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5.10. Exercises 146

Chapter 6. Operadic homological algebra 151
6.1. Infinitesimal composite 152
6.2. Differential graded S-module 154
6.3. Differential graded operad 156
6.4. Operadic twisting morphism 162
6.5. Operadic Bar and Cobar construction 167
6.6. Operadic Koszul morphisms 172
6.7. Proof of the Operadic Comparison Lemmas 173
6.8. Résumé 176
6.9. Exercises 178

Chapter 7. Koszul duality of operads 181
7.1. Operadic quadratic data, quadratic operad and cooperad 182
7.2. Koszul dual (co)operad of a quadratic operad 184
7.3. Bar and cobar construction on an operadic quadratic data 186
7.4. Koszul operads 187
7.5. Generating series 190
7.6. Binary quadratic operads 191
7.7. Nonsymmetric binary quadratic operad 197
7.8. Koszul duality for inhomogeneous quadratic operads 199
7.9. Résumé 203
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11.6. Exercises 339

Chapter 12. (Co)homology of algebras over an operad 341
12.1. Homology of algebras over an operad 342
12.2. Deformation theory of algebra structures 346
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Preface

An operad is an algebraic device, which encodes a type of algebras. Instead of
studying the properties of a particular algebra, we focus on the universal operations
that can be performed on the elements of any algebra of a given type. The informa-
tion contained in an operad consists in these operations and all the ways of compos-
ing them. The classical types of algebras, that is associative algebras, commutative
algebras and Lie algebras, give first examples of algebraic operads. Recently, there
has been much interest in other types of algebras, to name a few: Poisson algebras,
Gerstenhaber algebras, Jordan algebras, pre-Lie algebras, Batalin-Vilkovisky alge-
bras, Leibniz algebras, dendriform algebras and the various types of algebras up
to homotopy. The notion of operad permits us to study them conceptually and to
compare them. The operadic point of view has several advantages. First, many re-
sults known for classical algebras, when written in the operadic language, allows us
to apply them to other types of algebras. Second, the operadic language simplifies
both the statements and the proofs. So, it clarifies the global understanding and
allows one to go further. Third, even for classical algebras, the operad theory pro-
vides new results that had not been unraveled before. Operadic theorems have been
applied to prove results in other fields, like the deformation-quantization of Poisson
manifolds by Maxim Kontsevich and Dmitry Tamarkin for instance. Nowadays,
operads appear in many different themes: algebraic topology, differential geometry,
noncommutative geometry, C∗-algebras, symplectic geometry, deformation theory,
quantum field theory, string topology, renormalization theory, combinatorial alge-
bra, category theory, universal algebra and computer science.

Historically, the theoretical study of compositions of operations appeared in
the 1950’s in the work of Michel Lazard as “analyseurs”. Operad theory emerged
as an efficient tool in algebraic topology in the 1960’s in the work of Frank Adams,
J. Michael Boardmann, Gregory Kelly, Peter May, Saunders McLane, Jim Stasheff,
Rainer Vogt and other topologists and category theorists. In the 1990’s, there was a
“renaissance” of the theory in the development of deformation theory and quantum
field theory, with a shift from topology to algebra, that can be found in the work of
Ezra Getzler, Vladimir Ginzburg, Vladimir Hinich, John Jones, Michael Kapranov,
Maxim Kontsevich, Yuri I. Manin, Martin Markl, Vladimir Schechtman, Vladimir
Smirnov and Dmitry Tamarkin for instance. Ten years later, a first monograph
[MSS02] on this subject has been written by Martin Markl, Steve Shnider and
Jim Stasheff in which one can find more details on the history of operad theory.

Now, 20 years after the renaissance of the operad theory, most of the basic as-
pects of it have come to a steady shape and it seems to be the right time to provide a
comprehensive account of algebraic operad theory. This is the purpose of this book.

vii



viii PREFACE

One of the main fruitful problems in the study of a given type of algebras
is its relationship with algebraic homotopy theory. For instance, starting with a
chain complex which is equipped with some compatible algebraic structure, can this
structure be transferred to any homotopy equivalent chain complex ? In general,
the answer is negative. However, one can prove the existence of higher operations
on the homotopy equivalent chain complex, which endow it with a richer algebraic
structure. In the particular case of associative algebras, this higher structure is
encoded into the notion of associative algebra up to homotopy, alias A-infinity al-
gebra, unearthed by Stasheff in the 1960’s. In the particular case of Lie algebras,
it gives rise to the notion of L-infinity algebras, which was successfully used in the
proof of the Kontsevich formality theorem. It is exactly the problem of governing
these higher structures that prompted the introduction of the notion of operad. Op-
erad theory provides an explicit answer to this transfer problem for a large family
of types of algebras, for instance those encoded by Koszul operads. Koszul duality
was first developed at the level of associative algebras by Stewart Priddy in the
1970’s. It was then extended to algebraic operads by Ginzburg and Kapranov, and
also Getzler and Jones in the 1990’s (part of the renaissance period). The duality
between Lie algebras and commutative algebras in rational homotopy theory was
recognized to coincide with the Koszul duality theory between the operad encoding
Lie algebras and the operad encoding commutative algebras. The application of
Koszul duality theory for operads to homotopical algebra is a far reaching general-
ization of the ideas of Dan Quillen and Dennis Sullivan.

The aim of this book is, first, to provide an introduction to algebraic operads,
second, to give a conceptual treatment of Koszul duality, and, third, to give applica-
tions to homotopical algebra. We begin by developing Koszul duality for associative
algebras, in such a way that this pattern can be adapted almost straightforwardly
to the operad setting. After giving the definition and the main properties of the
notion of operad, we develop the operadic homological algebra. Then Koszul du-
ality of operads permits us to study the homotopy properties of algebras over an
operad.



Introduction

The broad scheme of this book is as follows:

• Koszul duality of associative algebras: Chap. 1, 2, 3, 4.
• Algebraic operads and their Koszul duality: Chap. 5, 6, 7, 8.
• Homotopy theory of algebras over an operad: Chap. 9, 10, 11, 12.
• Examples of operads: Chap. 9, 13.

Koszul duality of associative algebras
Koszul duality theory is a homological method whose aim is to provide an

explicit quasi-free resolution (minimal model) for quadratic algebras. The algorithm
for such a construction splits into two steps. First, from the quadratic algebra A
we construct a quadratic coalgebra A¡. Second, we apply to this coalgebra the
cobar construction Ω in order to get a differential graded algebra ΩA¡. When some
condition is fulfilled, that is when “A is a Koszul algebra”, ΩA¡ is the expected
quasi-free resolution. The main feature of our treatment of Koszul duality is to
keep algebras and coalgebras on the same footing.

Before treating Koszul duality of quadratic algebras, we fully develop the homo-
logical algebra properties of twisting morphisms. By definition, a twisting morphism
is a linear map from a differential graded associative (dga) coalgebra C to a dga
algebra A, that is α : C → A, satisfying the Maurer-Cartan equation:

∂(α) + α ? α = 0.

It gives rise to a chain complex structure on C⊗A, called the twisted tensor product.
The set Tw(C,A), made of the twisting morphisms, is a bifunctor which is repre-
sentable both in C and in A by the cobar construction Ω and the bar construction
B respectively. The key point of this general theory is the characterization of the
twisted morphisms whose associated twisted tensor product is acyclic. They are
called Koszul morphisms and they form the set Kos(C,A). Under the bijections of
the adjunction, they correspond to quasi-isomorphisms:

Homdga alg (ΩC, A) ∼= Tw(C, A) ∼= Homdga coalg (C, BA)⋃ ⋃ ⋃
q-Isodga alg (ΩC, A) ∼= Kos(C, A) ∼= q-Isodga coalg (C, BA) .

Then, Koszul duality of quadratic algebras consists in applying this general
theory to the following situation. Let (V,R ⊂ V ⊗2) be a quadratic data, where V
is a vector space. It gives rise to a quadratic algebra A = T (V )/(R), which is a
quotient of the free algebra over V , and also to a quadratic coalgebra A¡, which is a

ix



x INTRODUCTION

subcoalgebra of the cofree coalgebra over V . There is a natural twisting morphism
κ : A¡ → A to which we apply the preceding theory: if the twisting morphism κ is
a Koszul morphism, then A is a Koszul algebra and ΩA¡ is its minimal model.

We first treat the homogeneous case, that is R ⊂ V ⊗2, and then we show how
to extend the results to the inhomogeneous case, that is R ⊂ V ⊕ V ⊗2. The toy
model is the universal enveloping algebra A = U(g) of a Lie algebra g, which was
studied originally by Jean-Louis Koszul.

In the last chapter of this first part, we provide methods (PBW and Gröbner
bases, rewriting process) to prove the Koszulity for quadratic algebras and we
introduce the Manin products of quadratic algebras. Since this presentation of the
Koszul duality theory of associative algebras relies only on the universal properties
of the various objects, it paves the way to other settings, in particular to operads
as treated in the next part.

Algebraic operads and their Koszul duality
Let us consider a “type of algebras” P for which there is a notion of free algebra

over a generic vector space V , denoted by P(V ). From the universal properties of
a free object, one can deduce immediately that P, considered as an endofunctor of
the category of vector spaces Vect, inherits a monoid structure γ : P ◦P → P. This
is the notion of algebraic operad. Since the underlying object of this monoid is an
endofunctor, which is therefore a monad in Vect, there is a notion of algebra A over
P determined by a map γA : P(A) → A. The notion of cooperad C is obtained
similarly by replacing monoid by comonoid in the definition of an operad.

In fact, in this book, we work with a more specific notion. We suppose that,
as an endofunctor of Vect, P is a Schur functor. It means that P is supposed to be
built out of a collection of modules P(n) over the symmetric group Sn, n ≥ 0, as

P(V ) :=
⊕
n≥0

P(n)⊗Sn V
⊗n .

The elements of P(n) are the n-ary operations acting on the algebras of type P:

(µ; a1, . . . , an) ∈ P(A) 7→ γA(µ; a1, . . . , an) ∈ A.

The action of the group Sn on P(n) encodes their symmetries.
From the specific form of the underlying endofunctor that we have assumed, it

follows that the definition of an operad can be formalized into several guises :

� Monoidal definition. It is a monoid (P, γ, η) in the monoidal category
of S-modules.

� Classical definition. It consists in making the monoid structure on P
explicit on the spaces P(n) of n-ary operations.

� Partial definition. A presentation of an operad using the so-called
partial operations ◦i involving only two operations.

� Combinatorial definition. It consists in viewing an operad as an
algebra over some monad. This monad is built on “rooted trees” and
“substitution”. It allows us for several variations of the notion of operad.

The rooted trees are naturally involved in the theory of operads since they
describe the free operad over an S-module.
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We also study, along the same lines, algebraic operads such that the functor P
is built out of a collection of vector spaces Pn, n ≥ 0, as

P(V ) :=
⊕
n≥0

Pn ⊗K V
⊗n.

In this case there is no involvement of the symmetric groups. They are called
nonsymmetric operads. They encode types of algebras for which the generating op-
erations do not satisfy any symmetry properties, and, in the relations, the variables
stay in the same order in each monomial. The combinatorial objects involved in
the description of a free nonsymmetric operad are the planar rooted trees. Asso-
ciative algebras and dendriform algebras are examples giving rise to nonsymmetric
operads.

Taking advantage of the fact that an operad (symmetric or nonsymmetric)
is a monoid in a certain linear category, we can extend the notions of twisting
morphism and Koszul morphism to the operad setting. This generalization of the
Koszul duality theory is not straightforward because of the following phenomenon.
In the monoidal category of vector spaces, in which the definition of an associative
algebra takes place, the tensor product V ⊗W is linear in both variables, for instance
V ⊗ (W ⊕W ′) = (V ⊗W )⊕ (V ⊗W ′). However, in the category of endofunctors,
in which the definition of an operad takes place, the composite P ◦ Q is linear in
the left variable, but not in the right variable. So several constructions, like the
convolution product ? and the notion of derivation, have to be adapted for the final
results to hold true.

Once this generalization has been made, we develop homological algebra at the
operadic level: there are notions of twisting morphisms, twisted composite product,
Koszul morphisms, bar and cobar constructions in the operadic context. The main
theorem gives rise to bijections:

Homdg Op (ΩC, P) ∼= Tw(C, P) ∼= Homdg coOp (C, BP)⋃ ⋃ ⋃
q-Isodg Op (ΩC, P) ∼= Kos(C, P) ∼= q-Isodg coOp (C, BP) ,

where the set of Koszul morphisms Kos(C, P) is made of the twisting morphisms
whose associated twisted composite product is acyclic.

Koszul duality theory consists in applying the preceding general theory to a
specific twisting morphism κ : P ¡ → P. Here P is the quadratic operad associated
to a given operadic quadratic data (generating operations and quadratic relations).
A similar construction, in the cooperad setting, gives rise to the quadratic cooperad
P ¡, called the Koszul dual cooperad. We first treat the homogeneous case and then
we extend it to the inhomogeneous case. The paradigm of this last case is the
operad encoding Batalin-Vilkovisky algebras.

The ultimate consequence and useful result of this Koszul duality theory is to
provide an explicit algorithm to construct a quasi-free resolution (minimal model)
of the quadratic operad P, whenever it is Koszul. This quasi-free resolution is the
differential graded operad ΩP ¡. So the algorithm consists in

� constructing the cooperad P ¡ out of the quadratic data,
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� taking the free ns operad on the underlying S-module of P ¡,
� constructing the differential on the free operad out of the cooperad struc-

ture of P ¡.

We adopt the notation P∞ := ΩP ¡ and the terminology P∞-algebras, also
called homotopy P-algebras. It provides a generalization up to homotopy of the
notion of P-algebra.

We give several methods for proving Koszulity of operads. They rely either on
rewriting systems (Diamond Lemma), PBW and Gröbner bases (Distributive law),
or combinatorics (partition poset method). The notion of shuffle operad (Vladimir
Dotsenko, Eric Hoffbeck, Anton Khoroshkin) plays a key role in this respect. We
also introduce the Manin products constructions for operads.

Homotopy theory of algebras over an operad.
Knowing about the Koszul resolution of a given operad enables us to answer

many questions. For instance, it permits us to construct a “small chain complex”
for computing the homology and the cohomology of an algebra over an operad. Of
course, in the classical cases of associative algebras, commutative algebras and Lie
algebras, that is for the operads As, Com and Lie, one recovers the complex of
Hochschild, Harrison and Chevalley-Eilenberg respectively. In the Leibniz case, we
recover the complex constructed by the first author. Surprisingly, in the Poisson
case it gives a complex different from the one which was used by the specialists, as
shown by Benoit Fresse.

The Koszul resolution permits us to give a precise meaning to the notion of
homotopy algebra of a given type. Again in the classical cases As,Com,Lie we
recover the known structures of A∞-algebra, C∞-algebra and L∞-algebra:

As∞ = A∞, Com∞ = C∞, Lie∞ = L∞.

We devote an independent and almost self-contained chapter to the properties of
A∞-algebras.

The advantage of this treatment of operad theory is that we can extend known
results on some specific operads to all Koszul operads at once. This is the case for
the Homotopy Transfer Theorem, known since a long time for associative algebras.
It takes the following form:

Let

(A, dA)h
%% p //

(V, dV )
i

oo ,

IdA − ip = dAh+ hdA, i = quasi-isomorphism,

be a homotopy retract of chain complexes. Let P be a Koszul operad and suppose
that (A, dA) is a differential graded P-algebra. It is natural to ask oneself whether
we can transfer the P-algebra structure of (A, dA) to (V, dV ). In general we cannot,
however we can transfer it into a P∞-algebra structure. In fact, the answer to the
first question would be positive if the operad P were quasi-free, for instance by
replacing P by P∞ (recall that a P-algebra is a particular case of P∞-algebra).
This transferred P∞-algebra structure is homotopically equivalent to the first one.

An example of a homotopy retract is given by (V, dV ) := (H(A), 0), that is
the homology of the underlying chain complex (A, dA), called the homotopy of the
differential graded P-algebra A. As a result, we obtain higher operations on the
homotopy of A, which encompass and generalize the notion of Massey products.
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Examples of operads and of types of operads.
Throughout the theoretical chapters, we illustrate the results with the classical

three operads As, Com and Lie (the “three graces”) encoding respectively the
associative algebras, the commutative algebras and the Lie algebras.

We treat in details the case of the operad As in a separate chapter (Chapter 9),
not only because it is the most common type of algebras, but also because it serves
as a paradigm for the other Koszul operads. The notion of A∞-algebra is related to
the Stasheff polytope, also known as the associahedron. We give a detailed treat-
ment of the Homotopy Transfer Theorem in this case.

In chapter 13, on top of the Com and Lie case, we treat many examples of
operads together with their inter-relationship:

� Poisson algebra and Gerstenhaber algebra: it mixes both Lie
and Com. It comes from Poisson geometry and deformation theory.

� pre-Lie algebra: it permits us to analyze the properties of Hochschild
homology and also the properties of derivations. It is closely related to
the notion of operad itself, since the convolution algebra of maps from a
cooperad to an operad is a pre-Lie algebra.

� Leibniz algebra and Zinbiel algebra: it comes as a natural gener-
alization of Lie algebras with nonantisymmetric bracket. Zinbiel algebras
(the Koszul dual) plays a salient role in the analysis of divided power
algebras.

� Dendriform algebra: it arises naturally when the product of an as-
sociative algebra split into the sum of two binary operations. It models
a sort of “noncommutative shuffle”. Many combinatorial Hopf algebras
bear a dendriform structure.

� Batalin-Vilkovisky algebra: it is a particular class of Gerstenhaber
algebras endowed with a extra square-zero unary operator. It plays a cru-
cial role in mathematical physics (Batalin-Vilkovisky formalism in quan-
tum field theory), in string topology (homology of the free loop spaces)
and in the study of double loop spaces (cyclic Deligne conjecture).

� Magmatic algebra: it is an algebra with no relation. This type of
algebras is important for operad theory because the operad encoding
magmatic algebras is free and any operad is a quotient of a free operad.
Though their Koszul duality is obvious, it gives a nice explanation of the
inversion of power series formula.

� Jordan algebra: coming from the properties of the symmetrized prod-
uct in an associative algebra, they play a key role in differential geometry
(symmetric spaces). The analysis of the associated operad, which is cubic,
is still to be done.

� Multi-ary algebra: there are various types of algebras with generating
operations of higher arity. The higher structure encoded in the Koszul res-
olution P∞ is of this form. Several other examples appear in Deligne con-
jecture (brace operations) and Gromov-Witten invariants (moduli space
of curves).

We have seen that the term algebra, which, most often, means “associative
algebra” has been broadened to encompass many other types of algebras. So we
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have “commutative algebras”, “Lie algebras”, “Poisson algebras”, “Leibniz alge-
bras” and so forth. The same fact is occurring for the term “operad”. A priori it
means what is more accurately called “symmetric operad”. But its meaning has
been broadened. We already mentioned the notions of “non-symmetric operad”
and “shuffle operad”. Replacing the rooted trees by other combinatorial objects,
gives rise to other types of operads: “colored operad”, “cyclic operad”, “permu-
tad”, “modular operad”, “properad”. We only briefly mention the definition of
these structures in the last section of the last Chapter. The conceptual presenta-
tion of Koszul duality given in this book has the advantage of being applicable to
some of these other types of operads.
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Various ways of reading this book

� The reader interested in operad theory can begin right away with Chapter 5:
“Algebraic operad”. We treat both symmetric operads and nonsymmetric operads.
We give five equivalent definitions of an operad, we introduce the notion of algebra
over an operad and we study the notion of free operad in details. The reader may
refer to Chapter 1 for classical notions, notations and results in elementary algebra,
if necessary. Then, in Chapter 13: “Examples of algebraic operads” he/she will find
a lot of examples. After this reading, the reader should be fluent in “operadic cal-
culus”.

� The study of homology and homotopy theory of algebras over an operad is first
done in Chapter 9 in the associative case, and in Chapters 10, 11, 12 in the general
case. A priori, it requires the knowledge of Koszul duality of operads. However,
one does not need to know all the details of this theory but only the statement of
the main results. In particular, we treat the Homotopy Transfer Theorem, which
reveals hidden structures in homological algebra.

� Koszul duality of operads is done in Chapters 6 and 7. The first one is devoted to
the characterization of Koszul morphisms in general and the second one is devoted
to the Koszul morphism associated to an operadic quadratic data. As said before,
the overall presentation of results and proofs is analogous to the algebra case. So
the reader, not familiar with Koszul duality, is advised to read Chapters 2 and 3
before. Chapter 8 provides effective methods to prove that an operad is Koszul.

� The reader interested in Koszul duality of algebras should read Chapters 2, 3 and
4, which give a new point of view of this classical theory. This part is a self-contained
study of Koszul duality of associative algebras. For examples and applications, we
refer the reader to the monograph [PP05] by Alexander Polischchuk and Leonid
Positselski.

There are three appendices dealing respectively with the representations of the
symmetric groups, notions of category theory, constructions on trees, including the
marvelous Stasheff polytope.
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xviii INTRODUCTION

Notation and Conventions. The ground field (resp. commutative ring) is de-
noted by K. The category of vector spaces over K is denoted by VectK or by
Vect. We often say space instead of vector space, and map instead of linear map.
We also say K-module, whenever the constructions and results are valid for K a
commutative ring, not necessarily a field.

The linear dual of the K-vector space V is V ∗ := Hom(V,K). When V is finite
dimensional, it is canonically isomorphic to the dual of its dual. In the sign-graded
case, this isomorphism Φ : V → V ∗∗ is given by Φ(x)(f) := (−1)|x||f |f(x).

The tensor product of two K-vector spaces V and W is denoted by V ⊗KW or,
more often, by V ⊗W . The tensor product of n copies of V , that is V ⊗ · · · ⊗ V︸ ︷︷ ︸

n

, is

denoted by V ⊗n. The monomial v1⊗· · ·⊗ vn ∈ V ⊗n is also written (v1, . . . , vn) or,
more simply, v1 . . . vn (concatenation of the vectors) when there is no ambiguity.
The homogeneous element v1 . . . vn is said to be of weight n. The tensor module
over V is by definition the direct sum

T (V ) := K⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n ⊕ · · · .

The reduced tensor module is defined as

T (V ) := V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n ⊕ · · · .
It can be viewed either as a subspace or as a quotient of T (V ). The terminology
“tensor module” will prove helpful, because this module can be equipped with many
different kinds of algebraic structures. The tensor algebra structure is only one of
them.

The symmetric group Sn is the automorphism group of the set {1, . . . , n}.
An element of Sn is called a permutation. A permutation σ ∈ Sn is denoted by
[σ(1) σ(2) · · · σ(n)]. We also adopt sometimes the classical cycle notation with
parentheses, so, for instance, (12) = [2 1]. The action on the right of Sn on V ⊗n is
given by

(v1 . . . vn)σ := vσ(1) . . . vσ(n).

The action on the left is given by

σ · (v1 . . . vn) := vσ−1(1) . . . vσ−1(n).

We freely use the language of categories and functors, see for instance [ML98]
and Appendix B.1.

While we review some elementary homological algebra in the first chapter, the
reader is expected to be familiar with the theory. See for instance [ML95].



CHAPTER 1

Algebras, coalgebras, homology

C’est de l’algèbre, se dit d’une chose à
laquelle on ne comprend rien.
Petit Littré.

In this chapter we recall elementary facts about algebras and homological algebra,
essentially to establish the terminology and the notation. We first review the no-
tions of associative, commutative and Lie algebra. Then we deal with the notion of
coalgebra, which is going to play a key role in this book. It leads to the notion of
convolution. The last sections cover bialgebras, pre-Lie algebras, differential graded
objects and convolution algebra.

1.1. Classical algebras (associative, commutative, Lie)

We review the classical notions of associative algebra, commutative algebra
(meaning commutative and associative), and Lie algebra.

1.1.1. Associative algebras. An associative algebra over K is a vector space
A equipped with a binary operation (linear map)

µ : A⊗A→ A

which is associative, i.e. µ ◦ (µ ⊗ id) = µ ◦ (id ⊗ µ). Here id is the identity map
from A to A (sometimes denoted by idA), and the operation µ is called the product.
Denoting ab := µ(a⊗ b), associativity reads:

(ab)c = a(bc).

An associative algebra is said to be unital if there is a map u : K → A such that
µ ◦ (u ⊗ id) = id = µ ◦ (id ⊗ u). We denote by 1A or simply by 1 the image of 1K
in A under u. With this notation unitality reads:

1a = a = a1.

Associativity and unitality can be viewed as commutative diagrams:

A⊗A⊗A
id⊗µ //

µ⊗id

��

A⊗A
µ

��
A⊗A

µ // A

1
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K⊗A
u⊗id //

'
%%JJJJJJJJJJ A⊗A
µ

��

A⊗K
id⊗uoo

'
yytttttttttt

A

It is sometimes helpful to picture the binary operation µ as a graph

???
���

µ or simply as ????

����
if there is no ambiguity on µ.

The associativity relation becomes:

�� ����

???? =
??����

????

and the unitality relations become:

{{{{
;;;;• KKK •

sss
= = .

As usual we sometimes abbreviate (unital) associative algebra as algebra if no
confusion can arise, and we abbreviate (A,µ, u) as (A,µ) or even just A.

Equivalently a unital associative algebra is a monoid in the tensor category
(Vect,⊗,K) (cf. Appendix B.3).

An algebra morphism (or simply morphism) is a linear map f : A → A′ such
that f(ab) = f(a)f(b). If A is also unital, then we further assume f(1) = 1.

The category of nonunital associative algebras is denoted by As-alg, and the
category of unital associative algebras by uAs-alg (or by As-alg if there is no risk
of confusion).

An algebra is augmented when there is a morphism of algebras ε : A → K,
called the augmentation map. In particular ε(1A) = 1K. If A is augmented, then A
is canonically isomorphic, as a vector space, to K1⊕Ker ε. The ideal Ker ε is called
the augmentation ideal, which we denote by Ā, so

A = K1A ⊕ Ā .

On the other hand, starting with a (not necessarily unital) algebra I, one can
construct an augmented algebra I+ = K1⊕I. The product is given by (λ1+a)(λ′1+
a′) = λλ′1 + (λa′ + λ′a + aa′). Therefore the category of nonunital associative
algebras is equivalent to the category of unital augmented associative algebras.

For an augmented algebraA = K1⊕Ā the space of indecomposables is Indec(A) :=
Ā/(Ā)2.

1.1.2. Free associative algebra. The free associative algebra over the vector
space V is an associative algebra F(V ) equipped with a linear map i : V → F(V )
which satisfies the following universal condition:
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any map f : V → A, where A is an associative algebra, extends uniquely into
an algebra morphism f̃ : F(V )→ A such that the following diagram commutes:

V
i //

f
""DDDDDDDDD F(V )

f̃

��
A

Observe that the free algebra over V is well-defined up to a unique isomorphism.
Categorically, F is a functor from the category of vector spaces to the category
of associative algebras (or unital associative algebras depending on the context we
choose), which is left adjoint to the forgetful functor assigning to A its underlying
vector space:

HomAs-alg(F(V ), A) ∼= HomVect(V,A).

There are forgetful functors As-alg→ Vect→ Set and sometimes it is useful to
consider the free associative algebra over a set X. This is the same as the associative
algebra over the space KX spanned by X since the functor given by X 7→ KX is
left adjoint to the functor Vect→ Set.

1.1.3. Tensor module, tensor algebra. By definition the tensor algebra
over the vector space V is the tensor module

T (V ) := K1⊕ V ⊕ · · · ⊕ V ⊗n ⊕ · · ·
equipped with the concatenation product T (V )⊗ T (V )→ T (V ) given by

v1 · · · vp ⊗ vp+1 · · · vp+q 7→ v1 · · · vpvp+1 · · · vp+q .
This operation is clearly associative and 1 is taken as a unit. Observe that T (V )
is augmented by ε(v1 · · · vn) = 0 for n ≥ 1 and ε(1) = 1. The map ε : T (V ) → K
is called the augmentation. For a homogeneous element x ∈ V ⊗n, the integer n is
called the weight of x. We say that T (V ) is weight-graded.

The reduced tensor algebra T (V ) is the reduced tensor module

T (V ) := V ⊕ · · · ⊕ V ⊗n ⊕ · · ·
equipped with the concatenation product. It is a nonunital associative algebra
(augmentation ideal of T (V )).

Proposition 1.1.4. The tensor algebra (resp. reduced tensor algebra) is free in
the category of unital associative algebras (resp. nonunital associative algebras).

Proof. Let f : V → A be a map. If f̃ exists, then we should have

f̃(1) = 1 by unitality,

f̃(v) = f(v) by compatibility with f ,

f̃(v1 · · · vn) = f(v1) · · · f(vn), since f̃ is a morphism.

These equalities define a map f̃ : T (V ) → A. We immediately check that it
is a morphism. Since it is unique we have proved that T (V ), equipped with the
inclusion i : V � T (V ), is free over V . �

1.1.5. Noncommutative polynomial algebra. Let V = Kx1 ⊕ · · · ⊕ Kxn
be a finite dimensional vector space with basis {x1, . . . , xn}. The tensor algebra
T (V ) is simply the algebra of noncommutative polynomials in n variables and is
denoted by K〈x1, . . . , xn〉.
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1.1.6. Module and bimodule. A left module M over an algebra A is a vector
space equipped with a linear map

λ : A⊗M →M, λ(a,m) = am,

called the left action, which is compatible with the product and the unit of A, in
the sense that the following diagrams commute

A⊗A⊗M
Id⊗λ //

µ⊗Id

��

A⊗M

λ

��
A⊗M λ // A

K⊗M
u⊗Id //

'
%%KKKKKKKKKK A⊗M

λ

��
M.

There is a similar notion of right module involving a right action λ′ : M ⊗A→
M,λ′(m, a′) = ma′. Finally, a bimodule M over the algebra A is a vector space
which is both a left module and a right module and which satisfies (am)a′ = a(ma′)
for any a, a′ ∈ A and m ∈M .

If A is unital, then 1 is required to act by the identity.
For any vector space V the free left A-module over V is M := A⊗ V equipped

with the obvious left operation. Similarly the free A-bimodule over V is M :=
A⊗ V ⊗A.

Let

0→M → A′ → A→ 0

be an exact sequence of associative algebras such that the product in M is 0. Then
it is easy to check that M is a bimodule over A.

1.1.7. Derivations. Let M be a bimodule over an algebra A. A linear map
d : A→M is a derivation if the Leibniz rule holds:

d(ab) = d(a) b+ a d(b) for any a, b ∈ A.

Graphically we get:
===

���
d d

d =
====

			 + 555
����

.
Any element m ∈ M defines a derivation dm(a) = [a,m] := am − ma called

an inner derivation. We denote by Der(A,M) the space of derivations of A with
values in M . We remark that d(1) = 0. In the case where M = A with its usual
bimodule structure we denote the space of derivations simply by Der(A).

Proposition 1.1.8. Let M be a bimodule over the free algebra T (V ). Any linear
map f : V →M can be extended uniquely into a derivation df : T (V )→M . More
precisely, there is an isomorphism:

Hom(V,M) ∼= Der(T (V ),M),

given by df (v1, . . . , vn) =
∑n
i=1 v1 · · · f(vi) · · · vn.

Proof. Since T (V ) is free, the extension of f into a derivation from T (V ) to M is
unique. The above formula is obtained by induction on n. On the other hand, any
derivation from T (V ) to M gives, by restriction, a linear map from V to M . These
two constructions are inverse to each other. �
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1.1.9. Universality of the free algebra. We have seen that any linear map
f : V → A extends uniquely into a map f : T (V )→ A which satisfies f(1) = 1 and
f(xy) = f(x)f(y) (morphism of associative algebras). We have also seen that any
linear map d : V → A extends uniquely into a map d : T (V ) → A which satisfies
d(xy) = d(x)y + xd(y). More generally, if we are given some formula expressing
f(xy) in terms of f(x), f(y) and the product, then the extension to T (V ), when it
exists, is going to be unique.

1.1.10. Commutative algebra. By definition a commutative algebra is a
vector space A over K equipped with a binary operation µ : A⊗A→ A,µ(a, b) = ab,
which is both associative and commutative (i.e. symmetric):

ab = ba .

In terms of the switching map

τ : A⊗A→ A⊗A

defined by τ(x, y) := (y, x) (in the non-graded context ; see 1.5.3 for the definition
in the graded context), the commutation condition reads µ ◦ τ = µ. Sometimes
one needs to work with algebras whose binary operation satisfies this symmetry
condition but is not associative. We propose calling them commutative magmatic
algebras (cf. 13.8.4), since we call magmatic algebra an algebra equipped with a
binary operation.

The free unital commutative algebra over the vector space V (cf. 5.2.5 for the
general definition of a free algebra) is the symmetric algebra

S(V ) =
⊕
n≥0

Sn(V ) :=
⊕
n≥0

(V ⊗n)Sn .

Recall that if M is a right Sn-module the space MSn is the quotient of M by the
action of Sn. It is also called the space of coinvariants of M since

MSn = M ⊗K[Sn] K

where K is equipped with the trivial action of Sn. The right action of the symmetric
group on V ⊗n is by permutation of the variables: (v1, . . . , vn)σ := (vσ(1), . . . , vσ(n)).
If V = Kx1 ⊕ · · · ⊕ Kxk, then S(V ) is isomorphic to the algebra of polynomials
K[x1, . . . , xk].

The category of nonunital commutative algebras is denoted by Com-alg, and
the category of unital commutative algebras is denoted by uCom-alg. Since a
commutative algebra is associative, there is a forgetful functor

Com-alg −→ As-alg.

The free object in the category of nonunital commutative algebras is the reduced
symmetric algebra:

S̄(V ) :=
⊕
n≥1

Sn(V ).
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1.1.11. Lie algebras. A Lie algebra is a vector space g over K equipped with
a binary operation c : g⊗g→ g, c(x, y) := [x, y], (c for “crochet” in French), called
bracket, which is anti-symmetric:

[x, y] = −[y, x] , equivalently c ◦ τ = −c,
and satisfies the Leibniz identity

[[x, y], z] = [x, [y, z]] + [[x, z], y] ,

equivalently c ◦ (c⊗ id) = c ◦ (id⊗ c) + c ◦ (c⊗ id) ◦ (id⊗ τ).

In the literature this relation is, most of the time, replaced by the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

These relations are equivalent under the anti-symmetry condition, but not oth-
erwise. Observe that the Leibniz identity is equivalent to saying that the map
Adz := [−, z] : g→ g is a derivation for the bracket, since it can be written

Adz([x, y]) = [x,Adz(y)] + [Adz(x), y].

Sometimes one needs to work with algebras whose binary operation is anti-
symmetric but is not a Lie bracket. We propose calling them anti-symmetric mag-
matic algebras.

If the bracket operation satisfies the Leibniz identity, but not necessarily the
anti-symmetry condition, then the algebra is called a Leibniz algebra (this notion
was first introduced and studied in [Lod93]), cf. 13.5.1.

Any associative algebra A can be made into a Lie algebra, denoted by ALie,
under the formula

[x, y] := xy − yx,
since the associativity of the product implies the Leibniz relation. Whence the
existence of a forgetful functor

(−)Lie : As-alg −→ Lie-alg.

See Proposition 9.1.5 for an explanation of the “forgetfulness”. The free Lie algebra
over the vector space V (cf. 5.2.5) is denoted by Lie(V ). It will be studied in section
1.3.

1.1.12. Universal enveloping algebra. Construct a functor
U : Lie-alg −→ As-alg as follows. Let g be a Lie algebra and let T (g) be the tensor
algebra over the vector space g. By definition, the universal enveloping algebra
U(g) is the quotient of T (g) by the two-sided ideal generated by the elements

x⊗ y − y ⊗ x− [x, y], for all x, y ∈ g .

Proposition 1.1.13. The functor U : Lie-alg −→ As-alg is left adjoint to the
functor (−)Lie : As-alg −→ Lie-alg.

Proof. We prove that for any Lie algebra g and any associative algebra A there is
an isomorphism

HomAs(U(g), A) ∼= HomLie(g, ALie) .

To any morphism f : U(g) → A we associate its restriction to g, which is a Lie
algebra morphism g → ALie. To any Lie algebra morphism g : g → ALie we
associate the unique extension as associative algebra morphism g̃ : T (g) → A.
Since g̃(x ⊗ y − y ⊗ x) = g(x)g(y) − g(y)g(x) = [g(x), g(y)] = g([x, y]), it follows
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that g̃ is trivial on the two-sided ideal generated by the elements x⊗y−y⊗x−[x, y].
So it gives a map g̃ : U(g)→ A.

It is immediate to check that these two constructions are inverse to each other.
�

1.1.14. Lie module. A Lie module, that is a module over a Lie algebra g, is
a vector space M equipped with a linear map g⊗M →M, (x,m) 7→ [x,m], which
satisfies the Jacobi identity whenever one of the variables is in M and the other
two are in g (convention [m,x] := −[x,m]). It is well-known that a module over g
is equivalent to a left module over the associative algebra U(g).

1.2. Coassociative coalgebras

Formally the notion of coalgebra is obtained by linearly dualizing the notion
of algebra. But these two notions are not equivalent, because, though a coalgebra
gives an algebra by dualization, an algebra gives a coalgebra only under a finiteness
hypothesis. In analysis this phenomenon gives rise to the notion of “distribution”.

1.2.1. Definition. A coassociative coalgebra (or associative coalgebra) over K
is a vector space C equipped with a binary cooperation (linear map):

∆ : C → C ⊗ C
which is coassociative, i.e. (∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆. The map ∆ is called a
coproduct. Sometimes we use Sweedler’s notation:

∆(x) =
∑

x(1) ⊗ x(2), (∆⊗ id) ◦∆(x) =
∑

x(1) ⊗ x(2) ⊗ x(3).

More generally, we define the iterated coproduct ∆n : C → C⊗n+1 by ∆0 =
id,∆1 = ∆ and

∆n := (∆⊗ id⊗ · · · ⊗ id) ◦∆n−1.

We write ∆n(x) =
∑
x(1) ⊗ · · · ⊗ x(n+1) ∈ C⊗n+1. Since ∆ is coassociative, we

have ∆n = (id⊗ · · · ⊗ id⊗∆⊗ id⊗ · · · ⊗ id) ◦∆n−1.
A coassociative coalgebra is said to be counital if it is equipped with a map

ε : C → K called the counit (or the augmentation map) such that (ε⊗ id)◦∆ = id =
(id⊗ε)◦∆. Coassociativity and counitality can be viewed as commutative diagrams:

C
∆ //

∆

��

C ⊗ C

id⊗∆

��
C ⊗ C

∆⊗id // C ⊗ C ⊗ C

C
'

yytttttttttt

∆

��

'

%%JJJJJJJJJJ

C ⊗K C ⊗ C
id⊗εoo ε⊗id // K⊗ C

Observe that K itself is a counital coassociative coalgebra for ∆(1) = 1⊗1. We
often abbreviate (counital) coassociative coalgebra into coalgebra if no confusion
can arise, and we abbreviate the notation (C,∆, ε) into (C,∆) or even just C.

Pictorially the coproduct is represented as



8 1. ALGEBRAS, COALGEBRAS, HOMOLOGY

����
????

and the coassociativity by

��� 999
��� 999

�� 99 = �� 99 .

A morphism of coalgebras f : C → C ′ is a linear map which commutes with
the coproducts, i.e. (f ⊗ f) ◦∆C = ∆C′ ◦ f , and with the counits. The category
of associative coalgebras is denoted by As-coalg (counital or not, depending on the
context).

A coalgebra is coaugmented if there is a morphism of coalgebras u : K → C ;
in particular ε ◦ u = IdK. If C is coaugmented, then C is canonically isomorphic to
Ker ε⊕K1. The kernel Ker ε is often denoted by C, so

C = C ⊕K1 .

The reduced coproduct ∆̄ : C → C ⊗ C is the map given by

∆̄(x) := ∆(x)− x⊗ 1− 1⊗ x .

The iterated reduced coproduct is denoted by ∆̄n : C → C
⊗n+1

. So ∆̄n is an
(n+ 1)-ary cooperation.

The coproduct ∆ is said to be cocommutative (or simply commutative) if it
satisfies the relation ∆ = τ ◦∆, where τ is the switching map.

1.2.2. From algebra to coalgebra and vice-versa. Let
V ∗ := Hom(V,K) be the linear dual of the space V . There is a canonical map
ω : V ∗ ⊗ V ∗ → (V ⊗ V )∗ given by ω(f ⊗ g)(x ⊗ y) = f(x)g(y) (we work in the
non-graded framework). When V is finite dimensional, ω is an isomorphism.

If (C,∆) is a coalgebra, then (C∗,∆∗ ◦ ω) is an algebra (no need of finiteness
hypothesis).

If (A,µ) is an algebra which is finite dimensional, then (A∗, ω−1 ◦ µ∗) is a
coalgebra.

1.2.3. Structure constants. Let us suppose that A is a finite dimensional
algebra with basis x, y, z, . . . . The product is completely determined by constants
azxy ∈ K such that xy =

∑
z a

z
xy z, where the sum is over the basis vectors. For

C = A∗ let us choose the dual basis x∗, y∗, z∗, . . . . Then the coproduct in C is
given by the following formula on this basis :

∆(z∗) =
∑
x, y

azxy x
∗ ⊗ y∗.

1.2.4. Conilpotency, primitive elements. Let C = K1 ⊕ C be a coaug-
mented coalgebra. The coradical filtration on C is defined as follows:

F0C := K1,
FrC := K 1⊕ {x ∈ C | ∆̄n(x) = 0, for n ≥ r} for r ≥ 1.

A coalgebra C is said to be conilpotent (or sometimes connected in the litera-
ture) if it is coaugmented and if the filtration is exhaustive, that is C =

⋃
r FrC.

Observe that, under this hypothesis, any element in C is conilpotent i.e. for
any x ∈ C there exists n such that ∆̄m(x) = 0 for any m ≥ n. By definition an



1.2. COASSOCIATIVE COALGEBRAS 9

element x ∈ C is said to be primitive if

∆(x) = x⊗ 1 + 1⊗ x,

or, equivalently, x ∈ C and ∆̄(x) = 0. The space of primitive elements of C is
denoted by PrimC. It is clear that F1(C) = K1⊕ PrimC.

The dual of the primitives are the indecomposables:

(PrimC)∗ = Indec C∗ .

1.2.5. Cofree associative coalgebra. By definition the cofree associative
coalgebra over the vector space V is a conilpotent associative coalgebra Fc(V )
equipped with a linear map p : Fc(V ) → V , so that 1 7→ 0, which satisfies the
following universal condition:

any linear map ϕ : C → V , where C is a conilpotent associative coalgebra,
satisfying ϕ(1) = 0, extends uniquely into a coalgebra morphism: ϕ̃ : C → Fc(V ):

C
ϕ

""EEEEEEEEE

ϕ̃

��
Fc(V )

p // V

Observe that the cofree coalgebra over V is well-defined up to a unique isomorphism.
Categorically, Fc is a functor from the category of vector spaces to the category of
conilpotent coalgebras. It is right adjoint to the forgetful functor which assigns to
C the underlying vector space of C:

HomVect(C̄, V ) ∼= HomAs-coalg(C,Fc(V )).

It is important to notice that here the conilpotency condition is part of the
definition of cofree. The cofree object in the category of not necessarily conilpotent
coalgebras is completely different.

1.2.6. Tensor coalgebra, cofree coalgebra. By definition the tensor coal-
gebra over the vector space V , denoted by T c(V ), is the tensor module

T c(V ) := K 1⊕ V ⊕ · · · ⊕ V ⊗n ⊕ · · ·

equipped with the deconcatenation coproduct T c(V )→ T c(V )⊗ T c(V ) given by

∆(v1 · · · vn) :=

n∑
i=0

v1 · · · vi ⊗ vi+1 · · · vn and ∆(1) = 1⊗ 1,

and the counit T c(V ) → K which is the identity on K and 0 on the other com-
ponents. The cooperation ∆ is clearly coassociative and counital. Observe that
T c(V ) is coaugmented by the inclusion i : K → T (V ). It is conilpotent and the
filtration is Fr(T

c(V )) :=
⊕

n≤r V
⊗n.

Observe that in the nonunital context the deconcatenation is given by the
formula:

∆̄(v1 · · · vn) :=

n−1∑
i=1

v1 · · · vi ⊗ vi+1 · · · vn .

Proposition 1.2.7. The tensor coalgebra is cofree in the category of conilpotent
coalgebras.
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Proof. For ω ∈ T c(V ) we denote by ωn its component in V ⊗n. Observe that only
finitely many components are nonzero since T c(V ) is a “sum”.

Let ϕ : C → V be a map such that ϕ(1) = 0. If there exists ϕ̃ : C → T c(V )
which is a morphism of coalgebras and which lifts ϕ, then, for any x ∈ C, we should
have

ϕ̃(1) = 1 by counitality,
ϕ̃(x)1 = ϕ(x) by compatibility with ϕ,
ϕ̃(x)n =

∑
ϕ(x(1))⊗ · · · ⊗ ϕ(x(n)), since ϕ̃ is a coalgebra morphism.

Here we use Sweedler’s notation, cf. 1.2. This argument proves the uniqueness
of ϕ̃. Let us define ϕ̃(x)n by the aforementioned formula. Since C is supposed to be
conilpotent, there is only a finite number of nontrivial elements ϕ̃(x)n. Therefore
ϕ̃(x) :=

∑
n ϕ̃(x)n belongs to T c(V ), and so we have defined a map ϕ̃ : C → T c(V ).

It is immediate to check that ϕ̃ is a coalgebra map whose projection onto V
coincides with ϕ. So, we have proved the universal condition. �

1.2.8. Coderivation. Let C = (C,∆) be a conilpotent coalgebra. By defini-
tion a coderivation is a linear map d : C → C such that d(1) = 0 and

∆ ◦ d = (d⊗ id) ◦∆ + (id⊗ d) ◦∆ .

We denote by Coder(C) the space of coderivations of C.

Proposition 1.2.9. If C is cofree, i.e. C = T c(V ) for some vector space V , then a
coderivation d ∈ Coder (T c(V )) is completely determined by its weight 1 component

T c(V )
d−→ T c(V )

projV−−−−→ V .

Proof. Let us denote by f(x) := d(x)(1) = projV (d(x)) the weight-one component of
d(x). Since T c(V ) is cofree, the weight n component of d(x), denoted by d(x)(n) ∈
V ⊗n, is given by

d(x)(n) =

n∑
i=1

∑
(x)

x(1) ⊗ · · · ⊗ f(x(i))⊗ · · · ⊗ x(n),

where
∑

(x) x(1) ⊗ · · · ⊗ x(n) := ∆̄n−1(x). So the coderivation d is completely

determined by f := projV ◦ d : T c(V )→ V . �

1.2.10. Comodule. A left comodule N over a coalgebra C is a vector space
endowed with a linear map

∆l : N → C ⊗N,
which is compatible with the coproduct and the counit

N
∆l

//

∆l

��

C ⊗N

Id⊗∆l

��
C ⊗N

∆⊗Id // C ⊗ C ⊗N

N

∆l

��

'

''OOOOOOOOOOOOO

C ⊗N
ε⊗id // K⊗N.

It is called a coaction map. The notion of a right comodule using ∆r : N → N⊗C
is analogous. A co-bimodule is a left and right comodule such that the two coaction
maps satisfy the coassociativity condition:

(idC ⊗∆r) ◦∆l = (∆l ⊗ idC) ◦∆r.

For instance, any coalgebra is a co-bimodule over itself.
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1.2.11. Cocommutative coalgebra. An associative coalgebra (C,∆) is said
to be cocommutative (or sometimes simply commutative) if the coproduct ∆ satis-
fies the following symmetry condition:

∆ = τ ◦∆.

In other words we assume that the image of ∆ lies in the invariant space (C⊗C)S2

where the generator of S2 acts via τ . The cofree commutative coalgebra over the
space V (taken in the category of conilpotent commutative coalgebras of course) can
be identified to the symmetric module S(V ) equipped with the following coproduct:

∆(x1 . . . xn) =
∑

σ∈Sh(i,j),i+j=n

xσ−1(1) . . . xσ−1(i) ⊗ xσ−1(i+1) . . . xσ−1(i+j),

where Sh(i, j) is the set of (i, j)-shuffles, see 1.3.2 below.

1.3. Bialgebra

We introduce the classical notions of bialgebra and Hopf algebra, which are
characterized by the Hopf compatibility relation. We make explicit the coproduct
in the tensor bialgebra in terms of shuffles and we characterize the space of prim-
itive elements (CMM theorem and PBW theorem). We introduce the notion of
convolution and the Eulerian idempotents.

1.3.1. Definition. A bialgebra H = (H, µ,∆, u, ε) over K is a vector space
H equipped with an algebra structure H = (H, µ, u) and a coalgebra structure
H = (H,∆, ε) related by the Hopf compatibility relation

∆(xy) = ∆(x)∆(y),

where xy := µ(x⊗ y) and the product on H⊗H is given (in the non-graded case)
by (x⊗ y)(x′⊗ y′) = xx′⊗ yy′. It is often better to write the compatibility relation
in terms of ∆ and µ. Then one has to introduce the switching map

τ : H⊗H → H⊗H, τ(x⊗ y) := y ⊗ x .

With this notation the compatibility relation reads:

∆ ◦ µ = (µ⊗ µ) ◦ (id⊗ τ ⊗ id)︸ ︷︷ ︸
µH⊗H

◦(∆⊗∆) : H⊗H −→ H⊗H.

It can be represented by the following picture :

????
����

���� ???? =
��� ???

???
������� ???

???
��� .

It is also assumed that ε is a morphism of algebras and u is a morphism of
coalgebras.
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1.3.2. The tensor bialgebra, shuffles. Consider the free associative algebra
(T (V ), µ) over the space V . Since T (V ) is free, there is only one algebra morphism
∆′ : T (V )→ T (V )⊗ T (V ) such that

∆′(v) = v ⊗ 1 + 1⊗ v for v ∈ V.
It is immediate to check (again from the freeness property) that ∆′ is coassociative
and counital. Hence (T (V ), µ,∆′) is a conilpotent Hopf algebra. Observe that it is
cocommutative, that is ∆′ = τ ◦ ∆′. It is called the shuffle coproduct for reasons
explained below.

Dually, on the cofree associative coalgebra (T c(V ),∆), there is a unique coal-
gebra morphism

µ′ : T c(V )⊗ T c(V )→ T c(V )

whose projection on V is 0 except on (K⊗K)⊕ (V ⊗K)⊕ (K⊗V ) where it is given
by:

µ′(1⊗ 1) = 1, µ′(v ⊗ 1) = v, µ′(1⊗ v) = v for v ∈ V.
It is immediate to check (again from the cofreeness property) that µ′ is associative
and unital. Hence (T c(V ), µ′,∆) is a conilpotent Hopf algebra. Observe that it
is commutative, that is µ′ = µ′ ◦ τ . It is called the shuffle product for reasons
explained below.

One can make the coproduct ∆′ of T (V ) and the product µ′ of T c(V ) explicit
as follows.

By definition a (p, q)-shuffle is a permutation σ ∈ Sp+q such that

σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q) .

We denote by Sh(p, q) the subset of (p, q)-shuffles in Sp+q. For instance the three
(1, 2)-shuffles are [1 2 3], [2 1 3] and [2 3 1]. Observe that the identity permutation
[1 2 3] is both a (1, 2)-shuffle and a (2, 1)-shuffle. The notion of (i1, . . . , ik)-shuffle
and the set Sh(i1, . . . , ik) are defined analogously.

Following Jim Stasheff, we call unshuffle the inverse of a shuffle. For instance
the three (1, 2)-unshuffles are [1 2 3], [2 1 3] and [3 1 2]. We denote the set of
(p, q)-unshuffles by Sh−1

p,q.

Lemma 1.3.3. For any n = p + q and σ ∈ Sn there exist unique permutations
α ∈ Sp, β ∈ Sq and ω ∈ Sh(p, q) such that:

σ = ω · (α× β).

Proof. The permutation α is the unique element of Aut{1, . . . , p} such that σ(α−1(i)) <
σ(α−1(i + 1)) for any i = 1, . . . , p − 1. The permutation β is the unique el-
ement of Aut{p + 1, . . . , p + q} such that σ(β−1(i)) < σ(β−1(i + 1)) for any
i = p+ 1, . . . , p+ q − 1. Since ω := σ · (α× β)−1 is a (p, q)-shuffle, we are done. �

The composite
Sh(p, q)� Sp+q � Sp+q/(Sp × Sq)

is a bijection by the preceding lemma. Hence Sh(p, q) gives a preferred splitting to
the surjective map Sp+q � Sp+q/(Sp × Sq). In other words, for any σ ∈ Sp+q the
class [σ] (modulo Sp × Sq) contains one and only one (p, q)-shuffle.

Proposition 1.3.4. The coproduct ∆′ of the bialgebra T (V ) is given by

∆′(v1, . . . , vn) =
∑

p+q=n, σ∈Sh(p,q)

vσ−1(1) · · · vσ−1(p) ⊗ vσ−1(p+1) · · · vσ−1(p+q).



1.3. BIALGEBRA 13

The product µ′ of the bialgebra T c(V ) is given by

µ′(v1 · · · vp, vp+1 · · · vp+q) =
∑

σ∈Sh(p,q)

vσ−1(1) · · · vσ−1(p+q) =
∑

σ∈Sh(p,q)

σ·(v1 . . . vp+q).

Proof. The proof is by direct inspection. �

The tensor module equipped with the product constructed out the shuffles in
the above proposition is called the shuffle algebra and often denoted by T sh(V ).

Proposition 1.3.5. [Qui69, Wig89] Let K be a characteristic zero field and let
(T (V ), µ,∆′) be the tensor bialgebra. Denote by L(V ) the Lie subalgebra of T (V )
generated by V under the bracket operation. Then, for any x ∈ V ⊗n, the following
are equivalent:

(a) x ∈ L(V ),
(b) x is primitive,
(c) γ(x) = nx,

where γ : T (V )→ T (V ) is given by right bracketing:

γ(v1 · · · vn) := [v1, [v2, . . . , [vn−1, vn] . . .]] .

Proof. Let E : T (V )→ T (V ) be the Euler operator defined by x 7→ nx for x ∈ V ⊗n.
By induction it is easy to check that γ ? id = E.
(a)⇒ (b). If n = 1, that is x ∈ V , then ∆′(x) = x⊗ 1 + 1⊗ x, so x is primitive. If
x and y are primitive, then so is [x, y]. Therefore we are done by induction.
(b)⇒ (c). From the definition of the convolution we have, for any primitive element
x,

nx = E(x) = (µ ◦ (γ ⊗ id) ◦∆′)(x)

= µ ◦ (γ ⊗ id)(x⊗ 1 + 1⊗ x)

= µ(γ(x), 1) = γ(x).

(c)⇒ (a). It is immediate since we are in characteristic 0. �

Let us mention that the map γ (suitably normalized) is called the Dynkin
idempotent .

Theorem 1.3.6 (Structure Theorem for cocommutative bialgebras). Let K be a
characteristic zero field. For any bialgebra H over K the following are equivalent:
(a) H is conilpotent,
(b) H ∼= U(PrimH) as a bialgebra,
(c) H ∼= Sc(PrimH) as a conilpotent coalgebra.

Proof. This is a classical result for which we refer to the “classics”: [Car56,
MM65, Qui69]. �

This statement contains several classical results, namely:
(a)⇒ (b) is the Cartier-Milnor-Moore theorem.
(b)⇒ (c) is the Poincaré-Birkhoff-Witt theorem. A nice history of it can be found
in [Gri04].

So we call it the CMM-PBW theorem. A far reaching generalization of this
structure theorem can be found in [Lod06].
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Corollary 1.3.7. In the tensor algebra T (V ) we have the following identification:

Lie(V ) = L(V ) = PrimT (V )

where Lie(V ) is the free Lie algebra on V .

Proof. Recall that the subspace L(V ) generated by V under the bracket is a Lie
algebra which contains V . So there is a natural map Lie(V )→ L(V ). Proposition
1.3.5 shows that L(V ) = PrimT (V ). Applying the structure theorem to T (V ) we
get Lie(V ) = PrimT (V ) since U(Lie(V )) = T (V ) (the composite of two left adjoint
functors is a left adjoint functor). Therefore we obtain the expected identifications.
�

1.3.8. The module Lie(n). Let Vn be the space spanned by the variables
{x1, . . . , xn}. We denote by Lie(n) the subspace of Lie(Vn) ⊂ T (Vn) which is linear
in each variable xi. For instance Lie(2) is one-dimensional spanned by [x1, x2] =
x1x2 − x2x1. The action of Sn makes it into an Sn-module and we have

Lie(V ) =
⊕
n

Lie(n)⊗Sn V
⊗n.

We introduce the space of nontrivial shuffles Shn ⊂ K[Sn] as follows. Let T̄ sh(V )
be the augmentation ideal of the shuffle algebra T sh(V ), cf. 1.3.4. We consider
the quotient T sh(V )/(T̄ sh(V ))2. The space Shn is the Sn-submodule of K[Sn] such
that T sh(V )/(T̄ sh(V ))2 = ⊕n≥0Shn⊗Sn V

⊗n. For instance Sh1 is one-dimensional
spanned by [1 2]− [2 1].

Theorem 1.3.9 ([Ree58]). Let Lie(n)� K[Sn] be the inclusion deduced from the
functorial inclusion

Lie(V ) =
⊕
n

Lie(n)⊗Sn V
⊗n� T (V ) =

⊕
n

K[Sn]⊗Sn V
⊗n.

Under the isomorphism K[Sn] ∼= K[Sn]∗ obtained by taking the dual basis, the kernel
Ker

(
K[Sn]∗ → Lie(n)∗

)
is the subspace Shn of K[Sn] spanned by the nontrivial

shuffles:

Ker
(
K[Sn]∗ → Lie(n)∗

)
= Shn .

Proof. Since the graded dual of T (V ) is T (V )∗ = T c(V ∗), and since the dual of
the primitives are the indecomposables (cf. 1.2.2), the map T c(V ∗) → Lie(V )∗

gets identified with the map T c(V ∗)→ T c(V ∗)/(T
c
(V ∗))2. By Proposition 1.3.4 it

follows that this kernel is spanned by the nontrivial shuffles. �

1.3.10. Hopf algebra. Let (H, µ,∆) be a bialgebra. If f and g are two linear
maps from H to itself, then one can construct a third one, called the convolution
of f and g, as

f ? g := µ ◦ (f ⊗ g) ◦∆.

For the properties of the convolution product, see 1.6.
A Hopf algebra is a bialgebra H equipped with a linear map S : H → H which

is an inverse of the identity under the convolution product:

S ? id = uε = id ? S .

It is called an antipode.
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Observe that a conilpotent bialgebra has automatically an antipode S given by

S(x) := −x+
∑
n≥1

(−1)n+1µn ◦ ∆̄n−1(x),

where ∆̄n−1 is the iterated reduced coproduct. Hence any conilpotent bialgebra is
a Hopf algebra.

1.3.11. Eulerian idempotents. Let T (V ) be the tensor algebra considered
as a bialgebra, cf. 1.3.2. Since it is both an algebra and a coalgebra we can consider
its convolution algebra (Hom(T (V ), T (V )), ?, uε). Let us write Id = uε+ J so that
J is the identity on V ⊗n except for n = 0 on which it is 0. We define

e(1) := log?(Id) = log?(uε+ J) =
∑
n≥1

(−1)n+1 J
?n

n
.

In weight n we get e(1) : V ⊗n → V ⊗n. Since it is functorial in V , by the Schur
Lemma, cf. A.2.3, it is given by

e(1)(v1 · · · vn) = e(1)
n · (v1 · · · vn)

for some uniquely defined element e
(1)
n ∈ Q[Sn]. These elements are called the (first)

Eulerian idempotents.
It can be shown that Im e(1)(V ) = Lie(V ) ⊂ T (V ).
For any i ≥ 1 let us define

e(i) :=
(e(1))?i

i!
.

It can be shown that the elements e
(i)
n ∈ Q[Sn], i = 1, · · · , n, are orthogonal idem-

potents. Hence the tensor product V ⊗n splits as

V ⊗n =

n⊕
i=1

Im e(i)
n (V ).

We refer to [Reu93] and [Lod94] for proofs and details.

1.4. Pre-Lie algebras

The notion of pre-Lie algebra appeared in a work of Cayley on trees and then,
later on, in differential geometry (Hochschild homology, flat affine connections on
a given manifold). Nowadays it is also present in many topics, including algebraic
topology, algebraic combinatorics and theoretical physics (renormalisation).

1.4.1. Pre-Lie algebra. By definition a (right) pre-Lie algebra is a vector
space A equipped with a binary operation {x, y} which satisfies the following rela-
tion, called pre-Lie relation:

{{x, y}, z} − {x, {y, z}} = {{x, z}, y} − {x, {z, y}} .
In plain words, the associator (left side part of the equality) is right-symmetric.
For the opposite type (i.e. 〈x, y〉 := {y, x}) the associator is left-symmetric. It
appeared in the work of Gerstenhaber [Ger63] and Vinberg [Vin63] in differential
geometry and in several other papers subsequently. So it appears in the literature
under various names, for instance: Vinberg algebras, right-symmetric algebras. The
paper [Bur06] is a survey on this notion.
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The notion of morphism of pre-Lie algebras is obvious. The category of pre-Lie
algebras is denoted by preLie-alg.

Lemma 1.4.2. The antisymmetrization of a pre-Lie operation is a Lie bracket. As
a consequence there is a forgetful functor

(−)Lie : preLie-alg→ Lie-alg.

Proof. The product [x, y] := {x, y} − {y, x} is antisymmetric by definition. The
jacobiator is the sum of 12 elements that can be grouped into 3 × 4. The pre-Lie
relators for (x, y, z), (y, z, x), (z, x, y) account for these 3 packets. �

1.4.3. Remark. The above Lemma is valid for both the right pre-Lie product
and the left pre-Lie product. Observe that for left pre-Lie algebras the linear map
L(x) defined by L(x)(y) := {x, y} satisfies the following functional equation:

L([x, y]) = [L(x), L(y)].

1.4.4. Examples. (a) An associative algebra is an example of a pre-Lie alge-
bra since the associator is trivial.

(b) Faà di Bruno. On L−1 =
⊕

n≥−1 Kxn the operation:

{xp, xq} := (p+ 1)xp+q

is a pre-Lie product since

{{xp, xq}, xr} − {xp, {xq, xr}} = p(p+ 1)xp+q+r,

is symmetric in q and r. The associated Lie bracket is given by

[xp, xq] = (p− q)xp+q,

hence L−1 (also denoted W1 in the literature) is the Lie algebra of polynomial
vector fields on the affine line K1. Taking the universal algebra of the associated
Lie algebra, we get a Hopf algebra U(L−1), which turns out to be the dual of the
celebrated Faà di Bruno Hopf algebra [JR82].

When n ranges over Z we get a pre-Lie algebra whose associated Lie algebra
is well-known. For K = R it is the Lie algebra of polynomial vector fields over the
circle (Virasoro algebra without center). For K being a finite field it is called the
Witt algebra.

(c) Derivations. Let Di, i = 1, . . . , k, be commuting derivations of a commutative
algebra A. On the free A-module spanned by the Di’s one defines

{aDi, bDj} := bDj(a)Di.

Since we assumed that the derivations are commuting, it is immediate to verify
that this is a pre-Lie product. The previous case is a particular example.

1.4.5. Module over a pre-Lie algebra. For any pre-Lie algebra A, there
is an obvious notion of module M over A. It is given by two operations {−,−} :
M⊗A→ A and {−,−} : A⊗M → A such that the pre-Lie relation holds whenever
one of the variables is in M and the other two are in A.

But, due to the peculiar form of the pre-Lie relation, there is also a notion of
left pre-Lie module. It is given by one operation {−,−} : M ⊗ A → A such that
the pre-Lie relation holds whenever x ∈M and y, z ∈ A.
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1.5. Differential graded algebra

We present the notions of algebra and coalgebra in the differential graded frame-
work.

1.5.1. Graded vector space. A graded vector space V is a family of vector
spaces {Vn}n∈Z. The direct sum is denoted by

V• := · · · ⊕ V−n ⊕ · · · ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vn ⊕ · · · ,

and the product is denoted by

V̂• := Πn∈ZVn.

By abuse of notation we often write V in place of V• (resp. V̂ in place of V̂•). The
degree of v ∈ Vn is denoted by |v|, so here |v| = n. Most of the time the index will
run over N only. A morphism of degree r, say f : V → W , of graded vector spaces
is a family of maps fn : Vn →Wn+r for all n. The integer r is called the degree of f
and denoted by |f |. So we have |f(v)| = |f |+ |v|. If the non-negative components
are all zero, then it is helpful to write V n := V−n. We will say that V• =

⊕
n Vn is

homologically graded, and that V • =
⊕

n V
n is cohomologically graded.

There are obvious notions of subvector space and quotient vector space in the
graded framework. The grading of the tensor product V ⊗W of two graded spaces
V and W is described explicitly as:

(V ⊗W )n :=
⊕
i+j=n

Vi ⊗Wj .

Hence V ⊗n is graded and so is the tensor module T (V ). A homogeneous element
v = v1 · · · vn ∈ V ⊗n admits a degree and a weight :

|v| := |v1|+ · · ·+ |vn|, weight(v) := n .

Let Ks be the one-dimensional graded vector space spanned by s with |s| = 1.
By definition the suspension of the graded space V is

sV := Ks⊗ V.

In particular (sV )i = Vi−1. Any v ∈ Vn determines an element sv ∈ (sV )n+1 of
degree n+ 1. Alternative notations for sV used in the literature are V [1] and ↑ V .

Similarly let Ks−1 be the graded vector space spanned by s−1 put in degree
−1. By definition the desuspension of the graded space V is s−1V := Ks−1 ⊗ V .
In particular (s−1V )i = Vi+1. Any v ∈ Vn determines an element s−1v ∈ (sV )n−1

of degree n− 1.
If V = {Vn}n≥0 is a graded vector space, then its dual is the graded vector

space V ∗ = {V ∗−n}n≤0 = {V ∗n}n≤0 = {Hom(V−n,K)}n≤0. Observe that the direct
sum ⊕nV ∗n is not in general the dual of the direct sum ⊕nVn (unless there is
only finitely many non-zero summands). By abuse of terminology we say that the
infinite sum ⊕i≥0V

∗
i is the graded dual of ⊕i≥0Vi.

1.5.2. Switching map. The category of graded vector spaces (gVect,⊗,K)
is a monoidal category. It is usually equipped with a symmetric structure given by
the switching map

τ : V ⊗W →W ⊗ V , τ(v ⊗ w) := (−1)|v||w|w ⊗ v .
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In this formula the elements v and w are supposed to be homogeneous. Then τ is
extended by linearity. The category gVect, equipped with this symmetry, is called
the category of sign-graded vector spaces.

Observe that there is another choice of symmetry: τ(v⊗w) := w⊗v. Equipped
with this symmetry gVect is simply called the category of graded vector spaces.

1.5.3. Koszul sign rule. When working in the symmetric monoidal category
of sign-graded vector spaces with switching map τ , there are signs involved in the
formulas. For instance, if A is a graded algebra, then the product in A⊗A is given
by

(x⊗ y)(x′ ⊗ y′) = (−1)|y||x
′|(xx′)⊗ (yy′).

In order to avoid complicated signs in formulas, in particular signs depending
on the degree of the elements involved, there is a useful convention, called the
Koszul sign rule, which is as follows. For any maps f : V → V ′ and g : W → W ′

between graded spaces we define f ⊗ g : V ⊗W → V ′ ⊗W ′ as

(f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w).

Since the sign is automatically prescribed by this rule it is often helpful to allow
oneself to write (f ⊗ g)(v ⊗ w) := ±f(v) ⊗ g(w). In fact the trick to avoid ugly
signs is not only to apply the Koszul sign rule but also to consider the formulas as
equalities between maps (or functions) without evaluating them on the elements.
When all the involved operations are of degree 0, the formulas in the nongraded
case apply mutatis mutandis to the graded case.

Example. The Leibniz identity satisfied by the Lie bracket reads

[[x, y], z] = [[x, z], y] + [x, [y, z]].

Its graded version reads

[[x, y], z] = (−1)|y||z|[[x, z], y] + [x, [y, z]].

Under the notation c(x, y) := [x, y], both formulas become

c ◦ (c⊗ id) = c ◦ (c⊗ id)(id⊗ τ) + c ◦ (id⊗ c).

1.5.4. Differential graded vector space (chain complex). A differential
graded vector space (V, d), abbreviated into dg vector space and also called a chain
complex, is a graded space V• equipped with a linear map d = dV : V• → V•−1 of
degree −1, called the differential, satisfying d2 = 0,

· · · d← V−1
d← V0

d← V1
d← V2

d← · · · d← Vn
d← · · ·

Observe that, if we write Vn−1 in place of (sV )n in the suspended space, then the
new differential is −d since d(sv) = (−1)|d|sd(v) = −sd(v). If Vn = 0 for n < 0 we
say that the complex is non-negatively graded. If the complex is negatively graded,
then we sometimes adopt the cohomological grading and write V n := V−n:

· · · → V −1 → V 0 → V 1 → V 2 → · · · → V n → · · · ,

and (V •, d) is called a cochain complex. By definition the dual of the chain com-
plex C = (V, d) is the cochain complex C∗ whose module of n-cochains is Cn :=
Hom(Vn,K) and the boundary map dn : Cn → Cn+1 is given by dn(f) := (−1)n+1fdn+1,
for f : Vn → K and dn+1 : Vn+1 → Vn. This is a particular case of the derivative
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of a graded linear map, see below. A degree r morphism of chain complexes, de-
noted by f : V →W , is a morphism of graded vector spaces of degree r such that
dW ◦ f = (−1)rf ◦ dV .

A bicomplex is a bigraded vector space V = {Vpq}p≥0,q≥0 equipped with a
horizontal differential dh : Vpq → Vp−1q and a vertical differential dv : Vpq → Vpq−1

satisfying
dh ◦ dv + dv ◦ dh = 0.

The total complex associated to a bicomplex (V, dh, dv) is defined by

(TotV )n :=
⊕
p+q=n

Vpq and d = dh + dv.

It is immediate to verify that d2 = 0.

Let (V, dV ) and (W, dW ) be two differential graded vector spaces. Their tensor
product (V ⊗W )n :=

⊕
p+q=n Vp ⊗Wq is equipped with the differential

dV⊗W := dV ⊗ IdW + IdV ⊗ dW ,
that is

dV⊗W (v ⊗ w) := dV (v)⊗ w + (−1)pv ⊗ dW (w),

for v ⊗ w ∈ Vp ⊗Wq.
The suspension sV of the chain complex V is by definition the tensor product

of sK with V . Here sK is considered as a chain complex concentrated in degree 1
with 0 differential: (sV )n = Vn−1 and dsV = −dV .

The derivative (or boundary) of a graded linear map f : V• →W•+r of degree
r is the graded map

∂(f) = [d, f ] := dW ◦ f − (−1)rf ◦ dV ,
which is of degree r − 1. So f is a morphism of chain complexes if and only if
∂(f) = 0. The derivative is a differential on the space of graded morphisms from
V to W , that is ∂2 = 0. With this definition, a morphism f of chain complexes of
degree r is an element of Hom(V, W )r :=

∏
p∈Z Hom(Vp, Wp+r) such that ∂(f) = 0.

Remark that both (V ⊗W, d) and (Hom(V, W ), ∂) are total complexes associated
to bicomplexes.

The Hom complex bifunctor and the tensor complex bifunctor verify the fol-
lowing adjunction property:

Hom(U,Hom(V,W )) ∼= Hom(U ⊗ V,W ) ,

for any complexes U, V,W .

1.5.5. Homology and Cohomology. Given a chain complex (V, d) its nth
homology group is by definition

Hn(V, d) := Ker(d : Vn → Vn−1)/ Im(d : Vn+1 → Vn) .

The inclusion Im d ⊂ Ker d is a consequence of d2 = 0. We also adopt the notation
H•(V, d) :=

⊕
n∈ZHn(V, d), or H•(V ) for short. A morphism f : V → W of chain

complexes induces a morphism on homology denoted either by f• or by H•(f).
For a “cohomological chain complex” (V, d) (that is the differential map d is of

degree +1), the nth cohomology group is by definition

Hn(V, d) := (Ker d : V n → V n+1)/(Im d : V n−1 → V n) .
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We also adopt the notation H•(V, d) :=
⊕

n∈ZH
n(V, d), or H•(V ) for short.

When K is a field, we recall that the Künneth formula asserts that the homology
of the tensor product of two chain complexes is the tensor product of their homology:
H•(V ⊗W ) ∼= H•(V )⊗H•(W ), cf. [ML95] Chapter V.

By definition a quasi-isomorphism is a morphism of chain complexes which in-
duces an isomorphism on homology (or cohomology). We denote quasi-isomorphisms

by the symbol
∼−→.

A chain complex is said to be acyclic if its homology is 0 everywhere. A non-
negatively graded chain complex is said to be augmented if there is given a map
to the chain complex which is 0 everywhere except in degree 0 where it is K. By
abuse of terminology we say that this augmented chain complex is acyclic when
the augmentation map is a quasi-isomorphism. In other words the homology is 0
everywhere except in degree 0 where it is K.

Let f and g be two chain maps between the two graded chain complexes (V, d)
and (V ′, d′). A homotopy between f and g is a map h : V → V ′ of degree +1 such
that

f − g = d′h+ hd =: ∂(h) .

It is easy to check that the induced maps on homology are equal: f• = g•. Applied
to Id and 0, it provides a way to prove that a chain complex is acyclic.

A homotopy equivalence between two chain complexes (W,dW ) and (V, dV ) is
a chain map i : W → V such that there exists a chain map p : V →W , with i ◦ p
homotopic to IdV and p ◦ i homotopic to IdW .

(W,dW )h′
%% i //

(V, dV ) h
yy

p
oo

IdV − i ◦ p = dV ◦ h+ h ◦ dV , IdW − p ◦ i = dW ◦ h′ + h′ ◦ dW
In this case, the chain complexes W and V are homotopy equivalent. If h′ = 0 (i.e.
IdW = p ◦ i), then i is injective, p is surjective and the chain complex W is called
a deformation retract of V .

There is an intermediate notion called homotopy retract consisting in

(W,dW )
i //

(V, dV ) h
yy

p
oo

where it is assumed that i and p are chain maps, that h is a homotopy and that
i is a quasi-isomorphism. Obviously a deformation retract is a particular case of
homotopy retract.

1.5.6. Spectral sequence. Let V = (V•, d) be a chain complex. A filtration
F•V of V is an increasing family of sub-chain complexes of V :

· · · ⊂ Fp−1Vn ⊂ FpVn ⊂ Fp+1Vn ⊂ · · ·

with d : FpVn → FpVn−1. Such a filtration induces a filtration on the homology of
V .

This data defines a spectral sequence, that is a family of chain complexes
(Er••, d

r) where dr is of bidegree (−r, r − 1), such that E0
p q = FpVp+q/Fp−1Vp+q

and Er+1 = H(Er, dr). For any pair (p, q), the spaces Erp q give rise to a colimit
E∞p q.
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The filtration is bounded below whenever, for each n, there exists k such that
FpVn = 0 for any p < k. The filtration is exhaustive if Vn = ∪pFpVn.

In such a situation one can either take the homology of the complex first and
then the graded quotient, or, take the graded quotient (i.e. E1) first and then
the homology. The main theorem about spectral sequences compares these two
procedures, cf. for instance Chapter 11 of [ML95].

Theorem 1.5.7 (Classical convergence theorem of spectral sequences). If the fil-
tration F•V of the chain complex V = (V•, d) is exhaustive and bounded below, then
the spectral sequence converges. This means that there is an isomorphism

FpHp+q(V•)/Fp−1Hp+q(V•) ∼= E∞p q.

Comment. The idea of this notion is to filter the differential map of a chain
complex when this one is too complicated. Its restriction FpVn → Fp−rVn according
to the filtration corresponds to the differentials dr of the spectral sequence. For
instance, the first differential d0 is given by the part of the differential d which
lives in Fp and not in Fp−1. Throughout this book, we will encounter many chain
complexes with differential maps made up of the sum of several terms. So the
aforementioned theorem will be the main tool to investigate their homology.

1.5.8. Differential graded algebra. A graded algebra A is a graded vector
space {An}n≥0 equipped with a unital product µ of degree 0. Hence it sends Ap⊗Aq
into Ap+q. For instance, if we put V in degree 1, then the tensor algebra T (V ) is
a graded algebra (cf. 1.1.3). In this case the degree coincides with the weight.
Throughout the book, we will mainly consider non-negatively graded algebras.

A differential graded associative algebra (A, d) (dga algebra for short) is a
graded algebra equipped with a differential map d : A → A of degree −1 which is
a derivation for the product, that is, satisfies the identity:

d(ab) = (da)b+ (−1)|a|a(db).

This identity is better written as follows:

d ◦ µ = µ ◦ (d⊗ id + id⊗ d)

where µ is the product in A. It means that the product µ : A ⊗ A → A is a
morphism of chain complexes. Observe that the unit 1 belongs to A0. The dga
algebra A is said to be connected if A0 = K1.

A dga algebra is said to be a quasi-free algebra if, as a graded algebra, it is free
over some graded vector space V . Observe that in the notation “dga”, the letter
“a” stands for “associative” not for algebra.

1.5.9. Models. Let p : M → A be a surjective map of dga algebras. If p is
a quasi-isomorphism, then M is called a model of A. Moreover, if M is free as a
graded algebra, then M is called a quasi-free model of A. When the differential
d on M = T (V ) is decomposable, that is d(V ) ⊂ T (V )(≥2) , then M is called a
minimal model of A. In this case V is uniquely determined up to isomorphism. If
the image of d belongs to V ⊗2, then d is said to be quadratic.
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1.5.10. Differential graded coalgebra. A graded coalgebra C is a graded
vector space {Cn}n∈Z equipped with a counital coproduct ∆ of degree 0, that is
sending Cn into

⊕
p+q=n Cp ⊗Cq. For instance, if we put V in homological degree

1, then the tensor coalgebra T c(V ) is a graded coalgebra. We will almost always
work with non-negatively graded coalgebras.

A differential graded associative coalgebra (C, d) (dga coalgebra for short) is a
graded coalgebra equipped with a differential map d : C → C (of degree −1) which
is a coderivation for the coproduct, that is, satisfies the identity:

∆ ◦ d = (d⊗ id + id⊗ d) ◦∆.

Equivalently, a dga coalgebra is a chain complex endowed with a coproduct which
is a morphism of chain complexes. Observe that the counit sends Cn to 0 for n > 0
and C0 to K.

Since the differential d is a coderivation, it preserves the coradical filtration of
1.2.4: d : Fr → Fr. The dga coalgebra is said to be conilpotent if the underlying
coalgebra C is conilpotent in the sense of 1.2.4, that is when the coradical filtration
is exhaustive. A non-negatively graded dga coalgebra C is called connected if
C0 = K1. A connected dga coalgebra is conilpotent since Cr ⊂ Fr in this case.

A dga coalgebra is said to be a quasi-cofree coalgebra if, as a graded coalgebra,
it is cofree over some graded vector space V .

1.5.11. Weight graded framework. We will often need the assumption that
dg modules, algebras and coalgebras have an extra grading, which we call the
weight to avoid confusion with the homological degree. This means that a weighted
dg module M is a direct sum of sub-dg modules M (n) indexed by the weight n.
A weight-graded dga algebra A, wdga algebra for short, is an associative algebra
structure on a weight-graded dg module A. Its product is supposed to preserve the

homological degree as well as the weight grading. We denote A
(n)
d the sub-module

of degree d and weight n of A. Similarly, there is the notion of weight-graded dg
associative coalgebra C, wdga coalgebra for short, which is an associative coalgebra
structure on a weight graded dg module C. In this context the morphisms are
supposed to respect the weight grading.

Example. Let V be a graded vector space and let T (V ) be the tensor module. An
element in V ⊗n is said to be of weight n. Therefore the element ω = v1 . . . vn ∈ V ⊗n
has weight n (the number of factors) and degree |ω| = |v1|+ · · ·+ |vn|.

In this book, the homological degree and the weight grading are supposed to
be non-negative gradings. A wdga algebra A is called connected if it decomposes
as

A := K1⊕A(1) ⊕ · · · ⊕A(n) ⊕ · · ·
with A(0) = K1 concentrated in degree 0. In particular we assume A

(0)
d = 0

for d 6= 0. Dually, a wdga coalgebra is called connected if it satisfies the same
decomposition. Notice that in the weight graded case, the word “connected” refers
to the weight and not to the homological degree. A connected wdga coalgebra is
conilpotent with coradical filtration FrC =

⊕r
n=0 C

(r).

1.5.12. Differential graded module and comodule. Let A be an asso-
ciative algebra equipped with a derivation dA (for instance a graded differential
algebra). An A-derivation (or simply a derivation by abuse of language) on a right
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A-module M is a linear map dM : M →M which satisfies:

dM (ma) = dM (m)a±mdA(a)

for any m ∈ M and any a ∈ A. If A is a dga algebra and M is a chain complex
such that dM is an A-derivation, then M is called a differential graded A-module.

Analogously one can define the notion of C-coderivation on a left comodule (for
C a coalgebra equipped with a coderivation) and the notion of differential graded
C-comodule (for C a dga coalgebra).

Proposition 1.5.13. Let A be a dga algebra and let N be a chain complex. There
is a one-to-one correspondence between A-derivations on the free A-module N ⊗A
and linear maps from N to N ⊗A:

Der(N ⊗A) ∼= Hom(N,N ⊗A), df = (Id⊗ µ) ◦ (f ⊗ Id)↔ f .

Dually, let C be a dga coalgebra and let N be a chain complex. There is a one-to-
one correspondence between coderivations on the cofree C-module C⊗N and linear
maps from C ⊗N to N :

Coder(C ⊗N) ∼= Hom(C ⊗N,N), df = (Id⊗ f) ◦ (∆⊗ Id)↔ f .

Proof. First statement. In one direction it is simply the restriction to N . In the
other direction, the unique derivation which extends a map f : N → N ⊗ A is
equal to the following composite

df : N ⊗A f⊗Id−−−→ N ⊗A⊗A Id⊗µ−−−→ N ⊗A.

Second statement. In one direction it is simply the projection onto N . In the other
direction, the unique coderivation which extends a map f : C ⊗ N → N is equal
to the following composite

df : C ⊗N ∆⊗Id−−−→ C ⊗ C ⊗N Id⊗f−−−→ C ⊗N.

�

1.6. Convolution

1.6.1. Convolution algebra. Let (C,∆, ε) be a coalgebra and (A,µ, u) be
an algebra. Let f, g : C → A be two linear maps. The composite

f ? g := µ ◦ (f ⊗ g) ◦∆ : C −→ A

is called the convolution of f and g.

Proposition 1.6.2. The convolution product ? is associative. The composite u ◦ ε
is the unit for ?.

Proof. Associativity of µ and coassociativity of ∆ imply that the convolution op-
eration ? is an associative operation on Hom(C,A). �

The associative algebra (Hom(C,A), ?, u ◦ ε) is called a convolution algebra.
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1.6.3. From convolution algebra to tensor product. Any linear map
α : C → A from a graded coalgebra C to a graded algebra A, defines a morphism

C
∆−→ C ⊗ C Id⊗α−−−→ C ⊗A

which induces a unique derivation on C ⊗A and a morphism

C ⊗A α⊗Id−−−→ A⊗A µ−→ A

which induces a unique coderivation on C⊗A by Proposition 1.5.13. Both extended
maps are equal to

dα := (IdC ⊗ µ) ◦ (IdC ⊗ α⊗ IdA) ◦ (∆⊗ IdA) .

The following result gives a condition under which dα is a boundary map.

Proposition 1.6.4. For any α, β ∈ Hom(C,A) one has

dα?β = dα ◦ dβ and duε = IdC⊗A .

So, d− : (Hom(C,A), ?)→ (End(C ⊗A), ◦) is a morphism of associative algebras.
If α ? α = 0, then (dα)2 = 0.

Proof. The last assertion follows immediately from the first. Under some obvious
convention (see 1.3.1), the following picture (to be read from top to bottom) is a
proof of the first assertion:

dα ◦ dβ =

xxxx
JJJJJ

β

FFFF
����

FFFF
����

α

JJJJJ
xxxx

=

xxxx
JJJJJ

FFFF
����

α β

FFFF
����

JJJJJ
xxxx

=

xxxx

FFFFFFFF

����
xxxx

α β

FFFF
xxxx

����

FFFF
xxxx

= dα?β .

Observe that we use only associativity and coassociativity to prove these equal-
ities.

The following picture is a proof of the second assertion:
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duε =

����
EEEE

•
•

EEEE
����

= = IdC⊗A .

�

As a consequence we get a chain complex (C ⊗A, dα). We will begin the next
chapter with a differential graded version of this result.

1.7. Résumé

Unital associative algebra A = (A,µ, u). Augmentation ε : A→ K.
Counital coassociative coalgebra C = (C,∆, ε). Coaugmentation u : K→ C.
Linear duality: C∗ is an algebra, A∗ is a coalgebra if A is finite-dimensional.
Free unital associative algebra over V : T (V ) with concatenation product.
Cofree counital coassociative coalgebra over V : T c(V ) with deconcatenation co-
product.
Bialgebra: H = (H, µ,∆, u, ε) satisfying Hopf compatibility condition:

∆ ◦ µ = (µ⊗ µ) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆).

Pre-Lie algebra: (A, {−,−}) where the associator of {−,−} is left-symmetric.
Derivative of a linear map: ∂(f) = [d, f ] = d ◦ f − (−1)|f |f ◦ d.
Convolution : f, g ∈ Hom(C,A), f ? g := µ ◦ (f ⊗ g) ◦∆.
Twisted tensor product: C ⊗α A := (C ⊗A, dα), where

dα := (IdC ⊗ µ) ◦ (IdC ⊗ α⊗ IdA) ◦ (∆⊗ IdA).

If α ? α = 0, then (dα)2 = 0.

1.8. Exercises

1.8.1. Action of the symmetric group. Prove that the formula

σ · (v1 . . . vn) := vσ−1(1) . . . vσ−1(n)

defines a left action of the symmetric group Sn on the tensor product V ⊗n.
Show that applying σ on the left to v1 . . . vn means putting vi at the place

number σ(i).

1.8.2. Uniqueness of free algebra. Let V be a vector space. Let A and A′

be two associative algebras which are free over V . Show that there exists a unique
isomorphism A→ A′ under V .

1.8.3. Coproduct on a basis. Prove the assertion of Section 1.2.3.

1.8.4. Small coalgebras. Make explicit the coalgebra which is the linear dual
of the dual numbers algebra K[t]/(t2 = 0), resp. the group algebra K[t]/(t2 = 1).
Are they conilpotent ?
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1.8.5. Polynomial algebra. Let K[x] = K 1⊕Kx⊕ · · · ⊕Kxn ⊕ · · · . It is a
unital commutative algebra for the product xn xm = xn+m. Show that the product

xn ∗ xm :=

(
n+m

n

)
xn+m

makes it also a unital commutative algebra, that we denote by Γ(Kx). Compute
explicitly:

a) the dual coalgebra of K[x] and of Γ(Kx),
b) the coalgebra structure of K[x], resp Γ(Kx), which makes it a bialgebra and

which is uniquely determined by ∆(x) = x⊗ 1 + 1⊗ x.
c) Compare the results of a) and b).

1.8.6. Polynomial algebra continued. Same as in the preceding exercise
but with several variables, i.e. for the algebra of coinvariants S(V ) =

⊕
n((V ⊗n)Sn)

and the algebra of invariants Γ(V ) =
⊕

n((V ⊗n)Sn) over the vector space V .

1.8.7. Symmetric algebra as bialgebra. Show that S(V ) is a Hopf algebra
for ∆ uniquely determined by ∆(v) = v ⊗ 1 + 1 ⊗ v. Show that the linear dual of
the coalgebra (S(V ),∆) is Γ(V ∗).

1.8.8. Universal enveloping algebra. Show that the universal algebra U(g)
of a Lie algebra g is a conilpotent Hopf algebra.

1.8.9. Group algebra. Show that for any group G the group algebra K[G]
is a Hopf algebra. Show that it is not conilpotent in general.

1.8.10. Shuffles. Show that for σ ∈ Sp+q the class [σ] ∈ Sp+q/Sp × Sq, con-
tains one and only one (p, q)-shuffle.

1.8.11. Nonunital Hopf relation. Show that the restriction of the product
and the reduced coproduct on the augmentation ideal H of a bialgebra H satisfy
the following relation:

???
���

��� ??? = + OOOO
oooo +

��� ???

???
��� +

��� ???
???

���
???

��� +
��� ???

???
��� + ???

���
���

???

???
��� +

��� ???
��� ???

???
���

???
��� ???

��� .

1.8.12. Unital infinitesimal bialgebra. Let T (V ) be the tensor algebra
over V . Its product (concatenation) is denoted by µ. Let us denote by ∆ the
deconcatenation coproduct. Show that they satisfy the following compatibility
relation:

???
���

��� ??? = − +
��� ???

???
��� +

��� ???

???
��� .

Let T (V ) be the augmentation ideal and let ∆̄ be the reduced diagonal. What
is the compatibility relation between µ and ∆̄ on T (V ) ?
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1.8.13. Baker-Campbell-Hausdorff. Show that the polynomials Hn(x, y)
showing up in the BCH formula

exp(x) exp(y) = exp(x+ y + · · ·+Hn(x, y) + · · · )

can be computed out of the Eulerian idempotent e
(1)
n (see [Lod94]).

1.8.14. Relative tensor product. Let A be a K-algebra, M be a right A-
module and N be a left A-module. Show that the surjection map π : M ⊗K N →
M ⊗A N is the coequalizer (cokernel of the difference map):

M ⊗K A⊗K N //// M ⊗K N
π // M ⊗A N

where the two maps on the left hand side are using the right A-module structure
of M and the left A-module structure of N respectively.





CHAPTER 2

Twisting morphisms

“ . . . remember young fellow, Ω
is left adjoint . . . ”
Dale Husemöller, MPIM (Bonn),
personal communication.

In this chapter, we introduce the bar construction and the cobar construction
as follows. A twisting morphism is a linear map f : C → A, from a dga coalgebra
C to a dga algebra A, which satisfies the Maurer-Cartan equation:

∂(f) + f ? f = 0.

The set of twisting morphisms Tw(C,A) is shown to be representable both in C
and in A. More precisely, the cobar construction is a functor Ω from dga coalgebras
to dga algebras and the bar construction is a functor B from dga algebras to dga
coalgebras which satisfy the following properties: there are natural isomorphisms

Homdga alg(ΩC,A) ∼= Tw(C,A) ∼= Homdga coalg(C,BA) .

As an immediate consequence the functors cobar and bar are adjoint to each
other. Then we investigate the twisting morphisms which give rise to quasi-isomorphisms
under the aforementioned identifications. We call them Koszul morphisms.

The main point is the following characterization of the Koszul morphisms. Any
linear map α : C → A gives rise to a map dα : C⊗A→ C⊗A, which is a differential
if and only if α is a twisting morphism. Moreover, α is a Koszul morphism if and
only if the chain complex (C ⊗ A, dα) is acyclic. This is the first step of Koszul
duality theory, which will be treated in the next chapter.

As a corollary, it is shown that the unit and the counit of the bar-cobar ad-
junction

C → BΩC and ΩBA→ A,

are quasi-isomorphisms. Hence, the latter provides a canonical free resolution of A.
This chapter is inspired by H. Cartan [Car55], E. Brown [Bro59], J.C. Moore

[Moo71], Husemoller-Moore-Stasheff [HMS74], A. Prouté [Pro86] and K. Lefèvre-
Hasegawa [LH03].

2.1. Twisting morphisms

We introduce the Maurer-Cartan equation in the convolution algebra. Its so-
lutions are called twisting morphisms (sometimes called twisting cochains in the
literature). To such a twisting morphism we associate a twisted structure on the
convolution algebra and on the tensor product, thereby introducing the notion of
twisted tensor product of chain complexes.

29
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In this section (C, dC) is a differential graded coaugmented coalgebra and
(A, dA) is a differential graded augmented algebra, where the differentials are both
of degree −1.

