where we consider the preimage under

our map u : m → n of the input set of this over-tree rΥe
. We also take the subset of

vertices v ∈ V (T) of which outgoing edge e = ev satisfies ev ∈ E(u∗ T) in order to
define the set of vertices V (u∗ T) of the tree u∗ T. We define the source and target
of edges in u∗ T by the obvious restriction of the source and target maps of edges in
the tree T. We just take su∗ T(ejl) = u−1(jl) in the case of an ingoing edge e = ejl ,
jl ∈ n. We then consider the pre-image u−1(jl) ∈ m of the input label of this edge
jl ∈ n which is well-defined by definition of the edge set E(u∗ T) ⊂ E(T).

In our picture, the sets u−1(rΥe
) represent the subsets of inputs, lying over any

edge e, which we mark by an element ik ∈ m and not by a symbol ∗. In the case of
Figure A.4, we have for instance:

Υeα3
=

j3
ej3

j4
ej4

v3
eα3

0

�→

∗
ej3

∗
ej4

v3
eα3

0

,

so that u−1(rΥeα3

) = ∅ and we therefore discard this edge eα3
in u∗ T, while we

have:

Υeα2
=

j1
ej1

j6
ej6

v2
eα2

0

�→

i1
ej1

∗
ej6

v2
eα2

0

,

so that u−1(rΥeα2

) = {i1} and we therefore keep the edge eα2
in u∗ T. Let us observe

that the entire over-subtree Υe is removed by our reduction process as soon as the
edge e is discarded.

We readily check that these restriction operators define functors on our isomor-
phism categories of trees u∗ : Tree(n)iso → Tree(m)iso and fulfill the equivariance
relations of §I.2.2 with respect to the operadic composition of trees. We explicitly
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have the following identity, where we use the conventions and the definition of the
operadic composition of injective maps of §I.2.2 (see also §I.2.5.9):

(u∗ S) ◦ik (v∗ T) = (u ◦u(ik) v)∗(S ◦u(ik) T),(1)

for all trees S ∈ Tree(m), T ∈ Tree(n), for all maps u ∈ MorInj (r,m), v ∈
MorInj (s, n), and for any composition index ik ∈ r. We similarly have the iden-
tity:

∂ik(u
∗ S) = (u ◦u(ik) o)∗(S ◦u(ik) T),(2)

for all trees S ∈ Tree(m), T ∈ Tree(n), for all maps u ∈ MorInj (r,m), and for each
ik ∈ r. We also retrieve the symmetric structure of our groupoids Tree(r) in the
case where we restrict ourselves to bijective maps.

A.1.12. The operad of reduced trees. Recall that a tree T ∈ Tree(r) is said to be
reduced when we have card(rv) ≥ 2 for all v ∈ V (T). We denote the class of reduced

trees by T̃ree(r). These classes T̃ree(r) obviously form subgroupoids of Tree(r) and
are preserved by the action of permutations on trees. Hence, we have a symmetric

collection in the category of groupoids T̃ree formed by the classes of reduced trees

T̃ree = {T̃ree(r), r > 0}. In what follows, we also use the notation T̃ree(r)iso when
we consider these groupoids of reduced trees with their isomorphisms as morphisms.

Since we note in §A.1.10 that the composition of trees preserve the input set
of vertices (up to bijection), we immediately see that the classes of reduced trees
are preserved by the composition operations of the operad of trees. The unit tree

↓ belongs to T̃ree(1) as well. In fact, we readily see that the category of reduced 1-

trees T̃ree(1) is reduced to (the isomorphism class of) the unit tree ↓, while we still

trivially have T̃ree(0) = ∅ in arity zero. Thus, the collection T̃ree = {T̃ree(r), r > 0}
inherits a full operadic composition structure and forms, in a sense, a connected
operad in the category of groupoids.

A.1.13. The restriction operators on reduced trees. We may observe that the
restriction operators of §A.1.11, however, do not preserve the classes of reduced

trees T̃ree(r). We therefore amend the reduction process of §A.1.11 in order to
adapt the definition of these restriction operators to the reduced tree context.

Let T ∈ Tree(n) and let u ∈ MorInj (m, n) be any injective map, as in §A.1.11,
but where we now assume m,n > 1. In the procedure §A.1.11, we just discard
the vertices v ∈ V (T) such that u−1(Υev

) = ∅ from the vertex set of the tree

T ∈ Tree(n). To obtain a reduced tree u∗ T ∈ T̃ree(m), we perform an additional
reduction operation, which consists in withdrawing the vertices which have a single
input in the unreduced tree u∗ T ∈ Tree(m) associated to T ∈ Tree(n). We also
merge the ingoing edge of these vertices with their outgoing edge when we perform
this withdrawal operation. We use an obvious quotient of the edge set of the
unreduced tree u∗ T ∈ Tree(m) to implement this merging operation in the formal
definition of our trees.

We give an instance of application of this modified restriction process in Fig-
ure A.5 for the same example of tree T ∈ Tree(6) and the same injective map
u ∈ MorInj (3, 6) as in §A.1.11. In comparison with the unreduced restriction oper-
ator of §A.1.11, we just discard one additional vertex v2 ∈ V (T) which had a single
input left in the tree depicted in Figure A.4.
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u∗ T =

∗
ej3

∗
ej4

i3

ej5

i2
ej2

v3

eα3

i1
ej1

∗
ej6

v1

eα1

v2

eα2

v0

e0

0

=

i3
ej5

i2
ej2

v1

eα1

i1
ej1

≡eα2

v0

e0

0

Figure A.5. An operadic restriction operator on reduced trees.

These reduced restriction maps define functors u∗ : T̃ree(n)iso → T̃ree(m)iso

(as in the unreduced case) and still fulfill the equivariance relations of §I.2.2(1-2)
with respect to the restriction of operadic composition operations to the groupoids

of reduced trees. We also retrieve the symmetric structure of our groupoids T̃ree(r),
r > 0, in the case where we restrict ourselves to bijective maps.

We go back to the study of the operad of reduced trees in §A.4 when we examine
the construction of connected free operads.

A.1.14. The grading of the operad of trees. In the study of bar complexes,
we use a splitting Tree(r) =

∐∞
m=0 Treem(r), where Treem(r) is the subcategory

of Tree(r) formed by trees with m vertices. The groupoids of reduced trees T̃ree(r)

inherit a similar splitting T̃ree(r) =
∐∞

m=0 T̃reem(r), where we set T̃reem(r) =

Treem(r) ∩ T̃ree(r).
The observations of §A.1.4 give the structure of the groupoids Treem(r) for the

first values of m ∈ N: the category Tree0(r) is reduced to the (isomorphism class of
the) unit tree ↓ in arity r = 1, while we have Tree0(r) = ∅ (the empty category) in
arity r > 0, and the category Tree1(r) is reduced to the (isomorphism class of the)
r-corolla Y = Yr in any arity r > 0. In the case of reduced trees, we rather obtain

T̃ree1(r) = ∅ when r = 0, 1 and T̃ree1(r) � {Y} otherwise.
The operadic composition of trees clearly splits into components of the form

◦ik : Treep(m)× Treeq(n) → Treep+q(m ◦ik n),
for all p, q ≥ 0, since we have V (S ◦ik T) = V (S) � V (T) by definition of the
composite S ◦ik T, for any S ∈ Tree(m) and T ∈ Tree(m). The restriction operators
of §A.1.11 and §A.1.13, on the other hand, do not preserve this grading.

A.2. Treewise tensor products and treewise composites

In the introduction of this appendix, we briefly mentioned that trees give the
pattern of the general composition operations that can be formed within an operad.
The purpose of this section is to formalize this idea.

To begin with, we explain how to form tensor products over trees. Then we
explain the definition of operadic composition operations shaped on these treewise
tensor products by using sequences of partial composition operations which we
associate to edge contractions in trees. The associativity relations of the partial



A.2. TREEWISE TENSOR PRODUCTS AND TREEWISE COMPOSITES 443

composition products of an operad actually imply that the outcome of such a se-
quence of operadic composition operations in a treewise tensor product does not
depend on the order in which these composition operations are performed. This
coherence statement, which we establish in Theorem A.2.6, represents the crux of
our constructions. By the way, we also use this statement to complete the proof
of the equivalence between the definition of operads in terms of full composition
products (§I.1.1) and the definition of operads in terms of partial composition oper-
ations (§I.2.1). To conclude this section, we also explain the definition of restriction
operators on treewise tensors and we check the coherence of these restriction opera-
tors with respect to our treewise composition products in the context of augmented
Λ-operads.

For simplicity, we assume that the symmetric sequences and operads which
we consider all through this section are non-unitary (in the sense of §I.1.1.21).
Besides, we only consider open trees which fulfill the extra condition (5) of our
definition §A.1.1. Most of our constructions however work without these require-
ments. We only need to restrict ourselves to non-unitary objects when we tackle
the definition of restriction operators on treewise tensors.

A.2.1. Tensor products over trees. The treewise tensor product of a symmetric
collection M over an r-tree T is a tensor product in the base category formed
by attaching a component of M to each vertex v ∈ V (T). The outcome of this
construction is an object of the base category. In this appendix (and in the next
appendix similarly), we mostly use the notation M(T) for this treewise product in
order to stress the functoriality of our construction with respect to the tree T. In
other chapters, we also use the notation ΘT(M) for this object ΘT(M) = M(T),
because we rather use the functoriality of our construction with respect to the
symmetric collection M and we moreover aim to stress that this treewise tensor
product ΘT(M) defines a summand of the free operad, which we denote by Θ(M).

Recall that we associate a set of ingoing edges rv =
{
e ∈ E(T)

∣∣t(e) = v
}
to

each vertex v ∈ V (T) of a tree T. The treewise tensor product of the symmetric
collection M over the tree T is formally defined by the tensor product

M(T) =
⊗

v∈V (T)

M(rv),

which ranges over the vertex set of our tree T, and where the input set rv of a factor
M(rv) is given by the set of ingoing edges of the corresponding vertex v.

Recall that, in this appendix, we tacitely assume that our collections are non-
unitary and hence vanish M(0) = ∅ in arity r = 0. We therefore do not have
to consider trees with terminal vertices in our treewise tensor construction and
this observation motivates us to restrict ourselves to open trees, for which we have
rv �= ∅ for all v ∈ V (T), in our definition §A.1.1.

In the expression of M, we may replace the edge set rv by any set ev equipped

with a bijection u : ev
�−→ rv since we have an isomorphism u∗ : M(ev)

�−→ M(rv)
associated to u. By using this observation, we readily obtain that any isomorphism
of r-trees f : S → T induces a morphism f∗ : M(S) → M(T) in the base category.
Thus, the mapping T �→ M(T) defines a functor on the groupoid of r-trees Tree(r)iso.
We have on the other hand M(u∗ T) = M(T) when we consider the treewise tensor
product M(u∗ T) associated to the image of a tree T ∈ Tree(r) under the action of

an input reindexing bijection u : r
�−→ s.
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i3

ei3

i4

ei4

i5

ei5

i1

ei1

i2

ei2

M(2)

eα4

i6

ei6

i7

ei7

i8

ei8

M(2)

eα1

M(2)

eα2

M(3)

eα3

M(3)

e0

0

Figure A.6. The picture of a treewise tensor product.

Each morphism of collections f : M → N gives rise to an obvious morphism of
treewise tensor products f∗ : M(T) → N(T) too. This morphism commutes with
the action of tree isomorphisms and our construction actually gives, for each finite
set r, a functor from the category of collections to the category of functors on the
tree groupoid Tree(r)iso.

Intuitively, we view a treewise tensor product M(T) as a decoration of the
vertices v of the tree T by the factors M(rv). In Figure A.6, we give an example of
application of this representation for the tree of Figure A.1. In practice, we often
restrict ourselves to terms M(r) of the collection M associated to the standard
ordered sets r = {1 < · · · < r} in our treewise tensor product construction. In
our graphical representation, we just assume that the planar embedding of our
figure materializes bijections between these ordered sets and the input sets of the
vertices. In the case of Figure A.6, we consider for instance the mapping u : 3 →
{eα1

, eα2
, eα3

} such that u(1) = eα1
, u(2) = eα2

, u(3) = eα3
to get a bijection

between the ordered set 3 = {1 < 2 < 3} and the input set of the root vertex
rv0 = {eα1

, eα2
, eα3

}.
We adopt a similar representation for the elements of the treewise tensor prod-

uct ξ =
⊗

v∈V (T) ξv ∈ M(T) which are formed by attaching a given element

ξv ∈ M(rv) to each vertex v ∈ V (T).
We have the following immediate observations:

Proposition A.2.2.
(a) For the unit tree ↓, which has no vertex, we have M(↓) = 1, the unit object

of the base category.
(b) For the r-corolla Y, which has a single vertex v = v0 with rv = r as input

set, we have a canonical isomorphism M(r) � M(Y). �
A.2.3. The partial composition products of an operad. In §I.2.1.4 and §I.2.5.8,

we explain that the (partial) composition operations of an operad

(1) ◦ik : P(m)⊗ P(n) → P(m ◦ik n)
are shaped on composition schemes which we can intuitively depict by using trees
with two vertices.
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In the formalism of §A.1.1, an r-indexed tree Γ with two vertices u, v, and one
inner edge e, oriented from v = s(e) to u = t(e), is determined, up to a canonical

isomorphism, by a decomposition of the form r = m ◦ie n where m
�−→ rv and

n
�−→ rw. This correspondence is given by the following graphical picture:

j1 ··· ··· jn

i1 ··· ··· ··· v

e

··· ··· im

u

0

.

The composition variable of our decomposition r = m ◦ie n is an extra index ie �∈ r
which we associate to the inner edge of the tree. The set m formally consists of
this composition variable ie together with the inputs of the tree i = s(ei) ∈ r which
we associate to the ingoing edges ei such that t(ei) = u. The set n consists of the
inputs j = s(ej) ∈ r which are associated to the ingoing edges of the tree ej such
that t(ej) = v.

This correspondence formally gives an equivalence of categories between the
groupoid of r-trees with two vertices Tree2(r)

iso and a groupoid whose objects are
the decompositions r = m ◦ie n of the set r. Naturally, the action of reindexing bi-
jections on trees corresponds to a natural action of these bijections on the collection
of decompositions r = m ◦ie n.

The existence of canonical isomorphisms m � ru and n � rv in our corre-
spondence implies that the tensor product of P over an r-tree with two vertices
Γ satisfies P(Γ) � P(m) ⊗ P(n), where we consider the partition r = m ◦ie n as-
sociated to Γ. Therefore, we formally obtain that the composition operations
◦ie : P(m) ⊗ P(n) → P(m ◦ie n), which we consider in §I.2.5.8, are equivalent to
morphisms

(2)

j1 ··· ··· jn

i1 ··· ··· ··· P(n)

e

··· ··· im

P(m)

0︸ ︷︷ ︸
=P(Γ)

λΓ−→

i1 ··· ··· j1 ··· ··· jn ··· ··· im

P(r)

0︸ ︷︷ ︸
=P(r)

,

shaped on r-trees with two vertices Γ ∈ Tree2(r), and which commute with the
action of tree isomorphisms and with the action of reindexing bijections.

The aim of the next paragraphs is to extend the definition of these morphisms to
arbitrary trees T and to rewrite the associativity axiom of operads in terms of these
generalized composition operations. The idea is to perform partial composition
operations by merging vertices connected by an edge within a tree and to repeat the
process. To begin with, we explain the formal definition of this elementary merging
process, called an edge contraction, and which involves our treewise interpretation
of the composition operations of an operad.

A.2.4. Edge contractions. In Figure A.7, we have represented an example of
application of our edge contraction process. In short, this operation consists in
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j3
ej3

j4
ej4

j5

ej5

j2
ej2

pv3

eα3

j1
ej1

j6
ej6

pv1

eα1

pv2

eα2

pv0

e0

0︸ ︷︷ ︸
π∈P(T)

�→

j3
ej3

j4
ej4

j1
ej1

j6
ej6

j5
ej5

j2
ej2

pv3

eα3

pv2

eα2

pv0
◦eα1

pv1

e0

0︸ ︷︷ ︸
λeα1

(π)∈P(T /e)

Figure A.7. The picture of a composition along an edge, for a
treewise tensor product π ∈ P(T) of elements pv0 , pv1 , pv2 , pv3 in
an operad P .

merging the source and target of an inner edge (the edge eα1
in our figure), which

vanishes in the result of our construction. In this figure, we still consider a treewise
tensor product of the same shape as in our first informal account of the definition
of free operads (see §I.1.2).

In general, we fix an inner edge e ∈ E̊(T) in a tree T. The tree obtained
by contracting the edge e in T, which we denote by T /e, consists of the edge set
E(T /e) = E(T) \ {e}, which we form by removing e from E(T), together with the
vertex set V (T /e) = V (T)/{s(e) ≡ t(e)} which we form by identifying the source
v = s(e) and the target u = t(e) of our edge e. The source (respectively, the target)
of an edge f ∈ E(T) \ {e} in the tree T /e is given by the source (respectively, the
target) of this edge f in T. One can readily check that T /e satisfies the axioms of
a tree structure. Hence, our construction gives a well-defined operation on trees.

We still set v = s(e) (respectively, u = t(e)) for the source (respectively, the
target) of our edge e in the tree T. The set of ingoing edges rω of the vertex x = ω
that arises from the merging operation u ≡ v in the tree T /e is clearly identified
with the composite rω = ru ◦e rv, where we consider the set of ingoing edges of u
and v in T. The vertices x ∈ V (T) \ {u, v} = V (T /e) \ {ω}, which are untouched
by the contraction process, have the same set of ingoing edges in T /e as in T.
Consequently, for any collection M, we have an identity

M(T /e) = M(ru ◦e rv)⊗
( ⊗
x∈V (T /e)\{ω}

M(rx)
)
,

where all expressions rx refer to sets of ingoing edges in T. On the other hand, we
have M(T) = M(ru) ⊗ M(rv) ⊗

(⊗
x∈V (T)\{u,v} M(rx)

)
. Hence, in the case of an

operad M = P , we have a morphism

P(ru)⊗ P(rv)⊗
( ⊗
x∈V (T)\{u,v}

P(rx)
)

︸ ︷︷ ︸
=P(T)

λe−→ P(ru ◦e rv)⊗
( ⊗
x∈V (T /e)\{ω}
=V (T)\{u,v}

P(rx)
)

︸ ︷︷ ︸
=P(T /e)

,
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naturally associated to our edge contraction, which we define by applying the com-
position operation ◦e : P(ru)⊗P(rv) → P(ru ◦e rv) to the subfactors attached to the
vertices (u, v) in the expression of P(T). In what follows, we refer to this morphism
λe as the composite along the edge e in the treewise tensor product P(T).

In the case of an r-tree with two vertices, the contraction of the single inner edge
obviously gives an r-corolla Y and the operation λe : P(T) → P(Y) associated to this
contraction is clearly identified with the composition operation studied in §A.2.3,
where we use the isomorphism P(r) � P(Y).

In §I.2.1, we observe that the associativity axioms of the partial composition
products of an operad can be expressed in terms of commutative diagrams involving
composite partial composition products and where we consider tensors arranged on
trees with three vertices. For convenience, we recall the form of these diagrams in
Figure A.8. We just replace the partial composites of Figure 2.2-2.3 in §I.2.1 by the
equivalent edge contractions. We also use our expressions rx, referring to the set of
ingoing edges of vertices, instead of abstract indexing sets. The words uv, vw, . . .
denote vertices which arise from merging operations and the expressions ruv, rvw,
. . . refer to the corresponding input sets.

A.2.5. The application of multiple edge contractions. We now consider mor-
phisms defined by multiple applications of the edge contraction process. We start
with an r-tree T (with an arbitrary number of vertices). By definition of the edge
contraction process, the set of inner edges of a tree T /eα, where we have contracted
an edge eα, is simply obtained by removing this edge eα from the inner edges of T.
Thus, it makes sense to perform sequences of edge contractions

T �→ T /eα1
�→ T /eα1

/eα2
�→ · · · �→ T /eα1

/eα2
/ · · · /eαn

,

over any subset of inner edges {eα1
, . . . , eαn

} ⊂ E̊(T). The lth tree of such a
sequence T /eα1

/ · · · /eαl
has

E̊(T /eα1
/ · · · /eαl

) = E̊(T) \ {eα1
, · · · , eαl

}

as inner edge set. Moreover, the set of vertices of this tree V (T /eα1
/ · · · /eαl

) is
identified with the quotient set of V (T) under the equivalence relation ≡ gener-
ated by s(eαk

) ≡ t(eαk
), where k = 1, . . . , l. This inspection shows that the tree

T /eα1
/ . . . /eαl

does not depend on the choice of an ordering {eα1
< · · · < eαl

} in
the sense that all these choices of contraction order give equal results.

We now consider the sequence of treewise tensor products P(T /eα1
/ . . . /eαl

)
associated to an operad P and the morphisms

P(T /eα1
/ . . . /eαl−1

)
λeαl−−−→ P(T /eα1

/ · · · /eαl−1
/eαl

)

determined by our sequence of edge contractions. We have the following statement:

Theorem A.2.6. Let P be any (non-unitary) operad. Let T be any tree. Let S
be another tree obtained from T by the contraction of a fixed subset of inner edges
{eα1

, . . . , eαl
} ⊂ E̊(T). The composite morphisms

P(T)
λeα1−−−→ P(T /eα1

)
λeα2−−−→ · · ·

λeαl−−−→ P(T /eα1
/ · · · /eαl

) = P(S),

which we determine by the choice of a contraction order on the set {eα1
, . . . , eαl

},
are all equal.
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Figure A.8. The interpretation of the associativity relation of
partial composition products in terms of edge contractions. We
use words uv, vw, . . . to denote the vertices which arise from
merging operations and the expressions ruv, rvw, . . . refer to the
corresponding input sets.
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Proof. In the proof of this theorem, we more precisely use the definition of
an operad in terms of partial composition operations (see §I.2.1.9). We can also
forget about the unit axiom for the moment. We just assume, therefore, that P
is a symmetric collection equipped with partial composition operations §A.2.3(1-2)
such that the diagrams of Figure A.8 commute, for all 3-fold composition patterns
represented in this figure, and our statement holds in this context.

We prove that a permutation of any initial ordering eα1
/ · · · /eαl

does not
change the result of our composite morphism. We are left to check this invariance
property for the elementary transpositions eαi

/eαi+1
�→ eαi+1

/eαi
, which generate

all permutations, and hence, to compare composites of edge contractions which fit
in diagrams of the form

(1) ·
λeαi+1

P(T)
λeα1 · · ·

λeαi−1 ·

λeαi

λeαi+1

·
λeαi+2 · · ·

λeαl
P(T /eα1

/ · · · /eαl
).

·
λeαi

We focus on the diamond diagram that occurs in the middle of this double chain
of edge contractions. We set Θ = T /eα1

/ · · · /eαi−1
for the tree that occurs at the

starting point of this diamond, and, for short, we also set e = eαi
, f = eαi+1

, for
the edges which we contract in the diamond. We then deal with a diagram such
that:

(2) P(Θ /e)
λf

P(Θ)

λe

λf

P(Θ /e/f) = P(Θ /f/e).

P(Θ /f)

λe

The edges e and f can either be disjoint or intersect at a vertex in Θ. In the
disjoint case, the composition products ◦e and ◦f are applied to disjoint factors of
the treewise tensor product P(Θ) =

⊗
v∈V (Θ) P(rv) when we form the morphisms

λe and λf . In this case, the commutativity of (2) follows from the functoriality of
tensor products. In the case where our edges intersect at a vertex, we retrieve the

configurations of Figure A.8 on the subtree Σ ⊂ Θ such that Σ̊ = {e, f}, and the
commutativity of (2) follows from the assumption that all such diagrams commute.

Thus, our square (2) commutes in all cases, and this verification completes the
proof of Theorem A.2.6. �

A.2.7. Treewise composition operations. We go back to the definition of our
contraction process §A.2.5. We assume that T is any tree with at least one vertex
and we consider the case where {eα1

, . . . , eαl
} is the whole set of inner edges (pos-

sibly empty) of this tree T. We obtain an r-corolla Y = T /eα1
/ . . . /eαl

at the end
of our construction in this case (this observation follows from the requirement that
all vertices of a tree can be connected to the source of the outgoing edge by a chain
of inner edges). We still see that this corolla Y = T /eα1

/ . . . /eαl
, which we obtain
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by a full application of our edge contraction process, does not depend on the choice
of a contraction order (all choices give equal results).

Recall that we have M(Y) = M(r), for any collection M. For an operad P , our
treewise operations §A.2.5 therefore return a morphism

(1) P(T)
λT−→ P(Y) = P(r),

when we perform a full sequence of edge contractions:

(2) P(T)
λeα1−−−→ P(T /eα1

)
λeα2−−−→ · · ·

λeαl−−−→ P(T /eα1
/ · · · /eαl

) = P(Y),

for any r-tree T ∈ Tree(r). The result of Theorem A.2.6 implies that this mor-
phism (1) does not depend on the choice of the contraction order in the decomposi-
tion (2). We also refer to this morphism, which we denote by λT, as the (complete)
treewise composition product of the operad P over the tree T.

We extend the definition of these treewise composition operations to the case
where T is the unit tree ↓. We then have P(↓) = 1. We assume by convention that
λT is given by the unit morphism of our operad η : 1 → P(1) in this case T = ↓.

A.2.8. The definition of restriction operators and augmentations on treewise
tensors. Recall that we use the name ‘(augmented non-unitary) Λ-collection’ for
the analogue, in the context of diagrams over finite sets, of the notion of an (aug-
mented non-unitary) Λ-sequence (see §2.5.9). We now check that the treewise tensor
products of an augmented non-unitary Λ-collection M inherit restriction operators
and an augmentation over the unit object of our base symmetric monoidal cate-
gory. We use the definition of these restriction operators on trees to formalize our
construction of free objects in the category of augmented non-unitary Λ-operads
(see our outline in §I.2.3). We formally have a treewise restriction operator

(1) u∗ : M(T) → M(u∗ T),

for any injective map u ∈ MorInj (m, n) and for each n-tree T ∈ Tree(n), where
u∗ T ∈ Tree(m) denotes the (unreduced)m-tree associated to T under the restriction
operator u∗ : Tree(n) → Tree(m). We have V (u∗ T) ⊂ V (T) and E(u∗ T) ⊂ E(T)
by definition of this tree in §A.1.11. In addition, the set of inputs which we associate
to any vertex such that v ∈ V (u∗ T) in the tree u∗ T is identified with the subset
rv ∩E(u∗ T) ⊂ E(u∗ T) of the inputs of this vertex rv ⊂ E(T) in the tree T. The
vertices v ∈ V (T) which we discard in the tree u∗ T are those for which we have
rv ∩E(u∗ T) = ∅.

We form our restriction operator (1) on the treewise tensor product M(T)
factorwise. We take the internal restriction operator of our collection u∗

v : M(rv) →
M(rv ∩E(u∗ T)), associated to the canonical injection uv : rv ∩E(u∗ T) → rv, when
rv ∩E(u∗ T) �= ∅ and we keep the vertex v ∈ V (T) in the tree u∗ T. We perform
the augmentation ε : M(rv) → 1 in order to discard the factor M(rv) from our
tensor product otherwise. We give an example of application of this process in
Figure A.9. We keep the same tree shape as in §A.1.11, where we explain the
definition of restriction operators on trees. Recall that we initially introduced this
example of a treewise tensor product in §I.1.2(∗), where we gave a first outline of the
construction of free operads. We also used the same treewise tensor in §I.2.3 where
we outline the definition of a Λ-operad structure on the free operad associated to
an augmented Λ-sequence (see Proposition I.2.3.1). We just retrieve the result of
this informal construction in Figure A.9.
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u∗(π) =

∗
ej3

∗
ej4

i3

ej5

i2
ej2

ξv3
eα3

i1
ej1

∗
ej6

ξv1
eα1

ξv2
eα2

ξv0
e0

0

= ε(ξv3) ·

i3
ej5

i2
ej2

i1
ej1

u∗
v1

(ξv1 )

eα1

u∗
v2

(ξv2 )

eα2

ξv0
e0

0

Figure A.9. The evaluation of a restriction operator on a tree-
wise tensor π ∈ M(T). The outcome of this restriction operator
u∗(π) ∈ M(u∗ T) is shaped on the tree u∗ T determined in Fig-
ure A.4. The internal restriction operators, which we apply to the
factors of this tensor product, are associated to the embeddings
uv2 : {ej1} → {ej1 , ej6} and uv1 : {ej5 , ej2} → {ej5 , ej2 , eα3

} that
define the subsets of ingoing of vertices which we keep in the re-
duced tree u∗ T. We moreover take the image of the factor ξv3
under the augmentation of our collection to discard this factor
from the outcome of our restriction process.

