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LEADING GOALS:
@ Classification of topological spaces up to homotopy
@ Quantise Poisson manifolds
@ Fundamental theorem of deformation theory

Math+ Berlin Colloquium Why Higher Structures?



Table of contents

0 Algebraic Topology in the XXth century
e Homotopy+Algebra=Higher Structures

e Lie methods in Deformation Theory

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Table of contents

0 Algebraic Topology in the XXth century

Math+ Berlin Colloquium i Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

Math+ Berlin Colloquium er Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

O

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

O

@ STRONG EQUIVALENCE: up to homeomorphisms

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

O #

@ STRONG EQUIVALENCE: up to homeomorphisms no

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

O #

@ STRONG EQUIVALENCE: up to homeomorphisms no

@ WEAK EQUIVALENCE: up to homotopy equivalence
“continuous deformation without cutting”

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

Q ~

@ STRONG EQUIVALENCE: up to homeomorphisms no

@ WEAK EQUIVALENCE: up to homotopy equivalence
“continuous deformation without cutting” yes

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

Q ~

@ STRONG EQUIVALENCE: up to homeomorphisms no

@ WEAK EQUIVALENCE: up to homotopy equivalence
“continuous deformation without cutting” yes

MeTHOD: find a set of faithful algebraic invariants

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

Q ~

@ STRONG EQUIVALENCE: up to homeomorphisms no

@ WEAK EQUIVALENCE: up to homotopy equivalence
“continuous deformation without cutting” yes

MeTHOD: find a set of faithful algebraic invariants

@ Betti numbers := number of holes:

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

Q ~

@ STRONG EQUIVALENCE: up to homeomorphisms no

@ WEAK EQUIVALENCE: up to homotopy equivalence
“continuous deformation without cutting” yes

MeTHOD: find a set of faithful algebraic invariants

@ Betti numbers := number of holes: homotopy invariant

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

Q ~

@ STRONG EQUIVALENCE: up to homeomorphisms no

@ WEAK EQUIVALENCE: up to homotopy equivalence
“continuous deformation without cutting” yes

MeTHOD: find a set of faithful algebraic invariants

homotopy invariant

@ Betti numbers := number of holes: ;
— not faithfull

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Homotopy equivalence

— \ Classification of topological spaces

Q ~

@ STRONG EQUIVALENCE: up to homeomorphisms no

@ WEAK EQUIVALENCE: up to homotopy equivalence
“continuous deformation without cutting” yes
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IDEA: Encode algebraically a cellular decomposition 3
0
2
Z{0-cells} & Z{1-cells} & Z{2-cells} - -- | dp(c) = Z +c
¢’ €o(c)
dim ¢/=n—1

@ Orientation = Signs = d,_10d, =0

EXAMPLE: Z0D - - ®Z3 +— 7018 .- - 723 + 7012 «— 0 + ---
dn(aO"'an)227:0(71)130"'é\i"'an

Definition (differential graded module or chain complex)
(CO = {Cn}neNy d= {dn}neN) s.t. d2 =0
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Homology groups

Definition (Homology groups) EXAMPLE: Hy(X,Z) = Z,
Hn(X,Z) = kerd,_1/imdy Hy(X,7Z) = 72, Hy(X,Z) = 0

PROPERTIES: dim Hy = number of connected components
dim H; = number of holes

@ Linear dual notion of cohomology groups
@ “Equivalent” definitions: de Rham complex, singular homology

Proposition (Homotopy invariance)
X ~Y = Hn(X,Z) 2 Hpy(Y,Z), Yn e N

— not faithful!

— Amount of algebra used: | Linear algebra |
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Definition (Loop space)

Q(X,x) = {p:[0,1] = X |
¢ continuous , p(0) = ¢(1) = x}

21) foro<t< 5
CONCATENATION PRODUCT: @ x 1(t) = p(21) , SS2n
P (D) { pRt—1), forl<t<1.
o i 3 1

— is x associative? °
) P w

NO: (¢ * 1) * w#p * (1) * w) 1
0 ; % 1
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Definition (Loop space)

Q(X,x) = {p:[0,1] = X |
¢ continuous , p(0) = ¢(1) = x}

. _ ) w(2D), foro<t<j,
CcT: =
CONCATENATION PRODUCT: ¢ % 1)(t) { bRt-1), forl<t<i.
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— is x associative? ’
Y ONY\ w
NO: (¢ * 1) * w#p * (1) * w) 1
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@ GoAL 1: encode how functorial these invariants are
X Hn(X,Z)
f continuousl e lHn(f) morphism
Y Ha(Y,Z)

Définition (Category [Eilenberg—MacLane, 1942])
OBJECTS+COMPOSABLE ARROWS: Q:.g
“monoid with many base points” // \/
EXAMPLE: Topological spaces+continuous maps C- Oy

@ GOAL 2: compare the invariants i
. 7

Theorem (Hurewicz) Top H Group

71 (X) = m(X)/[m1(X), 71 (X)] = Hi(X, Z) N

Math+ Berlin Colloquium Why Higher Structures?



Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants

Classical algebraic structures

Category theory
@ GOAL 1: encode how functorial these invariants are
X Ha(X, Z)
f continuousl e lHn(f) morphism
Y Ha(Y,Z)

Définition (Category [Eilenberg—MacLane, 1942])

OBJECTS+COMPOSABLE ARROWS: )
“monoid with many base points” // \/
EXAMPLE: Topological spaces+continuous maps C- Oy

@ GOAL 2: compare the invariants /’”\(
Theorem (Hurewicz) Top H Group
71 (X) = m(X)/[m1(X), 71 (X)] = Hi(X, Z) N

— 2-category (higher structure)
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ASSOCIATIVE ALGEBRAS

\ skew-symmetrisation
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COMMUTATIVE ALGEBRAS LIE ALGEBRAS

1 2 2 3 3 1
1 2 2 1 3 4 A
= . + + =0
Y Y Koszul duality \ﬂ/ \<( \<(
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ASSOCIATIVE ALGEBRAS

\ skew-symmetrisation
u

COMMUTATIVE ALGEBRAS LIE ALGEBRAS
f 2 2 1 1 2 . 2 3 . 3 1 .
Y = Y . + + =0
Koszul duality

@ skew-symmetrisation: [x, y] = xy — yx .
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The three Graces

ASSOCIATIVE ALGEBRAS

\ skew-symmetrisation
u

COMMUTATIVE ALGEBRAS LIE ALGEBRAS
f 2 2 1 1 2 . 2 3 ) 3 1 .
e i ’ ’ =0
Koszul duality

@ skew-symmetrisation: [x, y] = xy — yx .

Definition (Universal enveloping algebra)

(Ug:=T(a)/(x2y —y@x—[xy])]

where T(g) = @,y 9" : free associative algebra (nc polynomials)
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Classical algebraic structures

° ( oing (X, Z), U, d): singular cochains with the cup product

‘differential graded associative algebra‘

o (H:

sing

(X,Z),0): singular cohomology with the cup product

| graded commutative algebra |
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Classical algebraic structures

(C;mg( Z),U,d): singular cochains with the cup product

‘differential graded associative algebra‘

® (Hg.,(X,Z),0): singular cohomology with the cup product

sing

| graded commutative algebra |

FIRST HIGHER HOMOTOPY: Uy : Cgpng (X, 7)%2 — Céing(X, Z)

doUy +Ujo(d®id) 4+ Uy o (id®d) = U —ul1?)
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Classical algebraic structures

(C;mg( Z),U,d): singular cochains with the cup product

‘differential graded associative algebra‘

® (Hg.,(X,Z),0): singular cohomology with the cup product

sing

| graded commutative algebra |

FIRST HIGHER HOMOTOPY: Uy : Cgpng (X, 7)%2 — Céing(X, Z)

doUy +Ujo(d®id) 4+ Uy o (id®d) = U —ul1?)
@ (met1(X),[,]): homotopy groups with the Whitehead bracket
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Classical algebraic structures

(C;mg( Z),U,d): singular cochains with the cup product

‘differential graded associative algebra‘

® (Hg.,(X,Z),0): singular cohomology with the cup product

sing

| graded commutative algebra |

FIRST HIGHER HOMOTOPY: Uy : Cgpng (X, 7)%2 — Céing(X, Z)

doUy +Ujo(d®id) 4+ Uy o (id®d) = U —ul1?)
@ (met1(X),[,]): homotopy groups with the Whitehead bracket

\graded Lie algebra\
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(C;mg( Z),U,d): singular cochains with the cup product

‘differential graded associative algebra‘

® (Hg.,(X,Z),0): singular cohomology with the cup product

sing

| graded commutative algebra |

FIRST HIGHER HOMOTOPY: Uy : Cgpng (X, 7)%2 — Céing(X, Z)

doUy +Ujo(d®id) 4+ Uy o (id®d) = U —ul1?)
@ (met1(X),[,]): homotopy groups with the Whitehead bracket

\graded Lie algebra\

homotopy invariant
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Classical algebraic structures

(C;mg( Z),U,d): singular cochains with the cup product

‘differential graded associative algebra‘

® (Hg.,(X,Z),0): singular cohomology with the cup product

sing

| graded commutative algebra |

FIRST HIGHER HOMOTOPY: Uy : Cgpng (X, 7)%2 — Céing(X, Z)

doUy +Ujo(d®id) 4+ Uy o (id®d) = U —ul1?)
@ (met1(X),[,]): homotopy groups with the Whitehead bracket

\graded Lie algebra\

homotopy invariant— not faithful!
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Algebraic Topology in the XXth century Homotopy invariants
Comparing invariants
Classical algebraic structures

Classical algebraic structures

(C;mg( Z),U,d): singular cochains with the cup product

‘differential graded associative algebra‘

® (Hg.,(X,Z),0): singular cohomology with the cup product

sing

| graded commutative algebra |

FIRST HIGHER HOMOTOPY: Uy : Cgpng (X, Z)%2 — Céing(X, Z)

doUy +Ujo(d®id) 4+ Uy o (id®d) = U —ul1?)
@ (met1(X),[,]): homotopy groups with the Whitehead bracket

\graded Lie algebra\

homotopy invariant— not faithful!