2.1.1. Convolution in the dg framework. We extend the result of Sec-
tion 1.6.1 to graded vector spaces, that is Hom(C,A) is a graded associative algebra
under the convolution product ? (called cup-product in [HMS74]). The derivative
∂ of graded linear maps defined in 1.5.4 makes Hom(C,A) into a dg vector space.

Proposition 2.1.2. The convolution algebra
(
Hom(C, A), ?, ∂

)
is a dga algebra.

Proof. It suffices to prove that the derivative ∂ is a derivation for the convolution
product ?. Let f and g be two maps of degree p and q respectively. We have

∂(f ? g) = dA ◦ (f ? g)− (−1)p+q(f ? g) ◦ dC
= dA ◦ µ ◦ (f ⊗ g) ◦∆− (−1)p+qµ ◦ (f ⊗ g) ◦∆ ◦ dC
= µ ◦ (dA ⊗ id + id⊗ dA) ◦ (f ⊗ g) ◦∆−

(−1)p+qµ ◦ (f ⊗ g) ◦ (dC ⊗ id + id⊗ dC) ◦∆

= µ ◦
(
(dA ◦ f)⊗ g + (−1)pf ⊗ (dA ◦ g)−

(−1)p(f ◦ dC)⊗ g − (−1)p+qf ⊗ (g ◦ dC)
)
◦∆

= µ ◦ (∂(f)⊗ g + (−1)pf ⊗ ∂(g)) ◦∆

= ∂(f) ? g + (−1)pf ? ∂(g).

�

2.1.3. Maurer-Cartan equation, twisting morphism. In the dga algebra
Hom(C,A) we consider the Maurer-Cartan equation

∂(α) + α ? α = 0.

By definition a twisting morphism (terminology of John Moore [Moo71], “fonc-
tions tordantes” in H. Cartan [Car58]) is a solution α : C → A of degree −1 of
the Maurer-Cartan equation, which is null when composed with the augmentation
of A and also when composed with the coaugmentation of C.

We denote by Tw(C, A) the set of twisting morphisms from C to A. Recall
from 1.1.11 that a graded associative algebra is a graded Lie algebra, with the
graded bracket defined by [a, b] := a ? b − (−1)|a|.|b|b ? a. When 2 is invertible in
the ground ring K, we have α ? α = 1

2 [α, α], when α has degree −1. Therefore,
the ‘associative’ Maurer-Cartan equation, written above, is equivalent to the ‘clas-
sical’ Maurer-Cartan equation ∂(α) + 1

2 [α, α] = 0 in the Lie convolution algebra
(Hom(C,A), [−,−]).

Until the end of next section, we assume that the characteristic of the ground
field is not equal to 2.

2.1.4. Twisted structure on the Hom space. Let α ∈ Hom(C,A) be a
map of degree −1. We define a twisted derivation ∂α on Hom(C,A) by the formula

∂α(f) := ∂(f) + [α, f ].
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Lemma 2.1.5. Let (Hom(C,A), [ , ], ∂) be the dg Lie convolution algebra. For any
map α ∈ Hom(C,A) of degree −1 the twisted derivation ∂α(x) := ∂(x) + [α, x]
satisfies

∂2
α(x) = [∂(α) + α ? α, x].

Proof. We have

∂2
α(x) = ∂α(∂(x) + [α, x])

= ∂2(x) + ∂([α, x]) + [α, ∂(x)] + [α, [α, x]]

= [∂(α), x] + [α, [α, x]] (∂ is a derivation for [ , ])

= [∂(α), x] + [α ? α, x] (graded Jacobi relation)

= [∂(α) + α ? α, x].

�

As a consequence, when α is a twisting morphism in Hom(C,A), the map ∂α is
a differential. We denote by Homα(C, A) := (Hom(C,A), ∂α) this chain complex.

Proposition 2.1.6. Let α be a twisting morphism. The convolution algebra
(
Homα(C, A), ?, ∂α

)
is a dga algebra.

Proof. The twisted derivation ∂α is the sum of a derivation ∂ with [α,−]. Therefore,
it is enough to prove that the latter is a derivation with respect to the convolution
product ? :

[α, f ] ? g + (−1)pf ? [α, g]

= α ? f ? g − (−1)pf ? α ? g + (−1)pf ? α ? g − (−1)p+qf ? g ? α

= [α, f ? g],

for f of degree p and g of degree q. �

The dga algebras of the form
(
Homα(C, A), ?, ∂α

)
are called twisted convolu-

tion algebras. We leave it to the reader to prove that
(
Homα(C, A), [ , ], ∂α

)
is a

dg Lie algebra twisted by the twisting morphism α.

2.1.7. Twisted tensor product. We saw in Section 1.5.12 that the differ-
ential on the free A-module (resp. cofree C-comodule) C ⊗A is a derivation (resp.
coderivation). Any map α : C → A induces a unique (co)derivation on C ⊗ A,
which we denote by drα here. Since C and A are dga (co)algebras, we consider the
total (co)derivation

dα := dC⊗A + drα = dC ⊗ IdA + IdC ⊗ dA + drα.

So dα is a perturbation of the differential of the tensor product.

Lemma 2.1.8. The (co)derivation dα satisfies

dα
2 = dr∂(α)+α?α.

Therefore, α satisfies the Maurer-Cartan equation if and only if the (co)derivation
dα satisfies dα

2 = 0.

Proof. The first relation comes from dα
2 = (dC⊗A+drα)2 = dC⊗A◦drα+drα◦dC⊗A+

drα
2. We saw in Proposition 1.6.4 that drα

2 = drα?α. And we have dC⊗A ◦ drα + drα ◦
dC⊗A = drdA◦α+α◦dC = dr∂(α).



32 2. TWISTING MORPHISMS

Hence, if α ∈ Tw(C,A), then dα
2 = dr0 = 0. Conversely, we notice that the

restriction of drf on C ⊗ K1A → K1C ⊗ A is equal to f . So if dα
2 = 0, then

∂(α) + α ? α = 0. �

From the preceding lemma, it follows that, when α : C → A is a twisting
morphism, there exists a chain complex

C ⊗α A := (C ⊗A, dα)

which is called the (right) twisted tensor product (or twisted tensor complex). Since
the tensor product is symmetric, this construction is also symmetric in A and C.
So we can define a left twisted tensor product A ⊗α C. Warning: even if the
two underlying modules C ⊗ A and A ⊗ C are isomorphic, the left and the right
twisted tensor products are not isomorphic as chain complexes in general. The
twisting term of the differential is not symmetric ; it uses one particular side of the
coproduct of the coalgebra and one particular side of the product of the algebra
but not the same ones. If C were cocommutative and if A were commutative, then
they would be isomorphic. Since the two constructions are symmetric, we will only
state the related properties for the right twisted tensor product in the rest of this
chapter.

This construction is functorial both in C and in A. Let g : A → A′ be a
morphism of dga algebras and f : C → C ′ be a morphism of dga coalgebras.
Consider C ⊗α A and C ′ ⊗α′ A′ two twisted tensor products. We say that the
morphisms f and g are compatible with the twisting morphisms α and α′ if α′ ◦f =
g ◦α. One can show that f ⊗ g : C ⊗α A→ C ′⊗α′ A′ is then a morphism of chain
complexes.

In the weight-graded context, we require that the twisting morphisms preserve
the weight. In this case, the following lemma states that if two among these three
morphisms are quasi-isomorphisms, then so is the third one. This result first ap-
peared in the Cartan seminar [Car55].

Lemma 2.1.9 (Comparison Lemma for twisted tensor product). Let g : A → A′

be a morphism of wdga connected algebras and f : C → C ′ be a morphism of wdga
connected coalgebras. Let α : C → A and α′ : C ′ → A′ be two twisting morphisms,
such that f and g are compatible with α and α′.

If two morphisms among f , g and f ⊗ g : C ⊗α A → C ′ ⊗α′ A′ (or g ⊗ f :
A⊗α C → A′ ⊗α′ C ′) are quasi-isomorphisms, then so is the third one.

Proof. We postpone the proof to the end of the chapter (see Section 2.5). �

2.2. Bar and Cobar construction

We construct the cobar and bar functors and we prove that they give repre-
senting objects for the twisting morphisms bifunctor Tw(−,−). As a consequence
the bar and cobar functors form a pair of adjoint functors. The bar construction
goes back to Samuel Eilenberg and Saunders Mac Lane [EML53] and the cobar
construction goes back to Franck Adams [Ada56].

2.2.1. Bar construction. We are going to construct a functor from the cat-
egory of augmented dga algebras to the category of conilpotent dga coalgebras:

B : {aug. dga algebras} −→ {con. dga coalgebras}
called the bar construction.
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Let A be an augmented algebra: A = K1⊕ Ā (concentrated in degree 0) with
product µ. The bar construction of A is a differential graded coalgebra defined on
the cofree coalgebra T c(sĀ) over the suspension sA = Ks⊗A as follows. We denote
it by BA, using a slight but usual abuse of notation.

Consider the map Πs : Ks⊗Ks→ Ks of degree −1 induced by Πs(s⊗ s) := s.
The restriction µĀ of the product of the algebra A to Ā induces the following map

f : T c(sĀ)� Ks⊗ Ā⊗Ks⊗ Ā Id⊗τ⊗Id−−−−−−→ Ks⊗Ks⊗ Ā⊗ Ā Πs⊗µĀ−−−−−→ Ks⊗ Ā.

Since T c(sĀ) is cofree, by Proposition 1.2.9 there is a unique coderivation d2 :
T c(sA)→ T c(sĀ) which extends the map f : T c(sA)→ sĀ:

(0) (1) (2) (3)

T c(sĀ) =

d2

��

K Ā

0
���������� Ā⊗2

~~}}}}}}}}}
Ā⊗3

}}{{{{{{{{{
· · ·

~~}}}}}}}}}

T c(sĀ) = K Ā Ā⊗2 Ā⊗3 · · ·

Proposition 2.2.2. The associativity of µ implies that (d2)2 = 0, hence (T c(sA), d2)
is a chain complex.

Proof. We will give the proof in the dual case in 2.2.6. It is also a direct consequence
of the next lemma. �

The complex BA := (T c(sĀ), d2) is a conilpotent differential graded coalgebra,
called the bar construction of the augmented graded algebra A. It is obviously a
functor from the category of augmented graded algebras to the category of conilpo-
tent differential graded coalgebras.

Lemma 2.2.3. For any augmented associative algebra A, concentrated in degree
0, the bar complex of A can be identified with the non-unital Hochschild complex of
Ā:

· · · → Ā⊗n
b′−→ Ā⊗n−1 → · · · → Ā→ K,

where b′[a1 | . . . | an] =
∑n−1
i=1 (−1)i−1[a1 | . . . | µ(ai, ai+1) | . . . | an].

Proof. Here we have adopted Mac Lane’s notation [a1 | . . . | an] ∈ Ā⊗n.
Since Ā is in degree 0, the space sĀ is in degree 1 and (sĀ)⊗n is in degree n. So the
module of n-chains can be identified with Ā⊗n. Let us identify the boundary map.
Since d2 is induced by the product and is a derivation, it has the form indicated in
the statement. The signs come from the presence of the shift s. For instance:

[a1 | a2 | a3] = (sa1, sa2, sa3) 7→ (d2(sa1, sa2), sa3)− (sa1, d2(sa2, sa3))

= [µ(a1, a2) | a3]− [a1 | µ(a2, a3)].

The minus sign appears because d2 “jumps” over sa1 which is of degree one. �

In general, the formula is the same with only the following change of sign:

d2(sa1 ⊗ · · · ⊗ san) =

n−1∑
i=1

(−1)i−1+|a1|+···+|ai|sa1 ⊗ · · · ⊗ sµ(ai, ai+1)⊗ · · · ⊗ san
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One can extend this functor to the case where (A, dA) is an augmented differ-
ential graded algebra. Indeed, the differential dA : A→ A induces a differential on
A⊗n by

d1 :=

n∑
i=1

(id, . . . , id, dA, id, . . . , id).

We denote by d1 the differential on T c(sĀ). Since µA is a morphism of differential
graded vector spaces, one can check that d1 and d2 anticommute: d1◦d2+d2◦d1 = 0.
The chain complex associated to the total differential d1 + d2 is called the bar
construction of the augmented differential graded algebra

BA :=
(
T c(sĀ), dBA = d1 + d2

)
The analogous construction in algebraic topology (classifying space of a topo-

logical group) is also called bar construction and denoted B.

Proposition 2.2.4. For any quasi-isomorphism f : A → A′ of augmented dga
algebras, the induced morphism Bf : BA→ BA′ is a quasi-isomorphism.

Proof. We consider the filtration on BA defined by

FpBA :=
{ ∑

sa1 ⊗ · · · ⊗ san |n ≤ p
}

It is stable under dBA, d1 : Fp → Fp and d2 : Fp → Fp−1. This filtration
is increasing, bounded below and exhaustive. Hence, the classical convergence
theorem of spectral sequences 1.5.7 applies. The first page is equal to

E0
pqBA = (FpBA)p+q/(Fp−1BA)p+q ∼= {sa1 ⊗ · · · ⊗ sap | |a1|+ · · ·+ |ap| = q}

Finally E0
p•(f) = (sf)⊗p is a quasi-isomorphism by Künneth formula. �

2.2.5. Cobar construction. Analogously one can construct a functor from
the category of coaugmented dga coalgebras to the category of augmented dga
algebras:

Ω : {coaug. dga coalgebras} −→ {aug. dga algebras}

called the cobar construction, as follows.
Let C be a coaugmented graded coalgebra: C = C ⊕ K1 with coproduct ∆.

The reduced coproduct ∆̄ : C → C ⊗ C is defined by the equality ∆(x) = x⊗ 1 +
1⊗ x+ ∆̄(x) for any x ∈ C. It is obviously coassociative and of degree 0.

Consider now Ks−1 equipped with the diagonal map ∆s(s
−1) := s−1 ⊗ s−1 of

degree −1. Then, one defines a map f on s−1C = Ks−1 ⊗ C as the composite

f : Ks−1 ⊗ C ∆s⊗∆̄−−−−→ Ks−1 ⊗Ks−1 ⊗ C ⊗ C Id⊗τ⊗Id−−−−−−→ Ks−1 ⊗ C ⊗Ks−1 ⊗ C.

Consider the free algebra T (s−1C) over the desuspension s−1C. Since it is free, the
degree −1 map f : s−1C → s−1C ⊗ s−1C has a unique extension to T (s−1C) as a
derivation by Proposition 1.1.8. We denote it by

d2 : T (s−1C)→ T (s−1C).
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(0) (1) (2) (3)

T (s−1C) =

d2

��

K
0

��???????? C

  AAAAAAAA C
⊗2

!!CCCCCCCC C
⊗3

  @@@@@@@@@
· · ·

T (s−1C) = K C C
⊗2

C
⊗3 · · ·

Proposition 2.2.6. The coassociativity of ∆̄ implies that d2 ◦ d2 = 0 on s−1C.
Therefore d2 is a differential and (T (s−1C), d2) is a chain complex.

Proof. For any x ∈ C, let us write ∆̄(x) =
∑
x(1)⊗x(2). We also adopt the notation

(∆̄⊗ id)∆̄(x) =
∑

x(1) ⊗ x(2) ⊗ x(3) = (id⊗ ∆̄)∆̄(x).

We have defined

d2(s−1x) :=
∑

(−1)|x(1)|s−1x(1) ⊗ s−1x(2) ∈ C
⊗2
.

Let us prove that d2 ◦ d2 = 0. Let p := |x(1)|, q := |x(2)|, r := |x(3)|. The term

s−1x(1)⊗s−1x(2)⊗s−1x(3) coming from (∆̄⊗ id)∆̄ under d2◦d2 comes with the sign

(−1)p+q(−1)p. Indeed, the first one comes from the application of the first copy of
d2, the second one comes from the application of the second copy of d2. The term
s−1x(1) ⊗ s−1x(2) ⊗ s−1x(3) coming from (id ⊗ ∆̄)∆̄ under d2 ◦ d2 comes with the

sign (−1)p(−1)p−1(−1)q. Indeed, the first one comes from the application of the
first copy of d2, the second one comes from the fact that d2, which is of degree −1,
jumps over a variable of degree p− 1, the third one comes from the application of
the second copy of d2.

Adding up these two elements we get 0 as expected. �

By definition the cobar construction of the coaugmented graded coalgebra C is
the augmented dga algebra

ΩC := (T (s−1C), d2).

It obviously gives a functor Ω from the category of coaugmented graded coalgebras
to the category of augmented differential graded algebras.

One easily extends this functor to coaugmented differential graded coalgebras
(C,∆, dC) by adding to d2 the differential d1 induced by the differential dC . Since
∆ is a morphism of chain complexes, d1 and d2 anticommute and one has a well-
defined bicomplex. The chain complex associated to this total differential is called
the cobar construction of the coaugmented coalgebra

ΩC :=
(
T (s−1C), dΩC = d1 + d2

)
.

The notation Ω is by analogy with the loop space construction in algebraic
topology.

A non-negatively graded dga coalgebra C is called 2-connected if C0 = K1 and
C1 = 0.

Proposition 2.2.7. Let f : C → C ′ be a quasi-isomorphism between two 2-
connected dga coalgebras. The induced morphism Ωf : ΩC → ΩC ′ between the
cobar constructions is a quasi-isomorphism.
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Proof. We consider the following filtration on the cobar construction

FpΩC := {
∑

s−1c1 ⊗ · · · ⊗ s−1cn |n ≥ −p}

This increasing filtration is preserved by the differential of the cobar construction,
d1 : Fp → Fp and d2 : Fp → Fp−1. So the first term of the associated spectral
sequence is equal to

E0
pq = (FpΩC)p+q/(Fp−1ΩC)p+q ∼=

{
∑

s−1c1 ⊗ · · · ⊗ s−1cp | |c1|+ · · ·+ |cp| = 2p+ q},

with d0 = d1. Since E0
p•(Ωf) = (s−1f)⊗p, it is a quasi-isomorphism by Künneth

formula. Since C (respectively C ′) is 2-connected, the degree of an element s−1c ∈
s−1C is at least 1 and (FpΩC)n = 0 for p < −n. The filtration being exhaustive
and bounded below, this spectral sequence converges to the homology of the cobar
construction by the classical convergence theorem of spectral sequences 1.5.7, which
concludes the proof. �

This result does not hold when the dga coalgebras are not 2-connected. We
give a counterexample in Proposition 2.4.3. Beyond the 2-connected case, the
relationship between the cobar construction and quasi-isomorphisms is more subtle.
This question is fully studied in Section 2.4.

2.2.8. Bar-Cobar adjunction. We show that the bar and cobar construc-
tions form a pair of adjoint functors

Ω : {con. dga coalgebras}
 {aug. dga algebras} : B .

More precisely, this adjunction is given by the space of twisting morphisms.
When A is augmented and C coaugmented, a twisting morphism between C and A
is supposed to send K to 0 and C to Ā.

Theorem 2.2.9. For every augmented dga algebra A and every conilpotent dga
coalgebra C there exist natural bijections

Homdga alg (ΩC, A) ∼= Tw(C, A) ∼= Homdga coalg (C, BA) .

Proof. Let us make the first bijection explicit. Since ΩC = T (s−1C) is a free
algebra, any morphism of algebras from ΩC to A is characterized by its restriction
to C (cf. Proposition 1.1.4). Let ϕ be a map from C to A of degree −1. Define
the map ϕ̄ : s−1C → A of degree 0 by the formula ϕ̄(s−1c) := ϕ(c). Similarly, ϕ̄
induces a unique morphism Φ of algebras from ΩC to A. The map Φ commutes
with the differentials, meaning dA ◦ Φ = Φ ◦ (d1 + d2), or equivalently to dA ◦ ϕ̄ =
−ϕ̄ ◦ dC − ϕ ? ϕ. Finally, we get ∂(ϕ) + ϕ ? ϕ = 0. Notice that the map ϕ arrives
in Ā since the map Φ is a morphism of augmented algebras.

The second bijection is given by the same method, so the rest of the proof
is left to the reader as an exercise. Notice that we need the coalgebra C to be
conilpotent in order to be able to extend a map C → sA into a morphism of
coalgebras C → BA = T c(sĀ) (see Section 1.2.6). �

As a consequence of this proposition Ω and B form a pair of adjoint functors
(Ω is left adjoint and B is right adjoint), which represent the bifunctor Tw.
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2.2.10. Universal twisting morphisms. From now on, we will only con-
sider conilpotent dga coalgebras C. Several universal morphisms appear from this
pair of adjoint functors. Applying Theorem 2.2.9 to C = BA we get the counit
of the adjunction ε : ΩBA → A (see Appendix B.2.1) and the universal twisting
morphism π : BA → A. Then applying Theorem 2.2.9 to A = ΩC we get the
unit of adjunction υ : C → BΩC (this is upsilon not v) and the universal twisting
morphism ι : C → ΩC.

By Proposition 2.2.9 the twisting morphisms π and ι have the following prop-
erty.

Proposition 2.2.11. Any twisting morphism α : C → A factorizes uniquely
through π and ι:

ΩC
gα

!!B
B

B
B

C
α //

ι

=={{{{{{{{

fα !!C
C

C
C A

BA

π

==||||||||

where gα is a dga algebra morphism and fα is a dga coalgebra morphism.

2.2.12. Augmented bar and cobar construction. The universal twisting
morphism π : BA = T c(sĀ) � sĀ ∼= Ā � A gives rise to the twisted tensor
product BA⊗π A (cf. 2.1.7). It is called the augmented bar construction of A.

Dually, the universal twisting morphism ι : C � C ∼= s−1C � T (s−1C) = ΩC
gives rise to the coaugmented cobar construction of C denoted C ⊗ι ΩC = (C ⊗
ΩC, dι).

Proposition 2.2.13. The chain complexes BA⊗πA (resp. A⊗πBA) and C⊗ιΩC
(resp. ΩC ⊗ι C) are acyclic.

Proof. Once made explicit, the chain complex is the non-unital Hochschild complex
with coefficients in A whose module of n-chains is Ā⊗n ⊗ A and whose boundary
map is b′ given by

b′([a1 | . . . | an]an+1) =

n−1∑
i=1

(−1)i−1[a1 | . . . | aiai+1 | . . . | an]an+1

+(−1)n−1[a1 | . . . | an−1]anan+1.

It is immediate to check that the map h : Ā⊗n ⊗ A → Ā⊗n+1 ⊗ A given by [a1 |
. . . | an]an+1 7→ [a1 | . . . | an | an+1]1 is a homotopy from id to 0:

b′h+ hb′ = id .

Hence the twisted tensor complex BA⊗π A is acyclic.
The proof for the other case is similar. �

2.3. Koszul morphisms

We have just seen that the twisted tensor products associated to the two two
universal twisting morphisms π and ι are acyclic. When the twisted complex C⊗αA,
or equivalently A⊗α C, happens to be acyclic, the twisting morphism α is called a
Koszul morphism. We denote the set of Koszul morphisms by Kos(C,A).
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In this section, we give the main theorem of this chapter which relates Koszul
morphisms with bar and cobar resolutions. As a corollary, we prove that the unit
and the counit of the bar-cobar adjunction are quasi-isomorphisms.

2.3.1. Koszul criterion. Here we give the main result of this section, which
is a criterion about Koszul morphisms. It comes from E. Brown’s paper [Bro59].

Theorem 2.3.2 (Twisting morphism fundamental theorem). Let A be a connected
wdga algebra and let C be a connected wdga coalgebra. For any twisting morphism
α : C → A the following assertions are equivalent:

(1) the right twisted tensor product C ⊗α A is acyclic,
(2) the left twisted tensor product A⊗α C is acyclic,

(3) the dga coalgebra morphism fα : C
∼−→ BA is a quasi-isomorphism,

(4) the dga algebra morphism gα : ΩC
∼−→ A is a quasi-isomorphism.

Proof. Since we require A to be connected, we have A = Ā⊕K 1, where the elements
of the augmentation ideal Ā have positive degree and positive weight. There is a
similar statement for C. Recall that wdga (co)algebras were introduced in 1.5.11.

We first notice that the bar construction of a wgda connected algebra is a
wgda connected coalgebra. And dually, the cobar construction of a wgda connected
coalgebra is a wgda connected algebra. The weight of an element of BA is equal to
the total weight ω(sa1, . . . , sak) = ω(a1) + · · ·+ ω(ak).

We consider the commutative diagram of Section 2.2.10, where fα : C → BA,
resp. gα : ΩC → A, is the morphism of wdga coalgebras , resp. algebras, associated
to the twisting morphism α and respecting the weight grading. Notice that the
universal twisting morphisms π and ι also preserve the weight.

(1) ⇔ (3). Consider the tensor map fα ⊗ IdA : C ⊗ A → BA ⊗ A. Since
π ◦ fα = α = IdA ◦ α, the map fα ⊗ IdA is a morphism of chain complexes from
C ⊗α A to BA ⊗π A. We have seen in Proposition 2.2.13 that the augmented bar
construction is always acyclic. Therefore, the twisted complex C ⊗α A is acyclic if
and only if fα⊗ IdA is a quasi-isomorphism. The Comparison Lemma 2.1.9 implies
that C ⊗α A is acyclic if and only if fα is a quasi-isomorphism.

(1) ⇔ (4). We use the same method with the tensor map IdC ⊗ gα : C ⊗ι
Ω(C) → C ⊗α A. Since gα ◦ ι = α = α ◦ IdC , the map IdC ⊗ gα is a morphism
of chain complexes. The acyclicity of the coaugmented cobar construction 2.2.13
and the Comparison Lemma 2.1.9 imply that the twisted chain complex C ⊗α A is
acyclic if and only if gα is a quasi-isomorphism.

The proof of the equivalence (2)⇔ (3)⇔ (4) is similar and uses the two other
cases of Proposition 2.2.13 and Lemma 2.1.9. �

2.3.3. Bar-Cobar resolution. We consider the counit ε : ΩBA → A and
the unit υ : C → BΩC of the bar-cobar adjunction. The counit is a canonical
resolution of A which is called the bar-cobar resolution. The following statement
shows that it provides a quasi-free model for A, which is not minimal in general.

Corollary 2.3.4. Let A be an augmented dga algebra and let C be a conilpotent
dga coalgebra.

The counit ε : ΩBA
∼−→ A is a quasi-isomorphism of dga algebras. Dually, the

unit υ : C
∼−→ BΩC is a quasi-isomorphism of dga coalgebras.
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Proof. We give a proof under the hypothesis that A (resp. C) is a connected
wdga algebra (resp. connected wdga coalgebra). However the result holds in full
generality (see [HMS74]). We apply Theorem 2.3.2 to the following diagram

ΩBA
ε

""EEEEEEEE

BA
π //

ιBA

;;wwwwwwww

IdBA ##GGGGGGGG A

BA.

π

<<yyyyyyyy

Since IdBA is an isomorphism, it follows that the counit ε is a quasi-isomorphism.
Following the same method, since IdΩC is an isomorphism, the unit υ is a

quasi-isomorphism. �

2.4. Cobar construction and quasi-isomorphisms

Using the previous results, we study the relationship between the cobar con-
struction and quasi-isomorphisms. The main source of inspiration for this section
is Lefèvre-Hasegawa’s thesis [LH03].

To any dga coalgebra C, we consider the graded modules associated to the
coradical filtration: grrC := FrC/Fr−1C. Let f : C → C ′ be a morphism of
conilpotent dga coalgebras. Since the map f and the differentials preserve the
coradical filtrations, f induces a morphism of chain complexes [f ] : grC → grC ′

between the associated graded modules. If [f ] is a quasi-isomorphism, then f is
called a graded quasi-isomorphism.

Proposition 2.4.1. For any morphism f : C → C ′ of conilpotent dga coalgebras
which is a graded quasi-isomorphism the induced morphism Ωf : ΩC

∼−→ ΩC ′ is a
quasi-isomorphism.

Proof. We consider the following grading for any element c in a conilpotent coalge-
bra C, gr c := min{r | c ∈ FrC}. We consider the filtration of the cobar construction
ΩC defined by

FpΩC := {s−1c1 ⊗ · · · ⊗ s−1cn | gr c1 + · · ·+ gr cn ≤ p}

The increasing filtration is bounded below and exhaustive so the associated spec-
tral sequence converges to the homology of ΩC. Its first term is equal to E0

pqΩC =

(FpΩC)p+q/(Fp−1ΩC)p+q ∼= (Ω grC)
(p)
p+q, where (Ω grC)(p) = {s−1c1⊗· · ·⊗s−1cn | gr c1+

· · · gr cn = p}. Hence E0(Ωf) = Ω[f ], under the preceding notation. For any fixed
p, we now prove that E0

p•(ΩC) → E0
p•(ΩC

′) is quasi-isomorphism. On E0
p•(ΩC),

we define the filtration Fk as follows: an element s−1c1⊗ · · ·⊗ s−1cn is in Fk if and
only if n ≥ −k. This filtration is increasing. Since C is conilpotent the grading gr
of the elements of C is strictly greater than 0, and we have F−p−1 = 0. So it is
bounded below and exhaustive and the associated spectral sequence converges by
Theorem 1.5.7. The first term E0

k• is isomorphic to the sub-module of (s−1grC)⊗k

of grading p and degree k + • with differential d0 induced by the differential of
grC. The morphism f being a graded quasi-isomorphism, E0(Ω[f ]) is also a quasi-
isomorphism by Künneth formula, which concludes the proof. �
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Any morphism f : C → C ′ of dga coalgebras, such that the induced morphism
Ωf : ΩC → ΩC ′ is a quasi-isomorphism, is called a weak equivalence.

Proposition 2.4.2. Any weak equivalence f : C → C ′ of conilpotent dga coalge-
bras is a quasi-isomorphism.

Proof. By Proposition 2.2.4, the morphism of dga coalgebras BΩf : BΩC → BΩC ′

is a quasi-isomorphism. We conclude with the following commutative diagram,
where all the maps are quasi-isomorphisms by Proposition 2.3.4

C
υC //

f

��

BΩC

BΩf

��
C ′

υC′ // BΩC ′

�

In conclusion, the exact relationship between these notions is the following:

graded quasi-isomorphisms ⊆ weak equivalences ( quasi-isomorphisms.

Proposition 2.4.3. There exist quasi-isomorphisms of dga coalgebras which are
not weak equivalences.

Proof. Let A be a unital dga algebra A, which is not acyclic. Consider its augmenta-
tion A+ := A⊕K1, where 1 acts as a unit. The dga coalgebra C := BA+

∼= T c(sA)
is isomorphic to K⊕BA⊗πA. So it is quasi-isomorphic to the trivial dga coalgebra
K by Proposition 2.2.13. But the cobar construction of K is acyclic, whereas the
cobar construction ΩBA+ is quasi-isomorphic to A+ by Corollary 2.3.4, which is
not acyclic.

�

Notice that C = BA+ is connected but not 2-connected since C1 contains s1A,
the suspension of the unit of A. So Proposition 2.2.7 does not hold for connected
dga coalgebras in general. For 2-connected dga coalgebras, a quasi-isomorphism is
a weak equivalence and vice versa.

2.5. Proof of the Comparison Lemma

In this section, we prove the Comparison Lemma 2.1.9 used in the proof of the
fundamental Theorem of twisting morphisms 2.3.2. We assume here that the reader
is familiar with the following notions of homological algebra: long exact sequences,
cones, filtrations and spectral sequences. We refer the reader to any textbook on
homological algebra, for instance [ML95] by Saunders MacLane.

Lemma 2.5.1 (Comparison Lemma for twisted tensor product, Cartan [Car55]).
Let g : A → A′ be a morphism of wdga connected algebras and f : C → C ′ be a
morphism of wdga connected coalgebras. Let α : C → A and α′ : C ′ → A′ be two
twisting morphisms, such that f and g are compatible with α and α′.

If two morphisms among f , g and f ⊗ g : C ⊗α A → C ′ ⊗α′ A′ (or g ⊗ f :
A⊗α C → A′ ⊗α′ C ′) are quasi-isomorphisms, then so is the third one.

Proof. Recall that the notion of weight-graded dga algebra was defined in 1.5.11.
We denote by M = ⊕n≥0M

(n) (resp. M ′ = ⊕n≥0M
′(n)) the weight-graded chain
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complex C ⊗α A (resp. C ′ ⊗α′ A′). We define a filtration Fs on M (n), where n ∈ N
is the weight, by the formula

Fs(M
(n)) :=

⊕
d+m≤s

(
C

(m)
d ⊗A

)(n)

=
⊕

d+m≤s

C
(m)
d ⊗A(n−m).

The differential dα on M = C⊗αA is the sum of three terms IdC⊗dA, dC⊗IdA
and drα. One has IdC ⊗dA : Fs → Fs, dC ⊗ IdA : Fs → Fs−1 and drα : Fs → Fs−2.
Therefore, Fs is a filtration on the chain complex M (n). We consider the associated
spectral sequence {E•st}s, t. One has

E0
st = Fs(M

(n))s+t/Fs−1(M (n))s+t =

n⊕
m=0

C
(m)
s−m ⊗A

(n−m)
t+m .

The study of the differential dα on the filtration Fs of M shows that d0 = IdC ⊗dA
and that d1 = dC ⊗ IdA. It follows that

E2
st =

n⊕
m=0

Hs−m
(
C

(m)
•
)
⊗Ht+m

(
A

(n−m)
•

)
.

Since A and C are weight graded and connected, the part m = 0 is concen-

trated in s = 0 and t ≥ 0, where it is equal to E2
0t = Ht(A

(n)
• ). The part m = n

is concentrated in t = −n and s ≥ n, where it is equal to E2
s−n = Hs−n(C

(n)
• ).

For any 0 < m < n, the non-vanishing part of Hs−m
(
C

(m)
•
)
⊗Ht+m

(
A

(n−m)
•

)
is in

s ≥ 1 and t ≥ −n+ 1. See Figure 2.

The filtration Fs is exhaustive M (n) =
⋃
s≥0 Fs(M

(n)) and bounded below

F−1(M (n)) = {0}, so the spectral sequence converges to the homology of M (n) by
the classical convergence theorem 1.5.7:

E∞st (M (n)) ∼= Fs(Hs+t(M
(n)))/Fs−1(Hs+t(M

(n)))

We consider the same filtration on M ′ and we denote by Φ the morphism of
chain complexes Φ := f ⊗ g. We treat the three cases one after the other.

(1) If f and g are quasi-isomorphisms, then Φ = f ⊗ g is a quasi-isomorphism.

For every s, t and n, the maps E2
st(M

(n))
H•(f)⊗H•(g)−−−−−−−−−→ E2

st(M
′(n)) are isomor-

phisms. By the convergence of the two spectral sequences, the maps

E∞st (M (n))
∼−→ E∞st (M ′(n))

are again isomorphisms. So the map Φ is a quasi-isomorphism.

(2) If Φ = f ⊗ g and g are quasi-isomorphisms, then f is a quasi-isomorphism.

Let us work by induction on the weight n. When n = 0, the map f (0) : K → K,
which is the identity, is a quasi-isomorphism. Suppose now that the result is true up
to weight n− 1. We consider the mapping cone of Φ(n) : cone(Φ(n)) := s−1M (n) ⊕
M ′(n) and the associated filtration Fs

(
cone(Φ(n))

)
:= Fs−1

(
M (n)

)
⊕ Fs

(
M ′(n)

)
,

which satisfies E1
•t
(
cone(Φ(n))

)
= cone

(
E1
•t(Φ

(n))
)
. The long exact sequence of
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Figure 1. The page E2
st of the spectral sequence

the mapping cone reads

· · · → Hs+1

(
cone

(
E1
•t(Φ

(n))
))
→ Hs

(
E1
•t(M

(n))
) Hs(E

1
•t(Φ

(n)))−−−−−−−−−→
Hs

(
E1
•t(M

′(n))
)
→ Hs

(
cone

(
E1
•t(Φ

(n))
))
→ · · · .

Therefore there is a long exact sequence (ξt)

(ξt) · · · → E2
s+1t

(
cone(Φ(n))

)
→ E2

st(M
(n))

E2
st(Φ

(n))−−−−−−→
E2
st(M

′(n))→ E2
st

(
cone(Φ(n))

)
→ · · ·

where E2
st(Φ

(n)) is given by H•(f)⊗H•(g).
When t > −n, we have seen that only C(m) (and C ′(m)) withm < n are involved

in E2
st. In that case, since E2

st(M
(n)) =

⊕n−1
m=oHs−m

(
C

(m)
•
)
⊗Ht+m

(
A

(n−m)
•

)
, the

induction hypothesis implies that

E2
st(M

(n))
H•(f)⊗H•(g)−−−−−−−−−→ E2

st(M
′(n))

is an isomorphism for every s and every t > −n. Using the long exact sequence
(ξt) for t > −n, it gives E2

st

(
cone(Φ(n))

)
= 0 for every s and every t 6= −n. The

collapsing of the spectral sequence E•st
(
cone(Φ(n))

)
at rank 2 implies the equality

E∞st
(
cone(Φ(n))

)
= E2

st

(
cone(Φ(n))

)
. The convergence of the spectral sequence
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E•st
(
cone(Φ(n))

)
shows that

E2
st

(
cone(Φ(n))

)
= Fs(Hs+t

(
cone(Φ(n))))/Fs−1(Hs+t

(
cone(Φ(n)))

)
= 0

since Φ(n) is a quasi-isomorphism. Since E2
s−n

(
cone(Φ(n))

)
= 0, the long exact

sequence (ξ−n) gives the isomorphism

Hs−n
(
C

(n)
•
)

= E2
s−n

(
M (n)

) H•(f)−−−−→ E2
s−n

(
M ′

(n))
= Hs−n

(
C ′

(n)
•
)
,

for every s. So f is a quasi-isomorphism as expected.
(3) If Φ = f ⊗ g and f are quasi-isomorphisms, then g is a quasi-isomorphism.

Once again, we work by induction on the weight n. For n = 0, the map g(0) : K→
K is an isomorphism. Suppose that the result if true up to weight n − 1. When
s ≥ 1, we have seen that only A(n−m) (and A′(n−m)) with m > 0 are involved in
E2
st,

E2
st

(
M (n)

)
=

n⊕
m=1

Hs−m
(
C

(m)
•
)
⊗Ht+m

(
A

(n−m)
•

)
.

In this case, the induction hypothesis implies that E2
st

(
M (n)

) H•(f)⊗H•(g)−−−−−−−−−→ E2
st

(
M ′(n)

)
is an isomorphism for every s ≥ 1 and every t. The long exact sequence (ξt) shows
that E2

st

(
cone(Φ(n))

)
= 0 for s ≥ 2 and every t. The spectral sequence of the cone

of Φ(n) converges to its homology, which is null since Φ(n) is a quasi-isomorphism.
Therefore, E2

1,t−1

(
cone(Φ(n))

)
= E2

0,t

(
cone(Φ(n))

)
= 0 for every t. This implies

E2
st

(
cone(Φ(n))

)
= 0 for every t and s. Finally, the beginning (s = 0) of the exact

sequence (ξt) gives the isomorphism

Ht

(
A

(n)
•
)

= E2
0t

(
M (n)

) H•(g)−−−−→ E2
0t

(
M ′

(n))
= Ht

(
A′

(n)
•
)
.

So g is a quasi-isomorphism as expected. �

2.5.2. Relationship with algebraic topology. The Comparison Lemma is
the algebraic avatar of the following result in algebraic topology. Let f : (F → X →
B)→ (F ′ → X ′ → B′) be a morphism between two fibrations of simply-connected
spaces. If two of the morphisms fF , fX , fB are isomorphisms in homology, then so
is the third. Using the Whitehead theorem it can be proved as follows: homology
isomorphism is equivalent to homotopy isomorphism for simply-connected CW-
complexes. When two of the morphisms are homotopy isomorphisms, then so is
the third by the long Serre exact homotopy sequence.

The idea of this proof goes back to Cartan seminar [Car55], which was later
generalized to any first quadrant spectral sequence by Zeeman [Zee57]. This latter
one applies to Leray-Serre spectral sequence of fiber spaces, whence the name base
for the x-axis terms E2

s0 (E2
s−n in the present proof) and fiber for the y-axis terms

E2
0t. More precisely, there is a twisting morphism between the singular chain com-

plex S(B) of the base space, which is a dg coalgebra, and the singular chain complex
S(F ) of the fiber space which is a module over the algebra of the singular chain
complex S(ΩB) of the loops of B. The induced twisted tensor product is shown to
be quasi-isomorphic to the singular chain complex S(X) of the total space, under
certain hypotheses, by E. H. Brown in [Bro59]. The spectral sequence introduced
in the core of this proof is an algebraic analogue of Leray-Serre spectral sequence.
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2.6. Résumé

Twisting morphism and twisted tensor products.
Convolution dga algebra: C dga coalgebra and A dga algebra:

(Hom(C,A), ?, ∂)

Twisting morphism, Tw(C,A):
solution of degree −1 to the Maurer-Cartan equation

∂(α) + α ? α ≡ ∂(α) +
1

2
[α, α] = 0.

Any α ∈ Tw(C,A) induces

. a twisted differential ∂α := ∂ + [α, -] in Hom(C,A),

. a differential dα := dC⊗A + drα on the tensor product C ⊗ A defining the
right twisted tensor product C ⊗α A,

. a differential dα := dA⊗C + dlα on the tensor product A⊗ C defining the
left twisted tensor product A⊗α C.

The following table summarizes this hierarchy of notions:

α ∈ determines:

Hom(C,A)−1 dα : C ⊗A→ C ⊗A⋃
Tw(C,A) chain complex C ⊗α A, d2

α = 0⋃
Kos(C,A) acyclicity of C ⊗α A

Bar and cobar constructions.
Bar construction:

BA := (T c(sĀ), d1 + d2), d2(sx⊗ sy) = (−1)|x|s(xy)

Cobar construction:

ΩC := (T (s−1C), d1 + d2), d2(s−1x) =
∑

(−1)|x(1)|s−1x(1) ⊗ s−1x(2)

Summary of Theorem 2.2.9 (second row) and Theorem 2.3.2 (third row):

Homga alg

(
T (s−1C), A

) ∼= Hom(C, Ā)−1
∼= Homga coalg

(
C, T c(sĀ)

)
⋃ ⋃ ⋃

Homdga alg (ΩC, A) ∼= Tw(C, A) ∼= Homdga coalg (C, BA)⋃ ⋃ ⋃
q-Isodga alg (ΩC, A) ∼= Kos(C, A) ∼= q-Isodga coalg (C, BA) .

With C = BA, we get

ΩBA
ε−→ A ↔ BA

π−→ A ↔ BA
Id−→ BA,
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and with A = ΩC, we get

ΩC
Id−→ ΩC ↔ C

ι−→ ΩC ↔ C
υ−→ BΩC.

Universal twisting morphisms and fundamental theorem.
Universal twisting morphisms: ι : C → ΩC and π : BA→ A, which are Koszul.

Factorization of any twisting morphism α : C → A:

ΩC

fα

∼

  B
B

B
B

B
B

B
B

C

gα

∼

  B
B

B
B

B
B

B
B

ι∈Kos(C,Ω(C))

>>||||||||||||||| α∈Kos(C,A) // A

BA.

π∈Kos(BA,A)

>>|||||||||||||||

:B
z� }}}}

z�

:B}}}}}}

}}}}}}

. fα : ΩC → A morphism of dg algebras,

. gα : C → BA morphism of dg coalgebras.

Twisting morphisms fundamental theorem.
the following assertions are equivalent

. a twisting morphism α : C → A is Koszul,

. the morphism of dg algebras fα : ΩC
∼−→ A is a quasi-isomorphism,

. the morphism of dg coalgebras gα : C
∼−→ BA is a quasi-isomorphism.

Corollary. ε : ΩBA
∼−→ A and υ : C

∼−→ BΩC.

Quasi-isomorphisms under bar and cobar constructions.
Proposition.

The bar construction B preserves quasi-isomorphisms between dga algebras.

Proposition.
The cobar construction Ω preserves quasi-isomorphisms between 2-connected

dga coalgebras.

Weak equivalence: f : C → C ′ such that Ωf : ΩC
∼−→ ΩC ′.

graded quasi-isomorphisms ⊆ weak equivalences ( quasi-isomorphisms

2.7. Exercises

2.7.1. Convolution dga algebra. Draw a picture proof of Proposition 2.1.2,
as in Proposition 1.6.4.

2.7.2. Bar construction as an algebra. We know that the cofree coalgebra
can be endowed with a commutative algebra structure through the shuffle product,
cf. 1.3.2. Show that the bar construction of a dga algebra is a dg commutative
Hopf algebra.

2.7.3. Universal twisting morphism. Verify directly that ι : C → ΩC is a
twisting morphism.
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2.7.4. Functoriality. Prove that Tw : dga coalgop × dga alg → Set is a bi-
functor.

2.7.5. Cotangent complex. Let A be a dga algebra, C a dga coalgebra
and let α : C → A be a twisting morphism. We consider the following twisted
differential on A⊗ C ⊗A, the free A-bimodule on C:

dα := dA⊗C⊗A + IdA ⊗ drα − dlα ⊗ IdA ,

where
drα := (IdC ⊗ µ) ◦ (IdC ⊗ α⊗ IdA) ◦ (∆⊗ IdA) ,

and where
dlα := (µ⊗ IdC) ◦ (IdA ⊗ α⊗ IdC) ◦ (IdA ⊗∆).

� Prove that dα
2 = 0.

We denote this chain complex by

A⊗α C ⊗α A := (A⊗ C ⊗A, dα) .

� Show that there is an isomorphism of chain complexes

(Homα(C,A), ∂α) ∼= (HomA−biMod(A⊗α C ⊗α A,A), ∂) .

� Show that the following composite

ξ : A⊗ C ⊗A Id⊗ε⊗Id−−−−−→ A⊗K⊗A ∼= A⊗A µ−→ A

is a morphism of dg A-bimodules
� Under the same weight grading assumptions as in Theorem 2.3.2, prove

that ξ : A ⊗α C ⊗α A
∼−→ A is a quasi-isomorphism if and only if α is a

Koszul morphism.

2.7.6. Naturality. Prove that the bijections given in Theorem 2.2.9 are func-
torial in A and C.

2.7.7. Fundamental Theorem. Using the Comparison Lemma 2.1.9, prove
directly the equivalence (2)⇐⇒ (3) of Theorem 2.3.2.

2.7.8. Unit of adjunction. Use the same kind of filtrations as in the proof
of Proposition 2.4.1 to prove that the unit of adjunction υ : C → BΩC is a quasi-
isomorphism, when C is a conilpotent dga coalgebra.



CHAPTER 3

Koszul duality for associative algebras

“In the process of its internal development and
prompted by its inner logic, mathematics, too, cre-
ates virtual worlds of great complexity and internal
beauty which defy any attempt to describe them in
natural language but challenge the imagination of a
handful of professionals in many successive genera-
tions.”

Yuri I. Manin in “Mathematics as metaphor”

A minimal model for the associative algebraA is a quasi-free resolution (T (W ), d)
such that the differential map d maps W into ⊕n≥2W

⊗n. We would like to find a
method to construct this minimal model when A is quadratic, that is A = T (V )/(R)
where the ideal (R) is generated by R ⊂ V ⊗2 (this is the quadratic hypothesis). We
will see that the quadratic data (V,R) permits us to construct explicitly a coalge-
bra A¡ and a twisting morphism κ : A¡ → A. Then, applying the theory of Koszul
morphisms given in the previous chapter, we obtain a simple condition which en-
sures that the cobar construction on the Koszul dual coalgebra, that is ΩA¡, is the
minimal model of A.

If one tries to construct by hand the space W , then one is led to take W =
V ⊕ R ⊕ (R ⊗ V ∩ V ⊗ R) ⊕ · · · . In fact, K ⊕ V ⊕ R ⊕ (R ⊗ V ∩ V ⊗ R) is
the beginning of a certain sub-coalgebra of the cofree coalgebra over V , which is
uniquely determined by V and R. This is precisely the expected coalgebra A¡, up
to suspension. The twisting morphism κ is simply the composite A¡ � V � A.
The expected condition is the acyclicity of the Koszul complex A¡ ⊗κ A. This is
the Koszul duality theory for homogeneous quadratic algebras as introduced by
Stewart Priddy in [Pri70]. In practice it is easier to work with algebras instead
of coalgebras. When V is finite dimensional we consider the “graded linear dual”
of A¡ which is, up to suspension, a quadratic algebra A!, usually called the Koszul
dual algebra of A.

The quadratic hypothesis R ⊂ V ⊗2 can be weakened by only requiring R ⊂
V ⊗2 ⊕ V . In this case, we say that the algebra is inhomogeneous quadratic. We
show how to modify the preceding method to handle the inhomogeneous quadratic
case, also done in [Pri70]. Two examples are: the universal enveloping algebra
U(g) of a Lie algebra g (original example due to J.-L. Koszul) and the Steenrod
algebra. Inhomogeneous Koszul duality theory gives a proof of a general Poincaré-
Birkhoff-Witt theorem, which, applied to U(g), gives the classical one.

47
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In our treatment of Koszul duality of associative algebras, we keep algebras
and coalgebras on the same footing. Working with coalgebras allows us to avoid
the finite dimensional hypothesis. Moreover we give conceptual proofs so that they
can be generalized to other monoidal categories. Our interest for Koszul duality
of associative algebras is to serve as a paradigm for Koszul duality of algebraic
operads.

Koszul algebras have applications in many fields of mathematics, which will
not be discussed at all here (see the introduction of [PP05]). Classical references
on Koszul duality of associative algebras include: S. Priddy [Pri70], Yu.I. Manin
[Man87, Man88], R. Fröberg [Frö99], A. Polishchuk and L. Positselski [PP05].

3.1. Quadratic data, quadratic algebra, quadratic coalgebra

We start with a quadratic data (V,R) to which we associate an algebra and a
coalgebra

(V,R)4

zzttttttttt 


$$JJJJJJJJJ

A(V,R) C(V,R)

In this chapter we suppose that K is a field, though most of the definitions and
constructions are valid over a commutative ring.

3.1.1. Quadratic data. By definition a quadratic data (V,R) is a graded
vector space V and a graded subspace R ⊆ V ⊗ V . A morphism of quadratic data
f : (V,R)→ (W,S) is a graded linear map f : V →W such that (f ⊗ f)(R) ⊆ S.

3.1.2. Quadratic algebra. The quadratic algebra A(V,R) := T (V )/(R) is,
by definition, the quotient of the free associative algebra over V by the two-sided
ideal (R) generated by R ⊆ V ⊗2. In other words, A(V,R) is the quotient of T (V )
which is universal among the quotient algebras A of T (V ) such that the composite

R� T (V )� A

is 0. It means that, for any such algebra A, there is a unique algebra morphism
A(V,R)→ A which makes the following diagram commutative:

T (V ) // //

$$IIIIIIIII A

A(V,R)

<<xxxxxxxxx

Since (R) is a homogeneous ideal, it follows that A(V,R) is graded and aug-
mented. This degree is called the weight and denoted as a superscript in parenthe-
ses. Explicitly it is given by:

A =
⊕
n∈N

A(n) = K1⊕ V ⊕ (V ⊗2/R)⊕ · · · ⊕
(
V ⊗n

/ ∑
i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
)
⊕ · · ·

Any basis of V is called a set of generators of A. Any basis {ri} of R determines
a set of relations ri = 0 in A. By abuse of terminology ri, which should be called
a relator , is often called a relation.
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A morphism of quadratic data, f : (V,R)→ (W,S) induces a natural morphism
of weight graded algebras A(V,R) → A(W,S). Any morphism of algebras which
respects the weight grading is of this form. But it is not the case for every morphism
of algebras.

3.1.3. Quadratic coalgebra. The quadratic coalgebra C(V,R) is, by defini-
tion, the sub-coalgebra of the cofree coassociative coalgebra T c(V ) which is univer-
sal among the sub-coalgebras C of T c(V ) such that the composite

C � T c(V )� V ⊗2/R

is 0. It means that, for any such coalgebra C, there is a unique coalgebra morphism
C → C(V,R) which makes the following diagram commutative:

C(V,R)
$$

$$JJJJJJJJJ

C // //

;;wwwwwwwww
T c(V )

The coalgebra C(V,R) is weight graded. Explicitly it is given by:

C =
⊕
n∈N

C(n) = K1⊕ V ⊕R⊕ · · · ⊕
( ⋂
i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
)
⊕ · · ·

Observe that the restriction of the coproduct of C (that is the deconcatenation) to
the weight 2 component C(2) = R is given by

r = r1 ⊗ r2 7→ r ⊗ 1 + r1 ⊗ r2 + 1⊗ r ∈ (V ⊗2 ⊗K)⊕ (V ⊗ V )⊕ (K⊗ V ⊗2).

We will say that C(V,R) is cogenerated by V with corelations R in T c(V ). Observe
that the coalgebra C(V,R) is conilpotent, cf. 1.2.4.

A morphism of quadratic data, f : (V,R)→ (W,S) induces a natural morphism
of weight graded coalgebras C(V,R) → C(W,S). Any morphism of coalgebras
which respects the weight grading is of this form. But it is not the case for every
morphism of coalgebras.

3.1.4. The graded framework. Both constructions A(V,R) and C(V,R)
can be extended to the category of graded vector spaces. In this framework, V is
a graded module and R is a graded sub-module of the graded module V ⊗2. Then
the algebra A(V,R), resp. the coalgebra C(V,R), is bigraded by degree and weight
(cf. 1.5.1). Both A(V,R) and C(V,R) are connected weight graded in the sense of
1.5.11, with trivial differential.

3.2. Koszul dual of a quadratic algebra

We construct the Koszul dual coalgebra and the Koszul dual algebra of a qua-
dratic algebra. We work here in the homogeneous framework. The inhomogeneous
framework, where it is only supposed that R ⊂ V ⊕ V ⊗2, is treated in 3.6.
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3.2.1. Koszul dual coalgebra of a quadratic algebra. Let (V,R) be a
graded quadratic data. By definition the Koszul dual coalgebra of the quadratic
algebra A(V,R) is the coalgebra

A¡ := C(sV, s2R),

where s2R is the image of R in (sV )⊗2 under the map V ⊗2 → (sV )⊗2, v w 7→
sv sw. The upside down exclamation point ¡ (left exclamation point in the spanish
language) is usually pronounced “anti-shriek”. If V is a graded space concentrated
in degree 0, then sV is concentrated in degree 1. Observe that C(sV, s2R) is equal to
C(V,R) as a coalgebra. The decoration “s” is modifying the degree of the objects.
It plays a role when we apply the Koszul sign rule to morphisms. We can omit it
in the notation at the expense of changing the signs of the maps accordingly.

3.2.2. Koszul dual algebra of a quadratic algebra. The algebra obtained
as the linear dual of the coalgebra A¡ carries a desuspension sign. In the literature,
one finds sometimes its unsuspended analogue, denoted by A! and called the Koszul
dual algebra of the quadratic algebra A. Explicitly is defined by

(A!)(n) := sn(A¡∗)(n)

and carries the obvious associative algebra structure.
Dualizing linearly the exact sequence

0→ R� V ⊗2 � V ⊗2/R→ 0,

provides the exact sequence

0← R∗ � (V ∗)
⊗2 � R⊥ ← 0.

In other words the orthogonal space R⊥ is defined as the image of (V ⊗2/R)∗ in
(V ∗)⊗2 under the isomorphism (V ⊗2)∗ ∼= V ∗ ⊗ V ∗, cf. 1.2.2.

Proposition 3.2.3. The Koszul dual algebra A! admits the following quadratic
presentation

A! = A(V ∗, R⊥).

Proof. First notice that the linear dual of the quadratic coalgebra A
¡

= C(sV, s2R)

is the quadratic algebra A
¡∗

= A(s−1V ∗, s−2R⊥). The last step can be proved
either directly or by using the notion of Manin products of 4.5.1: the Koszul dual
algebra is equal to A! = (A¡∗)© T (sK) = A(V ∗, R⊥). �

3.2.4. Koszul dual algebra of a coalgebra. It is also useful to introduce
the Koszul dual algebra of a quadratic coalgebra

C ¡ := A(s−1V, s−2R) for C = C(V,R).

It comes immediately

(A¡)¡ = A and (C ¡)¡ = C.

As an immediate consequence we have, under finite dimensionality assumption:

(A!)! = A .

Observe that the coalgebra A
¡

is well-defined even in the graded framework and
without any finiteness hypothesis.
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3.2.5. Examples.

(1) Let V be a finite dimensional vector space and let R = 0. Then we
have A = T (V ). Its Koszul dual algebra is the algebra of dual numbers
A! = D(V ∗) := K 1⊕ V ∗, with trivial multiplication.

(2) The symmetric algebra S(V ) is the quadratic algebra T (V )/(R), where the
space of relations R is the subvector space of V ⊗2 spanned by the elements
x ⊗ y − y ⊗ x for x, y ∈ V . The coalgebra Λc(sV ) is the subcoalgebra of
T c(sV ) satisfying the universal property of Section 3.1.3 with the subspace
s2R = 〈sx⊗ sy − sy ⊗ sx |x, y ∈ V 〉. Therefore, its component of weight
n is equal to

Λc(sV )(n) = 〈
∑
σ∈Sn

sgn(σ) snxσ(1) ⊗ · · · ⊗ xσ(n)|x1, . . . , xn ∈ V 〉.

The coalgebra structure is given by the deconcatenation coproduct and
is cocommutative. When V is an n-dimensional vector space with ba-
sis {x1, . . . , xn} in degree 0, one gets the polynomial algebra S(V ) =
K[x1, . . . , xn]. In this case, its Koszul dual algebra is the exterior algebra
S(V )! = Λ(V ∗), since R⊥ is spanned by the elements x∗i x

∗
j + x∗jx

∗
i , where

{x∗1, . . . , x∗n} is the dual basis.
(3) We refer to [Pri70, Man87, Man87, Frö99, PP05] for many more

examples.

3.3. Bar and cobar construction on a quadratic data

We make explicit the dga coalgebra BA and the dga algebra ΩC in the qua-
dratic case. The Koszul dual objects are shown to be equal to the syzygy degree 0
homology group in both cases.

3.3.1. Bar construction on a quadratic algebra. The bar construction
BA := T c(sĀ) over the quadratic dga algebra A = A(V,R) (whose differential
is trivial) is equipped with a homological degree and a weight grading. We now
introduce the syzygy degree.

The weight grading on BA is defined by the sum of the weight of each element:
ω(sa1, . . . , sak) := ω(a1) + · · · + ω(ak). Since A is a connected wgda algebra, the
augmentation ideal Ā is concentrated in weight grading ≥ 1. We define another
degree on Ā by the weight grading of A minus 1. It induces a new non-negative
degree on the bar construction, called the syzygy degree which is equal to ω(a1) +
· · · + ω(ak) − k. The component of syzygy degree d of BA is denoted by BdA,
whereas the homological degree r component is denoted by (BA)r.

Since A has trivial internal differential, the differential on BA reduces to d2,
which raises the syzygy degree by 1 and preserves the weight grading. So it forms
a cochain complex with respect to the syzygy degree, which splits with respect to
the weight grading. Hence the associated cohomology groups will be bigraded, by
the syzygy degree and by the weight grading.

The following diagram depicts this decomposition. The syzygy degree is in-
dicated on the last row, so we delete the notation s for simplicity. We write
Ā = V ⊕V 2/R⊕V 3/(RV +V R)⊕· · · for more clarity, the tensor product notation
being reserved for the one in BA only.
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· · · · · · · · · · · · (4)

0 ← V 3/(V R+RV ) ← (V 2/R⊗ V )⊕ (V ⊗ V 2/R) ← V ⊗ V ⊗ V (3)

0 ← V 2/R ← V ⊗ V (2)

0 ← V (1)

K (0)

3 2 1 0

On the weight (3) row the map from V ⊗ V ⊗ V is

u⊗ v ⊗ w 7→ [uv]⊗ w − u⊗ [vw]

where [−] denotes the class in the quotient. The other map on this row is

([uv]⊗ w, u′ ⊗ [v′w′]) 7→ [uvw] + [u′v′w′].

From this description we see immediately that the syzygy degree 0 column forms the
cofree coalgebra T c(sV ). Hence the Koszul dual coalgebra A¡ = K⊕sV ⊕s2R⊕· · ·
is a subspace of this column. The next proposition shows that it is equal to the
kernel of the boundary map.

Proposition 3.3.2. Let (V,R) be a quadratic data, A = A(V,R) the quadratic alge-
bra and A¡ = C(sV, s2R) its Koszul dual coalgebra. The natural coalgebra inclusion
i : A¡� BA induces an isomorphism of graded coalgebras:

i : A¡ ∼=−→ H0(B•A), i.e. A
¡ (n) ∼= H0(B•A)(n) for any n.

Proof. We claim that, for each n, the inclusion A
¡ (n)
→ (sV )⊗n is exactly the kernel

of the horizontal differential, that is H0(B•A)(n). It is obvious for n = 0 and n = 1.
For n = 2 the boundary map in (BA)(2) is the quotient map V ⊗2 → V ⊗2/R, hence
its kernel is R. More generally, since the boundary map is a derivation, it is given
in degree 0 by the sum of the maps (sV )⊗n → (sV )⊗i ⊗ sV ⊗2/R⊗ (sV )⊗j . So the
kernel is ⋂

i+2+j=n

(sV )⊗i ⊗ s2R⊗ (sV )⊗j = A
¡ (n)

.

�

3.3.3. Cobar construction on a quadratic coalgebra. Like the bar con-
struction, the cobar construction ΩC = T (s−1C) over the quadratic dga coalgebra
C = C(V,R) (whose differential is trivial) has several gradings.

We introduce the same definitions as for the bar construction. We consider the
weight grading (ΩC)(n), which is the sum of the weights of the elements of C. The
syzygy degree of ΩC is induced by the weight of elements of C minus 1 in the same
way. We denote it by ΩdC.

Since the internal differential of the coalgebra C is trivial, the differential of the
cobar construction ΩC reduces to d2, which lowers the syzygy degree by 1. Hence,
(Ω•C, d2) becomes a chain complex. Since the differential d2 preserves the weight



3.4. KOSZUL ALGEBRAS 53

of the elements of C, this chain complex splits with respect to the weight: it is
isomorphic to the following direct sum of sub-chain complexes ΩC ∼=

⊕
n≥0(ΩC)(n).

The diagram below represents this weight decomposition. The syzygy degree
is indicated on the last row, so we delete the notation s−1 for simplicity.

· · · · · · · · · · · · (4)

0 → V R ∩RV → (V ⊗R)⊕ (R⊗ V ) → V ⊗ V ⊗ V (3)

0 → R → V ⊗ V (2)

0 → V (1)

K (0)

3 2 1 0

In degrees 0 and 1, the maps R → V ⊗2 and (V ⊗ R) ⊕ (R ⊗ V ) → V ⊗3 are
simply the inclusions. The map V R ∩ RV → (V ⊗ R) ⊕ (R ⊗ V ) is inc1 − inc2

where inc1, resp. inc2 is the inclusion of the first, resp. second, summand. From
this description we see immediately that the syzygy degree 0 column forms the free
algebra T (s−1V ) and that the algebra

C ¡ = K⊕ s−1V ⊕ (s−1V )⊗2/s−2R⊕ · · ·
is a quotient of it.

Proposition 3.3.4. Let C = C(V,R) be the quadratic coalgebra associated to the
quadratic data (V,R), and let C¡ := A(s−1V, s−2R) be its Koszul dual algebra. The
natural algebra projection p : ΩC � C¡ induces an isomorphism of graded algebras:

p : H0(Ω•C)
∼=−→ C¡, i.e. H0(Ω•C)(n) ∼= C¡(n)

for any n.

Proof. The proof is analogous to the proof of Proposition 3.3.2. �

3.4. Koszul algebras

For any quadratic data, we define a twisting morphism from the Koszul dual
coalgebra to the quadratic algebra. This gives a twisted tensor product, called the
Koszul complex, which plays a central role in the Koszul duality theory. We state
and prove the main theorem of this chapter which says that the Koszul complex is
acyclic if and only if the cobar construction over the Koszul dual coalgebra gives the
minimal model of the algebra. The other definitions of a Koszul algebra appearing
in the literature are given and we conclude with examples.

3.4.1. The Koszul complex of a quadratic data. Starting with a qua-
dratic data (V,R) we define κ : C(sV, s2R)→ A(V,R) as the linear map of degree
−1 which is 0 everywhere except on V where it identifies sV to V :

κ : C(sV, s2R)� sV
s−1

−−→ V � A(V,R) .

Observe that the shift s in the definition of A¡ makes κ a degree minus one map.
The following result shows that κ is a twisting morphism.

Lemma 3.4.2. We have κ ? κ = 0, and therefore κ ∈ Tw(A
¡
, A).
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Proof. Since κ is 0 almost everywhere, the convolution product κ ? κ is 0 except
maybe on V ⊗2. Computing κ ? κ explicitly on V ⊗2 we find that it is equal to the
composite

C(2) = R→ V ⊗ V → V ⊗2/R = A(2),

hence it is 0 as expected.
So the map κ is a twisting morphism by 2.1.3. �

Proposition 3.4.3. The twisting morphism κ : C(sV, s2R) � V � A(V,R) in-
duces a map dκ which makes

A¡ ⊗κ A := (C(sV, s2R)⊗A(V,R), dκ)

(respectively A⊗κ A
¡
) into a weight graded chain complex.

Proof. The differential dκ was constructed out of κ in 1.6.1. It is a differential by
Lemma 3.4.2 and Lemma 1.6.4. Since κ has degree −1 and weight 0, it is the same
for the differential dκ. Hence this chain complex splits with respects to the total
weight. �

The chain complex A¡ ⊗κ A (resp. A ⊗κ A
¡
) is called the Koszul complex , or

left Koszul complex (resp. right Koszul complex) of the quadratic algebra A(V,R).

Its summand (A
¡ ⊗κ A)(n) of weight (n) is equal to:

0→ A
¡ (n)
→ A

¡ (n−1)
⊗A(1) → · · · → A

¡ (1)
⊗A(n−1) → A

¡ (n)
→ 0.

3.4.4. Koszul criterion. In this section, we derive the main theorem of
Koszul duality theory for associative algebras from the preceding Chapter.

Proposition 3.4.5. The maps corresponding to the twisting morphism κ : A
¡ → A

under the isomorphisms of Theorem 2.2.9 are exactly i = fκ : A¡ � BA and

p = gκ : ΩA
¡
� A.

Proof. By direct inspection. �

Theorem 3.4.6 (Koszul criterion). Let (V,R) be a quadratic data. Let A :=
A(V,R) be the associated quadratic algebra and let A¡ := C(sV, s2R) be the associ-
ated quadratic coalgebra. Then the following assertions are equivalent:

(1) the right Koszul complex A¡ ⊗κ A is acyclic,
(2) the left Koszul complex A⊗κ A¡ is acyclic,
(3) the inclusion i : A¡�BA is a quasi-isomorphism,
(4) the projection p : ΩA¡�A is a quasi-isomorphism.

When these assertions hold, the cobar construction on A¡ gives a minimal resolution
of A.

Proof. Theorem 2.3.2 can be applied to A := A(V,R), C := A¡ = C(sV, s2R) and
to α = κ since by Lemma 3.4.2 κ is a twisting morphism and since the connectivity
and weight grading assumptions are satisfied.

Let us verify that ΩA¡ is the minimal model of A when the Koszul complex
is acyclic. First, the dga algebra ΩA¡ is free as a graded algebra by construction
(but not as a dga algebra). Second, its differential d

ΩA
¡ = d2 satisfies the minimal

hypothesis d(W ) ⊂
⊕

n≥2W
⊗n also by construction. Third, by Proposition 3.3.4

we have H0(Ω•A
¡) = A and by (4) the resulting map p : ΩA¡�A is a quasi-

isomorphism. �
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Observe that starting with C(V,R) instead of A(V,R) with the following twist-
ing morphism

C = C(V,R) // // V
s−1
// s−1V // // C

¡
= A(s−1V, s−2R)

gives the same result up to a shift of grading. So we get Koszul duality theory for
coalgebras.

3.4.7. Definition of a Koszul algebra. A quadratic data (resp. quadratic
algebra, resp. quadratic coalgebra) is said to be Koszul if its Koszul complex is
acyclic.

By Theorem 3.4.6 we see that A is Koszul if and only if there is an isomorphism
A¡ ∼= H•(BA) (resp. H•(ΩA

!) ∼= A). By Propositions 3.3.2 and 3.3.4, this is equiva-

lent to the vanishing of the (co)homology groups: Hd(B•A) = 0 and Hd(Ω•A
¡
) = 0

for d > 0. More generally, a connected weight graded algebra A is said to be
Koszul if the cohomology Hd(B•A) = 0 of its bar construction is concentrated in
syzygy degree d = 0. In this case, Exercise 3.8.1 shows that A admits a quadratic
presentation. Therefore, there is no restriction to treat only the quadratic case.

The bar-cobar construction ΩBA is always a resolution of A. To simplify it,
one idea is to apply the cobar construction to the homology H•(BA) rather than

to BA. When A is Koszul, the homology of BA is exactly A
¡

and one gets the

resolution ΩA
¡

of A. For any quadratic algebra we have the following commutative
diagrams:

ΩA
¡ // //

&& &&
ΩBA

∼ // // A

A
¡ // ∼ //
'' 77

BΩA¡ // // BA

The algebra A is Koszul if and only if all these maps are quasi-isomorphisms

by Theorem 2.3.4 and Theorem 3.4.6. Both ΩA
¡

and ΩBA are models of A and

ΩA
¡

is the minimal model.

With the aforementioned definitions, a quadratic algebra A is Koszul if and

only if its Koszul dual coalgebra A
¡

is Koszul. The following proposition states the
same property with the Koszul dual algebra.

Proposition 3.4.8. Let (V,R) be a finite dimensional quadratic data. The qua-
dratic algebra A = A(V,R) is Koszul if and only if its Koszul dual algebra A! =
A(V ∗, R⊥) is Koszul.

Proof. The left Koszul complex A!⊗κ′ A!
¡

associated to the twisting morphism κ′ :

A!
¡

→ A! is made up of finite dimensional vector spaces in each degree and weight.

Its linear dual is equal to the right Koszul complex A
¡ ⊗κ A, up to suspension.

Therefore one is acyclic if and only if the other one is acyclic and we conclude by
Theorem 3.4.6. �
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3.4.9. Other equivalent definitions. In the literature [Löf86, Frö99], one
encounters the following equivalent definitions of a Koszul algebra.

Lemma 3.4.10. Let A = A(V,R) be a quadratic algebra. It is a Koszul algebra
if and only if the homology of its bar construction H•(BA) is a sub-coalgebra of
T c(sV ).

Proof. It is a direct consequence of Proposition 3.3.2 and Theorem 3.4.6. �

Let A = A(V,R) be a finitely generated quadratic algebra. Recall that the de-
rived Ext-functor Ext•A(K,K) is defined as the homology H•(HomA(R,K)), where

R
∼−→ K is any projective resolution of K in the category of A-modules. It can be

endowed with an associative algebra structure called the Yoneda algebra. Consid-
ering the quasi-free resolution A ⊗ι BA

∼−→ K, the Ext-functor can be computed
by Ext•A(K,K) = H•((BA)∗), where (BA)∗ is the degreewise and weightwise dual
of BA. Since it is the homology of the linear dual of a dga coalgebra, the Yoneda
algebra structure is easily described.

Proposition 3.4.11. A finitely generated quadratic algebra A(V,R) is Koszul if
and only if its Yoneda algebra Ext•A(K,K) is generated by its weight 1 elements.

Proof. This proposition is linear dual to the previous Lemma. �

Another equivalent definition of a Koszul algebra amounts to say that the
ground field K has a “linear minimal graded resolution of K with free A-modules”.

Such a resolution is provided by the Koszul complex A ⊗κ A
¡
. For the definitions

of these terms and a proof of the equivalence, we refer the reader to [Frö99].

3.4.12. Examples. The symmetric algebra S(V ) and the exterior coalgebra
Λc(sV ) are Koszul dual to each other. The tensor algebra and the dual numbers
coalgebra are also Koszul dual to each other. Here are the proofs of the acyclicity
of the associated Koszul complexes, which proves that they are Koszul.

Proposition 3.4.13. The Koszul complex (Λc(sV )⊗ S(V ), dκ) is acyclic.

Proof. Though this statement is true over Z, we will prove it only over a charac-
teristic zero field. We represent any element

∑
σ∈Sp sgn(σ) spxσ(1) ⊗ · · · ⊗ xσ(p) of

Λc(sV )(p) simply by x1∧· · ·∧xp, keeping in mind that x1∧· · ·∧xp = sgn(σ)xσ(1)∧
· · · ∧ xσ(p) holds for any σ ∈ Sp, like in the Koszul dual algebra Λ(V ∗). (This iden-
tification is nothing but the isomorphism between (Λc(sV ))∗ and Λ(V ∗), up to
suspension).

The boundary map

d = dκ : Λc(sV )(p) ⊗ S(V )(q) −→ Λc(sV )(p−1) ⊗ S(V )(q+1)

is given by

d(x1 ∧ · · · ∧ xp ⊗ y1 · · · yq) =

p∑
j=1

(−1)p−jx1 ∧ · · · ∧ x̂j ∧ · · · ∧ xp ⊗ xj y1 · · · yq .

Define
h : Λc(sV )(p) ⊗ S(V )(q) −→ Λc(sV )(p+1) ⊗ S(V )(q−1)

by the formula

h(x1 ∧ · · · ∧ xp ⊗ y1 · · · yq) :=

q∑
i=1

x1 ∧ · · · ∧ xp ∧ yi ⊗ y1 · · · ŷi · · · yq .
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One checks that hd+ dh = (p+ q)id. Since we work in characteristic zero it shows
that id is homotopic to 0 and therefore the complex is acyclic. �

Proposition 3.4.14. For any graded vector space V , the Koszul complex ((K ⊕
V )⊗ T (V ), dκ) of the quadratic algebra T (V ) is acyclic.

Proof. Since T (V ) = A(V, 0), we get R = 0 and therefore C(V,R) ∼= K⊕ V , where
∆(1) = 1⊗ 1,∆(v) = v ⊗ 1 + 1⊗ v.

The boundary map d = dκ of the Koszul complex (K ⊕ V ) ⊗ T (V ) is zero on
the component K ⊗ T (V ) and is the identification of V ⊗ T (V ) with K ⊗ T (V )≥1

on the other component. Indeed, it is a consequence of the formulas for ∆ and of
κ(1) = 0, κ(v) = v.

So, the homology of the Koszul complex is Ker d/ Im d = T (V )/T (V )≥1 = K
concentrated in bidegree (0, 0). Hence the Koszul complex is acyclic. �

3.5. Generating series

Let (V,R) be a quadratic data such that V is finite dimensional. The weight-
graded algebra A(V,R) = ⊕n≥0A

(n) is such that A0 = K 1 and A(n) is finite
dimensional. By definition the generating series or Hilbert-Poincaré series of A is

fA(x) :=
∑
n≥0

dimA(n) xn .

Theorem 3.5.1. If (V,R) is a finite dimensional quadratic data which is Koszul,
then the following identity holds between the generating series of A and A!:

fA
!

(x)fA(−x) = 1 .

Proof. The Euler-Poincaré characteristic of the sub-chain complex of weight (n) of

the Koszul complex of A is equal to
∑n
k=0(−1)k dimA(k) dimA

¡ (n−k)
. By definition,

it is equal to the coefficient of xn of fA
!

(x)fA(−x). When the quadratic data
(V,R) is Koszul, the Koszul complex is acyclic. It implies that the Euler-Poincaré
characteristic is equal to 0, for n > 0, and it is equal to 1, for n = 0, which concludes
the proof. �

Notice that one can also define the generating series of a quadratic coalgebra.

In that case, we have fA
¡

= fA
!

.
Let us apply this theorem to the examples of 3.4.12. When the dimension of

V is equal to k, we have

fT (V )(x) =
1

1− kx
and fD(V ∗)(x) = 1 + kx,

which satisfy fK⊕V (x)fT (V )(−x) = 1. In the case of the symmetric algebra, we
have

fS(V )(x) =
1

(1− x)k
and fΛ(V ∗)(x) = (1 + x)k,

which satisfy fΛ(V ∗)(x)fS(V )(−x) = 1.

Theorem 3.5.1 provides a method to prove that an algebra is not Koszul. One
first computes the Hilbert-Poincaré series fA(x) of the quadratic algebra A and
then its inverse series fA(−x)−1. If this last one has at least one strictly negative
coefficient, then it cannot be the series associated to a quadratic algebra. Therefore,
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the algebra A is not a Koszul algebra. (See [PP05, 2.2] for an example). For a more
exhaustive treatment of generating series, we refer the reader to [PP05, Ufn95].

If a chain complex is acyclic, then its Euler-Poincaré characteristic is equal to
zero; but the converse is not true. This motivates us to look for quadratic algebras
satisfying the functional equation of Theorem 3.5.1 but which fail to be Koszul.
Such examples are given in [Pos95, Roo95, Pio01]. In the next section, we give
a necessary and sufficient combinatorial condition for an algebra to be Koszul and
in Section 4.3 we give a sufficient algebraic condition for an algebra to be Koszul.

3.6. Koszul duality theory for inhomogeneous quadratic algebras

In the preceding sections, we dealt with Koszul duality of homogeneous qua-
dratic algebras. In [Pri70] Priddy considered more general objects: inhomogeneous
quadratic algebras with quadratic and linear relations. They are algebras whose
relators contain not only quadratic terms but also possibly linear terms. The main
example is the universal enveloping algebra of a Lie algebra: U(g) = T (g)/(R)
where the relator is [x, y]− x⊗ y + y ⊗ x. The purpose of this section is to adapt
our treatment of Koszul duality theory to this more general framework. The mod-
ification consists in adding a suitable internal differential in the construction of the
Koszul dual coalgebra.

There exists an even more general case allowing also constant terms in the
space of relations, cf. [PP05].

3.6.1. Quadratic-linear algebra. A quadratic-linear data (V,R) is a graded
vector space V together with a degree homogeneous subspace

R ⊂ V ⊕ V ⊗2.

So, there may be linear terms in the space of relations. We still denote by A =
A(V,R) = T (V )/(R) the associated quotient. We consider q : T (V ) � V ⊗2 the
projection onto the quadratic part of the tensor algebra. The image of R under q,
denoted qR, is homogeneous quadratic, so (V, qR) is a quadratic data in the sense
of 3.1. We denote by qA its associated algebra: qA := A(V, qR). We assume that
R satisfies the property

(ql1) : R ∩ V = {0}.
If it is not the case, by removing some elements of V one can choose another presen-
tation of A which does satisfy (ql1). This condition amounts to the minimality of
the space of generators of A. Under this assumption, there exists a map ϕ : qR→ V
such that R is the graph of ϕ:

R = {X − ϕ(X) | X ∈ qR}.
For instance, if A = U(g), then ϕ(x ⊗ y − y ⊗ x) = [x, y] and qA = Sg. The
weight grading on T (V ) induces a filtration which is compatible with the ideal
(R). Hence the quotient algebra A is filtered by FnA := Im(

⊕
k≤n V

⊗k). The

assumption R ∩ V = {0} implies F1A = K ⊕ V . We denote by grA the graded
algebra associated to the filtration of A, grnA := FnA/Fn−1A. We denote by

p : qA� grA

the resulting epimorphism. It is obviously an isomorphism in weight 0 and 1, but
not necessarily in weight 2. A corollary of the present theory shows that p is
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an isomorphism provided that qA is Koszul, see Theorem 3.6.9. In the example
A = U(g) the map p : S(g)→ gr U(g) is the PBW isomorphism.

3.6.2. Koszul dual coalgebra. The map ϕ permits us to construct the com-
posite map

ϕ̃ : (qA)
¡

= C(sV, s2qR)� s2qR
s−1ϕ−−−→ sV.

By 1.2.9 there exists a unique coderivation, dϕ̃ : (qA)
¡ → T c(sV ), which extends

this composite.

Lemma 3.6.3.

(a) If {R ⊗ V + V ⊗ R} ∩ V ⊗2 ⊂ qR, then the image of the coderivation dϕ̃

lives in (qA)
¡

= C(sV, s2qR) ⊂ T c(sV ), thereby defining a coderivation

dϕ of the coalgebra (qA)
¡
.

(b) If the condition

(ql2) : {R⊗ V + V ⊗R} ∩ V ⊗2 ⊂ R ∩ V ⊗2

is satisfied, then the coderivation dϕ squares to 0.

Proof. If {R ⊗ V + V ⊗ R} ∩ V ⊗2 ⊂ qR, we prove that dϕ̃(C(sV, s2qR)(3)) ⊂
C(sV, s2qR)(2) = s2qR. The proof of the general case is done in the same way with

the formula (qA)
¡ (n)

=
⋂
i+2+j=n(sV )⊗i ⊗ s2qR ⊗ (sV )⊗j . Since C(sV, s2qR)(3) is

equal to s2qR⊗ sV ∩ sV ⊗ s2qR, any of its elements can be written Y =
∑
s2X ⊗

sv =
∑
sv′ ⊗ s2X ′, with v, v′ ∈ V and X,X ′ ∈ qR. The formula for the unique

coderivation on the cofree coalgebra T c(sV ) of Proposition 1.2.9 gives

dϕ̃(Y ) =
∑

ϕ̃(s2X)⊗ sv −
∑

(−1)|v
′|sv′ ⊗ ϕ̃(s2X ′)

=
∑

(sϕ(X)− s2X)⊗ sv +
∑

sv′ ⊗ (s2X ′ − (−1)|v
′|sϕ(X ′)).

Hence, forgetting the suspension for simplicity, we have

dϕ̃(Y ) =
∑

(ϕ(X)−X)⊗ v +
∑

v′ ⊗ (X ′ − ϕ(X ′))

∈ {R⊗ V + V ⊗R} ∩ V ⊗2 ⊂ qR = C(V, qR)(2).

Since kerϕ = R∩V ⊗2, we get dϕ
2(C(V, qR)(3)) = {0} if {R⊗V +V ⊗R}∩V ⊗2 ⊂

R ∩ V ⊗2. Once again, the proof of the general case follows from the same pattern

using the explicit formula of the coalgebra (qA)
¡
. �

Since R ∩ V ⊗2 ⊂ qR, Condition (ql2) implies {R ⊗ V + V ⊗ R} ∩ V ⊗2 ⊂ qR.
Condition (ql2) amounts to say that one cannot create new quadratic relations in
R by adding an element to the relations of the presentation.

Let (V,R) be a quadratic-linear data satisfying the conditions (ql1) and (ql2).
By definition the Koszul dual dga coalgebra of A = A(V,R) is the dga coalgebra

A¡ := ((qA)
¡
, dϕ) = (C(sV, s2qR), dϕ).
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3.6.4. Koszulity in the inhomogeneous quadratic framework. An alge-
bra A is said to be Koszul if it admits a quadratic-linear presentation A = A(V,R)
satisfying conditions (ql1), (ql2) and such that the quadratic data (V, qR), or equiv-
alently the quadratic algebra qA, is Koszul in the sense of 3.4.

Notice that for a homogeneous quadratic algebra, Koszul in the classical sense
is Koszul in this sense. In this case, the conditions (ql1), (ql2) are trivially satisfied
and the inner coderivation dϕ vanishes.

3.6.5. Cobar construction in the inhomogeneous quadratic framewo-
rk. Under the hypotheses (ql1) and (ql2), we have constructed a conilpotent dga
coalgebra A¡. Applying the cobar construction of 2.2.5, we get a dga algebra ΩA¡,
whose differential is of the form d1 + d2. The internal derivation d1 is the unique
derivation which extends dϕ. The derivation d2 is induced by the coalgebra struc-
ture of A¡.

We consider the same map κ in this context

κ : A
¡

= C(sV, s2qR)� sV
s−1

−−→ V � A

Lemma 3.6.6. The map κ is a twisting morphism in Hom(A
¡
, A), that is ∂(κ) +

κ ? κ = 0.

Proof. We refine the proof of Lemma 3.4.2, taking care of the internal differential

dϕ of A
¡
. The Maurer-Cartan equation becomes −κ ◦ dϕ + κ ? κ = 0. The map

−κ ◦ dϕ + κ ? κ is equal to 0 everywhere except on (A
¡
)(2) = s2qR where its image

is {−ϕ(X) +X | X ∈ qR} = R, which vanishes in A. �

The twisting morphism κ induces a morphism of dga algebras gκ : ΩA
¡ → A

by Theorem 2.2.9.

Theorem 3.6.7. Let A be an inhomogeneous quadratic Koszul algebra satisfying
the conditions (ql1) and (ql2). Let A¡ = ((qA)¡, dϕ) be its Koszul dual dga coalgebra.

The morphism of dga coalgebras gκ : ΩA
¡ ∼−→ A is a quasi-isomorphism.

Proof. In this proof, we consider the cobar construction as a chain complex graded

by the syzygy degree as in 3.3.3: both the internal differential d1 of ΩA
¡

induced

by dϕ and the differential d2 induced by the coproduct of the coalgebra (qA)
¡

lower
the syzygy degree by 1. So we have a well-defined non-negatively graded chain
complex.

Since (qA)
¡
is a weight graded coalgebra, the underlying module ΩA

¡
= T (s−1(qA)

¡
)

of the bar construction is weight-graded. We consider the filtration Fr of ΩA
¡

de-
fined by its weight: the elements of Fr are the elements of weight less than r. The
two components of the differential map d = d1 + d2 satisfy

d2 : Fr → Fr and d1 : Fr → Fr−1.

The filtration Fr is therefore stable under the boundary map d. Since it is bounded
below and exhaustive, the associated spectral sequence E•rs converges to the ho-

mology of ΩA
¡

by the classical convergence theorem of spectral sequences (Proposi-
tion 3.2, Chapter 11 of [ML95]). Hence, Fr induces a filtration Fr on the homology

of ΩA
¡

such that

E∞rs
∼= Fr(Hr+s(ΩA

¡
))/Fr−1(Hr+s(ΩA

¡
)) =: grr(Hr+s(ΩA

¡
)).
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The first term of this spectral sequence is equal to E0
rs = T (s−1(qA)

¡
)
(r)
r+s, which

is made up of the elements of syzygy degree equal to r+s and grading equal to (r).
The differential map d0 is given by d2. Since the algebra qA is Koszul, the spectral
sequence is equal to E1

rs = qA(r) at rank 1. More precisely E1
rs is concentrated in

the line r+ s = 0: E1
rs
∼= qA(r), for r+ s = 0 and E1

rs = 0, for r+ s 6= 0. Therefore,
the spectral sequence collapses at rank 1.

In conclusion, the convergence theorem gives

E1
r−r
∼= qA(r) ∼= E∞r−r

∼= grr(H0(ΩA
¡
)),

E1
rs
∼= 0 ∼= E∞rs

∼= grr(Hr+s(ΩA
¡
)), for r + s 6= 0.

The result of Proposition 3.3.4 still holds in the inhomogenous case, that is

H0(ΩA
¡
) ∼= A, with the syzygy degree. Hence the quotient grr(H0(ΩA

¡
)) is equal

to grr A and the morphism ΩA
¡ ∼−→ A is a quasi-isomorphism. �

Notice that, in the inhomogeneous case, this resolution is not minimal because
of the internal differential d1.

3.6.8. Poincaré-Birkhoff-Witt theorem.

Theorem 3.6.9 (Poincaré-Birkhoff-Witt Theorem). When a quadratic-linear alge-
bra A is Koszul, then the epimorphism p : qA� grA is an isomorphism of graded
algebras

qA ∼= grA.

Proof. This theorem was already proved in the proof of the previous theorem, where
the convergence of the spectral sequence gave

E1
r−r
∼= qA(r) ∼= E∞r−r

∼= grrA.

�

Another proof of this theorem, based on deformation theory, can be found in
[BG96]. Even if the Poincaré-Birkhoff-Witt theorem is a direct consequence of
the proof of Proposition 3.6.7, it has the following two non-trivial consequences:
Corollary 3.6.10 and Proposition 3.6.12.

Corollary 3.6.10. Let A(V,R) be an algebra with the quadratic-linear presentation
(V,R). If the quadratic algebra qA = A(V, qR) is Koszul, then Conditions (ql1) and
(ql2) are equivalent to Conditions

(ql1
′) : (R) ∩ V = {0} and (ql2

′) : R = (R) ∩ {V ⊕ V ⊗2}.

Proof. Condition (ql1
′) is the generalization of Condition (ql1) from R to (R).

Condition (ql2
′) is the generalization of Condition (ql2) from R⊗V +V ⊗R to (R).

In the other way round, if Conditions (ql1) and (ql2) are satisfied and if the algebra
A(V,R) is Koszul, then we get the Poincaré-Birkhoff-Witt isomorphism qA ∼= grA
of Theorem 3.6.9. In weight 1, it implies Condition (ql1

′). In weight 2, it implies
qR = q((R) ∩ {V ⊕ V ⊗2}), which is equivalent to Condition (ql2

′) by Condition
(ql1

′). �

Conditions (ql1
′) and (ql2

′) amount to say that the ideal generated by R does
not create any new quadratic-linear relation. It is equivalent to the maximality
of the space of relations in the presentation of the inhomogeneous quadratic al-
gebra. Such conditions can be hard to check in practice because one would have
to compute the full ideal generated by R. But this proposition shows that if one
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finds a quadratic-linear presentation of an algebra satisfying Conditions (ql1), (ql2)
and whose homogeneous quadratic data is Koszul, then the space of relations R is
maximal.

Remark: This result is “Koszul dual” to the Diamond Lemma 4.2.7, since we
work with the cobar construction Ω instead of the bar construction B in 4.2.7. Here
it gives, under Condition (ql1),

(qA)
¡

Koszul & (ql2) ⇒ A
¡

Koszul & (ql2
′) ,

where Condition (ql2) has to be seen as the particular case of Condition (ql2
′) in

weight 3. These two conditions refer to the ideal generated by R, whereas the
condition of the Diamond Lemma refers to the quotient by some ideal associated
to R. Also, in a similar way, we get the following isomorphism between the Koszul
dual algebras (of the aforementioned coalgebras) : qA ∼= grA ∼= A as a direct
byproduct. This result is better seen as a Diamond Lemma for Gröbner bases, see
4.3.15.

3.6.11. Acyclicity of the Koszul complex. As in the quadratic case, the
Koszul complex associated to an inhomogeneous Koszul algebra is acyclic.

Proposition 3.6.12. When A(V,R) is a quadratic-linear Koszul algebra, its Koszul

complexes A
¡ ⊗κ A and A⊗κ A

¡
are acyclic.

Proof. We consider the Koszul complex as a chain complex graded by the weight

of the elements of A
¡
. The two parts dϕ ⊗ idA and drκ of the differential map lower

this degree by −1, so it is a well defined chain complex.

The natural filtration on A plus the weight grading on (qA)
¡

induce an exhaus-

tive and bounded below filtration Fr on A
¡ ⊗κ A. The differential maps satisfy

drκ : Fr → Fr and dϕ ⊗ idA : Fr → Fr−1. Therefore, E0 is equal to A
¡ ⊗κ̄ grA

where κ̄ : A
¡ → grA is the associated twisting morphism and where d0 = drκ̄.

By the Poincaré-Birkhoff-Witt Theorem, E0 is equal to the twisted composite

product (qA)
¡ ⊗κ̃ qA of the Koszul quadratic algebra qA, with κ̃ : (qA)

¡ → qA
being the Koszul twisting morphism. Therefore, it is acyclic and we conclude by
the convergence theorem for spectral sequences (Proposition 3.2, Chapter 11 of
[ML95]). �

In [Pri70], Priddy called Koszul resolutions, the resolution A ⊗κ A
¡

(resp.

A
¡ ⊗κ A) of K by free A-modules. They provide chain complexes, smaller than

the augmented bar construction A ⊗π BA, which allow one to compute the Tor
functors TorA• (K,M) for any A-module M (see [CE56, ML95] for the definition
of Tor functors). In the example of the universal enveloping algebra of a Lie al-
gebra, Priddy recovers the original Koszul resolution [CE56], which computes the
Chevalley-Eilenberg homology of Lie algebras, see section 3.6.13 below. Applied
to restricted Lie algebras, this gives May resolutions [May66]. For the Steenrod
algebra, it provides resolutions based on the Λ (co)algebra of [BCK+66], see Sec-
tion 3.6.17 for more details.