We also have an augmentation

(2) ε : M(T) → 1,

for each T ∈ Tree(r), which we obtain by applying the augmentation of our collec-
tion ε : M(rv) → 1 to all factors M(rv) of the treewise tensor product M(T). In the
example of Figure A.9, we explicitly get ε(π) = ε(ξv0) · ε(ξv1) · ε(ξv2) · ε(ξv3) for the
value of this augmentation.

We now examine the equivariance of our edge contraction operations of §A.2.4
with respect these treewise restriction operators. We assume T ∈ Tree(n) and we
again consider an injective map u ∈ MorInj (m, n) together with the tree u∗ T ∈
Tree(m) which we associate to T. Let e ∈ E̊(T) be any inner edge which we want
to contract in the tree T. This edge may belong to the subset of edges which we
discard in the tree u∗ T. We have (u∗ T)/e = u∗(T /e) otherwise. We have such an
identity, for instance, when we consider the edge contraction of Figure A.7 together
with the restriction operator of Figure A.4. We then have the following statement:

Proposition A.2.9. Let P be an augmented non-unitary Λ-operad.
(a) The edge contraction operations, determined by the composition structure

of this operad P, intertwine the treewise restriction operators of §A.2.8 in the sense
that our edge contraction morphisms make commute the diagrams

P(T)

u∗

λe
P(T /e)

u∗

P(u∗ T)
λe

P(u∗(T /e))
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which we can form when we have an injective map u ∈ MorInj (m, n), an n-tree T,

and an edge e ∈ E̊(T) such that e ∈ E(u∗ T), as well as the diagrams

P(T)

u∗

λe
P(T /e)

u∗

P(u∗ T)
=

P(u∗(T /e))

which we get when the edge e ∈ E̊(T) is discarded in the tree u∗ T.
(b) The edge contraction operations also preserve the augmentation morphisms

of §A.2.8 on treewise tensors. We explicitly have a commutative diagram

P(T)

ε

λe
P(T /e)

ε

1

,

for every r-tree T, and for any choice of an inner edge e ∈ E̊(T) inside this tree.

Proof. We readily see that the relations of our first assertion (a) reduce to the
equivariance of the composition products with respect to the restriction operators
of the operad (see Proposition I.2.2.16) on the factors of the tensor product which

we attach to our edge e ∈ E̊(T). We also use the bi-functoriality of the tensor
product to check that our edge contraction operation commutes with the restriction
operators which we perform on the other factors of our treewise tensor product. We
use the same arguments (in a simplified form) to establish the second assertion of
this proposition (b). �

The result of this proposition implies that our treewise composition operations
λT : P(T) → P(Y) preserve the restriction operators which we attach to our objects
when P is an augmented non-unitary Λ-operads. We use this observation in our
construction of free objects of the category of augmented non-unitary Λ-operads in
the next section.

A.2.10. The equivalence of operad axioms. In §I.2.1, we checked that the unit
and associativity axioms of the full composition products of an operad imply the
unit and associativity relations of the partial composition products ◦k (see Propo-
sition I.2.1.7). We used this implication to get a correspondence between the defi-
nition of an operad in terms of full composition products and the definition of an
operad in terms of partial composition operations. We also mentioned that this
correspondence defines an isomorphism of categories (see Theorem I.2.1.10) but we
put off the proof of this claim.

We can now use that the full composition products are identified with treewise
composites of the form

k1+1 ···
···

k1+n1 ··· ··· ··· kr+1 ···
···

kr+nr

P(n1) ··· ··· ··· P(nr)

P(r)

0

λΨ−−→

k1+1 ··· k1+n1 ··· ··· ··· kr+1 ··· kr+nr

P(n)

0

,
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for all r ∈ N, n1, . . . , nr ∈ N, with ki = n1 + · · · + ni−1 for i = 1, . . . , r, and
where we consider the ordered sets r = {1 < · · · < r}, n1 = {k1 + 1 < · · · <
k1 + n1}, . . . , nr = {kr + 1 < · · · < kr + nr}, n = {1 < · · · < n1 + · · · + nr}.
We have a similar interpretation, in terms of treewise composition operations, of
the composite morphisms occurring in the associativity relation of full composition
products of Figure 1.5. We can accordingly use the result of Theorem A.2.6 to get
this associativity relation when we start with partial composition operations.

We can also easily establish the validity of the unit relation of full composition
products (see Figure 1.6) from the above treewise definition of these operations and
from the unit relation of partial composition products. These verifications give the
proof of Theorem I.2.1.10. �

A.3. The construction of free operads

We now give the construction of the free operad Θ(M) associated to a collection
M ∈ Coll . We use the treewise tensor product construction in order to form the un-
derlying symmetric collection of this object Θ(M) first. We explain how to provide
this collection Θ(M) with an operad structure and we check that Θ(M) satisfies the
universal property of a free object afterwards. Recall that the universal property
of a free object implies that the mapping Θ : M �→ Θ(M) defines a left adjoint of
the forgetful functor from operads to collections (see §I.1.2). In the course of our
construction, we give an explicit description, in terms of the treewise composition
products of §A.2, of the morphism λ : Θ(P) → P , associated to any operad P ,
which defines the augmentation of this free operad adjunction.

We check, in the second part of this section, that the free operad Θ(M) inher-
its an augmented non-unitary Λ-operad structure and forms a free object in the
category of Λ-operads when M is an augmented non-unitary Λ-collection.

The definition of free operads is already well covered by the operad literature.
Therefore, we mainly give full details on the definition of the operad morphism φf :
Θ(M) → P which we associate to a morphism of symmetric sequences f : M → P
and we just outline the main steps of the proof that this construction of an operad
morphism φf : Θ(M) → P from a morphism of symmetric sequences f : M → P
defines a one-to-one correspondence (which is equivalent to the assertion that our
free operad Θ(M) does satisfy the universal property of a free object).

For simplicity, we still take the convention that our collections and our operads
are non-unitary all through this section. Nonetheless, we only really use this condi-
tion in the second part of our study when we examine the definition of free objects
in the category of augmented non-unitary Λ-operads. We also use the restriction
to non-unitary objects to give a reduced construction of free operads at the end of
this section.

A.3.1. The underlying collection of the free operad. For a fixed collection M,
the treewise tensor products M(T) define a functor from the category of r-trees and
isomorphisms Tree(r)iso towards the base category M. We take the colimit of this
functor T �→ M(T) to define the component of the free operad Θ(M) associated to
a (non-empty) finite set r �= 0:

Θ(M)(r) = colim
T∈Tree(r)iso

M(T).

We just use that the category of r-trees has a small skeleton, for any fixed set r, in
order to give a sense to this definition.
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Recall that we rather use the notation M(T) for the treewise tensor product of
a collection M over a tree T in this appendix. But we also set

ΘT(M) := M(T)

when we want to emphasize the identity between this object M(T) and a summand
of the free operad Θ(M) and we mostly use the latter notation in other parts of this
monograph.

Each bijection of finite sets u : r
�−→ s gives rise to a natural reindexing mor-

phism u∗ : Θ(M)(r) → Θ(M)(s), which is yielded by the reindexing functor on the
categories of trees u∗ : Tree(r) → Tree(s) on which we shape our colimit. Recall
simply that we have an identity M(u∗ T) = M(T) when we consider the treewise
tensor product M(u∗ T) associated to the image of a tree under this reindexing
functor u∗ T ∈ Tree(s) (see §A.2.1). Thus, the collection {Θ(M)(r), r > 0} inherits
a natural symmetric structure.

Recall that we have M(↓) = 1 when we form a treewise tensor product over
the unit tree T = ↓ (Proposition A.2.2). We accordingly have a natural morphism
η : 1 → Θ(M)(1) yielded by the embedding of the term M(↓) in the colimit that
defines the (component of arity one of our) free operad. Similarly, since we have
M(Y) = M(r) when we form the treewise tensor product over an r-corolla Y (see
again Proposition A.2.2), we have a natural morphism ι : M(r) → Θ(M)(r) yielded
by the embedding of the term M(Y) in the colimit expression of the object Θ(M)(r).
The collection of these morphisms, where r runs over the category of (non-empty)
finite sets and bijections, obviously gives a morphism of symmetric collections ι :
M → Θ(M) naturally associated to M.

The morphism η : 1 → Θ(M)(1) will give the unit for the composition structure
of the free operad. The morphism ι : M → Θ(M) will give the universal morphism
which we associate to the definition of a free object in the category of operads, but
we still have to provide the collection Θ(M) with a composition structure before
tackling the verification of the universal property of free objects. For this purpose,
we rely on the composition structure of the operad of trees and on the following
observation:

Observation A.3.2. For a composite tree Θ = S ◦ik T, where S ∈ Tree(m) and
T ∈ Tree(n), we have a canonical isomorphism( ⊗

u∈V (S)

M(ru)︸ ︷︷ ︸
=M(S)

)
⊗
( ⊗
v∈V (T)

M(rv)︸ ︷︷ ︸
=M(T)

)
�−→
( ⊗
w∈V (Θ)

M(rw)︸ ︷︷ ︸
=M(Θ)

)

which arises from the construction of the vertex set of Θ as a disjoint union V (Θ) =
V (S) � V (T).

In what follows, we view this isomorphism as a generalized operadic composi-
tion operation, shaped on the composition structure of the operad of trees. There-
fore, we also use the notation ◦ik to refer to it.

A.3.3. The composition products of the free operad. We now have natural com-
position products

colim
S∈Tree(m)iso

M(S)︸ ︷︷ ︸
=Θ(M)(m)

⊗ colim
T∈Tree(n)iso

M(T)︸ ︷︷ ︸
=Θ(M)(n)

◦ik−−→ colim
Θ∈Tree(m ◦ik

n)iso
M(Θ)︸ ︷︷ ︸

=Θ(M)(m ◦ik
n)

,(1)
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which we form by putting together the isomorphisms

◦ik : M(S)⊗M(T)
�−→ M(S ◦ik T)(2)

of the previous observation. We readily check that:

Proposition A.3.4. The above composition products §A.3.3( 1)

– preserve the action of bijections of finite sets on our objects,
– satisfy the unit axioms of operads, expressed by the diagrams of Figure 2.1,

with the morphism η : 1 → Θ(M)(1) defined in §A.3.1 as operadic unit,
– and satisfy the associativity axioms, expressed by the diagrams of Fig-

ure 2.2-2.3, similarly.

Thus, we have a well-defined operad structure on our object Θ(M), for any sym-
metric collection M.

Proof. The isomorphisms of observation A.3.2 are obviously functorial with
respect to input reindexing and this assertion immediately implies the functoriality
of our composition products. The unit and associativity relations of our compo-
sition products can be verified termwise by using that the unit and associativity
axioms hold for the operadic composition of trees. (We simply check that the
isomorphisms of observation A.3.2 are coherent with respect to these unit and as-
sociativity relations which we get at the tree level.) �

This proposition completes the definition of the operad Θ(M). We now have
to check that this operad Θ(M) satisfies the universal property of free objects. In
short, we have to establish that any given morphism f : M → P in the category
of collections uniquely extends to a morphism φf : Θ(M) → P in the category of
operads. We give an explicit definition of this morphism of operads φf : Θ(M) → P
which we associate to any morphism of symmetric collections f : M → P . We
outline the proof that our construction provides the one-to-one correspondence
claimed by the universal property of free objects afterwards.

A.3.5. The explicit construction of morphisms on the free operad. Thus, we
assume that f : M → P is a morphism in the category of collections with an operad
P as target object. For any r-tree T, where r is any (non-empty) finite set, we form
the composite:

(1) M(T)
f∗−→ P(T)

λT−→ P(r),

where f∗ is the morphism induced by f : M → P by functoriality of the treewise
tensor product construction with respect to morphisms of collections (see §A.2.1)
and λT is treewise composition operation associated to the operad P . We put these
composite morphisms together to define a morphism associated to f : M → P on
the components of the free operad Θ(M):

(2) colim
T∈Tree(r)iso

M(T)︸ ︷︷ ︸
=Θ(M)(r)

φf−−→ P(r).

We easily check that these morphisms define a morphism of symmetric collections
φf : Θ(M) → P . We also have the following proposition:

Proposition A.3.6. The just defined morphism φf : Θ(M) → P preserves
operadic composition products as well as operadic units. Hence, this morphism φf
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does define a morphism in the category of operads. Moreover, we have φf ι = f when
we take the composite of this morphism with the canonical embedding ι : M → Θ(M)
of §A.3.1.

Proof. The coherence result of Theorem A.2.6 and the functoriality of the
treewise tensor product construction implies that we have a commutative diagram

M(S)⊗M(T)
f∗⊗f∗

�

P(S)⊗ P(T)
λS⊗λT

�

P(m)⊗ P(n)

◦ik

M(S ◦ik T)
f∗

P(S ◦ik T)
λS ◦ik T

P(m ◦ik n)

,

for any pair of trees S ∈ Tree(m) and T ∈ Tree(n). We then use the termwise
definition of the morphism φf and of the composition structure of the free operad
to conclude that this morphism φf preserves the partial composition operations
◦ik .

Recall that the treewise composition operation λ↓ which we associate to the

unit tree ↓ is given by the unit morphism of our operad η : 1 → P(1). This
convention implies that φf reduces to the unit morphism of the operad P on the
term 1 = M(↓) of the free operad Θ(M), and that our morphism φf also preserves
operadic units. This verification finishes the proof that φf defines a morphism in
the category of operads.

Recall that the morphism ι : M → Θ(M), defined in §A.3.1, is given, in any
arity r > 0, by the canonical isomorphism between M(r) and the term attached
to the r-corolla M(Y) in the expansion of Θ(M)(r). Since the treewise composition
product of P obviously reduces to the identity on a corolla, we also immediately
obtain φf ι = f . �

We also have the following observation:

Proposition A.3.7. The canonical morphism

M(T) → colim
T∈Tree(r)iso

M(T) = Θ(M)(r),

which we associate to each term of our colimit in the definition of the free operad,
is identified with the composite:

M(T)
ι∗−→ Θ(M)(T)

λT−→ Θ(M)(r),

where we consider the natural mapping induced by the morphism of collections
ι : M → Θ(M) at the treewise tensor level, followed by the treewise composition
morphism λT associated to the free operad Θ(M).

Proof. By definition of the free operad, we have the identity Θ(M)(T) =⊗
v∈V (T) Θ(M)(rv) =

⊗
v∈V (T){colimSv∈Tree(rv)

M(Sv)}, and we can use the dis-

tribution relation of tensor products with respect to colimits in order to obtain
that this treewise tensor product Θ(M)(T) expands as a colimit of tensor prod-
ucts
⊗

v∈V (T) M(Sv) such that Sv ∈ Tree(rv), v ∈ V (T). (We revisit the definition

of these treewise composition products on free operads in-depth in the next ap-
pendix chapter §B.) We see that the morphism ι∗ : M(T) → Θ(M)(T) carries
M(T) =

⊗
v M(rv) to the tensor product of the terms M(Yv) associated to the

collection of corollas Sv = Yv, v ∈ V (T), in this expansion of the object Θ(M)(T).
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Then we easily check that the value of the treewise composition operation λT on
these terms of the free operad Θ(M) reduces to the identity morphism of the treewise
tensor product M(T) inside Θ(M) �

This proposition implies that the treewise tensor products M(T) in our con-
struction of the free operad Θ(M) represent treewise composites of the generating
collection M in Θ(M). Then:

Theorem A.3.8. The operad Θ(M), such as defined in §§A.3.1-A.3.3 and in
Proposition A.3.4, does satisfy the universal property of a free object: any morphism
of collections f : M → P, where P is an operad, admits a unique factorization

M
f

ι

P

Θ(M)

∃!φf

such that φf is an operad morphism. This morphism φf is given by the construction
of §A.3.5.

Proof. The existence of this factorization φf ι = f follows from Proposi-
tion A.3.6. The observation of Proposition A.3.7 (together with the functoriality of
the treewise composition operation of operads) implies that any such factorization
of the morphism of collections f : M → P is given by the construction of §A.3.5
on the term M(T) of the free operad Θ(M) and this assertion also proves that our
factorization is unique. �

In §I.1.2, we first define the free operad as a left adjoint of the obvious forgetful
functor from operads to collections. Recall that this characterization of free operads
is formally equivalent to the statement of the previous theorem. Indeed, the result
of Theorem A.3.8 is equivalent to the claim that the mapping φ �→ φι yields a

bijection MorOp(Θ(M),P)
�−→ MorColl(M,P) and this assertion is nothing but the

definition of our adjunction. Therefore:

Theorem A.3.9 (Claim of Theorem I.1.2.1). Our free operad functor Θ : M �→
Θ(M), such as defined in §§A.3.1-A.3.4, forms a left adjoint of the obvious forgetful
functor from the category of (non-unitary) operads to the category of (non-unitary)
collections. �

The universal morphism ι : M → Θ(M) corresponds to the identity of the

free operad Θ(M) under the adjunction relation MorOp(Θ(M),P)
�−→ MorColl (M,P)

and represents the unit morphism of this adjunction therefore. For an operad P ,
we have a morphism in the converse direction λ : Θ(P) → P which corresponds
to the identity of the object P in the category of collections and which defines
the augmentation morphism of our adjunction. We have the following explicit
description of this natural morphism:

Proposition A.3.10. In our realization of the free operad Θ(P) as a colimit
Θ(P)(r) = colimT∈Tree(r)iso P(T), the adjunction augmentation λ : Θ(P) → P is
given termwise by the treewise composition operations λT : P(T) → P(r) of §A.2.7.

Proof. To check this proposition, we just apply the construction of §A.3.5
to the morphism φid : Θ(P) → P induced by the identity id : P → P and which
defines the augmentation morphism of our adjunction λ : Θ(P) → P. �
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A.3.11. The definition of restriction operators on the free operad. We now as-
sume that M is equipped with the structure of an augmented (non-unitary) Λ-
collection. We then have a restriction operator

(1) u∗ : colim
T∈Tree(n)

M(T)︸ ︷︷ ︸
=Θ(M)(n)

→ colim
S∈Tree(m)

M(S)︸ ︷︷ ︸
=Θ(M)(m)

,

associated to any injective map u ∈ MorInj (m, n), which we form by putting together
the treewise restriction operators u∗ : M(T) → M(u∗ T) of §A.2.8(1), for all n-trees
T ∈ Tree(n), and where we consider our restriction operator on trees u∗ : T �→ u∗ T
(see §A.1.11).

We also have an augmentation

(2) ε : colim
T∈Tree(n)

M(T)︸ ︷︷ ︸
=Θ(M)(n)

→ 1

which we obtain by putting together the treewise restriction augmentations ε :
M(T) → 1 of §A.2.8(2). We get the following statement:

Proposition A.3.12 (Claims of Proposition I.2.3.1).
(a) The definitions of the previous paragraph provide the free operad Θ(M)

with the structure of an augmented non-unitary Λ-operad. The canonical embed-
ding ι : M → Θ(M), which we associate to the free operad, defines a morphism of
augmented non-unitary Λ-collections in this context, and we can also use this prop-
erty to characterize our augmented non-unitary Λ-operad structure on the object
Θ(M).

(b) Let f : M → P be a morphism of augmented non-unitary Λ-collections
with values in an augmented non-unitary Λ-operad P. The operad morphism φf :
Θ(M) → P associated to f (in §A.3.5) preserves the extra Λ-operad structure which
we attach to our objects and hence defines a morphism in the category of augmented
non-unitary Λ-operads.

Proof. We easily check that the treewise restriction operations of §A.2.8(1)
fit in equivariance relations:

(1) M(S)⊗M(T)
�

u∗⊗v∗

M(S ◦u(ik) T)

(u◦u(ik)v)
∗

M(u∗ S)⊗M(v∗ T)
�

M((u ◦u(ik) v)∗(S ◦u(ik) T))

,

where we consider the composition isomorphism of §A.3.3(2) and we use the equiv-
ariance relation (u∗ S) ◦ik (v∗ T) = (u ◦u(ik) v)∗(S ◦u(ik) T) of the composition of
trees, for any S ∈ Tree(m), T ∈ Tree(n), and u ∈ MorInj (r,m), v ∈ MorInj (s, n),
ik ∈ r (see §A.1.11). The tree identity (u∗ S) ◦ik (v∗ T) = (u ◦u(ik) v)∗(S ◦u(ik) T)
basically implies that we perform the same factorwise augmentation and restriction
operators in the treewise restriction maps of our diagram (1), and this observa-
tion immediately gives our relation. We similarly have the degenerate equivariance
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relations:

(2) M(S)⊗M(T)
�

u∗⊗ε

M(S ◦u(ik) T)

(u◦u(ik)o)
∗

M(u∗ S)⊗ 1 �
M(u∗ S)

∂ik
M((u ◦u(ik) o)∗(S ◦u(ik) T))

,

where we combine the treewise restriction operator u∗ : M(S) → M(u∗ S) associated
to a map u ∈ MorInj (r,m) with a treewise augmentation ε : M(T) → 1. In this
relation, we still write ∂ik for the restriction operator associated to the map ∂ik

that skips the value ik in the set m, and we use the identity ∂ik(u
∗ S) = (u ◦u(ik)

o)∗(S ◦u(ik) T) at the tree level (see §A.1.11).
The equivariance of the composition operations of free operads with respect to

the restriction operators (see Proposition I.2.2.16) immediately follows from these
treewise equivariance relations (1-2).

We trivially get a commutative diagram

(3) M(S)⊗M(T)
�

ε⊗ε

M(S ◦ik T)

ε

1

when we take the augmentation of a treewise composition operation. We immedi-
ately conclude that the composition operations of free operads preserve our aug-
mentation morphisms too, and this verification completes the proof that the free
operad Θ(M) inherits the extra structure of an augmented non-unitary Λ-operad
when M is an augmented non-unitary Λ-collection.

We also immediately see that the treewise restriction operators (respectively,
augmentations) of §A.2.8 reduce to the restriction operators (respectively, to the
augmentations) of our collection M in the case of a corolla Y = Yr and when we use

the identity M(r) = M(Y), for any arity r > 0. We deduce from this observation
that the morphism ι : M → Θ(M) defines a morphism of augmented non-unitary
Λ-collections, as asserted in our proposition, since we define this morphism by
the aritywise identity M(r) = M(Y), for r > 0. We refer to the explanations
of Proposition I.2.3.1 for the proof that this property uniquely determines our
augmented non-unitary Λ-operad structure on Θ(M).

We now consider the treewise composition products λT : P(T) → P(r) associ-
ated to an augmented non-unitary Λ-operad P . The result of Proposition A.2.9,
where we establish the equivariance of the edge-contraction operations with respect
to the action of restriction operators, implies that we have a commutative diagram:

P(T)
λT

u∗

P(n)

u∗

P(u∗ T)
λu∗ T

P(m)

,(4)
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for any n-tree T and for any injective map u ∈ MorInj (m, n). We similarly have a
commutative diagram

P(T)
λT

ε

P(r)

ε

1

,(5)

for any r-tree T, when we compose our treewise composition product with the
augmentation of the operad. We immediately deduce from these statements that
the morphism λ : Θ(P) → P , which we obtain by putting the treewise composition
products together, defines a morphism of augmented non-unitary Λ-operads.

Recall that this morphism λ : Θ(P) → P represents the augmentation of the free
operad adjunction. We can therefore deduce the second assertion of the proposition
from the above verification. Note simply that our augmented non-unitary Λ-operad
structure on the free operad is functorial. �

This proposition implies (as we explained in §I.2.3) that the plain free operad
functor Θ : M �→ Θ(M) lifts to a free object functor from the category of aug-
mented non-unitary Λ-collections towards the category of augmented non-unitary
Λ-operads (see Theorem I.2.3.2).

A.3.13. The splitting of the free operad. Recall that the category of trees and
isomorphisms Tree(r)iso is equipped with a splitting Tree(r)iso =

∐∞
m=0 Treem(r)iso,

where Treem(r)iso is the full subcategory of Tree(r)iso formed by trees with m
vertices. The collection Θ(M) consequently inherits a decomposition Θ(M) =∐∞

m=0 Θm(M) such that:

Θm(M)(r) = colim
T∈Treem(r)iso

M(T),

for any m ≥ 0.
Recall that Tree0(r) has only one element in arity r = 1, namely the unit tree

↓. Therefore, since M(↓) = 1, we obtain:

Θ0(M)(r) =

{
1, if r = 1,

∅, otherwise.

The unit of the free operad ι : 1 → Θ(M)(1) can be identified with the embedding
of this summand Θ0(M)(1) = 1 in Θ(M). We also immediately see that the compo-
sition operations of §A.3.3 preserve our weight grading, and accordingly split into
components of the form:

Θp(M)(m)⊗ Θq(M)(n)
◦ik−−→ Θp+q(M)(m ◦ik n),

for p, q ≥ 0. (We notably use this observation in the definition of the Koszul dual
of operads in §C.3.) Let us observe that the restriction operators of §A.3.11 do not
preserve the weight grading of this operad, unlike our other structure morphisms.

Recall that Tree1(r) is reduced to the isomorphism class of the r-corolla Y.
Thus, we have a canonical isomorphism of collections M � Θ1(M). We immediately
see that the universal morphism ι : M → Θ(M) is given by the identity between M
and this summand Θ1(M) of the free operad Θ(M).

We check the following claim to complete the results of this section:
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Proposition A.3.14. The free operad associated to a non-unitary collection
M ∈ Coll>0 has a reduced expansion of the form:

Θ(M)(r) =
∐

[T]∈π0 Tree(r)iso

M(T),

for each finite (non-empty) set r �= 0, where the coproduct ranges over (a set of
representatives of) isomorphism classes of the category of r-trees [T] ∈ π0 Tree(r)

iso.

The non-unitary assumption M(0) = ∅ becomes crucial in this statement.

Proof. We deduce this statement from the next proposition, which implies
that the isomorphism category of (open) r-trees Tree(r)iso in our construction of
the free operad §A.3.1 is equivalent to a discrete category with isomorphism classes
of reduced r-trees as objects. �

Proposition A.3.15. Let r be any (non-empty) finite set. Let S be any (open)
r-tree, so that we have rv �= ∅, for all v ∈ V (T). The set of isomorphisms
MorTree(r)iso(S,T), connecting S to another r-tree T, is either empty or reduced
to a point.

Recall that this proposition fails for general (non-open) trees (see §A.1.8).

Proof. Let f, g : S → T be a pair of parallel r-tree isomorphisms.
In §A.1.1, we observe that any vertex v ∈ V (S) in an (open) tree S ∈ Tree(r)

is connected to an input of the tree by a chain of edges

(1) i ei vn eαn · · · eα2 v1 eα1 v .