— Amount of algebra used:

associative, commutative, Lie algebra‘
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Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: AA> A, A2=0
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)

p:A=H:ipi=idy, ip=idy
— |§:=pAi, 6°=0
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
p:A==H:ipi=idy,ip=ids 0"=pA Ip Ai=p A"

—7 =0
— [6=pri, 2=0 =
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
p:A==H:ipi=idy,ip=ids 0"=pA Ip Ai=p A"

=ida =0
=0 O

@ ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

— |5=pAi , 2=0
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
p:A==H:ipi=idy,ip=ids 0"=pA Ip Ai=p A"

=ida =0
=0 O

@ ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

n( é@

— |5=pAi , 2=0
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
0c=pA ip Ai=p A° |
=ids =0
=0 O

p:A=H:ipi=idy, ip=idy

— |5=pAi , 2=0

@ ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

e :p O n(C (A da) = (H. d)

! IdA—Ip—dAh-l- hdy
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
=pA ip Ai=p A° |
=ida =0
=0 O

p:A=H:ipi=idy, ip=idy

— |5=pAi , 2=0

@ ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

e N O n(C (A da) = (H. d)

! idA—ip:dAh-l- hdy

@ TRANSFERRED STRUCTURE: 41 := pAi
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
0c=pA ip Ai=p A° |
=ids =0
=0 O

p:A=H:ipi=idy, ip=idy

— |5=pAi , 2=0

@ ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

e :p O n(C (A da) = (H. d)

idga — ip = dAh+ hds # 0
@ TRANSFERRED STRUCTURE: 4§71 := pAj
2 _ ; A2
— (61) —[)A\I,[/)/#AI,[I\A/I—O
#ida =0
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
0c=pA ip Ai=p A° |
=ids =0
=0 O

p:A=H:ipi=idy, ip=idy

— |5=pAi , 2=0

@ ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

e :p O n(C (A da) = (H. d)

IdA—lp—dAh-l-hdA;éO

@ TRANSFERRED STRUCTURE: 4y := pAj (61)2#0
2 _ ; N A2
— (61)°=pA ip #Aip A® i=0
#ida —0
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Transfer of structure

@ SIMPLEST ALGEBRAIC STRUCTURE: ’A A=A, A2=0

Proposition (Transfer of structure)
0c=pA ip Ai=p A° |
=ids =0
=0 O

p:A=H:ipi=idy, ip=idy

— |5=pAi , 2=0

@ ALGEBRAIC HOMOTOPY EQUIVALENCE: Deformation retract

e :p O n(C (A da) = (H. d)

IdA—lp—dAh-l-hdA;éO

@ TRANSFERRED STRUCTURE: 4y := pAj (61)2#0
2 . . ~ . 2 . —
— (61)°=pA ip ~Aip AO i=0
~idg =
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First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi
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First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi

- 8(52) ‘= dads + 0ody = (51 )2
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First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi

- 8(52) ‘= dads + 0ody = (51 )2

+ 0 is @ homotopy for the relation (§1)? = 0
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First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi

- 8(52) ‘= dads + 0ody = (51 )2

+ 0 is @ homotopy for the relation (§1)? = 0

@ QUESTION: strict relation §1d5 + 9261 = 07
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First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi

- 8(52) ‘= dads + 0ody = (51 )2

+ 0 is @ homotopy for the relation (§1)? = 0

@ QUESTION: strict relation 615 + 6201 = 0? no # 0
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First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi

- 8(52) ‘= dads + 0ody = (51 )2

+ 0 is @ homotopy for the relation (§1)? = 0

@ QUESTION: strict relation 615 + 6201 = 0? no # 0

@ IDEA: introduce an even higher operation \53 = pAhAQhAI
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First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi

- 8(52) ‘= dads + 0ody = (51 )2

+ 0 is @ homotopy for the relation (§1)? = 0

@ QUESTION: strict relation 615 + 6201 = 0? no # 0

@ IDEA: introduce an even higher operation \53 = pAhAQhAI

- 8((53) = 0102 + 204

Math+ Berlin Colloquium Why Higher Structures?



Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

First higher operations

@ IDEA: introduce a higher operation | éd2 := pAhAi

- 8(52) ‘= dads + 0ody = (51 )2

+ 0 is @ homotopy for the relation (§1)? = 0

@ QUESTION: strict relation 615 + 6201 = 0? no # 0

@ IDEA: introduce an even higher operation \53 = pAhAQhAI

- 8((53) = 0102 + 204

+ d3 is a homotopy for the relation 612 + d201 =0
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Higher structure: multicomplex

Higher up, we consider: |4, := p(Ah)"'Ai|, forn>1
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Homotopy+Algebra=Higher Structures

Multicomplexes

Homotopy associative algebras

Operadic calculus

Higher structure: multicomplex

Higher up, we consider:

o = p(AR)"'Ai|, forn>1

Proposition

n—1
0(0n) = 0kdnk
k=1

, for n>1.
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Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras

Operadic calculus

Higher structure: multicomplex

Higher up, we consider: |4, := p(Ah)"'Ai|, forn>1

Proposition

n—1
0(0n) = kbn_k |, for n>1.
k=1

Definition (Multicomplex)

(H, 00 :== —dy, d1,02,...) graded vector space H endowed with a
family of linear operators of degree [6,| = 2n — 1 satisfying

n
Z(Skdn_k:O , forn>0.
k=0
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Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher structure: multicomplex

Higher up, we consider: |4, := p(Ah)"'Ai|, forn>1

Proposition

n—1
0(0n) = kbn_k |, for n>1.
k=1

Definition (Multicomplex)

(H, 00 :== —dy, d1,02,...) graded vector space H endowed with a
family of linear operators of degree [6,| = 2n — 1 satisfying

n
Zéké,,_k =0|, forn>0.
k=0

@ MIXED COMPLEX OR BICOMPLEX: multicomplex s.t. §, =0, n > 2.
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Operadic calculus

Multicomplexes are homotopy stable

@ Starting now from a multicomplex (A, Ag = —da, Aq, Ao, . ..)
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Multicomplexes are homotopy stable