Dually, the twisted convolution algebra Homκ(A
¡
, A) computes the homology

functors Ext•A(K, A) as in [BCK+66] (see Exercise 3.8.8).
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3.6.13. The example of the universal enveloping algebra. The universal
enveloping algebra of a Lie algebra g is U(g) := T (g)/(x⊗y−y⊗x− [x, y]). So it is
defined as a quadratic-linear algebra with V = g. Its associated quadratic algebra
is the symmetric algebra on g: q(U(g)) ∼= S(g).

Proposition 3.6.14. When the characteristic of the ground field is not 2, the
universal enveloping algebra U(g) of a Lie algebra g is a Koszul algebra.

Proof. A direct inspection shows that Condition (ql1) is satisfied. Let us prove
that Condition (ql2) is also satisfied. The subspace R ∩ V ⊗2 of V ⊗2 is equal to
{
∑
x⊗ y |

∑
[x, y] = 0}. Let ξ =

∑
(x⊗ y⊗ z − y⊗ x⊗ z − [x, y]⊗ z) +

∑
(t⊗ u⊗

v − t⊗ v ⊗ u− t⊗ [u, v]) be an element of (R ⊗ V + V ⊗R). It belongs to V ⊗2 if
and only if

∑
(x⊗ y ⊗ z − y ⊗ x⊗ z) +

∑
(t⊗ u⊗ v − t⊗ v ⊗ u) = 0. In this case,

applying [[−,−],−] to this element, we get 2
∑

[[x, y], z] + 2
∑

[[t, u], v] = 0. This
proves that ξ ∈ R ∩ V ⊗2 and that (ql2) holds, when the characteristic of K is not
2. Finally, Proposition 3.4.13 shows that S(g) is a Koszul algebra, therefore U(g)
is a Koszul algebra. �

Among other consequences, Theorem 3.6.9 can be applied and gives the “clas-
sical” Poincaré-Birkhoff-Witt theorem: there is an isomorphism of graded algebras

S(g) ∼= grU(g),

which is sometimes stated in terms of the monomial basis of the symmetric algebra.

Proposition 3.6.15. The Koszul dual dga coalgebra of the universal enveloping
algebra U(g) is the following dga coalgebra

U(g)
¡ ∼= (Λc(sg), dϕ),

where dϕ is the Chevalley-Eilenberg boundary map defining the homology of the Lie
algebra g.

Proof. First, we have q(U(g))
¡

= S(g)
¡

= Λc(sg). Recall that Λc(sg) is linearly
spanned by the elements

∑
σ∈Sn sgn(σ) snxσ(1) ⊗ · · · ⊗ xσ(n), which we denote by

x1 ∧ · · · ∧ xn. The internal differential dϕ is the unique coderivation which extends
ϕ : x⊗ y − y ⊗ x 7→ [x, y]. Therefore it is equal to

dϕ(x1 ∧ · · · ∧ xn) =
∑
i<j

(−1)i+j−1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn,

which is the Chevalley-Eilenberg differential [CE48, Kos50], see 13.2.8. �

Corollary 3.6.16. The twisted tensor product U(g)⊗κ Λc(sg) is a resolution of K
by free U(g)-modules.

Proof. Direct corollary of Proposition 3.6.12 and Proposition 3.6.14. �

This is the original Koszul resolution which computes Chevalley-Eilenberg ho-
mology of Lie algebras [CE56].

3.6.17. The example of the Steenrod algebra. The Steenrod algebra A2

is the quadratic-linear algebra

A2 := A({Sqi}i≥1, RAdem)
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over the characteristic 2 field K = F2, where |Sqi| = i and where RAdem stands for
the Adem relations

SqiSqj =

(
j − 1

i

)
Sqi+j +

[ i2 ]∑
k=1

(
j − k − 1

i− 2k

)
Sqi+j−kSqk,∀i, j > 0 with i < 2j.

The quadratic analogue qA2 is obtained by omitting the linear term
(
j−1
i

)
Sqi+j .

The images of the elements {Sqi1 . . . Sqik ; il ≥ 2il+1} form a basis of qA2 and A2,
called the Cartan-Serre basis of admissible monomials.

The degree-wise linear dual of the Koszul dual dga coalgebra A¡
2 is a dga al-

gebra, which is anti-isomorphic to the Λ algebra of [BCK+66]. Notice that its
homology gives the second page of the Adams spectral sequence which computes
homotopy groups of spheres. The dga algebra Λ is generated by the elements
{λi}i≥0 of degree |λi| = i and satisfies the relations

λiλ2i+1+j =
∑
k≥0

(
j − k − 1

k

)
λi+j−kλ2i+1+k.

Its differential is the unique derivation extending

λj 7→
∑
k≥0

(
j − k − 1

k + 1

)
λj−k−1λk.

The mod-p Steenrod algebra can be treated in the same way. For more details,
we refer the reader to [Wan67, Pri70].

3.7. Résumé

Quadratic data and Koszul dual constructions.

(V,R)
quadratic data/

wwooooooooooo �

''PPPPPPPPPPPP

A=A(V,R)
quadratic algebra

C=C(V,R)
quadratic coalgebra

The quadratic algebra A = A(V,R) = T (V )/(R) ∼=⊕
n∈N

A(n) = K1⊕ V ⊕ (V ⊗2/R)⊕ · · · ⊕
(
V ⊗n

/ ∑
i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
)
⊕ · · · .

The quadratic coalgebra C = C(V,R) ⊂ T c(V )

C ∼=
⊕
n∈N

C(n) = K1⊕ V ⊕R⊕ · · · ⊕
( ⋂
i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
)
⊕ · · · .

Koszul dual coalgebra of an algebra: A(V,R)
¡

:= C(sV, s2R),

Koszul dual algebra of a coalgebra: C(V,R)
¡

:= A(s−1V, s−2R),

(A
¡
)
¡ ∼= A.

Koszul dual algebra of an algebra: when V is finite dimensional, the linear dual

of the desuspension of A
¡

is the quadratic algebra A! ∼= A(V ∗, R⊥).
Examples: T (V )! ∼= D(V ∗) and S(V )! ∼= Λ(V ∗).
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Koszul duality theory.

Twisting morphism κ : A
¡

= C(sV, s2R)� sV
s−1

−−→ V � A(V,R) = A

Koszul complexes: A⊗κ A
¡

and A
¡ ⊗κ A,

A
¡
� BA and ΩA

¡
� A,

with the syzygy degree: H0(B•A) ∼= A
¡

and H0(Ω•A
¡
) ∼= A.

The quadratic data (V,R) is Koszul when one of the following equivalent as-
sertions is satisfied.

(1) the right Koszul complex A¡ ⊗κ A is acyclic,
(2) the left Koszul complex A⊗κ A¡ is acyclic,
(3) the inclusion i : A¡�BA is a quasi-isomorphism,
(4) the projection p : ΩA¡�A is a quasi-isomorphism,
(5) Hn(B•A) = 0 for n ≥ 1,

(6) Hn(Ω•A
¡
) = 0 for n ≥ 1,

(7) H•(B•A) is a sub-coalgebra of T c(sV ),
(8) the Yoneda algebra ExtA(K,K) is generated by its weight 1 elements [when

V is finite dimensional].

Examples: T (V ), D(V ), S(V ),Λ(V ).

Generating series or Hilbert-Poincaré series.

fA(t) :=
∑
n≥0 dimA(n) tn

A Koszul =⇒ fA
!

(t)fA(−t) = 1

Inhomogeneous Koszul duality theory.
Quadratic-linear data: (V,R), with R ⊂ V ⊕ V ⊗2.
Quadratic analogue: qR := projV ⊗2(R) and qA := A(V, qR).

(ql1) : R ∩ V = {0} ⇒ R = Graph(ϕ : qR→ V )

(ql2) : {R⊗ V + V ⊗R} ∩ V ⊗2 ⊂ R ∩ V ⊗2

(qA)¡ � qR
ϕ−→ V induces a coderivation dϕ(qA)¡ → T c(V ),

(ql1) and (ql2) imply dϕ well-defined and (dϕ)2 = 0.

Koszul dual dga coalgebra: A
¡

:=
(
(qA)

¡
, dϕ
)
.

A(V,R) Koszul algebra when (ql1), (ql2) and qA quadratic Koszul algebra. In
this case:

• quasi-free resolution : ΩA
¡ ∼
� A,

• Poincaré-Birkhoff-Witt theorem : qA ∼= grA,

• Koszul complex : A⊗κ A
¡

acyclic.

Example: A = U(g), universal enveloping algebra of a Lie algebra g,

• U(g)
¡

=
(
Λc(sg),Chevalley-Eilenberg differential

)
,

• Original Poincaré-Birkhoff-Witt theorem : S(V ) ∼= grU(g),
• Original Koszul complex : U(g)⊗κ Λc(sg) acyclic.

Example: A = A2, the mod-2 Steenrod algebra,
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• Cartan-Serre basis,

• the dga algebra (A¡

2)∗ is the Λ algebra.

3.8. Exercises

3.8.1. Koszul implies quadratic. Let A be a connected weight graded alge-
bra (see Section 1.5.11). Its bar construction BA splits with respect to the weight
and we consider the same syzygy degree as in 3.3.1. Show that if the homology of
BA is concentrated in syzygy degree 0, then the algebra has a quadratic presenta-
tion.

3.8.2. Two-sided Koszul complex. Let (V,R) be a quadratic data. Under

the notation of 2.1.7, we define the two-sided Koszul complex on A⊗A¡ ⊗A by the

differential dlκ ⊗ IdA + IdA ⊗ drκ and we denote it by A⊗κ A
¡ ⊗κ A. Show that the

quadratic data is Koszul if and only if the morphism of dg A-bimodules

A⊗A
¡
⊗A IdA⊗ε⊗IdA−−−−−−−→ A⊗K⊗A ∼= A⊗A µ−→ A

is a resolution of A.
When (V,R) be a quadratic-linear data satisfying Conditions (ql1) and (ql2),

we add the term IdA ⊗ dϕ ⊗ IdA to the differential defining the two-sided Koszul
complex. Prove the same result in this case.

3.8.3. Koszul complex of the symmetric algebra. Prove that (Λc(sV )⊗
S(V ), dκ) is acyclic over Z. (Hint: use a suitable filtration).

3.8.4. Koszul complexes. Consider the three functors S, Λ and Γ (cf. 1.8.6).
Show that there are acyclic complexes Λ⊗S, Γ⊗Λ. Show that S⊗Λ is not acyclic in
characteristic p and defines the Cartier homomorphism, see for instance [Pir02b].

3.8.5. Koszul complex in local cohomology. Let A be a commutative
algebra concentrated in degree 0. Let x be an element of A. We define the “Koszul
complex” by

KA
• (x) : 0→ A→ A→ 0,

concentrated in degrees 0 and 1, where the boundary map defined by d(a) := ax.
More generally, for n elements {x1, . . . , xn} of A, the “Koszul complex” is defined
by the tensor product

KA
• (x1, . . . , xn) := KA

• (x1)⊗ · · · ⊗KA
• (xn)

of chain complexes.
Show that the degree −1 map

τ : Λc(sx1, . . . , sxn)� Ksx1 ⊕ . . .⊕Ksxn
s−1

−−→ Kx1 ⊕ . . .⊕Kxn → A

is a twisting morphism from the symmetric cofree coalgebra on the suspension of
the basis {x1, . . . , xn} to the algebra A.

Prove that the “Koszul complex” KA
• (x1, . . . , xn) is isomorphic to the twisted

tensor product Λc(sx1, . . . , sxnK)⊗τ A.
Considering the canonical twisting morphism κ : Λc(sx1, . . . , sxn)→ S(x1, . . . , xn),

show that the “Koszul complex” KA
• (x1, . . . , xn) is isomorphic to the relative tensor

product
(Λc(sx1, . . . , sxn)⊗κ S(x1, . . . , xn))⊗S(x1,...,xn) A,

where A is considered a left S(x1, . . . , xn)-module.
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We say that {x1, . . . , xn} is a regular sequence when the image of xi inA/(x1, . . . , xi−1)A
has no non-zero divisor, for 1 ≤ i ≤ n. When it is the case, prove that the Koszul
complex KA

• (x1, . . . , xn) is a resolution of A/(x1, . . . , xn)A by free A-modules.
This chain complex is used to compute local cohomology (see [Wei94, Sections

4.5-4.6]).

3.8.6. Homological degree. Let (V,R) be a quadratic data such that V is
concentrated in degree 0. We consider the bar construction B•A of the quadratic
algebra A = A(V,R) as a chain complex with the homological degree.

Show that this chain complex splits with respect to the weight grading: B•A =⊕
n∈N(B•A)(n). For n ≥ 1, prove that the sub-chain complex (B•A)(n) is finite,

concentrated in degrees 1 ≤ • ≤ n and that Hn((B•A)(n)) ∼= A
¡ (n)

.
Show that the quadratic data (V,R) is Koszul if and only if the homology of

the bar construction B•A is concentrated on the diagonal
⊕

n∈NHn((B•A)(n)).

3.8.7. Double Hilbert-Poincaré series. Pursuing the preceding exercise,
we require here the vector space V to be finite dimensional. In this case, show that
all the components (BmA)(n) of the bar construction of A are finite dimensional,
for any m,n ∈ N.

We define the double Hilbert-Poincaré series of A by

FA(x, t) :=
∑
m,n≥0

dimHm((B•A)(n))xmtn.

Show that the quadratic data is Koszul if and only if the double Hilbert-
Poincaré series has only non-trivial coefficients in powers xmtn for m = n. Prove

that it is also equivalent to FA(x, t) = fA
!

(xt).
Prove the functional equation fA(t)FA(−1, t) = 1 and recover the equation of

Theorem 3.5.1.

3.8.8. BCKQRS spectral sequence as twisted convolution algebra.
Show that the first page E1X of the spectral sequence of [BCK+66] for any spec-

trum X is equal to the convolution algebra Homκ(A¡

2,A2) as follows: H•(X) and

Homκ(A¡

2,A2) are A2-modules and

E1X ∼= Homκ(A
¡

2,A2)⊗A2
H•(X).

Show that E2X ∼= Ext•A2
(K, H•(X)).





CHAPTER 4

Methods to prove Koszulity of an algebra

“Là, tout n’est qu’ordre et beauté,
Luxe, calme et volupté.”

Charles Baudelaire

After having introduced the notion of Koszul algebra in the preceding chapter,
we give here methods to prove that an algebra is Koszul together with constructions
to produce new Koszul algebras.

We begin by describing a short algorithmic method, called rewriting method.
It amounts to choosing first an ordered basis of the generating space. Then, we
interpret the relations as rewriting rules, replacing each leading term by a sum of
lower terms, with respect to a suitable ordering on monomials. If, applying the
rewriting rules to the critical monomials leads to the same element (confluence
property), then the algebra is Koszul.

This method is the simplest case of a general one, which relies on an extra
data: a decomposition of the generating space V ∼= V1 ⊕ · · · ⊕ Vk of a quadratic
algebra A = A(V,R) and a suitable order on the set of tuples in {1, . . . , k}. Such
a data induces a filtration on the algebra A. When the associated graded algebra
grA is Koszul, the algebra A itself is also Koszul. So the problem reduces to
the graded algebra grA, whose product is simpler than the product of A. What
about its underlying module ? We have a tentative quadratic presentation Å :=
A(V,Rlead)� grA, where the module Rlead is made up of the leading terms of the
relations. The Diamond Lemma asserts that it is enough to prove the injectivity of
this map in weight 3 and that the algebra Å is Koszul, to get the isomorphism of
algebras Å ∼= grA. It implies that A is Koszul. This method reduces the problem
to proving the Koszulity of the simpler quadratic algebra Å.

The particular case where each component Vi is one-dimensional gives rise to
the notion of Poincaré-Birkhoff-Witt (PBW) basis of a quadratic algebra. Here the

quadratic algebra Å is a quadratic monomial algebra, which is always a Koszul alge-
bra, thereby simplifying the theory. For instance, any quadratic algebra admitting
a PBW basis is a Koszul algebra. In this case, we refine even further the Diamond
Lemma to give a simple way to check whether a quadratic algebra admits a PBW
basis. This is the aforementioned rewriting method. We also introduce the notion
of Gröbner basis for the ideal (R) and prove that it is equivalent to a PBW basis
for the quotient algebra T (V )/(R).

The last method uses a family of lattices associated to any quadratic data.
The Backelin criterion states that these lattices are distributive if and only if the
quadratic data is Koszul.

69
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Finally, we introduce the two Manin products, white © and black •, in the
category of quadratic data. They are sent to one another under the Koszul dual
functor and they preserve the Koszul property by Backelin’s criterion. This allows
us to construct a new chain complex, called the Manin complex, on the white
product A©A! of a quadratic algebra and its Koszul dual algebra (not coalgebra).
Dually, the black product A •A! is endowed with a Hopf algebra structure.

This chapter is essentially extracted from Priddy [Pri70], Bergman [Ber78],
Backelin [Bac83], Manin [Man87, Man88] and Polishchuk-Positselski [PP05].

4.1. Rewriting method

In this section, we give a short algorithmic method, based on the rewriting
rules given by the relations, to prove that an algebra is Koszul. We give no proof
here since this method is a particular case of a more general theory explained in
details in the next two sections.

Let A(V,R) be a quadratic algebra, for instance

A(v1, v2, v3; v2
1 − v1v2, v2v3 + v2v2, v1v3 + 2v1v2 − v2

1) .

Step 1. We choose a basis {vi}i=1,...,k for the space of generators V . We
consider the ordering v1 < v2 < · · · < vk.

Step 2. We consider the induced basis of V ⊗2, which we order lexicographi-
cally:

v1v1 < v1v2 < · · · < v1vk < v2v1 < · · · .
(One can choose other suitable orders, like

v1v1 < v1v2 < v2v1 < v1v3 < v2v2 < v3v1 < v1v4 < · · ·

see the discussion at the end of 4.2.1).
We choose a basis of R. Anyone of its elements is of the form

r = λvivj −
∑

(k,l)<(i,j)

λi,jk,l vkvl, λ 6= 0 .

The monomial vivj is called the leading term of r. We can always change this basis
for one with the following normalized form. First, the coefficient of the leading term
can always be supposed to be 1 since K is a field. Then, we can always suppose that
two different relators in the basis have different leading terms and that the sum in
the right hand side of any relator contains no leading term of any other relator.

In the example at hand, the space of relationsR admits the following normalized
basis: {

v1v2 − (v2
1), v2v3 − (−v2v2), v1v3 − (−v2

1)
}
.

The three leadings terms are v1v2, v2v3 and v1v3.

Step 3. These choices provide rewriting rules of the form

vivj 7→
∑

(k,l)<(i,j)

λi,jk,l vkvl,

Leading term 7→ Sum of lower terms,
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for any relator r in the normalized basis of R. A monomial vivjvk is called critical
if both vivj and vjvk are leading terms. Any critical monomial gives rise to a graph
made up of the successive application of the rewriting rule aforementioned.

In the example at hand, we have the following rewriting rules

v1v2 7→ v2
1 , v2v3 7→ −v2v2, v1v3 7→ −v2

1 .

There is the only one critical monomial: v1v2v3.

Step 4. Any critical monomial vivjvk gives a graph under the rewriting rules.
It is confluent, if it has only one terminal vertex.

In the example at hand, the only critical monomial induces the following con-
fluent graph

v1v2v3

&&MMMMMMMMMM

�������������������

−v1v2v2

��

v1v1v3

��:::::::::::::::::

−v1v1v2

xxqqqqqqqqqq

−v1v1v1

Conclusion. If each critical monomial is confluent, then the algebra A is
Koszul.

This assertion is a consequence of the following result.

Theorem 4.1.1 (Rewriting method). Let A(V,R) be a quadratic A. If its generat-
ing space V admits an ordered basis, for which there exists a suitable order on the
set of tuples, such that every critical monomial is confluent, then the algebra A is
Koszul.

In this case, the algebra A is equipped with an induced basis sharing nice
properties, called a PBW basis, see 4.3. For other examples, like the symmetric
algebra, and for more details, we refer the reader to Section 4.3.11.

4.2. Reduction by filtration

The idea of the “reduction by filtration” method can be shortened as follows:
when a quadratic algebra A = A(V,R) admits a filtration with nice properties,
there exists a morphism of algebras

Å := A(V,Rlead)� grA := gr(A(V,R))

from the quadratic algebra with associated graded presentation to the associated
graded algebra. If the quadratic algebra Å is Koszul and if this map is an isomor-
phism (in weight 3), then the algebra A itself is Koszul. This reduces the problem

of the Koszulity of the algebra A to the algebra Å, which is simpler than A in
general.
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4.2.1. Extra ordered grading. Let A = A(V,R) = T (V )/(R) be a qua-
dratic algebra, i.e. R ⊂ V ⊗2. Recall that the generating space V is a homological
degree graded module. Moreover, we suppose here that it is equipped with an extra
finite grading V ∼= V1 ⊕ · · · ⊕ Vk. It induces the following grading

V ⊗n ∼=
⊕

(i1,...,in)∈{1, ..., k}n
Vi1 ⊗ · · · ⊗ Vin

on T (V ), under the lexicographical order

0 < 1 < · · · < k < (1, 1) < (1, 2) < · · · < (k, k) < (1, 1, 1) < (1, 1, 2) < · · · ,

where K 1 is in degree 0. This lexicographical order induces a bijection of totally
ordered sets between the set of tuples in {1, . . . , k} and the set of integers N. For
any tuple (i1, . . . , in) sent to p ∈ N, we will denote the sub-space Vi1 ⊗ · · · ⊗ Vin of
V ⊗n simply by T (V )p. Under this bijection, there exists a map χ which corresponds
to the concatenation of tuples:

((i1, . . . , in), (j1, . . . , jm))

∼=
��

� // (i1, . . . , in, j1, . . . , jm)

∼=
��

(p, q)
� χ // χ(p, q) .

Under the lexicographical order on N × N, the map χ : N × N → N is strictly
increasing. The concatenation product on the free associative algebra T (V ) satisfies

µ : T (V )p ⊗ T (V )q → T (V )χ(p,q) .

Hence, this grading (N, χ) refines the weight grading of T (V ). Notice that the map
χ defines a monoid structure (N, χ, 0).

Associated to this grading, we consider the increasing and exhaustive filtration
Fp T (V ) :=

⊕p
q=0 T (V )q on T (V ). The image of this filtration under the canonical

projection T (V )� A defines a filtration

F0A ⊂ F1A ⊂ F2A ⊂ · · · ⊂ FpA ⊂ Fp+1A ⊂ · · · .

of the underlying module of A. The strictly increasing map χ allows us to define a
χ-graded product on the associated graded module grpA := FpA/Fp−1A:

µ̄ : grpA⊗ grq A→ grχ(p,q)A .

This algebra is denoted by grχA, or simply by grA, when there is no possible con-
fusion. Since the extra grading refines the weight grading, the algebra grA is also
weight graded.

More generally, the same arguments hold when V ∼=
⊕

i∈I Vi is equipped with
an extra grading, where I is the totally ordered set {1, . . . , k} with k finite or not.
We consider any bijection

⊔
n≥0 I

n ∼= N. This endows the set of tuples
⊔
n≥0 I

n

with a total order isomorphic to N. To define the graded algebra grA, it is enough
to require that the map χ being (strictly) increasing. In this case, we call the total
order on the set of tuple a suitable order. For instance, when k = ∞, we can
consider the following total order

0 < 1 < 2 < (1, 1) < 3 < (1, 2) < (2, 1) < (1, 1, 1) < 4 < (1, 3) < (2, 2) < · · · ,
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isomorphic to N. Such a data, the decomposition of V and the suitable order on
tuples, is called an extra ordered grading.

4.2.2. The Koszul property. Recall from 3.4.7 that a connected weight
graded algebra is called Koszul if the cohomology of its bar construction is con-
centrated in syzygy degree 0.

Theorem 4.2.3. Let A = A(V,R) be a quadratic algebra equipped with an extra
ordered grading. If the algebra grA is Koszul, then the algebra A is also Koszul.

Proof. We consider the bar construction B−•A as a chain complex with the opposite
of the syzygy degree (see 3.3.1). We extend the filtration on the free algebra T (V )
to its bar construction BT (V ) as follows:

Fp BT (V ) := {sx1 ⊗ · · · ⊗ sxm | x1x2 . . . xm ∈ Fp T (V )}.

This filtration is stable under the differential map. The canonical projection T (V )�
A induces an epimorphism of dg coalgebras BT (V ) � BA between the bar con-
structions. The image under this map of the preceding filtration defines a filtration
Fp BA of the bar construction of A. The first page of the associated spectral se-
quence E0

pq
∼= Fp B−p−qA/Fp−1 B−p−qA is isomorphic to the bar construction of

the associated graded algebra grA:

(E0
pq, d

0) ∼= B−p−qp grA,

where the index p refers to the total grading induced by the finer grading on the
bar construction.

Figure 1. The page E0 of the spectral sequence

This latter algebra being Koszul, the homology of its bar construction is con-
centrated in syzygy degree p + q = 0. This implies the collapsing of the spectral
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sequence at rank 1. The filtration being bounded below and exhaustive, it converges
by Theorem 1.5.7:

E∞pq
∼= E1

pq
∼= grpH

−p−q(B•A) = 0, for p+ q 6= 0 .

Since the homology of the bar construction of A is concentrated in syzygy degree
0, the algebra A is a Koszul algebra. �

Thanks to the finer filtration, we have reduced the Koszul problem for the
algebra A to the algebra grA, whose product is simpler. But the underlying module
of grA might be difficult to describe. However, Exercise 3.8.1 implies that if the
algebra grA is Koszul, then it admits a quadratic presentation.

4.2.4. Quadratic analog and leading space of relations. By the universal
property of the free algebra, there exists a morphism of algebras T (V ) � grA,
which is an epimorphism of χ-graded algebras. Hence, it also preserves the weight
grading. It is obviously an isomorphism in weights 0 and 1. Let us denote by Rlead

the kernel of its restriction to V ⊗2. We consider the quadratic algebra defined by

Å := T (V )/(Rlead) .

Let us now make Rlead explicit. Any element r ∈ R decomposes according to the
finer grading as r = X1 + · · ·+Xp, with Xi ∈ V ⊗2 and where Xp 6= 0 is the term
of greatest grading. We call Xp the leading term of r. The space Rlead is spanned
by the leading terms of all the elements of R. Hence, we call it the leading space of
relations.

Proposition 4.2.5. Let A = A(V,R) be a quadratic algebra equipped with an extra
ordered grading. We have the following commutative diagram of epimorphisms of
χ-graded, thus weight graded, algebras

T (V )

���� )) ))TTTTTTTTTTTTTTT

ψ : Å = T (V )/(Rlead) // // grA ,

where the space of relations Rlead is equal to

Rlead = 〈Xp, r = X1 + · · ·+ Xp︸︷︷︸
6=0

∈ R〉 = 〈Leading Term (r), r ∈ R〉 .

By definition, the canonical projection of weight graded algebras ψ : Å� grA
is bijective in weights 0, 1 and 2. Therefore the algebra Å is the best candidate for
a quadratic presentation of the weight graded algebra grA. Before studying this
situation, let us give the following straightforward but useful result.

Proposition 4.2.6. Let A = A(V,R) be a quadratic algebra equipped with an extra

ordered grading. If the algebra Å := T (V )/(Rlead) is Koszul and if the canonical

projection Å ∼= grA is an isomorphism of algebras, then the algebra A is Koszul.

Proof. In this case, the algebra grA is Koszul and we conclude with Theorem 4.2.3.
�
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4.2.7. The Diamond Lemma. Under the assumption that the quadratic
algebra Å is Koszul, the Diamond Lemma asserts that it is enough for the canon-
ical projection ψ : Å � grA to be injective in weight 3, to ensure that it is an
isomorphism.

Theorem 4.2.8 (Diamond Lemma for quadratic algebras). Let A = A(V,R) be a
quadratic algebra equipped with an extra ordered grading. Suppose that the quadratic
algebra Å := T (V )/(Rlead) is Koszul. If the canonical projection Å � grA is
injective in weight 3, then it is an isomorphism. In this case, the algebra A is
Koszul.

Proof. We prove this theorem in two steps. We first filter the bar construction to
get an isomorphism on the level of the Koszul dual coalgebras. Then we filter the
cobar construction, in the same way, to get the final isomorphism.

Step 1. We consider the same filtration of the bar construction B−•A as in
the proof of Theorem 4.2.3. Since the canonical projection ψ is an isomorphism in
weight less than 3, the first page of the associated spectral sequence is equal to

(E0
pq, d

0) ∼= B−p−qp grA ∼= B−p−qp Å,

for p + q ≥ −2 (the syzygy degree being defined by the weight grading minus 1).

The algebra Å being Koszul, we get E1
pq = 0 for p+ q = −1 and E1

p−p = Å
¡

p.

Figure 2. The page E1 of the spectral sequence

We conclude by the same argument as in the proof of Theorem 4.2.3: the

convergence of the spectral sequence shows grpA
¡ ∼= Å

¡

p.

Step 2. Dually, we apply the same method and consider the same kind of
filtration on T c(sV ) as on T (V ) and on ΩT c(sV ) as on BT (V ):

Fp ΩT c(sV ) := {s−1x1 ⊗ · · · ⊗ s−1xm | x1x2 . . . xm ∈ Fp T (V )}.

Since A
¡

is a sub-coalgebra of T c(sV ), this filtration restricts to a filtration Fp ΩA
¡

on the cobar construction of A
¡
. We consider the cobar construction Ω•A

¡
with

its syzygy degree, see 3.3.3. The first page of the associated spectral sequence
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E0
pq
∼= Fp Ωp+qA

¡
/Fp−1 Ωp+qA

¡
is isomorphic to the cobar construction of the Koszul

dual coalgebra Å
¡
:

(E0
pq, d

0) ∼= (Ωp+q grA
¡
)p ∼= (Ωp+q Å

¡
)p .

The isomorphism between the underlying modules is induced by the aforementioned

isomorphism grpA
¡ ∼= Å

¡

p. The part d0 of the boundary map of ΩA
¡

is the part
which preserves the extra grading. Hence it is given by the deconcatenation of

the leading terms of the elements of A
¡

or equivalently by the coproduct of the

coalgebra Å
¡

under the above isomorphism. This proves that d0 is in one-to-one

correspondence with the differential of Ω Å
¡
. Since the quadratic algebra Å is

Koszul, the homology of Ω Å
¡

is concentrated in syzygy degree p+q = 0. Therefore,
E1
pq = 0 for p + q 6= 0 and E1

p−p = Åp. The convergence theorem for spectral
sequences 1.5.7 finally gives the desired isomorphism:

ψ : Åp ∼= E1
p−p
∼= E∞p−p

∼= grpH0(Ω•A
¡
) = grpA .

�

Notice that in the proof, we have proved the same isomorphism of χ-graded

modules: grpA
¡ ∼= Å

¡

p, but on the level of the Koszul dual coalgebras.

4.2.9. The inhomogeneous case. When the associative algebra A is inho-
mogeneous quadratic, we choose, if possible, a presentation A = A(V,R) with
R ⊂ V ⊕ V ⊗2 satisfying Conditions (ql1) and (ql2) of Section 3.6. Applying the
previous propositions to the quadratic algebra qA := A(V, qR), we get the same
kind of results.

We start with the same refining data. Let the generating module V be endowed
with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk together with a suitable order on tuples.
As above, this defines a filtration of the algebra A. It induces a χ-graded algebra,
denoted grχA, whose underlying module refines that of the weight graded algebra
grA of Section 3.6. This extra grading also induces a filtration on the quadratic
algebra qA and the canonical projection qA� grA refines as follows

q̊A

����
grχ qA

∼= //

����

qA

����
grχA

∼= // grA
∼= // A ,

where the vertical maps are epimorphisms of algebras and where the horizontal
maps are linear isomorphisms. The first column is made up of χ-graded algebras
and the second column is made up of weight graded algebras. We only state the
last theorem in the inhomogeneous case, leaving the details of the other ones to the
reader.
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Theorem 4.2.10 (Diamond Lemma for inhomogeneous quadratic algebras). Let
A = A(V,R) be a quadratic-linear algebra with a presentation satisfying Condi-
tions (ql1) and (ql2). We suppose that T (V ) comes equipped with an extra ordered
grading.

If the quadratic algebra q̊A is Koszul and if the canonical projection q̊A �
grχ qA is injective in weight 3, then the algebra A is Koszul and all the maps of the
above diagram are isomorphisms, in particular:

q̊A ∼= grχ qA
∼= qA ∼= grA ∼= A .

Proof. The Diamond Lemma 4.2.8, applied to the quadratic algebra qA, gives that
the algebra qA is Koszul and the isomorphism q̊A ∼= grχ qA. It implies that the
inhomogenous algebra A is Koszul. The last isomorphism is given by the PBW
Theorem 3.6.9. �

In this case, we can compute the Koszul dual dg coalgebra of A from the

isomorphism of weight graded modules (q̊A)
¡ ∼= qA

¡ ∼= A
¡
.

4.2.11. Koszul dual algebra. In this section, we suppose that the generating
space V is finite dimensional to be able to consider the Koszul dual algebra A! =
T (V ∗)/(R⊥), see 3.2.2. The extra grading on V ∼= V1 ⊕ · · · ⊕ Vk induces a dual
grading V ∗ ∼= V ∗k ⊕ · · · ⊕ V ∗1 , that we choose to order as indicated. To any suitable
order on the tuples indexing T (V ), we consider the locally reversed order for T (V ∗):
we keep the global ordering but completely reverse the total order on the subset of
n-tuples, for any n. For example, with the lexicographic order, it gives the following
grading on T (V ∗):

T (V ∗) = K
⊕

V ∗k ⊕ · · ·⊕V ∗1
⊕

V ∗k ⊗V ∗k ⊕ · · ·⊕V ∗1 ⊗V ∗1
⊕

V ∗k ⊗V ∗k ⊗V ∗k ⊕ · · · .

This order allows us to consider the graded algebra gr(A!), as in 4.2.1, which comes

with its quadratic analogue ˚(A!) := A(V ∗, (R⊥)lead)� gr(A!).

Lemma 4.2.12. Let A = A(V,R) be a finitely generated quadratic algebra equipped
with an extra ordered grading. The isomorphism (R⊥)lead

∼= (Rlead)⊥ of sub-

modules of (V ∗)⊗2 induces the isomorphism of quadratic algebras ˚(A!) ∼= (Å)!.

Proof. We write the proof for the lexicographic order, the general case being similar.
Let us denote Ri := Rlead ∩ T (V )k+i, for 1 ≤ i ≤ k2. Therefore, Rlead = R1 ⊕
· · · ⊕ Rk2 . Since the vector space V is finite dimensional, each T (V )k+i is finite

dimensional and we can consider a direct summand R̆i such that T (V )k+i
∼= Ri⊕R̆i.

Hence the linear dual is equal to (T (V )k+i)
∗ ∼= R⊥i ⊕ R̆

⊥
i .

By definition of Rlead, the space of relations R is linearly spanned by elements

of the form r = X1 + · · · + Xp with Xi ∈ R̆i, for 1 ≤ i < p ≤ k2 and Xp 6= 0,
Xp ∈ Rp. Dually, any element ρ ∈ R⊥ decomposes as ρ = Yq−Yq+1−· · ·−Yk2 with

Yq 6= 0, Yq ∈ R⊥q and Yi ∈ R̆
⊥
i , for q < i ≤ k2. This implies finally the isomorphism

(R⊥)lead
∼= R⊥1 ⊕ · · · ⊕ R⊥k2

∼= (Rlead)⊥. �

Proposition 4.2.13. Let A = A(V,R) be a finitely generated quadratic algebra

equipped with an extra ordered grading. Suppose that the quadratic algebra Å :=
T (V )/(Rlead) is Koszul. If the canonical projection Å� grA is injective in weight

3, then the dual canonical projection ˚(A!) ∼= gr(A!) is an isomorphism.
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Proof. We pursue the proof of Theorem 4.2.8. The proper desuspension of the

linear dual of the isomorphism grpA
¡ ∼= Å

¡

p gives the isomorphism grpA
! ∼= (Å)!

p.
We conclude with the isomorphism of Lemma 4.2.12. �

4.3. Poincaré-Birkhoff-Witt bases and Gröbner bases

In this section, we study the particular case of the preceding section when the
generating space V is equipped with an extra grading V ∼= V1 ⊕ · · · ⊕ Vk such that
each sub-space Vi is one-dimensional. This gives rise to the notion of Poincaré-
Birkhoff-Witt basis, or PBW basis for short. Quadratic algebras which admit such
a basis share nice properties. For instance, they are Koszul algebras.

We introduce the equivalent notion of Gröbner basis, which is to the ideal (R)
what PBW basis is to the quotient algebra T (V )/(R).

The notion of PBW basis comes from Section 5 of the original paper of S.
Priddy [Pri70]. We refer the reader to Chapter 4 of the book [PP05] for more
details on the subject.

4.3.1. Ordered bases. We now restrict ourself to the case where the gener-
ating space V of a quadratic algebra A(V,R) is equipped with an extra grading
V ∼= V1⊕· · ·⊕Vk such that each Vi is one-dimensional. This datum is equivalent to
a totally ordered basis {vi}i∈{1,...,k} of V , which is a basis labelled by a totally or-
dered set, by definition. Let us denote I := {1, . . . , k} and let us use the convention
I0 := {0}. As in 4.2.1, we consider the set J :=

⊔
n≥0 I

n of tuples ı̄ = (i1, . . . , in)

in {1, . . . , k} equipped with a suitable order, for instance the lexicographic order.
With this definition, the set {vı̄ = vi1vi2 · · · vin}ı̄∈J becomes a totally ordered ba-
sis of T (V ). In this case, we say that T (V ) is equipped with a suitable ordered basis.

Written in this basis, the space of relations R is equal to

R =

λ vivj − ∑
(k,l)<(i,j)

λi,jk,l vkvl ; λ 6= 0

 .

Proposition 4.3.2. Let A be a quadratic algebra A(V,R), with T (V ) equipped

with a suitable ordered basis {vı̄}ı̄∈J . The associated quadratic algebra Å is equal to
A(V,Rlead), with Rlead

∼= 〈vivj , (i, j) ∈ L̄(2)〉, where the set L̄(2) is the set of labels
of the leading terms of the relations of R.

Proof. It is a direct corollary of Proposition 4.2.5. �

Notice that the space of relations admits a normalized basis of the form

R =

〈
vivj −

∑
(k,l)/∈L̄(2), (k,l)<(i,j)

λi,jk,l vkvl ; (i, j) ∈ L̄(2)

〉
.

The algebra Å depends only on the ordered basis of V and on the suitable
order on tuples, but it is always a quadratic algebra whose ideal is generated by
monomial elements.
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4.3.3. Quadratic monomial algebras. We introduce the notion of qua-
dratic monomial algebra, which is the structure carried by the quadratic algebra Å
in the PBW bases theory.

A quadratic monomial algebra is a quadratic algebra Å = A(V,R) = T (V )/(R)
with a (non-necessarily ordered) basis {vi}i∈I of V such that the space of relations
R is linearly spanned by a set {vivj}(i,j)∈L̄(2) , where L̄(2) ⊂ I2. We denote by

L(2) the complement of L̄(2) in I2, L(2) := I2\L̄(2), which labels a basis of the

quotient Å(2) = V ⊗2/R. We set L(0) := {0} and L(1) := I. We will prove that a
quadratic monomial algebra is Koszul by making its Koszul complex explicit and
by computing its homology.

Proposition 4.3.4. For any quadratic monomial algebra Å = A(V,R), the subset
L =

⊔
n∈N L

(n) ⊂ J defined by

ı̄ = (i1, . . . , in) ∈ L(n) ⇐⇒ (im, im+1) ∈ L(2),∀ 1 ≤ m < n

labels a basis of the monomial algebra Å.

Though this statement is obvious, it will play a key role in the definition of PBW
bases. Dually, we make explicit a monomial basis for the Koszul dual coalgebra.

Proposition 4.3.5. For any quadratic monomial algebra Å = A(V,R), the subset
L̄ =

⊔
n∈N L̄

(n) ⊂ J defined by

ı̄ = (i1, . . . , in) ∈ L̄(n) ⇐⇒ (im, im+1) ∈ L̄(2),∀ 1 ≤ m < n

labels a basis of its Koszul dual coalgebra Å
¡
.

When the generating space V is finite dimensional, the Koszul dual algebra Å!

is also a monomial algebra, with presentation

Å! ∼= A(V ∗, R⊥), with R⊥ = 〈v∗i v∗j , (i, j) ∈ L(2)〉

and basis labelled by L̄.

Proof. The elements snvı̄ for ı̄ ∈ L̄(n) form a basis of (Å
¡
)(n) by the intersection

formula (Å
¡
)(n) =

⋂
i+2+j=n(sV )⊗i ⊗ s2R⊗ (sV )⊗j of 3.1.3. �

Theorem 4.3.6. Any quadratic monomial algebra is a Koszul algebra.

Proof. By the two preceding propositions, the Koszul complex Å
¡ ⊗κ Å admits

a basis of the form skvı̄ ⊗ v̄ with ı̄ ∈ L̄(k) and with ̄ ∈ L(l). In this basis, its
boundary map is equal to

dκ(skvı̄ ⊗ v̄) = ±sk−1vi1 . . . vik−1
⊗ vikvj1 . . . vjl , when (ik, j1) ∈ L(2), and

dκ(skvı̄ ⊗ v̄) = 0, when (ik, j1) ∈ L̄(2).

In the latter case, such a cycle is a boundary since (i1, . . . , ik, j1) ∈ L̄(k+1) and
dκ(sk+1vi1 . . . vikvj1⊗vj2 . . . vjl) = ±skvı̄⊗v̄. Finally the Koszul complex is acyclic

and the algebra Å is Koszul. �

This result is a key point in the PBW basis theory. It says that when the
decomposition V ∼= V1 ⊕ · · · ⊕ Vk is made up of one-dimensional sub-spaces, the
quadratic analog Å is always a Koszul algebra.
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4.3.7. PBW basis. The image of the monomial basis {vı̄}ı̄∈L of Å, given in

Proposition 4.3.4, under the successive morphisms of graded modules Å� grA ∼= A
provides a family of elements {aı̄}ı̄∈L, which linearly span the algebra A. When
these elements are linearly independent, they form a basis of the algebra A, called a
Poincaré-Birkhoff-Witt basis, or PBW basis for short. This condition corresponds
to the bijection of the canonical projection ψ : Å � grA. We say that an algebra
A = A(V,R) admits a PBW basis if there exists a totally ordered basis of V and a
suitable order on tuples such that the associated elements {aı̄}ı̄∈L form a basis of
the algebra A.

Example. The symmetric algebra S(v1, . . . , vk) admits the following PBW
basis, with the lexicographic order: {vν1

1 . . . vνkk } with ν1, . . . , νk ∈ N.

The main property of PBW bases lies in the following result.

Theorem 4.3.8. Any quadratic algebra endowed with a PBW basis is Koszul.

Proof. Since the monomial algebra Å is always Koszul by Proposition 4.3.6, it is a
direct corollary of Proposition 4.2.6. �

The existence of a PBW basis gives a purely algebraic condition to prove that
an algebra is Koszul, without having to compute any homology group.

There are Koszul algebras which do not admit any PBW basis. The quadratic
algebra A(V,R) generated by V := Kx ⊕ Ky ⊕ Kz with the two relations x2 − yz
and x2 + 2zy is Koszul but does not admit a PBW basis. This example comes from
Section 4.3 of [PP05] and is due to J. Backelin.

4.3.9. Diamond lemma for PBW bases. Since the canonical projection
ψ : Å� grA is bijective in weights 0, 1 and 2, the elements {aı̄}ı̄∈L(n) form a basis

of A(n), for n ≤ 2. It is enough to check only the next case, n = 3, as the following
theorem shows.

Theorem 4.3.10 (Diamond Lemma for PBW bases). Let A = A(V,R) be a qua-
dratic algebra, with T (V ) equipped with a suitable ordered basis {vı̄}ı̄∈J . If the ele-
ments {aı̄}ı̄∈L(3) are linearly independent in A(3), then the elements {aı̄}ı̄∈L form
a PBW basis of A. In that case, the algebra A is Koszul.

Proof. It is a direct corollary of Theorems 4.3.6 and 4.2.8. �

Example. Let us consider the quadratic algebra A := A(V,R) generated by a
two-dimensional vector space V := Kv1⊕Kv2 with relation R := K(v1v2−v2

1). With
the lexicographic order 1 < 2 < (1, 1) < · · · , we have Rlead = K v1v2, L̄(2) = {(1, 2)}
and L(2) = {(1, 1), (2, 1), (2, 2)}. One easily verifies that the elements a2a2a2,
a2a2a1, a2a1a1 and a1a1a1 are linearly independent in A. Therefore, the family
of monomial elements {aı̄}ı̄∈L indexed by L(n) = {(2, 2, . . . , 2), (2, 2, . . . , 2, 1), . . .,
(1, 1, . . . , 1)}, for n ∈ N, form a PBW basis of the algebra A.

Counter-Example. Let us consider the same quadratic algebra with the
extra relation v2

2 − v2
1 . In this case, Rlead = K v1v2 ⊕ K v2

2 , L̄(2) = {(1, 2), (2, 2)}
and L(2) = {(1, 1), (2, 1)}. Therefore, the monomial basis of the quadratic algebra Å
is indexed by L(n) = {(2, 1, . . . , 1), (1, 1, . . . , 1)} . In weight 3, the relation a1a1a1 =
a2a1a1, obtained by calculating a2a2a2 by two different methods, shows that it does
not form a PBW basis.
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4.3.11. Recollection with the classical Diamond Lemma. The afore-
mentioned result can also be seen as a direct consequence of the classical Diamond
Lemma of G.M. Bergman [Ber78], which comes from graph theory [New42].

Let us first recall the statement. Starting from a vertex in an oriented graph,
one might have the choice of two outgoing edges. Such a configuration is called an
ambiguity in Rewriting Systems. An ambiguity is called resolvable or confluent if,
starting from these two edges, there exists two paths ending at a common vertex.
In this case, we get a diamond shape graph like in the figure below. Under the
condition that any path has an end (termination hypothesis), the classical Diamond
Lemma asserts that, if every ambiguity is confluent, then any connected component
of a graph has a unique terminal vertex.

The relationship with ring theory comes from the following graphical represen-
tation. We depict the elements of T (V ) by vertices of a graph with edges labeled by
the relations of R oriented from the leading term to the rest. In the case of PBW
bases, we restrict ourself to the generating relations given at the end of 4.3.1:

vivj 7−→
∑

(k,l)∈L(2), (k,l)<(i,j)

λi,jk,l vkvl , (i, j) ∈ L̄(2) .

Example. For instance, in the symmetric algebra S(v1, v2, v3) :=

A ({v1, v2, v3}, {r12 = v2v1 − v1v2, r23 = v3v2 − v2v3, r13 = v3v1 − v1v3}) :

v3v2v1

v3r12

%%KKKKKKKKKK
r23v1

yyssssssssss

v2v3v1

v2r13

��

v3v1v2

r13v2

��
v2v1v3

r12v3 %%KKKKKKKKKK v1v3v2

v1r23yyssssssssss

v1v2v3

In this example, there are two ways (ambiguity) of rewriting the monomial
v3v2v1, which finally end up on the same element (confluence). Notice that this
diamond is exactly the Yang-Baxter equation.

Therefore, the connected graphs depict the successive relations applied to ele-
ments in A(n). The terminal vertices correspond to linear combinations of monomi-
als labelled by elements of L(n); there is no more leading term of any relation inside
them. Having two different terminal vertices would imply that the two associated
elements are equal in A. Therefore, the set L labels a PBW basis of the algebra A
if and only if every connected graph has a unique terminal vertex. The PBW basis
is then made up of the labels of these terminal vertices, like the element v1v2v3 in
the above example.

To prove the Diamond Lemma for PBW bases from the classical Diamond
Lemma, one has just to prove that any path is finite, which is given by the bounded
below suitable order, and that any ambiguity is confluent. There are here only two
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types of ambiguities: the square type ambiguities where one applies two relations
to two distinct sub-monomials, of the same monomial or of two different monomials
of a sum, and the ones starting from a sub-monomial of length 3, where one either
applies a relation to the two first elements or to the two last elements. The first
type is obviously confluent. The confluence of the second type of ambiguities is
precisely given by the assumption that the elements labeled by L(3) are linearly
independent. These weight 3 monomials vivjvk are called critical. They are such
that vivj and vjvk are both leading terms of some relator.

Bergman in [Ber78] extended the Diamond Lemma beyond the set theoretic
case of graph theory and showed that it is enough to check the confluence condition
on monomials as the next proposition shows.

Proposition 4.3.12. Let A = A(V,R) be a quadratic algebra, with T (V ) equipped
with a suitable ordered basis {vı̄}ı̄∈J . If the ambiguities coming from the critical
monomials are confluent, then the elements {aı̄}ı̄∈L form a PBW basis of A and A
is Koszul.

Proof. The monomial elements with the second type of ambiguities are the elements
labelled L̄(3). Suppose that there exists a non-trivial linear combination between
elements labelled by L(3). In terms of graph, it corresponds to a zig-zag like

X ← • ← • → • ← · · · ← • → • → Y,

where X = Y is the relation, with X and Y two sums of elements labelled by
L(3). Since all the ambiguities are confluent by hypothesis, we can find another
zig-zag, where the distance between X and the first ← • → is strictly less than
in the first zig-zag. By iteration, we prove the existence of a zig-zag of the shape
X ← • → · · · . Finally, by confluence, there exists an edge leaving X, which is
impossible. We conclude with the Diamond Lemma 4.3.10. �

Finally, to prove that one has a PBW basis, it is enough to draw the graphs
generated by elements of L̄(3) only and to show that each of them has only one
terminal vertex. We refer to the above figure for the example of the symmetric
algebra. In the counter-example of 4.3.9, the element v2v2v2 gives the following
graph

v2v2v2

%%KKKKKKKKKK

yyssssssssss

v1v1v2

%%KKKKKKKKKK v2v1v1

v1v1v1

We have finally proved here the rewriting method Theorem 4.1.1 given in Sec-
tion 4.1.

4.3.13. Product of elements of a PBW basis. The canonical projection
ψ : Å � A is an epimorphism of graded modules, but not of algebras in general.
Therefore, the product of two elements of the generating family {aı̄}ı̄∈L is not
always equal to an element of this family, but to a sum of lower terms, as the
following proposition shows.

Proposition 4.3.14. The elements {aı̄}ı̄∈L satisfy
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(1) for any pair ı̄, ̄ ∈ L, if (̄ı, ̄) /∈ L, then the product aı̄ā in A can be written
as a linear combination of strictly lower terms labelled by L:

aı̄ā =
∑

l̄∈L, l̄<(ı̄,̄)

λı̄,̄
l̄
al̄,

with λı̄,̄
l̄
∈ K.

Proof. The proof is done by a simple induction argument with the suitable order
on tuples. �

In the example of 4.3.9, we have a2a1.a2a1 = a2a1a1a1. The original definition
of a PBW basis given by Priddy in [Pri70] is a basis made up of a family of
monomial elements {aı̄}ı̄∈L of A labelled by a set L ⊂ J , which satisfies Condition
(1) and

(2) any ı̄ = (i1, . . . , in) ∈ L if and only if (i1, . . . , im) ∈ L and
(im+1, . . . , in) ∈ L, for any 1 ≤ m < n.

We leave it to the reader to check that this definition of a PBW basis is equivalent
to the one given in 4.3.7.

4.3.15. Gröbner bases. In this section, we introduce the notion of (non-
commutative) Gröbner basis for an ideal I of the free algebra, see [Buc06]. In the
quadratic case, when I = (R), it is equivalent to a PBW basis for the quotient
algebra A = T (V )/(R).

Any element P in T (V ) is a linear combination of monomials. When T (V ) is
equipped with a suitable ordered basis, we denote by Plead the leading term of P .
For any subset M ⊂ T (V ), we consider the set made up of the leading terms of
any element of M and we denote it by Lead(M). Under this notation, the space of
relations Rlead of 4.3.2 is equal to the linear span of Lead(R): Rlead = 〈Lead(R)〉.

A (noncommutative) Gröbner basis of an ideal I in T (V ) is a set G ⊂ I which
generates the ideal I, i.e. (G) = I, such that the leading terms of G and the leading
terms of the elements of I generate the same ideal: (Lead(G)) = (Lead(I)).

Proposition 4.3.16. Let A = A(V,R) be a quadratic algebra such that T (V ) is
equipped with a suitable ordered basis {vı̄}ı̄∈J . The elements {al̄}l̄∈L form a PBW
basis of A if and only if the elementsvivj − ∑

(k,l)∈L(2), (k,l)<(i,j)

λi,jk,l vkvl


(i,j)∈L̄(2)

,

spanning R, form a Gröbner basis of the ideal (R) in T (V ).

Proof. (⇒) When L labels a PBW basis, the elementsvı̄ − ∑
l̄∈L, l̄<ı̄

λı̄l̄ vl̄


ı̄∈J\L

,

form a linear basis of (R). The leading terms of (R) are Lead((R)) = {Kvı̄}ı̄∈J\L
and Lead(vivj −

∑
(k,l)∈L(2), (k,l)<(i,j) λ

i,j
k,l vkvl) = vivj . Condition (2) implies that

ı̄ = (i1, . . . , in) ∈ J\L if and only if there exists 1 ≤ m < n such that (im, im+1) ∈
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L̄(2). Therefore, the two following ideals are equal (vivj , (i, j) ∈ L̄(2)) = (vı̄, ı̄ ∈
J\L).

(⇐) We show that any l̄ ∈ L, al̄ is not equal in A to a linear combination
of strictly lower terms labeled by L. Suppose that there is an l̄ ∈ L such that
al̄ =

∑
k̄∈L, k̄<l̄ λ

l̄
k̄
ak̄, with λı̄

l̄
∈ K. This is equivalent to vl̄−

∑
k̄∈L, k̄<l̄ λ

l̄
k̄
vk̄ ∈ (R),

whose leading term is vl̄. By definition, this element belongs to the ideal generated
by the elements vivj with (i, j) ∈ L̄(2), which is impossible by Condition (2). �

In the quadratic case, the two notions of PBW basis and Gröbner basis are
equivalent dual notions. The terminology “PBW basis” refers to the basis of the
quotient algebra while the terminology “noncommutative Gröbner basis” refers to
the ideal (R).

We refer to Section 2.12 of [Ufn95] for the history of the Gröbner-Shirshov
bases.

4.3.17. PBW bases for inhomogeneous quadratic algebras. Following
Section 4.2.9, we say that an inhomogeneous quadratic algebra A admits a PBW
basis if there exists a presentation A = A(V,R), satisfying Conditions (ql1) and
(ql2), such that the associated quadratic algebra qA = A(V, qR) admits a PBW
basis. In this case, the image {aı̄}ı̄∈L ⊂ A of the basis elements {vı̄}ı̄∈L of the qua-

dratic monomial algebra q̊A gives a basis of the inhomogeneous quadratic algebra
A. Such a result is once again proved using the following version of the Diamond
Lemma.

Theorem 4.3.18. Let A = A(V,R) be an inhomogeneous quadratic algebra with
a quadratic-linear presentation satisfying Conditions (ql1) and (ql2) and such that
T (V ) is equipped with a suitable ordered basis {vı̄}ı̄∈J .

If the images of the elements {vı̄}ı̄∈L(3) in qA are linearly independent, then
the images {aı̄}ı̄∈L of the elements {vı̄}ı̄∈L form a basis of A and the algebra A is
Koszul.

Proof. It is a particular case of Theorem 4.2.10. �

In the example of the universal enveloping algebra U(g) of a Lie algebra g (cf.
Section 3.6.13), the symmetric monomials basis of S(g) induces a PBW basis of
U(g). With the suitable order

0 < 1 < 2 < (1, 1) < 3 < (2, 1) < (1, 2) < (1, 1, 1) < 4 < (3, 1) < (2, 2) < · · · ,
the Cartan-Serre basis of 3.6.17 is a PBW basis of the Steenrod algebra.

In the inhomogeneous case too, the notion of PBW basis is equivalent and dual
to that of Gröbner basis.

Proposition 4.3.19. Let A be an inhomonegenous quadratic algebra with a quadratic-
linear presentation A = A(V,R) satisfying Conditions (ql1) and (ql2) and such that
T (V ) is equipped with a suitable ordered basis {vı̄}ı̄∈J . Let ϕ : qR → V be the
linear map whose graph gives R. The elements {al̄}l̄∈L form a PBW basis of A if
and only if the elements(Id− ϕ)

vivj − ∑
(k,l)∈L(2), (k,l)<(i,j)

λi,jk,l vkvl


(i,j)∈L̄(2)

spanning R, form a Gröbner basis of the ideal (R) in T (V ).
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Proof. The proof of the inhomogeneous case is similar but uses the PBW Theo-
rem 3.6.9. �

4.3.20. PBW basis of the Koszul dual algebra. Proposition 4.2.13 shows
that any PBW basis of a quadratic algebra induces a dual PBW basis on the Koszul
dual algebra. In this section, we provide further details.

Let {vi}i∈I be a finite ordered basis of the vector space V and consider a
suitable order on tuples. The elements {akal}(k,l)∈L(2) form a basis of V ⊗2/R. In
this case, there are elementsvivj − ∑

(k,l)∈L(2), (k,l)<(i,j)

λi,jk,l vkvl


(i,j)∈L̄(2)

,

which form a basis of R. So the complement set L̄(2) = I2 \ L(2) labels a basis of
R, which is not {vivj}(i,j)∈L̄(2) itself in general. The dual elements {v∗i }i∈I provide
a dual basis of V ∗ and the elementsv∗kv∗l +

∑
(i,j)∈L̄(2), (i,j)>(k,l)

λi,jk,l v
∗
i v
∗
j


(k,l)∈L(2)

provide a basis of R⊥. Therefore the image of the elements {v∗i v∗j }(i,j)∈L̄(2) in

A! = A(V ∗, R⊥), denoted a∗i a
∗
j , form a basis of V ∗⊗2/R⊥. We consider the opposite

order i 6op j, defined by i > j, on the labeling set I of the dual basis of V ∗.

Theorem 4.3.21. Let A = A(V,R) be a quadratic algebra endowed with a PBW
basis {aı̄}ı̄∈L. Its Koszul dual algebra A! admits the PBW basis {a∗̄ }̄∈L̄, with
opposite order.

Proof. It is a direct corollary of Proposition 4.2.13. �

When the algebra A = A(V,R) admits a PBW basis labelled by a set L, the

Koszul dual coalgebra A
¡

admits a basis indexed by the set L̄ by Proposition 4.2.6.
More precisely, the Koszul dual coalgebra admits a basis of the formsnvı̄ +

∑
̄<ı̄, ̄∈L(n)

snλı̄̄ v̄, ı̄ ∈ L̄(n)


n∈N

.

4.4. Koszul duality theory and lattices

We introduce a combinatorial criterion for Koszulity. It states that a certain
family of lattices associated to a quadratic data is distributive if and only if the
quadratic data is Koszul (Backelin Criterion). It will allow us to prove that the
Koszul property is stable under Manin products in the next section.

4.4.1. Poset and lattice. This section recalls the basic properties of posets
(partially ordered sets) and lattices. It mainly comes from R.P. Stanley’s book
[Sta97].

In a poset with a partial order denoted 6, a least upper bound z for two ele-
ments x and y, when it exists, is an upper bound, meaning x 6 z and y 6 z, which
is less than any other upper bound. When it exists, it is unique. It is denoted by
x ∨ y and is called the join. Dually, there is the notion of greatest lower bound
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which is denoted by x ∧ y and called the meet .

A lattice is a poset where the join and the meet exist for every pair of ele-
ments. These two operations are associative, commutative and idempotent, that is
x ∨ x = x = x ∧ x. They satisfy the absorption law x ∧ (x ∨ y) = x = x ∨ (x ∧ y)
and the partial order can be recovered by x 6 y ⇐⇒ x∧ y = x ⇐⇒ x∨ y = y. A
sublattice generated by a subset of a lattice L is the smallest sublattice of L stable
for the operations join and meet. It is explicitly composed by the elements obtained
by composing the generating elements with the operations join and meet.

A lattice is distributive if it satisfies the equivalent distributivity relations

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ⇐⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

The subsets of a set form a distributive lattice where the partial order is defined
by the inclusion ⊂ and where the join and meet are given by the union ∪ and the
intersection ∩ respectively. Actually, any finite distributive lattice is of this form
(fundamental theorem for finite distributive lattices). Notice also that a distribu-
tive sublattice generated by a finite number of elements is finite.

In the linear context, we will consider the lattice of sub-spaces of a vector space.
The order is given by the inclusion ⊂ and the join and meet are given by the sum +
and the intersection ∩ respectively. In the sequel, we will study finitely generated
sublattices of such a lattice. Our main tool will be the following result, which is
the analog, in the linear setting, of the fundamental theorem for finite distributive
lattices.

Lemma 4.4.2. Let U be a vector space and let L be a finitely generated sublattice
of the lattice of sub-spaces of U . The lattice L is distributive if and only if there
exists a basis B of U such that, B ∩X is a a basis of X, for any X ∈ L.

In this case, we say that the basis B distributes the sublattice L.

4.4.3. Lattice associated to a quadratic data. Let (V,R) be a quadratic
data. For every n ∈ N, we consider the lattice of sub-spaces of V ⊗n, where the
order is given by the inclusion: X 6 Y if X ⊂ Y . The join of two sub-spaces X
and Y is their sum X∨Y := X+Y and their meet is the intersection X∧Y := X∩Y .

For every n ∈ N, we denote by L(V,R)(n) the sublattice of the lattice of sub-

spaces of V ⊗n generated by the finite family {V ⊗i ⊗R⊗ V ⊗n−2−i}i=0,...,n−2.
The example of L(V,R)(3) is depicted below.
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V ⊗3

V ⊗R+R⊗ V

nnnnnnnnnnn

PPPPPPPPPPP

V ⊗R

PPPPPPPPPPP R⊗ V

nnnnnnnnnnn

V ⊗R ∩R⊗ V

{0}

4.4.4. Backelin’s criterion. The following result belongs to the long list of
properties between the Koszul duality theory and the poset theory.

Theorem 4.4.5 (Backelin [Bac83]). A quadratic data (V,R) is Koszul if and only
if the lattices L(V,R)(n) are distributive, for every n ∈ N.

In this case, the lattices L(V,R)(n), n ≥ 0 are finite. We refer the reader to
the Ph.D. thesis of J. Backelin [Bac83] and to the book of A. Polishchuk and
L. Positselski [PP05] for the proof of this result and for more details about this
subject.

4.5. Manin products for quadratic algebras

In this section, extracted from Yu. I. Manin [Man87, Man88], we define two
products © and • for quadratic data. They share nice properties with respect to
Koszul duality theory. The black product is shown to produce Hopf algebras, some
of which appear in quantum group theory.

4.5.1. Black and white Manin products. Let (V,R) and (W,S) be two
quadratic data. We denote by τ23 the isomorphism induced by the switching of the
two middle terms:

τ23 := IdV ⊗ τ ⊗ IdW : V ⊗ V ⊗W ⊗W ∼−→ V ⊗W ⊗ V ⊗W.

By definition Manin’s white product of (V,R) and (W,S) is the quadratic data
given by

(V,R)© (W,S) :=
(
V ⊗W, τ23(R⊗W⊗2 + V ⊗2 ⊗ S)

)
.

By definition Manin’s black product of (V,R) and (W,S) is the quadratic data
given by

(V,R) • (W,S) := (V ⊗W, τ23(R⊗ S)).

The quadratic data (Kx, 0) is the unit object for the white product ©, where
Kx stands for a one dimensional vector space spanned by x. Dually, the quadratic
data (Kx, (Kx)⊗2) is the unit object for the black product •. The associated
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algebras are the free associative algebra on one generator K[x] and the algebra of
dual numbers D(Kx) = K[x]/(x2) on one generator respectively.

We denote by A(V,R)© A(W,S) and by A(V,R) • A(W,S) the algebras as-
sociated to the quadratic data obtained by white and black products. Notice that
there is a morphism of quadratic algebras

A(V,R) •A(W,S)→ A(V,R)©A(W,S),

for any pair of quadratic data. The algebra associated to the white product is
isomorphic to the Hadamard (or Segre) product

A(V,R)©A(W,S) ∼= A(V,R)⊗
H
A(W,S) :=

⊕
n∈N

A(V,R)(n) ⊗A(W,S)(n),

which is the weight-wise tensor product.

4.5.2. Manin products and Koszul duality. Manin’s black and white
products behave well with respect to Koszul duality theory.

Proposition 4.5.3. Let (V,R) and (W,S) be two quadratic data, where V and W
are finite dimensional. Black and white products are sent one to the other under
the Koszul duality functor

(A(V,R)©A(W,S))! = A(V,R)! •A(W,S)!.

Proof. The quadratic algebra on the left hand side is equal to

A((V ⊗W )∗, (τ23(R⊗W⊗2 + V ⊗2 ⊗ S))⊥)

∼= A(V ∗ ⊗W ∗, τ23(R⊥ ⊗W ∗⊗2 ∩ V ∗⊗2 ⊗ S⊥))

∼= A(V ∗ ⊗W ∗, τ23(R⊥ ⊗ S⊥)).

�

Theorem 4.5.4 ([BF85]). If two quadratic data are Koszul, then their white prod-
uct and their black product are Koszul.

Proof. First we prove the white product property.
Let (V,R) and (W,S) denote two Koszul quadratic data. By Theorem 4.4.5, the

sublattices L(V,R)(n) of V ⊗n and L(W,S)(n) of W⊗n are distributive, for any n ∈
N. By Lemma 4.4.2, there exist bases B′(n) and B′′(n) of V ⊗n and W⊗n respectively

that distribute L(V,R)(n) and L(W,S)(n). For any n ∈ N, the sublattice L(V ⊗
W, τ23(R ⊗W⊗2 + V ⊗2 ⊗ S))(n) of (V ⊗W )⊗n is isomorphic to the sublattice of

V ⊗n ⊗W⊗n generated by the finite family

{V ⊗i ⊗R⊗ V ⊗n−2−i ⊗W⊗n, V ⊗n ⊗W⊗i ⊗ S ⊗W⊗n−2−i}i=0,...,n−2.

Therefore, the basis B(n) := {β′ ⊗ β′′ | β′ ∈ B′(n), β
′′ ∈ B′′(n)} distributes L(V ⊗

W, τ23(R⊗W⊗2 + V ⊗2⊗S))(n). We conclude by using Theorem 4.4.5 in the other
way round.

To prove the same result for the black product, we consider the Koszul dual
algebras and apply Proposition 4.5.3 and Proposition 3.4.8. �
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4.5.5. Adjunction and internal (co)homomorphism. The white and black
products satisfy the following adjunction formula.

Proposition 4.5.6. There is a natural bijection in the category Quad-alg of qua-
dratic algebras (or equivalently quadratic data):

Homquad alg(A •B,C) ∼= Homquad alg(A,B
!© C),

when B is a finitely generated algebra.

Proof. Let A, B and C be the three algebras associated to the three quadratic
data (V,R), (W,S) and (X,T ) respectively. There is a one-to-one correspondence

between the maps f : V ⊗W → X and the maps f̃ : V → W ∗ ⊗X. Such a map

satisfies f⊗2 : τ23(R⊗S)→ T if and only if f̃⊗2 : R→ τ23(S⊥⊗X+(W ∗)⊗2⊗T ).
�

In other words, Hom(B,C) := B! © C is the internal ‘Hom’ functor in the
monoidal category of finitely generated quadratic algebras with the black product
as tensor product. Dually, CoHom(A,B) := A•B! is the internal ‘coHom’ (or inner)
functor in the monoidal category of finitely generated quadratic algebras with the
white product as tensor product.

4.5.7. Manin complex. Let us apply this adjunction to the three quadratic
algebras (Kx, (Kx)⊗2), A(V,R), A(V,R), where V is finite dimensional. As usual
we write A = A(V,R). Since the first one is the unit object for the black product,
we get the bijection

Homquad alg(A,A) ∼= Homquad alg(K[x]/(x2), A!©A).

To the identity on A on the left hand side corresponds a natural morphism of
quadratic algebras K[x]/(x2)→ A!© A = A! ⊗

H
A, which is equivalent to a square

zero element ξ in A! © A. We define a differential dξ by multiplying elements of
A! ⊗

H
A by ξ, that is dξ(α) := αξ. The chain complex (A! ⊗

H
A, dξ) thereby obtained

is called the Manin complex denoted by L in [Man88] Chapter 9. If we choose a
basis {vi}i=1,...,n for V and denote by {v∗i }i=1,...,n the dual basis of V ∗, the square
zero element ξ is equal to

∑n
i=1 v

∗
i ⊗ vi.

The tensor product A!⊗A is isomorphic to the convolution algebra Hom(A
¡
, A),

under proper suspension. Under this isomorphism, the Hadamard tensor product
A!⊗

H
A ⊂ A!⊗A corresponds to the sub-space of weight preserving maps. The image

of the square-zero element ξ under this isomorphism is the twisting morphism κ and
the two-sided differential x 7→ ξα+ αξ gives the twisted differential ∂κ(f) = [f, κ].

4.5.8. Hopf algebras. We show that the black product construction gives
rise to Hopf algebras.

Proposition 4.5.9. Let (V,R) be a quadratic data with V finite dimensional and
let A = A(V,R). The algebra A! •A is a Hopf algebra.

Proof. By general properties of adjunction (see Appendix B.2.1), A! • A is a
comonoid in the monoidal category (quad alg,© = ⊗

H
,K[ε]). Since A! ⊗

H
A em-

beds into A!⊗A, the space A! •A is a comonoid in the monoidal category of graded
algebras with the classical tensor product, which makes it into a bialgebra. Since
it is conilpotent, the antipode comes for free. �
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This method was used by Yu. I. Manin to study quantum groups in [Man87,
Man88]

4.6. Résumé

Rewriting method. Let A(V,R) be a quadratic algebra such that V =
⊕ni=1Kvi is a vector space equipped with a finite ordered basis. We order V ⊗2

by using, for instance, the lexicographical order:

v1v1 < v1v2 < · · · < v1vn < v2v1 < · · · < vnvn .

Typical relation:

vivj =
∑

(k,l)<(i,j)

λi,jk,l vkvl, λi,jk,l ∈ K.

The element vivj is called a leading term. The monomial vivjvk is called critical if
both vivj and vjvk are leading terms.

Theorem:
Confluence for all the critical monomials ⇒ Koszulity of the algebra

Reduction by filtration and Diamond Lemma. Let A = A(V,R) be a
quadratic algebra. Any grading on V ∼= V1⊕· · ·⊕Vk together with a suitable order
on tuples induce a filtration on the algebra A and

ψ : Å := A(V,Rlead)� grA,

with Rlead = 〈Leading Term(r), r ∈ R〉.

Diamond lemma for quadratic algebras:

Å Koszul and Å(3) � (grA)(3) =⇒ A Koszul and Å ∼= grA

Inhomogeneous case:

q̊A Koszul and

q̊A
(3)
� (grχ qA)(3)

=⇒ A Koszul and

q̊A ∼= grχ qA
∼= qA ∼= grA ∼= A

PBW basis, Gröbner basis and Diamond lemma.
Particular case:

∀i ∈ I = {1, . . . , k},dim(Vi) = 1⇔ {vi}i∈I basis of V,

Å monomial algebra ⇒ Å Koszul and basis {vı̄}ı̄∈L.

PBW basis of A(V,R): basis {aı̄}ı̄∈L:= image of {vı̄}ı̄∈L under Å� grA

Main properties of PBW bases:

A(V,R) PBW basis⇒ A(V,R) Koszul algebra.

Diamond Lemma:

{aı̄}ı̄∈L(3) linearly independant =⇒ {aı̄}ı̄∈L PBW basis.

Gröbner basis:

Gröbner basis of (R) ⊂ T (V )⇐⇒ PBW basis of T (V )/(R).

PBW bases for inhomogeneous quadratic algebras:

qA = A(V, qR) PBW basis⇒ A(V,R) PBW basis.
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PBW bases on Koszul dual algebra:

A = A(V,R) PBW basis⇐⇒ A! = A(V ∗, R⊥) PBW basis.

Backelin criterion.
L(V,R)(n) : lattice of sub-spaces of V ⊗n generated by {V ⊗i⊗R⊗V ⊗n−2−i}i=0,...,n−2.

(V,R) Koszul quadratic data⇐⇒ L(V,R)(n) distributive lattice,∀n ∈ N.

Manin black and white products.

(V,R)© (W,S) :=
(
V ⊗W, τ23(R⊗W⊗2 + V ⊗2 ⊗ S)

)
,

(V,R) • (W,S) := (V ⊗W, τ23(R⊗ S)).

Unit for the white product: K[x]. Unit for the black product: K[x]/(x2).

(A©B)! = A! •B!,

Theorem: Manin products preserve the Koszul property.

Homquad alg(A •B,C) ∼= Homquad alg(A,B
!© C),

A!©A : Manin chain complex ; A! •A : Hopf algebra.

4.7. Exercises

4.7.1. Distributive law. Apply the method of Section 4.2 to the following
case. Let A(V ⊕W,R⊕Dλ⊕S) be a quadratic algebra, where R ⊂ V ⊗2, S ⊂W⊗2

and where Dλ ⊂ V ⊗W
⊕
W ⊗ V is the graph of a linear morphism λ : W ⊗ V →

V ⊗ W . Let us use the following notations A := A(V,R), B := A(W,S) and
A ∨λ B := A(V ⊕W,R⊕Dλ ⊕ S).

We consider the following ordered grading V1 := V and V2 := W together with
the lexicographic order. In this case, prove that Rlead = R

⊕
W ⊗V

⊕
S and that

Å = A ∨0 B. Show that the underlying module satisfies Å ∼= A(V,R) ⊗ A(W,S)
and make the product explicit. Dually, show that the underlying module satisfies

Å
¡ ∼= A(W,S)

¡ ⊗ A(V,R)
¡

and make the coproduct explicit. We now suppose that
the two quadratic data (V,R) and (W,S) are Koszul. Show that the quadratic data
(V ⊕W,R

⊕
W ⊗ V

⊕
S) is also Koszul.

Finally, show that if the maps V ⊗2/R⊗W → A and V ⊗W⊗2/S → A are injec-
tive, then the algebra A is Koszul and its underlying graded module is isomorphic
to A ∼= A(V,R)⊗A(W,S).

Extra question: when the generating spaces V and W are finite dimensional,
prove that the Koszul dual algebra has the same form:

A! = A(V ∗ ⊕W ∗, R⊥ ⊕Dtλ ⊕ S⊥) = A! ∨tλ B!,

where tλ : V ∗ ⊗W ∗ →W ∗ ⊗ V ∗ is the transpose map.

4.7.2. Equivalent definitions of PBW bases. Let A = (V,R) be a qua-
dratic algebra endowed with a family of elements {aı̄}ı̄∈L of A labelled by a set
L ⊂ J . Prove that, under Condition (2) of 4.3.13, Condition (1) is equivalent to

(1′) for any pair (i, j) ∈ I2, if (i, j) /∈ L(2), the product aiaj in A can be

written as a linear combination of strictly lower terms labelled by L(2):

aiaj =
∑

(k,l)∈L(2), (k,l)<(i,j)

λi,jk,l akal,
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with λi,jk,l ∈ K.

In the same way, prove that, under Condition (2), Condition (1) and (1′) are
equivalent to

(1′′) for any ı̄ ∈ J , if ı̄ /∈ L, then the element aı̄ ∈ A can be written as a linear
combination of strictly lower terms labeled by L:

aı̄ =
∑

l̄∈L, l̄<ı̄

λı̄l̄ al̄,

with λı̄
l̄
∈ K.

4.7.3. Hilbert-Poincaré series and PBW bases. Compute the Hilbert-
Poincaré series of a quadratic algebra endowed with a PBW basis (Section 4.6 of
[PP05]).

4.7.4. From PBW to Koszul. A quadratic algebra A(V,R) is called n-PBW
if it admits an extra ordered grading V ∼= V1 ⊕ · · · ⊕ Vk such that dimVi ≤ n, for
any i, if the algebra Å is Koszul and if the the isomorphism Å ∼= grA holds. Notice
that 1-PBW algebra are the algebras having a PBW basis.

Prove the following inclusions of categories

PBW = 1-PBW ⊂ 2-PBW ⊂ · · · ⊂ fg Koszul,

where the last category is the one a finitely generated Koszul algebras.
Show that the quadratic algebra A(x, y, z;x2− yz, x2 + 2zy) is 2-PBW but not

1-PBW.

4.7.5. Inhomogenous Koszul duality theory with PBW-bases. LetA(V,R)
be an inhomogeneous Koszul algebra endowed with a PBW basis. Make the con-
structions of Section 3.6 explicit with this basis.

For instance, the degree-wise linear dual of the Koszul dual dg coalgebra A
¡

=

((qA)
¡
, dϕ) is a dga algebra. Make it explicit with its differential. In the case of

the Steenrod algebra, show that this gives the Λ algebra (see [BCK+66, Wan67,
Pri70]).

4.7.6. PBW bases and Manin products. Let A := A(V,R) and B :=
A(W,S) be two quadratic algebras with ordered bases of V and W labeled by IA
and IB respectively. Suppose that we have a PBW basis on A and on B labeled
respectively by LA and LB . We denote by ı̄ = (i1, . . . , in) the elements of InA and
by ̄ = (j1, . . . , jn) the elements of InB .

Show that the following set labels a PBW basis of the white product A©B:

LA©B =
⋃
n∈N
{(i1, j1, i2, j2, . . . , in, jn) | ı̄ ∈ L(n)

A and ̄ ∈ L(n)
B }

∼=
⋃
n∈N

L
(n)
A × L(n)

B .

Dually, show that the following set labels a PBW basis of the black product
A •B:

LA•B = {(i1, j1, i2, j2, . . . , in, jn) | ∀ 1 ≤ k < n,

(ik, ik+1) ∈ L(2)
A or (jk, jk+1) ∈ L(2)

B }.
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4.7.7. Coproduct. Let A and B be two non-unital associative algebras. Show
that their coproduct A∨B in the category of non-unital associative algebras is given
by a suitable product on

A ∨B = A
⊕

B
⊕

A⊗B
⊕

B ⊗A
⊕

A⊗B ⊗A
⊕

B ⊗A⊗B
⊕
· · · .

Let (V,R) and (W,S) be two quadratic data. Show that they admit a coproduct
in the category of quadratic data, which is given by (V ⊕W,R ⊕ S). Prove that
the quadratic algebra A(V ⊕W,R⊕ S) is the coproduct of the quadratic algebras
A(V,R) and A(W,S) in the category of unital associative algebras. When V and
W are finite dimensional, compute its Koszul dual algebra.

Consider now the example of Exercise 4.7.1 and show that A(V ⊕W,R⊕Dλ⊕
S) ∼= A ∨B/(Dλ), whence the notation A ∨λ B.

Prove that if (V,R) and (W,S) are Koszul quadratic data, then so is their
coproduct. [Give several different proofs, using the Koszul complex and the dis-
tributive lattices for instance.]

Prove that if A := A(V,R) and B := A(W,S) admit a PBW basis, then they
can be used to construct a PBW basis on A ∨B.





CHAPTER 5

Algebraic operad

“The name “operad” is a word that I
coined myself, spending a week thinking
about nothing else.”
J.P. May in “Operads, algebras and mod-
ules”. Contemp. Math. 202 (1997), 15–31.

An algebra of a certain type is usually defined by generating operations and re-
lations, see for instance the classical definition of associative algebras, commutative
algebras, Lie algebras. Given a type of algebras there is a notion of “free” algebra
over a generic vector space V . Let us denote it by P(V ). Viewed as a functor from
the category Vect of vector spaces to itself, P is equipped with a monoid structure,
that is a transformation of functors γ : P◦P → P, which is associative, and another
one η : I→ P which is a unit. The existence of this structure follows readily from
the universal properties of free algebras. Such a data (P, γ, η) is called an algebraic
operad.

On the other hand, any algebraic operad P determines a type of algebras: the
P-algebras. The main advantage of this point of view on types of algebras is that
operads look like associative algebras but in a different monoidal category:

category product unit

monoid Set × {∗}
algebra Vect ⊗ K
operad EndoFunctVect ◦ I

So most of the constructions for associative algebras can be translated into this
new context. This is exactly what we intend to do with Koszul duality theory in
the next Chapters.

Depending on further properties of the type of algebras, the associated operad
might be of a special kind. For instance, if the generating operations are not
supposed to satisfy any symmetry, if the relations are multilinear and if, in these
relations, the variables stay in the same order, then the functor P is of the form

P(V ) =
⊕
n

Pn ⊗ V ⊗n

and the composition map γ is completely determined by K-linear maps

γ : Pk ⊗ Pi1 ⊗ · · · ⊗ Pik −→ Pi1+···+ik .

Then P is called a nonsymmetric operad.

95
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More generally, if the relations are multilinear, without any further hypothesis,
then the functor P is completely determined by a family of Sn-modules {P(n)}n≥0,

P(V ) :=
⊕
n

P(n)⊗Sn V
⊗n

and the composition map γ is completely determined by K-linear maps

γ : P(k)⊗ P(i1)⊗ · · · ⊗ P(ik) −→ P(i1 + · · ·+ ik).

Then P is called a symmetric operad.
Another interesting case, leading to the study of algebras with divided powers,

consists in taking

ΓP(V ) :=
⊕
n

(P(n)⊗ V ⊗n)Sn .

Of course, taking invariants instead of coinvariants leads to a different type of
algebras only in positive characteristic.

In this book we are going to work mainly with symmetric operads, that we
simply call operads. Since S-modules (family of representations over all the finite
symmetric groups) play a prominent role in this case, we devote the first section to
their study and to the Schur functors that they determine. For symmetric operads
the monoidal definition can be made explicit in several ways.

The classical definition consists in describing an operad in terms of the spaces
P(n) of n-ary operations. This family of spaces forms the S-module, which is
equipped with “compositions of operations”. They satisfy some properties which
reflect functoriality, associativity and unitality of the monoidal definition.

The partial definition is a variation of the classical definition which takes ad-
vantage of the fact that we only need to know how to compose two operations to
describe the whole structure. It is a description by generators and relations.

There is also a combinatorial way of describing an operad. It is based on the
combinatorial objects which crop up in the description of a free operad, namely the
rooted trees. One can construct a monad in the monoidal category of S-modules
out of the rooted trees, and an operad is simply a representation of this monad (i.e.
an algebra over the monad). It has the advantage of deserving many variations
by changing these combinatorial objects. For instance, nonsymmetric operads,
shuffle operads, cyclic operads, modular operads, properads, permutads and several
others can be described analogously by replacing the rooted trees by some other
combinatorial objects, see 13.14.

One should keep in mind that the most economical way of defining a concrete
operad is, most often, by describing the type of algebras that it determines. The
relationship with the monoidal definition is via the notion of “free algebra” as
mentioned above. Another way is the following. A type of algebras is determined
by generating operations (possibly with symmetries) and relations (supposed to
be multilinear). The generating operations and their symmetries determine the
S-module. Taking all the formal compositions of operations gives the free operad
on the generating operations. The relations can be translated as relators which are
operations in the free operad. The relators determine an operadic ideal and the
expected operad is the quotient of the free operad by this ideal. The algebras over
the quotient operad are exactly the algebras of the starting type.
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Historically one can say that operad theory began with composition of func-
tions. Let us mention the seminal paper of Michel Lazard “Lois de groupes et
analyseurs” [Laz55] where a system of compositions was called an “analyseur” (in
French). It gave rise to the notion of formal groups. For more about the history of
“operads” we refer to the first chapter of [MSS02].

Here is the content of this chapter. In the first section we introduce the notions
of S-module and of Schur functor, and various constructions on them. In the second
section we give the monoidal definition of an operad, and we define the notion of
algebra (and also of coalgebra) over an operad. Then we restrict ourselves for the
rest of the book to symmetric operads and nonsymmetric operads. In the third
section we give the classical and the partial definitions of a symmetric operad. In
the fourth section we describe in detail the free operad over an S-module. In the
fifth section we give the combinatorial definition of an operad. Then we make
explicit the relationship between “types of algebras” and algebraic operads in the
sixth section.

In the seventh section we introduce the notion of cooperad which will play a
prominent role in Koszul duality theory of quadratic operads.

In the eighth section we treat the notion of nonsymmetric operad. It can be
read independently of the first seven sections of this chapter. It consists in replacing
the starting S-modules by graded vector spaces. So, it is a simpler object and it
can be considered as a toy-model in the operad theory.

Then we give a brief résumé of all the definitions and we end up this chapter
with a list of exercices.

Though we work over a ground field K, many of the notions presented in this
chapter are valid when K is a commutative ring.

5.1. S-module and Schur functor

We introduce the notion of S-module upon which the notion of algebraic operad
is based in this book. Composition of S-modules is the core of operad theory. To
any S-module is associated an endofunctor of Vect, called the Schur functor, and
vice-versa. The interplay between both structures is a fruitful game.

5.1.1. S-module. By definition an S-module over K is a family

M = (M(0),M(1), . . . ,M(n), . . . ),

of right K[Sn]-modules M(n) (cf. Appendix A). It is sometimes called a “collection”
in the literature. An S-module is said to be finite dimensional if M(n) is a finite
dimensional vector space for any n. For µ ∈M(n) the integer n is called the arity
of µ. A morphism of S-modules f : M → N is a family of Sn-equivariant maps
fn : M(n)→ N(n). When all the maps fn are injective the S-module M is said to
be a sub-S-module of N .

5.1.2. Schur functor. To any S-module M we associate its Schur functor

M̃ : Vect→ Vect defined by

M̃(V ) :=
⊕
n≥0

M(n)⊗Sn V
⊗n.
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Here V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

is viewed as a left Sn-module under the left action

σ · (v1, . . . , vn) := (vσ−1(1), . . . , vσ−1(n)).

So the tensor product over Sn (i.e. over the ring K[Sn]) used in the definition of

M̃ is well-defined. Equivalently M̃(V ) is the sum over n of the coinvariants of
M(n)⊗ V ⊗n by the diagonal right action of Sn.

Any morphism of S-modules α : M → N gives rise to a transformation of

functors α̃ : M̃ → Ñ .
Sometimes we need to work with the product instead of the sum of the com-

ponents. We call complete Schur functor the infinite product:

M̂(V ) :=
∏
n≥0

M(n)⊗Sn V
⊗n.

If the S-module M is concentrated in arity 0 (resp. 1, resp. n), then the functor

M̃ is constant (resp. linear, resp. homogeneous polynomial of degree n). Observe

that we get the identity functor , denoted Ĩ, by taking the Schur functor of I :=

(0,K, 0, 0, . . . ), so Ĩ(V ) = IdVect(V ) = V .

In this subsection we use the two notations M and M̃ , but later on we will use
only M for both notions.

There are three important constructions on endofunctors of Vect: the direct
sum, the tensor product and the composition.
The direct sum of two functors F,G : Vect→ Vect is given by

(F ⊕G)(V ) := F (V )⊕G(V ).

The tensor product (F ⊗G) is given by

(F ⊗G)(V ) := F (V )⊗G(V ).

The composition of functors, denoted F ◦G, is given by

(F ◦G)(V ) := F (G(V )).

We are going to show that in each case, if the functors F and G are Schur
functors, then the resulting functor is also a Schur functor. We also unravel the
S-module from which it comes.

For the direct sum, it is immediate: for any S-modules M and N their direct
sum is the S-module M ⊕N defined by

(M ⊕N)(n) := M(n)⊕N(n).

It is obvious that
˜(M ⊕N) = M̃ ⊕ Ñ .

Lemma 5.1.3. Let M be an S-module. For any n ≥ 0 the multilinear part of

M̃(Kx1 ⊕ · · · ⊕Kxn) is isomorphic, as an Sn-module, to M(n).

Proof. First, it is clear that the multilinear part of M̃(Kx1 ⊕ · · · ⊕ Kxn) inherits
a structure of Sn-module from the action of the symmetric group on the set of
variables {x1, . . . , xn}. Second, the identification of these two Sn-modules is given
by µ 7→ (µ⊗ x1 · · ·xn) for µ ∈M(n). �
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5.1.4. Tensor product of S-modules. For any S-modules M and N their
tensor product is the S-module M ⊗N defined by

(M ⊗N)(n) :=
⊕
i+j=n

Ind Sn
Si×SjM(i)⊗N(j).

In this formula we use the notion of induced representation, cf. Appendix A.1. Since
the subset Sh(i, j) of (i, j)-shuffles of Sn is a convenient set of representatives of
the quotient Si × Sj\Sn (cf. 1.3.2), we have:

(M ⊗N)(n) ∼=
⊕
i+j=n

M(i)⊗N(j)⊗K[Sh(i, j)] .

Proposition 5.1.5. The tensor product of S-modules is associative with unit the
S-module (K, 0, 0, . . .). There is an equality of Schur functors:

˜(M ⊗N) = M̃ ⊗ Ñ .

Proof. The first part is straightforward. The proof of the equality follows from the
identities (where i+ j = n):(

Ind Sn
Si×SjM(i)⊗N(j)

)
⊗Sn V

⊗n

=
(
(M(i)⊗N(j))⊗Si×Sj K[Sn]

)
⊗Sn (V ⊗i ⊗ V ⊗j)

= (M(i)⊗N(j))⊗Si×Sj (V ⊗i ⊗ V ⊗j)
= (M(i)⊗Si V

⊗i)⊗ (N(j)⊗Sj V
⊗j).

�

5.1.6. Composite of S-modules. By definition the composite of the two
S-modules M and N is the S-module

M ◦N :=
⊕
k≥0

M(k)⊗Sk N
⊗k .

The notation N⊗k stands for the tensor product of k copies of the S-module N .
Observe that Sk is acting on N⊗k, that is Sk is acting on N⊗k(n) for all n and this
action commutes with the action of Sn.

For instance, let k = 2. Then N⊗2(n) = (N ⊗N)(n) = ⊕i+j=nN(i)⊗N(j)⊗
K[Sh(i, j)]. The transposition [2 1] ∈ S2 is acting on the direct sum by sending

(µ, ν, σ) ∈ N(i)⊗N(j)⊗K[Sh(i, j)]

to

(ν, µ, σ′) ∈ N(j)⊗N(i)⊗K[Sh(j, i)] where σ′ = σ[j + 1 · · · i+ j 1 · · · j].

When M and N are determined by only one representation, the operation ◦ is
called the plethysm in representation theory.

Proposition 5.1.7. The composite of the two S-modules M and N satisfies the
formula

˜(M ◦N) = M̃ ◦ Ñ ,
where, on the right hand side, the symbol ◦ stands for the composition of functors.
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Proof. We want to prove M̃(Ñ(V )) = M̃ ◦N(V ). We get:

M̃ ◦ Ñ(V ) =
⊕

kM(k)⊗Sk Ñ(V )⊗k

=
⊕

kM(k)⊗Sk Ñ
⊗k(V ) by compatibility of ⊗

=
⊕

k,pM(k)⊗Sk (N⊗k(p)⊗Sp V
⊗p) by inspection

=
⊕

k,p(M(k)⊗Sk N
⊗k(p))⊗Sp V

⊗p by associativity

=
⊕

p(M ◦N)(p)⊗Sp V
⊗p by definition of ◦

= M̃ ◦N(V ).

�

Corollary 5.1.8. For any two S-modules M and N one has

(M ◦N)(n) =
⊕
k≥0

M(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik

(
N(i1)⊗ · · · ⊗N(ik)

))
where the second sum is extended, for fixed k and n, to all the nonnegative k-tuples
(i1, . . . , ik) satisfying i1 + · · ·+ ik = n.

Recall that a positive k-tuple (i1, . . . , ik) such that i1 + · · ·+ ik = n is called a
k-composition of n.

The action of Sk on the right hand side factor is on the set of k-tuples {(i1, . . . , ik)}.
This action is well-defined since the tensor product of vector spaces is associative
and commutative.

Proof. It follows from the preceding Propositions. �

5.1.9. Example. Suppose that M(0) = N(0) = 0 and M(1) = N(1) = K.
Then we get

(M ◦N)(2) ∼= M(2)⊕N(2),

(M ◦N)(3) ∼= M(3)⊕
(
M(2)⊗ IndS3

S2
(N(2)

)
⊕N(3),

where, as a vector space, IndS3

S2
(N(2)) is the sum of three copies of N(2). Indeed,

for k = 3, we get the component M(3) ⊗S3
N(1)⊗3 which is isomorphic to M(3).