If we have n = 0 inner edges in this chain, so that v is directly connected
to the input i by an ingoing edge of the tree ei, then we have s(fE(ei)) = i =
s(gE(ei)) ⇒ fE(ei) = gE(ei) and fV (v) = t(fE(ei)) = t(gE(ei)) = gV (v). In
the case where v is connected to i by a chain (1) with n > 0 inner edges, we
assume by induction that f and g agree up to x = v1 on this chain. We then
have s(fE(eα1

)) = fV (s(eα1
)) = fV (v1) = gV (v1) = gV (s(eα1

)) = s(gE(eα1
)), and

these identities imply that fE(eα1
) and gE(eα1

) are identified with the outgoing
edge of fV (v1) = gV (v1) in T. We accordingly have fE(eα1

) = gE(eα1
) ⇒ fV (v) =

t(fE(eα1
)) = t(gE(eα1

)) = gV (v) and we can therefore continue our induction
process to conclude that we have fV (v) = gV (v), for all v ∈ V (S). By the way
we also check that we have fE(e) = gE(e), for all e ∈ E(S), since we any edge in
an r-tree is identified with the outgoing edge of an input label i ∈ r or with the
outgoing edge of a vertex. �

A.3.16. The case of collections equipped with a free symmetric structure. In
the study of the model category of operads in simplicial sets §II.8, we use another
reduced expansion of free operads for (non-unitary) symmetric sequences M whose
components M(r) are equipped with a free action of the symmetric group Σr, for all
r > 0. In the context of symmetric collections (in an arbitrary symmetric monoidal
base category), we assume that the components of our object M have the form:

(0) M({i1, . . . , ir}) = MorBij ({1, . . . , r}, {i1, . . . , ir})⊗ S M(r),

for some sequence of objects of the base category S M(r), r > 0, and where the
expression MorBij ({1 < · · · < r}, {i1, . . . , ir})⊗ S M(r) represents the coproduct of
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copies of the object S M(r) over the set of bijective maps f ∈ {1 < · · · < r} ∼−→
{i1, . . . , ir}, for any finite set r = {i1, . . . , ir} with card(r) = r > 0.

In the context of a concrete symmetric monoidal category, the factors which
we use to label the vertices of a treewise tensor π ∈ M(T) are equivalent to
pairs (f, ξv), where we have ξv ∈ S M(rv), rv = card(rv), and f is a bijection
(equivalent to an ordering) from the ordered set {1 < · · · < rv} towards the
set of ingoing edges of our vertex rv = {e ∈ E(T)|t(e) = v}. If we go back
to the topological interpretation, then fixing such an ordering, for any vertex
v ∈ V (T), amounts to fixing a planar embedding of the tree T. We therefore
consider the category Treeo(r)iso which consists of the r-trees T = To equipped
with a such a planar embedding (referred to by the superscript o in the expression
of our objects) together with the order preserving isomorphisms as morphisms.
We also use the phrase ‘planar r-tree’ to refer to the objects T = To of this cat-
egory Treeo(r)iso. We now have Treeo(r)iso = MorBij ({1, . . . , r}, r) ⊗ STreeo(r)iso

where STreeo(r)iso ⊂ Treeo(r)iso is the subcategory formed by these planar r-
trees To ∈ Treeo(r)iso of which ingoing edges are linearly ordered according to the
global orientation of the plan of our figure (and indexed accordingly).

We therefore have

(1) Θ(M)({i1, . . . , ir}) = MorBij ({1, . . . , r}, {i1, . . . , ir})⊗ Θo(S M)(r),

for any finite set r = {i1, . . . , ir} with r = card(r) > 0, where Θo(S M) is a (non-
symmetric) version of the free operad, formally defined by a colimit

Θo(S M)(r) = colim
T∈STreeo(r)iso

S M(To)(2)

of the obvious planar analogue of the treewise tensor products of §A.3.1:

S M(To) :=
⊗

v∈V (T)

S M(card(rv)),(3)

for any r > 0. We moreover have an analogue of the reduced expansion of Propo-
sition A.3.14:

(4) Θo(S M)(r) =
∐

[T]∈π0 STreeo(r)iso

S M(To).

We do not actually need the assumption M(0) = 0 in this case: the results of
the formulas (1) and (4) hold without assuming M(0) = 0 when the generating
collection M is equipped with a free symmetric structure.

A.4. The construction of connected free operads

In the previous sections, we reviewed the general definition of free operads.
But, in many applications, we restrict ourselves to operads P such that P(0) = ∅

and P(1) = 1. We then say that P is connected as an operad (see §I.1.1.21).
We use the notation Op∅1 for the full subcategory of the category of operads

generated by the connected operads. We also consider the category Coll>1 formed
by the collections M such that M(0) = M(1) = ∅. We then say that M is connected
as a collection.

The main purpose of this section is to check that the free operad functor ad-
mits a restriction to the category of connected operads and that a variant of the
adjunction relation considered in the previous section holds in this setting.
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To be explicit, to a connected operad P , we now associate the connected col-
lection P̄ such that:

P̄(r) =

{
∅, if r = 0, 1,

P(r), otherwise,

and which we form by withdrawing the term of arity one of our object P(1) = 1.
This connected collection P̄ obviously forms a subobject of the operad P in the
category of collections. In §I.1.2.13, we also explain that any connected operad P
is endowed with a canonical augmentation ε : P → I with values in the unit operad
I (at least when our base category is pointed) and which is simply given by the
identity of the unit object in arity one P(1) = I (1) = 1. The above collection P̄
actually represents the kernel of this augmentation (whenever we can define this
morphism). Therefore, we usually refer to this object P̄ as the augmentation ideal
of the operad P .

The mapping P → P̄ gives a natural functor ω̄ : Op∅1 → Coll>1 from the
category of connected operads to the category of connected collections. We get the
following result:

Theorem A.4.1. The free operad Θ(M) associated to a connected collection
M ∈ Coll>1 is connected as an operad and the mapping Θ : M �→ Θ(M) defines a
left adjoint of the functor ω̄ : Op∅1 → Coll>1 which maps a connected operads P ∈
Op∅1 to its augmentation ideal P̄ ∈ Coll>1.

We establish this theorem after two intermediate statements. Firstly, for a
connected collection M, we obviously have M(T) = ∅ when the tree T is not
reduced in the sense of §A.1.12. Indeed, if T is not reduced, then we have at least
one vertex v ∈ V (T) satisfying card(rv) = 0 or 1, and this implies M(rv) = ∅.
Thus:

Proposition A.4.2. For a connected collection M ∈ Coll>1, we have an iden-
tity

Θ(M)(r) = colim
T∈ ˜Tree(r)iso

M(T),

for each arity r > 0, where the colimit ranges over T̃ree(r)iso (the category of reduced
r-trees and isomorphisms between them). �

In §A.1.12, we observe that the category of reduced trees T̃ree(r) satisfies

T̃ree(0) = ∅ and T̃ree(1) = ↓. The previous proposition therefore implies that
the free operad generated by a connected collection Θ(M) satisfies Θ(M)(0) = ∅,
Θ(M)(1) = M(↓) = 1, and hence, is connected as an operad. Thus, the free operad
gives by restriction a functor Θ : Coll>1 → Op∅1 from the category of connected
collections Coll>1 towards the category of connected operads Op∅1, as claimed in
Theorem A.4.1. By the way, we can readily adapt the result of Proposition A.3.14
to get a reduced expansion of the free connected operad Θ(M), where we replace
the colimit of the above formula by a coproduct over (a set of representatives of)
isomorphism classes of reduced r-trees:

Θ(M)(r) =
∐

[T]∈π0
˜Tree(r)iso

M(T).

We mostly use a dual version of this expression when we examine the definition of
cofree cooperads (see §C.1). Let us observe, besides, that the category of reduced
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r-trees has a finite skeleton (as opposed to the category of r-trees), so that the
coproduct occurring in this reduced expansion of free connected operads is finite.

We now have the following claim:

Lemma A.4.3. For a connected collection M, which satisfies M(0) = M(1) = ∅,
a morphism f : M → N is necessarily trivial in arity r = 0, 1, and any morphism
f : M → P, where P is a connected operad, is equivalent to a morphism f : M → P̄
with values in the augmentation ideal of the operad P. �

From this statement, we immediately get that the adjunction relation of the
free operad admits an extension

(∗) MorOp(Θ(M),P) � MorColl(M,P) � MorColl (M, P̄)

whenM is a connected collection and P is a connected operad. Recall that Op∅1 and
Coll>1 are defined as full subcategories of Op and Coll respectively. We therefore
obtain that Θ : Coll>1 → Op∅1 is left adjoint of the augmentation ideal functor
ω̄ : Op∅1 → Coll>1, and this result completes of the proof of Theorem A.4.1. �

We adopt the short notation Θ̄(M) for the augmentation ideal of the free operad
Θ(M) associated to a connected collection M, and equivalently, for the composite
of the free operad functor Θ : Coll>1 → Op∅1 with the augmentation ideal functor
ω̄ : Op∅1 → Coll>1.

The constructions of the previous section can easily be adapted to give a rep-
resentation of the adjunction bijection (∗) in our proof of this theorem. In one
direction, to an operad morphism φ : Θ(M) → P , we associate the composite

M
ι−→ Θ(M)

φ−→ P which reduces to a morphism φι : M → P̄ when M is connected
(Lemma A.4.3). In the other direction, when we have a morphism of collections
f : M → P̄ , we apply the process of §A.3.5 to the obvious morphism f : M → P̄ ⊂ P ,
in order to obtain the operad morphism φf : Θ(M) → P naturally associated to f .

The unit and augmentation morphisms of our adjunction Θ : Coll>1 � Op∅1 :
ω̄ can readily be made explicit from the constructions of the previous section too.
The adjunction unit is now given by a morphism ι : M → Θ̄(M), associated to
any connected collection M ∈ Coll>1, and with values in the augmentation ideal of
the free operad Θ̄(M). This morphism is the obvious restriction of the adjunction
unit of §A.3, and hence, is still given by the identity of the object M(r) with the
term M(Y) attached to an r-corolla Y in the expansion of Θ̄(M)(r). We just restrict
ourselves to the case r > 1 of this correspondence when we work in the connected
setting.

The adjunction augmentation is now a morphism λ : Θ(P̄) → P which we
associate to any connected operad P ∈ Op∅1. To make this morphism explicit, we
first record the following immediate observation:

Observation A.4.4. For a connected operad P ∈ Op∅1, we have

P̄(T) =

{
P(T), if the tree T is reduced,

∅, otherwise.

From which we deduce:

Proposition A.4.5. The free operad associated to the augmentation ideal P̄ ∈
Coll>1 of a connected operad P ∈ Op∅1 satisfies

Θ(P̄)(r) = colim
T∈ ˜Tree(r)iso

P(T),
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for any arity r > 0, and the augmentation λ : Θ(P̄) → P of the adjunction Θ :
Coll>1 � Op∅1 : ω̄ is given, on each term of this colimit P(T), by the treewise
composition product λ : P(T) → P(r) of §A.2.7.

Proof. The first assertion of this proposition is an immediate consequence of
observation A.4.4. The augmentation of our new adjunction λ : Θ(P̄) → P is the
morphism φi : Θ(P̄) → P associated to the obvious embedding i : P̄ → P under
the adjunction relation of the previous section. The expression of this morphism
λ : Θ(P̄) → P in terms of treewise composition products immediately follows from
the construction of §A.3.5, where we make explicit the mapping f �→ φf for a
general morphism of symmetric sequences f : M → P . �

A.4.6. The definition of reduced treewise restriction operators and of restric-
tion operators on connected free operads. We assume from now on that M is an
augmented connected Λ-collection. Let u ∈ MorInj (m, n). We can easily adapt the
construction of §A.2.8 to define a reduced restriction operator

(1) u∗ : M(T) → M(u∗ T)

when we consider the restriction functor on the categories of reduced trees u∗ :

T̃ree(n) → T̃ree(m) (see §A.1.13) rather than the restriction functor of §A.1.11.

Recall that we essentially determine the reduced tree u∗ T ∈ T̃ree(m) associated

to any T ∈ T̃ree(n) by removing an extra subset of vertices (namely, the vertices
with a single ingoing edge) in the outcome of our plain reduction process on trees
(see §A.1.13). We basically apply the augmentation ε : M(r) → 1 to delete these
extra factors (associated to the vertices with a single ingoing edge) in the result of
the restriction operator of §A.2.8 on treewise tensors. We do not touch the other
factors, which we obtain by performing an appropriate internal restriction operator
of our Λ-collection M.

We give an example of application of this reduced restriction process in Fig-
ure A.10. We keep the same tree shape as in §§A.1.11-A.1.13, where we explain the
definition of restriction operators on trees, and as in §A.2.8, where we explain the
definition of the plain (unreduced) restriction operator on treewise tensors. Recall
that we also used this example of a treewise tensor product in §I.2.3, when we
outline the definition of a Λ-operad structure on the free operad associated to an
augmented Λ-sequence (see Proposition I.2.3.1), and in §I.2.4, when we outline the
definition of a Λ-operad structure on the free operad associated to an augmented
connected Λ-sequence (see Proposition I.2.4.3). We just retrieve the result of the
latter informal construction in Figure A.10.

We put these reduced treewise restriction operators (1) together (as in §A.3.11)
in order to get a (reduced) restriction operator associated to any injective map
u ∈ MorInj (m, n) on the connected free operad Θ(M):

(2) colim
T∈ ˜Tree(n)

M(T)︸ ︷︷ ︸
=Θ(M)(n)

u∗
−→ colim

S∈ ˜Tree(m)

M(S)︸ ︷︷ ︸
=Θ(M)(m)

.

We also have an augmentation

(3) ε : colim
T∈ ˜Tree(r)

M(T)︸ ︷︷ ︸
=Θ(M)(r)

→ 1,
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u∗(π) =

∗
ej3

∗
ej4

i3

ej5

i2
ej2

ξv3
eα3

i1
ej1

∗
ej6

ξv1
eα1

ξv2
eα2

ξv0
e0

0

= ε(ξv3) · ε(ξv2) ·

i3
ej5

i2
ej2

u∗
v1

(ξv1 )

eα1

i1
ej1

≡eα2

ξv0
e0

0

Figure A.10. The evaluation of a reduced restriction operator
on a treewise tensor π ∈ M(T). The outcome of this restriction
operator u∗(π) ∈ M(u∗ T) is shaped on the reduced tree u∗ T de-
termined in Figure A.5. The internal restriction operator, which
we apply to one factor of this tensor product, is associated to the
embedding uv1 : {ej5 , ej2} → {ej5 , ej2 , eα3

} that define the subset
of ingoing edges of the vertex v1 which we keep in the reduced
tree u∗ T.

which we obtain by putting together the treewise augmentations ε : M(T) → 1
of §A.2.8. (Recall that this treewise augmentation is given by a factorwise applica-
tion of the augmentation of the object M, and this process can be handled without
change in the connected setting.)

We then get the following statement:

Proposition A.4.7 (Claims of Proposition I.2.4.3).
(a) The definitions of the previous paragraph provide the free connected operad

Θ(M) with the structure of an augmented connected Λ-operad. The canonical mor-
phism ι : M → Θ̄(M), which we associate to the free connected operad, defines a
morphism of augmented connected Λ-collections in this context, and we can also use
this property to characterize the Λ-operad structure which we define on the object
Θ(M).

(b) Let f : M → P̄ be a morphism of augmented connected Λ-collections with
values in (the augmentation ideal of) an augmented connected Λ-operad P. The
operad morphism φf : Θ(M) → P associated to f (in §A.3.5) preserves the extra
Λ-operad structure which we attach to our objects and hence defines a morphism in
the category of augmented connected Λ-operads.

Proof. We use the same verifications as in the proof of Proposition A.3.12.
We just replace the plain restriction operators of §A.2.8 by reduced restriction
operators. We easily check that our arguments remain valid in this setting. �

This proposition also implies (as we explain in §I.2.4) that the plain free operad
functor on the category of connected symmetric collections Θ : M �→ Θ(M) lifts to a
free object functor from the category of augmented connected Λ-collections towards
the category of augmented connected Λ-operads (see Theorem I.2.4.4).
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A.5. The construction of coproducts with free operads

To complete the survey of this chapter, we give an explicit construction of
coproducts of the form P ∨Θ(M) in the category of operads. We are more precisely
going to explain that these objects P ∨Θ(M) have an expansion involving a colored
version of the treewise tensor products of the previous sections.

In a first step, we address a general version of this construction, which works for
any (non-unitary) operad P and for any (non-unitary) collection M. We focus on
the case of connected operads in a second step. We check that we can use a reduced
version of our coproduct construction when we work in the connected setting.

We will explain that the reduced construction of coproducts which we give in
this section can be dualized to give an explicit definition of products in the category
of cooperads. We actually crucially use this dual product construction when we
define our model structure on the category cooperads. We may therefore regard
this section as a preparation for this subsequent definition of a model structure on
the category of cooperads.

We first make explicit the colored tree structures which define the shape of our
operadic coproducts.

A.5.1. Semi-alternate two-colored trees. We consider trees T whose set of ver-
tices is equipped with a partition V (T) = V•(T)� V◦(T) such that V•(T) defines a
subset of vertices marked with a grey color, and V◦(T) defines a subset of vertices
marked with a white color. We can equivalently assume that the set of vertices of
our tree T is equipped with a mapping c : V (T) → {•, ◦} to define this coloring:

V•(T) = c−1(•), V◦(T) = c−1(◦).

We generally specify such a vertex coloring c : V (T) → {•, ◦} by adding a subscript c
in the notation of our tree T. We now say that Tc forms a semi-alternate two-colored
tree when:
(1) For any inner edge e ∈ E̊(T) with v = s(e) ∈ V (T) and u = t(e) ∈ V (T), we

have either (c(u), c(v)) = (•, ◦), or (c(u), c(v)) = (◦, •), or (c(u), c(v)) = (◦, ◦),
but in all cases (c(u), c(v)) �= (•, •).

Thus, the white vertices can form non-trivial subtrees in Tc but the grey vertices
are all isolated.

We give an example of a semi-alternate two-colored structure, shaped on the
tree of Figure A.1, in Figure A.11.

We adopt the notation Tree•◦(r) for the class of semi-alternate two-colored r-

trees. We also consider isomorphisms of semi-alternate two-colored r-trees f : Sc
�−→

Td which we obviously define as isomorphisms of r-trees f : S
�−→ T (in the sense

of §A.1.8) that preserve the color of vertices:

v ∈ V•(S) ⇒ fV (v) ∈ V•(T), v ∈ V◦(S) ⇒ fV (v) ∈ V◦(T).

We still use the superscript mark iso to denote the category Tree•◦(r)
iso formed by

the semi-alternate two-colored r-trees and their isomorphisms.
A.5.2. Semi-alternate treewise tensor products. Let P be an operad. Let M be

a symmetric collection. For any semi-alternate two-colored r-tree Tc we form the
treewise tensor product:

(1) M(Tc � P) =
( ⊗
v∈V•(T)

P(rv)
)
⊗
( ⊗
v∈V◦(T)

M(rv)
)
,
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Figure A.11. The picture of a semi-alternate two-colored struc-
ture on a tree.

Figure A.12. The picture of a semi-alternate treewise tensor.
The grey vertices v2 and v3 are labeled by operations pv2 ∈ P(2)
and pv3 ∈ P(3) of the operad P , while the white vertices v0, v1 and
v4 are labeled by elements ξv0 ∈ M(3), ξv1 ∈ M(2), ξv4 ∈ M(2) of
the given symmetric collection M.

where we label the grey vertices v ∈ V•(T) with terms of the operad P and the
white vertices v ∈ V◦(T) with terms of the collection M.

The picture of a semi-alternate treewise tensor π ∈ M(Tc � P) is given in

Figure A.12. The idea is that such a tensor π ∈ M(Tc � P) represents the reduced

form of a formal composite of operations pv ∈ P(rv) with elements of our collection
ξv ∈ M(rv). We just perform composition operations pu ⊗ pv �→ pu ◦e pv to remove
possible adjacent operad factors pu, pv ∈ P (see Figure A.14 for an instance of
application of this reduction process).

In order to complete this reduction process, we still have to keep track of
degenerate terms given by the insertion of operadic units in semi-alternate treewise
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Figure A.13. The degenerate semi-alternate treewise tensor ob-
tained by the insertion of an operadic unit 1 ∈ P(1) on the edge
eα1

of the treewise tensor of Figure A.12.

tensor products (see Figure A.13 for an instance of such a degeneration operation).
We address this topic in the next paragraph.

A.5.3. The degeneration of semi-alternate treewise tensors. We first define de-
generation operations on trees which we use to shape our unit insertions. We assume
that e ∈ E(T) is an edge satisfying s(e), t(e) �∈ V•(T) (with possibly s(e) ∈ r or
t(e) = 0) in a semi-alternate two-colored r-tree Tc ∈ Tree•◦(r). We then consider a

tree se(T)c formed by inserting a grey vertex ve on the edge e ∈ E(T). We formally
set V (se(T)) = V (T) � {ve}, E(se(T)) = E(T) \ {e} � {e−, e+}, with new edges
e−, e+ ∈ E(se(T)), defined by splitting the edge e ∈ E(T) and such that we have
s(e−) = s(e), t(e−) = s(e+) = ve, t(e

+) = t(e) in the tree se(T). We also assign
the color c(ve) = •, as required, to the vertex ve which we insert on the edge e. We
now have

M(se(T)c � P) = P(rve)⊗
( ⊗
v∈V•(T)

P(rv)
)
⊗
( ⊗
v∈V◦(T)

M(rv)
)

︸ ︷︷ ︸
=M(Tc�P)

(1)

and we define the degeneration morphism (at the edge e ∈ E(T))

se : M(Tc � P) → M(se(T)c � P)(2)

by the insertion of a unit morphism η : 1 → P(1) on the extra factor P(rve) = P(1)
of this tensor product (1)

A.5.4. The underlying collection of the coproduct with a free operads. We see
that the semi-alternate treewise tensor product construction of §A.5.2, as well as
the degeneration operations of §A.5.3, are functorial with respect to the action
of the isomorphisms of the groupoids Tree•◦(r)

iso. We moreover have an identity
M(u∗ Tc � P) = M(Tc � P) when we apply an input reindexing operation u∗ :

Tree(r) → Tree(s) to any semi-alternate two-colored r-tree Tc ∈ Tree•◦(r).

Let Tree•◦(r)
iso
ᵀ be the category obtained by adding formal degeneracy oper-

ators se : Tc → se(T)c to the isomorphisms of semi-alternate two-colored r-trees.
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We set:

(1) P ∨Θ(M)(r) = colim
Tc∈Tree•◦(r)isoᵀ

M(Tc � P),

for any r > 0. We mod out by the action of the degeneracy morphisms §A.5.3 and
by the action of the isomorphisms of semi-alternate two-colored r-trees on semi-
alternate treewise tensors when we perform this colimit construction. We aim to
check that the objects, which we define by this formula (1) represent the components
of the universal operad P ∨Θ(M) associated to P and Θ(M).

We have an obvious symmetric structure on our objects given by the termwise
action of the input reindexing bijections on trees. We moreover have a natural
morphism i : P(r) → P ∨Θ(M)(r), for any r > 0, which identifies the object
P(r) with the term of the colimit (1) associated to the r-corolla Y = Yr, where

we take a single vertex v ∈ V (Y) colored in grey c(v) = •. We similarly have a
morphism j : Θ(M)(r) → P ∨Θ(M)(r) which we form by identifying the treewise
tensor products of the free operad Θ(M) with the terms of the expansion (1) of
which all vertices are colored in white.

We also have an obvious unit morphism η : 1 → P ∨Θ(M)(1) which, as in the
case of free operads, identifies the unit object 1 with the term of the colimit (1)
associated to the unit tree ↓. We define an operadic composition on alternate tree-
wise tensor products in the next paragraph. We then get that the object P ∨Θ(M)
which we define by the above formula (1), inherits a natural operad structure. We
check afterwards that this object satisfies the universal property of coproducts in
the category of operads.

A.5.5. The composition of semi-alternate treewise tensors. We adapt the defi-
nition of the operadic composition of treewise tensors in A.3.2.

We consider the composite of semi-alternate two-colored trees Sc ∈ Tree•◦(m)

and Td ∈ Tree•◦(n) at some composition index ik ∈ m. We assume S,T �= ↓.
Let eik be the ingoing edge associated to the index ik ∈ m in the tree S. Let
u = t(eik). Let f0 be the outgoing edge of the tree T. Let v = s(f0). The
vertex set V (S ◦ik T) = V (S) � V (T) of the composite tree S ◦ik T ∈ Tree(m ◦ik n)
inherits an obvious coloring such that V•(S ◦ik T) = V•(S)�V•(T) and V◦(S ◦ik T) =
V◦(S)� V◦(T), but if we have c(u) = • in Sc and d(v) = • in Td, then the merging

operation eik ≡ f0 produces an edge with two adjacent grey vertices (u, v) in the
outcome of our treewise composition process. If so, then we just contract this edge
in order to restore the alternation condition §A.5.1(1). More formally, we consider
a reduced composition product on semi-alternate two-colored trees which we define
by:

(1) Sc ◦̃ik Td =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S ◦ik T /eik , if the (unreduced) composition operation S ◦ik T
produces an edge eik ≡ f0

that goes from a grey vertex s(f0) ∈ V•(T)

towards another grey vertex t(eik) ∈ V•(S),

S ◦ik T, otherwise.

We now have a natural morphism

M(Sc � P)⊗M(Td � P)
◦ik−−→ M(Sc ◦̃ik Td � P)(2)
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Figure A.14. The operadic composition of semi-alternate tree-
wise tensors.

given by the obvious two-colored extension of the isomorphism of observation A.3.2

M(Sc � P)⊗M(Td � P)
�−→ M(Sc ◦ik Td � P)(3)

in the case Sc ◦̃ik Td = S ◦ik T, and by the composite of this isomorphism with the
edge-contraction operation

M(Sc ◦ik Td � P)
λeik−−−→ M(Sc ◦ik Td /eik � P)(4)

(defined by performing the composite of the adjacent operad factors) in the case
Sc ◦̃ik Td = S ◦ik T /eik . We give an example to illustrate this reduced composition
process in Figure A.14.

These reduced composition operations are clearly functorial with respect to the
action of isomorphisms of semi-alternate two-colored trees. The unit relations of op-
erads imply that our reduced composition operations commute with the degeneracy
operations of §A.5.3 as well. We therefore have composition operations

(5) colim
Sc∈Tree•◦(m)isoᵀ

M(Sc � P)︸ ︷︷ ︸
=P ∨Θ(M)(m)

⊗ colim
Td∈Tree•◦(n)isoᵀ

M(Td � P)︸ ︷︷ ︸
=P ∨Θ(M)(n)

◦ik−−→ colim
Θu∈Tree•◦(m ◦ik

n)isoᵀ
M(Θu � P)︸ ︷︷ ︸

=P ∨Θ(M)(m ◦ik
n)

,

which we define by putting together the reduced treewise composition operations (2)
on our colimit.

We readily check that:

Proposition A.5.6. The above composition products §A.5.5( 5):
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– preserve the action of bijections of finite sets on our objects,
– satisfy the unit axioms of operads, expressed by the diagrams of Figure

I.2.1, with the morphism η : 1 → P ∨Θ(M)(1) defined in §A.5.4 as operadic
unit,

– and satisfy the associativity axioms, expressed by the diagrams of Figure
I.2.2-2.3, similarly.

Thus, we have a well-defined operad structure on P ∨Θ(M).