@ Starting now from a multicomplex (A, Ag = —da, Aq, Ao, . ..)
@ Consider the transferred operators

(Sn = Z pAk1 hAkzh...hAk/i s for n> 1
Kky+---+k=n
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Multicomplexes are homotopy stable

@ Starting now from a multicomplex (A, Ag = —da, Aq, Ao, . ..)
@ Consider the transferred operators

(Sn = Z pAk1 hAkzh...hAk/i s for n> 1
Kky+---+k=n

Proposition

n—1
0(0n) = > 0kdn_k| inHom(A,A), for n>1
k=1
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Homotopy+Algebra=Higher Structures

Multicomplexes
Homotopy associative algebras
Operadic calculus

Multicomplexes are homotopy stable

@ Starting now from a multicomplex (A, Ag = —da, Aq, Ao, . ..)

@ Consider the transferred operators

Kky+---+k=n

(Sn = Z pAk1 hAkzh. .. hAk/i s for n > 1

Proposition

n—1
0(0n) = _ OkOn—k
k=1

inHom(A, A), for n > 1

— Again a multicomplex, no need of further higher structure

16/34
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher morphisms

(A, Do = —da, A1, D,...) <— (H, 60 = —dy, 51,02, ...)

Original structure Transferred structure
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Higher morphisms

(A, Do = —da, A1, D,...) <— (H, 60 = —dy, 51,02, ...)

Original structure Transferred structure

@ jchain map <
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Higher morphisms

(A, Do = —da, A1, D,...) <— (H, 60 = —dy, 51,02, ...)

Original structure Transferred structure

@ jchain map <

@ QUESTION: does i commute with the higher A’s and ¢’s?
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher morphisms

(A, Do = —da, A1, D,...) <— (H, 60 = —dy, 51,02, ...)

Original structure Transferred structure
@ ichainmap < |Aqi=idy
@ QUESTION: does i commute with the higher A’s and ¢’s?
i6y = ip Aqi# Aqi ingenerall
~—~

~p ida
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Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher morphisms

(A, Do = —da, A1, D,...) <— (H, 60 = —dy, 51,02, ...)

Original structure Transferred structure

@ jchain map <

@ QUESTION: does i commute with the higher A’s and ¢’s?

i01 = ip A4i# Aqi ingenerall
~~
~p ida
Definition (co-morphism)
ioo E (H, (50 = —dH, 51 y 52, .. )W(A, AO = —dA, A-] y Ag, .. )
collection of maps {in: H — A},>o satisfying
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher morphisms

(A, Do = —da, A1, D,...) <— (H, 60 = —dy, 51,02, ...)

Original structure Transferred structure

@ jchain map <

@ QUESTION: does i commute with the higher A’s and ¢’s?

i01 = ip A4i# Aqi ingenerall
~~
~p ida
Definition (co-morphism)
ioo E (H, (50 = —dH, 51 y 52, .. )W(A, AO = —dA, A-] y Ag, .. )
collection of maps {in: H — A},>o satisfying

n n
Z Ap_klx = Z ikOn—k ] for n>0.
k=0 k=0
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oco-quasi-isomorphism

Definition (co-quasi-isomorphism)

oo-morphism j: H <5 A s.t. iy : H = A homology isomorphism
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oco-quasi-isomorphism

Definition (co-quasi-isomorphism)

oo-morphism j: H <5 A s.t. iy : H = A homology isomorphism

Proposition
oco-quasi-isomorphisms are (homotopy) invertible
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oco-quasi-isomorphism

Definition (co-quasi-isomorphism)

oo-morphism j: H <5 A s.t. iy : H = A homology isomorphism

Proposition
oco-quasi-isomorphisms are (homotopy) invertible

— Wrong for homology isomorphisms of mixed complexes:
not invertible!
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

oco-quasi-isomorphism

Definition (co-quasi-isomorphism)
oo-morphism j: H <5 A s.t. iy : H = A homology isomorphism

Proposition
oco-quasi-isomorphisms are (homotopy) invertible

— Wrong for homology isomorphisms of mixed complexes:
not invertible!

(1-X)"=1+X+X2+ X3+~ inK[[X]]. u

Math+ Berlin Colloquium Why Higher Structures?
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])
Given any deformation retract

(" (A, da) = (H, di) ida — ip = dah + hda

and any mixed complex (or multicomplex) structure on A, there
exists a multicomplex structure on H such that i and p extend to
oco-quasi-isomorphisms and such that h extends to an co-homotopy.
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Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])
Given any deformation retract

(" (A, da) = (H, di) ida — ip = dah + hda

and any mixed complex (or multicomplex) structure on A, there
exists a multicomplex structure on H such that i and p extend to
oco-quasi-isomorphisms and such that h extends to an co-homotopy.

— | explicit formulas & no loss of algebro-homotopic data
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Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])
Given any deformation retract

(" (A, da) = (H, di) ida — ip = dah + hda

and any mixed complex (or multicomplex) structure on A, there
exists a multicomplex structure on H such that i and p extend to
oco-quasi-isomorphisms and such that h extends to an co-homotopy.

— | explicit formulas & no loss of algebro-homotopic data

@ APPLICATION 1: spectral sequences
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Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])
Given any deformation retract

(" (A, da) = (H, di) ida — ip = dah + hda

and any mixed complex (or multicomplex) structure on A, there
exists a multicomplex structure on H such that i and p extend to
oco-quasi-isomorphisms and such that h extends to an co-homotopy.