For k = 1, we get the component M(1)⊗S1
N(3) which is isomorphic to N(3). For

k = 2, we get the component

M(2)⊗S2

(
IndS3

S1×S2
(N(1)⊗N(2))⊕ IndS3

S2×S1
(N(2)⊗N(1))

)
.

Since S2 is exchanging the two summands, we get the expected result.

5.1.10. Notation. From now on we abandon the notation (−)̃ and so we
denote by the same symbol the S-module and its associated Schur functor. Hence
we freely treat an S-module as an endofunctor of Vect. Accordingly a morphism of
S-modules α : M → N is sometimes called a transformation of functors (meaning:
transformation of Schur functors).

If f : F → F ′ and g : G → G′ are two morphisms of S-modules (equiva-
lently natural trasnformations of Schur functors), then we denote sometimes the
morphisms

f ⊕ g : F
⊕

G→ F ′
⊕

G′(1)

f ⊗ g : F ⊗G→ F ′ ⊗G′(2)

f ◦ g : F ◦G→ F ′ ◦G′(3)



5.1. S-MODULE AND SCHUR FUNCTOR 101

by (f, g) when there is no confusion.

5.1.11. On the notation of elements in a composite S-module. As a
consequence of Corollary 5.1.8 the space (M ◦N)(n) is spanned by the equivalence
classes of the elements

(µ; ν1, . . . , νk;σ)

(under the action of Sk) where µ ∈M(k), ν1 ∈ N(i1), . . . , νk ∈ N(ik), σ ∈ Sh(i1, . . . , ik).
When σ = idn ∈ Sn (the identity permutation), we denote the relevant class either
by

µ ◦ (ν1, . . . , νk)

or by
(µ; ν1, . . . , νk).

5.1.12. Associativity isomorphism of the composite. [Sign warning].
The composition of Schur functors is associative. It implies that the composition
of S-modules is associative too. We would like to insist on the following phenom-
enon which does not happen in the algebra case (versus the operad case): in the
associativity isomorphism (M ◦N) ◦ P ∼= M ◦ (N ◦ P ) of S-modules, the switching
map τ (see 1.5.2) plays a role. Indeed, in the identification of the component(

M(a)⊗N(b)⊗N(c)
)
⊗ P (d)⊗ P (e)⊗ P (f)⊗ P (g)

in (M ◦N) ◦ P with the component

M(a)⊗
(
(N(b)⊗ P (d)⊗ P (e)

)
⊗
(
N(c)⊗ P (f)⊗ P (g)

)
in M ◦ (N ◦ P ) we need to use the switching map to carry N(c) over P (d)⊗ P (e).
As said above this phenomenon1 does not occur in the algebra case and on the left
hand side because, the product ⊗ is bilinear, and the product ◦ is linear on the left
hand side. This phenomenon is important to notice in the sign-graded case since
the occurence of τ may result in signs in the formulas.

5.1.13. Composite of morphisms. For any pair f : M →M ′, g : N → N ′

of morphisms of S-modules, their composite product f ◦ g : M ◦ N → M ′ ◦ N ′ is
given explicitly by the formula

(f ◦ g) (µ; ν1, . . . , νk) := (f(µ); g(ν1), . . . , g(νk)) ,

where (µ; ν1, . . . , νk) represents an element of

M(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik

(
N(i1)⊗ · · · ⊗N(ik)

))
.

Beware: f ◦ g does not mean the composite of g and f in the sense of composition
in a category, which has no meaning here anyway.

Observe that this composite is not linear in the right-hand side variable.

Proposition 5.1.14. The category of S-modules (S−Mod, ◦, I) is a monoidal cat-
egory.

Proof. It follows from the comparison to Schur functors. �

1 If the grandfather J wants to make a picture of his family, then he has two choices. He can

put his children E, H and S on his right side, and then the grandchildren Y,B,A further right.

Or, he can put the grandchildren on the right side of their parent: E,Y,B and H,A, and then put
these subfamilies on his right. That gives two different pictures since JEHSYBA 6=JEYBHAS. If

J had only one child, the pictures would have been the same.
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In a first reading, the rest of this section can be bypassed and the reader can
move to the beginning of section 5.2.

5.1.15. Generating series. To any finite dimensional S-moduleM = {M(n)}n≥0

we associate its generating series (also called Hilbert-Poincaré series) defined by

fM (x) :=
∑
n≥0

dimM(n)

n!
xn .

Proposition 5.1.16. Let M and N be two finite dimensional S-modules. The
following equalities hold:

fM⊕N (x) = fM (x) + fN (x),
fM⊗N (x) = fM (x)fN (x),
fM◦N (x) = fM (fN (x)),

assuming N(0) = 0 in the last equality.

Proof. The first equality is immediate. The second one follows from 5.1.4. The
third one (with N(0) = 0) follows from Corollary 5.1.8. �

5.1.17. Symmetric function indicator. There is a finer invariant than the
generating series: the Frobenius characteristic. Starting with an S-module M ,
it consists in taking the isomorphism class of the Sn-representation M(n) in the
Grothendieck group of the representations of Sn. The sum over n gives an element in∏
nRep(Sn) which is known to be isomorphic to the algebra of symmetric functions.

The image of this element, denoted by FM , is called the Frobenius characteristic.
The operations ⊕,⊗, ◦ on S-modules commute with their counterpart in the algebra
of symmetric functions, cf. [Mac95].

5.1.18. Hadamard product of S-modules. By definition the Hadamard
product of the two S-modules P and Q is the S-module P ⊗

H
Q given by

(P ⊗
H
Q)(n) := P(n)⊗Q(n) ,

where the action of Sn is the diagonal action.
The generating series of P ⊗

H
Q is not the Hadamard product of the generating

series of P and Q, but it will be it in the nonsymmetric framework, see 5.8.11 for
a discussion on this matter.

5.1.19. Linear species. A right S-module M can be viewed as a morphism
from the groupoid S of symmetric groups to the category Vect (or the category of
K-modules if K is a commutative ring). As a consequence it can be extended as a
contravariant functor from the groupoid Bij of finite sets and all bijections to the
category of vector spaces. We suppose that the empty set is an object of Bij. If
X is a finite set, then the extended functor, still denoted by M , is given by the
coinvariant space:

M(X) :=
( ⊕
f :n→X

M(n)
)
Sn

where the sum is over all the bijections from n := {1, . . . , n} to X. The right
action of σ ∈ Sn on (f ;µ) for µ ∈M(n) is given by (f ;µ)σ = (fσ;µσ).
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Such a functor is sometimes called a linear species, cf. [Joy86, AM10] section
B.1.1. Here is the translation of the above constructions into this language. Let M
and N be functors from Bij to Vect. For any set X we have:

(M ⊕N)(X) = M(X)⊕N(X),

(M ⊗N)(X) =
⊕

X=Y tZ
M(Y )⊗N(Z),

where the sum is over all the ordered disjoint unions

Y t Z of X,

(M ◦N)(X) =
⊕

B∈PART(X)

M(B)⊗
⊗
b∈B

N(Xb),

where PART(X) = set of decompositions of X (see below)

(M ⊗
H
N)(X) = M(X)⊗N(X).

See for instance [AM10] Appendix B.

5.1.20. On the notation
⊗

b∈BN(Xb). A decomposition of the finite set X
is a family of subsets {Xb}b∈B of X such that their disjoint union is X. We let n
be the number of elements in B. For any contravariant functor N : Bij→ Vect we
define ⊗

b∈B

N(Xb) :=
( ⊕
f :n→B

N(Xf(1))⊗ · · · ⊗N(Xf(n))
)
Sn

where the sum is over all the bijections from n to B. As usual, the right action of
Sn on the direct sum is given by

(f ;µ1, . . . , µn)σ = (fσ;µσ(1), . . . , µσ(n)),

where σ ∈ Sn and µi ∈ N(Xf(i)).

5.1.21. Invariants versus coinvariants. The Schur functor P(V ) can be
written as a sum of coinvariant spaces

P(V ) =
⊕
n

(P(n)⊗ V ⊗n)Sn

where the symmetric group is acting diagonally on the tensor product. Here we use
the fact that V ⊗n is a right module over Sn.

Instead of working with coinvariants we could choose to work with invariants,
that is to define

ΓP(V ) :=
⊕
n

(P(n)⊗ V ⊗n)Sn .

Everything would work, because the direct sum, the tensor product and the compo-
sition of such functors are of the same type. In particular, there exists a composition
◦̄ of S-modules such that, for any two S-modules P and Q, one has

ΓP ◦ ΓQ = Γ(P◦̄Q).

This composite is given by

(P◦̄Q)(n) :=
⊕
r

(P(r)⊗Q⊗r)Sr (n).
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Recall that the norm map of an Sn-module M is given by

MSn →MSn , x 7→
∑
σ∈Sn

xσ.

The norm map induces an S-module map P ◦Q → P◦̄Q since we took coinvariants
on the left-hand side and invariants on the right-hand side. Whenever Q(0) = 0
the induced transformation of functors

Φ : Γ(P ◦ Q)→ Γ(P◦̄Q)

is an isomorphism since Sr is acting freely on Q⊗r (cf. [Fre00]).
In characteristic zero the norm map is an isomorphism, so P(V ) → ΓP(V ) is

an isomorphism (see Appendix A). However in positive characteristic we get two
different functors.

5.2. Algebraic operad and algebra over an operad

We define a symmetric operad as a monoid in the monoidal category of symmet-
ric modules. Since this is a monad, that is a monoid in the category of endofunctors
of Vect, one can define the notion of an algebra over an operad. Replacing S-modules
by arity graded vector spaces we get the notion of nonsymmetric operad. Taking
invariants in place of coinvariants we get the notion of divided power operad. We
call them collectively “algebraic operads”.

5.2.1. Monoidal definition of an operad. By definition a symmetric op-
erad P = (P, γ, η) is an S-module P = {P(n)}n≥0 endowed with morphisms of
S-modules

γ : P ◦ P → P
called composition map, and

η : I→ P
called the unit map, which make the Schur functor P into a monoid.

Explicitly, the morphisms γ and η satisfy the classical axioms for monoids, that
is associativity:

P ◦ (P ◦ P)
Id◦γ // P ◦ P

γ

��

(P ◦ P) ◦ P

∼=
77ooooooooooo

γ◦Id

��
P ◦ P

γ // P
and unitality:

I ◦ P
η◦Id //

=
$$IIIIIIIII P ◦ P
γ

��

P ◦ I
Id◦ηoo

=
zzuuuuuuuuu

P
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Hence for any vector space V one has linear maps

γ(V ) : P(P(V ))→ P(V ) and η(V ) : V → P(V ).

In the literature a monoid structure on an endofunctor is often called a monad,
cf. B.4.

Let Q be another symmetric operad. A morphism of operads from P to Q is
a morphism of S-modules α : P → Q, which is compatible with the composition
maps. In other words, the following diagrams are supposed to be commutative:

P ◦ P
(α,α) //

γP

��

Q ◦ Q

γQ

��

I
ηP

����������
ηQ

��========

P α // Q P α // Q

The category of operads over VectK is denoted by OpK or Op.

In order to differentiate between the notion of composition in the operadic
framework (the map γ) and the classical notion of composition of functors in cate-
gory theory (denoted by ◦), we will sometimes say “operadic composition” for the
first one.

Here we are mainly interested in the notion of operads in the category of vector
spaces, or modules over a commutative ring, or in the category of chain complexes
(dg spaces), but it is immediate to verify that it makes sense in any symmet-
ric monoidal category with infinite sums such that finite sums commute with the
monoidal structure.

5.2.2. Operadic module. A left module over the symmetric operad P is an S-
module M together with an S-module morphism P◦M →M satisfying associativity
and unitality with respect to the operad structure on P. The terminology varies
a lot in the literature. It is sometimes called a “twisted P-algebra”, or sometimes
simply a “P-algebra” ; see [Fre09b] for a thorough study of this structure. There
is a particular case which is important: when M is constant, that is concentrated
in arity 0. This gives rise to the notion of algebra over an operad, see below.

Observe that the notion of right module, which is obvious to define, gives rise
to a completely different structure.

A bimodule (or two-sided module) over P is an S-module M together with
morphisms of S-modules P ◦ M → M and M ◦ P → M satisfying the classical
axioms of associativity and unitality for two-sided modules.

5.2.3. Algebra over an operad. By definition an algebra over the operad
P, or a P-algebra for short, is a vector space A equipped with a linear map γA :
P(A)→ A such that the following diagrams commute:

P(P(A))
P(γA) // P(A)

γA

��

(P ◦ P)(A)

=

88pppppppppp

γ(A)

��

I(A)
η(A) //

=

""FFFFFFFFF
P(A)

γA

��
P(A)

γA // A A
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The transformation of functors γ applied to A, that is γ(A), is not to be
confused with P(γA) which is the functor P applied to the map γA. They have the
same source and the same target, but they are different.

Let A′ be another P-algebra. A morphism of P-algebras is a linear map f :
A→ A′ which makes the following diagram commutative:

P(A)
γA //

P(f)

��

A

f

��
P(A′)

γA′ // A′

We denote by P-alg the category of P-algebras.

5.2.4. Functors between categories of algebras. Let α : P → Q be a
morphism of operads. Then there is a well-defined functor

α∗ : Q-alg −→ P-alg .

Indeed, the P-algebra associated to the Q-algebra A has the same underlying vector
space structure and the composition map is the composite

P(A)
α(A)−→ Q(A)→ A.

Observe that the functor which assigns to an operad the category of algebras
over this operad is contravariant.

We give in Proposition 5.2.13 an interpretation of a P-algebra as a morphism
of operads.

5.2.5. Free P-algebra. In the category of P-algebras, a P-algebra F(V ),
equipped with a linear map η : V → F(V ) is said to be free over the vector space
V if it satisfies the following universal condition:

for any P-algebra A and any linear map f : V → A there is a unique P-algebra

extension f̃ : F(V )→ A of f :

V
η //

f
""DDDDDDDDD F(V )

f̃

��
A

Observe that a free algebra is unique up to a unique isomorphism, cf. Appendix
B.2.3.

In other words, F is a functor Vect→ P-alg which is left adjoint to the forgetful
functor:

HomP-alg(F(V ), A) ∼= HomVect(V,A).

For any vector space V one can equip P(V ) with a P-algebra structure as
follows. Define

γP(V ) := γ(V ) : P(P(V ))→ P(V ).

The axioms defining the operad P show that (P(V ), γ(V )) is a P-algebra.

Proposition 5.2.6. The P-algebra (P(V ), γ(V )) equipped with η(V ) : V → P(V )
is the free P-algebra over V .
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Proof. For any linear map f : V → A, where A is a P-algebra, we consider the

composition f̃ : P(V )
P(f)−−−→ P(A)

γA→ A. It extends f since the composite

V
η(V )−−−→ P(V )

P(f)−−−→ P(A)
γA−→ A

is f by P(f) ◦ η(V ) = η(A) ◦ f and γA ◦ η(A) = IA.
The following diagram is commutative by functoriality and the fact that A is

a P-algebra:

P(P(V )) //

��

P(V )

��
f̃

__

P(P(A)) //

��

P(A)

��
P(A) // A

It implies that the map f̃ is a P-algebra morphism.

Let us show that the map f̃ is unique. Since we want f̃ to coincide with f on

V and that we want f̃ to be an algebra morphism, there is no other choice by f̃ .�

5.2.7. Endofunctors of Vect. In Section 5.1 we showed that any S-module
gives rise to an endofunctor of Vect, called the associated Schur functor. Similarly
any graded vector space P = {Pn}n≥0 gives rise to an endofunctor of Vect by the
formula

P(V ) :=
⊕
n≥0

Pn ⊗ V ⊗n .

We remark immediately that this endofunctor is the Schur functor associated to
the S-module, still denoted by P, given by

P(n) := Pn ⊗K[Sn].

Writing P(n) or Pn suffices to indicate in which framework we are working in.
Moreover, most of the time, it is only the endofunctor which is relevant.

A third interesting case consists in starting with an S-module and taking the
invariants instead of the coinvariants when forming the endofunctor:

ΓP(V ) :=
⊕
n≥0

(P(n)⊗ V ⊗n)Sn .

5.2.8. Symmetric operads. In a symmetric operad (P, γ, η) the composition
map γ is made up of linear maps

γ(i1, . . . , ik) : P(k)⊗ P(i1)⊗ · · · ⊗ P(ik) −→ P(i1 + · · ·+ ik)

that will be studied in the next section.
If A is a P-algebra, then the structure map γA determines maps

P(n)⊗A⊗n � P(n)⊗Sn A
⊗n γA(n)−−−−→ A.

Therefore, any element µ ∈ P(n) and any n-tuple a1 . . . an ∈ A⊗n give rise to an
element

γA(n)(µ; a1 . . . an) ∈ A .
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Such an element µ is called an n-ary operation and P(n) is called the space of n-ary
operations. By abuse of notation we write

µ(a1 . . . an) := γA(n)(µ; a1 . . . an) ,

and we call µ an operation on A.
The unit functor η : I → P defines a particular element in P(1), namely the

image of 1 ∈ K = I(1), which we denote by id ∈ P(1) and call the identity operation.
Indeed we have id(a) = a for any a ∈ A. For any symmetric operad P the space
P(1) inherits the structure of a unital associative algebra over K. It is given by the
map γ(1) : P(1)⊗ P(1)→ P(1) and id is the unit of P(1).

5.2.9. Nonsymmetric operads. A nonsymmetric operad (ns operad for short)
is an arity graded vector space P = {Pn}n≥0 endowed with morphisms γ : P ◦P →
P and η : I → P which make it into a monoid in the monoidal category of arity
graded vector spaces. The composition map γ is completely determined by maps

γi1,...,ik : Pk ⊗ Pi1 ⊗ · · · ⊗ Pik −→ Pi1+···+ik

for n = i1 + · · ·+ ik and η is determined by an element id ∈ P1. See section 5.8 for
more.

A nonsymmetric operad P gives rise to an operad, usually still denoted by P,
such that P(n) = Pn⊗K[Sn]. The action of the symmetric group is induced by the
Sn-module structure of the regular representation K[Sn]. The composition map is
the tensor product

γ(i1, . . . , ik) = γi1,...,ik ⊗ γAss(i1, . . . , ik)

where γAss is the composition map of the operad Ass that will be described below.
Such a symmetric operad is sometimes called a regular operad .

5.2.10. Operads with divided powers. Definitions and results of this sub-
section come from Benoit Fresse’s paper [Fre00] in which the reader will find the
details. Let {P(n)}n≥0 be an S-module with P(0) = 0. Recall that there is defined
an endofunctor ΓP by using invariants instead of coinvariants:

ΓP(V ) :=
⊕
n≥1

(P(n)⊗ V ⊗n)Sn .

An operad with divided powers is a monoid structure on ΓP, that is a composition
map γ̄ : ΓP ◦ ΓP → ΓP which is associative and unital.

If P = (P, γ, η) is a symmetric operad, then it determines an operad with
divided powers as follows. First, recall from 5.1.21 that the norm map permits us
to construct a map Φ : Γ(P ◦ P)→ Γ(P◦̄P) which happens to be an isomorphism.
The composition map γ̄ is defined as the composite

ΓP ◦ ΓP = Γ(P◦̄P)
Φ−1

−−−→ Γ(P ◦ P)
Γ(γ)−−−→ ΓP.

An algebra over ΓP is called a P-algebra with divided powers. It can be shown that
if P(n) is Sn-projective, e.g. P(n) is the regular representation, then a P-algebra
with divided powers is the same as a P-algebra. It is also the case in characteristic
zero since the norm map is then an isomorphism.

From this construction it follows that there is a forgetful functor from the
category of P-algebras with divided powers to the category of P-algebras. It is
often a challenge to find a presentation of the first out of a presentation of the
second.
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One of the interests of the notion of algebras with divided powers is the following
result, proved in [Fre00]. Let A• be a simplicial P-algebra. If A• is 2-reduced (that
is A0 = A1 = 0), then its homotopy π∗(A•) is a graded ΓP-algebra. For P = Com
it is a result of Henri Cartan.

5.2.11. First examples of operads. We show that a unital associative al-
gebra can be interpreted as an operad. Then we introduce the “three graces”, the
operads Ass,Com and Lie. In the next section we treat the endomorphism operad
which can be seen as a toy-model for the operad structure.

Example 0. A unital associative algebra is an example of an operad. Indeed, let R
be a unital associative algebra and consider the S-module M given by M(1) = R
and M(n) = 0 otherwise. Then we have M(V ) = R ⊗ V , and an operad structure
on M is equivalent to a unital associative algebra structure on R. The composition
map γ is induced by the product on R:

γ(V ) : M ◦M(V )→M(V ),

R⊗R⊗ V → R⊗ V, (r, s, v) 7→ (rs, v).

The unit map η is induced by the unit of R. An algebra over this operad is simply
a left R-module. So any unital associative algebra is an example of an algebraic
operad.

In particular, if R = K, then we get the identity operad I, that we sometimes
denote by V ect to emphasize the fact that its category of algebras is simply the
category of vector spaces Vect.

Example 1. Let Ass : Vect→ Vect be the Schur functor given by Ass(V ) := T (V ) =
⊕n≥1V

⊗n (reduced tensor module). As an S-module we have Ass(n) = K[Sn] (reg-
ular representation), since K[Sn]⊗Sn V

⊗n = V ⊗n for n ≥ 1, and Ass(0) = 0. The
map γ(V ) : Ass(Ass(V )) → Ass(V ) is given by “composition of noncommutative
polynomials”. This is the symmetric operad encoding associative algebras since an
algebra over Ass is a nonunital associative algebra. So the free Ass-algebra over
the vector space V is nothing but the reduced tensor algebra T (V ) (cf. 1.1.3).

The symmetric operad Ass comes from a nonsymmetric operad, denoted As,
for which Asn = Kµn (one-dimensional space) for n ≥ 1. On associative algebras,
µn is the n-ary operation µn(x1, . . . , xn) = x1 · · ·xn. This basic example is treated
in more details in Chapter 9.

The operad of unital associative algebras, denoted uAss, is the same except
that uAss(0) = K. The image of 1 ∈ uAss(0), in the unital associative algebra A,
is the unit of A. The free algebra is the tensor algebra: uAss(V ) = T (V ).

In the process which associates a symmetric operad to a nonsymmetric operad
the composition map is given by

γ(i1, · · · , ik) = γPi1,...,ik ⊗ γ
Ass(i1, . . . , ik)

up to a reordering of the factors on the source space.
Since Ass(n) is the regular representation, there is no difference between asso-

ciative algebras with divided powers and associative algebras.

Example 2. Let Com : Vect→ Vect be the Schur functor given by

Com(V ) := S(V ) =
⊕
n≥1

SnV =
⊕
n≥1

(V ⊗n)Sn .
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As an S-module we have Com(n) = K with trivial action, since

K⊗Sn V
⊗n = (V ⊗n)Sn = SnV for n ≥ 1,

and Com(0) = 0. The map γ(V ) : Com(Com(V )) → Com(V ) is given by “com-
position of polynomials”. This is the symmetric operad encoding commutative
algebras since an algebra over Com is a nonunital commutative algebra (in the
sense commutative and associative). So the free Com-algebra over the vector space
V is nothing but the (nonunital) symmetric algebra S(V ) (cf. 1.1.10).

Since any commutative algebra is an associative algebra, there is a functor
Com-alg −→ Ass-alg. It is induced by the morphism of operads Ass → Com,
which, in degree n, is the augmentation map K[Sn] → K, σ 7→ 1, (projection onto
the trivial representation). This case is treated in more details in Chapter 13.

It is proved in [Fre00] that the notion of “divided power commutative alge-
bras” is the classical one, see 13.1.19 for the precise presentation.

Example 3. Let Lie : Vect→ Vect be the functor such that the space Lie(V ) ⊂ T (V )
is generated by V under the bracket operation [x, y] := xy − yx. We know by
Corollary 1.3.7 that this is the free Lie algebra on V . Let Lie(n) be the multilinear
part of degree n in the free Lie algebra Lie(Kx1 ⊕ · · · ⊕ Kxn). One can show
that there is an operad structure on the Schur functor Lie induced by the operad
structure on Ass (Lie polynomials of Lie polynomials are again Lie polynomials).
An algebra over the operad Lie is a Lie algebra.

Any associative algebra is a Lie algebra under the antisymmetrization of the
product [x, y] = xy − yx. This functor Ass-alg −→ Lie-alg is induced by the
morphism of operads Lie → Ass, which, in arity n, is the inclusion Lie(n) �
Ass(n) = K[Sn] mentioned above. This case is treated in more details in 13.2.

It is proved in [Fre00] that the notion of “divided power Lie algebras” over a
field with positive characteristic coincides with the notion of restricted Lie algebras
introduced by Nathan Jacobson [Jac62], see 13.2.26 for the precise presentation.

5.2.12. Endomorphism operad. For any vector space V the endomorphism
operad EndV is given by

End V (n) := Hom(V ⊗n, V ),

where, by convention, V ⊗0 = K. The right action of Sn on EndV (n) is induced
by the left action on V ⊗n. The composition map γ is given by composition of
endomorphisms:

V ⊗i1⊗

f1

��

· · · ⊗V ⊗ik

fk

��

= V ⊗n

f1⊗···⊗fk
��

V⊗ · · ·

f

��

⊗V = V ⊗k

f

��
V = V

γ(f ; f1, . . . , fk) := f
(
f1 ⊗ . . .⊗ fk

)
.

It is immediate to verify that EndV is an algebraic operad.

Proposition 5.2.13. A P-algebra structure on the vector space A is equivalent to
a morphism of operads P → EndA.
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Proof. This statement follows from the natural isomorphism

HomSn
(
P(n),Hom(A⊗n, A)

)
= Hom

(
P(n)⊗Sn A

⊗n, A
)
.

�

By definition a graded P-algebra over the graded operad P is a graded vector
space A (i.e. an object in the sign-graded category gVect) and a morphism of graded
operads P → EndA. We leave it to the reader to write down the compatibility
conditions in terms of the map γA : P(A)→ A.

5.2.14. Algebras over an operad: functorial properties. By abuse of
notation, we often denote by µ : A⊗n → A the image of µ ∈ P(n) under γA in
EndA(n). It follows immediately from the interpretation of an algebra over an
operad given in Proposition 5.2.13 that, if α : P → Q is a morphism of operads,
then any Q-algebra A has a P-algebra structure via the composition of operad
morphisms

P → Q → EndA.

Hence we get the functor
α∗ : Q-alg −→ P-alg.

This functor, which is analogous to the restriction functor for modules, admits a
left adjoint, analogous to the induced functor for modules. It is denoted by

α! : P-alg→ Q-alg
and constructed as follows. For any P-algebra A, the Q-algebra α!(A) is the quo-
tient of the free Q-algebra Q(A) which identifies the two different P-algebra struc-
tures. It is a particular case the relative composite product going to appear in
11.2.1. Explicitly it is given by the coequalizer:

Q ◦ P ◦A
ρ◦IdA //

IdQ◦γA
// Q ◦A // // Q ◦P A =: α!(A),

where the right P-action ρ on Q is the composition Q ◦ P IdQ◦α−−−−→ Q ◦Q γQ−−→ Q. In
the particular case of the morphism α : Lie→ Ass we obtain the universal algebra
of a Lie algebra: α!(g) = U(g).

5.2.15. Ubiquity of the elements of P(n). Let Vn = Kx1 ⊕ · · · ⊕ Kxn be
an n-dimensional vector space with preferred basis. The element

x1 ⊗ · · · ⊗ xn ∈ V ⊗nn ⊂ P(Vn)⊗n

is called the generic element . Applying the n-ary operation µ ∈ P(n) to the generic
element gives an element of the free P-algebra over Vn:

γP(Vn) : P(n)⊗ P(Vn)⊗n → P(Vn),

µ⊗ (x1 ⊗ · · · ⊗ xn) 7→ µ(x1, . . . , xn),

(this is a slight abuse of notation since we do not mention γ). The resulting map

P(n) → P(Vn)
µ 7→ µ(x1, . . . , xn)

is one-to-one onto the multilinear part of degree n of P(Vn). The relationship with
the action of the symmetric group is as follows. For σ ∈ Sn, we have

µσ(x1, . . . , xn) = µ(σ · (x1, . . . , xn)) = µ(xσ−1(1), . . . , xσ−1(n))
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in P(Vn).
So, any such µ can be viewed either as an n-ary operation or as an element of

some specific free P-algebra.
In practice we will often talk about “the operation x∗y ” to mean “the operation

µ ∈ P(2) determined by µ(x, y) := x ∗ y ”. Similarly we will allow ourselves to
say “the relation (x ∗ y) ∗ z = x ∗ (y ∗ z) ”, when we really mean “the relator
µ ◦ (µ, id)− µ ◦ (id, µ) ∈ T (E)(3) ”, see 5.4 for the notation T .

5.2.16. Operadic ideal and quotient operad. An operadic ideal (or simply
ideal) of an operad P is a sub-S-module I of P such that the operad structure of P
passes to the quotient P/I. Explicitly it is equivalent to the following conditions.
For any family of operations {µ; ν1, . . . , νk}, if one of them is in I, then we require
that the composite γ(µ; ν1, . . . , νk) is also in I.

5.2.17. Coalgebra over an operad. Let V be a vector space. By definition
the co-endomorphism operad over V , denoted coEndV , is given by

coEndV (n) := Hom(V, V ⊗n).

The right action of Sn on coEndV (n) is induced by the right action on V ⊗n. The
composition map is given by composition of morphisms:

V

��

= V

��
V⊗

��

· · · ⊗V

��

= V ⊗k

��
V ⊗i1⊗ · · · ⊗V ⊗ik = V ⊗n

By definition a coalgebra C over the operad P is a vector space C and a mor-
phism of operads

P −→ coEndC .

Explicitly, for any n, the data is an Sn-equivariant map

P(n)⊗ C −→ C⊗n.

The image of µ ∈ P(n), that is the map C → C⊗n, is called an n-ary coopera-
tion and, often, still denoted by µ by abuse of notation. In order to simplify the
terminology we allow ourselves to call C a P-coalgebra.

When P is the associative operad Ass, an Ass-coalgebra is a coassociative coal-
gebra (also called associative coalgebra) as defined in 1.2.1. In the case P = Com
it is a cocommutative (and coassociative) coalgebra. We simply say commutative
coalgebra. When P = Lie we get the notion of Lie coalgebra (sometimes referred
to as coLie coalgebra). Explicitly a Lie coalgebra is a vector space L equipped with
a linear map ∆ : L → L ⊗ L which is antisymmetric, i.e. τ∆ = −∆, and satisfies
the co-Leibniz rule:

(∆⊗ Id)∆ = (Id⊗∆)∆ + (Id⊗ τ)(∆⊗ Id)∆.
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5.3. Classical and partial definition of an operad

From now on by “operad” we mean symmetric operad. So we suppose that the
endofunctor is in fact a Schur functor induced by an S-module.

The classical definition of an operad is quite technical, but it is the most com-
mon form appearing in algebraic topology papers on operads. For the third defini-
tion one takes advantage of the fact that the operadic structure can be determined
out of some elementary compositions called “partial compositions”. It is very help-
ful in some frameworks because it has the minimal number of generators.

5.3.1. Classical definition of an operad. [J.P. May [May72]] Let us now
describe explicitly the operad structure on S-modules. By Corollary 5.1.8 the vector
space (P ◦ P)(n) is a quotient of the direct sum of all the possible tensor products
P(k)⊗P(i1)⊗ · · · ⊗ P(ik) for i1 + · · ·+ ik = n. So, the composition map γ of the
operad P defines linear maps

γ(i1, . . . , ik) : P(k)⊗ P(i1)⊗ · · · ⊗ P(ik) −→ P(i1 + · · ·+ ik).

Pictorially this composition looks as follows:

· · ·
µ1

LLLLL
???? ����

rrrrr
µ2

???? zzzz
· · · µk

???? ����

7→

µ

PPPPPPPPPPPPPPP

111111

ppppppppppppp
µ ◦ (µ1, . . . , µk)

NNNNNNNNNNNNNNNNNNN

JJJJJJJJJJJJJJJJJ

GGGGGGGGGGGGGGG

AAAAAAAAAAAAAA

::::::::::::

xxxxxxxxxxxxxxx

ttttttttttttttttt

qqqqqqqqqqqqqqqqqqq

The next proposition gives the conditions under which a family of linear maps
γ(i1, . . . , ik) gives rise to an operad.

Proposition 5.3.2. Let P = {P(n)}n≥0 be an S-module. The maps

γ(i1, . . . , ik) : P(k)⊗ P(i1)⊗ · · · ⊗ P(ik) −→ P(i1 + · · ·+ ik)

define an operad structure on P if and only if they satisfy the following conditions:
(a) for any integers k and n the map∑

γ(i1, . . . , ik) : P(k)⊗
(⊕

P(i1)⊗ · · · ⊗ P(ik)
)
−→ P(n),

where the direct sum is over all k-tuples (i1, . . . , ik) such that i1 + · · · + ik = n,
factors through the tensor product over Sk. Moreover it is equivariant with respect
to the action of Si1 × · · · × Sik (we use the natural embedding of this group product
into Sn),

(b) for any set of indices (j1,1, . . . , j1,i1 , j2,1, . . . , j2,i2 , . . . , jn,1, . . . , jn,in) the
following square is commutative (we leave out the ⊗ signs):
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P(n)P(i1)P(j1,1) · · · P(j1,i1)P(i2)P(j2,1) · · · · · · P(jn,in) //

∼=
��

P(n)P(r1) · · · P(rn)

��

P(n)P(i1) · · · P(in)P(j1,1) · · · P(j1,i1)P(j2,1) · · · · · · P(jn,in)

��
P(m)P(j1,1) · · · P(j1,i1)P(j2,1) · · · · · · P(jn,1) · · · P(jn,in) // P(`)

where rk = jk,1+· · ·+jk,ik for k = 1 to n, m = i1+· · ·+in and ` = r1+· · ·+rn,
(c) there is an element id in P(1) such that the evaluation of γ(n) : P(1) ⊗

P(n) → P(n) on (id, µ) is equal to µ, and the evaluation of γ on (µ; id . . . , id) is
equal to µ.

Proof. Starting with an algebraic operad (P, γ, η), we get the maps γ(i1, . . . , ik) by
restriction to the identity shuffle. The unit map defines an inclusion η : K→ P(1),
whose image of 1 = 1K is the identity operation id. Then, it is clear that the axioms
of functoriality, associativity and unitality of the operad data imply the properties
(a), (b) and (c).

On the other hand, starting with an S-module P and maps γ(i1, . . . , ik), we
construct a monoid structure on the Schur functor as follows. Condition (a) provides
a transformation of functors γ : P ◦ P → P. Condition (b) ensures associativity of
γ. Condition (c) ensures unitality. �

As a consequence of Proposition 5.3.2 one can define an operad as an S-module
{P(n)}n≥0 equipped with maps γ(i1, . . . , ik) for all k-tuples (i1, . . . , ik) satisfying
the equivariance conditions (a), the associativity condition (b), and the unitality
condition (c). This is what we call the classical definition of an operad.

5.3.3. Hadamard product of operads. Let P and Q be two operads. The
Hadamard tensor product P ⊗

H
Q of the underlying S-modules (cf. 5.1.18) has a

natural operad structure:

(P ⊗
H
Q)(k)⊗ (P ⊗

H
Q)(n1)⊗ · · · ⊗ (P ⊗

H
Q)(nk)

= P(k)⊗Q(k)⊗ P(n1)⊗Q(n1)⊗ · · · ⊗ P(nk)⊗Q(nk)
∼= P(k)⊗ P(n1)⊗ · · · ⊗ P(nk)⊗Q(k)⊗Q(n1)⊗ · · · ⊗ Q(nk)
−→ P(n)⊗Q(n) = (P ⊗

H
Q)(n)

for n = n1+· · ·+nk. Observe that we use the switching map in the category Vect
to put the factors Q(i) in the correct position. Therefore, when Vect is replaced by
another symmetric monoidal category (cf. Appendix B.3) signs might be involved.
The operad uCom is obviously a unit for this operation.

The operad P ⊗
H
Q is the Hadamard product of the operad P and Q.

Proposition 5.3.4. Let A be a P-algebra and let B be a Q-algebra. The tensor
product A⊗B is a P ⊗

H
Q-algebra.

Proof. Let us denote by γA : P → EndA and by γB : Q → EndB the respective
actions of P on A and of Q on B. Then the action of P ⊗

H
Q on A⊗B is given by
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the following composite

P ⊗
H
Q

γA⊗
H
γB

−−−−−→ EndA ⊗
H

EndB → EndA⊗B ,

where the last map is defined by

Hom(A⊗n, A)⊗Hom(B⊗n, B) → Hom(A⊗n ⊗B⊗n, A⊗B)
∼= Hom((A⊗B)⊗n, A⊗B).

We leave it to the reader to verify that this map is a morphism of operads. �

5.3.5. Hopf operads. A Hopf operad is a reduced operad P with a morphism
of operads ∆P : P → P ⊗

H
P called the coproduct of P and a morphism of operads

εP : P → Com called the counit. This structure is supposed to be coassociative
and counital. Since ∆P and εP are determined by their arity n components

∆P(n) : P(n)→ (P ⊗
H
P)(n) = P(n)⊗ P(n), εP : P(n)→ Com(n) = K,

a Hopf operad is equivalently defined as an operad in the category of counital
coalgebras. The main purpose of this definition lies in the following result.

Proposition 5.3.6. When P is a Hopf operad, the tensor product A ⊗ B of two
P-algebras A and B is again a P-algebra, and there is a natural isomorphism

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

where C is also a P-algebra.

Proof. Proposition 5.3.4 asserts that A⊗B is a P ⊗
H
P-algebra. Then the following

composite

P ∆P−−→ P ⊗
H
P → EndA⊗B

defines a P-algebra structure on A⊗B as explained above in Section 5.2.12. Coas-
sociativity of ∆P ensures the validity of the last assertion. �

The operads Ass and Com are Hopf operads, their diagonals are given by
∆Ass : σ ∈ Sn 7→ σ ⊗ σ ∈ K[Sn] ⊗ K[Sn] and by ∆Com : Com(n) = K ∼−→
K ⊗ K = Com(n) ⊗ Com(n) respectively. (It is a good basic exercise to prove
that they are morphisms of operads). With these definitions in mind, we get an
operadic interpretation of the fact that the tensor product of two associative (resp.
commutative) algebras is again an associative (resp. commutative) algebra with the
product given by µ(a⊗ b, a′ ⊗ b′) = µ(a, a′)⊗ µ(b, b′).

It is also a good exercise to show directly that the operad Lie has no non-trivial
diagonal, that is Lie is not a Hopf operad.

5.3.7. Partial definition of an operad. Let P be an operad and let µ ∈
P(m), ν ∈ P(n) be two operations. By definition the partial composition (µ, ν) 7→
µ ◦i ν ∈ P(m− 1 + n) is defined, for 1 ≤ i ≤ m, by “substitution”:

− ◦i − : P(m)⊗ P(n) −→ P(m− 1 + n),

µ ◦i ν := γ(µ; id, . . . , id, ν, id, . . . , id).
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Pictorially it is represented by the following grafting of trees, where the root of
ν is grafted onto the ith leaf of µ:

ν

PPPPPP
GGGG wwww

nnnnnn

i

µ

KKKKKKKKKKKKKKKKKK

GGGGGGGGGGGGGGGG

||||||||||||||

wwwwwwwwwwwwwwww

The relationship between this partial composition and the action of the symmetric
groups is given by the following two relations. First, for any σ ∈ Sn we have:

µ ◦i νσ = (µ ◦i ν)σ
′

where σ′ ∈ Sm−1+n is the permutation which acts by the identity, except on the
block {i, . . . , i− 1 + n} on which it acts via σ. Second, for any σ ∈ Sm we have:

µσ ◦i ν = (µ ◦σ(i) ν)σ
′′

where σ′′ ∈ Sm−1+n is acting like σ on the block {1, . . . ,m−1+n}\{i, . . . , i−1+n}
with values in {1, . . . ,m − 1 + n}\{σ(i), . . . , σ(i) − 1 + n} and identically on the
block {i, . . . , i− 1 + n} with values in {σ(i), . . . , σ(i)− 1 + n}.

There are two different cases for two-stage partial compositions, depending on
the relative positions of the two graftings:

ν

PPPPPP
EEEE yyyy

nnnnnn

µ

QQQQQQQQQQQQQ

NNNNNNNNNNN
j

uuuuuuuu

ppppppppppp

λ

RRRRRRRRRRRRR

OOOOOOOOOOO
i

tttttttt

ooooooooooo

(I)

µ

QQQQQ
EEE yyy

kkkkkk · · · · · · ν

EEE yyy

λ

OOOOOOOOOOOOOOOOOOOOOOOO

i

LLLLLLLLLLLLLL

k

vvvvvvvvvvvv

ttttttttttttttttttt

(II)

In both cases associativity of the composition in an operad leads to some relation
for the partial composition:{

(I) (λ ◦i µ) ◦i−1+j ν = λ ◦i (µ ◦j ν), for 1 ≤ i ≤ l, 1 ≤ j ≤ m,
(II) (λ ◦i µ) ◦k−1+m ν = (λ ◦k ν) ◦i µ, for 1 ≤ i < k ≤ l,

for any λ ∈ P(l), µ ∈ P(m), ν ∈ P(n). Relation (I) is called the sequential compo-
sition axiom and relation (II) is called the parallel composition axiom.

Conversely an operad can be defined as being an S-module P equipped with
partial compositions ◦i satisfying the compatibility with the action of the symmetric
groups, and the two associativity relations (I) and (II) described above. It is also
assumed that there is an element id in P(1) satisfying id ◦1 ν = ν and µ ◦i id = µ.
This gives the partial definition of an operad.
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In case where the S-modules are graded, there is a sign coming in formula (II)
(because µ and ν are exchanged):

(λ ◦i µ) ◦k−1+m ν = (−1)|µ||ν|(λ ◦k ν) ◦i µ.

Proposition 5.3.8. The partial definition of an operad is equivalent to the classical
definition of an operad, and so to all the other definitions.

Proof. We already remarked that, starting with an operad P, we get the partial
compositions which satisfy the aforementioned properties. In the other direction,
starting with partial compositions − ◦i − one constructs maps

γ(i1, . . . , in) : P(n)⊗ P(i1)⊗ · · · ⊗ P(in) −→ P(i1 + · · ·+ in)

as

γ(i1, . . . , in) = (− ◦1 (· · · (− ◦n−1 (− ◦n −))·)).
It is a tedious, but straightforward, task to verify that the axioms of the classical
definition of an operad are fulfilled. �

5.3.9. Set operads and other types of operads. In this monography we
are mainly concerned with algebraic operads, that is operads in the category of
vector spaces and dg vector spaces (or dg modules). The properties of the category
Vect which are used here are : the tensor product is associative, commutative,
unital (symmetric monoidal category) and distributive with respect to the direct
sum.

One can define operads with values in other symmetric monoidal categories (for
instance tensor categories). For instance, the category of sets (resp. simplicial sets,
resp. topological sets) equipped with the cartesian product is a symmetric monoidal
category. Here are some details for the category Set.

By definition a set operad (sometimes called set-theoretic operad) is a family of
Sn-sets P (n) such that the functor

P : Set→ Set, X 7→
⊔
n

P (n)×Sn X
n

is equipped with a monoid structure. Here Xn denotes the cartesian product of n
copies of the set X. The composition map gives rise to maps

γ(i1, . . . , ik) : P (k)× P (i1)× · · · × P (ik)→ P (i1 + · · ·+ ik),

which satisfy properties analogous to those of the linear case (cf. 5.3.1).
To any set X we can associate the vector space K[X] based on X. This functor

is the left adjoint to the forgetful functor from vector spaces to sets. Any set operad
P gives rise to an algebraic operad P under this functor: P(n) := K[P (n)]. We will
meet some algebraic operads coming from set operads in the sequel. For instance
the operad Ass comes from the set operad P (n) = Sn and the operad Com comes
from the set operad P (n) = {∗}.

The category of S-modules can be equipped with an associative and commuta-
tive tensor product M ⊗N , cf. 5.1.4. So we can define an operad in this symmetric
monoidal category. Such an object is sometimes ambiguously called a twisted op-
erad.

Starting with the category of topological spaces (resp. simplicial spaces) equipped
with the cartesian product, one can define analogously the notion of topological
operads, (resp. simplicial operads). There is a large amount of literature on these
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objects, see for instance [May72, MSS02]. In the next section we give an example,
which has the advantage of exposing the main feature of the operadic calculus.

5.3.10. The little discs operad. The little discs operad D is a topological
symmetric operad defined as follows. The topological space D(n) is made up of the
unit disc (in C) with n non-intersecting subdiscs in its interior. So, an element on
D(n) is completely determined by a family of n continuous maps fi : S1 → D2, i =
1, . . . , n, satisfying the non-intersecting condition, see Figure 1.

Figure 1. Little discs configuration in D(3)

The enumeration of the interior discs is part of the structure. The operadic
composition is given by insertion of a disc in an interior disc. The symmetric group
action is given by permuting the labels. Figure 2 gives an example of a partial
composition.

It is clear how to proceed to define the little k-discs operad or the little k-cubes
operad. For k = 1 it is called the little interval operad.

The main property of the little k-discs operad is the following “recognition
principle” proved by Boardman and Vogt in [BV73] and May in [May72]:

Claim: If the connected topological space X is an algebra over the little discs
operad, then it is homotopy equivalent to the k-fold loop space of some other
pointed space Y :

X ∼ Ωk(Y ).

5.3.11. Category associated to an operad. Let P be an algebraic operad.
We associate to it a symmetric monoidal category denoted catP as follows. The
objects of catP are the natural numbers: 0, 1, . . . , n, . . .. It will prove helpful to
consider n as the set {1, 2, . . . , n}, so 0 = ∅. The morphisms of catP are defined as

catP(m,n) :=
⊕

f :m→n

n⊗
i=1

P(f−1(i))

where f is a set map from {1, 2, . . . ,m} to {1, 2, . . . , n}. Here we use the extension
of the functor n 7→ P(n) to the category of finite sets, cf. 5.1.19. Observe that for
n = 1 we get catP(m, 1) = P(m).

Here is an exampe of a morphism in catP:
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◦1

=

Figure 2. Exemple of partial composition in the little discs operad

m = 6 2 3 6 1 4 5

GGGGGG

wwwwww
GGGGGG

wwwwww

n = 3 1 2 3

Observe that there is no harm to take the finite sets as objects.

Proposition 5.3.12. The operad structure of P induces on cat P a structure of
symmetric monoidal category which is the addition of integers on objects.

Proof. The composition of morphisms in the category catP is obtained through
the compositions in P.

Associativity of the composition in catP follows readily from associativity of
the composition in P.

The Sn-module structure of P(n) accounts for the action of the automorphism
group of n.

The symmetric monoidal structure of catP is given by the addition of inte-
gers on objects, and therefore by concatenation of morphisms. We see by direct
inspection that it is compatible with composition. �

Observe that the symmetric monoidal category catP is completely determined
by the Hom-spaces HomcatP(n, 1) = P(n) under the composition product (and
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concatenation). So even among the symmetric monoidal categories based on N
they are very special categories. We will see in ?? that they are examples of
more general symmetric monoidal categories called “props”, which codes for the
“generalized bialgebras”.

Proposition 5.3.13. Let P be an algebraic operad. A P-algebra A is equivalent
to a symmetric monoidal functor catP → Vect of the form n 7→ A⊗n.

Proof. The functor in the other direction is simply given by evaluation at 1. The
properties are verified straightforwardly. �

Example 1: catuCom Let P = uCom be the operad of unital commutative
algebras. The category catuCom is the linearization of the category of finite sets,
denoted Fin:

catuCom = K[Fin] .

Indeed, it suffices to show that catCMon = Fin, where CMon is the set operad
of unital commutative monoids. Since CMon(n) = {∗} (one element), we have
catCMon(m,n) = {f : m→ n} = Fin(m,n) and we are done.

Example 2: catuAss Let P = uAss be the operad of unital associative al-
gebras. As in the previous case we can work in the set operad framework. The
operad catMon of unital monoids admits the following description. Its objects are
the integers n, n ∈ N, and the morphisms, elements of catMon(m,n), are the lin-
ear maps f : {1, . . . ,m} → {1, . . . , n} equipped with a total ordering on each fiber
f−1(i), 1 ≤ i ≤ n, see B.5.3. Observe that for any composite g◦f the set (g◦f)−1(i)
inherits a total ordering. See [Pir02a] for more details. This category is denoted
by ∆S in [FL91, Lod98] because any morphism can be written uniquely as a
composite of a morphism in the simplicial category ∆ and an isomorphism (i.e. a
permutation).

It is an example of a “matched pair of categories”. Hence we have

catuAss = K[∆S].

5.3.14. Group associated to a symmetric operad. We consider a parti-
tion P of n := {1, . . . , n} into k subsets. We order this partition by the minimum
of each subset: P = {P1, . . . ,Pk} with

min(P1) < min(P2) < · · · < min(Pk).

Let ij = #Pj . We denote by �(i1, . . . , ik) the set of ordered partitions whose jth
part has cardinal ij (see ?? for examples). Any ordered partition P ∈ �(i1, . . . , ik)
defines a (i1, . . . , ik)-unshuffle σP.

Let P be an operad such that P(0) = 0 and P(1) = K id. We consider the
series

a := (a0, a1, . . . , an, . . .)

where an ∈ P(n+ 1) for any n. We denote by G(P) the set of series for which a0 is
invertible for the multiplication in P(1). We define a binary operation a b on this
set as follows:

(a b)n :=
∑
k

∑
(i1,...,ik)

i1+···+ik=n

∑
P∈�(i1,...,ik)

γ(ak; bi1 , . . . , bik) ◦ σP.
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Proposition 5.3.15. The binary operation (a, b) 7→ a b makes G(P) into a group
with unit 1 = (id, 0, 0, . . .).

Proof. First, we remark that the symmetric group Sk is acting freely on the set⋃
(i1,...,ik)

i1+···+ik=n

Sh(i1, . . . , ik).

Second, the quotient of this set by Sk is precisely⋃
(i1,...,ik)

i1+···+ik=n

�(i1, . . . , ik).

Hence the associativity property of the product follows readily from the associativity
property of γ.

The existence of an inverse, that is for any a there exists b such that a b = 1,
is achieved by induction. For instance, when a0 = id, we get b1 = −a1, a2 =
−a2 − a1 ◦1 b1(a1 ◦1 b1)[132] − a1 ◦2 b1, etc. �

This construction is used for instance in [Lod].
Observe that for P = Com, the group G(P) is isomorphic in characteristic zero

to the group of power series in one variable with invertible constant coefficient. More
precisely the isomorphism is given by

(a0, a1, . . . , an, . . . ) 7→ (a0,
a1

2!
,
a2

3!
, . . . ,

an−1

n!
, . . . )

5.3.16. Pre-Lie algebra associated to a symmetric operad. Let P be
an operad with P(0) = 0 and consider the space

⊕
n≥1 P(n), resp.

∏
n≥1 P(n). We

construct a bilinear operation {−,−} as follows:

{µ, ν} :=

i=m∑
i=1

∑
P

(µ ◦i ν)σP

for µ ∈ P(m), ν ∈ P(n) and the sum is extended over the ordered partitions
P ∈ �(1, . . . , 1, n− i+ 1︸ ︷︷ ︸

ith position

, 1, . . . , 1).

Proposition 5.3.17. The binary operation {−,−} makes
⊕

n P(n), resp.
∏
n P(n),

into a pre-Lie algebra.

Proof. From the properties of the partial operations it follows that the binary
operation {−,−} is pre-Lie (cf. 1.4). Indeed, computing explicitly the associator
{{λ, µ}, ν} − {λ, {µ, ν}} we get a sum over trees of type II (see 5.3.7) where the
vertices at the upper level are decorated by either µ or ν. So this sum is symmetric
in µ and ν and, as a consequence, the associator is symmetric in the last two
variables as expected. �

5.3.18. Hopf algebra associated to a symmetric operad. Since the space⊕
n≥1 P(n) is a pre-Lie algebra, a fortiori it is a Lie algebra. Taking the universal

enveloping algebra of this Lie algebra gives a Hopf algebra (cf. 1.1.12). This is in
fact a combinatorial Hopf algebra in the sense of [LR10], which is cofree (by PBW
theorem) and left-sided. So one can recover the pre-Lie algebra structure on the
primitive part from this data. A direct construction of the Hopf algebra from the
operad can also be performed, see for instance [Moe01, vdLM06].
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5.4. Free operad

By definition the free operad over the S-module M is an operad F(M) equipped
with an S-module morphism η(M) : M → F(M) which satisfies the following
universal condition:

any S-module morphism f : M → P, where P is an operad, extends uniquely

into an operad morphism f̃ : F(M)→ P:

M
η(M)//

f
""FFFFFFFFF F(M)

f̃

��
P

In other words the functor F : S-mod→ OpK is left adjoint to the forgetful functor
OpK → S-Mod. We will show that the free operad exists and we will construct
it explicitly. Observe that the free operad over M is well-defined up to a unique
isomorphism.

Another, less ad hoc, construction is given in 5.4.6.

5.4.1. The tree module and the free operad. We give an explicit con-
struction of the free operad following [BJT97, Rez96]. We rely on the fact that
the composition of S-modules − ◦ − is linear on the left hand side. The classical
“tensor algebra” construction does not work here because −◦− is not linear on the
right hand side. For a more general construction which works when no linearity
is assumed whatsoever, see 5.4.6 and [Val09]. In the following construction, one
takes advantage of the left linearity to produce a particular colimit which gives the
free operad.

Let M be an S-module. By induction we define the functor TnM : Vect→ Vect
as follows:

T0M := I
T1M := I⊕M
T2M := I⊕ (M ◦ (I⊕M))
· · ·
TnM := I⊕ (M ◦ Tn−1M)
· · ·

The transformation of functors in : Tn−1M → TnM is defined inductively by
i1 : I ↪→ I⊕M (inclusion in the first factor) for n = 1, and by in = IdI⊕(IdM ◦in−1)
higher up. Observe that in is a split monomorphism. By definition the tree module
TM over the S-module M is:

TM :=
⋃
n

TnM = colimnTnM.

Observe that TnM contains M◦n but is strictly larger in general. In terms of trees
(cf. section 5.5) TnM is the space of trees with at most n levels, whose vertices are
labeled by I and M . We write i for any of the inclusion maps TnM � TmM and
jn or simply j for the inclusion of the second factor M ◦ Tn−1M � TnM . This last
map induces a transformation of functors j : M → TM .

Theorem 5.4.2 (The free operad construction). There is an operad structure γ
on TM such that T (M) := (TM,γ, j) is the free operad on M , so F(M) ∼= TM .
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Proof. We follow Appendix B of [BJT97] by Baues, Tonks and Jibladze word for
word. In order not to confuse the composition of functors ◦ with the composition
of transformations of functors, we denote this latter one by juxtaposition. The
identity transformation of a functor F is denoted by IdF or simply by Id.

The steps of the proof are as follows:

(1) we construct the map γ : TM ◦ TM → TM ,
(2) we prove that γ is associative and unital.
(3) We prove that (TM,γ, j) satisfies the universal property of a free operad.

(1) First, we construct the composition map γ : TM ◦TM → TM . For any integers
n and m we construct a map

γn,m : TnM ◦ TmM → Tn+mM

by induction on n as follows. For n = 0 ,

γ0,m := Id : I ◦ TmM = TmM → TmM.

For higher n, γn,m is the composite

TnM ◦ TmM = (I⊕ M ◦ Tn−1M) ◦ TmM ∼= TmM ⊕ (M ◦ Tn−1M) ◦ TmM ∼=
TmM ⊕M ◦ (Tn−1M ◦ TmM)

(Id,Id◦γn−1,m)−−−−−−−−−−→ TmM ⊕M ◦ Tn+m−1M
i+j−−→ Tn+mM.

Observe that, in this definition of the composite, we use the associativity isomor-
phism (cf. 5.1.12)

(M ◦ Tn−1M) ◦ TmM ∼= M ◦ (Tn−1M ◦ TmM).

We prove that the map γ is compatible with the colimits on n and on m by induc-
tion. For n = 0 it is immediate since γ0,m = Id. From n−1 to n it is a consequence
of the commutativity of the following diagrams:

TmM ⊕M ◦ Tn−1M ◦ TmM
i+j(Id◦γn−1,m) //

i

��

Tn+mM

i

��
TmM ⊕M ◦ TnM ◦ TmM

i+j(Id◦γn,m) // Tn+m+1M

TmM ⊕M ◦ Tn−1M ◦ TmM
i+j(Id◦γn−1,m) //

i

��

Tn+mM

i

��
Tm+1M ⊕M ◦ Tn−1M ◦ Tm+1M

i+j(Id◦γn−1,m+1) // Tn+m+1M

So we have proved that γn+1,m(i ◦ Id) = i(γn,m) = γn,m+1(Id ◦ i). By passing
to the colimit we get a well-defined map γ : TM ◦ TM → TM .

(2) Let us show now that γ is associative. It is sufficient to prove that for any p, q, r
we have the equality

γp+q,r(γp,q ◦ Id) = γp,q+r(Id ◦ γq,r) : TpM ◦ TqM ◦ TrM → Tp+q+rM.

We work by induction on p. For p = 0 it is immediate since γ0,m = Id. We leave it
to the reader to write down the diagram which shows that associativity for p − 1
implies associativity for p.
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The map i : I = T0M → TM is the unit. Indeed, it is sufficient to prove that
the following diagram is commutative

I ◦ Tm+1M
(i,Id) //

i

��

TnM ◦ Tm+1M

γn,m+1

��
Tm+1M ⊕M ◦ Tn−1M ◦ Tm+1M

i+j(Id◦γn−1,m+1) // Tn+m+1M

(3) Finally we prove that (TM,γ, j) is the free operad over M . Let P be an operad
with composition γP and unit ηP . It is sufficient to prove that there are morphisms
of operads φP : T P → P and ψP : P → T P natural in the variable P such that
both composites

P ψP−→ T P φP−→ P, TM T (ψM )−→ T TM φTM−→ TM

are the identity (T left adjoint to the forgetful functor). The first one shows the
existence of the extension of f : M → P to TM and the second one shows its
uniqueness.

We construct φP : T P → P as follows. For n = 0, take φ0 = ηP : T0P =
I → P. For n = 1, take φ1 = ηP + IdP : T1P = I ⊕ P → P. By induction, take
φn = ηP + γP(IdP ◦ φn−1) : TnP = I ⊕ (P ◦ Tn−1P) → P. Since φn ◦ i = φn−1,
we get at the colimit a transformation of functors φP : T P → P. The expected
properties of φP are straightforward to prove by induction. �

5.4.3. Examples. (a) Let M = (0,W, 0, . . . , 0, . . .) where W is a vector space.
The Schur functor is M(V ) = W ⊗ V . Since M is linear, that is M(V ⊕ V ′) =
M(V )⊕M(V ′), it follows that

TnM = I⊕M ⊕M ◦M ⊕ · · · ⊕M◦n,

and therefore TM = (0, T (W ), 0, . . .). We recover that the free associative algebra
is the tensor algebra, cf. 1.1.3.

(b) Let M = (0, 0,K[S2], 0, . . . , 0, . . .) where K[S2] is the regular representation.
From the description of the free operad in terms of trees (see below section 5.5.1)
it follows that

TnM = ⊕k≤n(TM)(k) ∼= ⊕k≤nK[PBTk]⊗K[Sk], n ≥ 1,

where PBTk is the set of planar binary rooted trees with k leaves, cf. Appendix
C.2. See 5.8.6 for the precise identification with trees.

(c) Let M = (0, 0,M2 ⊗K[S2], 0, . . . , 0, . . .). The same argument as in the previous
example shows that (TM)(n) = (M2)⊗n−1 ⊗ K[PBTn] ⊗ K[Sn]. It is helpful to
think of its elements as binary operations decorating the vertices of a tree:

>>
�� ===

���
λ

JJJ ν
ttt

µ
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5.4.4. Weight-grading of the free operad. We introduce a weight grading
on the free operad: the weight is the number of generating operations needed in
the construction of a given operation of the free operad.

Let M be an S-module and let T (M) be the free operad on M . By definition
the weight w(µ) of an operation µ of T (M) is defined as follows:

w(id) = 0, w(µ) = 1 when µ ∈M(n),

and more generally

w(ν; ν1, . . . , νn) = w(ν) + w(ν1) + · · ·+ w(νn) .

We denote by T (M)(r) the S-module of operations of weight r. So we get T (M)(0) =
K id (concentrated in arity 1) and T (M)(1) = M .

Example 1. Suppose that M = (0,W, 0, . . . , 0, . . .). Then T (M) is simply
(0, T (W ), 0, . . . , 0, . . .) where T (W ) is the tensor algebra. The weight grading of
the tensor operad corresponds to the weight grading of the tensor algebra, cf. 1.1.3.
Example 2. Suppose that M = (0, 0, E, 0, . . . , 0, . . .) where E is an S2-module.

So the free operad T (M) is generated by binary operations. Then T (M)(r) is
concentrated in arity r + 1 and is exactly T (M)(r + 1). Indeed, an operation
on r + 1 variables in T (M) needs r binary operations to be constructed. This is
the reason why, when dealing with binary operads, the weight is, in general, not
mentioned.

5.4.5. Presentation of an operad. Let M be an S-module generated (as an
S-module) by elements µi. Let I be an ideal in the free operad T (M) and let rj
be generators of the ideal I. Then a (T (M)/I)-algebra is determined by the set of
operations µi (with their symmetry) and the set of relations rj = 0.

5.4.6. Another construction of the free operad. In this subsection, taken
out of [Val08], we give an outline of a construction of the free operad which has the
advantage of working in any monoidal category, not just the category of S-modules.

We denote by M+ the augmented S-module of M , that is

M+ := I⊕M ,

and we write Mn := (M+)◦n = (· · · ((M+ ◦M+) ◦M+) ◦ · · · ◦M+︸ ︷︷ ︸
n

). The inclusions

of I and M in M+ are denoted respectively by η : I → M+ and ηM : M → M+.
The map

ηi : Mn ∼= M i ◦ I ◦Mn−i Id◦η◦Id−−−−−→M i ◦M+ ◦Mn−i ∼= Mn+1

is called the ith degeneracy map.
The colimit over the degeneracy maps, that is

I = M0 // M1
//
// M2 ////

//
M3 · · · ,

is too large to be the free object, essentially because, in the composition ((xy)(zt)),
the order of parenthesizing (xy first or zt first ?) should be irrelevant. So we are
going to make a quotient of these spaces.

Since I is a unit for ◦ there are isomorphisms λ : I◦M ∼= M and ρ : M ◦ I ∼= M .
We consider the composite

τ : M
λ−1⊕ρ−1

−−−−−−→ I ◦M ⊕M ◦ I
η◦ηM−ηM◦η−−−−−−−−→ (M+)◦2 = M2 .
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For any S-modules A and B there is a well-defined S-module

RA;B := Im
(
A ◦ (M ⊕M2) ◦B

IdA◦(τ+IdM2 )◦IdB−−−−−−−−−−−−→ A ◦M2 ◦B
)
.

We put

M̃n := Mn/

n−2∑
i=0

RMi;Mn−2−i .

It can be shown that, under this quotient, the degeneracy maps ηi, for i = 1, . . . , n,

are equal and define η : M̃n → M̃n+1. By definition F(M) is the (sequential)
colimit of

M̃
η−→ M̃2 η−→ M̃3 η−→ · · · .

It is shown in [Val08] that F(M) is equipped with a monoid structure and that
it is free over M . The advantage of this construction is its generalization to the
properadic framework, cf. [Val07a].

5.5. Combinatorial definition of an operad

In this section we give a fourth definition of an operad based on some combi-
natorial objects: the rooted trees. The main advantage of this presentation is to
admit several important variations by changing the combinatorial objects and/or
by decorating them. For instance, if we replace the rooted trees by ladders, then we
get unital associative algebras in place of operads. If we take planar rooted trees,
then we get nonsymmetric operads. If we take nonrooted trees, then we get cyclic
operads, cf. 13.14 and [GK95a]. A far-reaching generalization has been given by
Borisov and Manin in [?].

5.5.1. The monad of trees. Let us call “rooted tree” a (nonplanar) rooted
tree such that each vertex has one input or more, cf. Appendix C. Let X be a finite
set. For any tree t ∈ RT (X) (i.e. we are given a bijection form the set of leaves of
t to X) we denote by vert(t) the set of vertices of t and by in(v) the set of inputs
of the vertex v ∈ vert(t). Let M be an S-module with M(0) = 0 or, equivalently, a
functor M : Bij→ Vect, X 7→M(X), such that M(∅) = 0, cf. 5.1.19.

We define the treewise tensor product M(t) as follows:

M(t) :=
⊗

v∈vert(t)

M(in(v)).

See section 5.1.20 for the precise meaning of ⊗v∈vert(t). Using this notation we
define a functor

T : S-Mod→ S-Mod

by

T(M)(X) :=
⊕

t∈uRT (X)

M(t).

It is helpful to think about an element of T(M)(X) as a sum of rooted tree where
each vertex v is decorated by an element of M(in(v)) and each leaf is decorated by
an element of X.

First, we construct a transformation of functors

ι : IdS-Mod → T
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as follows. For any S-module M we have to say what is the S-module morphism
M → T(M), i.e. for any finite set X a linear map M(X) → T(M)(X). In the
set of trees uRT (X) there is a particular one t = cor which is the corolla. We
have M(cor) = M(X) by definition, since the corolla has only one vertex. Hence
M(X) is a direct summand of T(M)(X). The expected map is the corresponding
inclusion.

Second, we construct a transformation of functors

α : T ◦ T→ T
as follows. The substitution of trees consists in replacing the vertices of a tree by
given trees (with matching inputs) like in picture 5.5.1:

Figure 3. Substitution

In order to perform the substitution in the tree t we need, for any v ∈ vert(t)
a tree tv and a bijection in(v) ∼= leaves(tv).

Lemma 5.5.2. The substitution of trees defines a transformation of functors α :
T ◦ T→ T which is associative and unital. So (T, α, ι) is a monad.

Proof. From the definition of T we get

T(T(M))(X) =
⊕

t∈uRT (X)

T(M)(t)

=
⊕

t∈uRT (X)

( ⊗
v∈vert(t)

T(M)(in(v))
)

=
⊕

t∈uRT (X)

( ⊗
v∈vert(t)

(
⊕

s∈uRT (in(v))

M(s))
)
.

The decoration of the vertex v in t is an element of T(M)(in(v)), that is a
tree whose leaves are labelled by in(v). This is exactly the data which permits us
to perform the substitution. So we get an element of T(M)(X). As a result we
have defined an S-module morphism α(M) : T(T(M)) → T(M). Obviously this
morphism is functorial in M so we have constructed a transformation of functors
α : T ◦ T→ T. The substitution process is clearly associative, so α is associative.

Recall that the unit ι consists in identifying an element µ of M(X) with the
corolla with vertex decorated by µ. Substituting a vertex by a corolla does not
change the tree. Substituting a corolla to a vertex gives the former tree. Hence α
is also unital.

We have proved that (T, α, ι) is a monad. �
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5.5.3. Combinatorial definition. The combinatorial definition of an operad
consists in defining it as an algebra over the monad (T, α, ι), cf. B.4. In other words
an operad is an S-module P together with an S-module map T(P)→ P compatible
with α in the obvious sense.

Proposition 5.5.4. [GJ94] The combinatorial definition of an operad is equiva-
lent to the partial definition of an operad, and therefore to all the other definitions.

Proof. It suffices to verify that the partial operation is indeed a substitution and
that the substitution of trees satisfies the two axioms (I) and (II) of partial opera-
tions defining an operad. �

Proposition 5.5.5. For any S-module M , T(M) is an operad which is the free
operad T (M) over M .

Proof. Since T(M) is an algebra over the monad (T, α, ι), by Proposition 5.5.4 it is
an operad. Checking that it is free is analogous to the proof of Proposition 5.2.6.
�

5.5.6. Comparison of the two constructions of the free operad. Recall
that in 5.4.2 we constructed the free operad on M inductively as a colimit: T (M) =
colimnTnM , where

T0M := I,

T1M := I⊕M,

TnM := I⊕ (M ◦ Tn−1M).

Since T (M) and T(M) are both the free operad on M we know that they are
isomorphic. We make this isomorphism explicit as follows.

The map T0M = I→ T(M) is given by the operation id ∈ T(M)(1). The map
M → T(M) is given by µ 7→ corolla, where the number of leaves of the corolla is
the arity of µ, and the single vertex is decorated by µ. By induction we suppose
that Tn−1M → T(M) has been constructed. The map M ◦ Tn−1M → T(M) is
obviously given by the composition in T(M) of the images of M and of Tn−1M .
Notice that, under the above isomorphism, the Sn-module TnM corresponds to
linear combination of trees with at most n levels. More details are given in 5.8.6.

5.6. Type of algebras

We make explicit the relationship between the notion of algebraic operad and
some types of algebras. We suppose that we are in characteristic zero.

5.6.1. Type of algebras and presentation of an operad. Let P-alg be
a category of algebras presented as follows. An object of P-alg is a vector space
A equipped with some n-ary operations µi : A⊗n → A (possibly for various n’s),
called the generating operations satisfying some relations rj = 0. Let us suppose
that the relations are multilinear, that is of the form∑

φ

φ(a1, . . . , an) = 0 for all a1, . . . , an ∈ A,

where φ is a composite of the generating operations µi. An element like r =
∑
φ

is called a relator. Let us denote by M the S-module which is, in arity n, the
Sn-module spanned by the generating n-ary operations. We take into account the
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symmetries of these operations to determine the Sn-module structure. A relator
determines an operation in the free operad TM . Let R be the sub-S-module of TM
spanned by all the relators, and let (R) be the operadic ideal of TM generated by
R. Then we get the operad TM/(R).

Let us denote by P(V ) the free P-algebra over V . It defines a functor P :
Vect→ Vect.

Lemma 5.6.2. The functor P is a Schur functor whose arity n component is the
multilinear part of the free P-algebra P(Kx1⊕· · ·⊕Kxn). Moreover P is an algebraic
operad.

Proof. Let us first prove that the free algebra P(V ) of the given type P is equipped
with a monoid structure. Since P(V ) is free over V , it comes with a natural map
V → P(V ) that we denote by η(V ). Consider the map IdP(V ) : P(V ) → P(V )
as a well-defined map from the vector space W = P(V ) to the algebra P(V ) of
type P. By the universal property, there exists a lifting of IdP(V ) denoted γ(V ) :
P(P(V )) = P(W )→ P(V ). It is clear that this morphism of algebras of type P is
functorial in V .

Again, from the universal property of free algebras, we deduce that γ is asso-
ciative. From the fact that γ(V ) is a lifting of IdP(V ) we deduce that γ is unital.
Hence (P, γ, η) is a monoid in the category of endofunctors of Vect.

Let us now show that P is a Schur functor. Since the relations are multilinear,
the free P-algebra over V is the direct sum of its homogeneous components. By the
Schur Lemma (cf. A.2.3) the homogeneous component of degree n (in characteristic
zero) is of the form P(n) ⊗Sn V

⊗n for some Sn-module P(n). Taking V = Vn =
Kx1 ⊕ · · · ⊕ Kxn we verify that P(n) is the multilinear part of the free P-algebra
over Vn as an Sn-module, cf. Lemma 5.1.3. So it follows that the free P-algebra
over V is of the form

P(V ) =
⊕
n≥0

P(n)⊗Sn V
⊗n,

as expected. �

Lemma 5.6.3. Let P be a type of algebras defined by the S-module of generating op-
erations M and the S-module of relators R ⊂ TM . Then the operad P constructed
above coincides with the quotient operad TM/(R).

Proof. By definition of the operad TM/(R) out of the type of algebras P, it follows
that (TM/(R))(V ) is the free P-algebra over V . By construction we also know that
P(V ) is a free P-algebra over V . Since the identification (TM/(R))(V ) = P(V ) is
functorial in V , we are done. �

Proposition 5.6.4. In characteristic zero, a type of algebras whose relations are
multilinear determines an operad. The category of algebras over this operad is
equivalent to the category of algebras of the given type.

Proof. From the preceding results we know that the type P determines the operad
P. From the identification of P with TM/(R) it follows that the two categories of
algebras P-alg and P-alg are equivalent. �

5.6.5. Examples. The associative algebras, the commutative algebras, the
Lie algebras are examples of types of algebras with multilinear relations. The
operad that they determine is denoted by Ass,Com and Lie respectively. Though
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they will be studied in detail later on, let us make some comments on the cases of
commutative algebras and associative algebras.

Since the free commutative algebra over {x1, . . . , xn} is the polynomial algebra
(modulo the constants), it follows that Com(n) = K for n ≥ 1, and its generator
µn is the n-ary operation determined by

µn(x1, . . . , xn) = x1 · · ·xn ∈ K[x1, . . . , xn].

The action of Sn is trivial, hence Com(n) is the one-dimensional trivial represen-
tation. From the classical “composition” of polynomials, it follows that

γ(µk;µi1 , . . . , µik) = µi1+···+ik .

Since the free associative algebra over {x1, . . . , xn} is the noncommutative poly-
nomial algebra (modulo the constants), it follows that Ass(n) = K[Sn], and the
n-ary operation µσ corresponding to σ ∈ Sn is determined by

µσ(x1, . . . , xn) = xσ−1(1) . . . xσ−1(n) ∈ K〈x1, . . . , xn〉.
The action of Sn is by multiplication, so Ass(n) is the regular representation. From
the classical “composition” of noncommutative polynomials, it follows that

γ(σ;σ1, . . . , σk) = σ̃ ◦ (σ1, . . . , σk) ,

where σ̃ is the block permutation associated to σ.

5.6.6. Kernels. Let Q-alg → P-alg be a functor between two types of alge-
bras, which is supposed to commute with the forgetful functor to vector spaces:

Q-alg //

$$HHHHHHHHH P-alg

zzvvvvvvvvv

VectK

It comes from a morphism of operads α : P → Q. We know that Kerα is an
operad, so there is a new type of algebras (Kerα)-alg. In many examples P and
Q are presented by a small number of generators and relations, but no such small
presentation is known for Kerα in general. These are examples where the use of
operads is a necessity.

5.6.7. A universal presentation. We know that a group can always be
presented as follows: the generators are its elements and the relations are given by
the table of multiplication. Similarly an operad can always be presented as follows.
Choose a linear basis for P(n), n ≥ 1, and take the composite products as relations.

5.6.8. Non-examples (?) Here are two examples of types of algebras, which,
a priori, do not fall directly into the operad theory because the relations are not
multilinear. However minor changes will make them accessible.

A Jordan algebra A is a vector space equipped with a binary operation which
satisfies the relation

(a2b)a = a2(ba).

It seems to lie outside our framework since the relation fails to be multilinear.
However it suffices to multilinearize it and we get the following type of algebras:
one binary symmetric operation ab and one relation

(ab)(dc) + (ac)(db) + (bc)(da) = ((ab)d)c+ ((ac)d)b+ ((bc)d)a.
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More information is to be found in 13.10
A divided power algebra is an augmented commutative algebra equipped with

unary operations γn(x) which bear the formal properties of the operations xn/n!. A
priori such a structure cannot be encoded by an operad, however taking invariants
in place of coinvariants in the construction of the Schur functor permits us to solve
the problem. See 13.1.19 for more details.

5.7. Cooperad

In our treatment of Koszul duality for associative algebras we put algebras and
coalgebras on the same footing. In order to play the same game with operads we
need to introduce the notion of cooperad.

We define the notion of cooperad as a comonoid in the monoidal category of
S-modules with the composite product. Cooperads are used to encode categories
of coalgebras. We introduce the important notion of conilpotent cooperad. In
the same way as for operads, we give an equivalent combinatorial definition of a
conilpotent coooperad in terms of trees.

5.7.1. Algebraic cooperad. Let C be an S-module. A cooperad is a struc-
ture of comonoid on C in the monoidal category (S-Mod, ◦̄, I), where (P◦̄Q)(n) :=⊕

r(P(r) ⊗ Q⊗r)Sr (n), see 5.1.21. Explicitly it consists into two morphisms of
S-modules (equivalently transformations of Schur functors)

∆ : C → C◦̄C (decomposition) and ε : C → I (counit) ,

which satisfy the axioms of coassociativity:

C ∆ //

∆

��

C◦̄C

Id◦̄∆
��

C◦̄(C◦̄C)
∼=

yyssssssssss

C◦̄C ∆◦̄Id // (C◦̄C)◦̄C

and counitality:

C
∼=

||yyyyyyyyy
∆

��

∼=

""EEEEEEEEE

I◦̄C C◦̄C
ε◦̄Id
oo

Id◦̄ε
// C◦̄I

We observe that the S-module I associated to identity functor Vect → Vect is
a cooperad.

From Corollary 5.1.8, it follows that ∆ is made up of Sn-module morphisms

∆(n) : C(n)→ C◦̄C(n) =
⊕
k≥0

(
C(k)⊗

(⊕
Ind Sn

Si1×···×Sik

(
C(i1)⊗ · · · ⊗ C(ik)

)))Sk
where the second sum is extended to all the k-tuples (i1, . . . , ik) satisfying i1 + · · ·+ ik = n.
So a cooperad concentrated in arity 1 is a coassociative coalgebra.
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A cooperad is said to be coaugmented if there is a cooperad morphism η : I→ C
such that εη = IdI. The image of 1 ∈ I(1) = K is denoted id ∈ C(1) and is called
the identity cooperation. The cokernel of η is denoted by C and C ∼= I⊕ C.

Observe that, by the counitality assumption, the component of ∆(n)(µ) in the
two extreme summands (k = 1 and k = n respectively) is (id;µ) and (µ; id⊗n)
respectively. We will sometimes adopt the following abuse of notation

∆(µ) =
∑

(ν; ν1, . . . , νk)

where ν ∈ C(k), νj ∈ C(ij) for the image of the cooperation µ by the decomposition
map, and

∆(µ) = (id;µ) + (µ; id⊗n) + ∆̄(µ) .

The map ∆̄ is called the reduced decomposition map.

To define the exact dual of the notion of operad, one should instead consider
the monoidal product

C◦̂C(n) =
∏
k≥0

(
C(k)⊗

(∏
Ind Sn

Si1×···×Sik

(
C(i1)⊗ · · · ⊗ C(ik)

)))Sk
in the category of S-modules, where the sums are replaced by products. In that

case, a cooperad is defined as a comonoid ∆ : C → C◦̂C.
When C(0) = 0, the right-hand side product is equal to a sum. The decompo-

sition map ∆ : C → C◦̄C ⊂ C◦̂C of some cooperads is made up of sums of elements.
In this case, we are back to the previous definition. In this book, we will mainly
encounter cooperads of this first type, so we work with this definition.

Working over a field of characteristic 0, we can identify invariants with coin-
variants, see A.1, and work with ◦ instead of ◦̄. But this more general definition
plays a key role in characteristic p, for instance.

5.7.2. From cooperads to operads and vice-versa. Let C be a cooperad
and let P(n) = C(n)∗ = Hom(C(n),K). Since C(n) is a right Sn-module, its dual
P(n) is a left Sn-module. We make it into a right Sn-module by the classical formula
µσ := σ−1 · µ, for µ ∈ P(n) and σ ∈ Sn. The transpose of the counit ε gives a unit
η. The decomposition map ∆ gives a composition map γ by dualization followed
by the natural map from invariants to coinvariants, cf. 5.1.21.

In the other way round, let P be an operad such that each P(n) is finite
dimensional. This condition ensures that P(n)∗ ⊗ P(m)∗ → (P(n) ⊗ P(m))∗ is
an isomorphism, as in 1.2.2. So the the linear dual C := P∗ of P gives rise to a
cooperad C → C◦̂C. If we further suppose that P(0) = 0 and that the preimage
under the composition map of any element in P is finite, then the decomposition
map of C lives in C◦̄C.

5.7.3. Coalgebra over a cooperad. By definition a coalgebra over the co-
operad C, or C-coalgebra for short, is a vector space C equipped with a map

∆C : C → Ĉ(C), where Ĉ(C) =
∏
n(C(n) ⊗ C⊗n)Sn , such that the following di-

agrams commute:
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C
∆C //

∆C

��

Ĉ(C)

Ĉ(∆C)

��
Ĉ(C)

∆(C) // Ĉ(Ĉ(C))

C

∆(C)

��

=

$$HHHHHHHHHHH

Ĉ(C)
η(C) // C

So for any n, we have a map ∆n : C → (C(n)⊗ C⊗n)Sn .
Let C∗ be the operad obtained by linear dualization. The map ∆n gives rise to

an Sn-equivariant map

C∗(n) −→ Hom(C,C⊗n),

and it is immediate to check that C is a coalgebra over the operad C∗ in the sense
of 5.2.17.

5.7.4. Conilpotent coalgebra, primitive part. Let C be a coalgebra over
a coaugmented cooperad C such that C(0) = 0.

We define the coradical filtration of C as follows:

F1C := PrimC := {x ∈ C | δ(x) = 0 for any δ ∈ C(n), n ≥ 1}.

The space PrimC is called the primitive part of C, and its elements are said to be
primitive. Then we define the filtration by:

FrC := {x ∈ C | δ(x) = 0 for any δ ∈ C(n), n > r}.

We say that the coalgebra C is conilpotent, if this filtration is exhaustive C =⋃
r≥1 FrC.

Proposition 5.7.5. The coalgebra C is conilpotent if and only if the decomposition

map ∆C : C → Ĉ(C) factors through C(C).

Proof. By direct inspection. �

Any coaugmented coassociative coalgebra C is equivalent to an As∗-coalgebra
structure on C. In this case, the above definitions of filtration and conilpotent
coalgebra coincide with the ones given in 1.2.4.

5.7.6. Conilpotent cooperad. Let (C,∆, ε, η) be a coaugmented cooperad.

Under the isomorphism C ∼= I⊕ C, we consider the map ∆̃ : C → C◦̄C defined by{
I → I◦̄I
id 7→ ∆̃(id) := id◦̄id and

{
C → C◦̄C
µ 7→ ∆̃(µ) := ∆̄(µ) + (µ; id⊗n) .

We iterate the map ∆̃ on the right-hand side:

∆̃0 := IdC , ∆̃1 := ∆̃, and ∆̃n := (Id ◦ ∆̃)∆̃n−1 : C → C◦(n+1) .
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Example. Representing the elements of the cooperad As∗ by corollas, we get:

∆̃0

(
??? ���

)
=

??? ��� ,

∆̃1

(
??? ���

)
=

III uuu +

?? �� ���
??? +

?? �����
??? ,

∆̃2

(
??? ���

)
=

III uuu +

??? ��� ���
??? +

??? ������
??? .

Higher up, no new term appears. We get the same three trees but with the top

levels filled with trivial trees |. So in this example, the iteration of ∆̃ on the element
of As∗(3) stabilizes at rank 2.

The composite

(Id◦̄η)∆̃n−1 : C → C◦̄n ∼= C◦̄n ◦ I→ C◦̄(n+1)

amounts to adding a level made up of identities id = | to the trees produced by

∆̃n−1. So the difference

∆̂n := ∆̃n − (Id◦̄η)∆̃n−1

contains the new leveled trees between the nth iteration of ∆̃ and the (n − 1)th

iteration. Up to identification of the target spaces, we have ∆̃n =
∑n
k=0 ∆̂k.

We define the coradical filtration of a coaugmented cooperad as follows.

F0C := I and FnC := ker ∆̂n, for n ≥ 1 .

Since for n = 1, ∆̃1 − (Id◦̄η)∆̃0 = ∆̄, we get F1C = I⊕ ker ∆̄. We call the elements
of C which live in the kernel of ∆̄ the primitive elements of the cooperad C. So we
get a filtration of the cooperad C:

F0C ⊂ F1C ⊂ F2C ⊂ · · ·FnC ⊂ Fn+1C ⊂ · · · .
A coaugmented cooperad C is called conilpotent when the coradical filtration

is exhaustive: colimnFnC = C. This is equivalent to requiring that, for any element

c of C, the iteration of ∆̂ on c stabilizes at some point.

5.7.7. The cofree cooperad. By definition the cofree cooperad on M is
the cooperad Fc(M), which is cofree in the category of conilpotent cooperads (cf.
1.2.5). Explicitly it means that for any S-module morphism ϕ : C →M sending id
to 0, there exists a unique cooperad morphism ϕ̃ : C → Fc(M) which renders the
following diagram commutative

C
ϕ

##GGGGGGGGGG

ϕ̃

��
Fc(M) // // M

By dualizing what we have done for free operads in 5.4, we can prove the
existence of the cofree cooperad and give an explicit construction by induction,
which we denote by T c(M).
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The underlying S-module of the cofree cooperad T c(M) is the S-module T M
constructed in 5.4.1 and called the tree module. Let us recall that T M = colimnTnM ,
where TnM = I⊕ (M ◦̄Tn−1M). The decomposition map

∆ : T M → T M ◦̄T M

is defined inductively on TnM as follows. First we put

∆(id) := id◦̄id ,

and for any µ ∈M of arity n we put

∆(µ) := id◦̄µ+ µ◦̄id⊗n ∈ I◦̄M ⊕M ◦̄I ⊂ T1M ◦̄T1M.

This formula defines ∆ on T1M . Then we proceed by induction. We suppose
that ∆ : Tn−1M → Tn−1M ◦̄Tn−1M is defined and we construct ∆ on TnM . For
λ = (µ; ν1, . . . , νk) ∈M ◦̄Tn−1M ⊂ TnM , we put

∆(λ) = ∆(µ; ν1, . . . , νk) := id◦̄(µ; ν1, . . . , νk) + ∆+(µ; ν1, . . . , νk) ,

where ∆+ is the following composite:

M ◦̄Tn−1M
IdM ◦̄∆−−−−→M ◦̄(Tn−1M ◦̄Tn−1M)

∼= (M ◦̄Tn−1M)◦̄Tn−1M
jn◦̄in−−−→ TnM ◦̄TnM.

Adopting the operadic version ∆(νi) =
∑
ν

(1)
i ◦̄ν

(2)
i of Sweedler’s notation,

where ν
(2)
i is in fact a tensor product of elements of M : ν

(2)
i = (ν

(2)
i,1 ,. . . , ν

(2)
i,r ), we

get

∆(µ; ν1, . . . , νk) = id◦̄(µ; ν1, . . . , νk) +
∑

(µ; ν
(1)
1 , . . . , ν

(1)
k )◦̄(ν(2)

1 , . . . , ν
(2)
k ).

So we have written ∆(λ) as
∑
λ(1)◦̄λ(2). Observe that ∆(λ) contains id◦̄λ but also

λ◦̄(id, . . . , id) as a summand. Indeed, by induction, ∆(νi) contains a summand with

ν
(1)
i = νi and ν

(2)
i = (id, . . . , id), hence in the sum we get a summand of the form

(µ; ν1, . . . , νk)◦̄(id, . . . , id) = λ◦̄(id, . . . , id).

Observe that the construction of ∆ involves the associativity isomorphism, see
5.1.12. So, in the graded case there is a sign appearing in front of the the sum. It
is (−1) to the power

|ν(2)
1 ||ν

(1)
2 |+ (|ν(2)

1 |+ |ν
(2)
2 |)|ν

(1)
3 |+ · · ·+ (|ν(2)

1 |+ · · ·+ |ν
(2)
k−1|)|ν

(1)
k |.

Here is an example for which we allow ourselves to leave out the commas to ease

the notation. Let | be the the tree representing the identity and let ��
?? ∈M(2)

be a binary operation. Since ∆( ��
??

) = |◦̄ ��
??

+ ��
?? ◦̄(|, |), we get

∆
( �� ??������

??????
)

= |◦̄
�� ??������

?????? + ∆+( ��
??

; ��
?? ��

??
)
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where

∆+( ��
??

; ��
?? ��

??
) = ��

?? ◦̄(∆( ��
??

),∆( ��
??

))

= ��
?? ◦̄((|; ��

??
) + ( ��

??
; ||), (|; ��

??
) + ( ��

??
; ||))

= ��
?? ◦̄

(
((|; ��

??
), (|; ��

??
)) + ((|; ��

??
), ( ��

??
; ||))

+ (( ��
??

; ||), (|; ��
??

)) + (( ��
??

; ||), ( ��
??

; ||))
)

= ( ��
??

; ||)◦̄( ��
??

, ��
??

) + ( ��
??

; | ��
??

)◦̄( ��
??

, |)

+ ( ��
??

; ��
?? |)◦̄(|, ��

??
) + ( ��

??
; ��

?? ��
??

)◦̄(|, |, |, |)

= ��
?? ◦̄( ��

??
, ��

??
) +

??����

???? ◦̄( ��
??

, |, |)

+
�� ����

???? ◦̄(|, |, ��
??

) +
�� ??������

?????? ◦̄(|, |, |, |).

The map ε : TM →M is defined by T1M = I⊕M �M . The coaugmentation
map η : M → TM is equal to the map j.

Proposition 5.7.8. The above maps induce a coaugmented cooperad structure on
T c(M) := (T M,∆, ε, η).

Proof. We have constructed maps TnM → T M ◦̄T M . Since they commute with
the map in : TnM → Tn+1M , they give rise to ∆ on T M = colimnTnM .

Coassociativity, counitality and coaugmentation can be proved by induction,
by a checking similar to the one done in 5.4.2. These properties can also be proved
by using the explicit form given in Proposition 5.7.11. �

Theorem 5.7.9. The conilpotent cooperad T c(M) := (T M,∆, ε, η) is cofree on
M among conilpotent cooperads.

The proof is postponed to the end of next section.

5.7.10. Description of the cofree cooperad in terms of trees. Recall
from 5.5.6 that the S-module TM is isomorphic to the treewise tensor module
T(M) made up of trees with vertices labelled by elements of M .

The decomposition ∆ on such a tree t is constructed by “degrafting” as follows.
A cut of the tree is admissible if the grafting of the pieces gives the original tree back.
The degrafting ∆(t) of t is the sum of all the admissible cuttings (r; s1, . . . , sk),
where r is the piece containing the root, and k is the number of leaves of r. Of
course each vertex keeps its labeling.

Example. t =

??������
???? 







////
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r s1 s2 s3 s4 s5
??������

???? 







//// 7→
??������

???? 







//// | | | | |

??������
???? 







//// 7→
����

������

?????? | | | ��
??

??������
???? 







//// 7→
??����

????
����

???? | |

??������
???? 







//// 7→ ��
?? ����

???? ��
??

??������
???? 







//// 7→ |
??������

???? 







////

Proposition 5.7.11. The cooperad (T cM,∆, ε) is isomorphic to the treewise ten-
sor module equipped with the decomposition map given by the admissible cuttings.

Proof. Recall that TnM is isomorphic to labelled trees with at most n levels. We
prove the assertion by induction on n. For n = 0 and n = 1, the explicit form of
∆ on T0M = I and on T0M = I ⊕M allows to conclude. Suppose that the result
holds up to n − 1. Let t be a labeled tree in TnM . If not trivial, this tree can
be written t = (µ; t1, . . . , tk), where t1, . . . , tk are labelled sub-trees. By definition,
∆(t) := id◦̄t + ∆+(µ; t1, . . . , tk). The first component gives the bottom cutting.
The second component is given by the cuttings ∆(ti) of the sub-trees ti, where the
bottom part is then grafted onto µ. Finally, we get all the admissible cuttings of
the tree t. �

With this description of T c(M), it is easy to see that M is the space of primitive
elements. The coradical filtration is equal to FnT c(M) = TnM , that is coincides
with the defining filtration. So the coaugmented cooperad T c(M) is conilpotent.

Proof. [Theorem 5.7.9] Let C be a conilpotent cooperad and let ϕ : C → M be an
S-module map, which sends id to 0. We claim that there is a unique morphism of
cooperads

ϕ̃ : C → T c(M)

which extends ϕ. We construct ϕ̃n : C → TnM by induction on n. For n = 0, we
put ϕ̃0(id) = id and ϕ̃0 is 0 in the other components. For n = 1, we put ϕ̃1(id) = id
and ϕ̃ = ϕ : C →M ⊂ T1M . Let us suppose that ϕ̃n−1 has been constructed. The
image of id by ϕ̃n is id ∈ I ⊂ I⊕M ◦̄Tn−1M = TnM . The component in the other
summand is equal to the composite

(ϕ◦̄ϕ̃n−1)∆ : C → C◦̄C →M ◦̄Tn−1M = TnM.