Proof. This proposition follows from a straightforward extension of the ver-
ifications of Proposition A.3.4 where we check the validity of the definition of our
composition structure on free operads. We essentially use that the composition
products of §A.5.5 are defined as quotients of (a two-colored version of) the treewise
composition operations of free operads §A.3.3, and we rely on the equivariance, as-
sociativity, and unit relations of the composition products of the operad P to check
that the equivariance, associativity, and unit relations of our treewise composition
operations remain satisfied when we pass to this quotient. �

We easily see that the morphism i : P → P ∨Θ(M) in §A.5.4 preserves composi-
tion structures (and defines a morphism of operads therefore), because the treewise
composition operations of §A.5.5 reduce to the internal composition products of
the operad P on the terms P(r) = P(Y) associated to grey colored corollas Y = Yr

in the expression of our object P ∨Θ(M).
We similarly check that our second morphism j : Θ(M) → P ∨Θ(M) in §A.5.4 is

a morphism of operads. We use in this case that the treewise composition operations
of §A.5.5 reduce to the treewise composition operations of the free operad on the
terms M(T) associated to monochrome white trees T.

We have the following statement:

Theorem A.5.7. The operad P ∨Θ(M), such as defined in §§A.5.4-A.5.5 and
in Proposition A.5.6, does satisfy the universal property of a coproduct: for any
pair of morphisms φ : P → Q and ψ : Θ(M) → Q, we have a unique morphism
(φ, ψ) : P ∨Θ(M) → Q which makes commute the diagram

P
i

φ

P ∨Θ(M)
∃!(φ,ψ)

Θ(M)
j

ψ

Q

in the category of operads.

Proof. We use a two-colored generalization of the construction of morphisms
on free operads (see §A.3.5). We have a natural morphism of treewise tensors
(1)( ⊗

v∈V•(T)

P(rv)
)
⊗
( ⊗
v∈V◦(T)

M(rv)
)

︸ ︷︷ ︸
=M(Tc�P)

(φ∗,ψ∗)−−−−−→
( ⊗
v∈V•(T)

Q(rv)
)
⊗
( ⊗
v∈V◦(T)

Q(rv)
)

︸ ︷︷ ︸
=Q(T)

,

for each semi-alternate two-colored tree T ∈ Tree•◦(r), which we form by taking
the tensor product of the maps φ : P(rv) → Q(rv) on the factors P(rv) associated
to grey vertices v ∈ V•(T) together with the tensor product of the maps f = ψ|M :
M(rv) → Q(rv) on the factors M(rv) associated to white vertices v ∈ V◦(T). We
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compose these morphisms with the treewise composition products of the operad Q.
We then get a morphism

(2) M(Tc � P) → Q(T) → Q(r),

defined for each semi-alternate two-colored r-trees T ∈ Tree•◦(r), and which is
clearly natural with respect to the action of isomorphisms. We easily check, by
using the unit relations of operads in Q, that these morphisms are functorial with
respect to the degeneracy operators of §A.5.3 too. We can therefore put these
morphisms together to get a morphism

(3) colim
Tc∈Tree•◦(r)isoᵀ

M(Tc � P)︸ ︷︷ ︸
=P ∨Θ(M)(r)

(φ,ψ)−−−→ Q(r)

associated to the pair (φ, ψ) and defined on each component of our operad P ∨Θ(M).
We then use a straightforward extension of the arguments of Proposition A.3.6

to check that this construction returns a well-defined operad morphism (φ, ψ) :
P ∨Θ(M) → Q. We still rely on the result of Theorem A.2.6 (the coherence of
the edge-contraction process) to establish this claim. We just use that φ : P →
Q preserves the composition products of our operads in order to check that our
morphism (φ, ψ) : P ∨Θ(M) → Q carries the reduction operation of a semi-alternate
treewise composition product §A.5.5(4) to an appropriate composition operation in
the operad Q. We clearly have the relations (φ, ψ)i = φ and (φ, ψ)j = ψ too, and
we use the same arguments as in the proof of Theorem A.3.8 to establish that these
factorization relations uniquely determine our morphism (φ, ψ) : P ∨Θ(M) → Q,
as asserted by our theorem. �

A.5.8. Maximal degeneration of semi-alternate two-colored trees. In §A.3, we
observed that the isomorphism category of (open) r-trees Tree(r)iso is equivalent
to a discrete category in any arity r > 0 (see Proposition A.3.15) and we use this
result to establish that free non-unitary operads admit a reduced expansion where
no quotient occurs (see Proposition A.3.14).

We aim to establish a similar result for the coproducts P ∨Θ(M). We still
get, from the result of Proposition A.3.15, that the automorphism group of an
object Tc in the category of semi-alternate two-colored trees is either empty or
reduced to a point, but we now have to handle the additional degeneracy operators
occurring in our colimit. We can actually observe that any semi-alternate two-

colored tree Tc admits a maximal degeneration T̂c, obtained by degenerating all

edges e satisfying s(e), t(e) �∈ V•(T) (and allowable for a degeneration therefore)
in the tree T (see Figure A.15 for an example of application of this process). We
get, as a consequence, that the category of isomorphisms of semi-alternate two-
colored r-trees and degeneracies Tree•◦(r)

iso
ᵀ splits as a coproduct of categories with

terminal objects, which are precisely the maximal degenerations of semi-alternate

two-colored r-trees T̂c, for any arity r > 0. Let Tree •̂◦(r)
iso
ᵀ ⊂ Tree•◦(r)

iso
ᵀ denote

the subcategory generated by these maximal objects inside Tree•◦(r)
iso
ᵀ . We obtain

(as in Proposition A.3.14) that:
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Figure A.15. The maximal degeneration of the tree of Fig-
ure A.11. To simplify the picture, we have marked all added ver-
tices with a 1 symbol, and we have dropped the name of the edges
in this figure.

Proposition A.5.9. The coproduct P ∨Θ(M) of a non-unitary operad P with
the free operad on a non-unitary collection M has a reduced expansion such that:

P ∨Θ(M)(r) =
∐

[T̂c]∈π0 Treê•◦(r)
isoᵀ

M(T̂c � P),

for each finite (non-empty) set r �= 0, where the coproduct ranges over (a set of

representatives of) isomorphism classes of maximal objects T̂c ∈ Tree •̂◦(r)
iso
ᵀ in the

category of semi-alternate two-colored r-trees and degeneracies Tree•◦(r)
iso
ᵀ . �

A.5.10. The case of connected operads. We actually deal with another repre-
sentation of the coproduct P ∨Θ(M) than the one given in §A.5.4 in the case where
P is a connected operad and M is a connected collection.

We then consider, for any finite (non-empty) set r, the subcategory of the iso-

morphism category of semi-alternate two-colored r-trees T̃ree•◦(r)
iso ⊂ Tree•◦(r)

iso

of which objects Tc ∈ T̃ree•◦(r)
iso are reduced trees in the sense of §A.1.12. We

have M(0) = M(1) = ∅ ⇒ M(rv) = ∅ when a white vertex v ∈ V◦(T) in a gen-
eral semi-alternate two-colored r-tree Tc ∈ Tree•◦(r) satisfies card(rv) ≤ 1. We

moreover see that the assumption P(1) = 1 implies that the degeneracy operators
of §A.5.3 are isomorphisms when P is connected. These observations readily imply
that the colimit of our initial construction §A.5.4(1) reduces to a colimit over the
isomorphism category of semi-alternate two-colored reduced r-trees

(1) P ∨Θ(M)(r) = colim
Tc∈ ˜Tree•◦(r)iso

M(Tc � P)

when we work in the connected setting. We also have a variant of the reduced
expansion of Proposition A.5.9 where we take a coproduct over (representatives of)
isomorphism classes of reduced semi-alternate two-colored r-trees (instead of the
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maximal objects which we consider in this previous statement):

(2) P ∨Θ(M)(r) =
∐

[Tc]∈π0
˜Tree•◦(r)iso

M(Tc � P),

We actually use a dual version of these reduced expressions in our definition of the
model category of cooperads in §II.9.2.

A.5.11. Remark: The definition of restriction operators on alternate treewise
tensors and on operad coproducts. We explained in §I.2.3 that the obvious forget-
ful functor τ : ΛOp∅ /Com → Op∅ from the category of augmented non-unitary
Λ-operads ΛOp∅ /Com towards the category of plain non-unitary operads Op∅

preserves (and actually creates) colimits. We deduced this result from the lifting of
the free object functor (which we formally establish in this appendix, in Proposi-
tion A.3.12) and from a realization of colimits in terms of a reflexive coequalizer of
free objects. This general statement implies that the coproducts P ∨Θ(M) which
we consider in this section inherit an augmented non-unitary Λ-operad structure
when P is so and M is an augmented non-unitary Λ-collection. We can actually
made explicit the restriction operators u∗ : P ∨Θ(M)(n) → P ∨Θ(M)(m) as well as
the augmentations ε : P ∨Θ(M)(r) → 1 of this extra structure on the semi-alternate
treewise tensor products of our construction. We follow the same procedure as in the
case of the treewise tensor product of free operads. We just note that the treewise
restriction operators of §A.2.8(1) do not break our alternation condition §A.5.1(1)
when we apply the definition to semi-alternate treewise tensors (because the reduc-
tion operations of §A.2.8 remove entire over-subtrees) and preserve our degeneracy
operators §A.5.3(2).

We can proceed similarly to extend the augmented non-unitary Λ-operad struc-
ture of free operads to coproducts P ∨Θ(M) in the connected setting.





APPENDIX B

The Cotriple Resolution of Operads

The free operad functor Θ : Seq → Op gives, after composition with the forgetful
functor ω : Op → Seq , a functor from symmetric sequences to symmetric sequences:

ω Θ : Seq → Seq .

By performing this composite the other way round, we obtain a functor from op-
erads to operads:

Θω : Op → Op .

We often omit forgetful functors in the expression of our constructions. We accord-
ingly use the single free operad functor notation Θ for any of the above composites
whenever our source (respectively, target) category is specified by the context.

The adjunction relation of free operads implies that the endofunctor of the
category of symmetric sequences Θ = ω Θ : Seq → Seq is equipped with morphisms
ι : Id → Θ and μ : Θ ◦Θ → Θ which satisfy natural unit and associativity relations
(we just review the precise definition of an analogue of these morphisms for con-
nected free operads in §B.1.1). These morphisms provide the functor Θ : Seq → Seq
with the structure of a monad (some authors use the name ‘triple’ to refer to this
notion). The second endofunctor Θ = Θω : Op → Op which we deduce from the free
operad adjunction is dually equipped with morphisms λ : Θ → Id and ν : Θ → Θ ◦Θ
which provide our object with the structure of a comonad (or cotriple). We have
similar results for the free non-unitary operad functor Θ : Seq>0 → Op∅.

In the context of connected operads, we consider the endofunctor

Θ̄ = ω̄ Θ : Seq>1 → Seq>1

which we form by composing the free operad functor Θ : M �→ Θ(M) with the
augmentation ideal functor ω̄ : Op∅1 → Seq>1 (rather than the plain forgetful
functor ω : Op → Seq). This functor also inherits a monad structure, while the
functor

Θ ω̄ : Op∅1 → Op∅1,

which we obtain by performing our composite the other way round, inherits the
structure of a comonad. Recall that we also use the short notation Θ̄ : Seq>1 →
Seq>1 for the first of these composites Θ̄ = ω̄ Θ.

The main purpose of this appendix is to make explicit the definition of a sim-
plicial resolution of operads, the cotriple resolution, which we construct by using
these monad and comonad structures deduced from the free operad adjunction. We
need more insights into the connected version of this construction. We therefore
focus on this case in what follows. We just give a few observations on the extension
of our results to general (non-connected) operads in the course of our account.

477
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The cotriple resolution of a connected operad Res•(P) is a simplicial object of
the category of connected operads defined by the composite:

Resn(P) = Θ ◦ ω̄Θ ◦ · · · ◦ ω̄ Θ︸ ︷︷ ︸
n

◦ω̄(P),

for any n ≥ 0, where we consider the free connected operad monad Θ̄ = ω̄ Θ :
Seq>1 → Seq>1 as middle factors. The free operad functor Θ : Seq>1 → Op∅1,
which we take as a front factor in this composite, serves as left coefficients for our
construction (in a sense which we explain later on) and the augmentation ideal of the
operad P̄ = ω̄ P ∈ Seq>1 serves as right coefficients. We use the monad structure
of the functor Θ̄ to formulate the definition of the faces and of the degeneracy
operators of the cotriple resolution.

We review all these definitions with full details in this appendix. We are also
going to give an explicit description, in terms of treewise tensors equipped with
extra structures, of the cotriple resolution. In short, our idea is that the elements
of composite free operad functors (whenever the notion of an element makes sense)
can be represented by tensors arranged on trees equipped with nested subtree de-
compositions which reflect the composition of the treewise tensors of free operads.
We prove that these decompositions can be determined by introducing a suitable
notion of morphism for trees. We then prove that the cotriple resolution of an
operad is shaped on the nerve of this category of trees.

We define our notion of a tree morphism in a preliminary section of this appen-
dix (§B.0). We give our treewise interpretation of the cotriple resolution of operads
afterwards (§B.1). We review the abstract definition of this resolution in the course
of this examination. We also revisit the definition of the free connected operad
monad at this moment.

We go back to the general definition of a monad in the concluding section of
the appendix (§B.2). We check, to complete our account, that the structure of an
operad can be defined in terms of the monad Θ : Seq → Seq . We formally have a
natural notion of an algebra associated a monad and our claim is that the category
of operads is isomorphic to the category of algebras over this monad Θ : Seq → Seq
which we deduce from the free operad functor. We have a similar result for the
category of connected operads. In the language of category theory, authors say that
the category of (connected) operads is monadic (or triplable).

This appendix, like the previous one, is mainly a detailed review of ideas of the
literature. We notably refer to Livernet’s article [121] for the description, in terms
of the nerve of the category of trees, of the cotriple resolution of operads, and we
refer to Getzler-Jones’s article [77] for the statement that the category of operads
is monadic.

We still prefer to work with the category of symmetric collections Coll rather
than with the equivalent category of symmetric sequences Seq in this appendix. We
actually heavily rely on the formalism of the previous chapter for our constructions.

B.0. Tree morphisms

The purpose of this first section is to explain the definition of the notion of tree
morphism which we use in our description of the cotriple resolution of operads.

We fix an indexing set r. In §A, we used the notation Tree(r) for the class
of r-trees. We now use this notation Tree(r) for the category formed by the class
of r-trees as objects together with our general notion of morphism of r-trees as
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i3

ei3

i4
ei4

i5
ei5

i1
ei1

i2
ei2

v4

eα4

i6
ei6

i7
ei7

i8
ei8

v1

eα1

v2

eα2

v3

eα3

v0

e0

0︸ ︷︷ ︸
T

→

i3

fi3

i4

fi4

i5

fi5

i1

fi1

i2

fi2

i6
fi6

i7
fi7

i8
fi8

x1

fβ1 x2

fβ2
x0

f0

0︸ ︷︷ ︸
S

Figure B.1. The picture of a morphism of r-trees f : T → S
with r = {i1, . . . , i8}. This morphism is defined by the mapping
such that fE(e0) = e0, fE(eik) = fik , k = 1, . . . , 8, and fE(eα1

) =
x0, fE(eα2

) = fβ1
, fE(eα3

) = fβ2
, fE(eα4

) = x1 on the edge
set of the tree T, while we consider the correspondence fV (v0) =
fV (v1) = x0, fV (v2) = fV (v4) = x1 and fV (v3) = x2 on the vertex
set.

morphisms. We will see that the groupoid Tree(r)iso, which we consider in our
definition of free operads in §A.1.8, is actually identified with the isomorphism
subcategory of this category Tree(r). Recall that we generally assume that our trees
are open for simplicity (see §A.1.1). We keep this convention in this appendix. We
may see, however, that our notion of a tree morphism makes sense without this
condition.

We just get special results in the case of the full subcategories T̃ree(r) ⊂ Tree(r)
which we associate to the class of reduced trees (see §A.1.12). We examine the
structure of these categories in-depth in the second part of this section. We will

precisely check that this category T̃ree(r) forms a poset unlike the category of all
(open) trees Tree(r).

B.0.1. The notion of a tree morphism. We give an example of a morphism of
r-trees, with card(r) = 8, in Figure B.1.

We adapt the definition of a tree isomorphism (see §A.1.8) in order to allow edge
contractions on vertices. We more precisely define a morphism of r-trees f : T → S,
with S,T �= ↓, by giving a map of vertex sets fV : V (T) → V (S) together with a
map on edge sets fE : E(T) → E(S) � V (S) such that:
(0) The vertex map fV : V (T) → V (S) is surjective and the edge map fE : E(T) →

E(S)�V (S) induces a bijection from the subset f−1
E (E(S)) ⊂ E(T) onto E(S).

(1) For the outgoing edge e = e0 of the tree T, for which we have t(e) = 0, we
assume fE(e) ∈ E(S) and s(fE(e)) = fV (s(e)), t(fE(e)) = 0, s(fE(e)) =
fV (s(e)) and t(fE(e)) = 0.

(2) For an ingoing edge e = ei, which we associate to some input index i ∈ r
of the tree T so that s(e) = i, we assume fE(e) ∈ E(S) and s(fE(e)) = i,
t(fE(e)) = fV (t(e)).

(3) For an inner edge e ∈ E̊(T), for which we have s(e), t(e) ∈ V (T), we assume
that we have either fE(e) = fV (s(e)) = fV (t(e)) ∈ V (S) or fE(e) ∈ E(S) and
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in the latter case we assume that we have the relations s(fE(e)) = fV (s(e))
and t(fE(e)) = fV (t(e)).

In the case where S or T is the unit tree ↓, we only consider the isomorphisms

S
�−→ T as morphisms.

In what follows, we use the notation Tree(r), already introduced for the class
of r-trees, to refer to the category formed by the r-trees as objects and the above
notion of morphism.

The isomorphisms of r-trees, such as defined in §A.1.8, clearly form a subclass
of the class of morphisms which we define in this paragraph. Recall that we use
the notation Tree(r)iso for the category where we only take these isomorphisms
as morphisms. We immediately see that Tree(r)iso represents the isomorphism
subcategory of the category Tree(r).

We readily check that the action of input re-indexing bijections on trees is
functorial with respect to our class of morphisms. We have the same result for
the restriction operators u∗ : Tree(n) → Tree(m) (see §A.1.11) and for the reduced

version of these restriction operators u∗ : T̃ree(n) → T̃ree(m) when we consider the

full subcategories of reduced trees T̃ree(r) ⊂ Tree(r) (see §A.1.13). We also have
the following easy observation:

Proposition B.0.2. The partial composition operations of the operad of trees
◦i : Tree(m) × Tree(n) → Tree(m ◦i n), such as defined in §A.1.10, are functorial
with respect to all tree morphisms and not only with respect to the isomorphisms
of §A.1.8. Hence, the full categories of trees Tree(r), r > 0, where we take all our
morphisms, form an operad in the category of categories.

Proof. We use the relation V (S ◦i T) = V (S) � V (T) in the definition of the
composition of trees in order to determine the vertex map of a morphism on a
composite tree. We use the definition of the edge set E(S ◦i T) as the quotient of
the coproduct E(S)�E(T) under the relation that merges the outgoing edge of the
tree T with the ith ingoing edge of the tree S in order to determine the edge map
of such a morphism. We have to check that this procedure yields a well-defined
morphism on a composite tree S ◦i T whenever we have a well-defined morphism of
trees on each factor of this composition. This verification is straightforward. �

The requirements of §B.0.1 are modeled on the definition of a cellular map
between topological cell complexes, except the bijectivity condition (0) which is
not a standard requirement. Thus, not all cellular maps in the classical sense are
tree morphisms in our sense. To summarize the main point, our definition allows
us to contract edges onto vertices in tree morphisms, but not to merge edges onto
edges. For instance, the map

v1

eα1

v2

eα2

v0

e0

0

→

w1

fβ

w0

f0

0

which merges the edges eα1
and eα2

onto fβ is not an admissible morphism of
trees in our sense. We can retrieve this observation from the result of the following
proposition, which gives an alternate description of our morphisms of r-trees:
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Proposition B.0.3. Let f : T → S be a morphism of r-trees, determined by a
vertex map fV : V (T) → V (S) together with a map fE : E(T) → E(S) � V (S) on
the edge set E(T) as we explain in our definition §B.0.1.

(a) Let x ∈ V (S). The vertex and edge sets f−1
V (x) ⊂ V (T), f−1

E (x) ⊂ E(T),
define the set of vertices and the set of inner edges of a subtree Σx ⊂ T associated
to our vertex x ∈ V (S).

The set of ingoing edges (respectively, the outgoing edge) of this subtree is also
given by the (bijective) pre-image, in f−1

E (E(S)) ⊂ E(T), of the set of ingoing edges
(respectively, of the outgoing edge) of our vertex x in the tree S.

(b) These subtrees Σx ⊂ T and x ∈ V (S), taken together, define a decomposi-
tion of the tree T in the sense that we have a canonical isomorphism

f̃ : λS(Σx, x ∈ V (S))
�−→ T

when we take the treewise composite λS : Tree(S) → Tree(r) of the collection Σx ∈
Tree(rx), x ∈ V (S), in the operad of trees.

Explanations. To illustrate our process, in the case of the morphism of Fig-
ure B.1, the construction of the proposition returns the subtree decomposition such
that:

(1) i3

ei3

i4
ei4

i5
ei5

v4

eα4

v2

eα2

i6
ei6

i7
ei7

i8
ei8

i1
ei1

i2
ei2

v3

eα3

v1

eα1 v0

e0

0

,

where we use circled arrays to materialize the subtrees of this decomposition (as in
Figure A.2). In this picture, the tree S, which represents the target object of our
morphism f : T → S, can be retrieved by identifying the circled subtrees to vertices
and by keeping the edges which do not lie inside any such subtree.

Let x ∈ V (S). Recall that we take V (Σx) = f−1
V (x) to define the vertex set of

the subtree Σx ⊂ T in our statement. The edge set E(Σx) of this subtree Σx ⊂ T
actually consists of the edges e ∈ E(T) such that fE(e) = x or fE(e) ∈ E(S) and
we have either s(fE(e)) = x, in which case e represents the outgoing edge of Σx, or
t(fE(e)) = x, in which case e defines an outgoing edge of our subtree Σx. To define
the output 0Σx

∈ V (T) � {0} of our subtree Σx, we take the pre-image, under the
map fV � {0} : V (T) � {0} → V (S) � {0}, of the target of the outgoing edge of
the vertex x ∈ V (S). To define the set of inputs rΣx

⊂ V (T)� r of Σx, we take the

pre-image, under the map fV � r : V (T)� r → V (S)� r, of the source of the ingoing
edges of the vertex x ∈ V (S).
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The verification of the conditions of §A.1.5 for the definition of a subtree fol-
lows from a straightforward inspection. Let us mention that we use the bijectivity
condition of our definition of a tree morphism §B.0.1(0) to ensure that we have one
and only one edge e such that t(e) = 0Σx

in our set E(Σx). Moreover, we have
fE(e) = x ⇔ fE(s(e)) = fE(t(e)) = x ⇔ s(e), t(e) ∈ V (Σx) and we conclude from
these relations that f−1

E (x) ⊂ E(Σx) represent the set of inner edges of our subtree
Σx.

The isomorphism in assertion (b) is given by the identity V (λS(Σx, x ∈ V (S))) =∐
x∈V (S) V (Σx) and is induced by the canonical embeddings E(Σx) ⊂ E(T), x ∈

V (S), at the edge set level. We just note that the edges of the trees Σx which
we merge in our abstract treewise composition operation Θ = λS(Σx, x ∈ V (S))
are the edges of the coproduct

∐
x∈E(S) E(Σx) which become equal in the set⋃

x∈E(S) E(Σx) = E(T).

To complete our result, let us observe that any treewise composite of trees Θ =
λS(Σx, x ∈ V (S)) is equipped with a canonical morphism ω : λS(Σx, x ∈ V (S)) → S.
The isomorphism which we define in this proposition actually fits in a commutative
diagram

(2) λS(Σx, x ∈ V (S))

�

S

T

f

in the category of r-trees.
We explain in the next paragraph that our morphisms are equivalent to com-

posites of isomorphisms and of multiple edge contractions. We can easily make
explicit the decompositions that correspond to the morphisms T → T /e which we
associate to a single edge contraction S = T /e. We use this particular case of our
correspondence in the study of cofree cooperads in §C.

We formally consider the subtree Γe ⊂ T, associated to our edge e ∈ E̊(T), such

that E̊(Γe) = {e} (see §A.1.6), and the corollas Yx ⊂ T such that V (Yx) = {x},
for the vertices x �= s(e), t(e) (see also §A.1.6). Recall that we have V (T /e) =
V (T)/{s(e) ≡ t(e)}. Let ω be the vertex obtained by the merging operation s(e) ≡
t(e) in the tree S = T /e. We now have T = λT /e(Γe,Yx, x �= ω), where we consider
the treewise composition of the subtree Γe ⊂ T at position x = ω together with
the corollas Yx ⊂ T at the other places x �= ω of the tree S = T /e. The morphism
T → T /e corresponds to this decomposition. �

B.0.4. Tree morphisms and edge contractions. The previous proposition gives
a correspondence, between subtree decompositions and morphisms, which we use
in our description of the cotriple resolution of connected operads. The morphism
sets of the categories of trees have a further description by generators and relations.
For our purpose, we just check that any morphism of r-trees is identified with a
composite of edge contractions and of an isomorphism.

In one direction, a (possibly multiple) edge contraction T �→ T /eα1
/ . . . /eαn

naturally determines a morphism

T → T /eα1
/ . . . /eαn
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since the edges e ∈ {eα1
, . . . , eαn

} are carried to a vertex s(eαi
) ≡ t(eαi

) by the
contraction process while the other edges e ∈ E(T) \ {eα1

, . . . , eαn
} are preserved.

The other way round, to a morphism of r-trees f : T → S, we can associate the
subset of edges {eα1

, . . . , eαn
} ⊂ E(T) which the mapping fE : E(T) → E(S)�V (S)

carries to a vertex of the tree S. We then have an obvious quotient morphism fitting
in a diagram:

(1) T

f

T /eα1
/ . . . /eαn

�
∃!

S

in the category of r-trees. This morphism is clearly bijective on vertices and edges,
and hence, forms an isomorphism in the category of r-trees, as required.

This factorization of a morphism of r-trees (1), where we take a (multiple) edge
contraction followed by an isomorphism, is clearly unique. We readily see that the
commutation relation T /e/f = T /f/e together with the commutation relations
expressed by the functoriality of the edge contraction operations T �→ T /e under
the action of tree isomorphisms determine all relations between our morphisms in
the category of r-trees. We mainly use this description of morphisms in order to
establish that:

Proposition B.0.5. For a (non-unitary) operad P, the mapping which assigns
the object P(T) to any r-tree T ∈ Tree(r) in §A.2.1 extends to a functor on the
category which as the r-trees as objects together with the class of morphisms defined
in §B.0.1 as morphisms, for any finite (non-empty) set r �= 0.

Explanations. To any edge contraction operation f : T → T /e, we associate
the morphism λe : P(T) → P(T /e), defined in §A.2.4, and which we determine
from the composition structure of our operad.

We just use the coherence result of Theorem A.2.6 (together with the functori-
ality of the edge contraction operations with respect to the action of isomorphisms)
in order to extend this mapping coherently to the composites §B.0.4(1) which, ac-
cording to the observations of the previous paragraph, represent the morphisms of
the category of r-trees, for any finite set r. �

The next theorem implies that a morphism of reduced r-trees f : T → S is
unambiguously specified by giving the source T and the target object S of the mor-
phism. For this reason, in what follows, we generally do not name the morphisms
of reduced r-trees, and we adopt the generic notation λ∗ : P(T) → P(S) for the
treewise composition operation which we associate to any such morphism T → S

when we can assume S,T ∈ T̃ree(r).

Theorem B.0.6. Let r be any finite set. The morphism set MorTree(r)(T, S)

associated to reduced r-trees T, S ∈ T̃ree(r) is either empty or reduced to a point.