— | explicit formulas & no loss of algebro-homotopic data

@ APPLICATION 1: spectral sequences
@ APPLICATION 2: cyclic homology
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Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])
Given any deformation retract

(" (A, da) = (H, di) ida — ip = dah + hda

and any mixed complex (or multicomplex) structure on A, there
exists a multicomplex structure on H such that i and p extend to
oco-quasi-isomorphisms and such that h extends to an co-homotopy.

— | explicit formulas & no loss of algebro-homotopic data

@ APPLICATION 1: spectral sequences

@ APPLICATION 2: cyclic homology (Connes’ boundary map
B= d,, Chern characters = i..)
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Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Homotopy Transfer Theorem for multicomplexes

Theorem (Homotopy Transfer Theorem [Lapin 2001])
Given any deformation retract

(" (A, da) = (H, di) ida — ip = dah + hda

and any mixed complex (or multicomplex) structure on A, there
exists a multicomplex structure on H such that i and p extend to
oco-quasi-isomorphisms and such that h extends to an co-homotopy.

— | explicit formulas & no loss of algebro-homotopic data

@ APPLICATION 1: spectral sequences

@ APPLICATION 2: cyclic homology (Connes’ boundary map
B= d,, Chern characters = i..)

@ APPLICATION 3: optimal version of the dd-lemma

Math+ Berlin Colloquium Why Higher Structures?
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Doors of hell or pandora’s box?
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Doors of hell or pandora’s box?

F

Verse-nous ton poison pour gu’il nous réconforte !
Nous voulons, tant ce feu nous brlle le cerveau,

5 Plonger au fond du gouffre, Enfer ou Ciel, qu’'importe ?
Au fond de I'lnconnu pour trouver du nouveau !

Le voyage, Charles Baudelaire (Les fleurs du mal, 1861)
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Transfer associative algebra structure

@ ANOTHER ALGEBRAIC STRUCTURE: associative algebra v = Y
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Transfer associative algebra structure

@ ANOTHER ALGEBRAIC STRUCTURE: associative algebra v = Y

Proposition (Transfer of structure)

p:A=H:ipi=idy,ip=idy = up := p v i®?: associative
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Transfer associative algebra structure

@ ANOTHER ALGEBRAIC STRUCTURE: associative algebra v = Y

Proposition (Transfer of structure)

p:A=H:ipi=idy,ip=idy = up := p v i®?: associative

M2Y=_i\p(i
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Transfer associative algebra structure

@ ANOTHER ALGEBRAIC STRUCTURE: associative algebra v = Y

Proposition (Transfer of structure)

p:A=H:ipi=idy,ip=idy = up := p v i®?: associative

M2Y=_i\p(i
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Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Transfer associative algebra structure

@ ANOTHER ALGEBRAIC STRUCTURE: associative algebra v= Y

Isomorphism — Deformation retract: hC A, da) —= (H, dh)
ida — ip = dAh-l-hdA #0

M2Y=i\p(i

FAENEN
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Transfer associative algebra structure

@ ANOTHER ALGEBRAIC STRUCTURE: associative algebra v= Y

Isomorphism — Deformation retract: hC A, da) —= (H, dh)
ida — ip = dAh-l-hdA #0

M2Y=i\p(i

b EJV
RIVNER
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Multicomplexes
Homotopy associative algebras
Operadic calculus

Transfer associative algebra structure

@ ANOTHER ALGEBRAIC STRUCTURE: associative algebra v= Y

Isomorphism — Deformation retract:

M2Y=i\p(i

e

Math+ Berlin Colloquium

SEN
N

(" (A, da) = (H, di)
ida — ip = dAh-l-hdA#O

not associative!

Why Higher Structures?
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Higher operations

@ IDEA: introduce a higher operation g : H®® — H

Math+ Berlin Colloquium igher Structures?



Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher operations

@ IDEA: introduce a higher operation g : H®® — H

> mesures the failure of

_ \( i _ i
Y B hY \(h associativity for o
p p

Math+ Berlin Colloquium Why Higher Structures?



Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher operations

@ IDEA: introduce a higher operation g : H®® — H

i\(i P IB/I the failure of
Y:= S mesures
[

associativity for uo

a(Y): \'<( ; ?‘/ in Hom(H®3, H)

Math+ Berlin Colloquium Why Higher Structures?



Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher operations

@ IDEA: introduce a higher operation g : H®® — H

i\(i P IB/I the failure of
Y:= S mesures
[

associativity for uo

a(Y): \'ﬁ/ ; ?‘/ in Hom(H®3, H)

< g is a homotopy for the associativity relation of .

Math+ Berlin Colloquium Why Higher Structures?



Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
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Higher operations

@ IDEA: introduce a higher operation g : H®® — H

i\(i P IB/I the failure of
Y:= S mesures
[

associativity for uo

a(Y): \'ﬁ/ ; ?‘/ in Hom(H®3, H)

< g is a homotopy for the associativity relation of .