One can see that the map ϕ̃n is equal to the following composite

ϕ̃n : C ∆̃n−1

−−−→ C◦̄n ϕ̃1−→ (I⊕M)◦̄n � TnM ,
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where the last map is the projection of n-leveled trees into non-leveled trees.
Since the cooperad C is conilpotent, this process stabilizes, that is for any c ∈ C,

the image under the composite maps C ϕ̃n−−→ TnM � TM give the same image in
the colimit TM , for n ≥ N . So the map ϕ̃ is well defined.

Since we want ϕ̃ to be a map of cooperads and to coincide with ϕ in the

component M , we have no choice for ϕ̃. By the definition of ϕ̃ in terms of ∆̃ and
by the coassociativity of ∆, the map ϕ̃ is a morphism of cooperads. �

5.7.12. Combinatorial definition of a cooperad. In the same way as in
5.4, we give an equivalent definition of a conilpotent cooperad using a comonad of
trees.

The adjunction

U : conil coop / S-Mod : T co

of the previous sections induces a comonad denoted by Tc. Explicitly it is a
comonoid in the category of endofunctors of S-modules, see B.4.2. The under-
lying endofunctor is the same as in 5.5.1: Tc : M 7→ TM . The coproduct and the
counit maps

∆ : Tc → Tc ◦ Tc and ε : Tc → IdS-Mod

are given as follows. For any S-module M , Tc ◦ Tc(M) = T (TM) is made up of
“trees of trees” with vertices labelled by M . Equivalently, it coincides with trees
labelled by M equipped with a partition into subtrees. The map ∆(M) associates
to a tree t labelled by M , the sum of all the partitioned trees coming from t. The
map ε(M) : TM →M is the projection onto corollas.

Similarly we consider the comonad Tc made up of trees T c without the trivial
tree.

Proposition 5.7.13. Let C be an S-module. A coalgebra structure on C over the
comonad Tc is equivalent to a conilpotent cooperad structure on C := C ⊕ I.

Proof.

(⇐=) Let (C = C ⊕ I,∆, ε, η) be a conilpotent cooperad. The map ∆C : C →
Tc(C) = T C is given by the universal property of the conilpotent free
cooperad applied to

C
IdC

!!DDDDDDDDD

∆C
��
T c C // // C .

(=⇒) In the other way round, let ∆C : C → Tc(C) = T C be a coalgebra over

the comonad Tc. We view the trees of T 2C as 2-leveled trees by adding
trivial trees | if necessary. By projecting onto this summand, we get a
coassociative decomposition map ∆ : C → C◦̄C, where the image of id is
defined by id ◦ id. The unit and the coaugmentation maps come for free.
In the end, it defines a conilpotent cooperad structure on C.

�

When C is a conilpotent cooperad, we denote by ∆C : C → T c(C) the morphism
of cooperads IdI ⊕∆C . In conclusion, we get the following result, which will play a
crucial role in 10.3.
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Proposition 5.7.14. Let (C,∆, ε, η) be a conilpotent cooperad and let ϕ : C → M
be a morphism of S-modules such that ϕ(id) = 0. Its unique extension into a
morphism of cooperads ϕ̃ : C → T c(M) is equal to the composite

ϕ̃ : C ∆C−−→ T c(C) T
c(ϕ)−−−−→ T c(M) ,

where the map ∆C is given by the iterations ∆̃n =
∑n
k=0 ∆̂k.

Proof. It is direct consequence of the above results. �

5.8. Nonsymmetric operad

Replacing the category of S-modules by the category of arity graded vector
spaces gives the notion of nonsymmetric operad (called ns operad for short). To any
ns operad one can associate an operad by tensoring with the regular representation
in each arity. This section can be read independently of the rest of the chapter. We
work over a field K though most of the notions and results of this section are valid
over a commutative ring.

5.8.1. More on arity graded modules. Let

M· = {Mn}n≥0

be a graded vector space (or graded module). We denote by N-Mod the category
of graded vector spaces (or graded K-modules if K is a commutative ring). The
integer n is called the arity in this framework. The Schur functor M : Vect→ Vect
associated to M· is, by definition,

M(V ) :=
⊕
n≥0

Mn ⊗K V
⊗n .

In the literature M· is sometimes called a collection. We refrain to call it a nonsym-
metric S-module. Recall that the sum, tensor product, composition and Hadamard
product of arity graded spaces are given by

(M· ⊕N·)n := Mn ⊕Nn ,
(M· ⊗N·)n :=

⊕
i+j=nMi ⊗Nj ,

(M· ◦N·)n :=
⊕

kMk ⊗
(⊕

Ni1 ⊗ · · · ⊗Nik
)
,

(M· ⊗
H
N·)n := Mn ⊗Nn ,

where the second sum in line 3 is over all the k-tuples (i1, . . . , ik) satisfying i1 + · · ·+ ik = n.
Observe that the associativity property of the composition of graded modules in-
volves the switching map, cf. 5.1.12. For any vector space V we have natural
isomorphisms:

(M ⊕N)(V ) = M(V )⊕N(V ) ,
(M ⊗N)(V ) = M(V )⊗N(V ) ,
(M ◦N)(V ) := M(N(V )).

The Hilbert-Poincaré series of the arity graded module M· is:

fM (x) :=
∑
n≥0

dimMn x
n .

The generating series of a sum (resp. product, composition, Hadamard product) of
arity graded modules is the sum (resp. product, composition, Hadamard product)
of their respective generating series.

In the sequel we simply write M instead of M· whenever there is no ambiguity.
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5.8.2. Monoidal definition of a nonsymmetric operad. By definition a
nonsymmetric operad (also called non-Σ-operad in the literature) P = (P, γ, η) is
an arity graded vector space P = {Pn}n≥0 equipped with composition maps

γi1,...,ik : Pk ⊗ Pi1 ⊗ · · · ⊗ Pik −→ Pi1+···+ik

and an element id ∈ P1, such that the transformations of functors γ : P ◦ P → P
and η : I→ P, deduced from this data, make (P, γ, η) into a monoid.

We often abbreviate “nonsymmetric operad” into “ns operad”.

5.8.3. Classical definition of a ns operad. Obviously a nonsymmetric op-
erad can be defined as an arity graded module P equipped with linear maps

γi1,...,ik : Pk ⊗ Pi1 ⊗ · · · ⊗ Pik −→ Pi1+···+ik

and an element id ∈ P1, such that the following diagram (in which the tensor signs
are omitted) is commutative

PnPi1Pj1,1 · · · Pj1,i1Pi2Pj2,1 · · · · · · Pin · · · Pjn,in //

∼=
��

PnPr1 · · · Prn

��

PnPi1 · · · PinPj1,1 · · · Pj1,i1Pj2,1 · · · · · · Pjn,1 · · · Pjn,in

��
PmPj1,1 · · · Pj1,i1Pj2,1 · · · · · · Pjn,1 · · · Pjn,in // P`

where rk = jk,1 +· · ·+jk,ik for k = 1 to n, m = i1 +· · ·+in and ` = r1 +· · ·+rn.
Moreover the element id is such that the evaluation of γn : P1⊗Pn → Pn on (id, µ)
is µ, and the evaluation of γ1,...,1 on (µ; id, . . . , id) is µ.

The equivalence between the monoidal definition and the classical definition is
straightforward checking.

5.8.4. Partial definition of a ns operad. A nonsymmetric operad can be
defined as an arity graded vector space P equipped with partial compositions:

◦i : Pm ⊗ Pn → Pm−1+n, for 1 ≤ i ≤ m,

satisfying the relations{
(I) (λ ◦i µ) ◦i−1+j ν = λ ◦i (µ ◦j ν), for 1 ≤ i ≤ l, 1 ≤ j ≤ m,
(II) (λ ◦i µ) ◦k−1+m ν = (λ ◦k ν) ◦i µ, for 1 ≤ i < k ≤ l,

for any λ ∈ Pl, µ ∈ Pm, ν ∈ Pn.
This definition (with different notations and grading) appears in Gerstenhaber’s

paper [Ger63] under the name “pre-Lie system”.
The equivalence with the monoidal definition is given by constructing the map

γi1,...,in as an iteration of the partial operations. In the other direction the partial
operation ◦i is obtained by restriction:

λ ◦i µ = γ(λ; id, . . . , id, µ, id, . . . , id)

where µ is at the ith position.
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5.8.5. Combinatorial definition of a ns operad. For any planar rooted
tree t we denote by vert(t) its set of vertices and by |v| the number of inputs of
the vertex v ∈ vert(t), see Appendix C for details. Let M be an arity graded space
with M0 = 0. Recall that the integer n is called the arity of t and the integer
k = #vert(t) is called the weight of t. For any tree t we define

Mt :=
⊗

v∈vert(t)

M|v|.

We get a functor

PT : N-Mod→ N-Mod

by PT(M)n :=
⊕

t∈PTnMt. It is helpful to think about an element of PT(M)n as
a planar rooted tree where each vertex v is decorated by an element of M|v|.

In the following example we have τ ∈M3, λ ∈M2, µ ∈M1, ν ∈M2:

λ
yyy

EEE
µ ν

zzz
DDD

τ

���������

????????

In particular the corolla enables us to define the transformation of functors
η : IN-Mod → PT.

The substitution of trees consists in replacing the vertices by given trees (with
matching inputs). The substitution of trees defines a transformation of functors
α : PT ◦ PT→ PT as follows. From the definition of PT we get

PT(PT(M))n =
⊕
t∈PTn

PT(M)t

=
⊕
t∈PTn

( ⊗
v∈vert(t)

PT(M)|v|
)

=
⊕
t∈PTn

( ⊗
v∈vert(t)

(
⊕

s∈PT|in(v)|

Ms)
)
.

Under the substitution of trees we get an element of PT(M)n, since at any
vertex of t we have an element of PT(M)|v| =

⊕
s ∈ PT|v|Ms, that is a tree s and its

decoration. We substitute this data at each vertex of t to get a new decorated tree.
Therefore we have defined an S-module morphism α(M) : PT(PT(M))→ PT(M).

The transformation of functors α is obviously associative and unital, so (PT, α, η)
is a monad.

The combinatorial definition of a ns operad consists in defining it as a unital
algebra over the monad (PT, α, η), cf. B.4. In other words a ns operad is an arity
graded module P together with a map PT(P)→ P which is compatible with α and
η in the usual sense.

The combinatorial definition of a ns operad is equivalent to the partial definition
of a ns operad, and therefore to all the other definitions.

5.8.6. Free ns operad and planar trees. By definition the free nonsymmet-
ric operad over the arity graded module M is the ns operad T (M) equipped with a
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graded module morphism M → T (M) which satisfies the classical universal prop-
erty. Explicitly it can be constructed inductively as in 5.4.1, i.e. T M =

⋃
n TnM ,

where T0M := I and TnM := I ⊕ (M ◦ Tn−1M). It can be also constructed as a
quotient as in 5.4.6, or, more explicitly, by using planar trees. In fact the graded
module PT(M) constructed above is endowed with a ns operad structure as follows.
Let t and s be two decorated trees. The partial composition t ◦i s is the decorated
tree obtained by grafting the tree s on the ith leaf of t and keeping the decorations.

�� ??������

?????? ◦3 ��
??

=

��� ���
??????

������������

????????????

It is immediate to check that this partial composition makes PT(M) into a
ns operad, and that this ns operad if free over M . The map η : M → PT(M)
consists in sending the operation µ ∈ Mn to the nth corolla decorated by µ. The
isomorphism ϕ : T (M)→ PT(M) is made explicit as follows. First, we have ϕ(id) =
|. Second, the generating operation µ ∈ Mk is sent to the k-th corolla decorated
by µ. Third, for ωi ∈ Tn−1M, i = 1, . . . , k, the generic element (µ;ω1, . . . , ωk) ∈
M ◦ Tn−1M ⊂ TnM is mapped under ϕ to the tree ϕ(µ;ω1, . . . , ωk) obtained by
grafting the decorated trees ϕ(ωi) to the leaves of the kth corolla (image of µ). It
is immediate to check that we get an isomorphism.

5.8.7. Free ns operad in the graded framework. In the construction of
the free ns operad in terms of trees in the sign-graded framework, signs show up in
the computation of composition. Here is an explicit example.

Let λ, µ, ν ∈M be three binary graded operations. In T M the tree

µ

���
???

ν

>>>> ����

λ

��������

>>>>>>>>

corresponds to the element (λ;µ, ν) ∈M◦M which is to be interpreted as an element
in T2M = I ⊕M ◦ (I ⊕M). Viewed as an element of T3M via i : T2M → T3M it
becomes

(λ; (µ; id, id), (ν; id, id)) ∈M ◦ (I⊕M ◦ (I⊕M)).

Now, let us identify the two composites from bottom to top that is

µ

���
???

(λ ◦2 ν) ◦1 µ = ν

==========

����������

λ

����

8888888888
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resp.

ν

@@@ ~~~

(λ ◦1 µ) ◦3 ν = µ

����������

:::::::::

λ

����������
<<<<

corresponding to the composite ((λ; id, ν);µ, id, id) resp. ((λ;µ, id); id, id, ν). Under
the associativity isomorphism, they are equal to
(−1)|ν||µ|(λ; (id;µ)), (ν; id, id)), resp. (λ; (µ; id, id), (id; ν)), that is
(−1)|ν||µ|(λ; (µ; id, id), (ν; id, id)), resp. (λ; (µ; id, id); (ν; id, id)).

In conclusion we get

(λ ◦2 ν) ◦1 µ = (−1)|ν||µ|(λ;µ, ν) and (λ ◦1 µ) ◦3 ν = (λ;µ, ν).

5.8.8. Algebra over a nonsymmetric operad. For any vector space A the
graded module End(A), defined by End(A)n := Hom(A⊗n, A), is a ns operad for
the composition of maps (cf. 5.2.12). By definition an algebra over the ns operad
P is a morphism of ns operads P → End(A). Equivalently, a P-algebra structure
on A is a family of linear maps Pn ⊗ A⊗n → A compatible with the ns operad
structure of P.

5.8.9. Nonsymmetric operad, type of algebras. Let us consider a type
of algebras for which the generating operations have no symmetry, the relations are
multilinear and, in these relations, the variables stay in the same order. Then this
type of algebras can be faithfully encoded by a nonsymmetric operad.

The relationship between types of algebras and operads is slightly simpler in
the nonsymmetric case, as shown by the following result.

Proposition 5.8.10. A nonsymmetric operad P is completely determined by the
free P-algebra on one generator.

Proof. For a nonsymmetric operad P the free algebra on one generator is

P(K) =
⊕
n≥0

Pn ⊗K⊗n =
⊕
n≥0

Pn .

Hence Pn is the n-multilinear part of P(K). Using the ubiquity of the operations,
see 5.2.15, it follows that the composition maps are completely determined by the
P-algebra structure of P(K). �

Remark that this statement is not true for symmetric operads. For instance Ass
and Com have the same free algebra on one generator, namely the ideal (x) in the
polynomial algebra K[x]. It determines As, but not Com.

5.8.11. Hadamard product of ns operads. Let P and Q be two ns oper-
ads. The Hadamard tensor product P ⊗

H
Q of the underlying graded modules has a
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natural operad structure:

(P ⊗
H
Q)k ⊗ (P ⊗

H
Q)i1 ⊗ · · · ⊗ (P ⊗

H
Q)ik

= Pk ⊗Qk ⊗ Pi1 ⊗Qi1 ⊗ · · · ⊗ Pik ⊗Qik∼= Pk ⊗ Pi1 ⊗ · · · ⊗ Pik ⊗Qk ⊗Qi1 ⊗ · · · ⊗ Qik
−→ Pn ⊗Qn = (P ⊗

H
Q)n

for n = i1 + · · ·+ ik. Observe that we use the switching map in the category Vect
to put the factors Qi) in the correct position. Therefore, when Vect is replaced
by another tensor category (cf. B.3) signs might be involved. The operad uAs is
obviously a unit for this operation.

The ns operad P ⊗
H
Q is called the Hadamard product of the ns operads P and

Q.

5.8.12. From ns operads to symmetric operads and vice-versa. Let P
be a ns operad with Pn as the space of n-ary operations. The category of P-algebras
can be encoded by a symmetric operad. We still denote it by P and the space of
n-ary operations by P(n). It comes immediately that

P(n) = Pn ⊗K[Sn]

where the action of the symmetric group on P(n) is given by the regular repre-
sentation K[Sn]. Indeed we have (Pn ⊗ K[Sn]) ⊗K[Sn] V

⊗n = Pn ⊗ V ⊗n. The
composition map γ(i1, . . . , ik) in the symmetric framework is given, up to a per-
mutation of factors, by the tensor product of the composition map γi1,...,ik in the
ns framework with the composition map of the symmetric operad Ass. Considered
as a symmetric operad P is sometimes called a regular operad. Observe that the
categories of algebras over a ns operad and over its associated operad are the same,
so they encode the same type of algebras. We usually take the same notation for
the ns operad and its associated symmetric operad, except in the case of associative
algebras where we use As and Ass respectively in this book.

In conclusion we have constructed a functor

ns OpK −→ OpK.

This functor admits a right adjoint:

OpK −→ ns OpK, P 7→ P̃ .

Explicitly we have P̃n = P(n), in other words we forget the Sn-module structure.

We have P̃(n) = P(n)⊗K[Sn] where the Sn-module structure is given by the action
on K[Sn] (not the diagonal action). The composition maps

γ̃i1,...,ik = γ(i1, . . . , ik) : P(k)⊗ P(i1)⊗ · · · ⊗ P(ik) −→ P(i1 + · · ·+ ik)

satisfy the axioms of a ns operad.

Examples. By direct inspection we see that C̃om = As. In [ST09] Salvatore and

Tauraso show that the operad L̃ie is a free ns operad. In [BL10] Bergeron and

Livernet show that p̃reLie is also free.
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5.8.13. Nonsymmetric operads as colored algebras. A colored algebra
is a graded vector space A = {An}n≥0 equipped with operations which are only
defined under some conditions depending on the colors (elements of an index set).
For instance let us suppose that we have operations (i.e. graded linear maps) ◦i :
Am⊗A→ A defined only when 1 ≤ i ≤ m+ 1 and a map K→ A0, 1K 7→ 1. Let us
suppose that they satisfy the relations:{

(I) (x ◦i y) ◦i−1+j z = x ◦i (y ◦j z), i ≤ j ≤ i+m− 1,
(II) (x ◦i y) ◦j+m−2 z = (x ◦j z) ◦i y, i+m ≤ j ≤ l +m− 1,

for any x ∈ Al−1, y ∈ Am−1, z ∈ A and unital relations with respect to 1. It
appeared in Gerstenhaber’s paper [Ger63] as a pre-Lie system (our notation ◦i
corresponds to his notation ◦i−1). It also appears in [Ron10] by M. Ronco, where
such a colored algebra is called a grafting algebra. Compared to that paper we have
taken the opposite products and we have shifted the numbering of the operations
by 1. Then it is obvious that under the change of notation An = Pn+1, this is
nothing but the notion of nonsymmetric operad. This point of view permits us to
look at variations of colored algebras as variations of operads, cf. [Ron10], 13.14,
and also to introduce the notion of colored operads, cf. [VdL03].

5.8.14. Category associated to a ns operad. As in 5.3.11 one can asso-
ciate to any ns operad a category whose objects are indexed by the natural numbers.
When the operad is set-theoretic, this construction can be done in the set-theoretic
framework. The category associated to uAs can be identified to the linearized sim-
plicial category K[∆] (cf. [Pir02a]). The category associated to As can be identified
with the linearized presimplicial category K[∆pre] (i.e. ∆ without degeneracies).

5.8.15. Group associated to a ns operad. Let P be a ns operad such that
P0 = 0 and P1 = K id. We consider the series

a := (a0, a1, . . . , an, . . .)

where an ∈ Pn+1 for any n and a0 = id ∈ P1. We denote by G(P) this set of series.
We define a binary operation a b on this set as follows:

(a b)n :=
∑
k

∑
i1+···+ik=n

γ(ap; bi1 , . . . , bik).

Proposition 5.8.16. The binary operation (a, b) 7→ a b makes G(P) into a group
with unit 1 = (id, 0, 0, . . .).

Proof. The associativity property follows readily from the associativity property of
γ. The existence of an inverse, that is for any a there exists b such that a b = 1, is
achieved by induction. For instance b1 = −a1, a2 = −a2−a1 ◦ (id, b1)−a1 ◦ (b1, id),
etc. �

Observe that for P = As, the group G(P) is nothing but the group of power
series in one variable with constant coefficient equal to 1. This construction has
been used in several instances, cf. [Fra08, Cha01b, VdL02, Lod].

5.8.17. Pre-Lie algebra associated to a ns operad. Let P be a ns operad

with P(0) = 0 and consider the space P(K) :=
⊕

n≥1 Pn, resp. P̂(K) :=
∏
n≥1 Pn.

We construct a bilinear operation {−,−} as follows:
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{µ, ν} :=

i=m∑
i=1

(µ ◦i ν)

for µ ∈ Pm, ν ∈ Pn. As in the case of symmetric operads, cf. 5.3.16, the relations
satisfied by the partial operations imply that the binary operation {−,−} makes

P(K), resp. P̂(K), into a pre-Lie algebra, and hence a Lie algebra by antisym-
metrization.

We check easily that in the case of the ns operad As we get the pre-Lie algebra
of polynomial vector fields on the affine line, cf. 1.4.4.

When P = End(A), this Lie bracket on C•Hoch(A,A) was first constructed by
Gerstenhaber in [Ger63] in his study of Hochschild cohomology of an associative
algebra A with coefficients into itself, cf. 13.3.11.

5.8.18. Hopf algebra associated to a ns operad. Let P be a ns operad
with P0 = 0 and P1 = K id. We put P :=

⊕
n≥2 Pn. On the cofree coalgebra

T c(P) we define a product, compatible in the Hopf sense with the coproduct, as
follows. Since T c(P) is cofree, by 1.2.5 it suffices to construct the map

T c(P)⊗ T c(P)→ P.
On Tn≥2(P)⊗ Tn≥1(P) it is trivial, on P ⊗ T (P) it is given by

µ⊗ (µ1, . . . , µk) 7→ γ(µ;µ1, . . . , µk) ∈ Pi1+···+ik ⊂ P
whenever µ ∈ Pk and µj ∈ Pij , and 0 otherwise. The associativity of this product

on T c(P) follows from the associativity property of γ. As a result we get a cofree
Hopf algebra. It is an example of a combinatorial Hopf algebra which is cofree and
left-sided in the sense of [Lod08].

Similarly, starting from a conilpotent ns cooperad one can construct a combi-
natorial Hopf algebra which is free and left-sided.

5.8.19. Nonsymmetric cooperad and cutting. It is clear that all the co-
operadic definitions and constructions can be performed in the nonsymmetric frame-
work, that is over arity graded spaces instead of S-modules as done in 5.7.10. Let
us just give some details on the free nonsymmetric cooperad over an arity graded
space of the form M = (0, 0,M2,M3, . . .). As a graded module T c(M) is spanned
by the planar rooted trees whose vertices are labeled by elements of M . In fact,
if the vertex has k inputs (arity k), then its label is in Mk. The decomposition
∆ on such a tree t is constructed by “degrafting” as follows. A cut of the tree is
admissible if the grafting of the pieces gives the original tree back. The degrafting
∆(t) of t is the sum of all the admissible cuttings (r; s1, . . . , sk), where r is the piece
containing the root, and k is the number of leaves of r. Of course each vertex keeps
its labeling.

The explicit formula given in 5.7.7 is valid only when M is in even degree.
Indeed, since the associativity isomorphism for composition is involved (cf. 5.1.12)

signs appear in the formula in the general graded case. For instance if ��
??

is in

degree 1, then the formula becomes:

| ◦
�� ??������

?????? + ��
?? ◦ ( ��

??
, ��

??
) +

�� ����

???? ◦ (|, |, ��
??

)
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−
??����

???? ◦ ( ��
??

, |, |) +
�� ??������

?????? ◦ (|, |, |, |).

More generally, if t and s are elements of T c(M), then the coproduct of t ∨ s =

( ��
??

; t, s) is given by

∆(t ∨ s) = ∆( ��
??

; t, s)

= (|; t ∨ s) + ( ��
??

;
(
t(1); t(2)), (s(1); s(2))

)
= (|; t ∨ s) + (−1)|t

(2)| |s(1)|(( ��
??

; t(1), s(1)); t(2), s(2)
)

= (|; t ∨ s) + (−1)|t
(2)| |s(1)|(t(1) ∨ s(1); t(2), s(2)

)
,

where ∆(t) = (t(1); t(2)) and ∆(s) = (s(1); s(2)). The sign comes from the exchange
of s(1) and t(2).

For instance we get

∆̄
( �� ??������

??????
)

= ��
?? ◦ ( ��

?? ��
??

)−
??����

???? ◦ ( ��
?? | |) +

�� ����

???? ◦ (| | ��
??

),

and

∆̄(1)

( �� ??������

??????
)

= −
??����

???? ◦ ( ��
?? | |) +

�� ����

???? ◦ (| | ��
??

).

5.9. Résumé

We gave several equivalent definitions of an operad, which can be summarized
as follows.

Definition 0. Given a type of algebras the algebraic operad is given by the functor
“free algebra”, which is a monad in Vect. If the relations are multilinear, then the
endofunctor is a Schur functor.

Definition 1. The monoidal definition. An algebraic operad is a monoid (P, γ, η)
in the monoidal category of S-modules (resp. arity graded spaces). So γ : P◦P → P
is associative and η : I → P is its unit. It is called a symmetric operad (resp.
nonsymmetric operad).

Definition 2. The classical definition. A symmetric operad is a family of Sn-
modules P(n), n ≥ 1, and linear maps

γ(i1, . . . , ik) : P(k)⊗ P(i1)⊗ · · · ⊗ P(ik) −→ P(i1 + · · ·+ ik).

satisfying some axioms expressing equivariance under the action of the symmetric
group and associativity of the composition. They ensure that the associated functor
V 7→ P(V ) :=

⊕
n P(n)⊗Sn V

⊗n is a monoid.

Definition 3. The partial definition. A symmetric operad is a family of Sn-modules
P(n), n ≥ 0, and partial compositions

◦i : P(m)⊗ P(n)→ P(m− 1 + n), for 1 ≤ i ≤ m,
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satisfying equivariance with respect to the symmetric groups and the axioms:{
(I) (λ ◦i µ) ◦i−1+j ν = λ ◦i (µ ◦j ν), for 1 ≤ i ≤ l, 1 ≤ j ≤ m,
(II) (λ ◦i µ) ◦k−1+m ν = (λ ◦k ν) ◦i µ, for 1 ≤ i < k ≤ l,

for any λ ∈ P(l), µ ∈ P(m), ν ∈ P(n). One assumes the existence of a unit element
id ∈ P(1).

Definition 4. The combinatorial definition. There exists a monad T over the
category of S-modules made out of rooted trees and substitution, such that a sym-
metric operad is an algebra (i.e. a representation) over T. Nonsymmetric operads
are obtained by replacing trees by planar trees.

Observe that the definitions 2, 3 and 4 can be thought of as various presenta-
tions of the monad T. In definition 2 the generators have two levels, in definition 3
they involve only two variables, in definition 4 every element is a generator.

Algebra over an operad. A P-algebra is a vector space A equipped with a
linear map γA : P(A) → A compatible with the operadic structure γ and η. It is
equivalent to a morphism of operads

P → EndA.

In order to get the analogous definitions for nonsymmetric operads, it suffices
to replace the S-modules by the arity graded modules (no action of the symmetric
group anymore) where degree = arity. In definition 0 the relations should be such
that the variables stay in the same order in the involved monomials. In definition
4 the trees are supposed to be planar.

Monoids, unital associative algebras, symmetric operads, nonsymmetric oper-
ads, are all monoids in an ad hoc monoidal category. They can also be interpreted
as algebras over a combinatorial monad:

category product unit combinatorial objects

monoid Set × {∗} ladders
algebra Vect ⊗ K ladders
operad S-mod ◦ I rooted trees

ns operad N-Mod ◦ I planar rooted trees

5.10. Exercises

5.10.1. On EndK. Show that EndK = uCom as an operad, and End(K) =
uAs as a ns operad.

5.10.2. A graded operad. Show that the category of algebras over the op-
erad EndsK can be described as follows. A EndsK-algebra is a graded vector space
A with a bilinear map An ⊗ Am → An+m+1, x ⊗ y 7→ xy for any n,m ≥ 0, such
that

xy = −(−1)|x||y|yx, (xy)z = (−1)|x|x(yz).
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5.10.3. Shifting degrees. Let M and N be two endofunctors of the category
of graded vector spaces related by the formula M(V ) = N(sV ) for any graded space
V . Show that

s−1N = (Ends−1K)⊗
H
M.

5.10.4. From Ass to Com. Show that the forgetful functor Com-alg →
Ass-alg induces, on the space of n-ary operations, the augmentation map K[Sn]→
K, σ 7→ 1 for σ ∈ Sn.

5.10.5. Explicit free operad. Show that a functor F : Vect → P-alg gives
a free P-algebra F (V ) if and only if there exists φA : F (A)→ A for any P-algebra
A, and ψV : V → F (V ) for any vector space V , such that φA is natural in A, ψV
is natural in V , and both composites

F (V )
F (ψV )−−−−→ F (F (V ))

φF (V )−−−−→ F (V ) and A
ψA−−→ F (A)

φA−−→ A.

give the identity.

5.10.6. Free operad. Show directly from the definition of a free operad that
TM can be described in terms of planar binary trees when M = (0, 0,M2 ⊗
K[S2], 0, . . . , 0, . . .).

5.10.7. Plethysm. Let E, resp. F , be a representation of Sn, resp. Sm. Let

Ẽ, resp. F̃ , be the associated Schur functor. Show that Ẽ ◦ F̃ is the Schur functor
of a certain representation G of Smn and describe it explicitly. This representation
is called the plethysm of E and F .

5.10.8. Ass explicit. Describe explicitly the map

γ(i1, . . . , ik) : Sk × Si1 × · · · × Sik −→ Si1+···+ik

which induces the map

γ(i1, . . . , ik) : Ass(k)⊗Ass(i1)⊗ · · · ⊗Ass(ik) −→ Ass(i1 + · · ·+ ik)

of the operad Ass.

5.10.9. Induction. Let E be an S2-module. Let S2 act on E⊗E via its action
on the second variable only. Show that, as a vector space, IndS3

S2
(E⊗E) = 3E⊗E.

Describe explicitly the action of S3 on 3E ⊗ E.

5.10.10. Explicit enveloping algebra. 5.10.24 Let α : P → Q be a mor-
phism of operads and let (A, γA) be a P-algebra. Suppose that the operad P comes
with a presentation P = P(E,R). Show that the relative free Q-algebra α!(A)
introduced in 5.2.14 is isomorphic to the quotient Q-algebra

Q(A)/
(
(α(µ); a1, . . . , ak)− γA(µ; a1, . . . , ak);µ ∈ E(k), a1, . . . , ak ∈ A

)
.

5.10.11. Poisson algebra. A Poisson algebra is determined by a commuta-
tive product (x, y) 7→ x ·y and a Lie bracket (x, y) 7→ [x, y] related by the derivation
property (Leibniz rule):

[x · y, z] = x · [y, z] + [x, z] · y .
This gives a presentation of the operad Pois of Poisson algebras. Show that there
is another presentation involving only one operation xy with no symmetry and only
one relation (see 13.3.3 for the solution).
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5.10.12. Invariants. . Show that the map

V ⊗n → (K[Sn]⊗ V ⊗n)Sn , v1 · · · vn 7→
∑
σ∈Sn

σ ⊗ (v1 · · · vn)σ

is an isomorphism. Deduce that the categories ΓAss-alg and Ass-alg are the same.

5.10.13. On Ãss. Find a presentation for the Ãss-algebras (notation intro-
duced in 5.8.12).

Hint. use [Pir03].

5.10.14. Möbius basis. Let {Mσ}σ∈Sn be the basis of K[Sn] defined as

Mσ :=
∑
σ≤τ

µ(σ, τ)τ .

Here ≤ stands for the weak Bruhat order on the symmetric group and µ(σ, τ) is
the Möbius function. Show that for any integer i satisfying 1 ≤ i ≤ n there are
uniquely determined permutations (σ, τ)i and (σ, τ)i such that

Mσ ◦iMτ =
∑

(σ,τ)i≤ω≤(σ,τ)i

Mω .

Cf. [AL07].

5.10.15. Category associated to uMag. Let uMag be the set-theoretic ns
operad with one binary operation and a unit. Give a presentation of catuMag
analogous to the classical presentation of the simplicial category K[∆] = catuAss
(cf. [Pir02a]) in terms of faces and degeneracies.

Answer: same but delete the relations σjσi = σiσj+1, i ≤ j.

5.10.16. Regular S-modules. Let M and N be two S-modules such that
M(n) = Mn⊗K[Sn] and N(n) = Nn⊗K[Sn], n ≥ 1. Show that M ◦N is such that
(M ◦ N)(n) = (M ◦ N)n ⊗ K[Sn]. Compute (M ◦ N)n out of the components Mi

and Nj .

5.10.17. Right adjoint of Schur functor. Let F : Vect → Vect be an
endofunctor of the category of vector spaces. Let

RFn := HomEnd(T
(n), F )

where the endofunctor T (n) : Vect→ Vect is given by T (n)(V ) := V ⊗n. Show that
R is right adjoint to the Schur functor S-mod→ End(Vect).

5.10.18. Non-morphism. Show that there is a morphism of Sn-modules
F (n) : Com(n) → Ass(n), which identifies the trivial representation to its copy
in the regular representation. Show that the resulting morphism of S-modules
F : Com→ Ass is not a morphism of operads, i.e. F (µ ◦1 µ) 6= F (µ) ◦1 F (µ).

Hint. It follows from the fact that, in an associative algebra, the symmetrized
product a · b := ab+ ba is not associative in general.

5.10.19. Arity 3. Describe explicitly the S3-representation T (Kµ)(3) when µ
is a binary operation, resp. a symmetric binary operation, resp. an anti-symmetric
binary operation.

Hint. You should obtain a space of dimension 12, resp. 3, resp. 3. The mul-
tiplicities of the isotypic components (trivial, hook, signature) are (2, 4, 2), resp.
(1, 1, 0), resp. (0, 1, 1).
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5.10.20. Composite with Ass. Let M be an S-module and let Reg be the
regular S-module, that is Reg(n) := K[Sn]. This is the S-module underlying the
operad Ass (and several others). Show that the composite S-module M ◦Reg can
be described as follows:

(M ◦Reg)(n) =
⊕
k

M(k)
( ⊕
i1+···+ik=n

K[Sn]
)

where the action of Sk on the right sum is explicitly given by

σ · (i1, . . . , ik;ω) = (iσ−1(1), . . . , iσ−1(k);σω)

for σ ∈ Sk, ω ∈ Sn, i1+· · ·+ik = n. The permutation σω ∈ Sn is the precomposition
of ω by the action of σ on the “blocks” of size i1, . . . , ik.

5.10.21. Trees and free operad. Let α, β, γ, δ be binary operations in M .
Show that the element corresponding to the tree

α

{{{{
????

δ

���
===

β

��������
====

γ

���������
===

is (γ; (β;α, id), (δ; id, id)) ∈ T3M .

5.10.22. Hopf operad. Show that any set operad gives rise to a Hopf operad.

5.10.23. Modules over a Hopf operad. Show that the tensor product of
left modules over a Hopf operad is still a left module.

5.10.24. Explicit enveloping algebra. Let α : P → Q be a morphism of
operads and let (A, γA) be a P-algebra. Suppose that the operad P comes with a
presentation P = P(E,R). Show that the relative free Q-algebra α!(A) = Q ◦P A
introduced in 5.2.14 is isomorphic to the quotient of the free Q-algebra over the
spaceA by the relation which identifies the two P-algebra structures. More precisely
we have

Q(A)/
(
(α(µ); a1, . . . , ak)− γA(µ; a1, . . . , ak);µ ∈ E(k), a1, . . . , ak ∈ A

)
,

where the right-hand side stands for the ideal generated by the listed elements for
any k.

5.10.25. Convolution operad. Show that any symmetric, resp. ns, operad
P is isomorphic to the convolution operad HomS(uAssc,P), resp. Hom(uAsc,P).





CHAPTER 6

Operadic homological algebra

“If I could only understand the beautiful
consequence following from the concise
proposition d2 = 0.”
Henri Cartan on receiving the degree of
Doctor Honoris Causa, Oxford Univer-
sity, 1980

The aim of this chapter is to develop homological algebra in the operadic con-
text.

We introduce the notions of differential graded S-module, differential graded
operad, differential graded P-algebra, differential graded cooperad, etc. Since the
composite product ◦ defining operads is not linear on the right-hand side, these
generalizations are not automatic. We define the infinitesimal composite product,
as a linearization of the composite product, and the infinitesimal composite of
morphisms, as a linearization of the composite of morphisms. This latter one plays
a crucial role in the definition of the differential of the composite product of two
dg S-modules.

In the second part of this chapter, we transpose the results on twisting mor-
phisms from the algebra setting to the operad setting. From a dg cooperad C and
a dg operad P, we construct a convolution dg operad Hom(C,P), which induces a
dg (pre-)Lie convolution algebra HomS(C,P). In this setting, we can consider the
Maurer-Cartan equation, whose solutions are the operadic twisting morphisms.

As in the algebra case, the main homological constructions for dg operads come
from this notion. First, with an operadic twisting morphism, one can twist the
differential of the composite product C ◦ P to produce a twisted composite product.
Then, the operadic twisting morphism bifunctor is represented by the operadic
bar and cobar constructions. These constructions generalize the ones encountered
in Chapter 2 at the algebra level. Once again, since the composite product is not
bilinear, these constructions are more involved. We make this “adaptation” explicit.

As in the algebra case, an operadic Koszul morphism is defined as an operadic
twisting morphism whose twisted composite product is acyclic. In the last part
of the chapter, we state and prove the fundamental theorem of operadic twisting
morphisms which says that a Koszul morphism corresponds to a quasi-isomorphisms
to the bar construction and to a quasi-isomorphism from the cobar construction
respectively.

The material of this chapter mainly comes from Ginzburg and Kapranov [GK94],
Getzler and Jones [GJ94], and Fresse [Fre04].
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6.1. Infinitesimal composite

Whereas the tensor product ⊗ of K-modules is linear on the left and on the
right, the composite product ◦ of S-modules is linear on the left but not on the right
because the right hand side of the composite M ◦N involves several components of
N . In order to do homological algebra for S-modules and operads, we will need a
linearized version of the composite product and of the composite product of mor-
phisms. First, we linearize the composite product of S-modules to define the notion
called infinitesimal composite product of S-modules. We also need to introduce the
infinitesimal composite of S-module morphisms, for which the composite product
remains unchanged but where the composite of two morphisms is linearized.

6.1.1. Infinitesimal composite product. In this section, we introduce the
right linear part of the composite product as a particular case of a more general
construction.

Let M , N1 and N2 be three S-modules. The composite M ◦ (N1 ⊕N2) defines
a functor (S-Mod)3 → S-Mod. We consider the sub-functor which is linear in N2.
We denote the image of (M,N1, N2) under this sub-functor by M ◦ (N1;N2). This
notation has to be taken as a whole, because (N1;N2) has no meaning by itself.
Explicitly, M ◦ (N1;N2) is the sub-S-module of

⊕
nM(n)⊗Sn (N1 ⊕N2)⊗n where

N2 appears once and only once in each summand (see 5.1.6).
Graphically a typical element is of the form:

N1

RRRRRRRRR N1

EEEE N1 N2

xxxx
N1

llllllllll

M

This functorial construction is linear in the variable M and in the variable N2.

Proposition 6.1.2. For any S-modules M , M ′, N1, N2 and N ′2, we have

(M ⊕M ′) ◦ (N1;N2) = M ◦ (N1;N2)⊕M ′ ◦ (N1;N2) and

M ◦ (N1;N2 ⊕N ′2) = M ◦ (N1;N2)⊕M ◦ (N1;N ′2)

Proof. The first formula is obvious because ◦ is linear on the left hand side. The
second one follows from the definition of M ◦ (N1;N2). �

Notice thatM◦(N ;N) is not isomorphic toM◦N . There exists an epimorphism
M ◦ (N ;N)�M ◦ (N ⊕N)�M ◦N , where the second map is IdM ◦ (IdN + IdN ).

We now apply this construction to the particular case N1 = I (identity functor).
Let M and N be two S-modules. By definition, the infinitesimal composite of M
and N is defined by the formula

M ◦(1) N := M ◦ (I;N).

Elements of M ◦(1) N are of the form (µ; id, . . . , id, ν, id, . . . , id).

KKKKKKK
===== N

yyyy
nnnnnnnnnn

M
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Notice that the infinitesimal composite of M with itself is naturally isomorphic,
as S-module, to the weight 2 part of the free operad on M , i.e. the treewise tensor
module over M :

M ◦(1) M ∼= TM (2) .

The main property of the infinitesimal composite product is the following linearity
property on both sides.

Corollary 6.1.3. For any S-modules M , M ′, N and N ′, we have

(M ⊕M ′) ◦(1) N = M ◦(1) N ⊕M ′ ◦(1) N,

M ◦(1) (N ⊕N ′) = M ◦(1) N ⊕M ◦(1) N
′,

I ◦(1) N = N and M ◦(1) I = M.

�

To any pair f : M1 → M2 and g : N1 → N2 of morphisms of S-modules, we
define a morphism f ◦(1) g : M1 ◦(1) N1 →M2 ◦(1) N2 by the formula

(f ◦(1) g)(µ; id, . . . , ν, . . . , id) := (f(µ); id, . . . , g(ν), . . . , id).

6.1.4. Infinitesimal composition map of an operad. When (P, γ, η) is
an operad, we use the notion of infinitesimal composite product to define the infin-
itesimal part of the composition map. By definition, the infinitesimal composition
map γ(1) : P ◦(1) P → P of P is given by

γ(1) : P ◦(1) P = P ◦ (I;P)� P ◦ (I⊕ P)
IdP◦(η+IdP)−−−−−−−−→ P ◦ P γ−→ P.

It is the restriction of the composition map of the operad P where we only compose
two operations of P.

6.1.5. Infinitesimal composite of morphisms. Instead of linearizing the
underlying composite product of two S-modules, we keep it unchanged but we lin-
earize the composite of two morphisms.

Recall from 5.1.13 that for any pair f : M1 →M2, g : N1 → N2 of morphisms
of S-modules, their composite product f ◦g : M1 ◦N1 →M2 ◦N2 is given explicitly
by the formula

f ◦ g (µ; ν1, . . . , νk) := (f(µ); g(ν1), . . . , g(νk)) ,

where (µ; ν1, . . . , νk) represents an element of

M1(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik

(
N1(i1)⊗ · · · ⊗N1(ik)

))
,

cf. 5.1.11.
We define the infinitesimal composite of morphisms

f ◦′ g : M1 ◦N1 →M2 ◦ (N1;N2)

by the formula

f ◦′ g :=
∑
i

f ⊗
(
IdN1

⊗ · · · ⊗ IdN1
⊗ g︸︷︷︸

ith position

⊗IdN1
⊗ · · · ⊗ IdN1

)
.

The notation f ◦′ g, with the prime symbol, is called the infinitesimal composite
of f and g. This notion should not be confused with f ◦(1) g : M1 ◦(1) N1 →
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M2 ◦(1)N2. For instance, the involved domains are different. The main property of
this infinitesimal composite of morphisms is the following additivity property.

Proposition 6.1.6. For any morphisms f : M1 → M2 and g, h : N1 → N2 of
S-modules, we have

f ◦′ (g + h) = f ◦′ g + f ◦′ h in Hom(M1 ◦N1,M2 ◦ (N1;N2)).

When N1 = N2 = N , we still denote the composite

M1 ◦N →M2 ◦ (N ;N)→M2 ◦N

by f ◦′ g since the context is obvious.

6.1.7. Infinitesimal decomposition map of a cooperad. Dually, for any
cooperad (C,∆, η), we consider the projection of the decomposition map to the
infinitesimal part of the composite product C◦C. This map is called the infinitesimal
decomposition map of C and is defined by the following composite

∆(1) := C ∆−→ C ◦ C IdC◦′IdC−−−−−→ C ◦ (C; C) IdC◦(η;IdC)−−−−−−−→ C ◦ (I; C) = C ◦(1) C.

This map can be seen as a decomposition of an element of C into two parts.

6.2. Differential graded S-module

In this section, we extend the notion of S-module to the graded framework
and to the differential graded framework. The notion of infinitesimal composite of
morphisms plays a crucial role in the definition of the differential of the composite
product.

6.2.1. Graded S-module. A graded S-module M is an S-module in the cat-
egory of graded vector spaces. So the component of arity n is a graded Sn-module
{Mp(n)}p∈Z for any n. Equivalently M can be considered as a family of S-modules
{Mp}p∈Z. By abuse of notation, the direct sum is also denoted by M :

M = M• := · · · ⊕M0 ⊕M1 ⊕ · · · ⊕Mp ⊕ · · · .

Notice that a graded S-module M is a family indexed by two labels: the degree p
and the arity n. The degree of an element µ ∈M(n) is denoted by |µ|.

A morphism f : M(n) → N(n) of degree r of graded Sn-modules is a family
{fp}p∈Z of Sn-equivariant maps fp : Mp(n)→ Np+r(n). A morphism f : M → N
of degree r of graded S-modules is a family {f(n) : M(n) → N(n)}n≥0 of mor-
phisms of degree r of graded Sn-modules. The degree of f is the integer r and
is denoted by |f |. We denote by Homr

S(M,N) the set of morphisms of graded S-
modules of degree r.

The tensor product of S-modules is extended to graded S-modules by the for-
mula:

(M ⊗N)p(n) :=
⊕

i+j=n, q+r=p

Ind Sn
Si×Sj (Mq(i)⊗Nr(j)).

The composite product of two S-modules is extended to graded S-modules by the
following formula :

(M ◦N)p(n) :=
⊕
k≥0

Mq(k)⊗Sk

(⊕
Ind Sn

Si1×···×Sik

(
Nr1(i1)⊗ · · · ⊗Nrk(ik)

))
,
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where the first sum also runs over the k+ 1 tuples (q, r1, . . . , rk) such that q+ r1 +
· · ·+ rk = p and where the second sum runs over the k-tuples (i1, . . . , ik) such that
i1 + · · ·+ ik = n.

The S-module I := (0, K, 0, 0, . . .) is considered as a graded S-module concen-
trated in degree 0.

Proposition 6.2.2. With these definitions, the category of graded S-modules, with
the product ◦ and the unit I, form a monoidal category (see B.4) denoted gr S-Mod.

We denote by Ks the graded S-module (Ks, 0, 0, . . .), where Ks is concentrated
in degree 1 and arity 0. By definition the suspension of a graded S-module M is the
shifted graded S-module sM := Ks ⊗M , that is sMp(n) = Mp−1(n). We denote
an elementary tensor s⊗m by sm.

Similarly let Ks−1 be the graded S-module (Ks−1, 0, 0, . . .) concentrated in
degree −1 and arity 0. By definition, the desuspension of a graded S-module M is
the shifted graded S-module s−1M := Ks−1 ⊗M , that is s−1Mp(n) = Mp+1(n).
We denote an elementary tensor s−1 ⊗m by s−1m.

6.2.3. Differential graded S-module. A differential graded Sn-module
(
M(n), d)

is a graded Sn-module M(n) equipped with a differential d of Sn-modules

· · · d←M0(n)
d←M1(n)

d←M2(n)
d← · · · d←Mp(n)

d← · · ·

such that d2 = 0. A dg S-module is a family {M(n)}n≥0 of differential graded
Sn-modules. The differential d has degree −1. The homology groups H•(M) of a
dg S-module form a graded S-module.

A morphism f : (M,dM )→ (N, dN ) of differential graded S-modules is a mor-
phism f of graded S-modules of degree 0 which commutes with the differentials,
that is dN ◦ f = f ◦ dM . The differential S-modules with their morphisms form a
category denoted by dg S-Mod.

Let (M,dM ) and (N, dN ) be two dg S-modules. Their composite product M ◦N
is a graded S-module that we endow with a differential dM◦N defined as follows

dM◦N := dM ◦ IdN + IdM ◦′ dN .

Observe that the second summand uses the infinitesimal composite of morphisms.
Explicitly we get:

dM◦N (µ; ν1, . . . , νk) = (dM (µ); ν1, . . . , νk) +
k∑
i=1

(−1)εi(µ; ν1, . . . , dN (νi), . . . , νk),

where εi = |µ|+ |ν1|+ · · ·+ |νi−1|. It is an easy exercise to check that d2
M◦N = 0.

Proposition 6.2.4. Under these definitions, the composite of dg S-modules is a
monoidal product. So the category (dg S-Mod, ◦, I) is a monoidal category (see B.4).

The notions of infinitesimal composite products and infinitesimal composite
of morphisms extend to the differential graded framework. Their definitions are
straightforward and require only the use of the Koszul sign rule. Hence, we leave
it to the reader to fill in the details.
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Proposition 6.2.5 (Operadic Künneth formula). Let M,N be two dg S-modules.
Over a field K of characteristic 0, we have the following isomorphism of graded
S-modules

H•(M ◦N) ∼= H•(M) ◦H•(N).

Proof. Since we work over a characteristic zero field K, the ring K[Sn] is semi-
simple by Maschke’s theorem. Therefore every K[Sn]-module is projective, see, for
instance, Chapter 4.2 of [Wei94]. We apply this result to the explicit formula of
the composite product ◦. �

Corollary 6.2.6. Let M be a dg S-module. Over a field K of characteristic 0, we
have the following equivalence

H•(M) ∼= I ⇐⇒ H•(M(V )) ∼= V, ∀ V ∈ ModK.

Proof. By the preceding proposition, we have H•(M(V )) ∼= H•(M)(V ), for any
K-module V . We conclude with the Schur Lemma A.2.3. �

6.3. Differential graded operad

We extend the notions of operad, algebra over an operad, cooperad and coal-
gebra over a cooperad to the differential graded context. This is a generalization
of the dga algebra case of 1.5.

6.3.1. Differential graded operad. A graded operad P is a monoid in the
monoidal category of graded S-modules. The composition map γ : P ◦ P → P
and the unit map η : I → P are supposed to be of degree 0. Let M be a graded
S-module concentrated in weight 1. The grading on M induces a natural grading
on the free operad T (M) on M , see Section 5.4.4. Since the composition product
of the free operad preserves this grading, the free operad is a graded operad.

A differential graded operad (P, γ, η), dg operad for short, is a monoid in the
monoidal category (dg S-Mod, ◦, I), that is (P, γ, η) is a graded operad structure on
a dg S-module (P, dP) such that γ : P ◦ P → P and η : I → P are morphisms of
dg S-modules of degree 0. The composite map γ is a morphism of dg S-modules if
and only if the following diagram commutes

P ◦ P
dP◦P

��

γ // P
dP

��
P ◦ P

γ // P.
Explicitly, it means that dP is a derivation on the graded operad P :

dP(γ) = γ(dP◦P) = γ(dP ◦ IdP) + γ(IdP ◦′ dP).

Observe that we have written the composition of morphisms as concatenation to
avoid confusion with the two various meaning of ◦.

Applied to operations, it gives

dP(γ(µ ; µ1, . . . , µk)) := γ(dP(µ); µ1, . . . , µk) +
k∑
i=1

(−1)εiγ(µ; µ1, . . . , dP(µi), . . . , µk),

where εi = |µ| + |µ1| + · · · + |µi−1|. So a dg operad is a graded operad endowed
with a square-zero derivation.
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For example, let (A, dA) be a chain complex. The differential of EndA(n) is
given by

∂A(f) := [dA, f ] = dA ◦ f − (−1)|f |f ◦ dA⊗n : A⊗n → A ,

where dA⊗n is, as usual, induced by dA,

dA⊗n := (dA, id, . . . , id) + · · ·+ (id, . . . , id, dA, id, . . . , id) + · · ·+ (id, . . . , id, dA) .

With this definition, (EndA, ∂A) becomes a dg operad.

Proposition 6.3.2. When the characteristic of the ground field K is 0, the under-
lying homology groups H(P) of a dg operad P carry a natural operad structure.

Proof. It is a direct application of the Künneth formula for the tensor product ⊗.
�

An augmented dg operad is a dg operad P equipped with a morphism ε : P → I
of dg operads (of degree 0), called the augmentation morphism. It sends id ∈ P(1)
to id ∈ I(1).

The notion of infinitesimal composition product of 6.1.5 extends naturally to
the differential graded framework.

6.3.3. Infinitesimal tree module. Like in Section 6.1.5, we need to linearize
the tree module functor in order to do homological algebra with operads.

LetM andN be two S-modules. The tree module on their direct sum T (M⊕N)
defines a functor from (S−Mod)2 to S−Mod. We consider the sub-functor whose
image is defined by the linear part of T (M⊕N) in N and we denote it by T (M ;N).
In fact, we will work with its augmented version

T (M ;N) := I⊕ T (M ;N) = I⊕N ⊕ (M ◦(1) N ⊕N ◦(1) M)⊕ · · · .
We call this construction the infinitesimal tree module. It is explicitly given by the

sum of trees whose vertices are indexed by elements of M except exactly one which
is indexed by an element of N .

Proposition 6.3.4. For any graded S-modules M , N and N ′, we have

I ⊕ T (M ;N ⊕N ′) = T (M ;N)⊕ T (M ;N ′).

Let E be an S-module. The natural diagonal map, diag : E → E⊕E, induces
the following morphism

∆E := T (E)
T (diag)−−−−−→ T (E ⊕ E)� T (E;E).

This application singles out every vertex of a tree together with its indexing element
of E.

6.3.5. Quasi-free operad. We make explicit the notion of derivation on free
operads.

Proposition 6.3.6. Let E be a graded S-module. Any derivation on the free operad
T (E) is completely characterized by the image of the generators: E → T (E). Ex-
plicitly, the unique derivation on T (E), which extends a morphism ϕ : E → T (E),
is given by the following composite

dϕ = T (E)
∆E

−−→ T (E;E)
T (IdE ;ϕ)−−−−−−→ T (E; T (E))→ T (T (E))→ T (E),

where the last map is the composition in the free operad, i.e. grafting of trees.
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Proof. We prove by induction on n that the image under any derivation d of any
element of T (E)(n) is characterized by the restriction d|E : E → T (E). The
property obviously holds for n = 1. Suppose that it is true up to n. Any element
of T (E)(n+1) is the image under the composition map T (E) ◦ T (E) → T (E) of
elements of T (E)(k) with k ≤ n. Hence the value of d on T (E)(n+1) is well-
determined.

Since the restriction of dϕ on E is equal to ϕ, it is enough to verify that dϕ
is a derivation, which is left to the reader. Then one concludes by the uniqueness
property. �

When representing an element of T (E) by a labelled tree, its image under dϕ
is the sum of labelled trees, where ϕ has been applied once and only once.

Such dg operads are called quasi-free operads. It means that the underlying
graded operad, forgetting the differential, is free.

6.3.7. Models for operads. Let P be a dg operad. A model for P is a dg
operad M with a morphism of dg operads M ∼−→ P that induces an isomorphism
in homology. When M is quasi-free, it is called a quasi-free model . In that case,
if the differential d of M = T (E) is decomposable, that is d(E) ⊂ T (E)(≥2), M is
called a minimal model of P.

Theorem 6.3.8. [Mar96b] Under some assumptions, any dg operad admits a
minimal model, which is unique up to isomorphism.

Proof. The proof can be found in Section 3.10 of [MSS02]. �

If the differential d has only quadratic terms, that is d(E) ⊂ T (E)(2), then it
is called quadratic. The purpose of the Koszul duality theory of the next chapter
is to make quadratic models explicit.

6.3.9. P-algebra in the differential graded framework. In Section 5.2.3,
we defined the notion of an algebra over an operad. We extend this definition to
the dg framework here.

By definition, a dg P-algebra is a chain complex A = (A, dA) endowed with a
morphism of dg operads f : P → EndA. When (P, dP) is a dg operad, each P(n)
is a chain complex whose differential is still denoted by dP .

Hence the differential maps are related by the formula

f(dP(µ)) = [dA, f(µ)] := dA ◦ f(µ)− (−1)|µ|f(µ) ◦ dA⊗n : A⊗n → A ,

with µ ∈ P(n).
The underlying homology H(A, dA) of a dg P-algebra is called the homotopy

of the dg P-algebra A.

Proposition 6.3.10. Let P be an operad. The homotopy H(A) of a dg P-algebra
A carries a natural P-algebra structure.

Proof. There is a natural induced map P → EndH(A), which makes the homotopy
H(A) into a P-algebra. �

When P is a dg operad and when the characteristic of the ground field K is 0,
the homotopy H(A) is an H(P)-algebra.
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6.3.11. Derivation of a P-algebra. Since

Homdg S-Mod(P,EndA) ∼= Homdg Mod(P(A), A) ,

a structure of dg P-algebra on A is equivalently given by a morphism of dg modules
γA : P(A)→ A, which satisfies the same commutative diagrams as in Section 5.2.3.
Recall that the differential on P(A) = P ◦A is equal to dP ◦ IdA + IdP ◦′ dA. The
linear map dA : A → A is called a derivation of the P-algebra A if it makes the
following diagram commutative:

P ◦A

dP◦IdA+IdP◦′dA
��

γA // A

dA

��
P ◦A

γA // A .

In other words, a dg P-algebra is a P-algebra with a square-zero derivation.
We denote the space of derivations on a P-algebra A by Der(A). The com-

posite d d′ of two derivations does not give a derivation in general. But it is the
case of the associated Lie bracket [d, d′] := d d′ − (−1)|d||d

′|d′ d, obtained by anti-
symmetrization. In the particular case of the free P-algebra over an n-dimensional
vector space, we denote by

gln(P) := (Der(P(Kx1 ⊕ · · · ⊕Kxn)), [ , ])

the Lie algebra of derivations.

Proposition 6.3.12. Any derivation d on a free P-algebra P(V ) is completely
characterized by its restriction on the generators, V → P(V ):

Der(P(V )) ∼= Hom(V,P(V ))

Explicitly, given a map ϕ : V → P(V ), the unique derivation dϕ on the free P-
algebra P(V ), which extends ϕ, is given by

dϕ = dP ◦ IdV + (γ(1) ◦ IdV )(IdP ◦′ ϕ),

where the last term is equal to the following composite

P(V )
IdP◦′ϕ−−−−→ P ◦ (V ;P(V )) ∼= (P ◦(1) P)(V )

γ(1)◦IdV−−−−−→ P(V ).

Proof. By the definition of a derivation, the following diagram commutes

P ◦ I(V )

dP◦IdV +IdP◦′d
��

γ◦IdV // P(V )

d

��
P(V )⊕ P ◦ (V ;P(V )) // (P ◦(1) P)(V )

γ(1)◦IdV // P(V ).

Since the top map P ◦ I(V ) → P(V ) is an isomorphism, d is characterized by the
image of the generators I(V ) = V . This diagram also shows that, if we denote
by ϕ this restriction, then the total differential is equal to d = dP ◦ IdV + (γ(1) ◦
IdV )(IdP ◦′ ϕ). �
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6.3.13. Differential graded cooperad. Dually, a graded cooperad C is a
comonoid in the monoidal category (gr S-Mod, ◦, I). It is defined by a coassociative
decomposition map ∆ : C → C ◦ C and a counit map ε : C → I, both of degree 0,
on a graded S-module C. Consider a graded S-module M concentrated in weight
1. This induces a natural grading on the cofree connected cooperad on M , see
Section 5.7.7, which makes it into a graded cooperad.

A differential graded cooperad (C,∆, ε), dg cooperad for short, is a comonoid in
the monoidal category (dg S-Mod, ◦, I). The structure map ∆ and ε commute with
the respective differentials. It means, for instance, that the following diagram is
commutative

C
dC

��

∆ // C ◦ C
dC◦C

��
C ∆ // C ◦ C.

We define a coderivation dC on a graded cooperad C to be a morphism of S-modules
C → C such that

∆(dC) = dC◦C(∆) = dC ◦ IdC(∆) + IdC ◦′ dC(∆).

Recall that for (C,∆) a cooperad, the image of an element c ∈ C under the decom-
position map ∆ is written

∆(c) =
∑

(c; c1, . . . , ck) ,

see Chapter 5 Section 5.7.1. Under this notation, dC is a coderivation if and only if

∆(dC(c)) =
∑(

(dC(c); c1, . . . , ck) +

k∑
i=1

(−1)νi(c; c1, . . . , dC(ci), . . . , ck)
)
,

where νi = |c|+ |c1|+ · · ·+ |ci−1|. The decomposition map ∆ : C → C◦C commutes
with the differential dC if and only if dC is a coderivation of C.

When a dg cooperad C is equipped with a coaugmentation, that is a morphism
η : I → C of dg cooperads of degree 0, C is called a coaugmented dg cooperad. A
coaugmented dg cooperad is conilpotent when its coradical filtration is exhaustive,
as in 5.7.6.

The notion of infinitesimal decomposition coproduct of 6.1.7 extends naturally
to the differential graded framework.

6.3.14. Quasi-cofree cooperad. We make explicit coderivations on cofree
cooperads as follows.

Let E be a graded S-module. Recall from 5.7.12, that the S-module T c(T c(E))
is made up of trees of non-trivial trees, whose vertices are labelled by elements of
E. The map

∆(E) : T c(E)→ T c(T c(E))

associates to a tree t labelled by E, the sum of all the partitioned trees coming
from t.

Proposition 6.3.15. Let E be a graded S-module. Any coderivation on the cofree
cooperad T c(E) is completely characterized by its projection on the cogenerators
projE ◦ d : T c(E)→ E.
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Explicitly, the unique coderivation on T c(E) which extends a morphism ϕ :
T c(E)→ E is given by the following composite

dϕ = T c(E)
∆(E)−−−→ T c(T c(E))

∆T
c(E)

−−−−−→ T c(T c(E); T c(E))
T c(projE ;ϕ)−−−−−−−−→
T c(E;E)→ T c(E).

Proof. The proof of this proposition is dual to the proof of Proposition 6.3.6. �

With the tree representation of T c(E), the coderivation dϕ consists in apply-
ing the map ϕ to any sub-tree of T c(E). A square-zero coderivation is called a
codifferential.

Any cooperads, whose underlying graded cooperad is cofree, is called a quasi-
cofree cooperad .

6.3.16. C-coalgebra in the differential graded framework. By defini-
tion, a dg C-coalgebra is a chain complex C = (C, dC) equipped with a morphism

∆C : C → Ĉ(C) of chain complexes which satisfies the same commutative dia-
grams as in Section 5.7.3. If the map ∆C factors though C → C(C), then the dg
C-coalgebra is called conilpotent.

Any map dC on C such that the following diagram commutes

C

dC

��

∆C // Ĉ(C) = C◦̂C

dC◦IdC+IdC ◦̂′dC
��

C
∆C // Ĉ(C) = C◦̂C

is called a coderivation of the C-coalgebra C. A square-zero coderivation of a C-
coalgebra is called a codifferential. Hence a dg C-coalgebra is a C-coalgebra with
a square-zero coderivation. We denote the set of coderivations on a C-coalgebra C
by Coder(C) and the set of codifferentials by Codiff(C).

Proposition 6.3.17. Any coderivation d on a cofree C-coalgebra C(V ) is completely
characterized by its projection onto the space of the cogenerators projV ◦d : C(V )→
V .

Coder(C(V )) ∼= Hom(C(V ), V )

Explicitly, given a map ϕ : C(V ) → V , the unique coderivation dϕ on the cofree
C-coalgebra C(V ) which extends ϕ is given by

dϕ = dC ◦ IdV + (IdC ◦ (IdV ;ϕ))(∆(1) ◦ IdV ),

where the last term is equal to the following composite

C(V )
∆(1)◦IdV−−−−−−→ (C ◦(1) C)(V ) ∼= C ◦ (V ; C(V ))

IdC(IdV ;ϕ)−−−−−−−→ C ◦ (V ;V )→ C(V ).

Proof. This proposition is the exact dual of Proposition 6.3.12. �

6.3.18. P-module in the differential graded framework. In this section,
we extend the notion of module over an operad of Section 5.2.2 to the dg framework
here. This notion will play an important role in the next section.

A differential graded left (resp. right) module over a dg operad (P, dP) is a dg
S-module (M,dM ) equipped with a left action λ : P ◦M →M (resp. right action
ρ : M ◦ P → M) which commutes with the respective differentials. In this case,
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the boundary map dM is called a derivation. A dg left P-module concentrated in
arity 0 is nothing but a dg P-algebra (see 6.3.9).

Let N be a dg S-module. The free dg left (resp. right) P-module on N is
given by (P ◦ N, dP◦N ) (resp. (N ◦ P, dN◦P)). The following proposition extends
Proposition 6.3.12 and Proposition 1.5.13. It shows that any derivation on a free
P-module is completely characterized by its restriction to the generators.

Proposition 6.3.19. Let (P, dP) be a dg operad and let N be a graded S-module.
There is a one-to-one correspondence between derivations on the dg free P-modules
P ◦N or N ◦ P and their restriction to the space of generators N . More precisely,

� the unique derivation dϕ : P ◦N → P ◦N which extends ϕ : N → P ◦N
is given by

dϕ = dP ◦ IdN + (γ(1) ◦ IdN )(IdP ◦′ ϕ);

� the unique derivation dϕ : N ◦P → N ◦P which extends ϕ : N → N ◦P
is given by

dϕ = IdN ◦′ dP + (IdN ◦ γ)(ϕ ◦ IdP).

Proof. The proof is similar to the ones of Proposition 6.3.12 and Proposition 1.5.13.
�

6.3.20. Weight grading. In the next section, we will need an extra grading
to prove the main theorem 6.6.2. We will require that the underlying S-module of
an operad, of a cooperad or of a module, has an extra grading, which we call weight
grading to avoid confusion with the homological degree. This means that every dg
S-module is a direct sum of sub-dg S-modules indexed by this weight. For instance,
a weight-graded dg operad , wgd operad for short, is an operad structure on a weight-
graded dg S-module P. Its product is supposed to preserve the weight grading. We

denote by P(ω)
p the sub-module of degree p and weight ω of P. Similarly, there

is the notion of weight-graded dg cooperad C, wgd cooperad for short, which is a
cooperad structure on a weight graded dg S-module C. In this context, morphisms
are supposed to respect the weight grading.

In this book, the weight grading and the homological degree are non-negative
gradings. A wdg operad is called connected if it decomposes as

P := K id⊕ P(1) ⊕ · · · ⊕ P(ω) ⊕ · · ·

with P(0) = K id concentrated in degree 0. The same definition holds for wdg
cooperad if it satisfies the same decomposition. A connected wdg cooperad is
conilpotent.

6.4. Operadic twisting morphism

In this section, we define the notion of twisting morphism from a dg cooperad C
to a dg operad P. It is a solution of the Maurer-Cartan equation in the convolution
dg (pre-)Lie algebra HomS(C,P). Then, we show how to twist the differential of
the composite products C ◦ P, P ◦ C, and P ◦ C ◦ P with such a twisting morphism
to obtain an operadic twisted complex.
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6.4.1. Convolution operad. Let (C,∆, ε) be a cooperad and (P, γ, η) be an
operad. We consider the graded module

Hom(C,P) := {HomK(C(n),P(n))}n≥0.

It becomes a right S-module under the action by conjugation:

(fσ)(x) :=
(
f(xσ

−1

)
)σ
,

for f ∈ Hom(C(n),P(n)), σ ∈ Sn and x ∈ C(n).

Proposition 6.4.2. The S-module Hom(C,P) is an operad.

Proof. The proof is a generalization of the arguments of Section 1.6.1. Let f ∈
Hom(C(k),P(k)) and let gi ∈ Hom(C(il),P(il)) for 1 ≤ l ≤ k. As usual n =
i1 + · · ·+ ik. We define the composition map γ(f ; g1, . . . , gk) by the formula

C(n)
∆C−−→ (C ◦ C)(n)� C(k)⊗ C(i1)⊗ · · · ⊗ C(ik)⊗K[Sn]

f⊗g1⊗···⊗gk⊗Id−−−−−−−−−−−→
P(k)⊗ P(i1)⊗ · · · ⊗ P(ik)⊗K[Sn]→ (P ◦ P)(n)

γP−−→ P(n).

�

The operad Hom(C,P) is called the convolution operad and is due to C. Berger and
I. Moerdijk [BM03a]. This construction generalizes to operads the convolution al-
gebra Hom(C,A) of Section 1.6.1 from a coalgebra C and an algebra A is an algebra.

We suppose now that (P, dP) is a dg operad and that (C, dC) is a dg cooperad,
For a homogeneous morphism f : C → P of dg S-modules of degree |f |, we define
its derivative ∂(f) by the classical formula

∂(f) = [d, f ] := dP ◦ f − (−1)|f |f ◦ dC .

Proposition 6.4.3. The convolution operad
(
Hom(C,P), ∂

)
is a dg operad.

Proof. The map ∂ squares to zero,∂2 = 0, and it is a derivation with respect to the
operadic composition on Hom(C, P). The proof is a straightforward generalization
of Proposition 2.1.2. �

6.4.4. Operadic convolution dg Lie algebra. Recall from 5.3.16 the com-
posite of functors

Op→ preLie-alg→ Lie-alg ,

where the underlying objects are P 7→
∏
n≥0 P(n). It extends to the differential

graded framework

dg Op→ dg preLie-alg→ dg Lie-alg .

In the case of convolution operads, the pre-Lie product can be made explicit as
follows.

Proposition 6.4.5. The pre-Lie product f?g of two elements f and g in
∏
n≥0 Hom(C,P)(n)

is equal to the following composite

f ? g = C
∆(1)−−−→ C ◦(1) C

f◦(1)g−−−−→ P ◦(1) P
γ(1)−−→ P.

Proof. The proof is a straightforward application of the definition of the composition
map in the convolution operad, Proposition 6.4.2, with the definition of the pre-Lie
product associated to an operad, Proposition 5.3.16 . �
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The space of invariant elements of Hom(C(n),P(n)) under the conjugation ac-
tion of the symmetric group Sn is equal to the subspace HomSn(C(n),P(n)) of
Sn-equivariant morphisms from C(n) to P(n). We denote by

HomS(C,P) :=
∏
n≥0

HomSn(C(n),P(n))

the associated product of S-equivariant maps.

Lemma 6.4.6. The space HomS(C,P) is stable under the pre-Lie product associated
to the convolution operad Hom(C,P).

Proof. The pre-Lie product was proved to be equal to the composite of S-equivariant
maps in the previous proposition. �

To sum up, we have proved the following result.

Proposition 6.4.7. Let P be a dg operad and C be a dg cooperad. The product
space of S-equivariant maps (

HomS(C,P), ?, ∂
)

is a dg pre-Lie algebra. The associated Lie bracket induces a dg Lie algebra structure(
HomS(C,P), [ , ], ∂

)
.

The latter dg Lie algebra associated to the convolution operad is called the
convolution dg Lie algebra.

6.4.8. Maurer-Cartan equation, operadic twisting morphism. As usual,
the Maurer-Cartan equation in the dg pre-Lie algebra HomS(C,P) reads

∂(α) + α ? α = 0 .

A solution α : C → P of degree −1 of this equation is called an operadic twist-
ing morphism. We denote by Tw(C,P) the space of twisting morphisms for C to
P. We will simply say twisting morphism if no confusion can arise. When C is a
coaugmented dg cooperad, we require that the composition of an operadic twisting
morphism with the coaugmentation map vanishes: αη = 0. Respectively, when P
is an augmented dg operad, we require that the composition of an operadic twisting
morphism with the augmentation map vanishes: ε α = 0.

Since 2 is invertible in the ground ring, we have α ? α = 1
2 [α, α], this equation

is equivalent to the classical Maurer-Cartan equation ∂(α) + 1
2 [α, α] = 0 in the

associated dg Lie algebra. When C and P are concentrated in arity 1, we recover the
notion of twisting morphism between dga algebras and dga coalgebras of Section 2.1.

6.4.9. Twisted structure on the Hom space. Recall from Lemma 2.1.5
that, in any dg Lie algebra, every solution α of the Maurer-Cartan equation gives
rise to a twisted differential ∂α(f) := ∂(f) + [α, f ] on HomS(C,P). We denote this
twisted chain complex by Homα

S (C,P) :=
(
HomS(C,P), ∂α

)
.

Proposition 6.4.10. The triple
(
Homα

S (C,P), [ , ], ∂α
)

is a dg Lie algebra.

Proof. It is a direct corollary of Lemma 2.1.5. �

We call this new dg Lie algebra the twisted convolution Lie algebra.
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6.4.11. Twisted composite products. In this section, we study dg free
P-modules over C.

In Proposition 6.3.19, we showed that the derivations on P ◦ C and on C ◦ P
are characterized by their restrictions to C. To any map α : C → P, of degree −1,
we associate the following derivations.

On C ◦ P: we consider the unique derivation which extends

C
∆(1)−−−→ C ◦(1) C

IdC◦(1)α−−−−−→ C ◦(1) P → C ◦ P .

It is explicitly given by drα = (IdC ◦ γ)([(IdC ◦(1) α)∆(1)] ◦ IdP).

drα : C ◦ P
∆(1)◦IdP−−−−−−→ (C ◦(1) C) ◦ P

(IdC◦(1)α)◦IdP−−−−−−−−−−→ (C ◦(1) P) ◦ P ∼=

C ◦ (P;P ◦ P)
IdC◦(IdP ;γ)−−−−−−−→ C ◦ (P;P) ∼= C ◦ P

Using the tree representation, without the top leaves, it has the following
form

P
@@@@ P P

~~~~

C
∆(1)−−−→

P P P
~~~~

@@@@@@ C
_ _�
�

�
�_ _

C

α−→

P P P
~~~~

@@@@@@ P
_ _�
�

�
�_ _

C

∼=

P P
~~~~

P
@@@@ P

C

γ−→

P
@@@@ P

C ,

where the dotted box stands for ∆(1), the dashed box stands for α and
the final box stands for γ.

We consider the full derivation

dα = dC ◦ IdP + IdC ◦′ dP + drα,

where dr is the twisting term.

On P ◦ C: we consider the unique derivation which extends

C ∆−→ C ◦ C α◦IdC−−−−→ P ◦ C .
It is explicitly given by dlα = (γ(1) ◦ IdC)(IdP ◦′ [(α ◦ IdC)∆]). We consider
the full derivation

dα = dP ◦ IdC + IdP ◦′ dC + dlα,

where dlα is the twisting term.

Lemma 6.4.12. On P ◦ C, the derivation dα satisfies

dα
2 = dl∂(α)+α?α
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and on C ◦ P, the derivation dα satisfies

dα
2 = dr∂(α)+α?α.

In both cases, α ∈ Tw(C,P) if and only if dα
2 = 0.

Proof. The proof is based on the relations [dlα, d
l
β ] = dl[α,β] and [drα, d

r
β ] = dr[α,β] and

is similar to the proof of Lemma 2.1.8. �

When α : C → P is a twisting morphism,the map dα is a differential defining
the chain complex

P ◦α C := (P ◦ C, dα = dP◦C + dlα) ,

which is called the left twisted composite product. In the other way round, the chain
complex

C ◦α P := (C ◦ P, dα = dC◦P + drα)

is called the right twisted composite product. Since the context is obvious, we
denote by the same symbol the two differentials. It is a direct generalization of
the twisted tensor product of Section 2.1.7. As in the case of dga (co)algebras,
these two constructions are not isomorphic. In the operadic case, the underlying
S-modules P ◦ C and C ◦ P are not even isomorphic since the composite product is
not symmetric.

These constructions are functorial as follows. We consider C ◦α P and C′ ◦α′ P ′
two twisted composite products. Let g : P → P ′ be a morphism of dg operads and
let f : C → C′ be a morphism of dg cooperads. These morphisms are compatible
with the twisting morphisms if α′ ◦ f = g ◦ α:

C
f //

α

��

C′

α′

��
P

g // P ′.

We leave it to the reader to show that, in this case, f ◦ g : C ◦α P → C′ ◦α′ P ′
induces a morphism of chain complexes.

When C and P are weight graded, we ask that the twisting morphisms α pre-
serve the weight. In this case, if two among these three morphisms are quasi-
isomorphisms, then so is the third one. This result comes essentially from Fresse
[Fre04].

Lemma 6.4.13 (Comparison Lemma for twisted composite products). Let g :
P → P ′ be a morphism of wdg connected operads and f : C → C′ be a morphism
of wdg connected cooperads. Let α : C → P and α′ : C′ → P ′ be two twisting
morphisms, such that f and g are compatible with α and α′.

Right: If two morphisms among f , g and f ◦ g : C ◦α P → C′ ◦α′ P ′ are quasi-
isomorphisms, then so is the third one.

Left: If two morphisms among f , g and g ◦ f : P ◦α C → P ′ ◦α′ C′ are quasi-
isomorphisms, then so is the third one.

Proof. We prove this theorem later in Section 6.7. �
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6.5. Operadic Bar and Cobar construction

Are the functors Tw(C,−) and Tw(−,P) representable ? In this section, we
define the bar and the cobar constructions, which give a positive answer to this
question. A direct corollary proves that they form a pair of adjoint functors. The
constructions are the generalization to the operadic case of the constructions given
in 2.2 in the algebra context. This section comes from [GJ94, GK94].

6.5.1. Bar construction. In this section, we define a functor

B : {aug. dg operads} −→ {con. dg cooperads}

from the category of augmented dg operads to the category of conilpotent dg co-
operads called the bar construction.

Let P := (P, γ, η, ε) be an augmented operad. Consider its augmentation ideal,
that is P := ker(ε : P → I). The S-module P is naturally isomorphic to P = I⊕P.
The bar construction BP of P is a dg cooperad, whose underlying space is the
cofree cooperad T c(sP) on the suspension of P.

We consider the map γs : Ks⊗Ks→ Ks of degree −1 defined by γs(s⊗s) := s.
The infinitesimal composition map, that is the restriction of the composition map
of P on two operations, see 6.1.4, induces the following map

d2 : T c(sP)� T c(sP)(2) ∼= (Ks⊗ P) ◦(1) (Ks⊗ P)

Id⊗τ⊗Id−−−−−−→ (Ks⊗Ks)⊗ (P ◦(1) P)
γs⊗γ(1)−−−−−→ Ks⊗ P.

Since T c(sP) is a cofree cooperad, there exists a unique coderivation T c(sP)→
T c(sP) which extends d2 by Proposition 6.3.15. By a slight abuse of notation, we
still denote it by d2.

Proposition 6.5.2. The map d2 is a differential: d2
2 = 0.

Proof. It is a direct consequence of the relation satisfied by the infinitesimal com-
position map γ(1) and the Koszul sign rules. �

The chain complex BP := (T c(sP), d2) is a conilpotent dg cooperad, called
the bar construction of the augmented operad P. It is a functor from the category
of augmented operads to the category of coaugmented dg cooperads.

We extend this definition to dg operads as follows. Let P = (P, dP) be a dg
operad. The differential dP on P induces an internal differential d1 on T c(sP),
that is d1

2 = 0. Since (P, dP) is a dg operad, the infinitesimal composition map
commutes with the differential dP . The differentials d1 and d2 anti-commute : d1 ◦
d2 +d2 ◦d1 = 0. The total complex of this bicomplex is called the bar construction:

BP := (T c(sP), d = d1 + d2)

of the augmented dg operad (P, dP).

Proposition 6.5.3. Under the tree representation of the cofree cooperad, the bound-
ary map d2 is the sum of the contractions of the internal edges with the composition
of the two elements indexing the two extremal vertices of each edge.

Proof. Since the differential d2 is the unique coderivation extending the (suspended)
infinitesimal product of P, the proposition is a direct corollary of Proposition 6.3.15.
�
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Figure 1. The boundary map d2 of the operadic bar construction

Such a chain complex is an example of graph complex à la Kontsevich [Kon03],
see C.4.2.

Proposition 6.5.4. When the characteristic of the ground field K is 0, the operadic
bar construction preserves quasi-isomorphisms.

Proof. We use the same kind of filtration as in the proof of Proposition 2.2.4, but
based on the number of vertices of trees this time. The characteristic 0 assumption
ensures that we can apply the Künneth formula. �

6.5.5. Cobar construction. Dually we construct a functor

Ω : {coaug. dg cooperads} −→ {aug. dg operads}
from the category of coaugmented dg cooperads to the category of augmented dg
operads called the cobar construction.

Let C := (C,∆, ε, η) be a cooperad. Recall that the coaugmentation coideal of
C is C := coker(η : I → C). In this case, C splits naturally as C ∼= I ⊕ C. The
cobar construction ΩC of C is an augmented dg operad defined on the free operad
T (s−1C) over the desuspension of C.

Consider Ks−1 equipped with the diagonal map ∆s : Ks−1 → Ks−1 ⊗ Ks−1

defined by the formula ∆s(s
−1) := s−1 ⊗ s−1 of degree −1. The infinitesimal

decomposition map ∆(1) of C, defined in 6.1.7 by the projection of ∆ on C ◦(1) C ,

induces a map d2 on s−1C = Ks−1 ⊗ C as follows

d2 : Ks−1 ⊗ C
∆s⊗∆(1)−−−−−−→ (Ks−1 ⊗Ks−1)⊗ (C ◦(1) C)

Id⊗τ⊗Id−−−−−−→
(Ks−1 ⊗ C) ◦(1) (Ks−1 ⊗ C) ∼= T (s−1C)(2) � T (s−1C).

Since we work with the free operad T (s−1C) over the desuspension s−1C, the
map d2 : s−1C → T (s−1C) extends to a unique derivation on T (s−1C) by Proposi-
tion 6.3.6. We still denote it by d2 : T (s−1C)→ T (s−1C).

Proposition 6.5.6. The map d2 is a differential: d2
2 = 0.
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Proof. The infinitesimal decomposition map ∆(1) shares dual relations with the
infinitesimal composition map of an operad. These relations and Koszul sign rules
give the result. �

Finally, ΩC := (T (s−1C), d2) is a dg operad, called the cobar construction of
the cooperad C. It is a functor from the category of coaugmented cooperads to the
category of augmented dg operads.

One easily extends this functor to coaugmented dg cooperads C = (C, dC) by
adding to d2 the internal differential d1 induced by the differential dC . Since the
infinitesimal decomposition map ∆(1) of C is a morphism of chain complexes, the
differentials d2 and d1 anticommute and one has a well-defined bicomplex. The
total complex of this bicomplex is called the cobar construction of the dg cooperad

ΩC := (T (s−1C), d := d1 + d2).

Proposition 6.5.7. The elements of the free operad T (s−1C) can be represented by
trees with vertices indexed by elements of s−1C. The image of such a tree under the
boundary map d2, is the sum over the vertices ν of the (desuspended) infinitesimal
decomposition map of C applied to the element indexing the vertex ν.

Figure 2. The boundary map d2 of the operadic cobar construction

Proof. It is a direct corollary of the description of the free derivation on a free
operad of Proposition 6.3.6. �

Once again, the cobar construction of a cooperad is a graph homology à la
Kontsevich. The boundary map consists in expanding each vertex into two.

A non-negatively graded dg cooperad C is called 2-connected if C0 = I and
C1 = 0.

Proposition 6.5.8. When the characteristic of the ground field K is 0, the operadic
cobar construction preserves quasi-isomorphisms between 2-connected dg cooperads.

Proof. We use the same kind of filtration as in the proof of Proposition 2.2.7, but
based on the number of vertices of trees this time. �
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This result does not hold when the dg cooperads are not 2-connected as Propo-
sition 2.4.3 shows.

6.5.9. Bar-Cobar adjunction. We show that the operadic bar and cobar
constructions form a pair of adjoint functors

Ω : {aug. dg cooperads}
 {coaug. dg operads} : B .

More precisely, this adjunction is given by the set of twisting morphisms.

Theorem 6.5.10. For every augmented dg operad P and every conilpotent dg
cooperad C, there exist natural isomorphisms

Homdg Op (ΩC, P) ∼= Tw(C, P) ∼= Homdg coOp (C, BP) .

Proof. We make explicit the first isomorphism, the second one being dual. If
we forget the differentials, then ΩC is the free operad T (s−1C). Therefore any
morphism of operads f : ΩC → P is characterized by its restriction f̄ on the
generators s−1C. We denote by s−1f̄ : C → P the induced map of degree −1.
The map f is a morphism of dg operads. It means that it commutes with the
differentials:

s−1C
f̄ //

d1+d2
��

P
dP

��
s−1C ⊕ s−1C ◦(1) s

−1C
f̄+γ(1)(f̄◦(1)f̄)

// P.

This is equivalent to ∂(s−1f̄) + (s−1f̄) ? (s−1f̄) = 0, which is the Maurer-Cartan
equation for s−1f̄ . �

Otherwise stated, the functor Tw(C,−) is represented by ΩC and the functor
Tw(−,P) is represented by BP.

6.5.11. Universal twisting morphisms. We denote by υ : C → BΩ C the
unit of this adjunction, obtained with P = ΩC and IdΩC on the left hand side. In
this case, the corresponding twisting morphism is denoted by ι : C → ΩC. It is
universal among the set of twisting morphisms: any twisting morphism α : C → P
factorizes uniquely through ι.

Dually, we denote by ε : ΩBP → P the counit, obtained with C = BP and
IdBP on the right hand side. The associated twisting morphism is denoted by
π : BP → P. It satisfies the following universal property: any twisting morphism
α : C → P factors uniquely through π.

Proposition 6.5.12. Any twisting morphism α : C → P factorizes uniquely
through the universal twisting morphisms π and ι as follows

ΩC
gα

!!C
C

C
C

C

fα !!C
C

C
C

ι

=={{{{{{{{ α // P

BP.
π

=={{{{{{{{

where gα is a dg operads morphism and where fα is a dg cooperads morphism.
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6.5.13. Augmented bar and cobar construction. Let P be an augmented
dg operad. Recall that its bar construction BP is a dg cooperad whose underlying
space is T c(sP). The universal twisting morphism π is equal to the following
composite

π : T c(sP)� sP s−1

−−→ P � P.
The associated twisted composite product BP ◦π P is a dg S-module, with the
twisted differential dπ of 6.4.11, is called the augmented bar construction of P.

Dually, let C be a coaugmented dg cooperad. Its cobar construction ΩC =(
T (s−1C), d

)
is a dg operad and the universal twisting morphism ι is given explicitly

by the composite

C � C s−1

−−→ s−1C � T (s−1C).
The resulting dg S-module (C◦ιΩC, dι) is called the coaugmented cobar construction
of C.

Lemma 6.5.14. The chain complexes

P ◦π BP, BP ◦π P, C ◦ι ΩC, ΩC ◦ι C
are acyclic.

Proof.
Left composite product P ◦π BP. Since the composite product ◦ is linear on

the left, we can use the same kind of contracting homotopy h as in the proof of
Proposition 2.2.13. Let (µ; t1, . . . , tk) represent an element of P ◦BP = P ◦T c(sP).
We define its image under h by the formula h(µ; t1, . . . , tk) := (I; t′), where t′ is
the tree obtained by grafting t1, . . . , tk above the vertex sµ. The restriction of h to
I ◦ BP is null. Therefore, the map h is well defined from P ◦ BP to itself and has
degree 1. We leave it to the reader to verify that it is a homotopy from Id to 0:
hdπ + dπh = Id.

Right composite product BP ◦π P. We need to refine the arguments since there
are more than one element of P on the right hand side of the product. For any

n ∈ N, we consider the subspace
(
BP ◦π P

)(n)
made up of trees with exactly

n non-trivial vertices, that is vertices indexed by elements of P. We define the

following increasing filtration Fi :=
⊕

n6i

(
BP ◦π P

)(n)
. Since it is stable under

the differential dπ, it induces a spectral sequence E•pq such that

E0
pq = Fp

(
(BP ◦π P)p+q

)
/Fp−1

(
(BP ◦π P)p+q

)
= (BP ◦π P)

(p)
p+q.

The first differential d0 is equal to d0 = d1 ◦ IdP + IdBP ◦′ dP + d′π, where d′π is the
part of dπ which does not change the number of P. That is, d′π consists only in
extracting an element of BP = T c(sP), desuspend it and compose it on the right
with only units I in P. For p = 0, we have (E0

0q, d
0) = (I, 0). Therefore, E1

00 = I

and E1
0q = 0 for q 6= 0.

When p > 0, we introduce again a contracting homotopy h. For any element of
BP ◦π P, we choose a representative (t; p1, . . . , pk). For instance, with the species
notation of 5.1.19, we choose p1 to be the element with a leaf labelled by 1. We
define its image under the map h as follows. If p1 = I, then h(t; p1, . . . , pk) := 0.
Otherwise, when p1 ∈ P, h(t; p1, . . . , pk) := (−1)|t|(t′; I, . . . , I, p2, . . . , pk), where t′

is the element of BP obtained by grafting the tree t with sp1 above. This map has
degree 1 and is a homotopy between Id and 0: hd0 + d0h = Id, on E0

p• for any
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p > 0. Therefore, the spectral sequence collapses, that is E1
pq = 0 for p > 0 and

any q.
Since the spectral sequence Fi is bounded below F−1 = 0 and exhaustive⋃

i≥0 Fi = BP ◦π P, we can apply the classical theorem of convergence of spec-
tral sequences 1.5.7. It implies that E•pq converges to the homology of BP ◦π P.
Hence, this homology is equal to I.

The proof of the other case is completely dual and left to the reader. �

This proof is extracted from E. Getzler and J.D.S. Jones [GJ94], see also B.
Fresse [Fre04] and [Val07a].

6.6. Operadic Koszul morphisms

We define operadic Koszul morphisms and state their main property, which
relates them to the operadic bar and cobar constructions. As a corollary, we prove
that the unit and the counit of the bar-cobar adjunction are quasi- isomorphisms.
The proofs follow the same pattern as the ones of Chapter 2 for algebras.

6.6.1. Operadic Koszul criterion. A twisting morphism α : C → P is called
a Koszul morphism when either its left twisted complex P ◦α C or its right twisted
complex C ◦α P is acyclic. We denote the set of Koszul morphisms by Kos(C,P).
Under this terminology, the result of the previous section states that the universal
twisting morphisms π ∈ Kos(BP,P) and ι ∈ Kos(C,ΩC) are Koszul morphisms.

The main theorem about operadic twisting morphisms is the following criterion
for Koszul morphisms.

Theorem 6.6.2 (Operadic twisting morphism fundamental theorem). Let P be a
connected wgd operad and let C be a connected wgd cooperad. Let α : C → P be an
operadic twisting morphism. The following assertions are equivalent:

(1) the right twisted composite product C ◦α P is acyclic,
(2) the left twisted composite product P ◦α C is acyclic,

(3) the morphism of dg cooperads fα : C ∼−→ BP is a quasi-isomorphism,

(4) the morphism of dg operads gα : ΩC ∼−→ P is a quasi-isomorphism.

Proof. The proof of this theorem is similar to the proof of Theorem 2.3.2. First
notice that the bar and the cobar constructions are weight graded and connected.
The universal twisting morphisms π and ι preserve the weight. Therefore, we can
apply Lemma 6.4.13.

Let us first prove (1)⇔ (3)⇔ (4).
To prove (1)⇔ (3), we apply Lemma 6.7.1 to fα, IdP and fα ◦ IdP : C ◦α P →

BP ◦π P. Since BP ◦π P is always acyclic by Lemma 6.5.14, fα ◦ IdP is a quasi-
isomorphism if and only if C ◦α P is acyclic, which happens if and only if fα is a
quasi-isomorphism.

To prove (1)⇔ (4), we apply Lemma 6.7.1 to IdC , gα and IdC ◦ gα : C ◦ι ΩC →
C ◦α P. In this case, C ◦ι ΩC is acyclic by Lemma 6.5.14. Therefore, IdC ◦ gα is a
quasi-isomorphism if and only if the twisted composite product C ◦α P is acyclic.
Since IdC is a quasi-isomorphism, Lemma 6.5.14 shows that C ◦α P is acyclic if and
only if gα is a quasi-isomorphism.

The proof of the equivalence (1)⇔ (2)⇔ (3) is similar and uses the two other
cases of Lemma 6.5.14 and Lemma 6.7.2 this time. �
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Corollary 6.6.3. In the weight graded case, the right twisted composite product
C ◦α P is acyclic if and only if left twisted composite product P ◦α C is acyclic.