The category of reduced r-tree T̃ree(r) therefore forms a posets, for any arity r > 0.
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Proof. Let us stress that the assumption T ∈ T̃ree(r) is crucial as we see from
the following picture:

··· ··· ···

v2

··· v1 ···

v0

···

⇒

··· ··· ···

··· x1 ···

x0

···

.

But we do not really need to assume that the tree S is reduced and our arguments
remain valid without any condition on the r-tree S.

Thus, we just assume that f, g : T → S is a pair of parallel morphisms of r-
trees, where the tree T is reduced. We explicitly have card(rv) ≥ 2, for all vertices
v ∈ V (T), and we aim to prove that in this situation we necessarily have f = g.
We suggest the reader to follow our argument line on the example of Figure B.1.

We still use that any vertex v ∈ V (T) in an (open) tree T ∈ Tree(r) is connected
to an input of the tree by a chain of edges

(1) i ei vn eαn · · · eα2 v1 eα1 v .

If we have n = 0 inner edges in this chain, so that v is directly connected to the
input i by an ingoing edge of the tree ei, then we get s(fE(ei)) = i = s(gE(ei)) ⇒
fE(ei) = gE(ei) and fV (v) = t(fE(ei)) = t(gE(ei)) = gV (v) by the same argument
line as in Proposition A.3.15 (where we prove that the isomorphism categories of
trees are equivalent to discrete categories). Thus, we now consider the case where v
is connected to i by a chain (1) with n > 0 inner edges, and we assume by induction
that f and g agree up to the vertex x = v1 on this chain. By assumption, any vertex
of the tree T, including v, has not only one, but at least two ingoing edges. We can
accordingly pick a second chain of edges

(2) j e v

connecting v to an input j �= i and starting with an edge such that e �= eα1
in rv.

In §A.1.1, we record that we have at most one chain of edges connecting a given
input j to a given vertex v in an r-tree T. The requirement e �= eα1

ensures, as a
consequence, that we have no chain of edges connecting the input j to the vertex
v1 in the tree T.

In the case where the morphism f does not contract the edge eα1
to a vertex

in the tree S, we get a picture of the form

(3) i fV (v1) fE(eα1
) fV (v)

j

in our target object. Recall that in our definition of a tree morphism §B.0.1(0),
we require that the pre-image of an edge consists of one and only one element.
Therefore no edge of the chain (2) can be mapped to fE(eα1

) inside the tree S and
this observation explains our picture (3). We still get, moreover, that no chain of
edges connects the input j to the vertex fV (v1) = gV (v1) in the tree S. Now, since
the morphism g maps (2) to a chain of edges connecting the input j to the vertex
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gV (v), we necessarily have gV (v) �= gV (v1), and we deduce from this relation that
the edge eα1

is not contracted by the morphism g too.
Thus, in the case where f (or g symmetrically) does not contract the edge eα1

,
we obtain that both morphisms f and g map the edge eα1

to an edge of the tree S.
This edge is necessarily identified with the outgoing edge of fV (v1) = gV (v1) in both
cases. Hence, we necessarily have fE(eα1

) = gE(eα1
) in E(S) and as a consequence,

we also get fV (v) = t(fE(eα1
)) = t(gE(eα1

)) = gV (v).
In the contrary case where both f and g contract the edge eα1

to a vertex of the
tree S, we have fV (v) = fV (v1) = fE(eα1

) = gE(eα1
) = gV (v1) = gV (v0). Thus, we

trivially get that f and g agree up to the next stage of our chain (1) in this case
too. This verification completes our induction.

To complete the proof of our theorem, we just have to record that the mor-
phisms f and g agree on the outgoing edge of our tree too, since we assume (in
our definition) that a morphism preserves the outgoing edge of the trees. The
morphisms f and g accordingly agree on the whole tree T, as asserted. �

B.1. The definition of the cotriple resolution of operads

The purpose of this section is to give an explicit definition of the cotriple
resolution of operads, as we explain in the introduction of this appendix. We
mainly examine the case of connected operads (and of augmented connected Λ-
operads by the way). Recall that we use a monad structure, which we associate to
the augmentation ideal of the free operad functor Θ̄ = ω̄ Θ, in order to define our
resolution in this case. We entirely review the abstract definition of the cotriple
resolution first. We prove afterwards that the cotriple resolution can be explicitly
described by using treewise tensors shaped on the nerve of the category of reduced
trees.

We could actually rely on the same approach (without much change) in order
to describe the cotriple resolution of any operad P equipped with an augmentation
over the unit object I (we just need to consider general trees instead of reduced
trees). We can still adapt our construction in order to get an explicit description
of the cotriple resolution of general operads (in this case, we do not assume that
our objects are equipped with an augmentation). We then have to consider extra
degeneration operations which models the insertion of operadic units that occur in
the free operad Θ, but which we could neglect in the augmented case. We just give
an outline of this extension of our constructions at the end of this section.

To start with, we quickly explain the definition of a monad structure on the
augmentation ideal of the free operad functor Θ̄ = ω̄ Θ.

B.1.1. The free connected operad monad. This monad structure is defined by
a unit morphism ι : Id → Θ̄ and a multiplication operation μ : Θ̄ ◦ Θ̄ → Θ̄ on the
composite functor Θ̄ = ω̄ Θ. In the definition of a monad structure (we go back
to the general definition in the next section), we also require that these natural
transformations satisfy an obvious analogue, in the category of functors, of the
standard unit and associativity relations of monoids.

The unit and multiplication operations of our monad are determined by the
adjunction relation Θ : Coll>1 � Op∅1 : ω̄ between the free connected operad
functor Θ : M �→ Θ(M) and the augmentation ideal functor on the category of
connected operads ω̄ : Op∅1 → Coll>1. The monad unit ι : Id → Θ̄ is simply given

by the unit morphism ι : M → Θ̄(M) of this adjunction. The monad multiplication
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μ : Θ̄ ◦ Θ̄ → Θ̄ is formed by applying the adjunction augmentation λ : Θ(P̄) → P
to free operads P = Θ(M) and by taking the morphism induced by this transfor-
mation on augmentation ideals afterwards. The unit and associativity relations are
expressed by the commutativity of the diagrams:

Id ◦Θ̄ ι◦Θ̄

=

Θ̄ ◦ Θ̄

μ

Θ̄ ◦ IdΘ̄◦ι

=

Θ̄

and

Θ̄ ◦ Θ̄ ◦ Θ̄
μ◦Θ̄

Θ̄◦μ

Θ̄ ◦ Θ̄

μ

Θ̄ ◦ Θ̄
μ

Θ̄

,

and follow from general relations between the unit and the augmentation morphism
of an adjunction.

We can also use the natural transformation λ ◦Θ : Θ ω̄ Θ(M) → Θ(M) (without
passing to augmentation ideals) in order to get a morphism ρ : Θ ◦Θ̄ → Θ̄ which
defines a right action of the monad Θ̄ : Coll>1 → Coll>1 on the free connected
operad functor Θ : Coll>1 → Op∅1. We still have obvious diagrams asserting that

this morphism ρ : Θ ◦Θ̄ → Θ̄ fulfills natural unit and associativity relations with
respect to the structure morphisms of our monad.

The natural transformation λ : Θ(P̄) → P , which defines the augmentation
of our adjunction, induces, on the other hand, a morphism λ : Θ̄(P̄) → P̄ which,
in some natural sense, defines a left action of the monad Θ̄ : Coll>1 → Coll>1 on
the augmentation ideal P̄ ∈ Coll>1 of any operad P ∈ Op∅1. We readily check,

yet again, that this morphism λ : Θ̄(P̄) → P̄ fulfills natural unit and associativity
relations with respect to the structure morphisms of our monad.

We use these observations to define the face and degeneracy operators of the
cotriple resolution of a connected operad.

B.1.2. The categorical definition of the cotriple resolution. The cotriple res-
olution of a connected operad P ∈ Op∅1 is a simplicial object of the category of
connected operads Res•(P) ∈ s Op∅1 defined in dimension n ∈ N by the expression:

Resn(P) = Θ ◦ Θ̄ ◦ · · · ◦ Θ̄︸ ︷︷ ︸
n

(P̄),

where we consider the free operad functor Θ : Coll>1 → Op∅1, followed by an n-fold

composite of the free connected operad monad Θ̄ : Coll>1 → Coll>1, and we apply
this composite functor to the augmentation ideal of our object P̄ ∈ Coll>1. We
number the free connected operad monad factors of this composite from 1 to n,
and from the left to the right, as in the following expression:

Resn(P) = Θ ◦Θ̄
1
◦ · · · ◦ Θ̄

n
(P̄).

The face operators di : Resn(P) → Resn−1(P), i = 0, . . . , n, of this simplicial
object are yielded by:

– the morphism ρ : Θ ◦Θ̄ → Θ which defines the right action of the monad Θ̄
on the free operad functor in the case i = 0;

– the multiplication μ : Θ̄ ◦ Θ̄ → Θ̄ on the (i, i+ 1)th monadic factors of our
composite in the case i = 1, . . . , n− 1;

– and the morphism λ : Θ̄(P̄) → P̄ which defines the left action of the monad
Θ̄ on the object P̄ ∈ Coll>1 in the case i = n.
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The degeneracy operator sj : Resn(P) → Resn+1(P) is given by the insertion of a
monad unit ι : Id → Θ̄ on the j + 1st monad factor of the object Resn(P), for any
j = 0, . . . , n.

The simplicial relations §0.4(4) can be deduced from the unit and associativity
relations of the monadic structures which we consider in this definition of our face
(respectively, degeneracy) operators.

The simplicial object Res•(P) ∈ s Op∅1 also inherits a natural transformation
ε : Res0(P) → P defined by the augmentation morphism of our adjunction λ :
Θ(P̄) → P and such that εd0 = εd1. This relation εd0 = εd1 implies that the
natural transformation ε : Res0(P) → P extends to a morphism ε : Resn(P) → P
in any dimension n ∈ N so that we have εu∗ = ε for any simplicial operator
u∗ : Resn(P) → Resm(P) associated to a morphism u ∈ MorΔ(m,n) in the simplicial
category Δ. Equivalently, we get that the simplicial object Res•(P) ∈ s Op∅1 is
equipped with a natural augmentation

ε : Res•(P) → P

over the constant simplicial object defined by our operad P ∈ Op∅1.
B.1.3. The definition of extra-degeneracies. If we take the augmentation ideal

of the cotriple resolution, then we get a simplicial object of the category of collec-
tions Res•(P) ∈ s Coll>1 such that

Resn(P) = Θ̄ ◦ Θ̄ ◦ · · · ◦ Θ̄︸ ︷︷ ︸
n

(P̄),

for any n ∈ N. In this setting, we can also consider the insertion of a monadic unit
ι : Id → Θ̄ in front of our functor expression. We then get an extra-degeneracy s−1 :
Resn(P) → Resn+1(P), associated to our object, and which satisfies an obvious
extension of the relations of degeneracies in a simplicial object.

We moreover have a morphism η : P̄ → Θ̄(P̄), such that εη = id , ηε = d1s−1,
which is given by the unit morphism ι : M → Θ̄(M) of the adjunction of free
connected operads for the object M = P̄ .

In our study of simplicial operads, we use the augmentation ε : Res•(P) → P to
define a morphism ε : | Res•(P)| → P , where we consider the geometric realization
of the simplicial object Res•(P) in the category of operads in simplicial sets, and
we use the existence of the extra-degeneracies to check that this morphism defines
a weak-equivalence.

We tackle this subject in §II.8 (in the context of general non-unitary operads).
We focus on general structure properties of the cotriple resolution for the moment.
We start with the following treewise description of the components of the cotriple
resolution:

Proposition B.1.4. Let n ∈ N. We have an identity:

Resn(P)(r) = colim
T0←···←Tn

T0,...,Tn∈ ˜Tree(r)iso

P(Tn),

for any finite (non-empty) set r, where our colimit ranges over the category formed
by:

– the chains of r-tree morphisms T0 T1 · · · Tn as objects,
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– together with the diagrams of fill-in isomorphisms between such chains

S0

�

Sn

�

· · · Sn

�

T0 T1 · · · Tn

as morphisms.

For short, we generally do not specify the range of the objects Ti ∈ T̃ree(r)iso

in the subsequent expressions of the colimit of this proposition.

Explanations. In the case n = 0, we retrieve the treewise definition of the
free connected operad:

Θ(P̄) = colim
T0

P(T0).

We elaborate on the observation of Proposition B.0.3, where we give an interpreta-
tion of our tree morphisms in terms of subtree decompositions, in order to extend
the correspondence of this treewise definition of free operads to the composite func-
tors occurring in our statement.

In what follows, we represent the elements of the colimit of the proposition by
pairs (λ, π), where λ denotes a chain of tree morphisms T0 ← T1 ← · · · ← Tn

and we assume π ∈ P(Tn). This element π ∈ P(Tn) explicitly consists of a tensor
with factors indexed by the vertices of the last tree of our chain π = ⊗v∈V (Tn)

pv ∈
⊗v∈V (Tn)

P(rv). We need to assume that we work in a concrete symmetric monoidal
category to give a sense to this tensor product in terms of elements, but we can
still use the pair representation in a general categorical setting, where the notion
of an element does not necessarily make sense. We then assume that our element
π ∈ P(Tn) (by abusing this expression) represents a tensor product of abstract
variables in this context.

By induction, the construction of Proposition B.0.3 implies that giving a chain
of tree morphisms T0 ← T1 ← · · · ← Tn amounts to defining n nested subtree
decompositions, numbered from 0 to n − 1, on the treewise tensor product which
represents our element π ∈ P(Tn) (see Figure B.3). We proceed inductively in
order to associate elements of free operad composites to the components of these
decompositions.

We give the picture of a pair (λ, π) and of the corresponding nested subtree
decomposition in Figure B.2-B.3. We can follow the definition of our correspondence
on this example. We assume that we have already defined a mapping when we have
n− 1 levels of tree morphisms:

colim
T0←···←Tn−1

P(Tn−1)
�−→ Θ ◦ Θ̄ ◦ · · · ◦ Θ̄︸ ︷︷ ︸

n−1

(P̄)(r)

for any connected operad P ∈ Op∅1 (which we take as a variable in our construc-
tion). We extend the construction of this mapping to the case where we have a
chain of trees with n levels T0 ← · · · ← Tn. We accordingly assume π ∈ P(Tn) in
what follows.

We use the decomposition λTn−1
(Σx, x ∈ V (Tn−1))

�−→ Tn equivalent to the

morphism Tn−1 ← Tn (see Proposition B.0.3) and which corresponds to the top
level decomposition of our picture (see Figure B.3). We then have V (Tn) =
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⎛⎜⎜⎜⎝
i3 i4 i5 i1 i2 i3 i4 i5

i1 i2 i3 i4 i5 i1 i2 v2 v1 v2

v012 ← v01 ← v0

0 0 0︸ ︷︷ ︸
T0←T1←T2

,

i1 i2 i3 i4 i5

pv1
pv2

pv0

0︸ ︷︷ ︸
π∈P(T2)

⎞⎟⎟⎟⎠

Figure B.2. The representation of an element of the cotriple res-
olution in terms of a pair (λ, π) consisting of a treewise tensor π
together with a chain of tree morphisms λ.

(T0 ← T1 ← T2, π) =

i1 i2 i3 i4 i5

pv1
pv2

pv0

0

Figure B.3. The picture of the nested decompositions which cor-
respond to the chain of tree morphisms of Figure B.2. The tree T2

gives the shape of our treewise tensor. The morphism T1 ← T2

determines the top (internal) decomposition of our figure. The tree
T1 can be retrieved by collapsing the subtrees of this decomposi-
tion to vertices. The morphism T0 ← T2 determines the lowest
(external) decomposition, which reduces to a single component in
this example. The inclusion relations between our decompositions
are equivalent to the factorization relations given in our chain.

∐
x∈V (Tn−1)

V (Σx). We gather the factors pv ∈ P(rv), v ∈ V (Σx), associated

to each component of this decomposition Σx ⊂ T in the expression of our treewise
tensor π = ⊗v∈V (Tn)

pv ∈ P(Tn). We accordingly get a factorization of this tensor
π̂ = ⊗x∈V (Tn−1)

π̂x, shaped on the tree Tn−1, and of which factors are treewise

tensors π̂x = ⊗v∈V (Σx)
pv ∈ P(Σx) which represent elements of the free operad

Q = Θ(P̄). We then use our inductive construction to assign an element of the
composite Θ ◦Θ̄ ◦ · · · ◦ Θ̄(Q̄) to the pair (T0 ← · · · ← Tn−1, π̂), where we use our
factorization to regard π̂ = π ∈ P(Tn) as an element of the treewise tensor product
Q(Tn−1). We can easily define a map the other way round in order to formally
check that this correspondence defines an isomorphism.
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For instance, in the case of Figure B.2, we get the picture:

(T0 ← T1, π̂) =

i1 i2 i3 i4 i5

π̂x1

π̂x0

0

with π̂x0
, π̂x1

∈ Θ(P̄) such that:

π̂x0
=

i1 i2

pv1 v1

pv0

0

and π̂x1
=

i3 i4 i5

pv2

v0

.

Thus, we basically take the pieces of the top decomposition of the picture of Fig-
ure B.3 to get these free operads elements π̂x0

, π̂x1
∈ Θ(P̄), while the lower level

part of our structure gives the composite tree shape, corresponding to the composite
functor Θ ◦Θ̄(−), in which we plug these elements.

We have an obvious action of bijections u ∈ MorBij (r, s) on the colimit of the
proposition, which is given termwise by the expression:

u∗(T0 ← · · · ← Tn, π) = (u∗ T0 ← · · · ← u∗ Tn, u∗π),

where we consider the natural input re-indexing operation on trees u∗ : T̃ree(r) →
T̃ree(s), together with the morphism u∗ : P(Tn) → P(u∗ Tn) which we deduce
from the functoriality of the treewise tensor product construction. We easily check
that this termwise action of bijections on our colimit corresponds to the natural
symmetric structure of the collection Resn(P) = Θ ◦Θ̄ ◦ · · · ◦ Θ̄(P̄), for any n ∈ N.
We also have operadic composition operations such that:

(S0 ← · · · ← Sn, π) ◦i (T0 ← · · · ← Tn, ρ) = (S0 ◦i T0 ← · · · ← Sn ◦i Tn, π ◦i ρ),

and which we form on the terms of our colimits by using the (functorial) composition
structure of the operad of trees ◦i : Tree(m) × Tree(n) → Tree(m ◦i n) together

with the isomorphisms P̄(Sn)⊗ P̄(Tn)
�−→ P̄(Sn ◦i Tn). We easily check that these

termwise composition operations correspond to the natural composition operations
of the operad Resn(P) = Θ ◦Θ̄ ◦ · · · ◦ Θ̄(P̄) too, for any dimension n ∈ N. In
the nested subtree decomposition picture, these operadic composition operations
correspond to the obvious extension of the treewise composition operations of free
operads (we essentially have to retain the decomposition markings attached to each
factor of our composite).

We still have an obvious representative of an operadic unit in our colimit, given
by the degenerate sequence of unit trees (↓ ← · · · ← ↓, 1) (the single element that
we can form in arity one). The formula of the proposition therefore gives a full
representation of the operad structure of our object Resn(P) = Θ ◦Θ̄ ◦ · · · ◦ Θ̄(P̄) in
any dimension n ∈ N. �
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We now have the following correspondence for the faces and degeneracies of the
cotriple resolution:

Proposition B.1.5.
(a) In the colimit expression of Proposition B.1.4, the face operators of the

cotriple resolution di : Resn(P) → Resn−1(P) are given by the formula:

di(T0 ← · · · ← Tn, π) = (T0 ← · · · ← T̂i ← · · · ← Tn, π)

in the case i = 0, . . . , n− 1, and by the formula:

dn(T0 ← · · · ← Tn, π) = (T0 ← · · · ← Tn−1, λ∗(π))

in the case i = n, where we also consider the treewise composition operation λ∗ :
P(Tn) → P(Tn−1) associated to the top tree morphism Tn → Tn−1.

(b) The degeneracies sj : Resn(P) → Resn+1(P), on the other hand, are given
termwise by the formula:

sj(T0 ← · · · ← Tn, π) = (T0 ← · · · ← Tj ← Tj ← · · · ← Tn, π),

for all j = 0, . . . , n.

Explanations. The formulas of this proposition have an obvious interpreta-
tion when we use the representation of the cotriple resolution in terms of treewise
tensors equipped with nested subtree decompositions. We make this picture ex-
plicit in Figure B.4. We use this representation to explain our process. Our claims
follow from a straightforward inspection of the definition of the correspondence of
Proposition B.1.4 and we go back to the notation of this proposition.

To get the top face of our element (T0 ← · · · ← Tn, π) in the cotriple resolution
Res•(P), we basically have to take the image, under the adjunction augmentation
λ : Θ(P̄) → P , of the elements of the free operad π̂x ∈ Θ(P̄), x ∈ V (Tn−1),
which arise from the factorization of the treewise tensor π ∈ P(Tn). For this
purpose, we evaluate the treewise composition operations λΣx

: P(Σx) → P(rΣx
)

on the treewise tensors π̂x ∈ P(Σx) which define these elements of the free operad
π̂x ∈ Θ(P̄), x ∈ V (Tn−1). We just retrieve the composition operation λ∗ : P(Tn) →
P(Tn−1) associated to the tree morphism Tn → Tn−1 when we assemble these local
composition operations on the tree Tn−1 that connect our subfactors π̂x ∈ P(Σx)
in the treewise tensor π̂ = π ∈ P(Tn). In the nested decomposition picture, we just
see that the performance of the treewise composition operations λΣx

: P(Σx) →
P(rΣx

), x ∈ V (Tn−1), corresponds to the composition of the factors lying within

the subtrees of the top level decomposition.
To get the lower face operators di, i < n, we proceed similarly with the element

determined by the chain (T0 ← · · · ← Ti, π̂
(n−i)), where π̂(n−i) now denotes a

treewise tensor product π̂(n−i) =
⊗

v∈V (Ti)
π̂
(n−i)
v such that:

(1) π̂(n−i)
v ∈ Θ ◦ Θ̄ ◦ · · · ◦ Θ̄︸ ︷︷ ︸

n−i−1

(P̄)(rv),

for all v ∈ V (Ti). In the nested decomposition picture, these objects π̂
(n−i)
v , v ∈

V (Ti), are represented by the components of the decomposition of level i of the
treewise tensor π ∈ P(Tn) together with the nested decompositions defined by the
subparts of the decompositions of level i + 1, . . . , n that sit inside each of these
components of our object.
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d0(T0 ← T1 ← T2, π) =

i1 i2 i3 i4 i5

pv1
pv2

pv0

0

d1(T0 ← T1 ← T2, π) =

i1 i2 i3 i4 i5

pv1
pv2

pv0

0

d2(T0 ← T1 ← T2, π) =

i1 i2 i3 i4 i5

pv2

pv0
◦ev1

pv1

0

s1(T0 ← T1 ← T2, π) =

i1 i2 i3 i4 i5

pv1
pv2

pv0

0

Figure B.4. The faces and an example of a degeneracy for the
element of the cotriple resolution depicted in Figure B.3. The top
face operator is obtained by performing the treewise composition
operations of the operad within the components of the top subtree
decomposition. We then drop this dummy term from our chain of
decompositions. The other faces are simply given by the omission
of terms in our subtree decomposition while the degeneracies are
given by the repetition of terms.
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Recall that the monadic multiplication μ : Θ̄◦Θ̄ → Θ̄, which we use to define our
face operators di : Resn(P) → Resn−1(P) when i = 1, . . . , n− 1, is essentially given
by an application of the augmentation of adjunction λ : Θ(R̄) → R to the free operad
R = Θ(−) and so does the structure morphism ρ : Θ ◦Θ̄ → Θ which determines the
0-face operation d0 : Resn(P) → Resn−1(P). Thus, we can argue as in the case of
the top face dn to determine the face operators di : Resn(P) → Resn−1(P) such
that i = 0, . . . , n− 1.

In short, we have to take the image, under the treewise composition operations
λΣx

: R(Σx) → R(rΣx
) of the subfactors (1) which lie in the components Σx ⊂ Ti of

the decomposition of the tree Ti defined by the morphism Ti−1 ← Ti (or of all these
subfactors in the case i = 0). We just assume that R(−) is the (composite) free
operad occurring in (1). But in the definition of the free operad, the composition
products are given by simple grafting operations on treewise tensors (see §A.3.3).
The mapping λ∗ : R(Ti) → R(Ti−1), which we obtain by taking the tensor product
of these composition operations λΣx

: R(Σx) → R(rΣx
), x ∈ V (Ti−1), is therefore

given by the omission of the factorization operation which we perform to get the
tensor π̂n−i from π̂n−i−1 while we leave the rest of the structure unchanged.

We conclude from this study that the face operators di : Resn(P) → Resn−1(P)
such that i = 0, . . . , n − 1 are equivalent to the withdrawal of a term Ti from the
chain T0 ← · · · ← Tn in the treewise representation of the cotriple resolution,
as asserted in the proposition. In the nested decomposition picture, this opera-
tion reduces to the removal of the decomposition of level i in our sequence (see
Figure B.4).

We proceed similarly to determine the expression of the degeneracy operators.
We just use that the unit morphism of our monad structure ι : Id → Θ̄ correspond
in this case to the insertion of trivial (identity) extra factorizations in our treewise
tensors. In the nested decomposition picture, this operation is equivalent to the
duplication of a decomposition (see Figure B.4). �

B.1.6. Remarks: the treewise expression of the augmentation and of the extra-
degeneracies of the cotriple resolution. The expression of the face operators in as-
sertion (a) of the previous proposition has an obvious extension in dimension zero.
In this case, we just retrieve the treewise expression of the adjunction augmenta-
tion of the free operad λ : Θ(P̄) → P which, by definition, gives the augmentation
morphism of the cotriple resolution ε : Res0(P) → P (see §B.1.2).

The formula of assertion (b) for the degeneracies has an extension for the extra-
degeneracies too. We explicitly get s−1(T0 ← · · · ← Tn, π) = (Y ← T0 ← · · · ←
Tn, π) in this case, for any (T0 ← · · · ← Tn, π) ∈ Resn(P). The insertion of the

corolla Y ∈ T̃ree(r) which we perform in this formula obviously corresponds to
the insertion of the adjunction unit ι : Id → Θ̄ in front of our composite functor
in our categorical definition of the extra-degeneracy (see §B.1.3) and reflects our
treewise definition of this natural transformation (see §A.3.1). We similarly get the
expression η(π) = (Y, π) for the section of the augmentation η : P → Res0(P).

We can also easily determine the expression of general simplicial operators
u∗ : Resn(P) → Resm(P) on the cotriple resolution Res•(P) from the formulas of
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Proposition B.1.5. We get the following statement:

Proposition B.1.7. Let u ∈ MorΔ(m,n) be any morphism in the simplicial
category Δ. We have the formula:

u∗(T0 ← · · · ← Tn, π) = (Tu(0) ← · · · ← Tu(m), λ∗(π)),

for any pair (T0 ← · · · ← Tn, π), which represents an element of the cotriple
resolution Res•(P) with π ∈ P(Tn). The treewise tensor λ∗(π) ∈ P(Tu(m)), in
the outcome of this operation, is obtained by performing the treewise composition
operation λ∗ : P(Tn) → P(Tu(m)) naturally associated to the tree morphism Tn →
Tu(m). �

B.1.8. The quasi-free structure of the cotriple resolution. The cotriple resolu-
tion Res•(P) forms a free operad dimensionwise by construction. We explicitly have
Resn(P) = Θ(Θ̄n(P̄)), for any n ∈ N, where we set:

(1) Θ̄n(P̄) = Θ̄ ◦ · · · ◦ Θ̄︸ ︷︷ ︸
n

(P̄),

for short. In what follows, we also use the notation Θ̄•(P̄) to refer to the collection
of these objects Θ̄n(P̄), n ∈ N, taken as a whole.