12 « n o f>/
e Even higher operations: \*/ D e
i H®" — H, ¥n>2 P Y
P
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Higher structure: homotopy associative algebras

The operations {jun}n>2 satisfy

T ZB EP AN
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Higher structure: homotopy associative algebras

The operations {jun}n>2 satisfy

(N ) -2

1=j=<k

(Ha 1 = dHaMZv/'LSa o c )

pn: H®" — H
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— Starting from an A -algebra (A, da, 10,13, .. .):
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Operadic calculus

A..-algebras are homotopy stable

— Starting from an A -algebra (A, da, 10,13, .. .):

Consider |up = \*/ _3. .>’h

v —

Proposition

— Again an A.-algebra, no need of further higher structure
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Higher morphisms

(A) dAa Vp,l3,.. ) <I_ (Ha dHa K2, 13, - - )

Original structure Transferred structure
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher morphisms

(A) dAa Vp,l3,.. ) <I_ (Ha dHa K2, 13, - - )

Original structure Transferred structure

@ jchain map <~

@ QuEesTION: Does i commutes with the higher v’s and p’s?
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Operadic calculus

Higher morphisms

i
(A) dAa Vo, 3, .. ) — (Ha dH’/'L27:U’37 . )
Original structure Transferred structure
@ ichain map <—
@ QuEesTION: Does i commutes with the higher v’s and p’s?
— not in general!
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Higher morphisms

i
(A, dA, Vo,l3, .. ) — (H, dH, M2, (143, . . )
Original structure Transferred structure
@ ichain map <—
@ QuEesTION: Does i commutes with the higher v’s and p’s?
— not in general!

Définition (As-morphism)
(H, dy, {pn}tn>2)~(A, da, {vn}n>2): collection {f, : H®" — A};>4
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Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Higher morphisms

i
(A, dA, Vo,l3, .. ) — (H, dH, M2, (143, . . )
Original structure Transferred structure
@ ichain map <—
@ QuEesTION: Does i commutes with the higher v’s and p’s?
— not in general!

Définition (As-morphism)
(H, dy, {pn}tn>2)~(A, da, {vn}n>2): collection {f, : H®" — A};>4

W
_ 2 )
k+l=n+1
l<j=<k
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Homotopy Transfer Theorem for A,.-algebras

A..-QUASI-ISOMORPHISM: i : H <5 A s.it. o : H S A homology iso.
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Homotopy Transfer Theorem for A,.-algebras

A..-QUASI-ISOMORPHISM: i : H <5 A s.it. o : H S A homology iso.

Theorem (HTT for A..-algebras [Kadeshvili 1982])

Given a A.-algebra A and a deformation retract
n(C(Ada) == (H.dy)  ida—ip=dah+ hdy

there exists an A —a/gebra structure on H such that i, p, and h
extend to A -quasi-isomorphisms and A..-homotopy respectively.
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A..-QUASI-ISOMORPHISM: i : H <5 A s.it. o : H S A homology iso.

Theorem (HTT for A..-algebras [Kadeshvili 1982])

Given a A.-algebra A and a deformation retract
n(C(Ada) == (H.dy)  ida—ip=dah+ hdy

there exists an A —a/gebra structure on H such that i, p, and h
extend to A -quasi-isomorphisms and A..-homotopy respectively.

— ‘ explicit formulas & no loss of algebro-homotopic data
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Homotopy Transfer Theorem for A,.-algebras

A..-QUASI-ISOMORPHISM: i : H <5 A s.it. o : H S A homology iso.

Theorem (HTT for A..-algebras [Kadeshvili 1982])

Given a A.-algebra A and a deformation retract
n(C(Ada) == (H.dy)  ida—ip=dah+ hdy

there exists an A —a/gebra structure on H such that i, p, and h
extend to A -quasi-isomorphisms and A..-homotopy respectively.

— ‘ explicit formulas & no loss of algebro-homotopic data‘

@ APPLICATION 1: Massey products on H*( X, K)
— Galois cohomology, elliptic curves, etc.
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Homotopy Transfer Theorem for A,.-algebras

A..-QUASI-ISOMORPHISM: i : H <5 A s.it. o : H S A homology iso.

Theorem (HTT for A..-algebras [Kadeshvili 1982])

Given a A.-algebra A and a deformation retract

n(C(Ada) == (H.dy)  ida—ip=dah+ hdy

there exists an A —a/gebra structure on H such that i, p, and h
extend to A -quasi-isomorphisms and A..-homotopy respectively.

— ‘ explicit formulas & no loss of algebro-homotopic data‘

@ APPLICATION 1: Massey products on H*( X, K)
— Galois cohomology, elliptic curves, etc.

@ APPLICATION 2 : A, -categories
— Floer cohomology, mirror symmetry, etc.
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Operadic calculus [1994-now]

= P~: quasi-free resolution (cofibrant) ]

Y Y
category of algebras C category of P-algebra =
of type P category of homotopy P-algebras
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Operadic calculus [1994-now]

= P~: quasi-free resolution (cofibrant) ]

Y Y
category of algebras C category of P-algebra =
of type P category of homotopy P-algebras

Ass=T (V) /(¢ = V)< A= (T (Yo Ve ).d).

quotient quasi—free
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Operadic calculus [1994-now]

= P~: quasi-free resolution (cofibrant) ]

Y Y
category of algebras C category of P-algebra =
of type P category of homotopy P-algebras

Ass=T (V) /(¢ = V)< A= (T (Yo Ve ).d).
quotient quasi—free

@ EXAMPLES: Lies,, Coms., LieBi,, Frobenius.,, etc.
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= P~: quasi-free resolution (cofibrant) ]

Y Y
category of algebras C category of P-algebra =
of type P category of homotopy P-algebras

Ass=T (V) /(¢ = V)< A= (T (Yo Ve ).d).
quotient quasi—free

@ ExAmPLES: Lie,,, Com, LieBi,,, Frobenius.,, etc.
@ THEOREM: Homotopy transfer theorem
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Operadic calculus [1994-now]