This corollary shows that, under the weight grading assumption,the notion of
Koszul morphism is equivalently defined with the left or with the right twisted
composite product.

6.6.4. Bar-Cobar resolution.

Theorem 6.6.5. The counit ε : ΩBP ∼−→ P is a quasi-isomorphism of dg operads.
Dually, the unit υ : C ∼−→ BΩ C is a quasi-isomorphism of dg cooperads.

Proof. We prove this result in the weight graded case as a corollary of Theorem 6.6.2
but this result holds in full generality, see [Fre04]. As in the proof of Corollary 2.3.4,
we apply the Koszul criterion 6.6.2 to the following diagram

ΩBP
ε

""EEEEEEEE

BP

IdBP ##GGGGGGGGG

ιBP

;;wwwwwwwww π // P

BP .

π

<<yyyyyyyy

Since IdBP is a quasi-isomorphism, or equivalently since π is a Koszul mor-
phism, the morphism of dg operads ε is a quasi-isomorphism. The dual statement
is proved with the same arguments applied to the Koszul morphism ι : C → ΩC.
�

Hence the counit of adjunction provides a canonical functorial resolution of dg
operads. It is called the bar-cobar resolution. It is a quasi-free resolution which is
not minimal in general.

Let us make it explicit. We denote by proj the projection T c(sP) � sP and
by γP the morphism T (P)→ P coming from to the combinatorial definition 5.5 of
the operad P. It is explicitly given by the composition under γ of the operations
of P along the tree composition scheme.

Lemma 6.6.6. The unit ε : ΩBP → P of the adjunction is equal to the composite

ε : T (s−1T̄ c(sP))
T (s−1 proj)−−−−−−−→ T (s−1sP) ∼= T (P)

γP−−→ P.

Proof. The proof follows directly from the definition of ε given in Section 6.5.11
and is left to the reader. �

6.7. Proof of the Operadic Comparison Lemmas

In this section, we prove the Comparison Lemmas at the level of operads. The
results are the operadic generalizations of the Comparison Lemma for twisted tensor
product 2.5.1. Since the right twisted composite product is not isomorphic to the
left twisted composite product, we give the following two versions of this theorem.
It comes essentially from [Fre04], with slightly different hypotheses.

Lemma 6.7.1 (Comparison Lemma for right twisted composite product). Let g :
P → P ′ be a morphism of wdg connected operads and f : C → C′ be a morphism
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of wdg connected cooperads. Let α : C → P and α′ : C′ → P ′ be two twisting
morphisms, such that f and g are compatible with α and α′.

If two morphisms among f , g and f ◦ g are quasi-isomorphisms, then so is the
third one.

Proof. We denote byM (resp.M′) the weight-graded chain complex C ◦α P (resp.
C′ ◦α′ P ′). We define a filtration Fs on M(n), where n ∈ N is the weight, by the
formula

Fs(M(n)) :=
⊕

d+m≤s

(
C(m)
d ◦ P

)(n)

=
⊕

d+m≤s

C(m)
d ◦ P︸︷︷︸

(n−m)

,

where the total weight of the elements of P on the right hand side of ◦ is equal to
(n −m). The differential dα on M = C ◦α P is the sum of three terms IdC ◦′ dP ,
dC ◦ IdP and drα. One has IdC ◦′ dP : Fs → Fs, dC ◦ IdP : Fs → Fs−1 and
drα : Fs → Fs−2. Therefore, Fs is a filtration of the chain complex M(n) and we
consider the associated spectral sequence E•st. One has

E0
st = Fs(M(n))s+t/Fs−1(M(n))s+t =

n⊕
m=o

C(m)
s−m ◦ P︸︷︷︸

t+m; (n−m)

.

The notation means that the total homological degree of elements of P is equal to
t+m and their total weight is equal to (n−m). The study of the differential dα on
the filtration Fs of M shows that d0 = IdC ◦′ dP and that d1 = dC ◦ IdP . Since we
are working over a field of characteristic 0, Mashke’s theorem applies, which proves
that any K[S∗]-module is flat. It follows that

E2
st =

n⊕
m=o

Hs−m
(
C(m)
•
)
◦ H︸︷︷︸
t+m

(
P•︸︷︷︸

(n−m)

)
.

Since P and C are weight graded and connected, the part m = 0 is concen-

trated in s = 0 and t ≥ 0, where it is equal to E2
0t = Ht(P(n)

• ). The part m = n

is concentrated in t = −n and s ≥ n, where it is equal to E2
s−n = Hs−n(C(n)

• ).

For any 0 < m < n, the non-vanishing part of Hs−m
(
C(m)
•
)
⊗Ht+m

(
P(n−m)
•

)
is in

s ≥ 1 and t ≥ −n+ 1.

The filtration Fs is exhaustive M(n) =
⋃
s≥0 Fs(M(n)) and bounded below

F−1(M(n)) = {0}, so the spectral sequence converges to the homology of M(n) by
the classical convergence Theorem 1.5.7.

E∞st (M(n)) = Hs+t(M(n))

We consider the same filtration on M′ and we denote by Φ the morphism of
chain complexes Φ := f ◦ g. We treat the three cases one after the other.

(1) If f and g are quasi-isomorphisms, then Φ = f ◦ g is a quasi-isomorphism.

For every s, t and n, the maps E2
st(M(n))

H•(f)⊗H•(g)−−−−−−−−−→ E2
st(M′(n)) are isomor-

phisms. By the convergence of the two spectral sequences, the maps

Hs+t(M(n)) = E∞st (M(n))
H•(Φ)−−−−→ E∞st (M′(n)) = Hs+t(M′(n))
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are again isomorphisms. So the map Φ is a quasi-isomorphism.

(2) If Φ = f ◦ g and g are quasi-isomorphisms, then f is a quasi-isomorphism.

Let us work by induction on the weight n. When n = 0, the map f (0) : K → K
is a quasi-isomorphism. Suppose now that the result is true up to rank n − 1.
We consider the mapping cone of Φ(n) : cone(Φ(n)) := s−1M(n) ⊕M′(n) and the
associated filtration Fs

(
cone(Φ(n))

)
:= Fs−1

(
M(n)

)
⊕ Fs

(
M′(n)

)
, which satisfies

E1
•t
(
cone(Φ(n))

)
= cone

(
E1
•t(Φ

(n))
)
. The long exact sequence of the mapping cone

reads

· · · → Hs+1

(
cone

(
E1
•t(Φ

(n))
))
→ Hs

(
E1
•t(M(n))

) Hs(E
1
•t(Φ

(n)))−−−−−−−−−→
Hs

(
E1
•t(M′(n))

)
→ Hs

(
cone

(
E1
•t(Φ

(n))
))
→ · · · .

Therefore there is a long exact sequence (ξt)

(ξt) · · · → E2
s+1t

(
cone(Φ(n))

)
→ E2

st(M(n))
E2
st(Φ

(n))−−−−−−→
E2
st(M′(n))→ E2

st

(
cone(Φ(n))

)
→ · · ·

where E2
st(Φ

(n)) is given by H•(f)⊗H•(g).
When t > −n, we have seen that only C(m) (and C′(m)) with m < n are involved

in E2
st. In that case, since

E2
st(M(n)) =

n−1⊕
m=o

Hs−m
(
C

(m)
•
)
◦ H︸︷︷︸
t+m

(
P•︸︷︷︸

(n−m)

)
,

the induction hypothesis gives that

E2
st(M(n))

H•(f)⊗H•(g)−−−−−−−−−→ E2
st(M′(n))

is an isomorphism for every s and every t > −n. Using the long exact sequence
(ξt) for t > −n, it gives E2

st

(
cone(Φ(n))

)
= 0 for every s and every t 6= −n. The

collapsing of the spectral sequence E•st
(
cone(Φ(n))

)
at rank 2 implies the equality

E∞st
(
cone(Φ(n))

)
= E2

st

(
cone(Φ(n))

)
. The convergence of the spectral sequence

E•st
(
cone(Φ(n))

)
shows that

E2
st

(
cone(Φ(n))

)
= Hs+t

(
cone(Φ(n))

)
= 0

since Φ(n) is a quasi-isomorphism. Since E2
s−n

(
cone(Φ(n))

)
= 0, the long exact

sequence (ξ−n) gives the isomorphism

Hs−n
(
C(n)
•
)

= E2
s−n

(
M(n)

) H•(f)−−−−→ E2
s−n

(
M′(n))

= Hs−n
(
C′(n)
•
)
,

for every s.

(3) If Φ = f ◦ g and f are quasi-isomorphisms, then g is a quasi-isomorphism.

Once again, we work by induction on the weight n. For n = 0, the map g(0) : K→
K is an isomorphism. Suppose that the result if true up to rank n−1. When s ≥ 1,
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we have seen that only P(n−m) (and P ′(n−m)) with m > 0 are involved in E2
st,

E2
st

(
M(n)

)
=

n⊕
m=1

Hs−m
(
C(m)
•
)
◦ H︸︷︷︸
t+m

(
P•︸︷︷︸

(n−m)

)
.

In this case, the induction hypothesis implies that E2
st

(
M(n)

) H•(f)◦H•(g)−−−−−−−−→ E2
st

(
M′(n)

)
is an isomorphism for every s ≥ 1 and every t. The long exact sequence (ξt) shows
that E2

st

(
cone(Φ(n))

)
= 0 for s ≥ 2 and every t. The spectral sequence of the cone

of Φ(n) converges to its homology, which is null since Φ(n) is a quasi-isomorphism.
Therefore, E2

1,t−1

(
cone(Φ(n))

)
= E2

0,t

(
cone(Φ(n))

)
= 0 for every t. This implies

E2
st

(
cone(Φ(n))

)
= 0 for every t and s. Finally, the beginning (s = 0) of the exact

sequence (ξt) gives the isomorphism

Ht

(
P(n)
•
)

= E2
ot

(
M(n)

) H•(g)−−−−→ E2
0t

(
M′(n))

= Ht

(
P ′(n)
•
)
.

�

Lemma 6.7.2 (Comparison Lemma for left twisted composite product). Let g :
P → P ′ be a morphism of wdg connected operads and f : C → C′ be a morphism
of wdg connected cooperads. Let α : C → P and α′ : C′ → P ′ be two twisting
morphisms, such that f and g are compatible with α and α′.

If two morphisms among f , g and g ◦ f are quasi-isomorphisms, then so is the
third one.

Proof. The proof of this case is similar to the previous one. We consider the
following filtration this time

Fs((P ◦ C)(n)) :=
⊕

d+m≤s

P(n−m) ◦ C︸︷︷︸
d; (m)

(n)

,

where the total weight of the elements of C on the right hand side of the composite
product ◦ is equal to (m) and where the total degree of these elements is equal to
d.

From now on, the same arguments apply and we leave it to the reader, as a
good exercise to finish to proof. �

6.8. Résumé

Infinitesimal notions.

. M ◦ (N1;N2):= sub-S-module of M ◦ (N1 ⊕N2) linear in N2.

M ◦(1) N := M ◦ (I, N)

. Infinitesimal composition map of an operad: P ◦(1) P
γ(1)−−→ P.

. Infinitesimal composite of morphisms f : M1 → N1 and g : M2 → N2

f ◦′ g : M1 ◦N1 →M2 ◦ (N1;N2)

Example. dM◦N = dM ◦ IdN + IdM ◦′ dN
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Differential operadic notions.

. dg S-modules,

. dg operads, quasi-free operads, dg P-algebras,

. dg cooperads, quasi-free cooperads, dg C-coalgebras.

Operadic twisting morphism.
Convolution dg (pre-)Lie algebra: C dg cooperad and P dg operad:

(HomS(C,P), ?, ∂)

Operadic twisting morphism, Tw(C,P):
solution of degree −1 to the Maurer-Cartan equation

∂(α) + α ? α = ∂(α) +
1

2
[α, α] = 0 .

Twisted composite products.
Any α ∈ Tw(C,P) induces

. a twisted differential ∂α := ∂ + [α, -] in HomS(C,P),

. a differential dα := dC◦P+drα on the right composite product C◦P defining
the right twisted composite product C ◦α P,

The following table summarizes this hierarchy of notions:

α ∈ defines:

HomS(C,P)−1 dα : C ◦ P → C ◦ P⋃
Tw(C,P) (dα)2 = 0, chain complex C ◦α P⋃
Kos(C,P) acyclicity of C ◦α P

Operadic bar and cobar constructions and Koszul criterion.

HomOp

(
T (s−1C), P

) ∼= HomS(C, P)−1
∼= HomcoOp

(
C, T c(sP̄)

)
⋃ ⋃ ⋃

Homdg Op (ΩC, P) ∼= Tw(C, P) ∼= Homdg coOp (C, BP)⋃ ⋃ ⋃
q-Isodg Op (ΩC, P) ∼= Kos(C, P) ∼= q-Isodg coOp (C, BP) .

Universal twisting morphisms: ι : C → ΩC and π : BP → P, which are Koszul.
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Factorization of any operadic twisting morphism α : C → P:

ΩC

fα

∼

  B
B

B
B

B
B

B
B

C

gα

∼

  A
A

A
A

A
A

A
A

ι∈Kos(C,ΩC)

>>}}}}}}}}}}}}}}}} α∈Kos(C,P) // P

BP.

π∈Kos(BP,P)

>>|||||||||||||||

:B
z� ~~~~

z�

:B}}}}}}

}}}}}}

. fα : ΩC → P morphism of dg operads,

. gα : C → BP morphism of dg cooperads.

Operadic twisting morphisms fundamental theorem.
the following assertions are equivalent

. a twisting morphism α : C → P is Koszul,

. the morphism of dg operads fα : ΩC ∼−→ P is a quasi-isomorphism,

. the morphism of dg cooperads gα : C ∼−→ BP is a quasi-isomorphism.

Corollary.
Bar-cobar resolutions: ε : ΩBP ∼−→ P and υ : C ∼−→ BΩ C.

6.9. Exercises

6.9.1. Infinitesimal composite product. Let M , N and P be three S-
modules. Prove the following isomorphism

(M ◦(1) N) ◦ P ∼= M(P,N ◦ P ).

Make the same isomorphism explicit when the S-modules are differential graded
S-modules. (Be careful at the non-trivial signs appearing in this case).

6.9.2. Cofree dg C-comodule. The aim of this exercise is to prove the dual
Proposition of 6.3.19. Let C be a dg cooperad and let N be an S-module. Prove that
any coderivation on the cofree dg C-comodule C ◦N (resp. N ◦ C) is characterized
by its projection onto generators: C ◦N → N (resp. N ◦ C → N). In the other way
round, give the formulae for the unique coderivations which extend such maps.

6.9.3. Two-sided twisted composite product. Let P be a dg operad, C a
dg cooperad and let α : C → P be a twisting morphism. We consider the following
twisted differential on P ◦ C ◦ P, the free P-bimodule on C:

dα := dP◦C◦P + IdP ◦′ drα − dlα ◦ IdP ,

where drα and dlα were defined in Section 6.4.11.

� Prove that dα
2 = 0.

We denote this chain complex by

P ◦α C ◦α P := (P ◦ C ◦ P, dα) .
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� Show that there is an isomorphism of chain complexes

(Homα
S (C,P), ∂α) ∼= (HomP−biMod(P ◦α C ◦α P,P), ∂).

� Show that the following composite

ξ : P ◦ C ◦ P Id◦ε◦Id−−−−−→ P ◦ I ◦ P ∼= P ◦ P γ−→ P
is a morphism of dg P-bimodules

� Under the same weight grading assumptions as in Theorem 6.6.2, prove
that ξ : P ◦α C ◦α P

∼−→ P is a quasi-isomorphism if and only if α is a
Koszul morphism.

6.9.4. Unital convolution pre-Lie algebra. Let (C,∆, ε) be a cooperad
and let (P, γ, η) be an operad.

Show that the composite η ◦ ε : C → P is a unit for the pre-Lie product ?
defined in Section 6.4.4 on the convolution pre-Lie algebra HomS(C,P).

6.9.5. Operadic cobar construction and quasi-isomorphisms. Extend
the results of Section 2.4 from conilpotent dg coalgebras to conilpotent dg cooper-
ads, see [SV11].





CHAPTER 7

Koszul duality of operads

“Les maths, c’est comme l’amour, ca
ne s’apprend pas dans les livres mais en
pratiquant.”
Adrien Douady

One of the aims of this chapter is to construct an explicit minimal model for a
quadratic operad P. The key point is the construction of the Koszul dual cooperad
of P, denoted by P ¡. It permits to us to construct the Koszul complex (P ¡ ◦ P, dκ)
out of a certain twisting morphism κ : P ¡ → P, and also to construct a differential
graded operad ΩP ¡ by using the cobar construction. If the Koszul complex is
acyclic, then ΩP ¡ is a minimal model of P. So, under this assumption, we have a
concrete algorithm to construct the minimal model of a quadratic operad. In this
case we say that P is a Koszul operad. We will show in the following chapters that
the dg operad ΩP ¡ plays an important role in several topics (homotopy transfer of
structure for instance).

This result is in fact a corollary of the general theorem about operadic twisting
morphisms and operadic Koszul morphisms proved in Chapter 6, when applied to
κ.

The Koszul dual operad of P, denoted by P !, is defined as being, up to suspen-
sion, the graded linear dual of the Koszul dual cooperad P ¡. We make explicit the
presentation of P ! out of a presentation of P in the binary case. Later on in the
book we present several examples, among them the classical ones:

As! = As, Com! = Lie, Lie! = Com, Pois! = Pois, Leib! = Zinb.

Koszul duality theory for binary quadratic operads is due to Victor Ginzburg and
Mikhail Kapranov [GK94], see also Ezra Getzler and John D.S. Jones [GJ94]. The
extension to quadratic operads (not necessarily binary) is due to Getzler [Get95]
(see also Benoit Fresse [Fre04] and Martin Markl [Mar96a]).

The first section starts with operadic quadratic data and the construction of
quadratic operads and quadratic cooperads out of them. In the second section
we make precise the Koszul dual cooperad of a quadratic operad. In the third
section we work out the bar and cobar constructions in this framework. The fourth
section contains the main theorem of the Koszul duality theory which asserts the
equivalence between the acyclicity of the Koszul complexes P ¡ ◦κ P, P ◦κ P ¡ and
the fact that the natural maps P ¡ � BP, ΩP ¡ � P are quasi-isomorphisms. In
section 5 we show that the generating series of a quadratic operad and its Koszul
dual are related by a functional equation whenever the operad is Koszul. It is a
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criterion which is helpful for testing the Koszulity of an operad. In the sixth section
we treat in details the case of binary quadratic operads. In particular we show that
if P is determined by the quadratic data (E,R) then its Koszul dual operad P ! is
determined by (E∗ ⊗ sgn, R⊥), where R⊥ is explicitly described. In section seven
we briefly treat the case of nonsymmetric quadratic operads along the same lines.
The last section is devoted to quadratic-linear operads, that is quadratic operads
whose space of relations is non-necessarily homogeneous.

7.1. Operadic quadratic data, quadratic operad and cooperad

We start with an operadic quadratic data (E,R) to which we associate an
operad and a cooperad

(E,R)4

yyttttttttt 


$$JJJJJJJJJ

P(E,R) C(E,R)

7.1.1. Operadic quadratic data. By definition, an operadic quadratic data
(E,R) is a graded S-module E and a graded sub-S-module R ⊆ T (E)(2). Recall
that the weight two part T (E)(2) of the free operad is the graded sub-S-module of
the free operad T (E) which is spanned by the composites of two elements of E, see
5.4.4. The elements of E are called the generating operations. The elements of R are
called the relations (or more appropriately the relators). A morphism of quadratic
data f : (E,R) → (E′, R′) is a morphism of graded S-modules f : E → E′ such
that T (f)(R) ⊆ R′.

In many cases E is simply an S-module, that is E is concentrated in degree 0.
In terms of “type of algebras”, i.e. when the operad is presented by gener-

ators and relations, the quadraticity hypothesis says that the relators are made
of elements involving only two compositions. For instance, if there are only bi-
nary generating operations, then the relations involve only three variables. The
associative algebra case is a typical example (see 1.1.1 and 9.1). The interchange
relation, cf. 13.10.4, and the Jordan algebra relation, cf. 13.10, are examples of a
nonquadratic relation (they are cubic).

7.1.2. Quadratic operad. The quadratic operad

P(E,R) := T (E)/(R)

associated to the quadratic data (E,R) is, by definition, the quotient of the free
operad T (E) over E by the operadic ideal (R) generated by R ⊆ T (E)(2), cf. 5.2.16.
In other words, P(E,R) is the quotient operad of T (E) which is universal among
the quotient operads P of T (E) such that the composite

R� T (E)� P

is 0. Since (R) is a homogeneous ideal with respect to the weight, it follows that
P(E,R) is weight graded (cf. 5.4.4). We say that (E,R) is a presentation of the
operad P(E,R). Explicitly, for E = (0, E(1), E(2), E(3), . . .) we obtain T (E) =
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⊕kT (E)(k), where

T (E)(0) = I = (0,K id, 0, 0, . . .),

T (E)(1) = E = (0, E(1), E(2), E(3), . . .),

T (E)(2) = (0, E(1)⊗2, . . .).

If, moreover, E(1) = 0, then we get

T (E)(2) = (0, 0, 0, 3(E(2)⊕ E(2)), . . .).

Indeed, if µ and ν are two binary operations, then one can form three different
ternary operations:

µ(ν(x, y), z), µ(ν(z, x), y), µ(ν(y, z), x).

The action of S3 is by permutation of the variables (x, y, z), see 7.6.3 for more
details. The quotient P(E,R) of T (E) is such that

P(E,R)(0) = I,

P(E,R)(1) = E,

P(E,R)(2) = (0, E(1)⊗2/R(1), . . .).

If, moreover, E(1) = 0, then we get

P(E,R)(2) = (0, 0, 0, 3(E(2)⊕ E(2))/R(3), . . .).

7.1.3. Degree, arity and weight gradings. Recall that an operation µ ∈
P(n) is said to be of “arity” n. When P is a quadratic operad, µ has also a “degree”
d (sometimes called homological degree) which comes from the fact that the space
of generating operations E is graded. Moreover, since the ideal of relations is weight
homogeneous, the space P(n) is also graded by the “weight” k which is the number
of generating operations necessary to construct µ. So, any operation µ ∈ P(n) has
three different degrees called “arity”, “degree” and “weight”.

It should be noted that, in some papers (cf. for instance [GK95a, MSS02]),
a quadratic operad stands for what we call here a binary quadratic operad, that
is an operad which is generated by binary operations (E concentrated in arity 2),
and which is quadratic (the relators belong to the weight 2 part). It turns out that
for these operads the space P(n) is concentrated in weight n − 1, so the weight
is completely determined by the arity (and so is not mentioned in general). We
prefer to dissociate the two hypotheses, because Koszul duality works for quadratic
operads which are not necessarily binary, as shown in [Get95] (see also [Fre04]).

7.1.4. Quadratic cooperad. The quadratic cooperad C(E,R) associated to
the quadratic data (E,R) is, by definition, the sub-cooperad of the cofree coop-
erad T c(E) which is universal among the sub-cooperads C of T c(E) such that the
composite

C � T c(E)� T c(E)(2)/R

is 0 (see 5.7.7 for the notion of cofree cooperad). More precisely it means that there
exists a unique morphism of cooperads C → C(E,R) which makes the following
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diagram commutative:

C // //

��

T c(E) // // T c(E)(2)/R

C(E,R)
99

99tttttttttt

The cooperad C(E,R) is weight graded. In this framework, the elements of E
are called the generating cooperations and the elements of R are called the corela-
tors.

The cooperad T c(E) has the same underlying S-module as T (E), cf. 7.1.2. The
weight graded sub-S-module C(E,R) of T c(E) is such that

C(E,R)(0) = I,

C(E,R)(1) = E,

C(E,R)(2) = (0, R(1), R(2), R(3), . . .).

If, moreover, E(1) = 0, then we get

C(E,R)(2) = (0, 0, 0, R(3), . . .).

The cooperad structure of C(E,R) is induced by the cooperad structure of T c(E),
cf. 5.7.7.

7.2. Koszul dual (co)operad of a quadratic operad

We construct the Koszul dual cooperad and the Koszul dual operad of a qua-
dratic operad.

7.2.1. Koszul dual cooperad. By definition, the Koszul dual cooperad of
the quadratic operad P = P(E,R) is the quadratic cooperad

P ¡ := C(sE, s2R)

introduced in 7.1.4. The sign ¡ is usually pronounced “anti-shriek”. Here sE denotes
the S-module E whose degree is shifted by 1, cf. 6.2.1. Observe that, as an S-module,
P ¡ can be identified with C(E,R). The decoration s indicates the change of grading.
In diagrams the grading is usually clear and we do not mention s at the expense of
modifying the signs in the explicitation of the formulas.

7.2.2. Operadic suspension. Let S := EndsK be the operad of endomor-
phisms of the one-dimensional space put in degree one. As a representation of Sn
the space S(n) = Hom((sK)⊗n, sK) is the signature representation concentrated
in degree −n + 1 (since its generator sends sn to s). See exercise 5.10.2 for the
description of algebras over this operad. Denote by µ ∈ S(2) the generator of arity
2. The associativity relation µ ◦ (µ, id) = µ ◦ (id, µ) implies the following equality
when evaluated on (s, s, s):

µ((µ(s, s), s) = −µ(s, µ(s, s)).

Indeed, under the isomorphism

S(2)⊗ S(2)⊗ (sK)⊗3 ∼= S(2)⊗ sK⊗ S(2)⊗ (sK)⊗2

the image of (µ, µ, s, s, s) is −(µ, s, µ, s, s) because |µ| = −1, |s| = 1.
We also adopt the notation S−1 := Ends−1K.
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Let P be an operad. In general the suspension of the underlying S-module is
not an operad, however the Hadamard product S ⊗

H
P is indeed an operad. We

call it the operadic suspension of P. It has the following property. For any graded
vector space V one has an isomorphism

sP(V ) = (S ⊗
H
P)(sV ).

Therefore, the space V is equipped with a P-algebra structure if and only if
the suspended space sV is equipped with a S ⊗

H
P-algebra structure. Similarly if C

is a cooperad we define its suspension has being the cooperad Sc ⊗
H
C, where Sc is

the cooperad EndcsK. So, the space C is equipped with a C-coalgebra structure if
and only if the suspended space sC is equipped with a Sc ⊗

H
C-coalgebra structure.

7.2.3. Koszul dual operad. For any quadratic operad P we consider the
operadic suspension of the cooperad P ¡, that is the cooperad Sc ⊗

H
P ¡. Taking the

linear dual of this cooperad, we get an operad. By definition the Koszul dual operad
of the quadratic operad P is the quadratic operad

P ! := (Sc ⊗
H
P ¡)∗.

We recall that the linear dualization mentioned here is the “arity-graded lineariza-
tion”, that is, we dualize each arity component individually. We observe that P ! is
quadratic.

Proposition 7.2.4. For any quadratic operad P = P(E,R), generated by a reduced
S-module E of finite dimension in each arity, the Koszul dual operad P ! admits a
quadratic presentation of the form

P ! = P(s−1S−1 ⊗
H
E∗, R⊥).

The proof of this statement is going to use the notions of Manin product and
shuffle trees that are going to be introduced later (see Section 8.8.1 and 8.2 respec-
tively). An ad hoc proof in the binary case will be given in Section 7.6.

Proof. The Koszul dual operad P ! is equal to (Sc⊗
H
P ¡)∗ = S−1⊗

H
(P ¡)∗. The main

point is to use the following quadratic-linear presentation of S−1: S−1 = T (F )/(U),
where F =

⊕
n≥2 K νn, with K νn = Hom((s−1K)n, s−1K), that is |νn| = 1−n, and

where U is made of all the relations of the form νn ◦i νm = νn+m−1, for n,m ≥ 2
and 1 ≤ i ≤ n.

Then we use the same ideas as in the proof of Proposition 8.8.2. For any shuffle
tree T (not necessarily binary here), the maps

CST : T(F )→ T (F )(n)� S−1(n)

are surjective. It follows that the Hadamard product is equal to Manin white
product:

P ! = S−1 ⊗
H

(P ¡)∗ = S−1© (P ¡)∗.

Since the generating space E has finite dimensional arity components, we can
use the identification (T (sE)(2))∗ ∼= T (s−1E∗)(2). To this extent, we choose a
tree basis of the free operad and the isomorphism reduces to (E(n) ⊗ E(m))∗ ∼=
E(n)∗ ⊗ E(m)∗. In general, one can use the basis provided by shuffle trees, see
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Section 8.2.6. Under this isomorphism, the submodule s2R ⊂ T (sE)(2) gives the
orthogonal submodule (s2R)⊥ ⊂ T (s−1E∗)(2). Since the Koszul dual cooperad

P ¡
= C(sE, s2R) is a quadratic cooperad, its linear dual is a quadratic operad with

presentation P ! = P(s−1E∗, (s2R)⊥).
By definition, Manin’s white product S−1© (P ¡)∗ is equal to the operad with

presentation T (F ⊗
H
s−1E∗)/(Φ−1(U ⊗

H
T (s−1E∗) + T (F )⊗

H
(s2R)⊥)). The space of

generators is equal to s−1S−1 ⊗
H
E∗. Since U is quadratic and linear and since R

is quadratic, this latter operad is quadratic. The space of relations, denoted R⊥,
is obtained from (s2R)⊥ by proper (de)suspension of the operations indexing the
vertices of the trees and by induced sign rule. �

If E is concentrated in degree 0, then so is P and sE is in degree +1. As a
result P ! is concentrated in degree 0.

In 7.6 we describe an explicit way to construct a quadratic presentation of P !

out of a presentation of P in the binary case. In particular we will show that

Ass! = Ass, Com! = Lie, Lie! = Com,

Pois! = Pois, Leib! = Zinb, Dend! = Dias.

More examples will be worked out in Chapter 13.

Proposition 7.2.5. For any quadratic operad P, generated by a reduced S-module
E of finite dimension in each arity, we have

(P !)! = P .

Proof. By direct inspection. The hypothesis about finite dimensionality ensures,
as usual, that the natural map E → (E∗)∗ is an isomorphism. �

7.3. Bar and cobar construction on an operadic quadratic data

We make explicit the dg cooperad BP and the dg operad Ω C in the quadratic
case. The Koszul dual objects are shown to be equal to the syzygy degree 0 homol-
ogy group in both cases. From now on “quadratic data” means “operadic quadratic
data”.

7.3.1. Bar construction on a quadratic operad. The bar construction
BP := T c(sP) over the quadratic dg operad P = P(E,R) is equipped with a
weight grading and with a syzygy grading.

Since E has trivial internal differential, the differential on BP reduces to d2,
which raises the syzygy degree by 1 and preserves the weight grading. So it forms
a cochain complex with respect to the syzygy degree, which splits with respect to
the weight grading. Hence the associated cohomology groups is a direct sum over
the weight grading.

The following diagram depicts this decomposition.
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0 ← · · · ← · · · ← T (E)(3) (3)

0 ← T (E)(2)/R ← T (E)(2) (2)

0 ← E (1)

I (0)

3 2 1 0

Proposition 7.3.2. Let (E,R) be a quadratic data, P = P(E,R) the associated
quadratic operad and P ¡ = C(sE, s2R) its Koszul dual cooperad. The natural coop-
erad inclusion i : P ¡� BP induces an isomorphism of graded cooperads:

i : P ¡ ∼=−→ H0(B•P).

Proof. The proof is mimicked on the proof of the algebra case, i.e. Proposition
7.3.2. �

7.3.3. Cobar construction on a quadratic cooperad. Like the bar con-
struction, the cobar construction Ω C = T (s−1C) over the quadratic dg cooperad
C = C(V,R) has several degrees.

We introduce the same definitions as for the bar construction. We consider the
weight grading Ω C(n)and the syzygy degree of Ω C denoted by ΩdC.

Since the internal differential of the cooperad C is trivial, the differential of the
cobar construction ΩC reduces to d2, which lowers the syzygy degree by 1. Hence,
(Ω•C, d2) becomes a chain complex. Its associated cohomology is a direct sum over
the weight grading.

The following diagram depicts this decomposition.

0 → · · · → · · · → T c(E)(3) (3)

0 → R → T c(E)(2) (2)

0 → E (1)

I (0)

3 2 1 0

Proposition 7.3.4. Let C = C(E,R) be the quadratic cooperad associated to the
quadratic data (E,R), and let C¡ := P(s−1V, s−2R) be its Koszul dual operad. The
natural operad projection p : Ω C � C¡ induces an isomorphism of graded operads:

p : H0(Ω •C)
∼=−→ C¡.

7.4. Koszul operads

We construct the Koszul complexes of a quadratic operad and we define the
notion of “Koszul operad”. Then we apply the theory of twisting morphisms to
show that the Koszul dual cooperad permits us to construct the minimal model of
an operad, when it is a Koszul operad.
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7.4.1. The natural twisting morphism κ. Since, for a given quadratic data
(E,R), we have P(E,R)(1) = E and C(E,R)(1) = E, we can define the morphism
κ as the composite

κ : C(sE, s2R)� sE
s−1

−−→ E � P(E,R).

Because of the degree shift the map κ is of degree −1.

Lemma 7.4.2. We have κ ? κ = 0, and therefore κ is a twisting morphism.

Proof. Since κ is 0 except in weight 1, the convolution product κ ? κ is 0 except
maybe on weight 2. Computing κ ? κ explicitly in weight 2 we find that it is equal
to the composite

C(sE, s2R)(2) s−2

−−→ R→ T (E)(2) → T (E)(2)/R = P(E,R)(2),

which is 0 by definition.
Hence, the map κ is a twisting morphism in the framework of S-modules by

6.4.8. �

7.4.3. The Koszul complex of an operad. By 6.1.1 there is, associated to
the twisting morphism κ, a chain complex of S-modules

P ¡ ◦κ P := (P ¡ ◦ P, dκ)

that we call the Koszul complex of the operad P. So, for any n ≥ 0, we have a
chain complex of Sn-modules ((P ¡ ◦ P)(n), dκ), which we call the Koszul complex
in arity n. We can also construct another Koszul complex, namely P ◦κ P ¡, which
is completely different, in general, from the first one. They both come from the
complex P ◦κ P ¡ ◦κ P.

7.4.4. Koszul operad. By definition, a quadratic operad P is called a Koszul
operad if its associated Koszul complex (P ¡ ◦ P, dκ) is acyclic (here we mean that
its homology is the identity functor).

We will show later that there exist many Koszul operads, namely the three
graces Ass,Com,Lie, but also Pois, Leib, Zinb,Dend and many more.

7.4.5. The minimal model. The main advantage of the Koszul dual con-
struction is to give the minimal model for P when P is Koszul. Recall that the
advantage for a model to be minimal is that it is unique up to isomorphism, see
[Mar96a].

Theorem 7.4.6 (Koszul criterion). Let (E,R) be an operadic quadratic data, let
P := P(E,R) be the associated operad, let P ¡ := C(sE, s2R) be the Koszul dual co-
operad and let κ : P ¡ → P be the associated twisting morphism. Then the following
assertions are equivalent:

(1) the right Koszul complex P ¡ ◦κ P is acyclic,
(2) the left Koszul complex P ◦κ P ¡ is acyclic,
(3) the inclusion i : P ¡� BP is a quasi-isomorphism of dg cooperads,
(4) the projection p : ΩP ¡ � P is a quasi-isomorphism of dg operads.

Proof. First we remark that, by Theorem 6.6.5, the assertions (3) and (4) are
equivalent. Let us prove the equivalence (1) ⇔ (2). Consider the tensor map
i◦ Id : P ¡ ◦P → B(P)◦P. Since π ◦ i = Id◦κ, the map i◦ Id is a morphism of chain
complexes from P ¡ ◦κ P to B(P) ◦π P. We have seen in 6.5.11 that the augmented
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bar construction is always acyclic. Therefore, the Koszul complex P ¡ ◦κP is acyclic
if and only if i ◦ Id is a quasi-isomorphism. The comparison Lemma 6.4.13 in the
operadic framework, implies that P is a Koszul operad if and only if i is a quasi-
isomorphism.
�

Corollary 7.4.7. Let P be a quadratic operad. If P is Koszul, then ΩP ¡ is the
minimal model of P.

Proof. By Theorem 7.4.6 the dg operad ΩP ¡ is a model of P. By construction
ΩP ¡ is a free operad, hence it is a quasi-free dg operad. Also by construction the
differential of ΩP ¡ is quadratic (cf. 6.5.5), therefore we get a minimal model. �

Example. If E is concentrated in arity one, then the operad P is completely
determined by the associative algebra P(1). We recover the theory of Koszul duality
for associative algebras as a particular case of the theory of Koszul duality for
operads as done in Chapter 3.

Proposition 7.4.8. Let P = P(E,R) be a finitely generated quadratic operad. The
operad P is Koszul if and only if its Koszul dual operad P ! is Koszul.

Proof. Since P is a Koszul operad, the morphism of weight graded dg cooper-
ads i : P ¡ ∼−→ BP is a quasi-isomorphism by Theorem 7.4.6. Since E is finitely
generated, the chain sub-complexes of fixed weight of BP are finitely generated.

Taking the weight graded linear dual, we get a quasi-isomorphism ΩP∗ ∼−→ (P ¡
)∗.

Again by Theorem 7.4.6, it proves that S ⊗
H
P ! is Koszul. One can prove that the

bar constructions B(S ⊗
H
P !) and BP !, considered with their syzygy degree, are

quasi-isomorphic. It proves that P ! is Koszul.
In the other way round, we use Proposition 7.2.5: (P !)! ∼= P. �

7.4.9. Homotopy P-algebras. Let P be a Koszul operad. By definition a

homotopy P-algebra is an algebra over the dg operad ΩP ¡
of P. Such an algebra is

also called a P-algebra up to homotopy or a P∞-algebra, where P∞ stands for ΩP ¡
.

Hence, a homotopy P-algebra structure on a dg module A is a morphism of dg

operads ΩP ¡ → EndA. Notice that any P-algebra can be considered as a homotopy
P-algebra concentrated in degree 0. The P∞-structure is given by the composition:

P∞ = Ω P
¡ p−→ P → EndA,

where ε is the augmentation map.
The dg operad P∞ has a lot of properties which will be analyzed in Chapter

10.

7.4.10. Operadic homology. Let A be an algebra over the Koszul operad
P. It is the quotient of a free P-algebra P(V ) for some space V . The boundary
map dκ(V ) on P ¡ ◦ P(V ) = P ¡(P(V )) passes to the quotient to give a boundary
map d and so a chain complex CP• (A) := (P ¡(A), d(A)). By definition the operadic
homology of A (with trivial coefficients) is the homology of the chain complex
CP• (A):

HP• (A) := H•(C
P
• (A)).

It will be studied in detail in Chapter 12. We only mention here a criterion for the
operad P to be Koszul.
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Proposition 7.4.11. The acyclicity of the Koszul complex of a quadratic operad P
is equivalent to the vanishing of the operadic homology of the free P-algebra P(V )
for any vector space V , more precisely:

HP1 (P(V )) = V, and HPn (P(V )) = 0, for n ≥ 2.

Proof. This is essentially a rephrasing of the definition of Koszulity. Indeed one has
CP• (P(V )) = P ¡(P(V )) = P ¡ ◦ P(V ) and d(P(V )) = dκ(V ). The vanishing of the
homology for any V is equivalent to the vanishing of the (right) Koszul complex by
Corollary 6.2.6. �

7.4.12. Koszul theory in the cooperad setting. Though we are not going
to work in this framework in the rest of the book, let us mention briefly the Koszul
duality theory for cooperads.

By dualizing the preceding theory, we obtain the following results. An operadic
quadratic data (E,R) gives rise to a cooperad C = C(E,R), which has a Koszul
dual operad C¡ := P(s−1E, s−2R). There is a twisting morphism κ which is the
composite:

κ : C(E,R)� E
s−1

−−→ s−1E � P(s−1E, s−2R).

Its Koszul complex is C ◦κ C¡ := (C ◦ C¡, dκ). The cooperad C is said to be
Koszul if its Koszul complex is acyclic. Dually one can also define another Koszul
complex: C¡ ◦κ C.

The Koszul criterion in this case says that the following assertions are equiva-
lent:

(1) the Koszul complex C ◦κ C¡ is acyclic,
(2) the Koszul complex C¡ ◦κ C is acyclic,
(3) the inclusion i : C � B C¡ is a quasi-isomorphism of dg operads,
(4) the projection p : Ω C � C¡ is a quasi-isomorphism of dg cooperads.

As a Corollary, if C is a Koszul cooperad, then B C¡ is a minimal model of C.
Observe that, for any quadratic operad P, there is a natural identification

(P ¡)¡ = P ,

which does not require any finite dimensionality assumption.

7.5. Generating series

Let P = P(E,R) be a reduced quadratic operad (i.e. E(0) = 0), which is
finitely generated, that is, dimE(n) is finite. From its presentation we deduce that
P is weight graded, E being of weight 1. By convention the identity operation id is
of weight 0. We denote by P(r)(n) the subspace of n-ary operations of weight r. By
definition the generating series (or Hilbert-Poincaré series) of the weight graded
operad P is

fP(x, y) :=
∑

r≥0,n≥1

dimP(r)(n)

n!
yrxn .

Observe that fP depends only on the weight graded S-module P. If P is binary,
then P(n) = P(n−1)(n) and therefore there is no need for two indeterminates.
Putting y = 1 we recover the definition given in 5.1.15.
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Theorem 7.5.1. Let P = P(E,R) be a connected quadratic operad. If P is Koszul,
then the generating series of P and of its Koszul dual operad P ! are related by the
following functional equation:

fP
!

(fP(x, y),−y) = x .

Proof. From the definition of P ! out of P ¡ it follows that these two weight graded

S-modules have the same generating series: fP
!

= fP
¡
. The Koszul complex K of

P splits has a sum of chain complexes, indexed by arity and weight:

K =
⊕
r,n

K(r)(n) ,

where we have:

K(r)(n) : 0→ P ¡(r)(n)→ · · · → (P ¡(k) ◦ P)(r)(n)→ · · · → P(r)(n).

By the Koszulity of P these complexes are acyclic (in the unital sense). Hence
the Euler-Poincaré characteristic is trivial. Putting all these identities together
amounts to the formula:

fP
!

(fP(x, y),−y) = x .

In fact it is a particular case of a more general formula of the same type valid for
“properads”, cf. 13.14.9 and proved in [Val07a]. �

7.5.2. Example. Let us suppose that the operad P is in fact a quadratic
algebra R, that is P(n) = 0 when n 6= 1 and P(1) = R. Let fR be the generating
series of the quadratic algebra R (cf. 3.5). It follows that fP(x, y) = fR(y)x and

fP
!

(x, y) = fR
!

(y)x. The functional equation reads

fR
!

(−y)fR(y)x = x

and so we recover the functional equation for the generating series of Koszul alge-
bras, cf. 3.5.

7.6. Binary quadratic operads

We make explicit the Koszul dual operad of an operad presented by (finitely
many) binary operations and quadratic relations.

7.6.1. Explicitation of a binary quadratic operad. Let E be an S2-
module (put in degree 0) and let E be the S-module

E := (0, 0, E, 0, . . . , 0, . . .).

The free operad on E is denoted by T (E) instead of T (E). It is clear from its
construction, cf. 5.4, that T (E)(0) = 0, T (E)(1) = K, T (E)(2) = E. Since we are
in the binary case we have T (E)(2) = T (E)(3).

Proposition 7.6.2. The S3-module T (E)(3) is

T (E)(3) = E ⊗ IndS3

S2
E ∼= 3E ⊗ E.

Proof. From the explicit construction of the free operad given in 5.4, we get

T (E)(3) =
(
Id⊕ E ◦ (Id⊕ E)

)
(3) = E ⊗ IndS3

S2
E.

Indeed, it suffices to look for the V ⊗3 component of T (E)(V ). Since the quotient
S2\S3 is a set with 3 elements, we get the second assertion (see the next subsection
for more details on this isomorphism). �
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7.6.3. The space T (E)(3) made explicit. In the proof of Proposition 7.6.2
we use the “tensor type” construction of the free operad. If, instead, we use the
“combinatorial” type as done in 5.5, then we can make explicit the isomorphism
T (E)(3) ∼= 3 E ⊗ E as follows. Let µ, ν ∈ E be two binary operations. We denote
by

µ ◦I ν, µ ◦II ν, µ ◦III ν ∈ T (E)(3)

respectively the three operations on three variables defined by:

(µ ◦I ν)(x, y, z) := µ(ν(x, y), z) ,
(µ ◦II ν)(x, y, z) := µ(ν(z, x), y) ,

(µ ◦III ν)(x, y, z) := µ(ν(y, z), x) .

ν

AAA lllll

µ

NNNN

wwwwwwww

(µ ◦I ν)

ggggggggggggggggg

PPPPPPPPP

NNNNNNNN

ν

AAA llllll

µ

OOOOO

vvvvvvvv

(µ ◦II ν)

mmmmmmmmmm

ooooooooo

WWWWWWWWWWWWWWWWW

ν

AAA kkkkkk

µ

PPPPP

uuuuuuuuu

(µ ◦III ν)

These formulas determine the three copies of E ⊗ E. If λ denotes the cyclic
permutation on three variables defined by λ(x, y, z) = (y, z, x), then we have:

µ ◦I ν = (µ ◦1 ν)λ
0

, µ ◦II ν = (µ ◦1 ν)λ
1

, µ ◦III ν = (µ ◦1 ν)λ
2

.

Let us now describe the action of S3 on 3E⊗E = (E⊗E)I⊕(E⊗E)II⊕(E⊗E)III.
It suffices to describe the action of the two cycles (12) and λ = (123). If ω is a
ternary operation, then ωσ(x, y, z) = ω(σ · (x, y, z)). Hence we get:

(µ ◦I ν)(12) = µ ◦I ν(12)

(µ ◦II ν)(12) = µ ◦III ν(12)

(µ ◦III ν)(12) = µ ◦II ν(12)

and
(µ ◦I,II or III ν)(123) = µ ◦II,III or I ν,

i.e. cyclic permutation of the indices.

7.6.4. Dualizing the quadratic data. For any finite dimensional right S2-
module E its linear dual vector space E∗ = Hom(E,K) is a left S2-module. We
make it into a right S2-module as usual (it is purely formal here since K[S2] is
commutative). Then we define

E∨ := E∗ ⊗ sgn2.

So, as a vector space, E∨ is isomorphic to E∗ and the action of σ ∈ S2 on f : E → K
is given by

fσ(e) = sgn(σ)f(eσ
−1

).

We identify the S3-module T (E∨)(3) to the dual of T (E)(3) by means of the fol-
lowing scalar product:

〈−,−〉 : T (E∨)(3)⊗ T (E)(3) −→ K,

〈α∗ ◦u β∗, µ ◦v ν〉 := α∗(µ)β∗(ν) ∈ K if u = v,
〈α∗ ◦u β∗, µ ◦v ν〉 := 0 otherwise.
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Here the indices u and v take value in {I, II, III}.
By definition the orthogonal space R⊥ ⊂ T (E∨)(3) is

R⊥ := {x ∈ T (E∨)(3) | 〈x,R〉 = 0}.

Theorem 7.6.5. [Koszul dual operad of a binary quadratic operad] For any (finitely
generated) binary quadratic operad P = P(E,R) its Koszul dual operad is given by

P ! = P(E∨, R⊥) .

We first prove a property of the scalar product introduced in 7.6.4.

Lemma 7.6.6. The scalar product 〈−,−〉 is non-degenerate and S3-sign-invariant:

〈Φσ, ωσ〉 = sgn(σ)〈Φ, ω〉
for any σ ∈ S3.

Proof. The first assertion is obvious. To prove the second one, it suffices to check
it for σ = (12) and σ = (123),Φ ∈ T (E∨)(3) and ω ∈ T (E)(3).
Case σ = (12). We use the following equality, which is a consequence of the
definition of the action of S2 on E∨:

(β∗)(12) = −(β(12))∗, for any β ∈ E.
We also use the action of S3 on T (E)(3) as described in 7.6.3. We compute:

〈(α∗ ◦u β∗)∗(12)), (µ ◦v ν)(12)〉 = 〈α∗ ◦u(12) β∗(12), µ ◦v(12) ν(12)〉
= 〈α∗ ◦u β∗, µ ◦v ν〉

The last equality holds because the two elements are equal to 0 or 1 under the same
conditions.
Case σ = (123). The action of σ = (123) on the index u of the element α ◦u β is
the cyclic permutation among I, II, III. The two elements 〈(α∗ ◦u β∗)σ, (µ ◦v ν)σ〉 =
〈α∗ ◦uσ β∗, µ ◦vσ ν〉 and 〈α∗ ◦u β∗, µ ◦v ν〉 are equal because they are equal to 0 or
1 under the same conditions. Since the signature of σ is +1 we are done. �

Proof. (of Theorem 7.6.5). Let us recall from 7.2.3 that the Koszul dual operad P !

is
P ! := (Sc ⊗

H
P ¡)∗.

We claim that

P ¡ = C(sE, s2R),

Sc ⊗
H
P ¡ = C(E ⊗ sgn2, R

′),

(Sc ⊗
H
P ¡)∗ = P(E∨, R⊥).

Since Sc(n) = EndsK(n) = Hom((sK)⊗n, sK), the generator in arity 2 is s−1.
Moreover, the action of S2 on this generator is by the signature representation.
Therefore the space of cogenerators of the cooperad Sc ⊗

H
P ¡ is E ⊗ sgn2, which

is in degree 0. By hypothesis R is a sub-S3-space of T (E)(3) = 3E ⊗ E. Since
sgn2 ⊗ sgn2 is the trivial representation, there is a canonical isomorphism

T (E)(3) = 3E ⊗ E ≈−→ 3E ⊗ sgn2 ⊗ E ⊗ sgn2 = T (E ⊗ sgn2)(3).

The space R′ ⊂ T (E ⊗ sgn2)(3) is the image of R under this isomorphism.
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For a quadratic cooperad C(E,R), the associated linear dual operad C(E,R)∗

is a quadratic operad P(E∗, S), where S ⊂ T (E∗)(3) is obtained as follows:

R∗ T (E)(3)∗oooo

∼=
��

Ker

∼=
��

oooo

T (E∗)(3) Soooo

The middle vertical isomorphism is obtained through the nondegenerate bilinear
form

〈−,−〉 : T (E∗)(3)⊗ T (E)(3) −→ K,

〈α∗ ◦u β∗, µ ◦v ν〉 := α∗(µ)β∗(ν) ∈ K if u = v,
〈α∗ ◦u β∗, µ ◦v ν〉 := 0 otherwise.

Here the indices u and v take value in {I, II, III}.
Applying this process to C(E ⊗ sgn2, R

′) we get P ! = P(E∨, R⊥) as expected.
�

7.6.7. Examples of computations: Com,Ass and more. The operad
Com = P(E,R) of commutative algebras is generated by a binary symmetric op-
eration µ, i.e. E = Kµ. Let us denote by uI, respectively uII and uIII, the elements
µ◦I µ, respectively µ◦II µ and µ◦III µ, in T (Kµ)(3). Its space of relations R admits
the following K-linear basis made of two elements uI − uII and uII − uIII.

The Koszul dual operad of Com is generated by the space E∨ = Kµ∗⊗ sgn2
∼=

Kν, where ν(12) = −ν. Again, we denote by vI, respectively vII and vIII, the
elements ν ◦I ν, respectively ν ◦II ν and ν ◦III ν in T (Kν)(3). The orthogonal space
of R under the scalar product 〈−,−〉 has dimension one with basis vI + vII + vIII.
Denoting the skew-symmetric generating operation ν by a bracket [ , ] the latter
relation is nothing but the Jacobi relation: [[a, b], c] + [[b, c], a] + [[c, a], b] = 0.
Therefore we obtain Com! = Lie.

More generally, when the generators of the binary quadratic operad P(E,R)
form the regular representation E = K[S2] = Kµ⊕Kµ′, with µ′ := µ(12), we adopt
the following convention. Denote by u1, . . . , u12 the corresponding 12 elements of
T (E)(3):

1 µ ◦I µ ↔ (xy)z 5 µ ◦III µ ↔ (zx)y 9 µ ◦II µ ↔ (yz)x
2 µ′ ◦II µ ↔ x(yz) 6 µ′ ◦I µ ↔ z(xy) 10 µ′ ◦III µ ↔ y(zx)
3 µ′ ◦II µ′ ↔ x(zy) 7 µ′ ◦I µ′ ↔ z(yx) 11 µ′ ◦III µ′ ↔ y(xz)
4 µ ◦III µ′ ↔ (xz)y 8 µ ◦II µ′ ↔ (zy)x 12 µ ◦I µ′ ↔ (yx)z

This labelling corresponds to the labelling of the permutoassociahedron [Kap93].
Figure 1 represents it with the action of the symmetric group S3. Thanks to Lemma
7.6.6 one needs only to verify the orthogonality of a few elements (4 out of 36 in
the next example).

Under these notations, the symmetric operad Ass which encodes associative
algebras, has a quadratic presentation P(Kµ⊕Kµ′, RAss), where the space of rela-
tions RAss has the following K-linear basis {ui−ui+1, for i = 1, 3, 5, 7, 9, 11}. Its
Koszul dual operad is generated by E∨ = (Kµ∗⊕K(µ′)∗)⊗sgn2

∼= Kν⊕Kν′, where
ν(12) = −ν′. We consider the associated basis v1, . . . , v12 of T (E∨)(3). In this basis,
the orthogonal space R⊥Ass is linearly spanned by {vi+vi+1, for i = 1, 3, 5, 7, 9, 11}.
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.(12)
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Figure 1. The permutoassociahedron

The latter operad is isomorphic to Ass under the unique morphism of operads such
that ν 7→ µ and ν′ 7→ −µ′. Therefore we obtain the isomorphism Ass! ∼= Ass.

The associative case is a particular case of the following one.

Proposition 7.6.8. Let P = P(K[S2], R) be the operad generated by one binary
operation (without symmetry) and relation

(xy)z =
∑
σ∈S3

aσσ · (x(yz)), aσ ∈ K.

Its Koszul dual operad is also presented by one operation and one relation. This
relation is

(x(yz)) =
∑
σ∈S3

sgn(σ)aσσ
−1 · ((xy)z).

Proof. We apply the same argument as in the associative case. �

Poisson algebras, Leibniz algebras and Zinbiel algebras give operads of this form.

7.6.9. Lie structure on a tensor product of algebras.
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Proposition 7.6.10. Let P = P(E,R) be a binary quadratic operad, supposed to
be finitely generated, let P ! be its Koszul dual operad. Let A be a P-algebra and let
B be a P !-algebra. The binary operation on A⊗B defined by

[a⊗ b, a′ ⊗ b′] :=
∑
µ

µ(a, a′)⊗ µ∨(b, b′),

where the sum is extended to a basis of E made of operations which are either
symmetric (µ(12) = µ) or antisymmetric (µ(12) = −µ), is a Lie bracket. In other
words A⊗B is naturally a Lie algebra. Equivalently, there is a morphism of operads

Lie −→ P ⊗
H
P ! .

Proof. We suppose that E is equipped with a basis and E∗ is equipped with the
dual basis. The dual of µ ∈ E is denoted µ∨ ∈ E∨. First, we know that when µ
is symmetric (resp. antisymmetric), then µ∨ is antisymmetric (resp. symmetric).
Hence the bracket is antisymmetric.

The Jacobi identity is a consequence of Lemma 7.6.11 below. A more conceptual
explanation of the existence of the functor Lie −→ P ⊗ P ! will be given in 8.8 in
terms of Manin products. �

Lemma 7.6.11. Let L be a finite dimensional vector space, with linear dual L∗.
Let R ⊂ L be a subvector space and let R⊥ ⊂ L∗ be its orthogonal. The element
u ∈ L∗⊗L, corresponding to idL under the isomorphism End(L) ∼= L∗⊗L, satisfies
the following property:

u ∈ R⊥ ⊗ L+ L∗ ⊗R .

Proof. The image of an endomorphism f : L→ L in L∗⊗L is denoted by f̃ . So we

have u = ĩdL. Let π : L� R be a section of the inclusion map R� L. So we have
π|R = idR, Im π ⊂ R and Ker(idL − π) ⊂ R. It follows that we have π̃ ∈ L∗ ⊗ R
and (idL − π)̃ ∈ R⊥ ⊗ L. From the identity idL = (idL − π) − π it follows that

u = ĩdL ∈ R⊥ ⊗ L+ L∗ ⊗R . �

Remark. In practice, an efficient way to unravel a presentation of the dual
operad P !, when P is given through a (small) presentation, consists in writing the
Jacobi identity in A⊗B for generic algebras A and B.

7.6.12. Generating series of a binary quadratic operad. By definition
the generating series of a binary quadratic operad is the generating series of its
underlying S-module (cf. 5.1.15):

fP(t) :=
∑
n≥1

dimP(n)

n!
tn .

Theorem 7.6.13. Let P be a binary quadratic operad. If P is Koszul, then the
generating series of P and of its Koszul dual operad P ! are related by the following
functional equation:

fP
!

(−fP(t)) = −t .

Proof. Formerly it is a particular case of Theorem 7.5.1. Indeed, since P is binary
we have P(n) = P(n−1)(n). Taking x = t and y = 1, resp. y = −1, in the generating

series with two variables we get fP(t) = fP(t, 1), resp. −fP!

(−t) = fP(t,−1). The
functional equation reads:

−fP
!

(−fP(t)) = t .
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Of course one can show this formula directly by splitting the Koszul complex ac-
cording to the arity and take the Euler-Poincaré characteristic. �

Examples. For the operad Ass of associative algebras we get

fAss(t) =
∑
n≥1

tn =
t

1− t
.

It is immediate to check that fAss(−fAss(t)) = −t.
For the operad Com of commutative algebras (resp. Lie of Lie algebras) we get

fCom(t) =
∑
n≥1

tn

n!
= exp(t)− 1,

fLie(t) =
∑
n≥1

tn

n
= − log(1− t).

It is immediate to check that fCom(−fLie(t)) = −t.
More examples are treated in Chapter 13.
Theorem 7.6.13 is helpful in proving that some operads are not Koszul. For

instance the operad with one binary generating operation and with relation (xy)z =
2x(yz) (2 supposed to be invertible in K) is not Koszul. Another example is the
operad Nil • preLie, see 8.10.15 and [Val08].

7.7. Nonsymmetric binary quadratic operad

A nonsymmetric binary quadratic operad P = P(F,R) is completely deter-
mined by the space of generating operations P2 = F and the space of relations
R ⊂ T (F )(2) = T (F )(3) = F⊗2 ⊕ F⊗2. Its Koszul dual operad is also a nonsym-
metric binary quadratic operad, that we are going to make explicit.

7.7.1. Nonsymmetric binary quadratic Koszul dual operad. By con-
vention, an element (µ, ν) in the first (resp. second) copy of F⊗2 in the sum
F⊗2 ⊕ F⊗2 corresponds to the composition µ ◦ (ν, id), resp. µ ◦ (id, ν):

ν





444

µ

�������
BBBB resp.

ν
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µ

>>>>>>> 			
.

Consider S := EndsK (resp. S c := (EndsK)c) as a ns operad (resp. ns co-
operad). An algebra over S is a graded vector space A with a bilinear map
An⊗Am → An+m+1, x⊗y 7→ xy for any n,m ≥ 0, such that (xy)z = (−1)|x|x(yz).

By definition the Koszul dual ns operad of a binary quadratic ns operad P is

P ! := (S c ⊗
H
P ¡)∗.

Theorem 7.7.2. Let P = P(F,R) be a (finitely generated) binary quadratic ns
operad. Its Koszul dual ns operad is

P ! = P(F ∗, R⊥),
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where R⊥ is the orthogonal space of R in F ∗⊗F ∗
⊕
F ∗⊗F ∗ for the scalar product[

1 0

0 −1

]
.

Though this statement can be seen as a particular case of Theorem 7.6.5 by
considering the symmetric operad associated to the ns operad (P(n) = Pn⊗K[Sn]),
we provide a self-contained proof.

Proof. We claim that, in the ns framework,

P ¡ = C(sF, s2R),

S c ⊗
H
P ¡ = C(F,R′),

(S c ⊗
H
P ¡)∗ = P(F ∗, R⊥).

Since S c
n = (EndsK)n = Hom((sK)⊗n, sK), the generator in arity 2 is s−1.

Therefore the space of cogenerators of the cooperad S c ⊗
H
P ¡ is F , which is in

degree 0. By hypothesis R is a subspace of T (F )3 = 2F ⊗ F and there is a
canonical isomorphism

T (F )3 = 2F ⊗ F ≈−→ T (F ⊗ sgn2)3.

The space R′ ⊂ T (F )3 is the image of R under this isomorphism.
For a quadratic cooperad C(F,R), the associated linear dual operad C(F,R)∗

is a quadratic operad P(F ∗, S), where S ⊂ T (F ∗)3 is obtained as follows:

R∗ T (F )∗3oooo

∼=
��

Ker

∼=
��

oooo

T (F ∗)3 Soooo

The middle vertical isomorphism is obtained through the nondegenerate bilinear
form 〈−,−〉 : T (F ∗)3 ⊗ T (F )3 → K:

〈(µ∗, ν∗)1, (µ, ν)1〉 = 1,
〈(µ∗, ν∗)2, (µ, ν)2〉 = −1,
〈(α∗, β∗)i, (µ, ν)j〉 = 0 in all other cases.

Here the index 1 or 2 indicates the copy in which the element lies (first or second).
Applying this process to C(F,R′) we get P ! = P(F ∗, R⊥) as expected. �

7.7.3. The example of the ns operad As. The binary generating operation
of As is xy. The relator is the associator as(x, y, z) := (xy)z − x(yz). Let us still
denote the dual operation by xy. The relator of the dual operad is of the form
a(xy)z − bx(yz). Since 〈(xy)z, (xy)z〉 = +1 and 〈x(yz), x(yz)〉 = −1, we get the
condition a = b. So As is self-dual.

Proposition 7.7.4. Let P = P(F,R) be a (finitely generated) nonsymmetric bi-
nary quadratic operad let P ! be its Koszul dual ns operad. Let A be a P-algebra and
let B be a P !-algebra. Then the binary operation on A⊗B defined by

(a⊗ b)(a′ ⊗ b′) :=
∑
µ

µ(a, a′)⊗ µ∗(b, b′)



7.8. KOSZUL DUALITY FOR INHOMOGENEOUS QUADRATIC OPERADS 201

where the sum is extended to a basis of F , is associative. In other words A ⊗ B
is naturally an associative algebra, that is, there is a morphism of nonsymmetric
operads

As −→ P ⊗
H
P ! .

Proof. In the formula we use a basis of F and the dual basis for F ∗. The associa-
tivity property is a consequence of Lemma 7.6.11. See section 8.8 for a conceptual
explanation. �

Remark. Under the notation of Theorem 7.7.4 the algebra A (resp. B) can
be considered as an algebra over the symmetric operad associated to P (resp. P !).
Hence, by Theorem 7.6.10, A ⊗ B has a Lie algebra structure. It is immediate to
verify that this is exactly the Lie algebra structure coming from the associative
structure (see 1.1.11).

7.8. Koszul duality for inhomogeneous quadratic operads

So far we supposed that the operadic data (E,R) was weight homogeneous
quadratic, that is R ⊂ T (E)(2). In this section, we suppose that (E,R) is only
inhomogeneous quadratic that is

R ⊂ T (E)(1) ⊕ T (E)(2).

There exists an even more general case allowing also constant terms in the space of
relations, cf. [HM10].

A Koszul duality theory still exists under this hypothesis. It generalizes to op-
erads the results exposed in Section 3.6 for associative algebras. In this section, we
state the results without proofs and refer the reader to [GCTV09] for details. As
in the case of algebras, the main change from quadratic operad to quadratic-linear
operad consists in the appearance of a differential in the Koszul dual cooperad.
This generalization of Koszul duality theory was developed in order to treat the
case of the operad BV encoding Batalin-Vilkovisky algebras, see 13.7.

7.8.1. Quadratic-linear operad. An operadic quadratic-linear data (E,R)
is a graded S-module E together with a degree homogeneous sub-S-module R ⊂
E ⊕ T (E)(2). So, there may be linear terms in the space of relations. We still
denote by P = P(E,R) = T (E)/(R) the associated quotient operad. We consider
q : T (E) � T (E)(2) the projection onto the quadratic part of the free operad.
The image of R under q, denoted qR, is homogeneous quadratic, so (E, qR) is a
quadratic data in the sense of 7.1.1. We denote by qP its associated quadratic
operad: qP := P(E, qR). We assume that R satisfies the relation

(ql1) : R ∩ E = {0}.

If it is not the case, removing some elements of E, one can choose another presen-
tation of P which satisfies (ql1). This condition amounts to the minimality of the
space of generators of P. Under this assumption, there exists a map ϕ : qR → E
such that R is the graph of ϕ:

R = {X − ϕ(X) | X ∈ qR}.

The weight grading on T (E) induces a filtration which is compatible with the op-
eradic ideal (R). Hence the quotient operad P is filtered: FnP = Im(

⊕
k≤n T (E)(k)).
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Since we assumed R∩E = {0}, we get F1P = I⊕E. We denote by grP the graded
operad associated to this filtration of P, grnP := FnP/Fn−1P. We denote by

p : qP � grP

the resulting epimorphism. It is obviously an isomorphism in weight 0 and 1, but
not necessarily in weight 2. A corollary of the present theory shows that p is an
isomorphism provided that qP is Koszul, see Theorem 7.8.8.

7.8.2. Koszul dual dg cooperad in the inhomogeneous quadratic frame-
work. The map ϕ permits us to construct the composite map

ϕ̃ : (qP)
¡

= C(sE, s2qR)� s2qR
s−1ϕ−−−→ sE.

By 6.3.14, there exists a unique coderivation, d̃ϕ : (qP)
¡ → T c(sE), which extends

this composite.

Lemma 7.8.3.

(a) The coderivation d̃ϕ restricts to a coderivation dϕ on the sub-cooperad

(qP)
¡

= C(sE, s2qR) ⊂ T c(sE) if {R ◦(1) E + E ◦(1) R} ∩ T (E)(2) ⊂ qR.
(b) The coderivation dϕ squares to 0 if R satisfies the condition

(ql2) : {R ◦(1) E + E ◦(1) R} ∩ T (E)(2) ⊂ R ∩ T (E)(2).

Since R ∩ T (E)(2) ⊂ qR, Condition (ql2) implies the inclusion
{R ◦(1) E + E ◦(1) R} ∩ T (E)(2) ⊂ qR. Condition (ql2) amounts to say that one
cannot create new quadratic relations in R by adding an element to the relations
of the presentation.

Let (E,R) be a quadratic-linear data satisfying the conditions (ql1) and (ql2).
By definition, the Koszul dual dg cooperad of P = P(E,R) is the dg cooperad

P ¡ := ((qP)
¡
, dϕ) = (C(sE, s2qR), dϕ).

7.8.4. Koszulity in the inhomogeneous quadratic operad framewo-
rk. An operad P is said to be Koszul if it admits a quadratic-linear presentation
P = P(E,R) satisfying the conditions (ql1), (ql2) and such that the quadratic data
(E, qR), or equivalently the quadratic operad qP, is Koszul in the sense of 7.4.

Notice that for a homogeneous quadratic operad, Koszul in the classical sense
is Koszul in this sense. In this case, the conditions (ql1), (ql2) are trivially satisfied
and the inner coderivation dϕ vanishes.

7.8.5. Cobar construction in the inhomogeneous quadratic operadic
framework. Under the hypotheses (ql1) and (ql2), we have constructed a conilpo-
tent dg cooperad P ¡. Applying the cobar construction of 6.5.5, we get a dg operad
ΩP ¡, whose differential is of the form d1 + d2. The internal derivation d1 is the
unique derivation which extends dϕ. The derivation d2 is induced by the cooperad
structure of P ¡.

We consider the same map κ in this context

κ : P
¡

= C(sE, s2qR)� sE
s−1

−−→ E � P
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Lemma 7.8.6. The map κ is a twisting morphism in HomS(P ¡
,P), that is ∂(κ) +

κ ? κ = 0.

The twisting morphism κ induces a morphism of dg operads gκ : ΩP ¡ → P by
Theorem 6.5.10.

Theorem 7.8.7. Let P be a Koszul operad. The cobar construction of its Koszul

dual dg cooperad is a resolution of P: the morphism of dg cooperads gκ : ΩP ¡ ∼−→ P
is a quasi-isomorphism.

Notice that, in the inhomogeneous case, this resolution is not minimal because
of the internal differential d1.

7.8.8. Operadic Poincaré-Birkhoff-Witt theorem.

Theorem 7.8.9 (Operadic Poincaré-Birkhoff-Witt Theorem). When a quadratic-
linear operad P is Koszul, then the epimorphism p : qP � grP is an isomorphism
of graded operads

qP ∼= grP.

Even if the Poincaré-Birkhoff-Witt theorem is a direct consequence of the proof
of Proposition 7.8.7, it has the following two non-trivial consequences: Corollary
7.8.10 and Proposition 7.8.12.

Corollary 7.8.10. Let P(E,R) be an operad with the quadratic-linear presentation
(E,R). If the quadratic operad qP = P(E, qR) is Koszul, then Conditions (ql1) and
(ql2) are equivalent to Conditions

(ql1
′) : (R) ∩ E = {0} and (ql2

′) : R = (R) ∩ {E ⊕ E⊗2}.

Conditions (ql1
′) and (ql2

′) amount to say that the ideal generated by R does
not create any new quadratic-linear relation. It is equivalent to the maximality
of the space of relations in the presentation of the inhomogeneous quadratic op-
erad. Such conditions can be hard to check in practice because one would have
to compute the full ideal generated by R. But this proposition shows that if one
finds a quadratic-linear presentation of an operad satisfying Conditions (ql1), (ql2)
and whose homogeneous quadratic data is Koszul, then the space of relations R is
maximal.

Remark: As in 3.6.8, this result can be interpreted as a Diamond Lemma for
Gröbner bases, see 8.5.12.

(qP)
¡

Koszul & (ql2) ⇒ P
¡

Koszul & (ql2
′)

7.8.11. Acyclicity of the Koszul complex. As in the quadratic case, the
Koszul complex associated to an inhomogeneous Koszul operad is acyclic.

Proposition 7.8.12. If the quadratic-linear operad P(E,R) is Koszul, then the

Koszul complexes P ¡ ◦κ P and P ◦κ P
¡

are acyclic.

This result induces functorial quasi-free resolutions for P-algebras, see Chap-
ter 11, which are used to compute the (co)homology of P-algebras, see Chapter 12.
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7.8.13. Koszulity of the operad BV . A Batalin-Vilkovisky algebra is a
Gerstenhaber algebra (A, ·, 〈-, -〉) with a square-zero degree 1 unary operator ∆
satisfying the following quadratic-linear relation

〈-, -〉 := ∆(- · -)− (∆(-) · -)− (- ·∆(-)) .

We refer the reader to 13.7 for more details. Therefore the operad BV encoding
BV -algebras admits the following quadratic-linear presentation: BV ∼= T (E)/(R).
The space of generators is equal to

E = Km⊕ K c⊕K∆ ,

where Km is a trivial representation of S2 of degree 0, K c a trivial representation
of S2 of degree 1, and K∆ is a one-dimensional graded vector space (S1-module)
concentrated in degree 1. The space of relations R is the K[S3]-module generated
by the relators 

m ◦1 m−m ◦2 m,
c ◦1 c+ (c ◦1 c)(123) + (c ◦1 c)(321),
∆2,
c ◦1 m−m ◦2 c− (m ◦1 c)(23),
c−∆ ◦1 m+m ◦1 ∆ +m ◦2 ∆,
∆ ◦1 c+ c ◦1 ∆ + c ◦2 ∆ .

Since there is no pure linear relation, this presentation satisfies Condition (ql1).
The last relator is obtained from the previous one as follows. Denoting ρ := c −
∆ ◦1m+m ◦1 ∆ +m ◦2 ∆ the last relator is equal to the composite of ρ⊗ (∆⊗ id +
id⊗∆) + ∆⊗ ρ in the operad BV . Therefore, it is not necessary in the definition
of the operad BV , but we have to consider it to satisfy Condition (ql2).

To obtain the quadratic analogue qBV , one has just to change the inhomoge-
neous relation c−∆◦1m+m◦1 ∆+m◦2 ∆ by ∆◦1m−m◦1 ∆−m◦2 ∆. Hence, in
the operad qBV , the operator ∆ is a derivation with respect to both the product
m and the bracket c. We view these relations as rewriting rules

CCC
{{{

m

∆

7−→
∆

DDD
���

m +
>>> ∆

zzz
m

CCC
{{{

c

∆

7−→
∆

AAA
���
c +

;;; ∆

}}}
c .

Theorem 7.8.14. [GCTV09] The operad BV is a Koszul operad.

Proof. The aforementioned presentation of the operad BV satisfies Conditions (ql1)
and (ql2). The quadratic analogue qBV satisfies the conditions of the Distributive
Law method 8.6, so it is a homogeneous quadratic Koszul operad. �

Since the quadratic operad qBV is made of the operad Gerst, encoding Ger-
stenhaber algebras, and the algebra of dual number D := T (∆)/(∆2) by means of
a distributive law, it is isomorphic to

qBV ∼= Gerst ◦D ∼= Com ◦ S−1Lie ◦D,
where S−1Lie ∼= Lie⊗

H
Ends−1K.

So the operadic PBW theorem 7.8.8 gives the form of the underlying module
of the operad BV .
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Proposition 7.8.15. [Get94] There is an isomorphism of S-modules

BV ∼= Com ◦ S−1Lie ◦D .

As a corollary of the distributive law method 8.6, we get also

qBV
¡ ∼= D

¡
◦Gerst

¡ ∼= T c(δ) ◦ (S−2)cComc ◦ (S−1)cLiec,

where δ := s∆ has degree 2 and where (S−i)cC = Endcs−iK⊗
H
C. Under this

isomorphism, we denote the elements of qBV
¡

simply by δd ⊗ L1 � · · · � Lt,
where each Li ∈ Liec(ni) and where � stands for the symmetric tensor product
x� y = (−1)|x||y|y � x.

Proposition 7.8.16. [GCTV09] The square-zero coderivation dϕ of the cooperad

qBV
¡

is explicitly given by

dϕ(δd ⊗ L1 � · · · � Lt) =

t∑
i=1

(−1)εiδd−1 ⊗ L1 � · · · � L′i � L′′i � · · · � Lt,

where L′i � L′′i is Sweedler-type notation for the image of Li under the binary part

(S−1)cLiec → (S−1)cLiec(2)⊗ ((S−1)cLiec ⊗ (S−1)cLiec)

of the decomposition map of the cooperad (S−1)cLiec. The sign is given by εi =
n1 + · · ·+ni−1 + i− 1. The image of dϕ is equal to 0 when the exponent d = 0 and
when Li ∈ (S−1)cLiec(1) = K id for all i.

Proof. Let us denote by l the generator of (S−1)cLiec(2). Inside qBV
¡
, the element

δ ⊗ I ⊗ l, is the homotopy for the derivation relation between ∆ and m. So the

coderivation dϕ of BV
¡

is the unique coderivation which sends δ⊗id⊗l to id⊗µ⊗id,
where µ is the generator of (S−2)cComc(2). �

Notice that, up to the term δd, the transpose of dϕ is equal to the Chevalley–
Eilenberg boundary map defining the homology of the free Lie algebra, see 13.2.8:
tdϕ((δ∗)d ⊗ L∗1 � · · · � L∗t ) =∑

1≤i<j≤t

± (δ∗)d+1 ⊗ [L∗i , L
∗
j ]� L∗1 � · · · � L̂∗i � · · · � L̂∗j � · · · � L

∗
t .

Finally, the Koszul dg cooperad of BV is

BV
¡

= (qBV
¡
, dϕ)

and Theorem 7.8.7 provides a quasi-free, but not minimal resolution,

BV∞ := ΩBV
¡ ∼−→ BV

for the operad BV . This defines the notion of homotopy BV -algebra. We refer the
reader to Section 13.7.12 for more details and applications.

7.9. Résumé

Quadratic data and Koszul dual constructions for operads.

(E,R)
quadratic data/

wwooooooooooo �

''PPPPPPPPPPPP

P=P(E,R)
quadratic operad

C=C(E,R)
quadratic cooperad
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The quadratic operad P = P(E,R) = T (E)/(R).
The quadratic cooperad C = C(E,R) ⊂ T c(E).

Koszul dual cooperad of an operad : P(E,R)
¡

:= C(sE, s2R),

Koszul dual operad of a cooperad : C(E,R)
¡

:= P(s−1E, s−2R),

(P
¡
)
¡ ∼= P.

Koszul dual operad of an operad : when E is finite dimensional:

P ! := (Sc ⊗
H
P ¡)∗.

Koszul duality theory.

Twisting morphism κ : P
¡

= C(sE, s2R)� sE
s−1

−−→ E � P(E,R) = P

Koszul complexes: P ◦κ P
¡

and P ¡ ◦κ P,

P
¡
� BP and ΩP

¡
� P,

with the syzygy degree: H0(B•P) ∼= P
¡

and H0(Ω•P
¡
) ∼= P.

The quadratic data (E,R) is Koszul when one of the following equivalent as-
sertions is satisfied:

(1) the right Koszul complex P ¡ ◦κ P is acyclic,
(2) the left Koszul complex P ◦κ P ¡ is acyclic,
(3) the inclusion i : P ¡�BP is a quasi-isomorphism,
(4) the projection p : ΩP ¡�P is a quasi-isomorphism,
(5) Hn(B•P) = 0 for n ≥ 1,

(6) Hn(Ω•P
¡
) = 0 for n ≥ 1,

(7) H•(B•P) is a sub-cooperad of T c(sE),

Generating series or Hilbert-Poincaré series.

fP(t) :=
∑
n≥0

dimP(n)
n! tn

P binary, quadratic and Koszul =⇒ fP
!

(−fP(−t)) = t

Binary quadratic operads. Quadratic data:
(E,R) where E ∈ T (E)(2)

Koszul dual operad of P = P(E,R):

P ! = P(E∧, R⊥)

where R⊥ is the orthogonal of R for some bilinear form.

Inhomogeneous Koszul duality theory.
Quadratic-linear data: (E,R), with R ⊂ T (E)(1) ⊕ T (E)(2).
Quadratic analogues: qR := projT (E)(2)(R) and qP := P(E, qR).

(ql1) : R ∩ E = {0} ⇒ R = Graph(ϕ : qR→ E)

(ql2) : {R ◦(1) E + E ◦(1) R} ∩ T (E)(2) ⊂ R ∩ T (E)(2)

⇒ dϕ codifferential on qP
¡

Koszul dual dg cooperad : P ¡
:=
(
qP ¡

, dϕ
)
.
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P(E,R) Koszul operad when (ql1), (ql2) and qP homogeneous quadratic Koszul
operad. In this case:

• quasi-free resolution : ΩP ¡ ∼
� P,

• Poincaré-Birkhoff-Witt theorem : qP ∼= grP,

• Koszul complex : P ◦κ P
¡

acyclic.

Example: the operad coding the Batalin-Vilkovisky algebras.

7.10. Exercises

7.10.1. On the bilinear form 〈−,−〉. Let E be an S-module concentrated
in arity 2. Show that the space T (E)(3) is a quotient of the sum of two copies

of E ⊗ E, one corresponding to the tree
�� ����

???? (i.e. − ◦1 −) and the other one

corresponding to the tree
??����

???? (i.e. − ◦2 −). Sow that the quotient map is

equivariant for the action of the symmetric group S3.
Under this description of T (E)(3) show that the bilinear form 〈−,−〉 used in

the construction of the orthogonal space R⊥ is sign-invariant under the action of
S3 and satisfies

〈α∗ ◦i β∗, µ ◦j ν〉 = δij α
∗(µ)β∗(ν)

for any α∗, β∗ ∈ E∨ ; µ, ν ∈ E ; i, j = 1 or 2 ; δij being the Kronecker symbol.

7.10.2. Koszul dual ns operads. Describe the Koszul dual operad of the
following ns operads:

(1) one binary generating operation, no relation (cf. 13.8.2),
(2) two generating operations ≺ and �, three relations (cf. 13.13.3):

(x ≺ y) ≺ z = x ≺ (y ≺ z),
(x � y) ≺ z = x � (y ≺ z),
(x � y) � z = x � (y � z).

(3) two generating operations ≺ and �, three relations (cf. 13.6):

(x ≺ y) ≺ z = x ≺ (y ≺ z + y � z),
(x � y) ≺ z = x � (y ≺ z),

(x ≺ y + x � y) � z = x � (y � z).

(4) n generating operations ◦i for i = 1, . . . , n, and many relations:

(x ◦i y) ◦j z = x ◦i (y ◦j z), for any i, j.

7.10.3. Koszul dual symmetric operads. Describe the Koszul dual operad
of the following symmetric operads:

(1) one binary generating operation [x, y], one relation (cf. 13.5.1):

[[x, y], z] = [[x, z], y] + [x, [y, z]].

(2) one binary generating operation x a y, one relation (cf. 13.5.2):

(x ≺ y) ≺ z = x ≺ (y ≺ z + z ≺ y).
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(3) one binary generating operation {x, y}, one relation (cf. 13.4.1):

{{x, y}, z} − {x, {y, z}} = {{x, z}, y} − {x, {z, y}}.
(4) one binary generating operation xy, two relations (cf. 13.4.11):

(xy)z = x(yz) = x(zy).



CHAPTER 8

Methods to prove Koszulity of an operad

“Nous voulons, tant ce feu nous brûle le cerveau,
Plonger au fond du gouffre, Enfer ou Ciel, qu’importe ?
Au fond de l’Inconnu pour trouver du nouveau !”

Charles Baudelaire

This chapter extends to the operadic level the various methods, obtained in
Chapter 4, to prove that algebras are Koszul. In the previous chapter, we have
already given one method, based on the vanishing of the homology of the free
P-algebra.

We begin by generalizing the rewriting method for associative algebras 4.1 to
nonsymmetric operads. To extend it much further to symmetric operads, we need
to introduce the notion of shuffle operad, which sits in between the notion of operad
and non-symmetric operad. It consists of the same kind of compositions as in an
operad but without the symmetric groups action. For instance, the free symmetric
operad is isomorphic to the free shuffle operad as K-modules, thereby providing a
K-linear basis in terms of shuffle trees for the first one.

With this notion of shuffle operad at hand, we adapt the rewriting method,
the reduction by filtration method, the Diamond Lemma, the PBW bases and the
Gröbner bases of Chapter 4 from associative algebras to operads.

We give then yet another method. Starting from two operads A and B, one
can sometimes cook a third one on the underlying S-module A ◦ B, by means of a
distributive law B ◦ A → A ◦ B. One can interpret this data as a rewriting rule,
which pulls the elements of B above that of A. This interpretation allows us to
show the same kind of results as the ones obtained by the aforementioned methods.
For instance, we give a Diamond Lemma for distributive laws which proves that an
operad obtained from two Koszul operads by means of a distributive law is again
Koszul. Notice that, retrospectively, such a method applies to associative algebras
as well.

Instead of Backelin’s lattice criterion used in the algebra case, we introduce a
partition poset method in the operad case. The idea is to associate a family of
partition type posets to a set operad. The main theorem asserts that the linear
operad generated by the set operad is Koszul if and only if the homology groups of
the operadic partition posets are concentrated in top dimension (Cohen-Macaulay
posets). On the one hand, the many combinatorial criteria to show that a poset
is Cohen-Macaulay provide ways to prove that an operad is Koszul. On the other
hand, it gives a method to compute explicitly the homology groups of some partition
type posets as S-modules since the top homology groups are isomorphic to the
Koszul dual cooperad.

209



210 8. METHODS TO PROVE KOSZULITY OF AN OPERAD

In a last section, we extend the definition and the properties of Manin products
to operads.

The material of this chapter mainly comes from Hoffbeck [Hof10c], Dotsenko
and Khoroshkin [DK10], Markl [Mar96a], [Val07a], Ginzburg and Kapranov
[GK94, GK95b], and [Val08].

In the first five sections of this chapter, we work with reduced S-modules M
such that M(0) = 0, respectively M(0) = ∅ in the set theoretic case.

8.1. Rewriting method for binary quadratic ns operads

In this section, we explain how the rewriting method for associative algebras
of Section 4.1 extends to binary quadratic ns operads. It provides a short algorith-
mic method, based on the rewriting rules given by the relations, to prove that an
operad is Koszul. The general theory for operads (not necessarily binary) requires
new definitions, that will be given in the next sections.

Let P(E,R) be a binary quadratic ns operad.

Step 1. We consider an ordered basis {µ1, µ2, . . . , µk} for the generating space
E of binary operations. The ordering µ1 < µ2 < · · · < µk will play a key role in
the sequel.

Step 2. The ternary operations, which span the weight 2 part of the free ns
operad, are of the form µi ◦a µj , where a = 1, 2. We put a total order on this set
as follows: µi ◦2 µj < µi ◦1 µj , for any i, j,

µi ◦a µj < µk ◦a µl, whenever i < k, a = 1 or 2, and for any j, l,
µi ◦a µj < µi ◦a µl, whenever j < l, a = 1 or 2.

The operad P is determined by the space of relations R, which is spanned by
a set of relators written in this basis as

r = λµi ◦a µj −
∑

λi,a,jk,b,l µk ◦b µl, λ, λi,a,jk,b,l ∈ K and λ 6= 0,

so that the sum runs over the indices satisfying µi ◦a µj > µk ◦b µl. The operation
µi ◦a µj is called the leading term of the relator (r). One can always suppose that
λ is equal to 1, that the leading terms of the set of relators are all distinct and that
there is no leading term of any other relator in the sum in the right hand side.
This is called a normalized form of the presentation.

Step 3. Observe that such a relator gives rise to a rewriting rule in the operad
P:

µi ◦a µj 7→
∑

λi,a,jk,b,l µk ◦b µl.
Given three generating binary operations µi, µj , µk, one can compose them

along 5 different ways: they correspond to the 5 planar binary trees with 3 vertices.
Such a monomial, i.e. decorated planar tree, is called critical if the two sub-trees
with 2 vertices are leading terms.

Step 4. There are at least two ways of rewriting a critical monomial ad libitum,
that is, until no rewriting rule is applicable any more. If all these ways lead to the
same element, then the critical monomial is said to be confluent .
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Conclusion. If each critical monomial is confluent, then the ns operad P is
Koszul.

This assertion is a consequence of the following result.

Theorem 8.1.1 (Rewriting method for ns operads). Let P(E,R) be a reduced
quadratic ns operad. If its generating space E admits an ordered basis for which
there exists a suitable order on planar trees such that every critical monomial is
confluent, then the ns operad P is Koszul.

In this case, the ns operad P admits a K-linear basis made up of some planar
trees called a PBW-basis, see 8.5. The proof is analogous to the proof of Theo-
rem 4.1.1; it follows from Section 8.5.8.

Example. Consider the ns operad As encoding associative algebras, see Chap-

ter 9. It is generated by one operation of arity 2: ��
??

. The rewriting rule ex-

pressing associativity reads:

����
��������

???????? 7→

???? ��������

???????? .

There is only one critical monomial (the left comb), which gives the following
confluent graph (Figure 1).

Figure 1. The diamond for the nonsymmetric operad As
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Therefore, the nonsymmetric operad As is Koszul. It admits a PBW basis
made up of the right combs:

???
���

���

???

???
���

���

Remark. Notice first that one recovers the associativity pentagon of monoidal
categories, see B.3. Moreover, the Diamond Lemma applied to the ns operad As is
exactly Mac Lane’s coherence theorem for (non-unital) monoidal categories. The
first one states that any graph built out of the left combs, under the associativ-
ity relation, are confluent. The second one states that any graph built with the
associativity relation is commutative. With this remark in mind, the reading of
[ML95, Section VII-2] enjoys another savor.

Counter-Example. We consider the same example but with the modified
associativity relation

����
��������

???????? = 2

???? ��������

???????? .

In this case, the above graph is not confluent because 23 6= 22 . Whatever the
suitable order is, the graph will never be confluent since it can be proved that this
ns operad is not Koszul, see Exercise 8.10.8.

8.2. Shuffle operad

The forgetful functor Op → ns Op, from symmetric operads to nonsymmetric
operads, forgets the action of the symmetric groups, see Section 5.8.12. It factors
through the category of shuffle operads Op

�
. Shuffle operads have the advantage

of being based on arity-graded vector spaces like nonsymmetric operads, while
retaining the whole structure of a symmetric operad.

The notion of shuffle operad is due to Hoffbeck [Hof10c] and Dotsenko-Khoroshkin
[DK10].

8.2.1. Shuffle composite product. For any subset X of n := {1, . . . , n} we
denote by min(X) the smallest element of X. Any partition P of n into k subsets
can be written uniquely

P = (P1, . . . ,Pk)

under the requirement

min(P1) < min(P2) < · · · < min(Pk).

Writing the elements of Pi in order and concatenating them for all i, it defines the
preimages of {1, . . . , n} under a permutation σP of Sn.

{1, 3, 4} < {2, 7} < {5, 6, 8} 7→ [1 4 2 3 6 7 5 8]
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The associated permutation σP is a (i1, . . . , ik)-unshuffle, cf. 1.3.2, where ij := |Pj |,

σ−1(1) < · · · < σ−1(i1) ,

σ−1(i1 + 1) < · · · < σ−1(i1 + i2) ,

...

σ−1(i1 + · · ·+ ik−1 + 1) < · · · < σ−1(n) ,

satisfying the extra property

σ−1(1) < σ−1(i1 + 1) < · · · < σ−1(i1 + · · ·+ ik−1 + 1) .

Such unshuffles are called pointed (i1, . . . , ik)-unshuffles, or simply pointed unshuf-
fles when the underlying type is understood. We denote the associated set by
�(i1, . . . , ik). For instance, the set �(2, 1) has two elements, namely [1 2 3] and
[1 3 2] ; the set �(1, 2) has only one element, namely [1 2 3].

For any arity-graded spaces M and N , we define the shuffle composite product
M ◦� N as follows:

(M ◦� N)n :=
⊕

k≥1,(i1,...,ik)
i1+···+ik=n

Mk ⊗Ni1 ⊗ · · · ⊗Nik ⊗K[�(i1, . . . , ik)] .

Proposition 8.2.2. The shuffle composition product makes the category of arity-
graded spaces (N-Mod, ◦�, I) into a monoidal category.

Proof. The associativity of ◦� is proved by direct inspection, see [DK10, Section 2]
for more details. �

8.2.3. Shuffle trees. A shuffle tree is an reduced planar rooted tree equipped
with a labeling of the leaves by integers {1, 2, . . . , n} satisfying some condition stated
below. First, we label each edge of the tree as follows. The leaves are already
labelled. Any other edge is the output of some vertex v. We label this edge by
min(v) which is the minimum of the labels of the inputs of v. Second, the condition
for a labeled tree to be called a shuffle tree is that, for each vertex, the labels of
the inputs, read from left to right, are increasing.

Example. see Figure 2.
The relationship between shuffle trees and pointed unshuffles is the following:

any shuffle tree with two levels correspond to a partition written in order and
vice-versa.

Example. see Figure 3.

8.2.4. Monoidal definition of shuffle operad. By definition a shuffle op-
erad is a monoid (P, γ�, η) in the monoidal category (N-Mod, ◦�, I). Explicitly, it
is a an arity-graded vector space P equipped with an associative composition map
γ� : P ◦� P → P and a unit map η : I→ P.