We use the unit morphism of the free operad adjunction ι : Θ̄n(P̄) → Θ(Θ̄n(P̄))
to identify the symmetric collection Θ̄n(P̄) with a subobject of the free operad
Resn(P) = Θ(Θ̄n(P̄)), for each n ∈ N. We immediately see that the faces of the
cotriple resolution di : Resn(P) → Resn−1(P) satisfy the relation di(Θ̄n(P̄)) ⊂
Θ̄n−1(P̄) when i > 0. We equivalently get that the collection Θ̄•(P̄) inherits face
operators di : Θ̄n(P̄) → Θ̄n−1(P̄), for i = 1, . . . , n, and that the face operators of the
cotriple resolution di : Resn(P) → Resn−1(P) such that i > 0 are identified with
the morphisms of free operads induced by these morphisms on the collection Θ̄•(P̄).
We similarly have sj(Θ̄n(P̄)) ⊂ Θ̄n+1(P̄) for the degeneracies sj : Resn(P) →
Resn+1(P), for all j = 0, . . . , n. We equivalently get that the collection Θ̄•(P̄)
inherits degeneracy operators sj : Θ̄n(P̄) → Θ̄n+1(P̄), for j = 0, . . . , n, and the
degeneracy operators of the cotriple resolution sj : Resn(P) → Resn+1(P) are also
identified with the morphisms of free operads induced by these morphisms on the
collection Θ̄•(P̄). We can define these face and degeneracy operators by the same
categorical expression as the face and degeneracy operators of the cotriple resolution
(see §B.1.2). We just discard the front free operad functor from our construction.

We readily see, on the other hand, that the object Θ̄•(P̄) is not preserved by
the 0th face operator of the cotriple resolution d0 : Resn(P) → Resn−1(P), and
hence, we can not fully identify the cotriple resolution Res•(P) with a free operad
associated to a simplicial object of the category of collections. We actually get that
the cotriple resolution Res•(P) forms a quasi-free object in the category of operads.
We make the definition of a quasi-free operad more explicit in §II.8, where we use
this notion to give an explicit description of the class of cofibrant objects in the
model category of operads in simplicial sets.

We can also express the structure of the object Θ̄•(P̄) in terms of an action of
(a subcategory of) the simplicial category Δ. We basically get that the definition of
face operations di for i > 0 and of degeneracy operations sj on Θ̄•(P̄) is equivalent
to the definition of simplicial operators u∗ : Θ̄n(P̄) → Θ̄m(P̄) associated to the
morphisms of the simplicial category u ∈ MorΔ(m,n) such that u(0) = 0.
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We can readily adapt the construction of Proposition B.1.4 to get an expression,
in terms of treewise structures, of the object Θ̄•(P̄). We explicitly have:

(2) Θ̄n(P̄)(r) = colim
Y=T0←T1←···←Tn

P(Tn),

for any arity r ≥ 2 (where our collection is defined) and for any dimension n ≥ 0. We
just assume that the initial term of such a sequence T0 is given by the r-corolla Y =
Yr. We could equivalently discard this object T0 = Y (without changing the value

of our colimit), because the corolla Y is terminal in the category of reduced r-trees.
We prefer not to do so, because the canonical morphism ι : Θ̄n(P̄) → Θ(Θ̄n(P̄))
is given by the obvious inclusion of the indexing categories of our colimits when
we take the above expression (2) for our object Θ̄n(P̄), for any n ∈ N. We can
moreover use the same expression as in Proposition B.1.7

(3) u∗(Y ← T1 ← · · · ← Tn, π) = (Y ← Tu(1) ← · · · ← Tu(m), λ∗(π))

with the convention that we have T0 = Y in order to determine the action of any
simplicial map u ∈ MorΔ(m,n) satisfying u(0) = 0 on the collection Θ̄•(P̄).

B.1.9. The latching object construction. To any simplicial object in a category
A• ∈ s C we associate a collection of latching objects Ln(A) ∈ C, n ∈ N, whose
purpose is to collect the information carried by the degeneracy operators inside
each component of our object An, n ∈ N. We formally have:

(1) Ln(A) = colim
u∈MorΔ− (n,k)

k<n

Ak,

for any n ∈ N, where the colimit ranges over the category of surjective non-
decreasing maps u : n → k satisfying k < n, and where a copy of the object
Ak is assigned to any such u ∈ MorΔ−(n, k). (Recall that Δ− denotes the subcate-
gory of the simplicial category Δ which has the subclass of surjective non-decreasing
maps as morphisms.) We have an equivalent construction where we take all non-
decreasing maps u : n → k such that k < n (and not only the surjective ones),
but we rather use the above expression in this appendix, because our main purpose
is to make explicit the latching object of the cotriple resolution. We give a more
comprehensive survey on latching objects and simplicial structures in §II.3.

Recall simply that when we form our colimit (1) we consider surjective non-
decreasing maps f : k → l such that v = fu in order to relate the terms associated
to any pair of surjective non-decreasing maps u : n → k and v : n → l. We also
have a natural morphism λ : Ln(A) → An, defined for any n ∈ N and usually called
the latching morphism, which is given by the natural transformation u∗ : Ak → An

associated to any map u ∈ MorΔ−(k, n) on the colimit (1). We have the following
result:

Proposition B.1.10. The terms of the cotriple resolution Res•(P) admit a
coproduct decomposition in the category of (connected) operads

Resn(P) = Ln Res•(P) ∨ Θ(Nn Θ̄•(P̄))

so that the latching object Ln Res•(P) is identified with a subobject of the operad
Resn(P), for each dimension n ∈ N.

The collection Nn Θ̄•(P̄) ⊂ Θ̄n(P̄), which occurs in this formula, is defined by
the colimit:

Nn Θ̄n(P̄)(r) = colim
Y


�←−T1


�←−...

�←−Tn

P(Tn)
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for any finite set r of cardinal r ≥ 2, where, in comparison with the expression
of §B.1.8( 2), we restrict ourselves to the chains of morphisms of r-trees Y = T0 ←
T1 ← · · · ← Tn satisfying Tj �� Tj+1, for all j = 0, . . . , n− 1.

Explanations. We use that the morphisms u ∈ MorΔ−(k, l) (the surjective
non-decreasing maps) which we consider in the expression of the latching objects
Ln Res•(P) necessarily have u(0) = 0 and act on the cotriple resolution Res•(P) by
morphisms of free operads u∗ : Θ(Θ̄k(P̄)) → Θ(Θ̄l(P̄)) which we determine by the
expression of §B.1.8(3) on the generating collection of our object Θ̄k(P̄) ⊂ Θ(Θ̄k(P̄)).
We accordingly have the relation:

Ln Res•(P) = Θ(Ln Θ̄•(P̄)),(1)

where we perform the latching object construction on the generating collection of
our operad:

Ln Θ̄•(P̄)(r) = colim
u∈MorΔ− (n,k)

k<n

(
colim

Y=T0←T1←···←Tk

P(Tk)︸ ︷︷ ︸
=Θ̄k(P̄)(r)

)
.(2)

We then have the immediate splitting formula:

colim
Y=T0←T1←···←Tn

P(Tn)︸ ︷︷ ︸
=Θ̄n(P̄)(r)

=
(

colim
Y=T0←T1←···←Tn

∃j|Tj�Tj+1

P(Tn)

︸ ︷︷ ︸
�Ln Θ̄•(P̄)(r)

)
�
(

colim
Y=T0←T1←···←Tn

∀j|Tj ��Tj+1

P(Tn)

︸ ︷︷ ︸
=:Nn Θ̄•(P̄)(r)

)

from which we get the result of our proposition, just because the first subcolimit
of this decomposition has the same value (exercise) as the latching object colimit
of (2). �

B.1.11. The cotriple resolution of augmented connected Λ-operads. The con-
structions of this section have a straightforward extension to augmented connected
Λ-operads. We then consider our lifting of the free operad functor Θ : M �→ Θ(M)
to the category of augmented connected Λ-operads (see §§A.4.6-A.4.7 and Propo-
sition I.2.4.3) and the adjunction relation Θ : ΛColl>1 /Com � ΛOp∅1 /Com : ω̄
between the category of augmented connected Λ-collections ΛColl>1 /Com and the
category of augmented connected Λ-operads ΛOp∅1 /Com (see Theorem I.2.4.4).

The object Res•(P) which we consider in this case P ∈ ΛOp∅1 /Com is accord-
ingly obtained by performing the cotriple resolution construction in the category
of plain (connected) operads first, and by using that the free operad Θ(M) associ-
ated to any augmented connected Λ-collection M ∈ ΛOp∅1 /Com inherits natural
restriction operators u∗ : Θ(M)(l) → Θ(M)(k), u ∈ MorInj (k, l) and natural aug-
mentations ε : Θ(M)(r) → 1, r > 0 (see §A.2.8).

We can easily make the expression of these operations explicit on the treewise
representation of Proposition B.1.4. We basically get the same formula u∗(T0 ←
· · · ← Tn, π) = (u∗ T0 ← · · · ← u∗ Tn, u

∗(π)) for the restriction operators u∗ :
Resn(P)(l) → Resn(P)(k) as in the case of the action of permutations, but we now

consider the restriction operators on the category of reduced trees u∗ : T̃ree(l) →
T̃ree(k), such as defined in §A.1.13, together with the corresponding reduced re-
striction operators on treewise tensor products u∗ : P(Tn) → P(u∗ Tn) which we

define in §A.4.6. We use the functoriality of the restriction operators u∗ : T̃ree(l) →
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T̃ree(k) with respect to our notion of a tree morphism in order to give a sense to
the above formula.

The augmentation ε : Resn(P)(r) → 1 is given by the obvious formula ε(T0 ←
· · · ← Tn, π) = ε(π), for any arity r > 0, where we forget about our chain
of tree-morphisms and we take the image of the tensor π ∈ P(Tn) under the
treewise augmentation operation ε : P(Tn) → 1 of §A.2.8. The augmentation
ε : Res•(P) → Com, regarded as a whole operad morphism, is also identified with
the composite of the morphism Res•(ε) : Res•(P) → Res•(Com), which we deduce
from the functoriality of the cotriple resolution construction, and of the natural
augmentation ε : Res•(Com) → Com, which we attach to the cotriple resolution of
the commutative operad.

B.1.12. The treewise representation of the cotriple resolution for general (non-
augmented) operads. We can adapt the constructions of this section to the case of
the cotriple resolution of general (non-connected and non-augmented) operads. We
just outline the modifications which we have to perform in this setting. We still
restrict ourselves to non-unitary operads for simplicity (though the general process
does not change when we have operations in arity zero).

We then have to consider the standard free operad adjunction Θ : Coll>0 →
Op∅ : ω and a monad structure which we associate to the full free operad functor
Θ : Coll>0 → Coll>0. We explicitly deal with a unit morphism ι : Id → Θ, given
by the standard unit morphism of the free operad adjunction, and a multiplication
μ : Θ ◦Θ → Θ defined by applying the augmentation of this adjunction to a free
operad P = Θ(−). For P ∈ Op∅, we now form a simplicial object such that:

(1) Resn(P) = Θ ◦Θ ◦ · · · ◦ Θ︸ ︷︷ ︸
n

(P),

for any dimension n ∈ N, and where the face operators di : Resn(P) → Resn−1(P)
are determined by the monadic multiplication of the (i, i+1)th free operad factors
μ : Θ ◦Θ → Θ for i = 0, . . . , n−1, and by the plain adjunction augmentation of free
operads λ : Θ(P) → P for i = n. We just regard the front free operad functor of this
expression as a functor from the category of collections to the category of operads
Θ : Coll>0 → Op∅ and, when we form the 0th face d0 : Resn(P) → Resn−1(P),
we identify our monadic multiplication operation with a right action of the free
operad monad ρ : Θ ◦Θ → Θ on this functor Θ : Coll>0 → Op∅. The degeneracy
morphisms of our object sj : Resn(P) → Resn+1(P) are given by the insertion of
adjunction units ι : Id → Θ (as in the connected operad case).

We still have an augmentation ε : Res•(P) → P defined by the augmentation
of the free operad adjunction λ : Θ(P) → P in dimension zero Res0(P) = Θ(P). We
can moreover define a section of this augmentation η : P → Θ(P) in the category
of symmetric collections and extra-degeneracies s−1 : Resn(P) → Resn+1(P) (as in
the connected operad case again).

For this cotriple resolution, we have a version of the treewise expansion of
Proposition B.1.4:

(2) Resn(P)(r) = colim
T0←···←Tn

P(Tn).

We essentially need to enlarge our class of morphisms in order to keep track of the
operadic units 1 which naturally occur as soon as we consider the full free operad
functor Θ(−). For this aim, we consider degeneration maps se : T �→ se(T) given
by the insertion of an extra one-input vertex on any edge e ∈ E(T) of a given tree
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T ∈ Tree(r):

···

e

···

�→

···
e−

1

e+

···

.

We add these maps as formal morphisms se : T → se(T) to our category of r-trees.
We also assume that the degeneration maps and the ordinary tree morphisms satisfy
natural relations which reflect the identities which we get when we insert an operadic
unit in the treewise composition products of an operad. We write Tree(r)ᵀ for this
extended category of r-trees.

To each degeneration map se : T → se(T), we associate the morphism of
treewise tensors se : P(T) → P(se(T)) defined by inserting an operadic unit 1 ∈
P(1) on the extra vertex of the tree se(T) (compare with the construction of §A.5.3).
The mapping P : T �→ P(T) accordingly extends to a functor on the category
Tree(r)ᵀ, for any arity r > 0. We precisely use morphisms f : Ti+1 → Ti of
the extended category Tree(r)ᵀ together with these extended treewise composition
operations f∗ : P(Ti+1) → P(Ti) which we associate to such morphisms in order to
get the treewise definition (2) of the cotriple resolution of plain operads (1).

The observations of §B.1.8 and the result of Proposition B.1.10 work for the
resolution of general (non-unitary) operads when we take this extended version
of our tree categories. We can also extend the treewise definition of restriction
operators and augmentations in §B.1.11 when we assume P ∈ ΛOp∅ /Com. We
then consider the un-reduced restriction operators on trees (see §A.1.11) and on
treewise tensors (see §A.2.8).

B.2. The monadic definition of operads

To complete the account of this appendix, we quickly review the general defi-
nition of a monad and we revisit the monadic interpretation of the structure of an
operad.

B.2.1. Monads. In general, a monad on a category C is a functor F : C → C

together with natural transformations ι : Id → F and μ : F ◦F → F which make
the diagrams

Id ◦F ι◦F

=

F ◦F

μ

F ◦ IdF ◦ι

=

F

and

F ◦F ◦F
μ◦F

F ◦μ

F ◦F

μ

F ◦F
μ

F

commute. These diagrams express a version, for functors, of the usual unit and
associativity relations of monoids. In fact, a monad can be identified with a monoid
in the category of functors F : C → C where we take the composition of functors as
the (non-symmetric) tensor product operation of a monoidal structure.



B.2. THE MONADIC DEFINITION OF OPERADS 499

To a monad F, we associate a category of algebras, consisting of the objects
A ∈ C equipped with a morphism λ : F(A) → A such that the diagrams

Id(A)
ι(A)

=

F(A)

λ

A

and

F ◦F(A)
μ(A)

F(λ)

F(A)

λ

F(A)
λ

A

commute. We say that the morphism λ : F(A) → A defines a left action of the
monad F on the object A ∈ C. Naturally, a morphism of F-algebras is a morphism
in the base category f : A → B which makes commute the diagram

F(A)
F(f)

λ

F(B)

λ

A
f

B

,

where we use the generic notation λ to refer to all actions of the monad F.
B.2.2. The monad associated to an adjunction. The monad associated to the

free operad functor Θ : Coll>0 → Op∅ (and the monad associated to the connected
free operad similarly Θ : Coll>1 → Op∅1) is defined by applying a general construc-
tion of category theory, which we now review, to the free operad adjunction.

We generally start with an adjunction relation A : C � A : ω, where A : C → A

represents a free object functor with values in a category A. We take the composite
F = ω A to define the underlying functor of our monad F : C → C. The monad
unit ι : Id → F is given by the unit morphism of our adjunction. The monad
multiplication μ : F ◦F → F is formed by applying the adjunction augmentation λ :
A(ωA) → A to the free objects A = A(X) and by taking the image of this morphism
under the functor ω : A → C. The general structure relations between adjunction
units and adjunction augmentations formally imply that these morphisms satisfy
the unit and associativity relations of §B.2.1 (see [130, §VI.1]).

We clearly retrieve the construction of §B.1.1 when we apply this definition of
a monad to the free connected operad adjunction A = Θ : Coll>1 � Op∅1 : ω̄.
We then have F = ω̄ Θ = Θ̄. We similarly retrieve the monad structure of the
free operad, such as defined in §B.1.12, when we apply our construction to the
adjunction A = Θ : Coll>0 � Op∅ : ω. We then have F = Θ, where we regard
the free operad Θ(−) as an endofunctor of the category of (non-unitary) collections
Coll>0 (by forgetting about composition structures).

The augmentation of an adjunction λ : A(ωA) → A generally induces a mor-
phism λ : ω A(ωA) → ωA which provides the object X = ωA associated to any
A ∈ A with the structure of an algebra over the monad F = ω A (we still readily
deduce the unit and associativity relations of monad actions for this morphism from
the general structure relations between adjunction units and adjunction augmen-
tations). Thus, we have a well-defined functor from the category A to the category
of algebras over the monad F.

We retrieve the monad action λ : Θ̄(P) → P̄ of §B.1 when we apply this
definition to connected operads P ∈ Op∅1. We similarly retrieve the monad action
λ : Θ(P) → P defined by the plain adjunction augmentation of the free operad
when we assume P ∈ Op∅.



500 B. THE COTRIPLE RESOLUTION OF OPERADS

We have the following additional statement (which is not fulfilled by all ad-
junctions) in the operad case:

Theorem B.2.3.
(a) The adjunction Θ : Coll>0 � Op∅ : ω is monadic in the sense that the

functor which maps a (non-unitary) operad P ∈ Op∅ to the associated algebra over
the free operad monad Θ defines an equivalence of categories.

(b) The adjunction Θ : Coll>1 � Op∅1 : ω̄ for connected operads is monadic
too: the functor which carries a connected operad P ∈ Op∅1 to the associated aug-

mentation ideal P̄ ∈ Coll>1 induces an equivalence of categories from the category
of connected operads to the category of algebras over the monad Θ̄.

Proof (outline). We generally say that an adjunction A : C � A : ω is
monadic when we have such an equivalence of categories between A and the cate-
gory of algebras over the monad A = ω F.

This theorem is stated as a remark. We therefore just outline the proof of
these equivalences of categories. We still focus on the connected operad case. We
mainly use a version, in dimension one, of the treewise representation of the cotriple
resolution of connected operads. We basically identify an element π ∈ Θ̄ ◦ Θ̄(M)
with a treewise tensor π ∈ M(T) together with a subtree decomposition of the form
considered in Proposition B.0.3 (see also Proposition B.1.4) and which we can also
determine by a tree morphism T → S. The monad multiplication μ : Θ̄ ◦ Θ̄(M) →
Θ̄(M) is the mapping which forgets about this extra decomposition (compare with
the expression of faces on the cotriple resolution in Proposition B.1.5).

The structure of an algebra over the monad Θ̄ is determined by treewise com-

position operations λT : M(T) → M(r), defined for any T ∈ T̃ree(r) and for any
arity r ≥ 2, since we construct the underlying functor of the free operad Θ(M) by
taking a colimit of these treewise tensor products M(T) over the isomorphism cate-
gories of reduced trees. To express the associativity relation of this monadic algebra
structure, we have to plug our morphism λ : F̄(M) → M in the composite functor
Θ̄ ◦ Θ̄(M). This operation is equivalent to the performance of treewise composition
operations λT : M(T) → M(r) within the components of the subtree decompositions
which we associate to the shape of the treewise tensors π ∈ Θ̄ ◦ Θ̄(M). (We use
the same process as in the definition of the top face of the cotriple resolution in
Proposition B.1.5.)

We now consider the treewise composition operations λΓ : M(Γ) → M(r) associ-
ated to two-fold trees Γ. We can just use the equivalence between these morphisms
λΓ : M(Γ) → M(r) and partial composites ◦ik : M(m) ⊗ M(n) → M(m ◦ie n), to
determine a partial composition structure from a monad action λ : Θ̄(M) → M.
The associativity of monad actions implies that these composition operations fulfill
the associativity axioms of operads, such as expressed in the diagrams of Figure A.8
(we consider the different subtree decompositions of the trees occurring in this fig-
ure and we use our treewise interpretation of the monad multiplication). Then
we just formally add a unit term 1 in arity one in order to form an operad (with
unit) from our algebra M over the monad Θ̄. Thus, we also have a mapping from
the category of algebras over the monad Θ̄ to the category of connected operads,
and this mapping is clearly a right inverse of the natural functor considered in the
proposition.

The other way round, when we have an algebra over the monad Θ̄, we can
readily check that the monad action λ : Θ̄(M) → M is fully determined by the
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terms λΓ : M(Γ) → M(r) which we associate to (reduced) trees with two vertices

Γ ∈ T̃ree2(r). We still use that the morphism λ : Θ̄(P) → P is defined by putting
the treewise composition operations λT : P(T) → P(r). We can apply the edge
contraction process of §§A.2.4-A.2.5, which we now interpret in terms of iterated
monad actions (by using the treewise interpretation of our monadic structures and
suitable subtree decompositions), to determine these morphisms λT : M(T) → M(r)
from the two-fold composites λΓ : M(Γ) → M(r). Therefore, we obtain that our
mapping from the category of algebras over the monad Θ̄ towards the category of
connected operads is both a left and a right inverse of the natural functor from the
category of connected operads to the category of algebras over the monad Θ̄. The
claim of our theorem follows. �

B.2.4. The comonad associated with the free (connected) operad adjunction.
The structure of a comonad is dual to a monad and consists of a functor C : C → C

on a given category C equipped with natural transformations π : C → Id and
ν : C → C ◦C that satisfy the opposite of the unit and associativity relations
of monads (simply reverse arrow directions in the diagram of §B.2.1). Similarly, a
coalgebra over a comonad C is an object A ∈ C equipped with a structure morphism
ρ : A → C(A) which satisfies the opposite of the unit and associativity relations
of §B.2.1 for algebras over monads.

We can also form a comonad structure from any adjunction relation A : C � A :
ω. We just compose the functors of §B.2.2 the other way round to get this result.
We have for instance a comonad C = Θ ω̄ : Op∅1 → Op∅1 which we associate to
the free connected operad adjunction Θ : Coll>1 → Op∅1 : ω̄. The adjunction

augmentation λ : Θ(P̄) → P yields the counit of this comonad π = λ : Θ ω̄ → Id ,
while the adjunction unit ι : M → Θ̄(M) induces an operad morphism Θ(ι(M)) :
Θ(M) → Θ(Θ̄(M)) and we apply this natural morphism to the objectM = P̄ , for any
P ∈ Op∅1, in order to get the comultiplication of our comonad ν : Θ ω̄ → Θ ω̄ ◦Θ ω̄.

The cotriple resolution Res•(P) can be defined in terms of this comonad rather
than in terms of the monad structure of §B.1.1. We just change the functor group-
ings in the expression of §B.1.2:

Resn(P) = Θ ◦ ω̄ Θ ◦ · · · ◦ ω̄ Θ︸ ︷︷ ︸
n

◦ω̄(P) ⇔ Resn(P) = Θ ω̄ ◦ Θ ω̄ ◦ · · · ◦ Θ ω̄︸ ︷︷ ︸
n

(P)

and we use the obvious applications of the structure morphisms of our comonad
to retrieve the face and degeneracy operators of §B.1.2. We can make similar
observations for general (non-connected) operads. This definition motivates the
name ‘cotriple’ (for comonad) given to our resolution.