= P~: quasi-free resolution (cofibrant) ]

Y Y
category of algebras C category of P-algebra =
of type P category of homotopy P-algebras

Ass:T(Y)/<\<( - \2/) EAL = (T(\(@\(@---) ,d).
quotient quasi—free
@ ExAmPLES: Lie,,, Com, LieBi,,, Frobenius.,, etc.
@ THEOREM: Homotopy transfer theorem
@ ApPLICATIONS: Feynman diagrams, NC probability, etc.
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Multicomplexes
Homotopy+Algebra=Higher Structures Homotopy associative algebras
Operadic calculus

Operadic calculus [1994-now]

= P~: quasi-free resolution (cofibrant) ]

Y Y
category of algebras C category of P-algebra =
of type P category of homotopy P-algebras

Ass:T(Y)/<\<( - \2/) EAL = (T(\(@\(@---) ,d).
quotient quasi—free
@ ExAmPLES: Lie,,, Com, LieBi,,, Frobenius.,, etc.
@ THEOREM: Homotopy transfer theorem
@ ApPLICATIONS: Feynman diagrams, NC probability, etc.

Theorem (Mandell [2005])

The homotopy type of a topological space X is faithfully detected

by the E..-algebra structure on its singular cochains sjing(X ,2).
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@ LIE 3 THEOREM: Lie algebra g =25 Lie Group G
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Classical Lie theory

@ LIE 3 THEOREM: Lie algebra g =25 Lie Group G

Definition (Baker—Campbell-Hausdorff formula)
BCH(x, y) = In (exp(x).exp(y)) € K((x,y)) = Ass(x, y)
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@ LIE 3 THEOREM: Lie algebra g =25 Lie Group G

Definition (Baker—Campbell-Hausdorff formula)
BCH(x, y) = In (exp(x).exp(y)) € K((x,y)) = Ass(x, y)

@ BCH(x,y) =X +y + 3[x, I+ 156, 06 Y11+ 15l [yl + -
€ L/e(x y) C Ass(x Y)
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@ LIE 3 THEOREM: Lie algebra g =25 Lie Group G

Definition (Baker—Campbell-Hausdorff formula)
BCH(x, y) = In (exp(x).exp(y)) € K((x,y)) = Ass(x, y)

® BCH(X,y) = x +y + 5[x,¥] + 350 [X, Y1l + 15y, [x, yIT + -
€ L/e(x y) C Ass(x y)
@ BCH(BCH(x, y),z) = BCH(x,BCH(y, 2))
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Definition (Baker—Campbell-Hausdorff formula)
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Classical Lie theory

@ LiE 39 THEOREM: Lie algebra g =2 Lie Group G

Definition (Baker—Campbell-Hausdorff formula)
BCH(x, y) = In (exp(x).exp(y)) € K((x,y)) = Ass(x, y)

® BCH(X,y) = x +y + 5%, y] + 3506 X Y1 + g5y, [, vl + -
€ Lie(x,y) C Ass(x,y)

@ BCH(BCH(x, y),z) = BCH(x,BCH(y, 2))

@ BCH(x,0) = x = BCH(0, x)

Definition (Hausdorff group)
(g,[,]) complete Lie algebra
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Derived deformation theory
Quantisation of Poisson manifolds
Fundamental theorem of deformation theory

Lie methods in Deformation Theory

Classical Lie theory

@ LiE 39 THEOREM: Lie algebra g =2 Lie Group G

Definition (Baker—Campbell-Hausdorff formula)

BCH(x, y) = In (exp(x).exp(y)) € K((x,y)) = Ass(x, y)

® BCH(X,y) = x +y + 5%, y] + 3506 X Y1 + g5y, [, vl + -
€ Lie(x,y) C Ass(x,y)

@ BCH(BCH(x, y),z) = BCH(x,BCH(y, 2))

@ BCH(x,0) = x = BCH(0, x)

Definition (Hausdorff group)

(g,[,]) complete Lie algebra = G := (g, BCH, 0) Hausdorff group

29/34
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Deformation theory

— DIFFERENTIAL GRADED LIE ALGEBRA: (g,[,],d)
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Deformation theory

— DIFFERENTIAL GRADED LIE ALGEBRA: (g,[,],d)

Definition (Maurer—Cartan elements)
MC(g) ={a€g_y|da+ %[a,a] =0}
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Deformation theory

— DIFFERENTIAL GRADED LIE ALGEBRA: (g,[,],d)

Definition (Maurer—Cartan elements)
MC(g) ={a€g_y|da+ %[a,a] =0}

Proposition
The Hausdorff group G of gq acts on MC(g)
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Deformation theory

— DIFFERENTIAL GRADED LIE ALGEBRA: (g,[,],d)
Definition (Maurer—Cartan elements)
MC(g) = {a € g_1 | da+ }[o,a] = 0}

Proposition
The Hausdorff group G of gq acts on MC(g)

— PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”
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Definition (Maurer—Cartan elements)
MC(g) = {a € g_1 | da+ }[o,a] = 0}

Proposition
The Hausdorff group G of gq acts on MC(g)

— PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A «+— MC(gp )
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Deformation theory

— DIFFERENTIAL GRADED LIE ALGEBRA: (g,[,],d)
Definition (Maurer—Cartan elements)
MC(g) = {a € g_1 | da+ }[o,a] = 0}