Equivalently a shuffle operad can be defined by maps

γσ : Pk ⊗ Pi1 ⊗ · · · ⊗ Pik → Pn
for any pointed unshuffle σ ∈ �(i1, . . . , ik). Assembling these maps, we get γ :
P ◦�P → P. Associativity of γ can be written explicitly in terms of the individual
maps γσ as in 5.3.2.
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Figure 2. Example of a shuffle tree

Figure 3. Example of a 2-leveled shuffle tree

8.2.5. Partial definition of shuffle operad. Let m and i, 1 ≤ i ≤ m, be
positive integers. Any monotonic injection

{i+ 1, i+ 2, . . . , i+ n− 1} → {i+ 1, i+ 2, . . . ,m+ n− 1}

is completely determined by a (n− 1,m− i)-unshuffle ω that we let act on the set
{i+ 1, . . . ,m+ n− 1}. This data is equivalent to a partition of type

(4) P = ({1}, . . . , {i− 1}, {i, ω−1(i+ 1), . . . , ω−1(i+ n− 1)},
{ω−1(i+ n)}, . . . , {ω−1(m+ n− 1)}) ,

where all the subsets but one are made up of one element.
Such a partition is equivalent to a shuffle tree with two vertices:

3

JJJJJJJ ω−1(4) ω−1(5)

nnnnnnn

1

RRRRRRRRRRRR 2

JJJJJJJ ω−1(6)

nnnnnnn
ω−1(7)

gggggggggggggggg
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The associated pointed unshuffle σP is of type (1, . . . , 1, n, 1, . . . , 1) and it de-
termines a map

γσP : P(m)⊗ P(1)⊗ · · · ⊗ P(1)⊗ P(n)⊗ P(1)⊗ · · · ⊗ P(1)→ P(m+ n− 1).

By evaluating γσP
on the elements id ∈ P(1) we get a map:

◦i,ω : P(m)⊗ P(n)→ P(m+ n− 1).

They are called the partial shuffle products in the shuffle operad framework.
The partial operations ◦i,ω generate, under composition, all the shuffle compo-

sitions. They satisfy some relations. For instance if the permutation shuffles

σ ∈ Sh(m,n), λ ∈ Sh(m+ n, r), δ ∈ Sh(n, r), γ ∈ Sh(m,n+ r)

satisfy the relation

(σ × 1r)λ = (1m × δ)γ in Sm+n+r,

then the partial operations satisfy the relation

(x ◦1,σ y) ◦1,λ z = x ◦1,γ (y ◦1,δ z)

for any x ∈ P1+m, y ∈ P1+n, z ∈ P1+r.
We leave it to the reader to find the complete set of relations, which present a

shuffle operad out of the partial shuffle products.

8.2.6. Combinatorial definition of shuffle operad. The combinatorial
definition of a shuffle operad is the same as the combinatorial definition of a ns
operad 5.8.5, except that we have to replace the planar rooted trees by the shuffle
trees. The only subtle point is the substitution of shuffle trees, which is obtained
as follows.

Let t be a shuffle tree and v be a vertex of t whose inputs are labelled by
(i1, . . . , ik). So we have i1 < i2 < . . . < ik. Let s be a shuffle tree with k leaves
and let (j1, . . . , jk) be the sequence of labels of the leaves. So (j1, . . . , jk) is a
permutation of k. Then, the substitution of s at v gives a new planar rooted tree,
cf. 5.8.5, whose labeling is obtained as follows: each label jl is changed into ijl for
l = 1, . . . , k and the other labels are unchanged.

Example. See Figure 4.

Proposition 8.2.7. An algebra over the monad of shuffle tree is a shuffle operad.

Proof. The proof is left to the reader as a good exercise. �

As a result we get a description of the free shuffle operad over a reduced arity
graded module M as follows. The underlying reduced arity-graded module T�M is
spanned by the shuffle trees with vertices indexed by elements of M , respecting the
number of inputs. Its shuffle composition γ� is defined by the grafting of shuffle
planar trees, as the example of Figure 5 shows.

Theorem 8.2.8. The shuffle operad (T�M,γ�) is free over M among the shuffle
operads.

Proof. The shuffle tree space is equal to the same colimit as in 5.4.1 or equivalently
as in 5.4.6 but applied to the shuffle composite product ◦� instead of the composite
product ◦. Thus, the proof of the present case follows from the same arguments. �
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t =

s =

Substitution:

Figure 4. Example of substitution of shuffle trees

Figure 5. Example of shuffle composition in the free shuffle operad

8.2.9. Group and pre-Lie algebra associated to a shuffle operad. In
5.3.14, resp. 5.3.16, we associate to any symmetric operad a group, resp. a pre-
Lie algebra. These constructions consist in summing over operations which are
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determined by two-levels shuffle trees. Hence they make sense for shuffle operads
as well.

8.2.10. From symmetric operads to shuffles operads. For any S-module
P = {P(n)}n≥1, we denote by Pf the underlying arity-graded module:

(Pf )n := P(n).

This is the forgetful functor from S-Mod to N-Mod. The crucial property of the
shuffle composite product states that for any S-modules P and Q:

(P ◦ Q)f ∼= Pf ◦� Qf .

Recall that the set of unshuffles Sh−1
i1,...,ik

provide representatives for the quotient of

Sn under the left action by Si1×. . .×Sik . The set of pointed unshuffles�(i1, . . . , ik)
provides representatives for the quotient of Sh−1

i1,...,ik
by the action of Sk.

This equality enables us to define the composite

γ� : Pf ◦� Pf ∼= (P ◦ P)f
γ−→ Pf ,

when P = (P, γ, η) is an operad. Then, it is straightforward to see that (Pf , γ�, η)
is a shuffle operad.

Proposition 8.2.11. The forgetful functor

(S-Mod, ◦) −→ (N-Mod, ◦�)

is a strong monoidal functor, see Appendix B.3.3. Therefore it induces the following
functor

Op −→ Op
�
, (P, γ, η) 7→ (Pf , γ�, η) .

Proof. It is a straightforward to check the axioms of strong monoidal functors with
the previous discussion. �

8.2.12. From shuffle operads to ns operads. For any partition n = i1 +
· · · + ik, the identity permutation is an element of �(i1, . . . , ik). Hence, for any
arity graded modules M and N , M ◦N ⊂M ◦� N :⊕

Mk ⊗Ni1 ⊗ · · ·Nik ⊂
⊕

Mk ⊗Ni1 ⊗ · · · ⊗Nik ⊗K[�(i1, . . . , ik)] .

Proposition 8.2.13. The functor

(N-Mod, ◦�) −→ (N-Mod, ◦)

is a monoidal functor, see Appendix B.3.3. Therefore it induces the following func-
tor

Op
�
−→ nsOp .

Proof. It is a straightforward to check the axioms of monoidal functors with the
previous discussion. �

Finally, we have two functors

Op −→ Op
�
−→ nsOp ,

whose composite is the forgetful functor P → P̃ mentioned in 5.8.12.
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8.2.14. From shuffle operads to permutads. Some families of shuffle trees
are closed under substitution. The first example, mentioned above, is the set of
planar trees, whose monad defines nonsymmetric operads.

Another example of a family of shuffle trees closed under substitution is made
up of the “shuffle left combs”, that is shuffle trees whose underlying planar tree is
a left comb, see Figure 6.

Figure 6. Example of shuffle left comb

An algebra over this monad is a permutad, see 13.14.7. It can be shown to
coincide with the notion of shuffle algebra introduced by M. Ronco in [Ron10].

8.2.15. Koszul duality theory for shuffle operads. In the preceding chap-
ters, we have developed the Koszul duality theory for symmetric and non-symmetric
operads following a certain pattern (twisting morphisms, bar and cobar construc-
tions, twisting composite products, Koszul morphisms, comparison lemma). The
same scheme applies to shuffle operads mutatis mutandis. In this way, one can
develop the Koszul duality theory for shuffle operads as well. We leave the details
to the reader as a very good exercise.

8.3. Rewriting method for operads

With the help of shuffle trees, we settle the rewriting method of 4.1 and of 8.1
for (symmetric) operads. It works in the same way except that one has to use a
suitable order on shuffle trees in this case.

Let P(E,R) be a quadratic operad (not necessarily binary), for instance, the
operad Lie encoding Lie algebras

Lie = P(Ksgn c, c ◦ (c⊗ id) + c ◦ (c⊗ id)(123) + c ◦ (c⊗ id)(321)) ,

where Ksgn stands for the signature representation of S2.

Step 1. We choose an ordered K-linear basis {ei}i=1,...,m for the S-module of
generators E.

Step 2. We consider, for instance, the induced path-lexicographic ordered ba-

sis on the shuffle trees T (2)
� with 2 vertices, see Figure 7. (For the complete definition

of the path-lexicographic order, we refer the reader to Section 8.4.) Notice that one
can use any other suitable order on shuffle trees, see loc. cit.

We consider the induced K-linear basis of the S-module R. Any element is of
the form

r = λ t(ei, ej)−
∑

t′(k,l)<t(i,j)

λ
t(i,j)
t′(k,l) t

′(ek, el) ; λ 6= 0 ,
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Figure 7. Path-lexicographic order on 2-vertices binary shuffle trees

where the notation t(i, j) (resp. t(ei, ej)) represents a shuffle tree with 2 vertices
labelled by i and j (resp. by ei and ej). The monomial tree t(ei, ej) is called the
leading term of r. As usual, we can always change this basis for one with normalized
form.

In the example of the operad Lie, the space of relations R admits the following
normalized basis:

1

99999 2

�����

>>>>>> 3

||||| −

1

99999 3

�����

>>>>>> 2

||||| −

2

99999 3

�����

1

BBBBB

������ .

Since there is only one label e1 = c for the vertices, we do not represent it here.

Step 3. These choices provide rewriting rules of the form

t(ei, ej) 7→
∑

t′(k,l)<t(i,j)

λ
t(i,j)
t′(k,l) t

′(ek, el),

Leading term 7→ Sum of lower and non-leading terms,

for any relator r in the normalized basis of R. A tree monomial t(ei, ej , ek) with 3
vertices is called critical if its two shuffle subtrees with 2 vertices are leading terms.
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In the case of the operad Lie, there is one rewriting rule

1

99999 2

�����

>>>>>> 3

||||| 7→

1

99999 3

�����

>>>>>> 2

||||| +

2

99999 3

�����

1

BBBBB

������

and only one critical tree monomial

1

99999 2

�����

999999 3

�����

BBBBBB 4

|||||

.

Step 4. Any critical tree monomial gives rise to a graph made up of the suc-
cessive applications of the rewriting rules aforementioned. Any critical monomial
is called confluent if the associated graph has only one terminal vertex (confluent
graph).

In the guiding example of the operad Lie, the graph associated to the only
critical monomial is confluent, see Figure 8.

Remark. Notice that the graph given here is a compact version of the full
rewriting graph of the operad Lie: when it is possible to apply the rewriting rule
to two different trees of a sum, we have only drawn one arrow, applying the two
rewriting rules at once. There is yet another way to draw this rewriting diagram,
which gives the Zamolodchikov tetrahedron equation. It leads to the categorical
notion of Lie 2-algebra, see Baez-Crans [BC04, Section 4].

Conclusion. If each critical monomial is confluent, then the operad P is
Koszul.

It is a consequence of the following result.

Theorem 8.3.1 (Rewriting method for operads). Let P(E,R) be a quadratic op-
erad. If its generating space E admits a K-linear ordered basis, for which there
exists a suitable order on shuffle trees, such that every critical monomial is conflu-
ent, then the operad P is Koszul.

In this case, the operad P admits an induced shuffle tree basis sharing nice
properties, called a PBW basis, see 8.5.

Therefore, the operad Lie is Koszul and admits a PBW basis.

8.4. Reduction by filtration

In this section, we extend to operads the “reduction by filtration” method for
algebras as described in 4.2. The only real new points lie in the use of the notion of
shuffle operad and in suitable orders for the free (shuffle) operad. Since the proofs
follow the same pattern as in Chapter 4 for associative algebras, so we skip most
of them.
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Figure 8. The diamond for the operad Lie

8.4.1. Suitable order on shuffle trees. We consider the set of shuffle trees
with vertices labelled by {1, . . . ,m}, where m can be infinite. We denote it simply
by T�. Notice that it labels a basis of the shuffle operad T�(E), on a reduced
arity-graded module such that dimEn = m, for any n ≥ 1. We choose a bijection
between this set and the set of nonnegative integers N, with its total order. (We
require the identity tree | being sent to 0). It endows the set of labelled shuffle trees
with a total order denoted T�p. We consider the partial shuffle products

◦i,ω : T�p × T�q → T�χ(σ;p,q) .

We ask that all these maps are strictly increasing, with respect of the lexicographic
order on the left hand side. In this case, we say that the order on labelled shuffle
trees is a suitable order.

Example (Path-lexicographic order). For simplicity, we restrict ourselves to
the set of labelled shuffle trees whose vertices are at least trivalent, and such that
m is finite. To any tree of arity n, we associate a sequence of n+1 words as follows.
The n first words are obtained by reading the tree from the root to each leaf and
by recording the labels indexing the vertices. The last word is given by the ordered
labeling of the leaves, or equivalently by the image of the inverse of the associated
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pointed unshuffle. For example, one associates to the following tree

1

====
2 4

����

?>=<89:;1

===== 3

����

?>=<89:;2

the sequence

(21, 21, 2, 21; 1324) .

We leave it to the reader to verify that such a sequence characterizes the reduced
labelled shuffle tree. We consider the following total order on this type of sequences.

(1) We order them according to the number of elements of the sequence, that
is the arity,

(2) we consider the lexicographic order, with reversed order for the last word.

The example m = 2 is given is Figure 9. This ordering endows the set of reduced la-
belled shuffle trees with a suitable order, see [Hof10c, Proposition 3.5] and [DK10,
Proposition 5]. These two references provide other examples of suitable orders on
reduced trees. We refer the reader to exercise 8.10.4 for an example of a suitable
order on unreduced labelled shuffle trees.

8.4.2. Associated graded shuffle operad. Let P(E,R) = T (E)/(R) be a
homogeneous quadratic operad, i.e. the S-module of relations satisfies R ⊂ T (E)(2).
Suppose that the generating space E comes equipped with an extra datum: a
decomposition into S-modules E ∼= E1 ⊕ · · · ⊕ Em. Notice that E and the Ei can
be degree graded S-modules.

Since the forgetful functor (S-Mod, ◦) → (N-Mod, ◦�), M 7→ Mf , is a strong
monoidal functor by Proposition 8.2.13, we automatically get the isomorphisms of
arity-graded modules

(T (E))f ∼= T�(Ef ) and (P(E,R))f ∼= P�(Ef , Rf ) .

In other words, the underlying space of the free operad is equal to the free shuffle
operad and the underlying space of the quadratic operad P is equal to the quadratic
shuffle operad, which we denote by P�. From now on, we forget about the bar
notation for simplicity since the context is obvious.

We consider a suitable order on the set of labelled shuffle trees. In this case,
we say that the operad P is equipped with an extra ordered grading. Notice that if
the generating space E is concentrated in some arities, it is enough to consider a
suitable order only on the induced trees. For example, if E(1) = 0, then the shuffle
trees are reduced and the aforementioned path-lexicographic order applies.

The total order on shuffle trees induces the following filtration of the free shuffle
operad Fp T�(E) :=

⊕p
q=0 T�(E)q. This image under the canonical projection

T�(E) � P� = P�(E,R) defines a filtration on the quadratic shuffle operad
denoted Fp P�. The associated χ-graded arity-graded module is denoted by grχ P�
or simply by grP�.
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Figure 9. Path-lexicographic order in the case m = 2

Proposition 8.4.3. Any quadratic operad P(E,R) equipped with an extra order
grading induces a shuffle operad structure on the χ-graded arity-graded module
grP�.

Proof. By the definition of a suitable order, any partial shuffle product of the shuffle
operad P� induces a well-defined partial shuffle product on the graded module
grP�:

◦̄i,ω : grp P� ⊗ grq P� → grχ(σ;p,q) P� ,

for any i and ω. These data endow the graded module grP� with a shuffle operad
structure. �

Notice that, since the extra grading on T�(E) refines the weight grading, the
shuffle operad grP� is also weight graded.

8.4.4. The Koszul property.

Theorem 8.4.5. Let P = P(E,R) be a quadratic operad equipped with an extra
ordered grading. If the shuffle operad grP� is Koszul, then the operad P is also
Koszul.
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Proof. The proof is essentially the same as the proof of Theorem 4.2.3, once the
following point is understood. The isomorphism

BP ∼= B� P�

from the bar construction of the operad P to the shuffle bar construction of the
associated shuffle operad P�, as differential graded arity-graded module, follows
from Proposition 8.2.13 again. So if the homology of B� P� is concentrated in
syzygy degree 0, then so is the homology of BP. To conclude, it is enough to apply
the methods of Theorem 4.2.3 to the shuffle operad P� to prove that grP� Koszul
implies P� Koszul. �

From now on, we concentrate on trying to prove that the shuffle operad grP�
is Koszul in order to show that the operad P is Koszul.

8.4.6. Quadratic analog. We consider the kernel Rlead of the restriction to R
of the projection T�(E)� grP�. Any relator in R can be written r = T1+· · ·+Tp,
where any Ti is a tree monomial in T�(E)(2), and such that Ti < Ti+1 and Tp 6= 0.
This latter term Tp is called the leading term or r. The space Rlead is linearly
spanned by the leading terms of the elements of R.

We consider the following quadratic shuffle algebra

P̊� := T�(E)/(Rlead) ,

which is the best candidate for being a quadratic presentation of the shuffle operad
grP�.

Proposition 8.4.7. Let P = P(E,R) be a quadratic operad equipped with an extra
ordered grading. There is a commutative diagram of epimorphisms of χ-graded,
thus weight graded, shuffle operads

T�(E)

���� ** **UUUUUUUUUUUUUUUU

ψ : P̊� = T�(E)/(Rlead) // // grP� .

If the shuffle operad P̊� is Koszul and if the canonical projection P̊� ∼= grP� is
an isomorphism, then the operad P is Koszul.

8.4.8. Diamond Lemma. When the quadratic shuffle operad P̊� is Koszul,
it is enough to check that the canonical projection ψ : P̊� � grP� is injective in
weight 3, to show that it is an isomorphism.

Theorem 8.4.9 (Diamond Lemma for quadratic operads). Let P = P(E,R) be a
quadratic operad equipped with an extra ordered grading. Suppose that the quadratic
shuffle operad P̊� = T�(E)/(Rlead) is Koszul. If the canonical projection P̊� �
grP� is injective in weight 3, then it is an isomorphism. In this case, the operad
P is Koszul and its underlying arity-graded module is isomorphic to P ∼= P̊�.

8.4.10. The inhomogeneous case. For an inhomogeneous quadratic operad
P = P(E,R), that is R ⊂ E ⊕ T (E)(2), we require that the presentation satisfies
the conditions (ql1) and (ql2) of Section 7.8. We suppose that the associated ho-
mogeneous quadratic operad qP := P(E, qR) admits an extra ordered grading. In
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this case, there exists a commutative diagram

˚qP�

Op
�

����
grχ qP�

∼=
N-Mod

//

Op
�

����

qP

Op

����
grχ P�

∼=
N-Mod

// grP
∼=

S-Mod
// P ,

where the type of the morphisms is indicated on the arrows. The morphisms of
the first column preserve the χ-grading and the morphisms of the second column
preserve the weight grading.

Theorem 8.4.11 (Diamond Lemma for inhomogeneous quadratic operads). Let
P = P(E,R) be a quadratic-linear operad with a presentation satisfying Conditions
(ql1) and (ql2). We suppose that T�(E) comes equipped with an extra ordered
grading.

If the quadratic operad ˚qP� is Koszul and if the canonical projection ˚qP� �
grχ qP� is injective in weight 3, then the operad P is Koszul and all the maps of
the above diagram are isomorphisms, in particular:

˚qP� ∼= grχ qP� ∼= qP ∼= grP ∼= P .

8.4.12. Reduction by filtration method for nonsymmetric operads.
The same theory holds for nonsymmetric operads. In this simpler case, there is
no need to use the notions of shuffle operad and shuffle trees. One works with the
set of planar trees PT from the very beginning and one remains in the context of
nonsymmetric operads. The only point is to consider a suitable order on planar
trees, that is a total order such that any partial composite product

◦i : PTk × PTl → PTn

is an increasing map. The adaptation of the path-lexicographic order gives an ex-
ample of such a suitable order. Notice that reduced planar trees are particular
examples of shuffle trees and that partial composite products are particular ex-
amples of partial shuffle products. We leave the details to the reader as a good
exercise.

8.5. PBW bases and Gröbner bases for operads

In this section, we study the particular case of the preceding section when the
generating space E is equipped with an extra grading E ∼= E1⊕· · ·⊕Em such that
each sub-space Ei is one-dimensional. This gives rise to the notion of Poincaré-
Birkhoff-Witt basis for (shuffle) operads. Quadratic operads which admit such a
basis share nice properties. For instance, they are Koszul operads.

We introduce the equivalent notion of Gröbner basis, which is to the ideal (R)
what PBW basis is to the quotient operad T (E)/(R).

For operads, the notion of PBW basis comes from Hoffbeck [Hof10c] and the
notion of Gröbner basis comes from Dotsenko and Khoroshkin [DK10].
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8.5.1. Ordered bases. Let P = P(E,R) be a quadratic operad with a de-
composition of the generating space E ∼= E1⊕· · ·⊕Em into one-dimensional vector
spaces. This data is equivalent to an ordered basis {e1, . . . , em} of the K-module
E. Together with a suitable order on shuffle trees T�, it induces a totally ordered
basis of T�(E), made up of tree monomials. In this case, we say that T�(E) is
equipped with a suitable ordered basis.

In this basis, the space of relations is equal to

R =

λ t(ei, ej)− ∑
t′(k,l)<t(i,j)

λ
t(i,j)
t′(k,l) t

′(ek, el) ; λ 6= 0

 ,

where the notation t(i, j) (resp. t(ei, ej)) stands for a shuffle tree with two vertices

indexed by i and j (resp. by ei and ej). We denote by T
(2)

the subset of T� made
up of labelled shuffle trees which appear as leading terms of some relators. We

denote by T (2) the complement of T
(2)

in T (2)
� . Notice that the space of relations

admits a normalized basis of the form

R =

〈
t(ei, ej)−

∑
t′(k,l)∈T (2)<t(i,j)

λ
t(i,j)
t′(k,l) t

′(ek, el)

〉
.

Proposition 8.5.2. Let P be a quadratic operad P(E,R), with T�(E) equipped

with a suitable ordered basis. The associated quadratic shuffle operad P̊� is equal

to the quadratic shuffle operad P�(E,Rlead), with Rlead
∼= 〈t(ei, ej); t(i, j) ∈ T

(2)〉.

8.5.3. Quadratic monomial shuffle operads. A quadratic monomial shuf-
fle operad is a quadratic shuffle operad P̊� = P�(E,R) with a (non-necessarily or-
dered) basis {ei}1≤i≤m of E such that the space of relations R is linearly spanned

by a set of trees {t(ei, ej)}t(i,j)∈T̄ (2) , where T
(2) ⊂ T (2)

� . Hence the complement

T (2) of T
(2)

in T (2)
� labels a basis of the quotient P̊(2)

� = T�(E)(2)/R.

We set T (0) := {|} and T (1) := T (1)
� . For any n ≥ 2, we define the subset

T (n) ⊂ T (n)
� as the set of labelled shuffle trees with n vertices such that for any

internal edge, the associated two-vertices subtree is in T (2). Finally, we consider
T =

⊔
n∈N T

(n) ⊂ T�. We define the subset T ⊂ T� in the same way, that is a tree

lives in T
(n) ⊂ T (n)

� if for any internal edge, the associated two-vertices subtree is

in T
(2)

.

Proposition 8.5.4. Any quadratic monomial shuffle operad P̊� = P�(E,R) ad-

mits a basis labelled by the subset T ⊂ T�. Its Koszul dual shuffle cooperad (P̊�)
¡

admits a basis labelled by T ⊂ T�.

Theorem 8.5.5. Any quadratic monomial shuffle operad is Koszul.

Proof. By the preceding proposition, the underlying space of the Koszul complex

is equal to (P̊�)
¡ ◦� P̊�, which admits a basis of the following form. We consider

the set of labelled shuffle trees with a horizontal partition into two parts; any two-
vertices subtrees in the upper part belong to T (2) and any two-vertices subtrees

in the lower part belong to T
(2)

. Finally, we conclude with the same argument
as in the proof of Theorem 4.3.6. The differential map amounts to pulling up one
top vertex from the lower part to the upper part. When it is 0, it produces a
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cycle element, which is easily shown to be a boundary element. Hence, this chain
complex is acyclic. �

This result is a key point in the PBW basis theory because it simplifies the
statements of Section 8.4. When the decomposition E ∼= E1⊕ · · · ⊕Em is made up
of one-dimensional sub-spaces, the quadratic analog P̊� is always a Koszul shuffle
operad.

8.5.6. PBW basis. The image of the monomial basis {t(eı̄)}t∈T of the shuffle

operad P̊�, given in Proposition 8.5.4, under the successive morphisms of graded
(and also arity-graded) modules P̊� � grP� ∼= P� ∼= P provides a family of ele-
ments {t̄(eı̄)}t∈T , which span the operad P. When these elements are linearly inde-
pendent, they form a basis of the operad P, called a Poincaré-Birkhoff-Witt basis, or
PBW basis for short. This is equivalent to having an isomorphism ψ : P̊� ∼= grP�.
We say that an operad P = P(E,R) admits a PBW basis if the free shuffle operad
T�(E) admits a suitable ordered basis such that the associated elements {t̄(eı̄)}t∈T
form a basis of the operad P.

Example. The operad Com is generated by a one-dimensional space concen-
trated in arity 2: E = K • . We consider the suitable order obtained by restriction of
the path-lexicographic order 8.4.1 on binary shuffle trees. On trees with 2 vertices,
it is equal to

2

8888 3

����

1
DDDD •

�����

•︸ ︷︷ ︸
T (2)

<

1

8888 3

����

•
>>>>> 2

zzzz
•

<

1

7777 2

����

•
>>>> 3

zzzz
•︸ ︷︷ ︸

T
(2)

.

The space of relations is the linear span of the three terms made up of the difference
of such two trees. Hence the set T (2) is made up of the first tree. It generates the
set T made up of the left combs:

· · ·
EEEE n

{{{{
•

~~~~~~~~~~~~

2

8888

1
DDDD •

�����

•

Since dimK Com(n) = 1, this forms a PBW basis of the operad Com.

Theorem 8.5.7. Any quadratic operad endowed with a PBW basis is Koszul.

As for algebras, the existence of a PBW basis gives a purely algebraic condition
to prove that an algebra is Koszul, without having to compute any homology group.
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8.5.8. Diamond lemma for PBW bases. The following Diamond lemma
gives an easy way to prove that one has a PBW basis.

Theorem 8.5.9 (Diamond Lemma for PBW bases of operads). Let P = P(E,R) be
a quadratic operad, with T�(E) equipped with a suitable ordered basis {t(eı̄)}t∈T . If
the associated elements {t̄}t∈T (3) are linearly independent in P(3), then the elements
{t̄(eı̄)}t∈T form a PBW basis of P. In that case, the operad P is Koszul.

To check the assumption of this theorem, one uses the rewriting method of 8.3:
one shows that every critical monomial is confluent. Notice that this Theorem and
Proposition 4.3.12 give a proof of the rewriting method Theorem 8.3.1.

8.5.10. Partial shuffle product of elements of a PBW basis. The com-
posite P̊� � grP� ∼= P� ∼= P is an epimorphism of arity-graded modules, but not
of (shuffle) operads. Therefore, the partial shuffle product of two elements of the
generating family {t̄(eı̄)}t∈T is not always equal to an element of this family, but
sometimes to a sum of lower terms.

Proposition 8.5.11. The elements {t̄(eı̄)}t∈T satisfy the following properties.

(1) Let σ be a partial pointed shuffle and let t, s ∈ T by pair of trees with
matching arity. If the partial shuffle product of trees is not it T , t◦σ s /∈ T ,
then the partial shuffle product t̄ ◦σ s̄ in the operad P is equal to a linear
combination of strictly lower terms labelled by T :

t̄ ◦σ s̄ =
∑

u∈T, u< t ◦σ s
λt,su ū,

with λt,su ∈ K.
(2) Any shuffle tree lies in T , if and only if any shuffle subtree s ⊂ t lies in

T .

In the above example of the operad Com, only the partial shuffle composite
i = k and σ = id produces an element of the basis. The other composites are equal
to the left comb in Com, which is a strictly lower but in the basis.

We leave it to the reader to prove that a tree basis T satisfying Conditions (1)
and (2) is a PBW basis. This equivalent definition is the definition originally given
by Hoffbeck in [Hof10c].

8.5.12. Gröbner bases for operads. Following [DK10], we introduce the
notion of Gröbner basis for an operadic ideal I of the free (shuffle) operad. In the
quadratic case, when I = (R), it is equivalent to a PBW basis for the quotient
operad P = T (E)/(R).

Any element t ∈ T�(E) of the free shuffle operad is a linear combination of
tree monomials. When T�(E) is equipped with a suitable ordered basis, we denote
by tlead the leading term of t. For any subset M ⊂ T�(E), we consider the set
made up of the leading terms of any element of M and we denote it by Lead(M).
Under this notation, the space of relations Rlead of 8.5.1 is equal to the linear span
of Lead(R): Rlead = 〈Lead(R)〉.

A Gröbner basis of an ideal I in T�(E) is a set G ⊂ I which generates the
ideal I, i.e. (G) = I, such that the leading terms of G and the leading terms of the
elements of I generate the same ideal: (Lead(G)) = (Lead(I)).
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Proposition 8.5.13. Let P = P(E,R) be a quadratic operad such that T�(E) is
equipped with a suitable ordered basis. The elements {t̄(eı̄)}t∈T form a PBW basis
of P if and only if the elementst(ei, ej)− ∑

t′(k,l)∈T (2)<t(i,j)

λ
t(i,j)
t′(k,l) t

′(ek, el)


t(i,j)∈T (2)

,

spanning R, form a Gröbner basis of the ideal (R) in T�(E).

In the quadratic case, the two notions of PBW basis and Gröbner basis are
equivalent dual notions. The terminology “PBW basis” refers to the basis of the
quotient operad while the terminology “Gröbner basis” refers to the ideal (R). We
refer to [DK10] for more details on Gröbner bases for operads.

8.5.14. PBW bases for inhomogeneous quadratic operads. Following
Section 8.4.10, we say that an inhomogeneous quadratic operad P admits a PBW
basis if there exists a presentation P = P(E,R), satisfying Conditions (ql1) and
(ql2), such that the associated quadratic algebra qP = P(E, qR) admits a PBW
basis. In this case, the image {t̄(eı̄)}t∈T ⊂ P of the tree basis elements {t(eı̄)}ı̄∈T
of the quadratic monomial shuffle operad q̊P

�
gives a basis of the inhomogeneous

quadratic operad P. Such a result is once again proved using the following version
of the Diamond Lemma.

Theorem 8.5.15 (Diamond Lemma for PBW bases of inhomogeneous operads).
Let P = P(E,R) be an inhomogeneous quadratic operad with a quadratic-linear
presentation satisfying Conditions (ql1) and (ql2) and such that T�(E) is equipped
with a suitable ordered basis.

If the images of the tree elements {t(eı̄)}ı̄∈T (3) in qP are linearly independent,
then the images {t̄(eı̄)}t∈T of the elements {t(eı̄)}t∈T form a basis of P, and the
operad P is Koszul.

In the inhomogeneous case too, the notion of PBW basis is equivalent and dual
to that of Gröbner basis.

Proposition 8.5.16. Let P be an inhomonegenous quadratic operad with a quadratic-
linear presentation P = P(E,R) satisfying Conditions (ql1) and (ql2) and such that
T�(E) is equipped with a suitable ordered basis. Let ϕ : qR→ E be the linear map
whose graph gives R. The elements {t̄(eı̄)}t∈T ⊂ P form a PBW basis of P if and
only if the elements(Id− ϕ)

t(ei, ej)− ∑
t′(k,l)∈T (2)<t(i,j)

λ
t(i,j)
t′(k,l) t

′(ek, el)


t(i,j)∈T (2)

spanning R, form a Gröbner basis of the ideal (R) in T�(E).

8.5.17. PBW/Gröbner bases for nonsymmetric operads. Once again,
the same results hold for nonsymmetric operads. One has just to replace the set of
shuffle trees by the one of planar trees.
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8.6. Distributive laws

In this section, we show how to build a new operad out of two operads by
means of an extra datum, called distributive law. When the two first operads are
quadratic, we describe how to get a distributive law from these presentations. The
main result states that, in this case, the resulting operad is Koszul if the two first
ones are Koszul.

The notion of distributive law goes back to Jon Beck [Bec69]. Its application
to Koszul operads was first introduced in [Mar96a, FM97] and then refined in
[Val07a, Dot07].

8.6.1. Definition of a distributive law. Let A = (A, γA, ιA) and B =
(B, γB, ιB) be two operads. In order to put an operad structure on the composite
A ◦ B, one needs a morphism of S-modules

Λ : B ◦ A → A ◦ B.

It is called a distributive law if the following diagrams are commutative:

(I) B ◦ A ◦ A

IdB◦γA
��

Λ◦IdA // A ◦ B ◦ A
IdA◦Λ // A ◦ A ◦ B

γA◦IdB
��

B ◦ A Λ // A ◦ B ,

(II) B ◦ B ◦ A

γB◦IdA
��

IdB◦Λ // B ◦ A ◦ B
Λ◦IdB // A ◦ B ◦ B

IdA◦γB
��

B ◦ A Λ // A ◦ B ,

(i)

B
ιA◦IdB

""EEEEEEEEE
IdB◦ιA

||yyyyyyyyy

B ◦ A Λ // A ◦ B

(ii)

A
IdA◦ιB

##GGGGGGGGG
ιB◦IdA

||yyyyyyyyy

B ◦ A Λ // A ◦ B .

The associativity isomorphisms and the identifications like B ◦ I ∼= B ∼= I ◦ B
are implicit in these diagrams.

Proposition 8.6.2. If Λ : B ◦ A → A ◦ B is a distributive law for the operad
structures of A and B, then A ◦ B is an operad for the composition

γΛ := (γA ◦ γB)(IdA ◦ Λ ◦ IdB) : (A ◦ B) ◦ (A ◦ B)→ A ◦ B,

and for the unit

ιΛ := ιA ◦ ιB : I→ A ◦ B.

Proof. In order to simplify the notation we write AB in place of A◦B. The associa-
tivity condition for γΛ is the commutativity of the outer square diagram. It follows
from the commutativity of the inner diagrams, which are either straightforward, or
follows from the associativity of γA and γB, or from the hypothesis.
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ABABAB //

��

ABAABB //

��

ABABB //

��

ABAB

��

AABBAB //

��

AABABB

&&NNNNNNNNNNNN (I)

(II) AAABBB //

��

AABBB // AABB

��

AABAB //

��

AAABB

��

Ass. of γA, γB

ABAB // AABB // AB
In this diagram the maps are composite products of Λ, γA, γB and the identities.

The exact combination is clear from the source and the target. For instance the
leftmost arrow of the first row is IdA ◦ IdB ◦ IdA ◦ Λ ◦ IdB.

The left unit property is proved in the same way by the following commutative
diagram.

A ◦ B

��

ιA◦IdA◦ιB◦IdB

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
ιA◦ιB◦IdA◦IdB // A ◦ B ◦ A ◦ B

IdA◦Λ◦idB

��

(ii)

unit A ◦ unit B

A ◦ B A ◦ A ◦ B ◦ B
γA◦γBoo

The proof of the right unit property uses (i). �

This notion of distributive law is the exact application to Schur functors of the
general one for monads due to Beck [Bec69]. For a converse result, we refer the
reader to Exercise 8.10.9.

8.6.3. Distributive laws for quadratic data. LetA := P(V,R) = T (V )/(R)
and B := P(W,S) = T (W )/(S) be two quadratic operads. Their coproduct
A ∨ B in the category of operads is again a quadratic operad with presentation
A ∨ B = P(V ⊕ W,R ⊕ S). We suppose now that there exists a compatibility
relation between the generating operations V of A and the generating operations
W of B of the following form.

Under the notation ◦(1), introduced in 6.1.1, we have a natural isomorphism of
S-modules:

T (V ⊕W )(2) = T (V )(2) ⊕ V ◦(1) W ⊕W ◦(1) V ⊕ T (W )(2) .

Let λ : W ◦(1) V → V ◦(1) W be a morphism of S-modules that we call a
rewriting rule. The graph of λ gives the weight 2 space of relation

Dλ := 〈T − λ(T ), T ∈W ◦(1) V 〉 ⊂ T (V ⊕W )(2) .
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Finally, we consider the operad A∨λ B which is, by definition, the quotient of the
coproduct A ∨ B by the ideal generated by Dλ. This operad admits the following
quadratic presentation:

A ∨λ B = P(V ⊕W,R⊕Dλ ⊕ S).

So, in this operad, the map λ has to been seen as a rewriting rule, which allows
us to move the operations of V under the operations of W , see the figures of 8.6.5
below. It remains to see whether this local rewriting rule induces or not a global
distributive law B ◦ A → A ◦ B.

The composite T (V )◦T (W )→ T (V ⊕W )� T (V ⊕W )/(R⊕Dλ⊕S) induces
the following epimorphism of S-modules

p : A ◦ B � A ∨λ B.
Similarly, there exists a morphism of S-modules B ◦ A → A∨λ B.

Proposition 8.6.4. Let A = P(V,R) and B = P(W,S) be two quadratic operads.
For any morphism of S-modules λ : W ◦(1) V → V ◦(1) W , such that p : A ◦ B �
A ∨λ B is an isomorphism, the composite

Λ : B ◦ A → A∨λ B
p−1

−−→ A ◦ B.
is a distributive law.

In that case, the map p : (A◦B, γΛ, ιΛ)→ A∨λB is an isomorphism of operads.

Proof. Conditions (i) and (ii) of 8.6.1 are trivially satisfied. The inclusion i : A�
A ∨ B � A ∨λ B satisfies properties like the following commutative diagram:

B ◦ A ◦ A
p◦IdA //

IdB◦γA
��

(A ∨λ B) ◦ A Id◦i // (A ∨λ B) ◦ (A ∨λ B)

γ

��
B ◦ A

p // (A ∨λ B) ,

where Id and γ refer to A ∨λ B.
Therefore, “Condition (I) of a distributive law” is a consequence of the com-

mutativity of the diagram:

BAA

��

// (A ∨λ B)A //

��

ABA //

&&MMMMMMMMMMM

xxqqqqqqqqqqq
A(A ∨λ B) //

��

AAB

��

(A ∨λ B)(A ∨λ B)

&&MMMMMMMMMM
(A ∨λ B)(A ∨λ B)

xxqqqqqqqqqq

BA // A ∨λ B // AB.
The commutativity of the middle square comes from the associativity of the com-
posite of A ∨λ B: ABA� (A ∨λ B)◦3 → A∨λ B �

Notice the similarity with the rewriting method: the elements of A ◦ B play
the same role as the chosen monomials which can form a PBW basis. They always
linearly span the final operad but it remains to prove that they actually form a basis
of it. The rest of this section is written in the same way as the previous sections.

For a more general study of distributive laws, see P.-L. Curien [Cur08].
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8.6.5. The example of the operad Pois. Let us consider the example of
the operad Pois encoding Poisson algebras, see Section 13.3 for more details. A
Poisson algebra is a vector space (or dg module) endowed with an associative and
commutative product • and with a Lie bracket [ , ], which satisfy the Leibniz relation
[x • y, z] = [x, z] • y + x • [y, z]. The graphical representation of this relation is

x
>>> y

|||
•

BBB z
|||

[ , ]

=

x
CCC z

|||
[ , ]

CCC y
���
•

+

y
AAA z

}}}

x
@@@ [ , ]

{{{
•

.

It is an example of the preceding definition. Here the operad A = Com is the
operad of commutative algebras with V = K •, the operad B = Lie is the operad
of Lie algebras with W = K [ , ] and the rewriting rule λ is equal to

λ :

1
<<< 2

~~~~
•

@@@ 3
}}}

[ , ]

7−→

1
AAA 3

}}}
[ , ]

CCC 2
���
•

+

2
AAA 3

}}}

1
??? [ , ]

{{{
•

.

Hence the S-module Com◦Lie linearly span the operad Pois. Actually, the rewrit-
ing rule λ induces a distributive law and the S-module Com ◦ Lie is isomorphic
to Pois. Since the proof is quite involved, we postpone it to 8.6.12 after Theo-
rem 8.6.11.

8.6.6. Koszul duality of operads with trivial distributive law. Let
A = P(V,R) and B = P(W,S) be two quadratic operads and consider the trivial
rewriting rule λ ≡ 0. On the level of S-modules A ∨0 B ∼= A ◦ B, so it induces a
global distributive law, which is the trivial one Λ ≡ 0. This yields the isomorphism
of operads A ∨0 B ∼= (A ◦ B, γ0).

Proposition 8.6.7. Let A = P(V,R) and B = P(W,S) be two quadratic operads.
The underlying module of the Koszul dual cooperad of the operad defined by the
trivial rewriting rule is equal to

(A ∨0 B)
¡ ∼= B

¡
◦ A

¡
.

If moreover, the operads A, B are Koszul, then the operad A ∨0 B is Koszul.

Proof. The isomorphism (A ∨0 B)
¡ ∼= B

¡ ◦ A¡
is a direct consequence of Proposi-

tion 7.3.2. The Koszul complex of the operad A ∨0 B is isomorphic to (B¡ ◦ A¡
) ◦

(A ◦ B). We filter this chain complex by the weight of the elements of B¡
. Hence

the first term of the associated spectral sequence is equal to

(E0, d0) ∼= B
¡
◦ (A

¡
◦κA A) ◦ B .

So its homology is equal to (E1, d1) ∼= B
¡ ◦κB B. It finally gives E2 ∼= I and we

conclude by the convergence theorem of spectral sequences 1.5.7. �
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8.6.8. Distributive law implies Koszul. The Koszul property is stable un-
der the construction of operads via distributive laws.

Theorem 8.6.9. Let A = P(V,R) and B = P(W,S) be two quadratic operads
endowed with a rewriting rule λ : W ◦(1)V → V ◦(1)W which induces a distributive
law.

The operads A and B are Koszul if and only if the operad A ∨λ B is Koszul.

Proof. (⇒) We follow the same ideas as in the proof of Theorem 4.2.3. We con-
sider the bar construction B−•(A ∨λ B) with the opposite of the syzygy degree as
homological degree and we introduce the following filtration. Since λ defines a dis-
tributive law, the operad A∨λB is isomorphic to (A◦B, γΛ). The bar construction
B(A ◦ B, γΛ) is made up of linear combinations of trees with vertices labeled by 2-
leveled trees made up of elements of A in the bottom part and elements of B in the
top part. We say that one internal edge carries an inversion if it links a non-trivial
element of B in the lower vertex with a non-trivial element of A in the upper vertex.
For such a tree, we define its number of inversions by the sum, over the internal
edges, of inversions. The filtration Fp of B(A ∨λ B) is equal to the sub-S-module
generated by trees with number of inversions less than or equal to p. This filtra-
tion is stable under the boundary map. The first term of the associated spectral
sequence (E0, d0) is isomorphic to the bar construction B(A◦B, γ0) ∼= B(A∨0B) of
the operad defined by the trivial rewriting rule. Since this latter operad is Koszul
by Proposition 8.6.7, the homology of its bar construction is concentrated in syzygy
degree 0. Therefore, the second page E1 is concentrated on the diagonal E1

p−p. So
it collapses at rank 1 and the limit E∞ is also concentrated on the diagonal E∞p−p.
The filtration Fp being exhaustive and bounded below, the classical convergence
theorem of spectral sequences 1.5.7 ensures that the homology of B(A ∨λ B) is
concentrated in syzygy degree 0. Hence the operad A ∨λ B is Koszul.

(⇐) The bar constructions BA and BB are sub-chain complexes of the bar
construction B(A∨λB). If the homology of the latter one is concentrated in syzygy
degree 0 (A ∨λ B Koszul operad), it is also true for BA and BB (A, B Koszul
operads). �

8.6.10. The Diamond Lemma for distributive laws. We prove an ana-
logue of the Diamond Lemma for distributive laws. We denote by (A◦B)(ω) the sub-
S-module ofA◦B made up of elements of total weight ω. The map p : A◦B � A∨λB
is always injective on the components of weight 0, 1 and 2. As in the case of the
Diamond Lemma for PBW bases 8.5.9, if we have an isomorphism in weight (3),
then we have an isomorphism in any weight.

Theorem 8.6.11 (Diamond Lemma for distributive laws). Let A = P(V,R) and
B = P(W,S) be two Koszul operads endowed with a rewriting rule λ : W ◦(1) V →
V ◦(1) W such that the restriction of p : A◦B � A∨λ B on (A◦B)(3) is injective.
In this case, the morphism p is an isomorphism, the map λ defines a distributive
law and the induced operad (A ◦ B, γΛ) is Koszul.

Proof. We use the same filtration as in the proof of Theorem 8.6.9, together with
the ideas of the proof of Theorem 4.2.8.

Step 1. Since the map p : A◦B � A∨λ B is an isomorphism in weight 1, 2 and
3, the underlying S-modules of the components of syzygy degree 0, 1 and 2 of the
bar constructions B•(A∨λ B) and B•(A∨0 B) are isomorphic. Therefore the three
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first lines of the first term of the spectral sequence are equal to
⊕

p∈NE
0
p p+q

∼=
B−•(A ∨0 B), for p + q = −• = 0, 1, 2. It implies the isomorphisms of S-modules⊕

p∈NE
1
p−p
∼= B

¡ ◦A¡
and

⊕
p∈NE

1
p−p
∼= 0. Finally, the convergence of the spectral

sequence, Theorem 1.5.7, gives the isomorphisms

H0(B•(A ∨λ B)) ∼= (A ∨λ B)
¡ ∼=

⊕
p∈N

E∞p−p
∼=
⊕
p∈N

E1
p−p
∼= B

¡
◦ A

¡
.

Step 2. Let us first construct the induced decomposition coproduct on B¡ ◦ A¡

from the one of the cooperad (A ∨0 B)
¡
. It is given by the following composite

B
¡
◦ A

¡ ∆◦Id−−−→ B
¡
◦ B

¡
◦ A

¡
� B

¡
◦ (I ◦ A

¡
⊕ B̄

¡
◦ A

¡
)

Id◦(Id◦∆+Id)−−−−−−−−−→

B
¡
◦ (I ◦ A

¡
◦ A

¡
⊕ B̄

¡
◦ A

¡
) ∼= B

¡
◦ (A

¡
◦ I ◦ A

¡
⊕ I ◦ B̄

¡
◦ A

¡
)

→ (B
¡
◦ A

¡
) ◦ (B

¡
◦ A

¡
) .

This is proved using the following commutative diagram of cooperads

(A ∨0 B)
¡ // //

∼=
��

T c(sV ⊕ sW )

B¡ ◦ A¡ // // T c(sW ) ◦ T c(sV ) .

OO

OO

We consider the same kind of number of inversions, changing this time B by Ω, A
by B¡

and B by A¡
. We consider the decreasing filtration induced by the number

of inversions on the components of fixed total weight of the cobar construction

Ω((A ∨λ B)
¡
) ∼= Ω(B¡ ◦ A¡

), so that the induced spectral sequence converges. One
concludes by the same arguments as before. The first term of the spectral sequence

is equal to (E0, d0) ∼= Ω((A ∨0 B)
¡
), since d0 corresponds to the aforementioned

cooperad structure on B¡ ◦ A¡
. Since the operad A ∨0 B is Koszul, the spectral

sequence collapses at rank 1 and

A ∨λ B ∼= H0(Ω((A ∨λ B)
¡
)) ∼=

⊕
p∈N

E∞p−p
∼=
⊕
p∈N

E1
p−p
∼= H0(Ω(A ∨0 B)) ∼= A ◦ B.

�

This methods gives an easy way to prove that the operad A∨λ B is isomorphic
to (A ◦ B, γΛ, ιΛ).

8.6.12. Example: the Poisson operad. In the case of the operad Pois
introduced in 8.6.5, we leave it to the reader to check that Com◦Lie(4) ∼= Pois(4).
Hence the Diamond Lemma implies that the operad Pois is isomorphic to the
operad defined on Com ◦ Lie by the distributive law.

8.6.13. Counter-example. The following operad, introduced in [Mer04],
gives an example of an operad defined by a rewriting rule λ but which does not
induce a distributive law Λ.

We consider Non-Commutative Poisson algebras, whose definition is the same
as Poisson algebras except that we do not require the associative product ∗ to be
commutative. So this related operad is equal to NCPois ∼= Ass ∨λ Lie.
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There are two ways to rewrite the critical monomial [x ∗ y, z ∗ t] depending on
which side we apply the relation first:

[x ∗ y, z ∗ t]
=

))RRRRRRRRRRRRRR
=

uullllllllllllll

[x, z ∗ t] ∗ y + x ∗ [y, z ∗ t]

��

[x ∗ y, z] ∗ t+ z ∗ [x ∗ y, t]

��
[x, z] ∗ t ∗ y + z ∗ [x, t] ∗ y+
x ∗ [y, z] ∗ t+ x ∗ z ∗ [y, t]

[x, z] ∗ y ∗ t+ x ∗ [y, z] ∗ t+
z ∗ x ∗ [y, t] + z ∗ [x, t] ∗ y .

This yields the relation

[x, z] ∗ t ∗ y + x ∗ z ∗ [y, t] = [x, z] ∗ y ∗ t+ z ∗ x ∗ [y, t],

which produces a non-trivial element in the kernel of the map (Ass ◦ Lie)(3) →
Ass ∨λ Lie ∼= NCPois. Therefore the map λ does not induce a distributive law in
this case and the S-module NCPois ∼= Ass ∨λ Lie is not isomorphic to Ass ◦ Lie.

We refer the reader to Exercise 8.10.11 for another counter-example.

8.6.14. Distributive laws and the Koszul duals. When an operad is given
by a distributive law, it is also the case for its Koszul dual operad.

Proposition 8.6.15. Let A = P(V,R) and B = P(W,S) be two quadratic operads
endowed with a rewriting rule λ : W ◦(1)V → V ◦(1)W which induces a distributive
law.

The underlying S-module of the Koszul dual cooperad of A ∨λ B is isomorphic
to

(A ∨λ B)
¡ ∼= B

¡
◦ A

¡
.

Proof. It is a direct corollary of the preceding proof and Proposition 8.6.7:⊕
p∈N

E∞p,−p
∼= (A ∨λ B)

¡ ∼=
⊕
p∈N

E0
p,−p

∼= (A ∨0 B)
¡ ∼= B

¡
◦ A

¡
.

�

Proposition 8.6.16. Let A := P(V,R) and B := P(W,S) be two finitely generated
binary quadratic operads and let λ : W ◦(1) V → V ◦(1) W be a rewriting rule. The
Koszul dual operad of A ∨λ B has the following presentation:

(A ∨λ B)
! ∼= B! ∨tλ A! ,

where tλ is the transpose of λ.

Proof. We apply the general formula of Theorem 7.6.5 for the Koszul dual operad

of a finitely generated binary quadratic operad: (A ∨λ B)
! ∼= P(V ∨ ⊕W∨, R⊥ ⊕

D⊥λ ⊕S⊥). The space D⊥λ is isomorphic to the graph Dtλ of the transpose map tλ,
which concludes the proof. �

Theorem 8.6.17. Under the hypotheses of the previous proposition, if, moreover,
the rewriting rule λ induces a distributive law, then the transpose rewriting rule tλ
induces a distributive law on the Koszul dual operad

B! ◦ A! ∼= B! ∨tλ A! .
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Proof. By the definition of the Koszul dual operad of 7.2.3 (linear dual of the
Koszul dual cooperad up to suspension and signature representations), it is a direct
corollary of the two previous propositions. �

8.7. Partition Poset Method

In this section, we construct a family of posets associated to a set operad.
Since they are a generalization of the poset of partitions of a set, they are called
operadic partition posets. The main theorem asserts that the induced linear operad
is Koszul if and only if every poset of the family is Cohen-Macaulay, i.e. its homology
is concentrated in top dimension. When it is the case, these top homology groups
are isomorphic to the Koszul dual cooperad. Notice that the proof relies on the
properties of the simplicial bar construction of operads.

On the one hand, the various combinatorial ways to prove that a poset is Cohen-
Macaulay give simple ways of proving that an operad is Koszul. On the other hand,
this result provides a mean to compute the homology of partition type posets.

The construction of the operadic partition posets was first described by M.
Méndez and J. Yang in [MY91]. The case of the operad Com and the properties
of the simplicial bar construction of operads were studied by B. Fresse in [Fre04].
The Koszul-Cohen-Macaulay criterion was proved in [Val07b].

8.7.1. Partition Poset. We denote by n the set {1, . . . , n}. Recall that a
partition of the set n is a non-ordered collection of subsets I1, . . . , Ik, called blocks,
which are nonempty, pairwise disjoint and whose union is equal to n.

For any integer n, there is a partial order 6 on the set of partitions of n defined
by the refinement of partitions. Let π and ρ be two partitions of n. We have π 6 ρ
when π is finer than ρ, that is when the blocks of π are contained in the blocks of
ρ, for instance, {{1}, {3}, {2, 4}} 6 {{1, 3}, {2, 4}}. This partially ordered set is
called the partition poset (or partition lattice) and denoted by Π(n).
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xxxxxxxx
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Figure 10. Hasse diagram of Π(3)

The single block partition {{1, . . . , n}} is the maximal partition of n, and the
collection {{1}, . . . , {n}} is the minimal partition.

The set of partitions of n is equipped with a left action of the symmetric group
Sn. Let σ : n → n be a permutation, the image of the partition {{i11, . . . , i1j1}, . . . , {i

k
1 , . . . , i

k
jk
}}

under σ is the partition

{{σ(i11), . . . , σ(i1j1)}, . . . , {σ(ik1), . . . , σ(ikjk)}}.
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8.7.2. Operadic partitions. We introduce the notion of partitions enriched
with operadic elements.

Let P be a set operad. Recall from 5.1.19, 5.3.9 and ?? that it can be either
considered as a functor Bij → Set or as an S-set, together with an associative and
unital composition product. In one way, we use P(n) := P(n) and, in the other way
round, we use

P(X) := P(n)×Sn Bij(n, X) =

 ∐
f : bijection
n→X

P(n)


Sn

,

where the action of σ ∈ Sn on (f ;µ) for µ ∈M(n) is given by (fσ;µσ).
An element of Bij(n, X) can be seen as an ordered sequence of elements of X,

each element appearing only once. Therefore, an element in P(X) can be thought
of as a sequence of elements of X indexed by an operation of P(n) with respect to
the symmetry of this operation.

A P-partition of n is a set of elements called blocks {B1, . . . , Bk} such that
each Bj belongs to P(Ij), for {I1, . . . , Ik} a partition of n. A P-partition of n
corresponds to a classical partition of n enriched by the operations of P.

Examples.

(1) The operad Com for commutative algebras comes from a set operad which
has only one element in arity n ≥ 1, with trivial action of the symmetric
group. Therefore, Com(X) has only one element, which corresponds to
the set X itself. As a consequence, a Com-partition of n is a classical
partition of n.

(2) The set operad Perm is defined by the set Perm(n) := {en1 , . . . , enn} of n
elements in arity n, where the action of the symmetric group is enk · σ :=
enσ−1(k), see 13.4.11. The operadic composition is given by

enk ◦i eml :=


en+m−1
k+m−1 for i < k,

en+m−1
k+l−1 for i = k,

en+m−1
k for i > k.

We leave it to the reader as a good exercise to check that Perm is an
operad. As a species, Perm(X) can represented by the set of pointed sets
associated to X = {x1, . . . , xn}:

{{x1, . . . , xn}, {x1, x2, . . . , xn}, . . . , {x1, . . . , xn}}.
The element enk “singles out the kth element of X”. Finally a Perm-
partition is a pointed partition like 134|26|578.

The natural action of the symmetric group on n induces a right action of Sn
on the set of P-partitions of n. For instance,

{134|26|578}(123) = 234|16|578.

8.7.3. Operadic partition poset. We now define a partial order on the set
of operadic partitions.

We consider the following natural map on P-partitions. Let {B1, . . . , Bt} be
a P-partition of a set X associated to a partition {I1, . . . , It}. Each element Bj
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in P(Ij) can be represented as the class of an element
[
νj × (xj1, . . . , x

j
ij

)
]
, where

νj ∈ P(ij) and Ij = {xj1, . . . , x
j
ij
}.

Lemma 8.7.4. The map γ̃ given by the formula

γ̃ : P(t)× (P(I1)× · · · × P(It)) → P(I)

ν × (B1, . . . , Bt) 7→
[
γ(ν; ν1, . . . , νt)× (x1

1, . . . , x
t
it)
]
,

is well defined and equivariant under the action of St.

Proof. It is a direct consequence of the equivariance, under the action of the sym-
metric groups, in the definition of the composition of a set operad, see 5.3.9. �

Let π = {B1, . . . , Br} and ρ = {C1, . . . , Cs} be two P-partitions of n associ-
ated to two partitions {I1, . . . , Ir} and {J1, . . . , Js} of n. The P-partition π is a
refinement of ρ if, for any k ∈ {1, . . . , s}, there exist {p1, . . . , pt} ⊂ {1, . . . , r} such
that {Ip1 , . . . , Ipt} is a partition of Jk and if there exists an element ν in P(t) such
that Ck = γ̃(ν × (Bp1 , . . . , Bpt)). We denote this relation by π 6 ρ.

Proposition 8.7.5. When P is a reduced set operad, P(0) = ∅, such that P(1) =
{id}, the relation 6 defines a partial order on the set of P-partitions.

Proof. The symmetry of 6 comes from the unit of the operad, the reflexivity comes
from P(1) = {id} and the transitivity comes from the associativity of the operad.
�

We call this poset the P-partition poset associated to the operad P and we
denote it by ΠP(n), for any integer n ≥ 1.

Examples.

(1) In the case of the operad Com, the Com-partition poset is exactly the
classical partition poset.

(2) In the case of the operad Perm, a pointed partition π is less than a
pointed partition ρ if the underlying partition of π refines that of ρ and if
the pointed elements of ρ belongs to the pointed elements of π.
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Figure 11. Hasse diagram of ΠPerm(3)
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Since the set P(1) is reduced to the identity, the poset ΠP(n) has only one
minimal element corresponding to the partition {{1}, . . . , {n}}, where {i} repre-
sents the unique element of P({i}). Following the classical notations, we denote

this element by 0̂. The set of maximal elements is P(n) ∼= P(n). Hence, the number
of maximal elements of ΠP(n) is equal to the number of elements of P(n).

8.7.6. Graded posets. We denote by Min(Π) and Max(Π) the sets of mini-
mal and maximal elements of Π. When Min(Π) and Max(Π) have only one element,
the poset is said to be bounded . In this case, we denote the unique element of Min(Π)

by 0̂ and the unique element of Max(Π) by 1̂. For a pair x 6 y in Π, we consider
the closed interval {z ∈ Π | x 6 z 6 y}, denoted by [x, y], and the open interval
{z ∈ Π | x < z < y}, denoted by (x, y). For any α ∈ Min(Π) and any ω ∈ Max(Π),
the closed interval [α, ω] is a bounded poset. If Π is a bounded poset, the proper

part Π̄ of Π is the open interval (0̂, 1̂).
For two elements x < y, we say that y covers x if there is no z such that

x < z < y. The covering relation is denoted by x ≺ y. A chain λ0 < λ1 < · · · < λl
is a totally ordered sequence of elements of Π. Its length is equal to l. A maximal
chain between x and y, is a chain x = λ0 ≺ λ1 ≺ · · · ≺ λl = y which cannot be
lengthened. A maximal chain of Π is a maximal chain between a minimal element
of Π and a maximal element of Π. A poset is pure if, for any x 6 y, all maximal
chains between x and y have the same length. If a poset is both bounded and pure,
it is called a graded poset. For example, the partition poset of 8.7.1 is graded.

For more details on posets, we refer the reader to Chapter 3 of [Sta97].

If the operad P is quadratic and generated by a homogeneous S-set E concen-
trated in arity k, that is En = ∅ for n 6= k, then we have P(n) = ∅ for n 6= i(k−1)+1
with i ∈ N. Therefore, the P-partitions have restricted block size. The possible
lengths for the blocks are i(k − 1) + 1 with i ∈ N.

Proposition 8.7.7. Let P be a set-theoretic quadratic operad generated by a ho-
mogeneous S-set E concentrated in arity k, with k ≥ 2, then all the maximal chains
of ΠP have the same length.

For any ω ∈ Max(ΠP(n)) = P(n), the subposets [0̂, ω] are graded posets.

Proof. If the operad P is generated by operations of arity k with k ≥ 2, the set
P(1) is reduced to the identity operations and the P-partition poset is well defined.
Since P is generated only by operations of arity k, every block of size i(k − 1) + 1
can be refined if and only if i > 1.

The length of maximal chains between 0̂ and ω is equal to i+1 if n = i(k−1)+1.

Hence, each closed interval of the form [0̂, ω], for ω ∈ Max(ΠP(n)) = P(n) is
bounded and pure. It is also graded by definition. �

8.7.8. Order complex. We consider the set of chains λ0 < λ1 < · · · < λl of
a poset (Π, 6) such that λ0 ∈ Min(Π) and λl ∈ Max(Π). This set is denoted by
∆•(Π), or simply by ∆(Π). More precisely, a chain λ0 < λ1 < · · · < λl of length l
belongs to ∆l(Π).

The set ∆(Π) is equipped with the following face maps. For 0 < i < l, the face
map di : ∆l(Π)→ ∆l−1(Π) is given by the omission of λi

di(λ0 < λ1 < · · · < λl) := λ0 < λ1 < · · · < λi−1 < λi+1 < · · · < λl.
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On the free module K[∆(Π)], we consider the induced linear maps still denoted
di and we define the maps d0 = dl = 0 by convention. The module K[∆(Π)]
(resp. the set ∆(Π)) is a presimplicial module (resp. a presimplicial set), that is
di ◦ dj = dj−1 ◦ di, for i < j. These relations ensure that d :=

∑
0≤i≤l(−1)idi

satisfies d2 = 0. The chain complex (K[∆•(Π)], d) is called the order complex of Π.
By definition, the homology of a poset (Π, 6) is the homology of its order complex,
denoted by H(Π).

The reduced homology of a poset is defined as follows. We denote by ∆̃l(Π) the
set of chains λ0 < λ1 < · · · < λl, with no restriction on λ0 and λl. The face maps
di are defined by the omission of λi, for 0 ≤ i ≤ l. By convention, this complex is

augmented by ∆̃−1(Π) = {∅}, that is K[∆̃−1(Π)] = K. The associated homology

groups are denoted by H̃(Π).

The relation between the two definitions is given by the following formula

∆l(Π) =
⊔

(α, ω)∈Min(Π)×Max(Π)

∆̃l−2((α, ω)),

which induces a canonical isomorphism of presimplicial complexes. Therefore, we
have

Hl(Π) =
⊕

(α, ω)∈Min(Π)×Max(Π)

H̃l−2((α, ω)).

If Π is bounded, its homology is equal to the reduced homology of its proper part,
up to a degree shift.

The action of a group G on a poset (Π, 6) is compatible with the partial order
6 if for every g ∈ G and for every pair x 6 y, we still have g · x 6 g · y . In this
case, the modules K[∆l(Π)] are G-modules. Since, the chain map commutes with
the action of G, the homology groups H(Π) are also G-modules.

For example, the action of the symmetric group on the operadic partition
posets is compatible with the partial order. So the module K[∆•(ΠP(n))] is an
Sn-presimplicial module and H•(ΠP(n)) is an Sn-module.

8.7.9. Cohen-Macaulay poset. Let Π be a graded poset. It is said to be
Cohen-Macaulay over K if the homology of each interval is concentrated in top
dimension, i.e. for every x 6 y, if m is the length of maximal chains between x and
y, we have

Hl([x, y]) = H̃l−2((x, y)) = 0, for l 6= m.

There are many sufficient combinatorial conditions for a poset to be Cohen-
Macaulay, e.g. modular, distributive, shellable. For a comprehensive survey on
these notions, we refer the reader to the article by A. Björner, A.M. Garsia and
R.P. Stanley [BGS82]. We recall the one used in the sequel.

A pure poset is semi-modular if for every triple x, y and t such that x and y
cover t, there exists z covering both x and y. A totally semi-modular poset is a
pure poset such that each interval is semi-modular.

Proposition 8.7.10 ([Bac76, Far79]). A totally semi-modular poset is Cohen-
Macaulay.
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For instance, the partition posets are totally semi-modular (it is actually much
more). We also leave it to the reader to prove that the pointed partition posets,
coming from the operad Perm, is semi-modular.

8.7.11. Koszul-Cohen-Macaulay criterion. The main theorem of this sec-
tion requires the following assumption. For any element (ν1, . . . , νt) of P(i1)×· · ·×
P(it), we denote by γν1,..., νt the following map defined by the composition of the
set operad P:

γν1,..., νt : P(t) → P(i1 + · · ·+ it)

ν 7→ γ(ν; ν1, . . . , νt).

A set operad P is called a basic-set operad if the maps γν1,..., νt are injective, for
any (ν1, . . . , νt) in P(i1)× · · · × P(it). The operads Com and Perm are examples
of basic-set operads.

Theorem 8.7.12 (Koszul-Cohen-Macaulay criterion). Let P be a quadratic basic-
set operad generated by a homogeneous S-set concentrated in arity k, with k ≥ 2.

(1) The linear operad P(n) = K[P(n)] is a Koszul operad if and only if, for

every n ≥ 1 and every ω ∈ Max(ΠP(n)), the interval [0̂, ω] is Cohen-
Macaulay.

(2) The top homology groups are isomorphic to the Koszul dual cooperad

Htop(ΠP(n)) ∼= P
¡
(n).

We postpone the proof after the next section about the simplicial bar construc-
tion of operads, on which it relies.

Example. The aforemetioned theorem provides a proof that the operads Com
and Perm are Koszul. On the level of poset homology, it shows that the homology
groups of the partition posets and of the pointed partition posets are concentrated
in top dimension. The last point of Theorem 8.7.12 shows that they are respectively
isomorphic to

Hn−1(ΠCom(n)) ∼= Lie(n)∗ ⊗ sgnSn and Hn−1(ΠPerm(n)) ∼= preLie(n)∗ ⊗ sgnSn

as Sn-modules. The first result has already been proved with more classical meth-
ods. (We refer the reader to the prolog of [Fre04] for complete reference.) The
second result was proved in [Val07b] using this operadic method. We refer the
reader to Section 13.4 for more details about the operad preLie encoding pre-Lie
algebras. For instance, this operad admits a basis labeled by rooted trees, which,
in turn, induces a basis for the homology groups of the pointed partition poset.

8.7.13. Simplicial and normalized bar construction of operads. In or-
der to prove the Koszul-Cohen-Macaulay criterion, we introduce the simplicial and
normalized bar construction of an operad.

Let (P, γ, ι) be an operad. Its simplicial bar construction is the simplicial S-
module defined by (CP)l := P◦l, equipped with the face and degeneracy maps

di = Id◦(i−1) ◦ γ ◦ Id◦(l−i−1) : P◦l → P◦(l−1),

for 1 ≤ l ≤ l − 1, d0 = dl = 0, and by the face maps

sj = Id◦j ◦ ι ◦ Id◦(l−j) : P◦l → P◦(l+1),
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for 0 ≤ j ≤ l.
Such a definition CP also holds for a set operad P, except for the face maps

d0 and dl. The set (CP)l(n), which provides a basis for (CP)l(n), is made up of
l-levelled trees where the vertices are indexed by operations of P and where the
leaves are labelled by 1, . . . , n.

4

@@@@@@@ 2 5 1 7

BBBBBBB 6 3

~~~~~~~

'&%$ !"#1 ν1

BBBBBBB ν2 ν3

|||||||
ν4

|||||||

'&%$ !"#2 ν5

BBBBBBB ν6

|||||||

'&%$ !"#3 ν7

Figure 12. An example of a 3-levelled tree with vertices indexed
by elements of P.

We consider the normalized bar construction NP, given as usual by the quotient
of the simplicial bar construction under the images of the degeneracy maps. Recall
that the two chains complexes associated to the simplicial and to the normalized
bar construction respectively are quasi-isomorphic.

Let (NP)l(n) be the subset of (CP)l(n) made up of l-levelled trees with at least
one non-trivial operation on each level. When P is an augmented set operad, it
means that there is at least one non-trivial operation on each level. This set is
stable under the face maps and is a presimplicial set.

Lemma 8.7.14. The presimplicial S-set NP provides a basis for the normalized
bar construction NP, where P(n) = K[P(n)] is the linear operad associated to P.

8.7.15. Normalized bar construction and order complex.

Theorem 8.7.16. Let P be an augmented basic-set operad. For any n ≥ 1, the
presimplicial Sn-set ∆(ΠP(n)) (resp. the presimplicial Sn-module K[∆(ΠP(n))]) is
in bijection with (resp. is isomorphic to) the presimplicial Sn-set N(P)(n) (resp.
the normalized bar construction N(P)(n)).

Proof. We define a bijection Ψ between Nl(P)(n) and ∆l(ΠP(n)) as follows. Let
T be a non-planar tree with l levels and n leaves whose vertices are indexed by
elements of P. To such a tree, we associate a maximal chain of P-partitions of n:
we cut the tree T along the ith level and look upward. We get t indexed and labelled
subtrees. By composing the operations indexing the vertices along the scheme given
by the subtree, each of them induces an element of P(Ij), where {I1, . . . , It} is a
partition of n. For every 0 ≤ i ≤ l, the union of these blocks forms a P-partition
λi of n. The figure 13 shows an example in the case of the operad Com.

When T is a tree of N(P)(n), that is with at least one non-trivial operation on

each level, λi is a strict refinement of λi+1. Since λ0 = 0̂ and λl ∈ P(n), the chain
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1 4 3 6 5 2 7

:::::::::

:::::::::

��������� λ0 = 1|4|3|6|5|2|7//oo

:::::::::

���������

��������� λ1 = 14|3|6|257//oo

;;;;;;;;;

��������� λ2 = 1346|257//oo

λ3 = 1234567//oo

Figure 13. An example of the image of Ψ in the case of the
operad Com.

λ0 < λ1 < · · · < λl is maximal. The image of the tree T under Ψ is this maximal
chain λ0 < λ1 < · · · < λl.

The surjectivity of the map Ψ comes from the definition of the partial order
between the P-partitions. Since P is a basic-set operad, the injectivity of the maps
γν1,..., νt induces the injectivity of Ψ. Therefore, Ψ is a bijection.

Composing the ith and the (i+ 1)th levels of the tree T corresponds, via Ψ, to
removing the ith partition of the chain λ0 < λ1 < · · · < λl. Therefore, the map Ψ
commutes with the face maps. Moreover Ψ preserves the action of the symmetric
group Sn. �

8.7.17. Bar construction and normalized bar construction. In [Fre04],
Fresse defined the following morphism L : BP → NP of dg S-modules between
the bar construction and the normalized bar construction of an operad. Recall that
an element of BP is a tree T with l vertices labelled by elements of sP. Its image
under the map L is given by the sum over all l-levelled trees with one and only one
non-trivial vertex on each level and which which give T after forgetting the levels
(together with proper desuspension and sign convention). We consider here the bar
construction as a chain complex with the homological degree given by the number
of vertices of the underlying tree.

Proposition 8.7.18. For any reduced operad P, such that P(1) = K id, the lev-
elization morphism L : BP → NP is a quasi-isomorphism of dg S-modules.

Proof. The idea of the proof is to apply an adequate version of the Comparison
Lemma 6.7.1 to the quasi-isomorphism L◦ Id : BP ◦P → NP ◦P. The normalized
bar construction is not a cooperad but a right P-comodule. We refer the reader to
Section 4.7 of [Fre04] for the details. �

8.7.19. Proof of the Koszul-Cohen-Macaulay criterion.

Lemma 8.7.20. Let P be a quadratic basic-set operad generated by a homogeneous
S-set E concentrated in arity k with k ≥ 2.

(1) The operad P is Koszul if and only if Hl(ΠP(m(k−1)+1)) = 0 for l 6= m.
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(2) We have Hm(ΠP(m(k − 1) + 1)) ∼= (P
¡
)(m).

Proof. Since the operad is quadratic, it is weight graded and both the bar and the
simplicial bar constructions split with respect to this extra grading denoted by (m).
In both cases, the part of weight (m) is equal to the part of arity m(k − 1) + 1.
The levelization morphism L of 8.7.17 preserves this grading. Therefore L(m) :
(BP(m(k−1)+1))(m) → NP(m(k−1)+1)(m) is a quasi-isomorphism, for every m ≥
0, by Proposition 8.7.18. Recall from the Koszul criterion 7.4.6 that the operad P
is Koszul if and only if Hl((B•P(m(k−1)+1))(m)) = 0 for l 6= m. By the preceding
quasi-isomorphism, it is equivalent to asking that Hl((N•P(m(k− 1) + 1))(m)) = 0
for l 6= m. And by Theorem 8.7.16, it is equivalent to Hl(ΠP(m(k − 1) + 1)) = 0
for l 6= m.

The levelization quasi-isomorphism L(m) and the isomorphism of Theorem 8.7.16
show that Hm(ΠP(m(k−1)+1)) ∼= Hm((B•P(m(k−1)+1))(m)). Recall from 7.3.2
that the top homology group of (B•P(m(k−1) + 1))(m) is equal to the Koszul dual

cooperad H0((B•P)(m)) = (P ¡
)(m). �

This lemma implies the equivalence between Koszul set operads and Cohen-
Macaulay posets.

Proof.[Theorem 8.7.12]

(⇒) Proposition 8.7.7 shows that ΠP is pure. Hence each interval [0̂, ω] is
graded.

If the operad P is Koszul, then Lemma 8.7.20 implies that the homology of
each poset ΠP(m(k − 1) + 1) is concentrated in top dimension m. Since

Hl(ΠP(m(k − 1) + 1) =
⊕

ω∈Max(ΠP(m(k−1)+1)

H̃l−2( (0̂, ω) ),

we have Hl([0̂, ω]) = H̃l−2( (0̂, ω) ) = 0 for every ω ∈ Max(ΠP(m(k − 1) + 1)
and every l 6= m. Let x 6 y be two elements of ΠP(m(t − 1) + 1). We denote
the P-partition x by {B1, . . . , Br} and the P-partition y by {C1, . . . , Cs}. Each
Ct ∈ P(It) is refined by some Bp. For 1 ≤ t ≤ s, we consider the subposet [xt, yt]
of ΠP(It), where yt = Ct and yt the corresponding set of Bp. There exists one

ωt ∈ Max(ΠP(|xt|)) such that the poset [xt, yt] is isomorphic to [0̂, ω], which is a
subposet of ΠP(|xt|). (The notation |xt| stands for the number of Bp in xt.) This
decomposition gives, with Künneth Theorem, the following formula

H̃l−1((x, y)) ∼=
⊕

l1+···+ls=l

s⊗
t=1

H̃lt−1((xt, yt)) ∼=
⊕

l1+···+ls=l

s⊗
t=1

H̃lt−1((0̂, ω)).

(We can apply Künneth formula since we are working with chain complexes of
free modules over an hereditary ring K. The extra Tor terms in Künneth formula
come from homology groups of lower dimension which are null). If we define mt

by |xt| = mt(k− 1) + 1, the homology groups H̃lt−1((0̂, ω)) vanish for lt 6= mt − 1.

Therefore, if l is different from
∑s
t=1(mt − 1), we have H̃l−1( (x, y) ) = 0. Since,

the length of maximal chains between x and y is equal to m =
∑s
t=1(mt − 1) + 1,

see Proposition 8.7.7, the homology of the interval [x, y] is concentrated in top
dimension.

(⇐) Conversely, if the poset ΠP is Cohen-Macaulay over the ring K, we have

H̃l−2((0̂, ω)) = 0, for every m > 1, l 6= m, and every ω ∈ Max(ΠP(m(k − 1) + 1)).
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Therefore, we get

Hl(ΠP(m(k − 1) + 1)) =
⊕

ω∈Max(ΠP(m(k−1)+1))

H̃l−2((0̂, ω)) = 0,

for l 6= m. Finally we conclude by (1) of Lemma 8.7.20. �

Recall that one can generalize the Koszul duality of operads over a Dedekind
ring, see [Fre04] for more details. The proof of the Koszul-Cohen-Macaulay crite-
rion also holds in that case. So it provides a method for proving that an operad is
Koszul over Dedekind rings, not only fields.

8.7.21. Applications.

� The triptych made up of the operad Com, the partition poset and the
operad Lie plays a fundamental role in Goodwillie calculus in homotopy
theory; we refer the reader to G. Arone and M. Mahowald [AM99] and
to M. Ching [Chi05].

� M. Mendez in his thesis [Mén89] and F. Chapoton and M. Livernet in
[CL07] explained (independently) how to associate an incidence Hopf
algebras to operadic partition posets. In the particular case of the operad
NAP of [Liv06], these two last authors recover Connes-Kreimer Hopf
algebra involved in renormalization theory [CK98].

� In [DK07], V. Dotsenko and A. Khoroshkin introduced the operad en-
coding a pair of compatible Lie brackets, which is an algebraic struc-
ture related to integrable Hamiltonian equations, like the KdV-equations.
The Koszul dual operad is a basic-set operad, which was shown to be
Koszul by H. Strohmayer in [Str08] using the present poset method. No-
tice that the associated posets are not totally semimodular this time,
but only CL-shellable, that is yet another sufficient condition for being
Cohen-Macaulay. Furthermore, he applied this result in the context of
bi-hamiltonian geometry in [Str10].

8.8. Manin products

In this section, we extend the definition of Manin black and white products for
quadratic algebras 4.5 to operads. The conceptual approach followed here allows
us to define the Manin products of pairs of operads given by any presentation, not
necessarily quadratic. We explain how to compute some black products of operads.
Finally, we study the behavior of Manin products of operads under Koszul duality;
for instance, we state in the operadic context, the adjunction property between the
black product and the white product.

Manin products for operads where first defined in the binary quadratic case by
V. Ginzburg and M.M. Kapranov in [GK94, GK95b]. The more conceptual and
general definition given here comes from [Val08].

8.8.1. White product for operads. Let V and W be two S-modules. Let
us denote by iV : V � T (V ) the canonical inclusion of V into the free operad
on V . There is a natural map iV ⊗

H
iW : V ⊗

H
W → T (V ) ⊗

H
T (W ). Recall from

Section 5.3.3 that the Hadamard product of two operads is again an operad. So
the Hadamard product T (V ) ⊗

H
T (W ) is an operad. By the universal property
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of the free operad, there exists a (unique) morphism of operads Φ completing the
following commutative diagram

V ⊗
H
W

iV ⊗
H
iW

%%KKKKKKKKKKKK

iV⊗
H
W

// T (V ⊗
H
W )

∃! Φ

���
�
�
�

T (V )⊗
H
T (W ).

Let P = T (V )/(R) and Q = T (W )/(S) be two operads defined by generators
and relations (not necessarily quadratic). We denote by πP : T (V ) � P and
by πQ : T (W ) � Q the respective projections. The composite (πP ⊗

H
πQ) ◦ Φ is

a morphism of operads. Hence its kernel is an operadic ideal and it admits the
following factorization

T (V ⊗
H
W ) // Φ //

)) ))TTTTTTTTTTTTTTTTT
T (V )⊗

H
T (W )

πP⊗
H
πQ

// // P ⊗
H
Q

T (V ⊗
H
W )/Ker((πP ⊗

H
πQ) ◦ Φ).

55
Φ̄

55kkkkkkkkkkkkkkkkkk

A direct inspection shows that the kernel of (πP ⊗
H
πQ) ◦ Φ is the ideal generated

by Φ−1(R⊗
H
T (W ) + T (V )⊗

H
S), that is

Ker((πP ⊗
H
πQ) ◦ Φ) =

(
Φ−1(R⊗

H
T (W ) + T (V )⊗

H
S)
)
.

We define Manin white product of P and Q as being the quotient operad

P ©Q := T (V ⊗
H
W )/

(
Φ−1(R⊗

H
T (W ) + T (V )⊗

H
S)
)
.

By definition, the white product comes equipped with a natural monomorphism of
operads Φ̄ : P ©Q� P ⊗

H
Q.

The map Φ has the following form. The image of a tree, with vertices labelled
by elements of V ⊗

H
W , under the map Φ is the tensor product of two copies of the

same tree, with vertices labelled by the corresponding elements of V , resp. W .

Φ :
v2 ⊗ w2

nnnnnn
MMMMM

v1 ⊗ w1

uuuuuu
MMMMM 7→

v2

���
DDDD

v1

~~~~
::: ⊗

w2

||||
FFFF

w1

||||
===

This description allows us to show that, in some cases, the white product of two
operads is equal to their Hadamard product.

We suppose now that the generating space V is concentrated in arity 2, i.e.
the operad P is binary. To any shuffle binary tree T of arity n, we associate the
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K-module T(V ), made up of copies of T with vertices labelled by elements of V .
We consider the following map

CPT : T(V )→ T (V )(n)� P(n),

which consists in composing in P the operations of V along the composition scheme
given by the tree T. (Recall that the set of binary shuffle trees provides a basis of
the free operad over an S-module concentrated in arity 2, see 8.2.6).

Proposition 8.8.2. Let P = P(V,R) be a binary operad. If the maps CT are
surjective for any shuffle binary tree T, then, for any binary operad Q = P(W,S),
the white product with P is isomorphic to the Hadamard product:

P ©Q ∼= P ⊗
H
Q.

Proof. From the definition of the white product, we only have to show that the
composite (πP ⊗

H
πQ) ◦ Φ is surjective in this case. Let µ ⊗ ν be an elementary

tensor of P(n) ⊗
H
Q(n). There exists a shuffle binary tree T of arity n such that ν

lives in the image of CQT . By the assumption, the element µ lives in the image of
CPT . Therefore, the element µ ⊗ ν is the image of the tree T with vertices labelled
by elements of V ⊗

H
W under the map (πP ⊗

H
πQ) ◦ Φ. �

The operads Com and Perm satisfy the assumption of this proposition. There-
fore, the operad Com is the unit object with respect to the white product P ©
Com = P ⊗

H
Com = P in the category of binary operads.

The category of binary quadratic operads is stable under Manin white product.
Since it is associative and symmetric, the category of binary quadratic operads,
endowed with the white product and the operad Com as a unit, forms a symmetric
monoidal category.

Let A = A(V,R) and B = A(W,S) be two quadratic algebras, which we con-
sider as operads concentrated in arity 1. We leave it to the reader to check that the
white product of A and B as operads is equal to their white product as algebras,
defined in Section 4.5.1.

8.8.3. Black product for cooperads. Dualizing the previous arguments
and working in the opposite category, we get the notion of black product for coop-
erads as follows.

Let (C,∆C) and (D,∆D) be two cooperads. Their Hadamard product C ⊗
H
D is

again a cooperad. The coproduct is given by the composite

C ⊗
H
D

∆C⊗
H

∆D

−−−−−→ (C ◦ C)⊗
H

(D ◦ D)� (C ⊗
H
D) ◦ (D ⊗

H
C),

where the second map is a treewise projection. We denote by pV : T c(V ) � V
the canonical projection from the conilpotent cofree cooperad to V . Since T c(V )⊗

H

T c(W ) is a conilpotent cooperad, by the universal property of the conilpotent cofree
cooperad, there exists a (unique) morphism of cooperads Ψ : T c(V ) ⊗

H
T c(W ) →
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T c(V ⊗
H
W ) which factors the map pV ⊗

H
pW .

V ⊗
H
W T c(V ⊗

H
W )

pV⊗
H
W

oo

T c(V )⊗
H
T c(W )

∃! Ψ

OO�
�
�
�pV ⊗

H
pW

eeLLLLLLLLLLLL

Let C = C(V,R) and D = C(W,S) be two cooperads defined by cogenerators
and corelators, not necessarily quadratic. Let us denote by ιC : C � T c(V ) and
by ιD : D � T c(W ) the canonical inclusions. The composite of morphisms of
cooperads Ψ ◦ (ιC ⊗

H
ιD) factors through its image

T c(V ⊗
H
W ) T c(V )⊗

H
T c(W )Ψoooo C ⊗

H
D

Ψ̄
wwwwnnnnnnnnnnnnnnn

oo
ιC⊗

H
ιD

oo

C • D
hh

hhQQQQQQQQQQQQQQQ

which we define to be Manin black product of the cooperads C and D. It is the
cooperad cogenerated by V ⊗

H
W with corelations Ψ(R⊗

H
S) :

C • D := C
(
V ⊗

H
W, Ψ(R⊗

H
S)
)
.

8.8.4. Black products for operads. Since it is easier to work with operads
than cooperads, we will consider the linear dual of the previous definition. This
provides a notion of black product for operads. From now on, we will work in the
category of finitely generated binary quadratic operads (concentrated in degree 0).

Recall from Section 7.6.4 the notation V ∨ := V ∗⊗ sgn2, where the S-module V
is concentrated in arity 2. In that section, we introduced a basis of T (V )(3) and a

scalar product 〈−,−〉, which induces an isomorphism θV : T (V )(3)
'−→ T (V ∨)(3)∗.

We define the morphism Ψ̃ by the following composite

T (V )(3)⊗
H
T (W )(3) Ψ̃ //

θV ⊗
H
θW

��

T (V ⊗
H
W ⊗

H
sgnS2

)(3)

T (V ∨)(3)∗ ⊗
H
T (W∨)(3)∗

'

��

T ((V ⊗
H
W ⊗

H
sgnS2

)∨)(3)∗

θ−1
V⊗

H
W

OO

(
T (V ∨)(3)⊗

H
T (W∨)(3)

)∗ tΦ // T (V ∨ ⊗
H
W∨)(3)∗ ,

'

OO

where ' stands for the natural isomorphism for the linear dual of a tensor product,
since the modules are finite dimensional, and where Φ is the map defined in 8.8.1

applied to V ∨ and W∨. The morphism Ψ̃ defined here is a twisted version of Ψ.
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The black product of two finitely generated binary quadratic operads P =
P(V,R) and Q = P(W,S) is equal to

P • Q := T (V ⊗
H
W ⊗

H
sgnS2

)/(Ψ̃(R⊗
H
S)).

8.8.5. Examples of computations of black products. In order to com-
pute black products for operads (and white products by Koszul duality), we use
the basis and notations given in Section 7.6.7.

Proposition 8.8.6. The following isomorphism holds

PreLie • Com ∼= Zinb .

Proof. We denote by µ the generating operation of the operad PreLie. In a pre-
Lie algebra the binary operation is such that its associator is right symmetric,
that is µ(µ(a, b), c) − µ(a, µ(b, c)) = µ(µ(a, c), b) − µ(a, µ(c, b)). This relation
corresponds to vi − vi+1 + vi+2 − vi+3 for i = 1, 5, 9 with our conventions. We
denote by ν the commutative generating operation of Com and by w1, w5, w9 the
associated generators of T (Kν)(3). The associativity relation of ν reads in this
basis: w1 − w5 = 0 and w5 − w9 = 0. We have

(1) Ψ̃ ((v1 − v2 + v3 − v4)⊗ (w1 − w5)) = Ψ̃ (v1 ⊗ w1 + v4 ⊗ w5) ,

(2) Ψ̃ ((v1 − v2 + v3 − v4)⊗ (w5 − w9)) = Ψ̃ ((v2 − v3)⊗ w9 − v4 ⊗ w5) ,

(3) Ψ̃ ((v5 − v6 + v7 − v8)⊗ (w1 − w5)) = Ψ̃ ((v7 − v6)⊗ w1 − v5 ⊗ w5) ,

(4) Ψ̃ ((v5 − v6 + v7 − v8)⊗ (w5 − w9)) = Ψ̃ (v5 ⊗ w5 + v8 ⊗ w9) ,

(5) Ψ̃ ((v9 − v10 + v11 − v12)⊗ (w1 − w5)) = Ψ̃ (−v12 ⊗ w1 + (v10 − v11)⊗ w5) ,

(6) Ψ̃ ((v9 − v10 + v11 − v12)⊗ (w5 − w9)) = Ψ̃ ((v11 − v10)⊗ w5 − v9 ⊗ w9) .

Using for instance Figure 1, one can see that the action of (132) sends (1) to
(4), (3) to (6) and (5) to (2). The image of (1) under (13) is (3). Therefore, we
only need to make (1) and (2) explicit. If we identify (Kµ ⊕ Kµ′) ⊗ Kν ⊗ KsgnS2

with Kγ ⊕Kγ′ via the isomorphism of S2-modules

µ⊗ ν ⊗ 1 7→ γ ,

µ′ ⊗ ν ⊗ 1 7→ −γ′ ,

the morphism Ψ̃ becomes

Ψ̃((µ ◦I µ)⊗ (ν ◦I ν)) = Ψ̃(v1 ⊗ w1) = γ ◦I γ = z1 and

Ψ̃((µ′ ◦II µ)⊗ (ν ◦II ν)) = Ψ̃(v2 ⊗ w1) = −γ′ ◦I γ = −z2.

The image of the other elements are obtained from these two ones by the action of

S3. For instance, we have Ψ̃(v3⊗w1) = −z3, Ψ̃(v4⊗w1) = z4 and Ψ̃(v5⊗w5) = z5.
So, we get

Ψ̃ (v1 ⊗ w1 + v4 ⊗ w5) = γ ◦I γ − γ ◦III γ′ ,
Ψ̃ ((v2 − v3)⊗ w9 − v4 ⊗ w5) = −γ′ ◦II γ − γ′ ◦II γ′ + γ ◦III γ′ .

Finally, if we represent the operation γ(x, y) by x ≺ y, then we have

(x ≺ y) ≺ z = (x ≺ z) ≺ y ,
(x ≺ z) ≺ y = x ≺ (z ≺ y) + x ≺ (y ≺ z) ,

where we recognize the axioms of a Zinbiel algebra, see 13.5.2. �
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8.8.7. Manin products and Koszul duality.

Theorem 8.8.8. For any pair of finitely generated binary quadratic operads P =
P(V,R) and Q = P(W,S), their black and white products are sent to one another
under Koszul duality

(P • Q)! = P !©Q!.

Proof. Let us denote by 〈−,−〉E the scalar product on T (E∨)(3)⊗ T (E)(3). The

orthogonal space of Ψ̃(R⊗
H
S) for 〈−,−〉V⊗

H
W⊗

H
sgn is Φ−1(R⊥⊗

H
T (W∨)+T (V ∨)⊗

H
S⊥).

By definition of the transpose of Φ, we have

〈X, Ψ̃(r ⊗
H
s)〉V⊗

H
W⊗

H
sgn = 〈Φ(X), r ⊗

H
s〉(T (V )⊗

H
T (V ∨))×(T (W )⊗

H
T (W∨))

= (〈−, r〉V .〈−, s〉W ) ◦ Φ(X),

for every (r, s) ∈ R× S and every X ∈ T (V ∨ ⊗
H
W∨).

Therefore, we have

Ψ̃(R⊗
H
S)⊥

=

{
X ∈ T (V ∨ ⊗

H
W∨)(3) | ∀(r, s) ∈ R× S(〈−, r〉V .〈−, s〉W ) ◦ Φ(X) = 0

}
=

{
X ∈ T (V ∨ ⊗

H
W∨)(3) | Φ(X) ∈ R⊥ ⊗

H
T (W∨) + T (V ∨)⊗

H
S⊥
}

= Φ−1(R⊥ ⊗
H
T (W∨) + T (V ∨)⊗

H
S⊥).

�

Since the operad Com is the unit object for the white product, the operad Lie
is the unit object for the black product, that is

Lie • P = P,

for any finitely generated binary quadratic operad P. The black product is also an
associative product. Therefore the category of finitely generated binary quadratic
operads, equipped with the black product and the operad Lie as unit, is a symmetric
monoidal category.

Corollary 8.8.9. The following isomorphism holds

Perm ◦ Lie ∼= Leib .

Proof. It is a direct corollary of Proposition 8.8.6 and Theorem 8.8.8. �

Contrarily to associative algebras, Manin black or white product of two Koszul
operads is not necessarily a Koszul operad. A counterexample is given in Exer-
cise 8.10.15.

8.8.10. Remark. In 7.2.3, we defined the Koszul dual operad as P ! := (Sc ⊗
H

P ¡)∗. Let Com−1 be the operad which is spanned by sgnn (signature representation)
of degree n−1 in arity n. Then we have P ! = (P ¡)∗©Com−1. This formula explains
the presentation of P ! in terms of the presentation of P given in Proposition 7.2.4.



252 8. METHODS TO PROVE KOSZULITY OF AN OPERAD

8.8.11. Adjunction and internal (co)homomorphism.

Theorem 8.8.12. There is a natural bijection

HomQuad-Op(P • Q,R) ∼= HomQuad−Op(P,Q!©R),

where Quad-Op stands for the category of finitely generated binary quadratic oper-
ads.