Glossary of Notation

Background

Fundamental objects

k: the ground ring
Dn: the unit n-disc, see §I.4.1.1
Δn: the topological n-simplex, see §0.3, §II.1.3.4
pt : the one-point set (also denoted by ∗ when regarded as a terminal object)
Δ: the simplicial category, see §0.3, §II.1.3.2
Δn: the n-simplex object of the category of simplicial sets, see §0.3, §II.1.3.4

Generic categorical notation

A, B, C, . . . : general categories
I, J, . . . : indexing categories, as well as the set of generating cofibrations and the
set of generating acyclic cofibrations in a cofibrantly generated model category, see
§II.4.1.3
F, G, . . . : some classes of morphisms in a category
M, N, . . . : (symmetric) monoidal categories, see §0.8
1: the unit object of a (symmetric) monoidal category, see §0.8
eq: the equalizer of parallel arrows in a category
coeq: the coequalizer of parallel arrows in a category

Fundamental categories

Mod : the category of modules over the ground ring
Set : the category of sets
Top: the category of topological spaces, see §II.1.3
sSet : the category of simplicial sets, see §0.3, §II.1.3
Grp: the category of groups
Grd : the category of groupoids, see §I.5.2.1
Cat : the category of small categories, see §I.5.2.1
Ab: the category of abelian groups

Categories of algebras and of coalgebras

Com: the category of non-unitary commutative algebras
As: the category of non-unitary associative algebras
Lie: the category of Lie algebras
As+: the category of unitary associative algebras
Com+: the category of unitary commutative algebras, see §I.3.0.1
Comc

+: the category of counitary cocommutative coalgebras, see §I.3.0.4
503
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HopfAlg : the category of Hopf algebras (defined as the category of bialgebras
equipped with an antipode operation), see §I.7.1.8
Hopf Grd : the category of Hopf groupoids (defined as the category of small cate-
gories equipped with an antipode operation), see §I.9.0.2

Functors and constructions for filtered objects

Fs: the sth layer of a decreasing filtration
E0s: the sth subquotient of a filtered object, see §I.7.3.6 (also used to denote the
sth fiber of a tower of set maps in the context of homotopy spectral sequences, see
§III.1.1.7)
E0: the weight graded object associated to a filtered object in a category (e.g.
the weight graded module associated to a filtered module, see §I.7.3.6, the weight
graded Lie algebra associated to a Malcev complete group, see §I.8.2.2, . . . )
(−) :̂ the completion functor on a category of objects equipped with a decreasing
filtration, as well as the Malcev completion for groups and groupoids, see §I.7.3.4,
§I.8.3 (also the rationalization functor on spaces, see the section about the con-
structions of homotopy theory in this glossary)

Functors and constructions on algebras and coalgebras

S: the symmetric algebra functor (in any symmetric monoidal category), see §I.7.2.4
T: the tensor algebra functor (in any symmetric monoidal category), see §I.7.2.4
L: the free Lie algebra functor (in any Q-additive symmetric monoidal category and
in abelian groups), see §I.7.2.3
U: the enveloping algebra functor (on the category of Lie algebras in any Q-additive
symmetric monoidal category), see §I.7.2.7
Ŝ, T̂, . . . : the complete variants of the symmetric algebra functor, of the tensor
algebra functor, . . . in the context of a category of complete filtered modules, see
§I.7.3.22
G: the group-like element functor on coalgebras, see §I.7.1.14, and on complete
Hopf coalgebras, see §I.8.1.2
P: the primitive element functor on Hopf algebras, see §I.7.2.11
I(−): the augmentation ideal of Hopf algebras, see §I.8.1.1

Categorical prefixes

dg : prefix for a category of differential graded objects in a category (e.g. the
category of dg-modules dg Mod , see §0.1, §II.5.0.1)
dg∗, dg∗: prefix for the chain graded and cochain graded variants of the cate-
gories of differential graded objects (e.g. the category of chain graded dg-modules
dg∗ Mod , see §II.5.0.1, the category of cochain graded dg-modules dg∗ Mod , see
§II.5.0.1, §II.5.1, and the category of unitary commutative cochain dg-algebras
dg∗ Com+, see §II.6.1.1, . . . )
gr : prefix for a category of graded objects in a category when the grading underlies
a differential graded structure (e.g. the category of graded modules gr Mod , see
§0.1, see §II.5.0.2, . . . )
s: prefix for a category of simplicial objects in a category (e.g. the category of
simplicial modules sMod , see §0.6, §II.5.0.4, the category of simplicial sets sSet ,
see §0.3, §II.1.3, . . . )
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c: prefix for a category of cosimplicial objects in a category (e.g. the category of
cosimplicial modules cMod , see §0.6, §II.5.0.4, the category of cosimplicial unitary
commutative algebras c Com+, see §II.6.1.3, . . . )
f : prefix for a category of filtered objects in a category (e.g. the category of filtered
modules f Mod , see §I.7.3.1)
f̂ : prefix for a category of complete filtered objects in a category (e.g. the cate-

gory of complete filtered modules f̂ Mod , see §I.7.3.4, the category of Malcev com-

plete groups f̂ Grp, see §I.8.2). Note that the categories of complete Hopf algebras

f̂ HopfAlg and of complete Lie algebras f̂ Lie consist of Hopf algebras and Lie
algebras in complete filtered modules that satisfy an extra connectedness require-
ment and a similar convention is made for the category of complete Hopf groupoids

f̂ Hopf Grd , see §I.7.3.15, §I.7.3.20, §I.9.1.2
w : prefix for a category of weight graded objects in a category (e.g. the category
of weight graded modules w Mod , see §I.7.3.5)

Morphisms, hom-objects, duals, and analogous constructions

Mor: the notation for the morphism sets of any category (e.g. MorMod (−,−) for
the morphism sets of the category of modules over the ground ring Mod)
Aut: the notation for the automorphism group of an object in a category
Hom: the notation for the hom-objects of an enriched category structure (not to be
confused with the morphism sets), see §0.12
D: the duality functor for ordinary modules, dg-modules, simplicial modules and
cosimplicial modules, see §II.5.0.13
(−)∨: the dual of individual objects, or of objects equipped with extra structures
(algebras, operads, . . . ), see §II.5.0.13
Der: the modules of derivations (for algebras, operads, . . . ), see §III.2.1
Map, Auth: see the section of this glossary about the constructions of homotopy
theory

Constructions of homotopy theory

Fundamental constructions in model categories

Ho(−): the homotopy of a model category, see §II.1.2
Auth: the notation for the homotopy automorphism space of an object in a model
category, see §II.2.2
Map: the notation for the mapping spaces of a pair of objects in simplicial model
categories and in general model categories, see §II.2.1, §II.3.2.11

Fundamental simplicial and cosimplicial constructions

B: the classifying space construction for groups, groupoids, categories, . . . , see
§I.5.2.3 (also the bar construction of algebras and of operads, see the relevant
sections of this glossary)
skr: the rth skeleton of a simplicial set, of a simplicial and of a cosimplicial object
in a model category, see §II.1.3.8, §II.3.1.7, §II.3.1.17
Tot: the totalization of cosimplicial spaces, of cosimplicial objects in a model cat-
egory, see §II.3.3.13
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| − |: the geometric realization of simplicial sets, of simplicial objects in a model
category, see §0.5, §II.1.3.5, §II.3.3.5
Diag: the diagonal complex of a bisimplicial set, of a bisimplicial object and of a
bicosimplicial object in a model category, see §II.3.3.19
Lr(X): the rth latching object of a simplicial object in a category, see §II.3.1.14
Mr(X): the rth matching object of a simplicial object in a category, see §II.3.1.15
(also the matching objects of Λ-sequences, see the section about operads and related
structures of this glossary)
Lr(X), Mr(X): the cosimplicial variants of the matching and matching object con-
structions, see §II.3.1.3, §II.3.1.5

Differential graded constructions

bm, em: notation for particular homogeneous elements (of upper degree m) notably
used to define the generating (acyclic) cofibrations of the category of cochain graded
dg-modules, see §II.5.1.2
bm, em: same as bm and em but in the chain graded context
Bm: source objects of the generating cofibrations of the category of cochain graded
dg-modules, see §II.5.1.2
Em: target objects of the generating (acyclic) cofibrations of the category of cochain
graded dg-modules, see §II.5.1.2
Bm, Em: dual objects of the dg-modules Bm and Em

σ: notation for particular homogeneous elements used in the definition of suspension
functors on dg-modules, see §C.2.3
ρr, ρsr: notation for particular homogeneous elements used in the definition of the
operadic suspension functor for operads in dg-modules, see §II.4.1.1
Cyl: the standard cylinder object functor on the category of dg-modules, see
§II.13.1.10
B: the bar construction for algebras, see §II.6.3 (also the classifying space of groups,
categories, and the bar construction of operads, see the relevant sections of this
glossary)
τ∗: the right adjoint τ∗ : dg Mod → dg∗ Mod of the embedding ι : dg∗ Mod ↪→
dg Mod of the category of chain graded dg-modules dg∗ Mod into the category of
all dg-modules dg Mod , see §II.5.3.2
τ∗: the left adjoint τ∗ : dg Mod → dg∗ Mod of the embedding ι : dg∗ Mod ↪→
dg Mod of the category of cochain graded dg-modules dg∗ Mod into the category
of all dg-modules dg Mod , see §II.5.0.1
(−)�: the forgetful functor from dg-modules to graded modules, see §0.1

The Dold–Kan correspondence

N∗: the normalized chain complex functor on the category of simplicial modules,
see §0.6, §II.5.0.5
N∗: the conormalized cochain complex functor on the category of cosimplicial mod-
ules, see §II.5.0.9
Γ•: the Dold–Kan functor on the category of chain graded dg-modules, see §II.5.0.6
Γ•: the cosimplicial version of the Dold–Kan functor on the category of cochain
graded dg-modules, see §II.5.0.9
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Constructions of rational homotopy theory

(−) :̂ the rationalization functor on spaces, see §II.7.2.3, and on operads in sim-
plicial sets, see §II.10.2, §II.12.2 (also the completion of filtered objects, see the
section of this glossary about the background of our constructions)
Ω∗: the Sullivan cochain dg-algebra functor on simplicial sets, see §II.7.1
Ω∗� : the operadic upgrade of the cochain dg-algebra functor on operads in simplicial
sets, see §II.10.1, §II.12.1
G•: the functor from cochain dg-algebras to simplicial sets, see §II.7.2
MC•: the Maurer–Cartan spaces associated to (complete) Lie algebras, see §II.13.1.8

Operads and related structures

Indexing of operads

Σr: the symmetric group on r letters
Σ: the category of finite ordinals and permutations, see §I.2.2.3
Λ: the category of finite ordinals and injections, see §I.2.2.2
Λ+: the category of finite ordinals and increasing injections, see §I.2.2.2
Σ>0, Σ>1, Λ>0, Λ>1, . . . : the full subcategory of the category Σ, Λ, . . . generated
by the ordinals of cardinal r > 0, r > 1, see §I.2.2.2, §I.2.4.1
Bij : the category of finite sets and bijections, see §I.2.5.1
Inj : the category of finite sets and injections, see §I.2.5.9
Bij>0, Bij>1, Inj>0, Inj>1, . . . : the full subcategory of the categories Bij , Inj ,
. . . generated by the finite sets of cardinal r > 0, r > 1, see §I.2.5.9
m, n, . . . , r, . . . : generic notation for finite ordinals r = {1 < · · · < r} or for finite
sets r = {i1, . . . , ir} used to index the terms of operads, symmetric sequences and
Λ-sequences
0, 1, 2, . . . : the empty ordinal, the ordinal of cardinal one 1 = {1}, of cardinal two
2 = {1 < 2}, . . .

Categories of operads and related

Op: the category of (symmetric) operads, see §I.1.1.2
Op∅: the category of non-unitary (symmetric) operads, see §I.1.1.20
Op∅1: the category of connected (symmetric) operads, see §I.1.1.21
Opc

∅1: the category of (symmetric) cooperads, see §II.9.1.8
ΛOp∅ /Com: the category of augmented non-unitary Λ-operads (the postfix ex-
pression −/Com can be discarded when the augmentation is trivial), see §I.2.2.17
ΛOp∅1 /Com: the category of augmented connected Λ-operads (the postfix expres-
sion −/Com can be discarded when the augmentation is trivial), see §I.2.4
Seq : the category of symmetric sequences, see §I.1.2
Seq>0: the category of non-unitary symmetric sequences, see §I.1.2.13
Seq>1: the category of connected symmetric sequences, see §I.1.2.13
Seqc, Seqc>0, Seq

c
>1: same as Seq , Seq>0, Seq>1 but used instead of this notation in

the context of cooperads
Λ Seq : the category of Λ-sequences, see §I.2.3
Λ Seq>0: the category of non-unitary Λ-sequences, see §I.2.3
Λ Seq>1: the category of connected Λ-sequences, see §I.2.4.1
Λ Seqc: the category of covariant Λ-sequences
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Λ Seqc>0: the category of covariant non-unitary Λ-sequences
Λ Seqc>1: the category of covariant connected Λ-sequences, see §II.11.1.7
Coll : the category of (symmetric) collections, see §I.2.5.1
Coll>0: the category of non-unitary (symmetric) collections
Coll>1: the category of connected (symmetric) collections

Categories of Hopf operads and related

Hopf Op: the category of Hopf operads (defined as the category of operads in
counitary cocommutative coalgebras), see §I.3.2
Hopf Op∅, Hopf Op∅1: the non-unitary and connected variants of the category of
Hopf operads
Hopf ΛOp∅, Hopf ΛOp∅1: the Λ-operad variants of the categories of non-unitary
and connected Hopf operads, see §I.3.2.15
Hopf Seq : the category of Hopf symmetric sequences (defined as the category of
symmetric sequences in counitary cocommutative coalgebras), see §I.3.2.6
Hopf Seq>0, Hopf Seq>1: the non-unitary and connected variants of the category
of Hopf symmetric sequences
Hopf Λ Seq>0, Hopf Λ Seq>1: the Λ-sequence variants of the categories of non-
unitary and connected Hopf symmetric sequences
Hopf Opc

∅1: the category of Hopf cooperads (defined as the category of cooperads
in unitary commutative algebras), see §II.9.3.1
Hopf ΛOpc

∅1: the category of Hopf Λ-cooperads (defined as the category of coop-
erads in unitary commutative algebras), see §II.11.4.1
Hopf Seqc>1: the category of connected Hopf symmetric sequences underlying Hopf
cooperads (defined as the category of symmetric sequences in unitary commutative
algebras), see §II.9.3.1
Hopf Λ Seqc>1: the category of connected Hopf Λ-sequences underlying Hopf Λ-
cooperads (defined as the category of Λ-sequences in unitary commutative algebras),
see §II.11.4.1

Notation of operads

P, Q, . . . : generic notation for operads (of any kind)
M, N, . . . : generic notation for symmetric sequences, Λ-sequences, covariant Λ-
sequences
C , D, . . . : generic notation for cooperads (of any kind)
Cn: the operad of little n-cubes, see §I.4.1.3
Dn: the operad of little n-discs, see §I.4.1.7
As: the (non-unitary) associative operad, see §I.1.1.16, §I.1.2.6, §I.1.2.10
Com: the (non-unitary) commutative operad, see §I.1.1.16, §I.1.2.6, §§I.1.2.10-
2.1.11
Lie: the Lie operad, see §I.1.2.10
Pois: the Poisson operad, see §I.1.2.12
Gerstn: the n-Gerstenhaber operad (defined as a graded variant of the Poisson
operad), see §I.4.2.13
Comc: the commutative cooperad, see §II.9.1.3
CoS , PaS , CoB , PaB , . . . : see the section about the applications of operads to the
definition of Grothendieck–Teichmüller groups
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Constructions on operads and on cooperads

τ : the truncation functors from non-unitary operads to connected operads and
from augmented non-unitary Λ-operads to augmented connected Λ-operads, see
§I.1.2.15, Proposition I.2.4.5
Θ: the free operad functor, see §A.3
Θc: the cofree cooperad functor, see §C.1
ΘT(M): the treewise tensor product of a symmetric sequence M over a tree T when
regarded as a term of the free operad and of the cofree cooperad (same as the object
denoted by M(T) in the section about trees), see §A.2
ΣF r: the rth free symmetric sequence, see §II.8.1.2
ΛF r: the rth free Λ-sequence, see §II.8.3.6
∂ΛF r: the boundary of the rth free Λ-sequence, see §II.8.3.7
∂’ΛF r: the boundary of the rth free Λ-sequence in the context of connected Λ-
sequences, see §II.12.0.1
Res•: the cotriple resolution functor on operads, see §B.1, §II.8.5
B: the bar construction of operads, see §C.2 (also the classifying space of groups,
categories, and the bar construction of algebras, see the relevant sections of this
glossary)
Bc: the cobar construction of cooperads, see §C.2
K: the Koszul dual of operads, see §C.3
M(M)(r): the rth matching object of a Λ-sequence, see §II.8.3.1
ar≤s: the sth layer of the arity filtration of a Λ-sequence, see Proof of Theo-
rem II.8.3.20
ar

�
≤s: the operadic upgrade of the arity filtration, see Proof of Theorem II.8.4.12

coskΛr : the rth Λ-coskeleton of a Λ-sequence, see §II.8.3.3, of an augmented non-
unitary Λ-operad, see Proof of Theorem II.8.4.12

Trees

Tree(r): the category of r-trees (where r is the indexing set of the inputs of the
trees), see §A.1
Tree: the operad of trees, see §A.1

T̃ree(r): the category of reduced r-trees (where r is the indexing set of the inputs
of the trees), see §A.1.12

T̃ree: the operad of reduced trees, see §A.1.12
Tree◦(r): the category of planar r-trees (where r is the indexing set of the inputs of
the trees), see §A.3.16
Tree◦: the operad of planar trees, see §A.3.16
S, T, . . . : generic notation for trees
↓: the unit tree (the tree with no vertex), see §A.1.4
Y: the notation of a corolla (a tree with a single vertex), see §A.1.4
Γ: the notation of a tree with two vertices, see §A.2.3
V (T): the vertex set of a tree
E(T): the edge set of a tree

E̊(T): the set of inner edges of a tree
rv: the set of ingoing edges of a vertex in a tree
M(T): the treewise tensor product of a symmetric sequence M over a tree T (same
as the object denoted by ΘT(M) in the section about constructions on operads and
on cooperads), see §A.2
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λT: the treewise composition products associated to an operad, see §A.2.7
ρT: the treewise composition coproducts associated to a cooperad, see §C.1.5

From operads to Grothendieck–Teichmüller groups

Permutations, braids, and related objects

Σr: the symmetric group on r letters
Br: the Artin braid group on r strands, see §I.5.0
Pr: the pure braid group on r strands, see §I.5.0
p(r): the rth Drinfeld–Kohno Lie algebras (the Lie algebra of infinitesimal braids
on r strands), see §I.10.0.2
p̂(r): the complete Drinfeld–Kohno Lie algebra, see §I.10.0.6
pn(r): the graded variants of the Drinfeld–Kohno Lie algebras (with p(r) = p2(r)),
see §II.14.1.1
p: the Drinfeld–Kohno Lie algebra operad, see §I.10.1.1
pn: the graded variants of the Drinfeld–Kohno Lie algebra operad (with p = p2),
see §II.14.1.1
p̂: the complete Drinfeld–Kohno Lie algebra operad, see §I.10.2.2
CoS : the operad of colored symmetries, see §I.6.3
PaS : the operad of parenthesized symmetries, see §I.6.3
CoB: the operad of colored braids, see §§I.5.2.8-5.2.11, §I.6.2.7
PaB: the operad of parenthesized braids, see §I.6.2
CoB ,̂ PaB :̂ the Malcev completion of the colored and parenthesized braid operads,
see §I.10.1
CD :̂ the operad of chord diagrams, see §I.10.2.4
PaCD :̂ the operad of parenthesized chord diagrams, see §I.10.3.2

Grothendieck–Teichmüller groups and related objects

Ass(k): the set of Drinfeld’s associators, see §I.10.2.11
GT (k): the pro-unipotent Grothendieck–Teichmüller group, see §I.11.1
GRT : the graded Grothendieck–Teichmüller group, see §I.10.3
GT :̂ the profinite Grothendieck–Teichmüller group
grt: the graded Grothendieck–Teichmüller Lie algebra, see §I.10.4.6, §I.11.4
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[2] J. Adámek, J. Rosický, and E. M. Vitale. What are sifted colimits? Theory
Appl. Categ., 23:No. 13, 251–260, 2010.

[3] John Frank Adams. Infinite loop spaces, volume 90 of Annals of Mathematics
Studies. Princeton University Press, Princeton, N.J.; University of Tokyo
Press, Tokyo, 1978.

[4] Marcelo Aguiar and Swapneel Mahajan. Coxeter groups and Hopf algebras,
volume 23 of Fields Institute Monographs. American Mathematical Society,
Providence, RI, 2006. With a foreword by Nantel Bergeron.

[5] Marcelo Aguiar and Swapneel Mahajan. Monoidal functors, species and Hopf
algebras, volume 29 of CRM Monograph Series. American Mathematical So-
ciety, Providence, RI, 2010. With forewords by Kenneth Brown and Stephen
Chase and André Joyal.
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Hopf. Exposition. Math., 12(2):165–178, 1994.

[125] Jean-Louis Loday. Realization of the Stasheff polytope. Arch. Math. (Basel),
83(3):267–278, 2004.

[126] Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer, Heidelberg, 2012.

[127] Jacob Lurie. On the classification of topological field theories. In Current
developments in mathematics, 2008, pages 129–280. Int. Press, Somerville,
MA, 2009.

[128] Jacob Lurie. Higher algebra. Book project, 2014.
[129] Saunders Mac Lane. Homology. Classics in Mathematics. Springer-Verlag,

Berlin, 1995. Reprint of the 1975 edition.
[130] Saunders Mac Lane. Categories for the working mathematician, volume 5 of

Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1998.

[131] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial
group theory. Dover Publications, Inc., Mineola, NY, second edition, 2004.
Presentations of groups in terms of generators and relations.

[132] A. I. Mal′cev. Nilpotent torsion-free groups. Izvestiya Akad. Nauk. SSSR.
Ser. Mat., 13:201–212, 1949.

[133] Yuri I. Manin. Frobenius manifolds, quantum cohomology, and moduli spaces,
volume 47 of American Mathematical Society Colloquium Publications. Amer-
ican Mathematical Society, Providence, RI, 1999.

[134] Martin Markl. Distributive laws and Koszulness. Ann. Inst. Fourier (Greno-
ble), 46(2):307–323, 1996.

[135] Martin Markl. Models for operads. Comm. Algebra, 24(4):1471–1500, 1996.



518 BIBLIOGRAPHY

[136] Martin Markl. Operads and PROPs. In Handbook of algebra. Vol. 5, volume 5
of Handb. Algebr., pages 87–140. Elsevier/North-Holland, Amsterdam, 2008.

[137] Martin Markl. Deformation theory of algebras and their diagrams, volume
116 of CBMS Regional Conference Series in Mathematics. Published for the
Conference Board of the Mathematical Sciences, Washington, DC; by the
American Mathematical Society, Providence, RI, 2012.

[138] Martin Markl, Steve Shnider, and Jim Stasheff. Operads in algebra, topology
and physics, volume 96 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 2002.

[139] William S. Massey. A basic course in algebraic topology, volume 127 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1991.

[140] J. P. May. The geometry of iterated loop spaces. Springer-Verlag, Berlin-New
York, 1972. Lectures Notes in Mathematics, Vol. 271.

[141] J. Peter May. Simplicial objects in algebraic topology. Chicago Lectures in
Mathematics. University of Chicago Press, Chicago, IL, 1992. Reprint of the
1967 original.

[142] James E. McClure and Jeffrey H. Smith. A solution of Deligne’s Hochschild
cohomology conjecture. In Recent progress in homotopy theory (Baltimore,
MD, 2000), volume 293 of Contemp. Math., pages 153–193. Amer. Math.
Soc., Providence, RI, 2002.

[143] James E. McClure and Jeffrey H. Smith. Multivariable cochain operations
and little n-cubes. J. Amer. Math. Soc., 16(3):681–704, 2003.

[144] James S. Milne. Étale cohomology, volume 33 of Princeton Mathematical
Series. Princeton University Press, Princeton, N.J., 1980.

[145] John W. Milnor and John C. Moore. On the structure of Hopf algebras. Ann.
of Math. (2), 81:211–264, 1965.

[146] Shigeyuki Morita. Geometry of differential forms, volume 201 of Translations
of Mathematical Monographs. American Mathematical Society, Providence,
RI, 2001. Translated from the two-volume Japanese original (1997, 1998) by
Teruko Nagase and Katsumi Nomizu, Iwanami Series in Modern Mathemat-
ics.

[147] Hiroaki Nakamura and Leila Schneps. On a subgroup of the Grothendieck-
Teichmüller group acting on the tower of profinite Teichmüller modular
groups. Invent. Math., 141(3):503–560, 2000.

[148] Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi. Shifted

symplectic structures. Publ. Math. Inst. Hautes Études Sci., 117:271–328,
2013.
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E1-operads

and the associative operad, 140

recognition of, 140

E2-operads, see also the entry on
En-operads for the general definition
in terms of the little 2-discs operad

and the symmetrization of braided
operads, 176

recognition of, 176

En-operads, 139

E∞-operads

and the commutative operad, 140

recognition of, 140

Λ-operads, 70, 73

augmented non-unitary, see also
augmented non-unitary Λ-operads

non-unitary, see also non-unitary
Λ-operads

Λ-sequences, 74

augmented connected, see also
augmented connected Λ-sequences

augmented non-unitary, see also
augmented non-unitary Λ-sequences,

see also augmented non-unitary
Λ-sequences

connected, see also connected
Λ-sequences

non-unitary, see also non-unitary
Λ-sequences

n-Gerstenhaber operad, 147–148

and the homology of the little n-discs
operad, 148

n-Poisson operad, see also n-Gerstenhaber
operad

additive operads, 351

algebras over an operad, 17–18, 38

colimits of, 41

extension of structure of, 41–43

filtered colimits of, 41

free, 39–40, 43, 73

limits of, 41

reflexive coequalizers of, 41

restriction of structure of, 41–43

antipodes, 232–235
in Hopf groupoids, 312
left, 232
right, 232

arity, 6
aritywise tensor products

of Hopf operads, 115
of operads, 114
of symmetric sequences, 116

associahedra, 204
associative operad, 15, 19, 30, 32, 33

algebras over the, 38
and E1-operads, 140
and the little 1-discs operad, 134, 147
and the permutation operad, 15, 30, 33
as a Hopf operad, 119
presentation of the, 30, 32
presentation of the unitary, 89

associativity isomorphism
of the parenthesized braid operad, 211
of the parenthesized chord diagram

operad, 372
of the parenthesized permutation operad,

202
of the parenthesized symmetry operad,

221
augmentation ideal of a connected operad,

35, 429
augmentation ideal of an augmented

connected Λ-operad, 82
augmentation morphisms on operads, 58,

62
and free operads, 458
and the cotriple resolution, 496
and tree morphisms, 496
and trees, 458
and treewise composition products, 451
and treewise tensor products, 450,

465–466, 475
treewise representation of the, 66, 450,

465–466
augmented connected Λ-operads

and colimits, 87
and free operads, 82, 85, 466
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and the cotriple resolution of operads,
496

augmentation ideal of, 82
free, 82, 85, 466

augmented connected Λ-sequences, 81
augmented non-unitary Λ-operads, 70–72

and colimits, 87

and free operads, 75, 78, 458
and lifting of adjoint functors, 109–112
and symmetric monoidal functors, 107
and the cotriple resolution of operads,