Proposition
The Hausdorff group G of gq acts on MC(g)

— PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A «+— MC(gp )
equivalence — G
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Deformation theory

— DIFFERENTIAL GRADED LIE ALGEBRA: (g,[,],d)
Definition (Maurer—Cartan elements)
MC(g) = {a € g_1 | da+ }[o,a] = 0}

Proposition
The Hausdorff group G of gq acts on MC(g)

— PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A «+— MC(gp )
equivalence — G

@ (Hoch*(A,A),[,]gerst): associative algebras / isomorphisms
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Deformation theory

— DIFFERENTIAL GRADED LIE ALGEBRA: (g,[,],d)

Definition (Maurer—Cartan elements)
MC(g) ={a€g_y|da+ %[a,a] =0}

Proposition
The Hausdorff group G of gq acts on MC(g)

— PHILOSOPHY: “Any deformation problem over a field of
characteristic 0 can be encoded by a dg Lie algebra.”

structures of type P on a “space” A «+— MC(gp )
equivalence — G

@ (Hoch*(A,A),[,]gerst): associative algebras / isomorphisms
@ (F(A*TM),[,]sn) : Poisson structure / diffeomorphisms
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, ) can be quantised:
3 associative product x on C*(M)[[R]] s.t. g = - and xy = {, }
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, ) can be quantised:
3 associative product x on C*(M)[[R]] s.t. g = - and xy = {, }

@ The functor: dg nilpotent Lie algebra (g,[,],d) — MC(g)/G
sends quasi-isomorphisms to bijections.
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, ) can be quantised:
3 associative product x on C*(M)[[R]] s.t. g = - and xy = {, }

@ The functor: dg nilpotent Lie algebra (g,[,],d) — MC(g)/G
sends quasi-isomorphisms to bijections.

@ The Hochschild—Kostant—Rosenberg quasi-isomorphism
F(A*TM) = Hoch®(C>=(M), C>=(M))
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, ) can be quantised:
3 associative product x on C*(M)[[R]] s.t. g = - and xy = {, }

@ The functor: dg nilpotent Lie algebra (g,[,],d) — MC(g)/G
sends quasi-isomorphisms to bijections.

@ The Hochschild—Kostant—Rosenberg quasi-isomorphism
F(A*TM) = Hoch®(C>=(M), C>=(M))
(fails to respect to Lie brackets)
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, ) can be quantised:
3 associative product x on C*(M)[[R]] s.t. g = - and xy = {, }

@ The functor: dg nilpotent Lie algebra (g,[,],d) — MC(g)/G
sends quasi-isomorphisms to bijections.

@ The Hochschild—Kostant—Rosenberg quasi-isomorphism
F(A*TM) = Hoch®(C>=(M), C>=(M))
(fails to respect to Lie brackets)
extends to a Lie,,-quasi-isomorphism.
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Deformation quantisation of Poisson manifolds

Theorem (Kontsevich [1997])

Any Poisson manifold (M, ) can be quantised:
3 associative product x on C*(M)[[R]] s.t. g = - and xy = {, }

@ The functor: dg nilpotent Lie algebra (g,[,],d) — MC(g)/G
sends quasi-isomorphisms to bijections.

@ The Hochschild—Kostant—Rosenberg quasi-isomorphism
F(A*TM) = Hoch®(C>=(M), C>=(M))
(fails to respect to Lie brackets)
extends to a Lie,,-quasi-isomorphism.
@ 1 Lie,,-quasi-isomorphism < 3 zig-zag of quasi-isomorphismEs]
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Fundamental theorem of deformation theory

Definition (Deformation functor)
Given a dg Lie algebra (g,[,],d):

Defy:  Artinrings — groupoids
RE2Kem —~ (MC (gem),G)
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Fundamental theorem of deformation theory

Definition (
Given a dg Lie algebra (g,[,],d):

Defy: dg Artinrings —  oo- groupoids  s.t. [...]
REZKem — (MC,(g@m),G)
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Fundamental theorem of deformation theory

Definition (
Given a dg Lie algebra (g,[,],d):

Defy: dg Artinrings —  oo- groupoids  s.t. [...]
REZKem — (MC,(g@m),G)

@ HEURISTIC: oo-groupoid <« topological space «» Kan complex
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Definition (
Given a dg Lie algebra (g,[,],d):
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Lie methods in Deformation Theory Fundamental theorem of deformation theory

Fundamental theorem of deformation theory

Definition (
Given a dg Lie algebra (g,[,],d):

Defy: dg Artinrings —  oo- groupoids  s.t. [...]
REZKem — (MC,(g@m),G)

@ HEURISTIC: oo-groupoid <« topological space «» Kan complex

Theorem ([Pridham—Lurie 2010])

charK = 0 = equivalence of co-categories:

Formal moduli problems PN dg Lie algebras

Math+ Berlin Colloquium Why Higher Structures?
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Inventory “a la Prevert”

« [...] une douzaine d’huitres un citron un pain un rayon de soleil une
lame de fond six musiciens [...] » Inventaire (Paroles, 1946)
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Quantisation of Poisson manifolds
Lie methods in Deformation Theory Fundamental theorem of deformation theory

Inventory “a la Prevert”

« [...] une douzaine d’huitres un citron un pain un rayon de soleil une
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@ Unification of the Grothendieck—Teichmdiller group
and the Givental group
[Dotsenko—Shadrin—Vallette—Vaintrob 2020]
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