496
and unit-preserving lax symmetric

monoidal functors, 107, 109–112
and unitary operads, 72
colimits of, 79
connected truncation of, 85–87
filtered colimits of, 79
free, 75, 78
limits of, 79
reflexive coequalizers of, 79
with terms indexed by finite sets, 96

augmented non-unitary Λ-sequences, 62, 74

Baker-Campbell-Hausdorff formula, 291

bialgebras, 231, 232
braid diagrams, 161
braid groups, 161–167

and the homotopy of configuration
spaces, 161–165

generators of the, 165
presentation of the, 165
pure, 161, 162

braid isotopies, 163
braid operad, 169
braided operads, 167

and the recognition of E2-operads, 176
and the universal coverings of the little

2-discs operad, 172–176
restriction operators on, 170
symmetrization of, 171

braiding isomorphism
of the parenthesized braid operad, 211

braids, 161
block, 167–169
concatenation of, 163
direct sums of, 167–169
generating, 165

generating pure, 341
identity, 163
isotopies of, 163

categories
closed symmetric monoidal, xxx
concrete, xxxi
concrete symmetric monoidal, xxxi
enriched, xxviii
monadic, 477, 500
symmetric monoidal, xxvi

category of finite ordinals and injections,
59–60, 81

and composition products, 66–69

category of finite sets and bijections, 90

and composition products, 93–94

chord diagram

and the Malcev completion of the
parenthesized braid operad, 363

chord diagram algebras, 355–358

chord diagram operad, 340, 358

and the Malcev completion of the
parenthesized braid operad, 359

and the Malcev completion of the
parenthezised braid operad, 394

fibers of the tower decomposition of the,
396

parenthesized, see also parenthesized
chord diagram operad

tower decomposition of the, 385–387

chord diagrams

algebras of, 348

classifying spaces, 178

and categorical equivalences of operads

in small categories, 180

and the adjunction with the fundamental
groupoid functor, 192

of operads in small categories, see also
the entry corresponding to the name of
the operad for each particular example
of application of this construction,
179–180

closed symmetric monoidal categories, xxx

colored braid operad, 181–184

algebras over the, 219

and the fundamental groupoids of the
little 2-discs operad, 189–192

classifying spaces of the, 184–187

Malcev completion of the, 351, 353

universal property of the, 219

colored permutation operad, 202

algebras over the, 207

universal property of the, 207

colored symmetry operad, 220–222

algebras over the, 224

universal property of the, 224

commutative operad, 15, 19, 30, 32, 33, 56,
72

algebras over the, 38, 101

and E∞-operads, 140

and symmetric monoidal categories, 56

and the little ∞-discs operad, 134, 147

and the one-point set operad, 15, 30, 33

as a Hopf operad, 115, 119

presentation of the, 30, 32

presentation of the unitary, 89

commutator expansions in the Malcev

completion of free groups, 297

comonads, 501
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complete enveloping algebras, 273

image of — in weight graded modules,
275

complete filtered modules, 261

and weight graded modules, 263–264, 266

complete colimits of, 261

direct sums of, 261

inclusions of, 261

quotients of, 261

symmetric monoidal category of, 265–266

tensor products of, 265–266

tower decomposition of, 261

complete free Lie algebras, 273

and the Malcev completion of free
groups, 296

complete group algebras, 279

adjunction between — and the groups of
group-like elements of complete Hopf
algebras, 279

and cartesian products, 283

and semi-direct products, 304

of abelian groups, 281

of the Malcev completion of free groups,
299

complete Hopf algebras, 267–268, 278

and the Milnor-Moore Theorem, 275

and the Poincaré-Birkhoff-Witt
Theorem, 275

and the Structure Theorem of Hopf
algebras, 274

exponential correspondence in, 280–281

group-like elements in, 279

morphisms of the groups of group-like
elements in, 281

complete Hopf categories

symmetric monoidal category of, 329

tensor products of, 329

complete Hopf groupoids, 316, 319

adjunction between — and the groupoids
of group-like elements in complete
Hopf groupoids, 321

associated to groupoids, 321

and cartesian products, 329

equivalences of, 317

morphisms of the groupoids of group-like
elements in, 322

symmetric monoidal category of, 329

tensor products of, 329

complete Lie algebras, 270–271

complete symmetric algebras, 273

group-like elements of, 281

image of — in weight graded modules,
275

complete tensor algebras, 273

and the Malcev completion of free

groups, 296, 299

image of — in weight graded modules,
275

complete unitary associative algebras, 271

complete unitary commutative algebras,
271

composition products of operads, 10, 48

and augmentations, 69

and edge contractions, 445–449

and restriction operators, 69

and trees, 438, 480

associativity relations, 53, 55, 448

equivariance relations, 49, 55

full, 7, 452

partial, 452

treewise, 24, 449

treewise representation of the, 50–52, 444

unit relations, 52, 55

composition products of trees, 438

and tree morphisms, 480

and treewise tensor products, 454

concrete symmetric monoidal categories,
xxxi

configuration spaces, 141

and the little n-discs operad, 142

cohomology of the, 142–144

homotopy of, 160

homotopy of — and braid groups,
161–165

restriction operators on, 142, 144

connected Λ-sequences, 81

augmented, see also augmented
connected Λ-sequences

connected Hopf Λ-operads, 121

connected Hopf operads, 121

connected operads, 22, 35, 37, 43

and colimits, 37

and free operads, 36, 463

as a monadic category, 500

augmentation ideal of, 35, 429

coproducts of, 474

cotriple resolution of, see also cotriple
resolution of operads

free, 36, 463, 485

treewise composition products of,
464–465

connected symmetric sequences, 35

and free operads, 36, 463

treewise tensor products of, see also
treewise tensor products, 463

connected truncation of augmented
non-unitary Λ-operads, 85–87

connected truncation of non-unitary
operads, 37

connected unitary operads, 22

and free operads, 85

free, 85

corollas, 433

treewise tensor products over, 444, 460

cosimplicial modules, xxv

cosimplicial objects
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in a category, xxii

cotriple resolution of operads, 486, 501

and augmented connected Λ-operad
structures, 496

and augmented non-unitary Λ-operad
structures, 496

and subtree decompositions, 489

and tree morphisms, 487–493

augmentation morphisms on the, 496

extra-degeneracies on the, 487, 493

for general (non-augmented) operads, 497

latching objects of the, 495–496

restriction operators on the, 496

counitary cocommutative coalgebras,
102–104, 228–229

and lax symmetric comonoidal functors,
104

cartesian products of, 103

coaugmented, 245

group-like elements in, 105

in a symmetric monoidal category,
102–104

operads in, see also Hopf operads

symmetric monoidal category of, 103, 229

tensor products of, 103, 229

dg-modules, xxi

disc center mapping, 141, 161

dodecagon relation, 217

Drinfeld’s associators, 363

action of the graded
Grothendieck–Teichmüller group on,
383–385

action of the Grothendieck–Teichmüller
group on, 408

existence of, 364

existence of rational, 394

fibers of the tower decomposition of the
set of, 396–397

hexagon relations of the, 360, 363

involution relation of, 360, 363

tower decomposition of the set of, 387,
393

unit relations of, 360, 363

Drinfeld’s hexagon, see also hexagon
relations

Drinfeld–Kohno Lie algebra operad,
350–351

unitary version of the, 351

weight graded, 350

Drinfeld–Kohno Lie algebras, 342

and the Malcev completion of the pure
braid groups, 344, 346

complete, 345

conjugation actions on the, 345

presentation of the, 342

edge contractions in a tree

and composition products of operads,
445–449

and tree morphisms, 482

edge set of a tree, 431

edges

contractions of — and composition
products of operads, 448

endomorphism operads, 15–18

enriched categories, xxviii

enveloping algebras, 242

and semi-direct products, 307

and the Poincaré-Birkhoff-Witt
Theorem, 255

and the representations of Lie algebras,
243

complete, see also complete enveloping
algebras

Hopf algebra structure on, 244

in complete filtered modules, see also
complete enveloping algebras

primitive elements of, 256

Eulerian idempotents, 250

exponential correspondence

and the Baker-Campbell-Hausdorff
formula, 291

exponential correspondence in complete
Hopf algebras, 280–281

extension of structure, 42

filtered colimits, 44

and multifunctors, 44

of algebras over an operad, 41

of augmented non-unitary Λ-operads, 79

of operads, 26

filtered modules, 259

and towers, 260

and weight graded modules, 263

complete, see also complete filtered
modules

completion of, 261

inclusions of, 259

quotients of, 259

symmetric monoidal category of, 265

tensor products of, 265

framed little n-discs operad, 156

free algebras over an operad, 39–40, 43, 73

free Lie algebras, 40, 243

and tensor algebras, 243, 246

completion of, 272

in complete filtered modules, see also
complete free Lie algebras

in weight graded modules, 269

weight decomposition of, 238

free module functor, 105

free non-symmetric operads, 461

free operads, 23–26, 457, 485

adjunction augmentation of, 457, 464
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and augmented connected Λ-operads, 82,
85, 466

and augmented non-unitary Λ-operads,
75, 78, 458

and composition products of trees,
454–455

and connected symmetric sequences, 36,
463

and Hopf operads, 117–118

and treewise composition products, 456

and treewise tensor products, 453, 460,
461, 463

augmentation morphisms on, 75–78,

82–85, 458

composition products of, 454–455

coproducts with, 469–474

morphisms on, 455–457

restriction operators on, 75–78, 82–85,
458

universal property of, 26, 457

weight decomposition of, 460

Fulton–MacPherson operad, 151–154

functors

unit-preserving, 123

fundamental groupoids, 188

and the adjunction with the classifying
space functor, 192

of operads, 188–189, see also the entry
on the little 2-discs operad for the
particular case of this operad

geometric realization of simplicial sets,
xxiv, 124

and operads, 108

Gerstenhaber operad, see also
n-Gerstenhaber operad

graded Grothendieck–Teichmüller group,
378–383

action of the — on Drinfeld’s associators,
383–385

composition operation of the, 382

Drinfeld’s definition of the, 382

filtration of the, 394–396

hexagon relations of the, 380

invertibility condition of the, 381

involution relation of the, 380

isomorphism of the — with the
pro-unipotent
Grothendieck–Teichmüller group, 409

Lie algebra of the, see also graded
Grothendieck–Teichmüller Lie algebra,
390

pentagon relation of the, 380

semi-classical hexagon relations of the,
380

semi-direct product decomposition of
the, 383

tower decomposition of the, 388

unit relations of the, 380

graded Grothendieck–Teichmüller Lie
algebra, 390

and the Grothendieck–Teichmüller
group, 420

hexagon relation of the, 390

involution relation of the, 390

pentagon relation of the, 390

semi-classical hexagon equation of the,
392

semi-classical hexagon relation of the,
390

unit relations of the, 390

weight decomposition of the, 392,
394–396

graded Hopf operads, 129, 141, 147

graded modules, xxi, 157

hom-objects of, 158

Hopf operads in, see also graded Hopf
operads

operads in, see also graded operads

symmetric monoidal category of, 157

tensor products of, 157

graded operads, 141

Grothendieck–Teichmüller group, 401–408

action of the — on Drinfeld’s associators,
408

and the graded
Grothendieck–Teichmüller Lie algebra,
420

composition operation of the, 407

Drinfeld’s definition of the, 407

filtration of the, 415–417

filtration subquotients of the, 417

graded, see also graded
Grothendieck–Teichmüller group

hexagon relations of the, 403

invertibility condition of the, 406

involution relation of the, 403

isomorphism of the pro-unipotent —
with the graded
Grothendieck–Teichmüller group, 409

pentagon relation of the, 404

pro-unipotent, see also
Grothendieck–Teichmüller group

semi-direct product decomposition of

the, 410

tower decomposition of the, 412–414

unit relations of the, 403

group algebras, 235

adjunction between — and the groups of
group-like elements of Hopf algebras,
236

complete, see also complete group
algebras

group filtrations, 284

and the exponential correspondence, 285

and weight graded Lie algebras, 284
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in Malcev complete groups, 285

in the Grothendieck–Teichmüller group,
415–417

in the Malcev completion of free groups,
298

in the Malcev completion of the pure
braid groups, 348

group-like elements

adjunction between the groups of — of
complete Hopf algebras and complete
group algebras, 279

adjunction between the groups of — of
Hopf algebras and group algebras, 236

and tensor products, 283

and the exponential correspondence, 280

in a complete coalgebra, 279, 318

in a complete Hopf algebra, 279

in a complete Hopf groupoid, 318, 321

adjunction between the groupoid of —
and complete Hopf groupoids, 321

in a Hopf algebra, 235–236

in a Hopf groupoid, 314

adjunction between the groupoid of —
and Hopf groupoids, 314

in complete Hopf groupoids, 335

and tensor products, 329

in counitary cocommutative coalgebras,
105

in the truncation of complete Hopf

algebras, 289

of complete symmetric algebras, 281

of the complete group algebras of abelian
groups, 281

groupoids, 178, 181

connected, 314

fundamental, see also fundamental
groupoids

Malcev completion of, 328

operads in, see also operads in groupoids

hexagon relations, 213

for Drinfeld’s associators, 360, 363

of the graded Grothendieck–Teichmüller
group, 380

of the graded Grothendieck–Teichmüller
Lie algebra, 390

of the Grothendieck–Teichmüller group,

403

hom-objects, xxix

homomorphisms, xxix

Hopf Λ-operads, 121

Hopf algebras, 232

and the Milnor-Moore Theorem, 256

complete, see also complete Hopf
algebras

completion of, 278

group-like elements in, 235–236

in complete filtered modules, see also
complete Hopf algebras

in weight graded modules, see also
weight graded Hopf algebras

locally conilpotent, 247
of groups, 235
semi-direct products of, 303

smash products of, see also Hopf
algebras, semi-direct products of, 303

Structure Theorem of, 248
symmetric monoidal category of, 257
tensor products of, 257
weight graded, see also weight graded

Hopf algebras
Hopf categories, 312

in complete filtered modules, 315
symmetric monoidal category of, 329
tensor products of, 329

Hopf groupoids, 312
adjunction between — and the groupoids

of group-like elements in Hopf
groupoids, 314

associated to groupoids, 313
complete, see also complete Hopf

groupoids
completion of, 319

and the completion of Hopf algebras,
320

geometrically connected, 314
globally connected, 314

in complete filtered modules, see also
complete Hopf groupoids, 315

locally connected, 314
symmetric monoidal category of, 329
tensor products of, 329

Hopf operads, 112–115
algebras over, 121
and free operads, 117–118
aritywise tensor products of, 115
connected, 121
free, 118
in graded modules, see also graded Hopf

operads
presentation of — by generators and

relations, 119
Hopf symmetric sequences, 116

infinitesimal braiding, 372

of the parenthesized chord diagram
operad, 372

ingoing edges
of a tree, 431
of a vertex in a tree, 433

inner edges of a tree, 432
iterated loop spaces, 136

Recognition Theorem of, 137

Knizhnik–Zamolodchikov associator, 364,
426
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and multizeta values, 426

Knizhnik–Zamolodchikov connection, 346

and the Knizhnik–Zamolodchikov
associator, 364

Kontsevich operad, 154

lax symmetric comonoidal functor, 123

unit-preserving, 123

lax symmetric comonoidal functors, 123

and counitary cocommutative coalgebras,
104

lax symmetric monoidal functors, 123

and operads, 107, 109–112

and unitary commutative algebras, 104

unit-preserving, 123

and augmented non-unitary Λ-operads,
107, 109–112

and unitary operads, 107, 109–112

Lie algebras, 237

and torsion phenomena, 238

colimits of, 256

complete, see also complete Lie algebras

direct sums of, 256

enveloping algebra of, 242

in a Q-additive symmetric monoidal
category, 237

in complete filtered modules, see also
complete Lie algebras

in weight graded modules, see also
weight graded Lie algebras

limits of, 256

representations of, 243

semi-direct products of, 307

weight graded, see also weight graded
Lie algebras

Lie operad, 32, 33, 238

algebras over the, 38, 238

presentation of the, 32

little 2-discs operad, see also the entry on
the little n-discs operad for the general
definition, 159, 161

braided operads and the universal
coverings of the, 172–176

fundamental groupoids of the — and the
colored braid operad, 189–192

fundamental groupoids of the — and the
parenthesized braid operad, 209–211

little n-cubes operad, 135

little n-discs operad, 131–134

and configuration spaces, 142

and iterated loop spaces, 137

composition products of the, 132

framed, 156

homology of the, 147–150

unit of the, 132

unitary version of the, 133

local coefficient system operads, 332, 351

local coefficient systems, 326

locally conilpotent Hopf algebras, 247

and the Milnor-Moore Theorem, 256

and the Structure Theorem of Hopf
algebras, 248

and weight graded Hopf algebras, 268

Mac Lane Coherence Theorem, 203

Mac Lane’s pentagon, see also pentagon
relation, see also Stasheff’s
associahedra

magma operad, 198–199

and parenthesized words, 198

unitary version of the, 200

Malcev complete groupoids, 322

equivalences of, 322

fibers of the tower decompositions of, 326

isomorphisms of, 327

local coefficient systems on, 326

operads in, see also operads in Malcev
complete groupoids

tower decomposition of, 323–326

Malcev complete groups, 283

and complete enveloping algebras, 288

and weight graded Lie algebras, 285

group filtrations on, 285

isomorphisms of, 287

tower decomposition of, 285, 288, 289

Malcev completion, 293

and presentations of groups by
generators and relations, 301

and weight graded Lie algebras, 293–295

idempotence of the — on free groups,
300–301

idempotence of the — on the pure braid
groups, 348

of abelian groups, 293

of free groups, 296–301

of groupoids, 328

and cartesian products, 334

and operads, see also Malcev

completion, of operads in groupoids

and the Malcev completion of groups,
328

universal property of the, 328

of groups, see also Malcev completion

universal property of the, 293

of nilpotent groups, 295

of operads in groupoids, see also the
entry corresponding to the name of the
operad for each particular example of
application of the Malcev completion
construction on operads, 334

universal property of the, 334

of semi-direct products, 306, 309

of the pure braid groups, 342

and the Drinfeld–Kohno Lie algebras,
344, 346

Milnor-Moore Theorem, 256
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and locally conilpotent Hopf algebras,
256

for complete Hopf algebras, 275
for weight graded Hopf algebras, 269

moduli spaces of curves
Deligne–Mumford–Knudsen

compactification of the, 155

monadic categories, 477
and operads, 500

monads, 477, 485, 498
and adjunctions, 499

morphisms, xxix

non-symmetric operads, 8
free, 461

non-unitary Λ-operads, 70
augmented, see also augmented

non-unitary Λ-operads
non-unitary Λ-sequences, 61, 74

augmented, see also augmented, see also
augmented non-unitary Λ-sequences

non-unitary Hopf Λ-operads, 121
non-unitary operads, 8, 21, 35, 37, 57

and colimits, 37
as a monadic category, 500

connected truncation of, 37
unitary extensions of, 22, 57, 70

non-unitary symmetric sequences, 35
normalized complex

of a simplicial module, xxv

one-point set operad, 15, 20
and commutative monoids, 20
and the commutative operad, 30

operads, see also the entry corresponding
to the name of the operad for each
specific example of an operad, 56

algebras over, 17–18
and lax symmetric monoidal functors,

107, 109–112
and lifting of adjoint functors, 109–112
and monads, 43
and symmetric monoidal adjunctions,

108

and symmetric monoidal functors, 107,
108

aritywise tensor products of, 114
as a monadic category, 500
augmentation morphisms on

and composition products, 69
braided, see also braided operads
colimits of, 26
composition products of, 48

and augmentations, 69
and restriction operators, 69
associativity relations, 53, 55, 448
equivariance relations, 49, 55
treewise representation of the, 50–52,

444

unit relations, 52, 55

connected, see also connected operads

coproducts of, 28, 469–473

cotriple resolution of, see also cotriple
resolution of operads

endomorphism, 15–17

filtered colimits of, 26

free, see also free operads

full composition products of, 7, 11, 452

associativity relations, 8, 10, 14

equivariance relations, 7, 10, 11

treewise representation of the, 11–12,
452

unit relations, 8, 14

ideals of, 32

in counitary cocommutative coalgebras,
see also Hopf operads

in graded modules, see also graded
operads

in groupoids, see also operads in

groupoids

in Malcev complete groupoids, see also
operads in Malcev complete groupoids

in small categories, see also operads in
small categories

limits of, 26

May’s definition of, 7

non-symmetric, 8

free, 461

non-unitary, see also non-unitary operads

partial composition products of, see also
composition products of operads, 10,
48, 452

associativity relations, 53, 55, 448

equivariance relations, 49, 55

treewise representation of the, 50–52,
444, 452

unit relations, 52, 55

presentation of — by generators and
relations, 29, 32, 38

reflexive coequalizers of, 26

restriction operators on

and composition products, 69

simplicial, see also simplicial operads

symmetric, 8

topological, see also topological operads

treewise representation of, 11–12, 50–52,
444

unit morphism of, 7

unit of, 10

unitary, see also unitary operads

with terms indexed by finite sets, 95

operads in groupoids, see also the entry
corresponding to the name of the
operad each specific example of an
operad in groupoids, 178
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categorical equivalences of, see also
operads in small categories, categorical
equivalences of, 178

Malcev completion of, 334

pullbacks of, 201

operads in Malcev complete groupoids, 330

categorical equivalences of, 330

fibers of the tower decomposition of, 332

tower decomposition of, 331–334

operads in small categories, see also the
entry corresponding to the name of the
operad for each specific example of an
operad in small categories, 178

and classifying spaces, 179–180

categorical equivalences of, 178

and classifying spaces, 180

outgoing edge

of a tree, 431

of a vertex in a tree, 431

parenthesized braid operad, 208, 400

algebras over the, 219

and the fundamental groupoids of the
little 2-discs operad, 209–211

associativity isomorphism of the, 211

braiding isomorphism of the, 211

fibers of the tower decomposition of the,
417

Malcev completion of the, 351, 353

Malcev completion of the — and the
chord diagram operad, 359–363

tower decomposition of the, 412

universal property of the, 212

parenthesized chord diagram operad,
369–373

associativity isomorphism of the, 372

infinitesimal braiding of the, 372

symmetry isomorphism of the, 372

universal property of the, 373

parenthesized permutation operad, 202

algebras over the, 207

associativity isomorphism of the, 202

universal property of the, 203

parenthesized symmetry operad, 220–222

algebras over the, 224

associativity isomorphism of the, 221

symmetry isomorphism of the, 221

universal property of the, 223

parenthesized words, 198

and permutations, 200

and planar binary trees, 199

and the magma operad, 198

parenthezised braid operad

Malcev completion of the — and the
chord diagram operad, 394

pentagon relation, 203

for Drinfeld’s associators, 360, 363

of the graded Grothendieck–Teichmüller
group, 380

of the graded Grothendieck–Teichmüller
Lie algebra, 390

of the Grothendieck–Teichmüller group,
404

permutation operad, 15, 20, 63, 95

and associative monoids, 20

and the associative operad, 30

composition products of the, 49

full composition products of the, 15

partial composition products of the, 49

restriction operators on the, 63

permutations

block, 13

composition products of, 49

direct sums of, 13

full composition products of, 15

partial composition products of, 49

planar

trees, 461

planar binary trees, 199

Poincaré-Birkhoff-Witt Theorem, 255

for complete Hopf algebras, 275

for weight graded Hopf algebras, 269

Poisson operad, 34

as a Hopf operad, 120

of degree n− 1, see also n-Gerstenhaber
operad

presentation of the, 34

presentation of the unitary, 89

presentation of Hopf operads by generators
and relations, 119

presentation of operads by generators and
relations, 29, 32

and algebras, 38

presentation of unitary operads by
generators and relations, 88

primitive elements

and the exponential correspondence, 280

in coaugmented coalgebras, 245

in complete Hopf algebras, 273

and weight graded modules, 275

in Hopf algebras, 245–246

Lie algebra structure on, 245

of semi-direct products of Hopf algebras,
307

of symmetric algebras, 246

of tensor algebras, 246

pro-unipotent Grothendieck–Teichmüller
group, see also
Grothendieck–Teichmüller group

profinite Grothendieck–Teichmüller group,

423

pullbacks of operads in groupoids, 201

pure braid groups, 162

and the homotopy of configuration
spaces, 161
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generators of the, 341

Malcev completion of the, 342, 348
and the Drinfeld–Kohno Lie algebras,

344, 346

presentation of the, 341

quasi-free operads, 494

in simplicial modules, 494
in simplicial sets, 494

reduced trees, 433, 441
isomorphisms of, 461

morphisms of, see also tree morphisms
operad of, 441

reflexive coequalizers, 45
and multifunctors, 45
of algebras over an operad, 41

of augmented non-unitary Λ-operads, 79
of operads, 26

restriction of structure, 41
restriction operators on operads, 58

and free operads, 458
and reduced trees, 441

and the cotriple resolution, 496
and tree morphisms, 496

and trees, 439, 458
and treewise composition products, 451

and treewise tensor products, 450,
465–466, 475

associativity relations, 60

equivariance relations, 60
treewise representation of the, 63–66,

450, 465–466

semi-alternate two-colored trees, 467
treewise tensor products over, 467–469,

473

semi-classical hexagon relation, 372
of the graded Grothendieck–Teichmüller

group, 380

of the graded Grothendieck–Teichmüller
Lie algebra, 390, 392

semi-direct products of Hopf algebras, 303

in weight graded modules, 308
semi-direct products of Lie algebras, 307

in weight graded modules, 308
sifted colimits, 46
simplices, xxii

topological, xxii
simplicial modules, xxv

simplicial objects
in a category, xxii

simplicial operads, 8
homology of, see also topological

operads, homology of

weak-equivalences of, 180
simplicial sets, xxii

geometric realization, xxiv, 124
and operads, 108

smash products of Hopf algebras, see also
semi-direct products of Hopf algebras,
303

Stasheff’s associahedra, see also
associahedra, 205

Structure Theorem of Hopf algebras, 248

for complete Hopf algebras, 274

for weight graded Hopf algebras, 269

subtrees, 434

and tree morphisms, 481

edge set of, 435

vertex set of, 435

symmetric algebras, 40, 239–241

completion of, 272

Hopf algebra structure on, 241

in complete filtered modules, see also
complete symmetric algebras

in weight graded modules, 269

primitive elements of, 246

weight decomposition of, 239

symmetric collections, 90

and symmetric sequences, 91–92

treewise representation of, 92–93

symmetric comonoidal transformation, 123

symmetric monoidal adjunctions, 125

and operads, 108

symmetric monoidal categories, xxvi

Q-additive, 236
and counitary cocommutative coalgebras,

102–104

and Lie algebras, 237

and unitary commutative algebras,
100–101

closed, xxx

concrete, xxxi

symmetric monoidal functors, 123

and augmented non-unitary Λ-operads,
107

and counitary cocommutative coalgebras,
104

and operads, 107, 108

and unitary commutative algebras, 104

and unitary operads, 107

lax, see also lax symmetric monoidal
functors

symmetric monoidal transformation, 123

symmetric operads, see also operads

symmetric sequences, 23

and symmetric collections, 91–92

aritywise tensor products of, 116

connected, see also connected symmetric
sequences

non-unitary, see also non-unitary

symmetric sequences

treewise tensor products of, 443

symmetry isomorphism

of the parenthesized chord diagram
operad, 372
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of the parenthesized symmetry operad,
221

Teichmüller tower, 422

tensor algebras, 40, 239–241

completion of, 272

Hopf algebra structure on, 241

in complete filtered modules, see also
complete tensor algebras

in weight graded modules, 269

primitive elements of, 246

weight decomposition of, 239

tensor products

aritywise — of Hopf operads, 115

aritywise — of operads, 114

aritywise — of symmetric sequences, 116

distribution over colimits, xxvii

of complete filtered modules, 265–266

of counitary cocommutative coalgebras,
103, 229

of filtered modules, 265

of graded modules, 157

of Hopf algebras, 257

of unitary associative algebras, 230

of unitary commutative algebras, 102

of weight graded modules, 266

over finite sets, xxviii

treewise, 24, 443

topological operads, 8

homology of, 144–147

weak-equivalences of, 129

tower decomposition

of complete filtered modules, 261

of Malcev complete groupoids, 323–326

fibers of the, 326

of Malcev complete groups, 285, 288, 289

of operads in Malcev complete groupoids,
331–334

fibers of the, 332

of the chord diagram operad, 385–387,
396

of the graded Grothendieck–Teichmüller
group, 388

of the Grothendieck–Teichmüller group,
412–414

of the parenthesized braid operad, 412

of the set of Drinfeld’s associators, 387,
393, 396

tree morphisms, 478–483

and edge contractions, 482

and reduced trees, 483

and subtree decompositions, 481

and the cotriple resolution of operads,
487–493

augmentation morphisms on, 496

restriction operators on, 480, 496

trees, 431

augmentation morphisms on, 458

composition products of, 438, 454, 480

edge set of, 431

ingoing edges of, 431

inner edge set of, 432

isomorphisms of, 436, 461

morphisms of, see also tree morphisms

operad of, 438, 442, 480

outgoing edge of, 431

planar, 461

reduced, 433, 441

restriction operators on, 439, 458

restriction operators on reduced, 441

semi-alternate two-colored, 467

subtrees of, see also subtrees

symmetric collection of, 437

symmetric sequence of, 437

unit, 433

vertex set of, 431

with one vertex, see also corollas, 433

with two vertices, 444

treewise composition operations, see also
treewise composition products

treewise composition products, 24, 449

and augmentation morphisms, 451

and connected operads, 464–465

and free operads, 456

and restriction operators, 451

treewise tensor products, 24, 443

and composition products of operads, 444

and composition products of trees, 454

and free operads, 453

and the cotriple resolution of operads,

487–493

and tree morphisms, 483

augmentation morphisms on, 450,
465–466, 475, 496

over corollas, 444, 460

over semi-alternate two-colored trees,
467–469, 473

over the unit tree, 444, 460

restriction operators on, 450, 465–466,
475, 496

tripleable, see also monadic

unipotent algebraic groups, 292

unit operad, 26

unit tree, 433

treewise tensor products over the, 444,
460

unit-preserving functors, 104, 123

unital operad, 21

unitary associative algebras, 229

complete, see also complete unitary
associative algebras

in complete filtered modules, see also
complete unitary associative algebras

tensor products of, 230

unitary commutative algebras, 100–101
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and lax symmetric monoidal functors,
104

complete, see also complete unitary
commutative algebras

coproducts of, 102
in a symmetric monoidal category,

100–101

in complete filtered modules, see also
complete unitary commutative
algebras

symmetric monoidal category of, 102
tensor products of, 102

unitary connected operads
and colimits, 88

unitary extensions of operads, 22, 57, 70
unitary operads, 21, 57, 73

and augmented non-unitary Λ-operads,
72

and colimits, 88
and free operads, 78
and lifting of adjoint functors, 109–112
and symmetric monoidal functors, 107
and unit-preserving lax symmetric

monoidal functors, 107, 109–112
and unitary extensions of operads, 22,

57, 70
colimits of, 80
connected, see also connected unitary

operads
free, 78

limits of, 80
presentation of — by generators and

relations, 88
with terms indexed by finite sets, 96

vertex set of a tree, 431

weight graded Hopf algebras, 267–268
and the Milnor-Moore Theorem, 269
and the Poincaré-Birkhoff-Witt

Theorem, 269
and the Structure Theorem of Hopf

algebras, 269
semi-direct products of, 308

weight graded Lie algebras, 269
and group filtrations, 284
and the Malcev completion of semi-direct

products of groups, 309
semi-direct products of, 308

weight graded modules, 263
and complete filtered modules, 263–264,

266
and filtered modules, 263
symmetric monoidal category of, 266
tensor products of, 266

Yang–Baxter relations, 342
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