In other words, the functors

− • Q : Quad-Op /
Quad-Op : Q!©−o

form a pair of adjoint functors, for any finitely generated binary quadratic operad
Q.

Proof. Let P, Q and R be three operads presented by P = P(V,R), Q = P(W,S)
and R = P(X,T ). There is a bijection between maps f : V ⊗

H
W ⊗

H
sgnS2

→ X and

maps g : V →W∨⊗
H
X. Using the same arguments as in the proof of Theorem 8.8.8,

we can see that

〈(Φ−1(S⊥ ⊗
H
T (X) + T (W∨)⊗

H
T ))⊥, T (g)(R)〉W∨⊗

H
X

= 〈Ψ̃(S ⊗
H
T⊥), T (g)(R)〉W∨⊗

H
X

= 〈T⊥, T (f)

(
Ψ̃(R⊗

H
S)

)
〉X .

Therefore T (f)
(
Ψ̃(R ⊗

H
S)
)
⊂ T is equivalent to T (g)(R) ⊂ Φ−1(S⊥ ⊗

H
T (X) +

T (W∨)⊗
H
T ), which concludes the proof. �

In other words, Hom(B,C) := B! © C is the internal ‘Hom’ functor in the
monoidal category of finitely generated binary quadratic operads with the black
product. Dually, CoHom(A,B) := A •B! is the internal ‘coHom’ (or inner) functor
in the monoidal category of finitely generated binary quadratic operads with the
white product.

For another point of view on this type of adjunction and coHom objects in the
general operadic setting, we refer the reader to the paper [BM08] by D. Borisov
and Yu.I. Manin.

Let P = P(V,R) be any finitely generated binary quadratic operad. We ap-
ply Proposition 8.8.12 to the three operads Lie, P and P. Since Lie is the unit
object for the black product, we have a natural bijection HomQuad-Op(P,P) ∼=
HomQuad-Op(Lie,P ! © P). The image of the identity of P under this bijection
provides a canonical morphism of operads Lie → P ! © P. The composite with
Φ̄ : P !©P → P ⊗

H
P ! gives a morphism of operads from Lie→ P ⊗

H
P !. We leave

it to the reader to verify that this morphism of operads is equal to the one given
in Theorem 7.6.10, thereby providing a more conceptual proof of this property.

8.8.13. Hopf operads.

Proposition 8.8.14. Let P = P(V,R) be a finitely generated binary quadratic
operad. The black product P ! • P is a Hopf operad.

Proof. The proof is similar to the proof of Proposition 4.5.9. �
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8.8.15. Manin products for nonsymmetric operads. We can perform
the same constructions in the category of arity-graded vector spaces. Some con-
structions of this type have been devised in [EFG05]. This defines Manin black
and white products for nonsymmetric operads, which we denote by � and by �.
(The details are left to the reader). Notice that the black or white product of two
ns operads does not give in general the “same” result as the black or white product
of the associated symmetric operads. One can also introduce the notion of Manin
products for shuffle operads. In this case, the forgetful functor from operads to
shuffle operads commutes with Manin white product, see Exercise 8.10.16.

The black and white products for ns operads are associative products. For any
finitely generated binary quadratic ns operad P, the ns operad As of associative al-
gebras is the unit object for both products, that is As�P = As�P = P. Therefore,
the category of finitely generated binary quadratic ns operads carries two symmet-
ric monoidal category structures provided by the black and white product and the
operad As.

The following result is proved with the same argument as in the symmetric
operad framework.

Theorem 8.8.16. There is a natural bijection

HomQuad−nsOp(P�Q,R) ∼= HomQuad−nsOp(P,Q!�R),

where Quad− nsOp stands for the category of finitely generated binary quadratic ns
operads.

As a direct corollary, there exists a morphism of ns operads As→ P !�P for any
finitely generated binary quadratic ns operad P. This yields a canonical morphism
of ns operads As → P ! ⊗

H
P, which is the one given in Theorem 7.7.4. This result

will be crucial in the study of operations on the cohomology of algebras over a ns
operad, see 13.3.11.

8.9. Résumé

Shuffle operads.
Shuffle monoidal product ◦� on N-Mod.
Monoidal functors

(S-Mod, ◦) −→ (N-Mod, ◦�) −→ (N-Mod, ◦),

the first one being strong. Induced functors

Op −→ Op
�
−→ ns Op .

Shuffle trees T�: K-linear basis of the free shuffle operad and free operad.
Partial shuffle product:

◦σ : Pk ⊗ Pl → Pn,

µ⊗ ν 7→ µ ◦σ ν.

Rewriting method.
Let P(E,R) be a quadratic operad such that E = ⊕mi=1Kei is a vector space
equipped with a finite ordered basis. We consider a suitable order on shuffle trees

with 2 vertices T (2)
� indexed by the {1, . . . ,m}.
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Typical relation:

t(ei, ej) =
∑

t′(k,l)<t(i,j)

λ
t(i,j)
t′(k,l) t

′(ek, el) .

The element t(ei, ej) is called a leading term. A tree monomial with 3 vertices
t(ei, ej , ek) is called critical if both 2-vertices subtrees t′(ei, ej) and t′′(ej , ek) are
leading terms.

Theorem.
Confluence for all the critical tree monomials ⇒ Koszulity of the operad

Reduction by filtration and Diamond Lemma.
Let P = P(E,R) be a quadratic operad. Any grading on E ∼= E1 ⊕ · · · ⊕ Em
together with a suitable order on shuffle trees induce a filtration on the shuffle
operad P� and

ψ : P̊� = T�(E)/(Rlead)� grP�,

with Rlead = 〈Leading Term(r), r ∈ R〉.

Diamond lemma for quadratic operads.

P̊� Koszul and (P̊�)(3) � (grP�)(3) =⇒ P Koszul and P ∼= grP� ∼= P̊�

Inhomogeneous case.

˚qP� Koszul and

( ˚qP�)(3) � (grχ qP�)(3)
=⇒ P Koszul and

˚qP� ∼= grχ qP� ∼= qP ∼= grP ∼= P

PBW basis, Gröbner basis and Diamond lemma.
Particular case:

∀i ∈ I = {1, . . . ,m},dim(Ei) = 1⇔ {ei}i∈I K-linear basis of E,

P̊� monomial shuffle operad ⇒ P̊� Koszul and basis {t(eı̄)}t∈T .

PBW basis of P(E,R):

basis {t̄(eı̄)}t∈T := image of {t(eı̄)}t∈T under P̊� � grP� ∼= P� ∼= P
Main properties of PBW bases.

P(E,R) PBW basis⇒ P(E,R) Koszul algebra.

Diamond Lemma.

{t̄(eı̄)}t∈T (3) linearly independant =⇒ {t̄(eı̄)}t∈T PBW basis.

Gröbner basis.

Gröbner basis of (R) ⊂ T (E)⇐⇒ PBW basis of T (E)/(R).

PBW bases for inhomogeneous quadratic algebras.

qP = P(E, qR) PBW basis⇒ P(E,R) PBW basis.

PBW/Gröbner bases for non-symmetric operads.
We consider planar trees instead of shuffle trees.
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Distributive laws.
A distributive law Λ : B ◦ A → A ◦ B induces an operad structure on A ◦ B by

γΛ := (γA ◦ γB)(IdA ◦ Λ ◦ IdB) .

Local to Global.
For A := P(V,R) and B := P(W,S), any (local) rewriting rule λ : W ◦(1) V →
V ◦(1)W induces (global) distributive laws if p : A◦B � A∨λB is an isomorphism.

Diamond lemma for distributive law.

A,B Koszul and

(A ◦ B)(3) � (A ∨λ B)(3)
=⇒ A∨λ B Koszul and

A ∨λ B ∼= (A ◦ B, γΛ).

Partition poset method.
Set operad P −→ family of partition posets {ΠP(n)}n.

Theorem.

� P := K[P] Koszul iff ΠP(n) Cohen-Macaulay, for all n,

� Htop(ΠP) ∼= P
¡
.

Manin black and white products for operads.

P(V,R)©P(W,S) := P(V ⊗
H
W,Φ−1(R⊗

H
T (W ) + T (V )⊗

H
S)),

C(V,R) • C(W,S) := C
(
V ⊗

H
W, Ψ(R⊗

H
S)
)
,

P(V,R) • P(W,S) = P(V ⊗
H
W ⊗

H
sgnS2

, Ψ̃(R⊗
H
S)).

For finitely generated quadratic operads:

(P • Q)! = P !©Q!.

Among finitely generated binary quadratic operads:
Unit for the white product: Com. Unit for the black product: Lie.

Theorem. HomQuad−Op(P • Q,R) ∼= HomQuad−Op(P,Q!©R).

Lie→ P !©P ; P ! • P : Hopf operad.

Manin black and white product for non-symmetric operads : � and �.

8.10. Exercises

8.10.1. Dendriform operad. Using the method described in Section 8.1,
show that the dendriform operad, see 13.6.1, is a Koszul operad.

8.10.2. Unshuffles and pointed unshuffles. For a given partition n = i1 +
· · ·+ ik, show that the set of unshuffles

{σ ∈ Sh−1
iτ(1),...,iτ(k)

; τ ∈ Sk}

admits a left action of Sk and that the set of pointed unshuffles �(i1, . . . , ik) gives
one representative in every orbit.
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8.10.3. From shuffle operads to symmetric operads. We denote byM 7→
M tr the functor from arity-graded modules to S-modules, which associates to M ,
the same underlying module, with the trivial action of the symmetric groups.

There is a natural isomorphism of arity-graded modules M tr ◦N tr∼=(M ◦�N)tr

given by⊕
M tr(k)⊗Sk

(
N tr(i1)⊗ · · · ⊗N tr(ik)⊗Si1×···×Sik K[Sn]

) ∼=−→⊕
M tr(k)⊗Sk

(
N tr(i1)⊗ · · · ⊗N tr(ik)⊗K[Si1 × · · · × Sik\Sn]

) ∼=−→⊕
M tr(k)

(
N tr(i1)⊗ · · · ⊗N tr(ik)⊗K[�i1,...,ik ]

)
Show that this isomorphism does not commute with the action of the symmetric

groups. (Therefore, it does not induce a monoidal functor and does not send a
shuffle operad to a symmetric operad.)

8.10.4. Suitable order on trees. We consider the following generalization of
the path-lexicographic ordering of Section 8.4.1. It applies to the set of unreduced,
i.e. with bivalent vertices, shuffle trees whose vertices are labelled by {1, . . . ,m}
with m finite. To any such a tree of arity n, we associate a sequence of n+ 1 words
as follows. The n first words are obtained by reading the tree from the root to the
each leaf and by recording the labels indexing the vertices. If one encounters an
arity 4 vertex labeled by 2, for instance, then the letter will be 24. The last word is
given by the ordered labeling of the leaves, or equivalently the image of the inverse
of the associate pointed unshuffle.

Prove that a such a sequence characterizes the labelled shuffle tree.
We say that ij < kl when (i, j) < (k, l) with the lexicographic order. We

consider the following total order on this type of sequences.

(1) we order them according to the total number of “letters” composing the
words of the sequence,

(2) we use the length of the last word (arity),
(3) we consider the lexicographic order.

For m = 2, it gives

| <

1

765401231
<

1

765401232
<

1

765401231

765401231

< · · · <

1

765401232

765401232

<

1
==== 2

����

765401231
< · · · .

Show that this provides a suitable order.

8.10.5. Koszul dual operad with extra ordered grading. Let P = P(E,R)
be a finitely generated binary quadratic operad endowed with an extra ordered grad-
ing. Give a presentation of the Koszul dual operad P ! of P following the methods
of Section 4.2.11.

Refine this result as in Section 4.3.20: when P = P(E,R) is a finitely generated
binary quadratic operad endowed with a PBW basis, give a presentation of the
Koszul dual operad P ! of P.
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8.10.6. Reduction by filtration method for nonsymmetric operads.
Write the entire section 8.4 for nonsymmetric operads as proposed in Section 8.4.12.

8.10.7. Computations of PBW bases. Describe a PBW basis for the qua-
dratic operad Pois of Poisson algebras 13.3, for the quadratic operad Perm of
permutative algebras and for the quadratic operad preLie of pre-Lie algebras 13.4.

Describe a PBW basis for the inhomogeneous operad BV encoding Batalin-
Vilkovisky algebras, see 7.8.13 or 13.7 for the definition.

8.10.8. Parametrized operad As. We consider the nonsymmetric operad

~As generated a binary product ��
??

, which satisfies the associativity relation

����
��������

???????? = ~

???? ��������

????????

with parameter ~.
Show that the ns operad ~As is Koszul if and only if ~ = 0, 1 or ∞, where the

latter case means
???? ��������

???????? = 0 .

8.10.9. From operad structure to distributive law. Let A = (A, γA, ιA)
and B = (B, γB, ιB) be two operads. Let A◦B be endowed with an operad structure
(γ, ιA◦B) such that ιA◦B = ιA ◦ ιA.

Suppose that

A
IdA◦ιB // A ◦ B B

ιA◦IdBoo

are morphisms of operads and that the following diagram commutes

A ◦ B
IdA◦ιB◦ιA◦IdB

wwppppppppppp
=

$$JJJJJJJJJ

A ◦ B ◦ A ◦ B
γ // A ◦ B.

Prove that

Λ := B ◦ A ιA◦IdB◦IdA◦ιB−−−−−−−−−−→ A ◦ B ◦ A ◦ B γ−→ A ◦ B

is a distributive law (cf. [Bec69]).
Give another proof of Proposition 8.6.4 using this result. (Define the operadic

composition on A◦B by transport of the one of A∨λ B under the isomorphism p.)

8.10.10. Distributive law for the operad Pois. Prove the isomorphism
Com ◦ Lie(4) ∼= Pois(4).
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8.10.11. Counter-example. [Vladimir Dotsenko]
Let A = Com and B = Nil, where an Nil-algebra is a vector space equipped

with an antisymmetric nilpotent operation [x, y], i.e. satisfying the quadratic re-
lation [[x, y], z] = 0 for any x, y, z. We denote by x · y the commutative binary
operation of Com. We consider the rewrite law λ given by the Leibniz relation:

[x · y, z] = x · [y, z] + [x, z] · y

like in the Poisson case.
Show that this rewriting rule does not induce a distributive law.

Hint. Compute [[x · y, z], t] in two different ways.

8.10.12. Multi-pointed partition posets. A multi-pointed partition {B1, ..., Bk}
of n is a partition of n on which at least one element of each block Bi is pointed,
like 134|26|578 for instance. Let π and ρ be two multi-pointed partitions. We say
the ρ is larger than π, π 6 ρ, when the underlying partition of π is a refinement of
the underlying partition of ρ and when, for each block of π, its pointed elements
are either all pointed or all unpointed in ρ. For instance

134|26|578 6 12346|578 .

Prove that it is a graded poset and compute its top homology groups.

Hint. Introduce the operad ComTrias encoding commutative trialgebras, see
[Val07b]. It is an algebraic structure defined by two binary operations ∗ and •
such that the product ∗ is permutative (encoded by the operad Perm)

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ (z ∗ y),

the product • is associative and commutative{
x • y = y • x,

(x • y) • z = x • (y • z),
and such that the two operations ∗ and • satisfy the following compatibility relations{

x ∗ (y • z) = x ∗ (y ∗ z),
(x • y) ∗ z = x • (y ∗ z).

8.10.13. Nijenhuis operad. Consider the following quadratic operad

Nij := P(K[S2]m⊕K c,RpreLie ⊕RJacobi ⊕Rcomp),

where K c stands for the trivial representation of S2 and where |m| = 0 and |c| = 1.
The space of relations are given by

RpreLie : m ◦1 m−m ◦2 m− (m ◦1 m)(23) − (m ◦2 m)(23),
RJac : c ◦1 c+ (c ◦1 c)(123) + (c ◦1 c)(321),
Rcomp : m ◦1 c+m ◦2 c+ (m ◦1 c)(12) − c ◦2 m− (c ◦2 m)(12).

In plain words, the binary product m is a pre-Lie product and the binary product
c is a “degree 1 Lie bracket”.

Show that this operad is Koszul. For all the methods proposed in this chapter,
try to see whether they can be applied. Notice that this operad provides the first
example which requires the use of PBW bases.
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Remark. The introduction and the study of this operad prompted by Nijen-
huis geometry. For more details on the application of its Koszul resolution in this
direction, we refer the reader to [Mer05, Str09].

8.10.14. Computations of Manin products. Prove that Perm© Ass ∼=
Dias. Then conclude that preLie • Ass ∼= Dend. Prove this last isomorphism by
a direct computation. (We refer to Section 13.6 for the definitions of the operads
Dias and Dend.)

8.10.15. Counter-example. Consider the operad

Nil := P(sgnS2
, T (sgnS2

)(3))

of skew-symmetric nilpotent algebras. It is generated by the signature representa-
tion in arity 2, with all possible relations.

Compute the black product Nil • preLie. (We refer to Exercise 8.10.13 and to
Section 13.4 for the definition of the operad preLie).

Show that the operad Nil • preLie is not Koszul, though the two operads Nil
and preLie are.

8.10.16. Manin products for shuffle operads. Following the same method
as in Section 8.8, define the notion of Manin white product ©� for shuffle operads
with presentation.

Prove the existence of a canonical isomorphism of shuffle operads of the form

(P ©Q)f ∼= Pf ©� Qf ,
for any pair of (symmetric) operads P = P(V,R) and Q = P(W,S).





CHAPTER 9

The operads As and A∞

“For me it all begins with Poincaré.”
Jim Stasheff in “The pre-history of operads”.
Contemp. Math. 202 (1997), 9–14.

In this chapter, we first treat in details the operad encoding the category of
associative algebras along the lines of the preceding chapters. This is a particularly
important example, because associative algebras are everywhere in mathematics,
and because it will serve as a toy-model in the theory of operads.

In the first section, we describe the nonsymmetric operad As and then the
symmetric operad Ass, that is, we take into account the action of the symmetric
group. They both encode the category of associative algebras. Then we compute
the Koszul dual cooperad As¡. We show that As is a Koszul operad by analyzing
in details the Koszul complex. We show that the operadic homology of associative
algebras is Hochschild homology.

In the second section, we proceed with the computation of the minimal model of
As, that is ΩAs¡. We show that this operad is exactly the operad A∞, constructed
by Jim Stasheff, encoding the category of “homotopy associative algebras”, aka
A∞-algebras. We describe this differential graded operad in terms of the Stasheff
polytope (associahedron).

In the third section, we study the bar-cobar construction on As, denoted ΩBAs.
We show that this ns operad can be understood in terms of a cubical decomposition
of the Stasheff polytope (Boardman-Vogt W -construction). We compare ΩBAs and
A∞.

In the fourth section, we deal with the Homotopy Transfer Theorem. In its sim-
plest form it says that, starting with a dga algebra, any homotopy retract acquires
a structure of A∞-algebra. More generally A∞-algebras are invariant under homo-
topy equivalence. These results owe to the work of V. Gugenheim, Jim Stasheff,
Tornike Kadeishvili, Serguei Merkulov, Martin Markl, Maxim Kontsevich and Yan
Soibelman. In the next chapter this theorem is extended to any Koszul operad.

We make this chapter as self-contained as possible, so there is some redundancy
with other parts of the book. We refer to Stasheff’s paper [Sta10] for historical
references on the subject, linking twisting morphisms, aka twisting cochains, to
A∞-algebra structures, and giving tribute to N. Berikashvili, K.T. Chen and T.
Kadeishvili.

9.1. Associative algebras and the operad Ass

We study the nonsymmetric operad As encoding the category of (nonunital)
associative algebras. We show that its Koszul dual is itself: As! = As and that it

261
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is a Koszul nonsymmetric operad. We also study the associated symmetric operad,
denoted by Ass.

9.1.1. Associative algebra. By definition an associative algebra over K is a
vector space A equipped with a binary operation

µ : A⊗A→ A, µ(x, y) = xy

satisfying the associativity relation

(xy)z = x(yz)

for any x, y, z ∈ A. This relation may also be written as

µ ◦ (µ, id) = µ ◦ (id, µ) ,

and, in terms of partial compositions, as

µ ◦1 µ = µ ◦2 µ .
There is an obvious notion of morphism between associative algebras and we denote
by As-alg the category of associative algebras.

Here we work in the monoidal category Vect of vector spaces over K, but,
because of the form of the relation, we could as well work in the monoidal category
of sets, resp. topological sets, resp. simplicial sets. Then we would obtain the notion
of monoid, resp. topological monoid, resp. simplicial monoid.

It is sometimes helpful to assume the existence of a unit, cf. 1.1.1, but here we
work with nonunital associative algebras.

9.1.2. The nonsymmetric operad As. Since, in the definition, of an asso-
ciative algebra, the generating operation µ does not satisfy any symmetry property,
and since, in the associativity relation, the variables stay in the same order, the
category of associative algebras can be encoded by a nonsymmetric operad, that
we denote by As.

Let us denote by µn the n-ary operation defined as

µn(x1, . . . , xn) := x1 . . . xn .

The space of n-ary operations Asn is one-dimensional spanned by µn, because the
free associative algebra over V is T (V ) =

⊕
n V
⊗n. Therefore Asn = Kµn. Since

dimAsn = 1, the generating series of the ns operad As is

fAs(t) =
∑
n≥1

tn =
t

1− t
.

Classical definition of As. Under the classical definition of a nonsymmetric
operad the composition

γ : Ask ⊗Asi1 ⊗ · · · ⊗Asik → Asi1+···+ik

is simply given by the identification

K⊗K⊗ · · · ⊗K ∼= K , µk ⊗ µi1 ⊗ · · · ⊗ µik 7→ µi1+···+ik .

It simply follows from the composition of noncommutative polynomials.
Partial definition of As. The partial composition is given by

µm ◦i µn = µm−1+n

for any i because

x1 · · ·xi−1(xi · · ·xm−1)xm · · ·xm−1+n = x1 · · ·xm−1+n .
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Quadratic presentation. The free ns operad on a binary operation µ = µ2

is spanned by the planar binary trees (each internal vertex being labelled by µ):
T (K µ)n = K[PBTn] (cf. 5.8.5). The space T (Kµ)3 = K[PBT3] is 2-dimensional

and spanned by the trees
�� ����

???? and
??����

???? corresponding to the operation

µ ◦ (µ, id) and µ ◦ (id, µ) respectively. The relator is the associator

as := −µ ◦ (µ, id) + µ ◦ (id, µ) ∈ T (Kµ)(2),

i.e. −
�� ����

???? +
??����

???? . There is an identification

As = P(Kµ,K as) = T (Kµ)/(as)

where (as) is the operadic ideal generated by the associator. In the quotient any
tree with n leaves gives rise to the same element, that we have denoted by µn.

9.1.3. The operad Ass. We denote by Ass the symmetric operad encoding
the category of associative algebras. The category of As-algebras and Ass-algebras
are the same, that is the category of associative algebras, since the action of Sn on
Ass(n) is free (see below).

The free associative algebra over the vector space V is known to be the reduced
tensor module T (V ) =

⊕
n≥1 V

⊗n equipped with the concatenation product. It is

called the reduced tensor algebra, cf. 1.1.3. So we have Ass(V ) = T (V ). If V is
generated by the elements x1, . . . , xn, then T (V ) is the algebra of noncommutative
polynomials in x1, . . . , xn modulo the constants: K〈x1, . . . , xn〉/K 1. The compo-
sition γ on Ass, i.e. the map γ(V ) : T (T (V )) → T (V ), is given by substitution of
polynomials: if P (X1, . . . , Xk) is a polynomial in the variables Xi’s and if each Xi

is a polynomial in the variables xj ’s, then P (X1(x1, . . . , xn), . . . , Xk(x1, . . . , xn))
is a polynomial in the variables xj ’s called the composite. This composition is
obviously associative.

From the polynomial description of the free associative algebra it follows that
the space of n-ary operations is Ass(n) ∼= K[Sn] equipped with the right action
given by multiplication in Sn. The n-ary operation µσ ∈ Ass(n) corresponding to
the permutation σ ∈ Sn is

µσ(x1, . . . , xn) := µn(xσ−1(1), . . . , xσ−1(n)) = xσ−1(1) · · ·xσ−1(n) .

Hence Ass(n) is the regular representation of Sn:

Ass(n)⊗Sn V
⊗n = K[Sn]⊗Sn V

⊗n = V ⊗n .

The composition in the operad Ass is given by the composition of polynomials. It
is induced by the maps

γ(i1, . . . , ik) : Sk × Si1 × · · · × Sik → Si1+···+ik

given by concatenation of the permutations and block permutation by the elements
of Sk. Here is an example with k = 2, i1 = 2, i2 = 3:
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1

>>>>>> 2

������
3

>>>>>> 4

>>>>>> 5

pppppppppppp 1

NNNNNNNNNNNNNNNNNNNNNNNNNN 2

>>>>>>>>>>>>>>> 3

������������
4

������������
5

pppppppppppppppppppppppppp

1

TTTTTTTTTTTTTTTTTT 2

TTTTTTTTTTTTTTTTTT 3

pppppppppppp 4

pppppppppppp 5

pppppppppppp 7→

1 2 3 4 5 1 2 3 4 5

([21]; [21], [231]) 7→ [54321].

The partial composition ◦i is easily deduced from the composition map γ in
the polynomial framework. It simply consists in substituting the ith variable for a
polynomial.

As a symmetric operad, Ass is presented as Ass = T (EAss, RAss), where
EAss ∼= K[S2]. We have denoted by µ the operation corresponding to idS2

and
so the other linear generator is µ(12). Under our convention, these two operations
correspond to xy and yx respectively. The space of relations RAss is the sub-S3-
module of T (EAss)

(2) generated by µ ◦1 µ − µ ◦2 µ. It is clear that T (EAss)
(2) is

2× 6 = 12-dimensional spanned by the elements (µ ◦1 µ)σ, (µ ◦2 µ)σ, for σ ∈ S3 and
that RAss is 6-dimensional spanned by the elements (µ ◦1 µ− µ ◦2 µ)σ, for σ ∈ S3.

The characteristic of Ass in the algebra of symmetric functions is

FAss = 1 + p1 + · · ·+ pn + · · · = 1

1− p1

where pn is the classical power symmetric function (cf. for instance [Mac95]).

9.1.4. Other presentations of Ass. There are other presentations of the
symmetric operad Ass which might be useful in certain problems. We will give
only two of them. The second one has the advantage of showing that the Poisson
operad is the limit, in a certain sense, of a family of operads all isomorphic to Ass
(so Pois is a “tropical” version of Ass), see 13.3.4.

First, we take a generating operation µn of arity n for any n ≥ 2. We take the
following relations:

µn ◦ (µi1 , . . . , µin) = µi1+···+in

for any tuples (i1, . . . , in). Then obviously the associated operad is As. Considering
the analogy with the presentation of groups, it is like presenting a group by taking
its elements as generators and taking the table of multiplication as relations.

Here is another presentation in the symmetric framework.

Proposition 9.1.5 (Livernet-Loday, unpublished). If 2 is invertible in K, then the
operad Ass admits the following presentation:

– a symmetric operation x·y and an antisymmetric operation [x, y] as generating
operations,

– the following relations:

[x · y, z] = x · [y, z] + [x, z] · y ,

(x · y) · z − x · (y · z) = [y, [x, z]] .
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Proof. The equivalence between the two presentations is simply given by

x · y = xy + yx,

[x, y] = xy − yx,
and, of course, 2xy = x · y + [x, y]. Observe that the Jacobi relation need not be
put as an axiom in this presentation since it is a consequence of the second axiom
and the commutativity property of the operation x · y. �

For more information about the operation x · y see 13.10.

9.1.6. The cooperad As¡ and Koszul duality. We compute the Koszul
dual ns cooperad As¡ of the ns operad As. By definition As is the quotient of the
free ns operad generated by one binary operation µ, that is T (Kµ), quotiented by
the operadic ideal generated by the relator

as := −µ ◦ (µ, id) + µ ◦ (id, µ) ∈ T (Kµ)3 .

Let us denote by µc the image of µ in sKµ by κ. So µc is a cooperation of
arity 2 and degree 1. The cofree ns cooperad over M = (0, 0,Kµc, 0, · · · ), that is
T c(Kµc), can be identified, as a graded vector space, with the vector space spanned
by the planar binary trees (cf. C.1.1). The isomorphism

ψ : K[PBTn] ∼= T c(Kµc)n

is given by

ψ(|) := id, ψ( ��
??

) := µc, ψ(r ∨ s) := (µc;ψ(r), ψ(s)).

For instance we have ψ(
�� ??������

?????? ) = (µc;µc, µc).

Since the generator µc has homological degree 1, there are signs involved in the
explicitation of ψ, see 5.8.7. Let us consider the map ϕ : Sn−1 → PBTn constructed
in C.1.3 which follows from the identification of the symmetric group Sn−1 with

the set of planar binary trees with levels P̃BTn. We denote by t̃ the permutation
in the pre-image of t ∈ PBTn which corresponds to the planar binary tree with
upward levels. It means that, among the leveled trees representing t, we choose the
tree whose levels of the vertices, which are at the same level in t, go upward when

moving from left to right. For instance, if t =
�� ??������

?????? , then t̃ =

??����
������

?????? and

the permutation is [231].
Observe that the element t̃ is easy to interpret in terms of the construction

described in 5.4.6. We define

µc1 := |, µc2 := ��
??

, and µcn := −
∑

t∈PBTn

sgn(t̃) t for n ≥ 3.

In low dimension we get µc3 = −
�� ����

???? +
??����

???? ,

µc4 = −
�� ����

������

?????? +

??����
������

?????? −
�� ??������

?????? −
��???? ������

?????? +

?????? ������

?????? .
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In this example, the involved permutations are [123], [213], [231], [312], [321]. The
degree of µcn is n− 1.

Lemma 9.1.7. Let ∆ be the decomposition map of the cofree ns cooperad T c(Kµc).
We have

∆(µcn) =
∑

i1+···+ik=n

(−1)
∑

(ij+1)(k−j)(µck;µci1 , . . . , µ
c
ik

) .

Proof. This is a tedious but straightforward computation. The necessity of the sign
sgn(t̃) in the definition of µcn comes from the formula for ∆ in the graded framework
(cf. 5.7.7), which is

∆(r ∨ s) = ( r ∨ s) + (−1)|t
(2)||s(1)|(t(1) ∨ s(1); t(2), s(2)) .

Here are examples of this computation in low dimension under the convention
∆(t) = (|; t) + ∆(t) + (t; | · · · |):

∆(
�� ����

???? ) = ( ��
??

; ��
?? |)

∆(
??����

???? ) = ( ��
??

; | ��
??

)

As a consequence we get ∆(µc3) = −(µc2;µc2, µ
c
1) + (µc2;µc1, µ

c
2).

Then

∆(
�� ����

������

?????? ) = (
�� ����

???? ; ��
?? | |) + ( ��

??
;

�� ����

???? |),

∆(

??����
������

?????? ) = (
�� ����

???? ; | ��
?? |)− ( ��

??
;

??����

???? |),

∆(
�� ??������

?????? ) = −(
??����

???? ; ��
?? | |) + (

�� ����

???? ; | | ��
??

)

+( ��
??

; ��
?? ��

??
),

∆(
��???? ������

?????? ) = (
??����

???? ; | ��
?? |) + ( ��

??
; |

�� ����

???? ),

∆(

?????? ������

?????? ) = (
??����

???? ; | | ��
??

) + ( ��
??

; |
??����

???? ).

As a consequence we get

∆(µc4) =

(µc2;µc3, µ
c
1) + (µc3;µc2, µ

c
1, µ

c
1)− (µc3;µc1, µ

c
2, µ

c
1) + (µc2;µc1, µ

c
3) + (µc3;µc1, µ

c
1, µ

c
2)

− (µc2;µc2, µ
c
2).

�
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Proposition 9.1.8. The ns cooperad As¡ ⊂ T c(Kµc) is such that

(As¡)n = K µcn .

Proof. By Lemma 9.1.7 the elements µcn, n ≥ 1, span a sub-cooperad of T c(Kµc).
Since µc3 = as, this sub-cooperad is universal among the sub-cooperad whose pro-
jection to the quotient space T c(Kµc)(2)/K as vanishes. Therefore this cooperad is
As¡. �

Proposition 9.1.9. The quadratic ns operad As is self-dual for Koszul duality,
that is

As! = As .

Proof. Recall from 7.7.1 that As! = (S c⊗
H
As¡)∗. Denoting by ��

??
the generator

and the cogenerator (depending on the context) the relation (or the corelation) can
be written:

As!
??����

???? −
�� ����

???? by definition,

S c ⊗
H
As¡

??����

???? +
�� ����

???? by sign rule,

(S c ⊗
H
As¡)∗

??����

???? −
�� ����

???? by linear duality.

Hence As! = As.
Of course we could as well apply directly Theorem 7.7.2 as follows. Since, in

the presentation of As, the space of weight two operations in the free operad is
of dimension 2 and the dimension of the space of relators R is of dimension 1,
the orthogonal space R⊥ is of dimension 1. Since R is orthogonal to itself for the

quadratic form

[
1 0

0 −1

]
, it follows that R⊥ = R and therefore As! = As. �

We now study the Koszulity of the ns operad As.

Theorem 9.1.10. The ns operad As is a Koszul ns operad.

Proof. We give here a proof based on the analysis of the Koszul complex. Let us
describe the Koszul complex of the ns operad As following 3.4.1. We consider the
arity n sub-chain complex of As¡ ◦As, that is (As¡ ◦As)n . It is a finite complex of
length n which reads:

As¡
n ⊗As1 ⊗ · · · ⊗As1 → · · · →

⊕
As¡

k ⊗Asi1 ⊗ · · · ⊗Asik → · · · → As¡
1 ⊗Asn

where i1 + · · · + ik = n and ij ≥ 1. Observe that each component As¡
k ⊗ Asi1 ⊗

· · · ⊗Asik is one-dimensional.
In order to describe the boundary map we need to compute (Id◦(1)κ)(∆(1)(µ

c
k)).

It is the coproduct of µck, but keeping on the right side only the terms which involve
copies of id and one copy of µc (identified to µ under κ). So we get

∑
j ±µck−1 ◦

(id, . . . , id, µ, id, . . . , id). Then we have to apply the associativity isomorphism to∑
j

±
(
µck−1 ◦ (id, . . . , id, µ, id, . . . , id)

)
◦ (µi1 , · · · , µik)



268 9. THE OPERADS As AND A∞

to get∑
j

±µck−1 ◦
(
id ◦ µi1 , . . . , id ◦ µij−1

, µ ◦ (µij , µij+1
), id ◦ µij+2

, . . . , id ◦ µik)
)

=

∑
j

±µck−1 ◦
(
µi1 , . . . , µij−1

, µij+ij+1
, µij+2

, . . . , µik
)
.

There is no ambiguity to denote the generator of As¡
k ⊗ Asi1 ⊗ . . . ⊗ Asik by

[i1, . . . , ik], and we get

d([i1, . . . , ik]) =
∑
j

±[i1, . . . , ij + ij+1, . . . , ik].

The boundary map of this Koszul complex can be identified with the boundary
map of the augmented chain complex (shifted by one) of the cellular simplex ∆n−2:

Cn−2(∆n−2)→ · · · → Ck−2(∆n−2)→ · · · → C0(∆n−2)→ K.

Compared to the classical way of indexing the vertices of the simplex ∆n−2 by
integers 0, . . . , n− 1, the vertex number i corresponds to the chain [i+ 1, n− i− 1]
in (As¡ ◦As)n. Here is the simplex ∆2:

[13]

�����������������������

��888888888888888888888

[112] [121]

[1111]

[22] // [31]

[211]

Since the simplex is contractible, its associated augmented chain complex is
acyclic for any n ≥ 2. For n = 1 the complex reduces to the space As¡

1⊗As1 = K.
�

Remark. We could have also use the poset method (cf. 8.7), to prove the
acyclicity of the Koszul complex. Or (see below), we could compute the Hochschild
homology of the free algebra T (V ) by providing an explicit homotopy.

Modulo all the apparatus, the shortest proof is the rewriting system method
(cf. 8.1) since the only critical monomial is ((xy)z)t and the confluent property is
immediate to verify:

– one one hand ((xy)z)t 7→ (x(yz))t 7→ x((yz)t) 7→ x(y(zt)) (left side of the
pentagon),

– one the other hand ((xy)z)t 7→ (xy)(zt) 7→ x(y(zt)) (right side of the penta-
gon).
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((xy)z)t

$$IIIIIIIIIIIIIIIII

wwnnnnnnnnnn

(x(yz))t

��

zzuuuuuuuuuuuuuuuuu (xy)(zt)

x((yz)t)

''PPPPPPPPPP

x(y(zt))

9.1.11. Hochschild homology of associative algebras. Since we know
that As! = As, we can describe explicitly the chain complex CAs• (A), which gives
the operadic homology of the associative algebra A, cf. 12.1.3. Let us introduce the
boundary map

b′ : A⊗n → A⊗n−1

by the formula

b′(a1, . . . , an) =

n−1∑
i=1

(−1)i−1(a1, . . . , aiai+1, . . . , an) .

It is well known (and easy to check from the associativity of the product) that
(b′)2 = 0. The resulting chain complex (A⊗•, b′) is the non-unital Hochschild com-
plex, up to a shift of degree.

Proposition 9.1.12. The operadic chain complex of the associative algebra A is
the non-unital Hochschild complex of A:

CAs•−1(A) = (A⊗•, b′) .

Therefore the operadic homology of an associative algebra is the Hochschild homol-
ogy up to a shift of degree.

Proof. By definition 12.1.3 the complex CAs• (A) is given by

· · · → As¡
n ⊗A⊗n → · · · → As¡

1 ⊗A .

Since As¡
n is one dimensional, we get A⊗n in degree n− 1. The boundary map is

obtained as follows (cf. 6.6): we consider all the possibilities of “splitting” µcn using
one copy of µc on the right hand side (infinitesimal decomposition map), that is

∆(1)(µ
c
n) =

∑
±µcn−1 ⊗ (id, . . . , id, µc, id, . . . , id)

and then we apply the element (id, . . . , id, µc, id, . . . , id) to (a1, . . . , an) after replac-
ing the cooperation µc by the operation µ nder κ. This gives precisely the boundary
map b′ since µ(ai, ai+1) = aiai+1. �
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9.1.13. Homology and cohomology with coefficients. In the literature,
homology and cohomology with coefficients appear most of the time for unital as-
sociative algebras. The comparison between unital and nonunital cases is not com-
pletely straightforward, see for instance [LQ84, Lod98] section 1.4. We describe
briefly the unital case.

In order to construct a homology or cohomology with coefficients one needs a
notion of “representation” (the coefficients). In the associative case it is the notion
of bimodule because of the following fact. For any (unital) algebra A and any
abelian extension

0→M → A′ → A→ 0

the space M is a (unital) bimodule over A. Recall that here A′ is a (unital) algebra
and the product of two elements of M is 0 (abelian hypothesis).

LetA be a unital associative algebra andM a unitalA-bimodule. The Hochschild
complex C•(A,M) is defined as Cn(A,M) := M ⊗ A⊗n and the boundary map

b : Cn(A,M)→ Cn−1(A,M) is given by the formula b =
∑i=n
i=0 (−1)idi, where

d0(m, a1, . . . , an) := (ma1, a2, . . . , an),

di(m, a1, . . . , an) := (m, a1, . . . aiai+1, . . . , an), 1 ≤ i ≤ n− 1,

dn(m, a1, . . . , an) := (anm, a1, . . . , an−1).

The homology groups of C•(A,M) are called the Hochschild homology groups
of the unital algebra A with coefficients in the bimodule M .

The Hochschild complex of cochains C•(A,M) is defined as Cn(A,M) :=
Hom(A⊗n,M) and the boundary map b : Cn(A,M) → Cn+1(A,M) is given by

the formula b =
∑i=n
i=0 (−1)idi, where

d0(f)(a1, . . . , an+1) := a1f(a2, . . . , an+1),

di(f)(a1, . . . , an+1) := f(a1, . . . aiai+1, . . . , an+1), 1 ≤ i ≤ n,
dn(f)(a1, . . . , an+1) := f(a1, . . . , an)an+1.

The homology groups of C•(A,M) are called the Hochschild cohomology groups
of the unital algebra A with coefficients in the bimodule M .

These groups appear as obstruction groups in many questions and there is an
extensive literature about them (for a first approach see for instance [Lod98]). For
instance there is a classification theorem for abelian extensions of A by M :

H2(A,M) ∼= Ext(A,M).

Similarly there is a classification theorem for crossed modules of A by M :

H3(A,M) ∼= XMod(A,M).

Historically these complexes were constructed by hand by Hochschild. Of
course they can be viewed as coming from the operad theory. The advantage is to
produce similar complexes and theorems for Koszul operads without having to do
ad hoc constructions and proofs in each case. This is the theme of Chapter 12.

9.1.14. Other homology theories for associative algebras. The operad
As has more structure: it is a cyclic operad (cf. 13.14.6). As such there exists
a homology theory for associative algebras which takes into account this extra
structure, it is called cyclic homology. It was first devised by Alain Connes [Con85]
and further studied in [LQ84] and [Tsy83] (see also the monograph [Lod98]),
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mainly for unital associative algebras. Cyclic homology is encoded by the cyclic
category, denoted by ∆C. This notation accounts for the structure of this category
which is made up of the simplicial category ∆ and the cyclic groups. There is
a similar category, where the cyclic groups are replaced by the symmetric groups:
∆S, cf. [FL91, Lod98]. It turns out that ∆S is precisely the category associated to
the operad uAs encoding the category of unital associative algebras by the method
5.3.11, as shown by Pirashvili in [Pir02a], cf. 5.3.11.

The operad As can also be considered as a permutad (cf. 13.14.7). We refer to
[LR11] for more on this theme.

9.2. Associative algebras up to homotopy

In the sixties, Jim Stasheff introduced in [Sta63] the notion of A∞-algebra, also
called “associative algebra up to strong homotopy”. The idea is that associativity
of the binary operation m2 is satisfied only “up to higher homotopy”. It has a
meaning algebraically whenever one works with a chain complex (A, d). It means
that the associator of m2 is not zero, but that there exists a ternary operation m3

(the homotopy) such that

m2 ◦ (m2, id)−m2 ◦ (id,m2) = d ◦m3 +m3 ◦ ((d, id, id) + (id, d, id) + (id, id, d)).

But then, mixing m2 and m3 leads to introduce a 4-ary operation m4 satisfying
some relation, and so on, and so on. The whole algebraic structure, discovered by
Jim Stasheff, is encoded into the notion of A∞-algebra, that we recall below. The
relevant operad, denoted A∞, can be described in terms of the Stasheff polytope.

On the other hand the operad theory gives an algorithm to construct explicitly
the minimal model of As, which is the dgns operad As∞ := ΩAs¡. It gives rise to
the notion of “homotopy associative algebra”. It turns out that, not surprizingly,
A∞ = As∞.

9.2.1. A∞-algebra [Sta63]. We have seen in 2.2.1 that any associative alge-

bra A gives rise to a dga coalgebra (T
c
(sA), d), which is its bar construction. It is

natural to look for a converse statement. Given a graded vector space A together
with a codifferential m on the cofree coalgebra T

c
(sA), what kind of structure do

we have on A ? The answer is given by the notion of A∞-algebra. Here are the
details.

By definition an A∞-algebra is a graded vector space A = {Ak}k∈Z equipped

with a codifferential map m : T
c
(sA) → T

c
(sA) (so |m| = −1, m ◦m = 0) and m

is a coderivation, cf. 1.2.8). Observe that, since T
c
(sA) is cofree, the coderivation

m is completely determined by its projection proj ◦m : T
c
(sA)→ sA, that is by a

family of maps A⊗n → A,n ≥ 1.
To any A∞-algebra (A,m), we associate an n-ary operation mn on A as the

following composite:

(sa1) · · · (san) (sA)⊗n
m| // sA

∼=
��

sa_

��
a1 · · · an

_

OO

A⊗n
mn //

∼=

OO

A a
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where m| is the restriction of m to (sA)⊗n composed with the projection onto
sA. The map mn is of degree n − 2 since the degrees of the involved maps in the
composition are n− 1 and −1 respectively.

Lemma 9.2.2. An A∞-algebra is equivalent to a graded vector space A = {Ak}k∈Z
equipped with an n-ary operation

mn : A⊗n → A of degree n− 2 for all n ≥ 1,

which satisfy the following relations:

(reln)
∑

p+q+r=n

(−1)p+qrmk ◦ (id⊗p ⊗mq ⊗ id⊗r) = 0, n ≥ 1,

where k = p+ 1 + r.

Proof. Let (A,m) be an A∞-algebra as defined above. Since m is a coderivation,

and since T
c
(sA) is cofree over sA, by Proposition 1.2.9, m is completely determined

by its composite

T
c
(sA)

m−→ T
c
(sA)

proj−−−→ sA .

The condition m2 = 0 is equivalent to the vanishing of the composite

T
c
(sA)

m−→ T
c
(sA)

m−→ T
c
(sA)� sA .

For each n ≥ 1, its restriction to the n-tensors gives the relation (rel)n. The signs
come from the fact that we establish the formula on A⊗n instead of (sA)⊗n. �

We sometimes write mA
n in place of mn if it is necessary to keep track of the

underlying chain complex. Let us make the relation (reln) explicit for n = 1, 2, 3:

m1 ◦m1 = 0,

m1 ◦m2 −m2 ◦ (m1, id)−m2 ◦ (id,m1) = 0,

m1 ◦m3 +m2 ◦ (m2, id)−m2 ◦ (id,m2)

+m3 ◦ (m1, id, id) +m3 ◦ (id,m1, id) +m3 ◦ (id, id,m1) = 0.

9.2.3. Homotopy and operadic homology of an A∞-algebra. Let A be
an A∞-algebra, e.g. a dga algebra. The relation (rel)1 implies that (A,m1) is a
chain complex. We prefer to denote the differential m1 by −d and consider an A∞-
algebra as being a chain complex (A, d) equipped with higher operations, see below.
The homology of the underlying chain complex (A, d) is called the homotopy of the

A∞-algebra A . The homology of the chain complex (T
c
(sA),mA) is called the

operadic homology of the A∞-algebra A. If A is a dga algebra, then the operadic
homology is the Hochschild homology (of the nonunital dga algebra).

Proposition 9.2.4. The homotopy of an A∞-algebra is a graded associative alge-
bra.

Proof. This is an immediate consequence of the relations (rel2) and (rel3) recalled
in the introduction of this section and in 9.2.6. �

A finer statement can be found in 9.4.8.
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9.2.5. Examples. We already mentioned that a (nonunital) dga algebra (A, d)
is an example of A∞-algebra. Indeed it suffices to take m1 = −d, m2 = µ and
mn = 0 for n ≥ 3. Observe that if A is a dga algebra, then (T c(sĀ),m) is precisely
the cobar construction on A.

When A = C•sing(X) is the singular cochain complex of a topological space X,
it is endowed with an associative cup product. This associative algebra structure
transfers to an A∞-algebra structure on the singular cohomology H•sing(X). These

operations were originally defined by Massey in [Mas58].
The singular chains on a based loop space ΩX of the connected topological

space X is an A∞-algebra, cf. [Sta63].

9.2.6. The operad A∞. Let A be an A∞-algebra. For n = 1 the relation
(reln) reads as follows:

m1 ◦m1 = 0.

So d := −m1 is a differential on A. The derivative (cf. 1.5.4) of the map mn is

∂(mn) := dmn − (−1)n−2mn

(
(d, id, . . . , id) + · · ·+ (id, . . . , id, d)

)
.

Using this notation the relations (reln) become:

(rel′2) : ∂(m2) = 0,
(rel′3) : ∂(m3) = m2 ◦ (m2, id)−m2 ◦ (id,m2),
(rel′4) : ∂(m4) = −m2 ◦ (m3, id) +m3 ◦ (m2, id, id)−m3 ◦ (id,m2, id)

+m3 ◦ (id, id,m2)−m2 ◦ (id,m3).

More generally, for any n ≥ 2, the relation (reln) can be written as:

(rel′n) : ∂(mn) =
∑

n=p+q+r
k=p+1+r
k>1,q>1

(−1)p+qrmk ◦ (id⊗p ⊗mq ⊗ id⊗r).

Therefore an A∞-algebra can be seen as a chain complex (A, d) equipped with
linear maps: mn : (A, d)⊗n → (A, d), for n ≥ 2, satisfying some relations. In other
words, an A∞-algebra is an algebra over some dgns operad, denoted A∞. The gen-
erating operations of this operad correspond to the operations mn ∈ End(A), n ≥ 2,
of degree n − 2. So, the nonsymmetric operad A∞ is free over these operations:
A∞ = T (⊕n≥2Kµn). The differential structre is precisely given by the relations
(rel′n), n ≥ 2.

Here we work in the homological framework (degree of d is −1), but one can of
course defineA∞-algebras in the cohomological framework, see for instance [Kel01].

9.2.7. The associahedron (Stasheff polytope). Let us recall from Appen-
dix C that the associahedron Kn is a cell complex of dimension n homeomorphic
to a ball, whose cells are in bijection with the planar trees with n+ 2 leaves. The
chain complex associated to Kn is denoted by C•(Kn). A tree t ∈ PTn+2,n−k+1

has n+ 2 leaves and (n− k+ 1) internal vertices. It gives a chain in Ck(Kn). Since
Kn is contractible, the homology of C•(Kn) is trivial except in dimension 0, where
it is K. We will identify the dg vector space of n-ary operations of the operad A∞
(and of the operad As∞) to C•(Kn−2).
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Proposition 9.2.8. The dg operad A∞ encoding the category of A∞-algebras is
a dgns operad whose dg module of n-ary operations is the chain complex of the
associahedron:

(A∞)n = C•(Kn−2) .

Proof. Since, as an operad, A∞ is free with one generator in each arity n ≥ 2,
there is an isomorphism (A∞)n ∼= K[PTn], where PTn is the set of planar trees
with n leaves. The generating operation mn corresponds to the n-corolla under
this isomorphism. On the other hand, the cells of the associahedron Kn−2 are in
bijection with PTn, whence the identification of vector spaces K[PTn] = C•(Kn−2).
The boundary map of (A∞)n is given by formula (rel′n). Once translated in terms
of cells of the associahedron it gives precisely the boundary of the big cell of Kn−2

since the facettes are labelled by the planar trees with two internal vertices.

Examples. (rel′3) and (rel′4):

∂(
����

???? ) = +
�� ����

???? −
??����

???? ,

∂
( ������

??????

****
����

)
=

����
������

?????? −
�� ������

?????? +

??�� ������

?????? −
??������

?????? +
����

������

?????? .

These formulas are the algebraic translation of the cell boundaries:

Figure 1. Interval

Figure 2. Pentagon

�
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Proposition 9.2.9. The operad As∞ := ΩAs¡ is a dgns operad whose space of
n-ary operations is the chain complex of the associahedron:

(ΩAs¡)n = (As∞)n = C•(Kn−2) .

Proof. We work in the nonsymmetric operad context. As a ns operad As∞ =
T (s−1As¡) is free on As¡, that is free on the generating operations µcn, n ≥ 2 of
degree n − 2. Hence, as in the previous case, there is an isomorphism of vector
spaces (As∞)n ∼= K[PTn] = C•(Kn−2). By definition of the cobar construction,
the boundary map on T (sAs¡)n is induced by the cooperad structure of As¡, more
precisely by the infinitesimal decomposition map ∆(1), cf. 6.1.7. Let us show that

this boundary map is precisely the boundary map of the chain complex C•(Kn−2).
As a linear generator of T (sAs¡)n the element µcn ∈ (As¡)n corresponds to the

big cell (n-corolla) t(n). The degree of µcn is n− 2. It is mapped to sµn ∈ (A∞)n.
The image of µcn by the map ∆(1) is

∆(1)(µ
c
n) =

∑
p+1+r=k

(−1)p+qrµck ⊗ (id, . . . , id︸ ︷︷ ︸
p

, µcq, id, . . . , id︸ ︷︷ ︸
r

),

for n = p+ q + r by Lemma 9.1.7. Under the isomorphism T (sAs¡)n ∼= C•(Kn−2)
this is precisely the boundary map of the associahedron. The evaluation of the
boundary on the other cells follows from this case. �

Corollary 9.2.10. The categories of A∞-algebras and As∞-algebras are the same:

A∞ = As∞ := ΩAs¡ .

Proof. From the description of the operad A∞ given in Proposition 9.2.8 and the
description of the operad As∞ given in Proposition 9.2.9 it is clear that we have a
bijection

(A∞)n = K[PTn] = (As∞)n

which is compatible with the operad structure. Moreover both differentials coincide
with the differential map in the chain complex of the associahedron, therefore the
two dgns operads are identical. �

9.2.11. Infinity-morphism. Let A and B be two A∞-algebras. An ∞-
morphism f : A  B (sometimes called A∞-morphism in the literature) is by
definition a morphism of dga coalgebras

f : (T
c
(sA),mA)→ (T

c
(sB),mB).

We adopt the notation  to avoid confusion between morphism and ∞-morphism
between two A∞-algebras. Since T

c
(sB) is cofree, an ∞-morphism is equivalent to

a map T
c
(sA)→ sB, that is a family of maps of degree n− 1

fn : A⊗n → B, n ≥ 1,

such that f1 is a chain map, i.e. dB ◦ f1 = f1 ◦ dA and such that∑
p+1+r=k
p+q+r=n

(−1)p+qrfk ◦ (IdA, . . . , IdA︸ ︷︷ ︸
p

,mA
q , IdA, . . . , IdA︸ ︷︷ ︸

r

)−

∑
k≥2

i1+···+ik=n

(−1)εmB
k ◦ (fi1 , . . . , fik) = ∂(fn),
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in Hom(A⊗n, B), for n ≥ 2. The sign ε is given by the formula

ε = (k − 1)(i1 − 1) + (k − 2)(i2 − 1) + · · ·+ 2(ik−2 − 1) + (ik−1 − 1).

Under the tree notation, this relation becomes ∂(fn) =

∑
(−1)p+qr

mA
q

@@ ~~

fk

CCCCCCCC

<<<<<<<

555555

						

������� −
∑

(−1)ε

fi1

GGGG
::: ���

wwww
fi2

::: wwww
· · · fik

::: ���

mB
k

NNNNNNNNNNN

33333
uuuuuuuu

From the definition, it follows that the composite of two∞-morphisms is again
an ∞-morphism. The category of A∞-algebras equipped with the ∞-morphisms is
denoted ∞-A∞-alg. It is a good exercise to write down the explicit formulas for

(g ◦ f)n in terms of the fi’s and gi’s for A
f
 B

g
 C.

An∞-morphism f is called a∞-quasi-isomorphism when f1 is a quasi-isomorphism.
One can prove that ∞-quasi-isomorphisms are homotopy invertible. We refer to
Chapter 10 for details on ∞-morphisms.

9.2.12. A∞-coalgebra. By definition a conilpotent A∞-coalgebra in the monoidal
category of sign-graded vector spaces is a graded vector space C equipped with a
degree −1 square zero derivation on the tensor algebra:

∆ : T (s−1C)→ T (s−1C).

Since the tensor algebra is free, the differential map ∆ is completely determined by
a family of maps

∆n : C → C⊗n

of degree −n+ 2 for all n ≥ 1. These maps satisfy the following relations∑
p+q+r=n

(−1)p+qr(id⊗p ⊗∆q ⊗ id⊗r)∆k = 0,

where k = p+ 1 + q.
In the case where ∆n = 0 for n > 2, C is a noncounital dg coalgebra and

(T (s−1C),∆) is its bar construction.

9.3. The bar-cobar construction on As

In this section, we study the bar-cobar construction on the ns operad As,
that is the dgns operad ΩBAs. We give a geometric interpretation of the operad
monomorphism As∞ = ΩAs¡ � ΩBAs.

9.3.1. The ns operad ΩBAs. The operad ΩBAs is a dgns operad which is
free as a ns operad. We will describe the chain complex (ΩBAs)n in terms of the
cubical realization Kn−2

cub of the associahedron (Boardman-Vogt W -construction, see
also [BM03a]), as described in Appendix C.2.2.

Proposition 9.3.2. The chain complex (ΩBAs)n is precisely the chain complex
of the cubical realization of the associahedron:

(ΩBAs)n = C•(Kn−2
cub ) .
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Proof. In the Appendix C.2.2, it is shown that the chain complex C•(Kn−2
cub ) is

spanned by the circled trees with n leaves:

C•(Kn−2
cub ) = K[CPTn] .

We construct a map (ΩBAs)n → K[CPTn] as follows. Since ΩBAs = T (s−1BAs) ∼=
T (s−1T c(sAs)), a linear generator is a planar tree whose vertices are labelled by
linear generators of BAs. Since BAs is spanned by planar trees, we get trees of
trees, that is circled trees. The trees inside the circles are elements of BAs.

We need now to show that the differential structure of ΩBAs corresponds
exactly to the boundary map of the chain complex C•(Kn−2

cub ). By definition (cf. 6.5),
the boundary map in ΩBAs has two components : d1 coming from the boundary
map of BAs and d2 coming from the cooperad structure of BAs. Since BAs is dual
to ΩAs¡, it follows that (BAs)n can be identified with the chain complex C•(Kn−2).

On the geometric side, the boundary map of C•(Kn−2
cub ) is made up of two

components d′1 and d′2. Let us focus on the top-cells of C•(Kn−2
cub ), which are encoded

by planar binary trees with one circle. Its boundary is made up of two kinds of
elements: those which have only one circle (and one edge less), and those which
have two circles (and the same number of edges). The elements of the first type
account for d1 and the elements of the second type account for d2. Under the
identification of linear generators we verify that d1 = d′1 and d2 = d′2. An example
is given in Figure 3.

Figure 3. The boundary map of C•(K1
cub)

�

Proposition 9.3.3. There is a sequence of dgns operad morphisms

As∞ = ΩAs¡
∼−→ ΩBAs

∼−→ As

which are quasi-isomorphisms. In arity n they are given by the quasi-isomorphisms

C•(Kn−2)
∼−→ C•(Kn−2

cub )
∼−→ Kµn

where the first one is given by the cellular homeomorphism Kn−2 → Kn−2
cub and the

second one is the augmentation map.

Proof. The augmentation map ΩAs¡ → As has a dual which is As¡ → BAs.
Taking the cobar construction gives ΩAs¡ → ΩBAs. Under the identification with
the chain complex of the two cellular decompositions of the associahedron, we get,
in arity n+ 2, a chain map C•(Kn)→ C•(Kncub). It is given by the identification of
Kn with itself, i.e. the big cell of Kn is sent to the sum of the top-cells Kncub.

The augmentation map ΩAs¡ → As is obtained by taking the homology. Since
the associahedron is a convex polytope, it is homeomorphic to a ball and so its
homology is the homology of a point. In degree 0, each vertex (i.e. each planar
binary tree) is sent to µn, the generator of Asn. �
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9.4. Homotopy Transfer Theorem for the operad As

The notion of associative algebra is not stable under homotopy equivalence in
general. Indeed, if V is a chain complex homotopy equivalent to a dga algebra
A, the product induced on V is not necessarily associative. However the algebra
structure on A can be transferred to an A∞-algebra structure on V . We will see
that, more generally, an A∞-algebra structure on A can be transferred to an A∞-
algebra structure on V . So the category of A∞-algebras is stable under homotopy
equivalence. An interesting particular case is when V is the homotopy of A, that
is V = H•(A, d). Then, we obtain some new operations on H(A) which generalize
the higher Massey products.

9.4.1. Transferring the algebra structure. Let (A, dA) be a dga algebra.
We suppose that (V, dV ) is a homotopy retract of the chain complex (A, dA):

(A, dA)h
%% p //

(V, dV )
i

oo ,

IdA − ip = dAh+ hdA,

the map i : V → A being a quasi-isomorphism. From this hypothesis it follows
immediately that the homology of (V, dV ) is the same as the homology of (A, dA)
and so H•(V, dV ) is a graded associative algebra. It is natural to ask oneself what
kind of algebraic structure there exists on V which implies that its homology is a
graded associative algebra. One can define a binary operation m2 : V ⊗ V → V by
the formula

m2(u, v) := pµ(i(u), i(v))

where µ stands for the product in A:

3333333

�������

i i

m2 = µ

p

It is immediately seeing that there is no reason for m2 to be associative. How-
ever the obstruction to associativity is measured as follows.

Lemma 9.4.2. The ternary operation m3 on V defined by the formula

m3(u, v, w) := pµ
(
i(u), hµ(i(v), i(w))

)
− pµ

(
hµ(i(u), i(v)), i(w)

)
,

3333333333333

;;;;;;

						
i i i

µ

�����
m3 = + h

µ

p

555555

������

�������������
i i i

µ

88888
− h

µ

p

satisfies the relation

∂(m3) = m2 ◦ (m2, id)−m2 ◦ (id,m2)
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(as already mentioned ∂(m3) := dVm3 +m3dV ⊗3) .

Proof. In order to ease the computation, we write the proof in the case of a
deformation retract. So we think of V as a subspace of A (whence suppressing the
notation i), so p becomes an idempotent of A satisfying dh = id − p − hd. Let us
compute ∂

(
pµ(hµ(i, i), i)

)
, that is ∂

(
pµ(hµ, id)

)
under our convention:

∂
(
pµ(hµ, id)

)
= dpµ(hµ, id) +

[
(pµ(hµ(d, id), id)) + (pµ(hµ(id, d)), id) + (pµ(hµ, d))

]
= pµ(dhµ, id)− pµ(hµ, d) +

[
· · ·
]

= pµ(µ, id)− pµ(pµ, id)
−(pµ(hµ(d, id), id))− (pµ(hµ(id, d)), id)− pµ(hµ, d) +

[
· · ·
]

= pµ(µ, id)−m2(m2, id).
Similarly one gets

∂
(
pµ(id, hµ)

)
= p(µ(id, µ))−m2(id,m2).

Since µ is associative the terms pµ(µ, id) and pµ(id, µ) are equal, and we get
the expected formula. �

9.4.3. Geometric interpretation of m3. Let us consider the cubical decom-
position of the interval, whose cells are labelled by the “circled trees”, cf. Appendix
C.2.2.

The two summands of m3 correspond to the two 1-cells of this cubical de-
composition and the formula ∂(m3) = m2 ◦ (id,m2) −m2 ◦ (m2, id) is simply the
computation of this boundary.

9.4.4. Higher structure on the homotopy retract. Lemma 9.4.2 suggests
that (V, d) inherits an A∞-structure from the associative structure of (A, d). The
geometric interpretation shows us the route to construct mn explicitly: use the
cubical decomposition of the Stasheff polytope:

mn :=
∑

t∈PBTn+2

±mt,

where, for any pb tree t, the n-ary operation mt is obtained by putting i on the
leaves, µ on the vertices, h on the internal edges and p on the root, as in the case

m3 = m ??����

????
−m �� ����

????
.

Theorem 9.4.5 (T. Kadeishvili [Kad88]). Let

(A, dA)h
%% p //

(V, dV )
i

oo ,

IdA − ip = dAh+ hdA,
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be a retract. If (A, dA) is a dga algebra, then (V, dV ) inherits an A∞-algebra struc-
ture {mn}n≥2, which extends functorially the binary operation of A.

Proof. The proof is analogous to the proof of Lemma 9.4.2. It is done by induction
on the size of the trees. �

This statement is a particular case of Theorem 9.4.14 which gives an even more
precise result.

Corollary 9.4.6. Let

(A, dA)h
%% p //

(V, dV )
i

oo ,

i = quasi-isomorphism IdA − ip = dAh+ hdA,

be a homotopy retract (e.g. deformation retract). The homotopy class of the dga
algebra (A, d) (considered as an A∞-algebra) is equal to the homotopy class of the
A∞-algebra (V, d).

Lemma 9.4.7. Let K be a field. Under a choice of sections any chain complex
admits its homology as a deformation retract.

Proof. Since we are working over a field, we can choose sections in the chain complex
(A, d) so that An ∼= Bn ⊕Hn ⊕Bn−1 where Hn is the homology and Bn the space
of boundaries in degree n. The boundary map is 0 on Bn⊕Hn and identifies Bn−1

with its copy in An−1. The homotopy h is 0 on Hn ⊕Bn−1 and identifies Bn with
its copy in An+1. These choices make (H•(A), 0) a deformation retract of (A, d):

Id −pi dh hd

Bn Id 0 Id 0
Hn Id −Id 0 0
Bn−1 Id 0 0 Id

�

Corollary 9.4.8 (T. Kadeishvili [Kad82]). For any dga algebra (A, d), there is
an A∞-algebra structure on H•(A, d), with 0 differential, such that these two A∞-
algebras are homotopy equivalent.

Proof. We apply Theorem 9.4.5 to the deformation retract constructed in Lemma
9.4.7. The homotopy equivalence of these two A∞-algebras follows from the exis-
tence an ∞-quasi-isomorphism. �

9.4.9. MacLane invariant of a crossed module. Though it has been con-
structed decades before m3, the MacLane invariant of a crossed module can be
interpreted as a nonlinear variation of m3. Let us recall the framework. A crossed
module is a group homomorphism µ : M → N together with an action of N on M ,
denoted nm, such that the following relations hold

a) µ(nm) = nµ(m)n−1,

b) µ(m)m′ = mm′m−1.

Let Q := Coker µ and L := Kerµ. From the axioms it is easily seen that L is
abelian and equipped with a Q-module structure. In [ML95], Chapter IV section
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8, MacLane constructed an element α ∈ H3(Q,L) as follows. Let P be the image
of µ. We choose set-theoretic sections i and j such that i(1) = 1, j(1) = 1:

L // // M
µ //

!! !!DDDDDDDD N // // Q
iuu

P
j

YY

==

=={{{{{{{{

They permit us to construct set bijections: N ∼= P × Q and M ∼= L × P . Hence,
viewing the crossed module as a nonabelian chain complex (so µ plays the role

of the differential) its homology L
0−→ Q can be seen as a (nonlinear) deformation

retract:

M

p
)) ))

µ

��

L

0

��

oooo

N // //gg
h

77

Qtt
i

jj

where p and h are the following composites:

p : M ∼= L× P � L , h : N ∼= P ×Q� P
j−→M.

For u, v ∈ Q we define

ϕ(u, v) := h(i(u), i(v)) = j(i(u)i(v)i(uv)−1) ∈M,

so that i(u)i(v) = µ(ϕ(u, v))i(uv). We compute as in the linear case:

(i(u)i(v))i(w) = µ(ϕ(u, v))µ(ϕ(uv,w))i(uvw),

i(u)(i(v)i(w)) = µ(uϕ(v, w))µ(ϕ(u, vw))i(uvw).

Comparing these two equalities, it follows that there exists a unique elementm3(u, v, w) ∈
L = Kerµ such that

uϕ(v, w)ϕ(u, vw) = m3(u, v, w)ϕ(u, v)ϕ(uv,w) ∈M.

MacLane showed that this element is a 3-cocycle and that its cohomology class
in H3(Q,L) does not depend on the choice of the sections i and j. Moreover
any morphism of crossed modules inducing an isomorphism on the kernel and the
cokernel gives rise to the same invariant.

The topological interpretation is the following, cf. [Lod82]. The crossed module
µ : M → N defines a simplicial group whose classifying space is a topological space
with only π1, equal to Q, and π2, equal to L. So its homotopy type is completely de-
termined by the Postnikov invariant which is an element of H3(BQ,L) = H3(Q,L).
It is precisely the MacLane invariant. So, as in the linear case, the triple (Q,L,m3)
completely determines the homotopy type of the crossed module.

9.4.10. Massey product. We know that the homology of a dga algebra (A, d)
is a graded associative algebra H•(A). Corollary 9.4.8 tells us that we have more
structure: for any n ≥ 3 there is an n-ary operation mn which is nontrivial in
general. They are called Massey products because they generalize the classical
Massey products constructed in algebraic topology (cf. [Mas58, Kra66, May69]).
Let X be a connected topological space, and let C•sing(X) be the singular cochain
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complex with homology H•sing(X). The product structure is given by the cup-

product of cochains. Then the triple Massey product 〈x, y, z〉 is classically defined
for homology classes x, y, z such that x∪y = 0 = y∪z as follows. Let us still denote
by x, y, z the cycles representing the homology classes. Because of the hypothesis
there exist chains a and b such that (−1)|x|x ∪ y = da, (−1)|y|y ∪ z = db. Then the
chain

〈x, y, z〉 := (−1)|x|x ∪ b+ (−1)|a|a ∪ z
is a cycle and so defines a homology class called the triple Massey product of x, y, z.

The prototypical example of a nonzero triple Massey product is given by the
Borromean rings. We consider the complement (in the 3-sphere) of the Booromean
rings:

Each “ring” (i.e. solid torus) determines a 1-cocycle: take a loop from the base-
point with linking number one with the circle. Since any two of the three circles are
disjoint, the cup product of the associated cohomology classes is 0. The nontriviality
of the triple Massey product of these three cocycles detects the entanglement of the
three circles (cf. [Mas58, Sta]).

Lemma 9.4.11. For any cohomology classes x, y, z such that x∪ y = 0 = y∪ z the
triple Massey product is given by the operation m3:

〈x, y, z〉 = (−1)|x|+|y|m3(x, y, z).

Proof. Let (A, d) be a dga algebra. We denote by ∪ its product (formerly denoted
by µ) as well as the product induced on homology (formerly denoted by m2). We
use the homotopy equivalence data described in the proof of Lemma 9.4.8. If x, y, z
are cycles and a, b chains such that (−1)|x|x ∪ y = d(a), (−1)|y|y ∪ z = d(b), then
we can choose a and b such that hd(a) = a, hd(b) = b. Therefore one has

m3(x, y, z) = pµ
(
i(x), hµ(i(y), i(z))

)
− pµ

(
hµ(i(x), i(y)), i(z)

)
= x ∪ h(y ∪ z)− h(x ∪ y) ∪ z

= (−1)|y|x ∪ hd(b)− (−1)|x|hd(a) ∪ z

= (−1)|y|x ∪ b− (−1)|x|a ∪ z

= (−1)|x|+|y|〈x, y, z〉.

�

9.4.12. A quadruple Massey product. Let x, y, z, t be cycles in the dga
algebra (A, d) such that there exist chains a, b, c satisfying

(−1)|x|xy = d(a) , (−1)|y|yz = d(b) , (−1)|z|zt = d(c) ,
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and such that there exist chains α, β, β′, γ satisfying:

(−1)|a|az = d(α), (−1)|x|xb = d(β), (−1)|b|bt = d(β′), (−1)|y|yc = d(γ).

One can check that the element

〈x, y, z, t〉 := (−1)|x|αt+ (−1)|x|βt+ (−1)|x|ac+ (−1)|x|xβ′ + (−1)|x|xγ

is a cycle and defines a homology class in H•(A, d). The five elements of this sum
correspond to the five cells of the cubical decomposition of the pentagon, cf. picture
in 9.4.5. In fact one can check that

〈x, y, z, t〉 = ±m4(x, y, z, t).

9.4.13. Homotopy invariance of A∞-algebras. The homotopy transfer
theorem for dga algebras can be generalized into a homotopy transfer theorem
for A∞-algebras.

Theorem 9.4.14. [KS00] Let

(A, dA)h
%% p //

(V, dV )
i

oo ,

i = quasi-isomorphism, IdA − ip = dAh+ hdA,

be a homotopy retract. If (A, dA) is an A∞-algebra, then (V, dV ) inherits a A∞-
algebra structure {mn}n≥2 such that the quasi-isomorphism i extends to an ∞-
quasi-isomorphism.

Proof. In the proof of Lemma 9.4.2 we used the fact that the binary product µ = µ2

on A is associative. Suppose now that it is only associative up to homotopy, that
is, there exists a ternary operation µ3 on A such that

∂(µ3) = µ2 ◦ (id, µ2)− µ2 ◦ (µ2, id).

Then one needs to modify the ternary operation m3 on V by adding the extra term
pµ3i:

m3 := pµ2(i, hµ2(i, i))− pµ2(hµ2(i, i), i) + pµ3(i, i, i).

After this modification we get the formula

∂(m3) = m2 ◦ (m2, id)−m2 ◦ (id,m2)

as in Lemma 9.4.2. Observe that the term which has been added corresponds to
the corolla of the figure in 9.4.3.

Similarly the higher order operations mn are defined by using not only the
binary trees, but all the planar trees, with vertices indexed by the operations µn
given by the A∞-algebra structure of A. See picture C.2.3 which illustrates the
case m4. The proof is done by induction on the size of the trees, see for instance
[KS00] by Kontsevich and Soibelman or [Mer99] by Merkulov. �

This result is a particular case of a more general statement valid for any Koszul
operad. Its complete proof is given in 10.3.2.
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9.4.15. Variations on the the Homotopy Transfer Theorem. There are
various proofs and several generalizations of the Homotopy Transfer Theorem. The
proof given here follows the method of Kontsevich and Soibelman [KS00], see
also [Mer99] by Sergei Merkulov. Another method, closer to the original proof of
Kadeishvili, consists in applying the Perturbation Lemma, see [HK91].

In [Mar06] Martin Markl showed that p can also be extended to an ∞-quasi-
isomorphism, and h to an ∞-homotopy.

9.5. An example of an A∞-algebra with non-vanishing m3

Let us consider the cochain complex of the Stasheff polytope K2 (pentagon).
We denote by a∗, . . . , u∗, . . . , Z∗ the cochains which are linear dual of the cells
a, . . . , u, . . . , Z of K2:

a

!!CCCCCCCCCCCCCC

{{wwwwwwwwww
u v

b

��

w Z

~~}}}}}}}}}}}}}} c

d

""EEEEEEEEEE

y x

e

We make it into an A∞-algebra as follows. First we put mn = 0 for any n ≥ 4.
Second m3 is zero except on the triple of 1-cochains (u∗, w∗, y∗) where

m3(u∗, w∗, y∗) = Z∗.

Third, the binary operation m2 on (α, β) is given by the following table:

α\β a∗ b∗ c∗ d∗ e∗ u∗ v∗ w∗ x∗ y∗ Z∗

a∗ a∗ −u∗ −v∗ −Z∗
b∗ b∗ −w∗
c∗ c∗ −x∗
d∗ d∗ −y∗
e∗ e∗

u∗ u∗ Z∗ Z∗

v∗ v∗ Z∗

w∗ w∗ Z∗

x∗ x∗

y∗ y∗

Z∗ Z∗

In this table empty space means 0. We let it to the reader to verify the relations,
that is

∂(m3) = m2 ◦ (m2, id)−m2 ◦ (id,m2)

and, since ∂(m4) = 0,

m2(m3, id)−m3(m2, id, id) +m3(id,m2, id)−m3(id, id,m2) +m2(id,m3) = 0.
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For the first relation it suffices to evaluate the two sides on (u∗, w∗, y∗). For
the second relation there are six cases to consider (one per face of the cube).

The topological interpretation of these formulas are better seen on the dual
statement, that is C•(K2) is an A∞-coalgebra. The binary coproducts ∆2 and ∆3

applied to the 2-cell Z are shown in the following pictures:

@@@@@@@@@@@@@@@@@@@@@@@@@
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>>>>>>>>>>>>>

yyyyyyyy
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��������������������������
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Ze
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w
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OOOOOOOO

MMMMMMMM

qqqqqqqq

y

The identity

(∆3, id)∆2 − (∆2, id, id)∆3 + (id,∆2, id)∆3 − (id, id,∆2)∆3 + (id,∆3)∆2 = 0

which is equivalent to

(∆2, id, id)∆3 + (id, id,∆2)∆3 = (∆3, id)∆2 + (id,∆2, id)∆3 + (id,∆3)∆2

amounts to the identification of the following unions of cells:

ooooooooooo
OOOOOO

ppppppppppp
OOOOOO

MMMMMMMMMMMM

qqqqqq

=

OOOOOOOOOOO
oooooo

OOOOOOOOOOO

oooooo

ooooooooooo
OOOOOO

oooooo
OOOOOO

OOOOOOOOOOO
oooooo

OOOOOOOOOOO
oooooo

OOOOOOOOOOO
oooooo

oooooo

More generally, the cochain complex C•(Kn) can be shown to be an A∞-algebra
for any n, cf. [Lod11a].
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9.6. Résumé

The operad Ass.

Symmetric operad Ass encoding associative algebras: Ass(n) = K[Sn].
Nonsymmetric operad As endcoding associative algebras: Asn = Kµn.
Composition rule: µm ◦i µn = µm−1+n.

Homotopy associative algebras.

A = A∞-algebra: (T c(sA),mA) = dg coalgebra, equivalently, the chain com-
plex (A, d) is equipped with an n-ary operation mn : A⊗n → A,n ≥ 2, satisfying
the relations:

∂(mn) =
∑

(−1)p+qrmk ◦ (id⊗p ⊗mq ⊗ id⊗r)

dgns operad A∞: A∞ = ΩAs¡ , (A∞)n = C•(Kn−2)

Cobar-bar construction. (ΩBAs¡)n = C•(Kn−2
cub )

Homotopy Transfer Theorem. If (V, d) is a homotopy retract (e.g. defor-
mation retract) of (A, d), then any A∞-algebra structure on (A, d) can be trans-
ferred through explicit formulas to an A∞-algebra structure on (V, d), so that they
represent the same homotopy class. Whence the slogan

“A∞-algebras are stable under homotopy equivalence”.

Example. If (A, d) is a dga algebra, then H•(A) is an A∞-algebra with trivial
differential. This structure includes the higher Massey products.

9.7. Exercises

9.7.1. Explicit homotopy. Construct the homotopy from Id to 0 for the

Koszul complex (As
¡ ◦As, dκ).

9.7.2. Acyclicity again. Consider the small chain complex of length one

C• : · · · → 0→ C1 = K id−→ C0 = K .

Show that the arity n part of the Koszul complex of As is isomorphic to (C•)
⊗n.

Deduce from this remark another proof of the acyclicity of the Koszul complex of
As. Compare with Exercise 3.8.5.

9.7.3. Higher Massey products. In [Kra66] David Kraines defines higher
Massey products for families of cochains a = {a(i, j)}1≤i≤j≤k, in a cochain complex,
satisfying

d(a(i, j)) =

j−1∑
r=i

(−1)|a(i,r)|a(i, r)a(r + 1, j)

as

c(a) :=

k−1∑
r=1

(−1)|a(1,r)|a(i, r)a(r + 1, k).

Interpret this construction and its properties in terms of A∞-algebras. Compare
with [May69, BM03b].
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9.7.4. Classifying space of a crossed module. Let G· be a simplicial group
whose homotopy groups are trivial except π0G = Q and πnG = L for some fixed
n. Show that one can construct an analogue mn : Gn → L of MacLane invariant,
which is a cocycle and gives a well-defined element in Hn(Q,L) (cohomology of the
discrete group Q with values in the Q-module L. Show that it is the Postnikov
invariant of the classifying space B|G·|.





CHAPTER 10

Homotopy operadic algebras

“The theory of algebras up to homo-
topy defined by operad action is a sub-
ject whose time has come.”
J.-P. May 1995, review of Hinich-
Schechtman “Homotopy Lie algebra”

When a chain complex is equipped with some compatible algebraic structure,
its homology inherits this algebraic structure. The purpose of this chapter is to show
that there is some hidden algebraic structure behind the scene. More precisely if
the chain complex contains a smaller chain complex, which is a deformation retract,
then there is a finer algebraic structure on this small complex. Moreover, the small
complex with this new algebraic structure is homotopy equivalent to the starting
data.

The operadic framework enables us to state explicitly this transfer of structure
result as follows. Let P be a quadratic operad. Let A be a chain complex equipped
with a P-algebra structure. Let V be a deformation retract of A. Then the P-
algebra structure of A can be transferred into a P∞-algebra structure on V , where
P∞ = ΩP ¡. If P is Koszul, then the two objects are homotopy equivalent. Over
a field, the homology can be made into a deformation retract, whence the hidden
algebraic structure on the homology.

In fact this result is a particular case of a more general result, called the Homo-
topy Transfer Theorem, which will be stated in full in this chapter. This HTT has
a long history and, in a sense, it goes back to the discovery of spectral sequences
by Jean Leray and Jean-Louis Koszul in the forties (of last century).

This chapter is organized as follows. In the first section, we define the notion of

homotopy P-algebra as an algebra over the Koszul resolution P∞ := ΩP ¡
. Using the

operadic bar-cobar adjunction, we give three equivalent definitions. The definition
in terms of twisting morphisms is treated in details, as well as the definition in

terms of square-zero coderivation on the cofree P ¡
-coalgebra.

Using this last definition, we define the notion of infinity morphism, also called
∞-morphism, between homotopy P-algebras. An ∞-morphism is not only a map

but is made up of a collection of maps parametrized by P ¡
. This notion is well

suited to the homotopy theory of P∞-algebras.
The aforementioned Homotopy Transfer Theorem is the subject of the third sec-

tion. It states precisely that any P∞-algebra structure can be transferred through

289
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a homotopy retract to produce a homotopy equivalent P∞-algebra structure. It is
proved by explicit formulae.

In the fourth section, we study the properties of∞-morphisms. When the first
component of an ∞-morphism is invertible (respectively is a quasi-isomorphism),
then it is called an ∞-isomorphism (respectively an ∞-quasi-isomorphism). We
prove that the class of ∞-isomorphisms is the class of invertible ∞-morphisms.
Any P∞-algebra is shown to be decomposable into the product of a minimal P∞-
algebra and an acyclic trivial P∞-algebra. Using this result, we prove that being
∞-quasi-isomorphic is an equivalence relation, called the homotopy equivalence.

In the last section, we study the same kind of generalization “up to homotopy”
but for operads this time. We introduce the notions of homotopy operad and infinity
morphism, or ∞-morphism, of homotopy operads. One key ingredient in the HTT
is actually an explicit ∞-morphism between endomorphism operads. The functor
from operads to Lie algebras is extended to a functor between homotopy operads
to homotopy Lie algebras. This allows us to show that the relations between asso-
ciative algebras, operads, pre-Lie algebra, and Lie algebras extend to the homotopy
setting. Finally, we study homotopy representations of operads.

Throughout this chapter, we apply the various results to A∞-algebras, already
treated independently in the previous chapter, and to L∞-algebras. In this chapter,
the generic operad P is a Koszul operad.

The general study of homotopy algebras using the Koszul resolution P∞ = ΩP ¡

of P goes back to Ginzburg and Kapranov in [GK94] and to Getzler and Jones
in [GJ94]. Many particular cases have been treated in the literature; we refer the
reader to the survey given in Part I of the book [MSS02] of Markl, Shnider and
Stasheff.

10.1. Homotopy algebras: definitions

In this section, we introduce the notion of homotopy P-algebra, i.e. P∞-
algebra, for a Koszul operad P. We give four equivalent definitions. We treat
in details the examples of homotopy associative algebras, or A∞-algebras, and ho-
motopy Lie algebras, or L∞-algebras.

10.1.1. P∞-algebras. A homotopy P-algebra is an algebra over the Koszul

resolution ΩP ¡
of P. It is sometimes called a P-algebra up to homotopy or strong

homotopy P-algebra in the literature. We also call it a P∞-algebra, where P∞
stands for the dg operad ΩP ¡

. Hence, a homotopy P-algebra structure on a dg

module A is a morphism of dg operads P∞ = ΩP ¡ → EndA. The set of homotopy

P-algebra structures on A is equal to Homdg Op(ΩP
¡
,EndA).

Notice that a P-algebra is a particular example of homotopy P-algebra. It
occurs when the structure morphism factors through P:

ΩP
¡ ∼−→ P → EndA.

10.1.2. Interpretation in terms of twisting morphism. Let us now make
this notion explicit. We saw in Proposition 6.5.10 that a morphism of dg operads

from the quasi-free operad ΩP ¡
to EndA is equivalent to a twisting morphism in
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the convolution algebra

g = gP,A := HomS(P
¡
,EndA).

Explicitly, we recall from 6.5.9 the following correspondence

HomOp

(
ΩP ¡

, EndA

)
∼= HomS(P

¡

, EndA)−1⋃ ⋃
Homdg Op

(
ΩP ¡

, EndA

)
∼= Tw(P ¡

, EndA)

As a direct consequence, we get the following description of homotopy algebra
structures.

Proposition 10.1.3. A homotopy P-algebra structure on the dg module A is equiv-

alent to a twisting morphism in Tw(P ¡
,EndA).

Let us make explicit the notion of twisting morphism Tw(P ¡
,EndA). Suppose

first that the operad P is homogeneous quadratic. The internal differential of P ¡

is trivial. For any element ϕ ∈ HomS(P ¡
, EndA) and for any cooperation µc ∈

P ¡
, the Maurer-Cartan equation becomes ∂A(ϕ(µc)) + (ϕ ? ϕ)(µc) = 0, where ∂A

stands for the differential of EndA induced by the differential of A. Using Sweedler
type notation of 6.1.7, we denote by

∑
(µc(1) ◦i µ

c
(2))

σ the image of µc under the

infinitesimal decomposition map ∆(1) : P ¡ → P ¡ ◦(1) P
¡

of the cooperad P ¡
. If we

denote by m the image of µc under ϕ, we get the following equation in EndA:∑
± (m(1) ◦i m(2))

σ = ∂A(m) .

This formula describes the general relations satisfied by the operations of a homo-
topy P-algebra.

Proposition 10.1.4. The convolution pre-Lie algebra g is endowed with a weight
grading such that g ∼=

∏
n≥0 g

(n).

Proof. The Koszul dual dg cooperad P ¡
is weight graded, P ¡

=
⊕

n≥0 P
¡ (n)

. There-
fore the convolution pre-Lie algebra g is graded by

g(n) := HomS(P
¡ (n)

,EndA)

and the direct sum on P gives the product g ∼=
∏
n≥0 g

(n). �

Hence, any twisting morphism ϕ in g decomposes into a series ϕ = ϕ1 + · · ·+
ϕn + · · · with ϕn ∈ g

(n)
−1 , since I = P ¡ (0)

and ϕ0 = 0. Under this notation, the
Maurer-Cartan equation is equivalent to∑

k+l=n
k,l<n

ϕk ? ϕl = ∂(ϕn) ,

for any n ≥ 1.

Proposition 10.1.5. The differential of the convolution dg pre-Lie algebra g splits
into two terms ∂ = ∂0 + ∂1, where ∂0 = ∂A preserves the weight grading and where
∂1 raises it by 1.
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Proof. The term ∂1 is equal to ∂1(ϕ) := −(−1)|ϕ|ϕ(dP¡ ). Since dP¡ lowers the

weight grading of the Koszul dual dg cooperad P ¡
by one, ∂1 raises the weight

grading of the convolution pre-Lie algebra by one. �

Under the weight grading decomposition, the Maurer-Cartan equation reads

∂1(ϕn−1) +
∑
k+l=n
k,l<n

ϕk ? ϕl = ∂A(ϕn) ,

so the left-hand side relation holds up to the homotopy ϕn in g(n).

10.1.6. The example of P-algebras. The P-algebras are characterized among
the P∞-algebras by the following particular solutions to the Maurer-Cartan equa-
tion.

Proposition 10.1.7. A P∞-algebra is a P-algebra if and only if its twisting mor-
phism is concentrated in weight 1.

Proof. Let P = P(E,R) be a quadratic operad. A P-algebra A is a P∞-algebra

whose structure map factors through P. The map ΩP ¡
� P sends the elements

of P ¡ (n)
to 0 for n ≥ 2. So the non-trivial part under this morphism is the image

of P ¡ (1)
7→ P(1) = E, that is the generating operations of P. In this case, the

only non-trivial components of the Maurer-Cartan equation are for µc ∈ P ¡ (1) ∼= E

and for µc ∈ P ¡ (2) ∼= R. The first one is equivalent, for the internal differential of
A, to be a derivation with respect to the operations of E, and the second one is
equivalent for these operations to satisfy the relations of R. �

The following proposition gives a first result on the algebraic structure of the
homotopy H(A) of a P∞-algebra A.

Proposition 10.1.8. The homotopy of a P∞-algebra A, that is the homology H(A)
of the underlying chain complex, has a natural P-algebra structure.

Proof. Let A be a P∞-algebra with structure map ϕ ∈ Tw(P ¡
,EndA). The image

under ϕ of any element in P ¡ (1)
gives operations in EndA for which d is a derivation.

Therefore these operations are stable on homology. Since the differential on H(A)
is null, they define a P-algebra structure on H(A). �

Considering only the P-algebra structure on H(A), we are losing a lot of data.
We will see in Section 10.3 that we can transfer a full structure of P∞-algebra on
H(A), which faithfully contains the homotopy type of A.

10.1.9. P(n)-algebras. The preceding section motivates the following defi-
nition. A P(n)-algebra A is a homotopy P-algebra such that the structure map

ϕ : P ¡ → EndA vanishes on P ¡ (k)
for k > n. It is equivalent to a truncated

solution of the Maurer-Cartan equation in the convolution algebra g. Under this
definition a P-algebra is a P(1)-algebra.

10.1.10. Example: homotopy associative algebras, alias A∞-algebras.
We pursue the study of homotopy associative algebras, started in 9.2, but in terms
of twisting morphism this time.
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Consider the nonsymmetric Koszul operad As, see 9.1.6. We proved in Sec-

tion 9.2 that an algebra over ΩAs
¡
, i.e. a homotopy associative algebra or A∞-

algebra, is a chain complex (A, dA) equipped with maps mn : A⊗n → A of degree
n− 2, for any n ≥ 2, which satisfy∑

p+q+r=n
k=p+r+1>1, q>1

(−1)p+qr+1mk ◦p+1 mq = ∂A(mn) = dA ◦mn − (−1)n−2mn ◦ dA⊗n .

Notice that an associative algebra is an A∞-algebra such that the higher ho-
motopies mn vanish for n ≥ 3.

The Koszul dual nonsymmetric cooperad of As is one dimensional in each arity

As
¡

n = Kµcn, where the degree of µcn is n − 1. The image under the infinitesimal
decomposition map of µcn is

∆(1)(µ
c
n) =

∑
p+q+r=n

k=p+r+1>1, q>1

(−1)r(q+1) (µck; id, . . . , id︸ ︷︷ ︸
p

, µcq, id, . . . , id︸ ︷︷ ︸
r

).

Since the operad As is a nonsymmetric operad, the convolution algebra is given

by Hom(As
¡
,EndA), without the action of the symmetric groups. It is isomorphic

to the following dg module∏
n≥1

Hom(As
¡
,EndA)(n) ∼=

∏
n≥1

Hom((sA)⊗n, sA) ∼=
∏
n≥1

s−n+1Hom(A⊗n, A).

The right-hand side is the direct product of the components of the nonsymmetric
operad EndsA. Therefore, it is endowed with the pre-Lie operation of Section 5.8.17.
For an element f ∈ Hom(A⊗n, A) and an element g ∈ Hom(A⊗m, A), it is explicitly
given by

f ? g :=

n∑
i=1

(−1)(i−1)(m+1)+(n+1)|g|f ◦i g

This particular dg pre-Lie algebra was constructed by Murray Gerstenhaber in
[Ger63].

Proposition 10.1.11. The convolution dg pre-Lie algebra gAs,A = Hom(As
¡
,EndA)

is isomorphic to the dg pre-Lie algebra (
∏
n≥1 s

−n+1Hom(A⊗n, A)?), described above.

Proof. We denote by f̃ ∈ Hom(As
¡
,EndA)(n) and by g̃ ∈ Hom(As

¡
,EndA)(m) the

maps which send µcn to f and µcm to g. Then the only non-vanishing component of

the pre-Lie product f̃ ? g̃ in the convolution algebra Hom(As
¡
,EndA) is equal to

the composite

µcn+m−1 7→
n∑
i=1

(−1)(n−i)(m+1)(µcn; id, . . . , id, µcm︸︷︷︸
ithplace

, id, . . . , id)

7→
n∑
i=1

(−1)(n−i)(m+1)+(n−1)(|g|−m+1)f ◦i g = f ? g.

�

Under this explicit description of the convolution pre-Lie algebra Hom(As
¡
,EndA),

one can see that a twisting morphism in Tw(As
¡
,EndA) is exactly an A∞-algebra

structure on the dg module A.
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10.1.12. Example: homotopy Lie algebras, alias L∞-algebra. Applying
Definition 10.1.1 to the operad P = Lie, a homotopy Lie algebra is an algebra over

the Koszul resolution ΩLie
¡ ∼−→ Lie of the operad Lie. It is also called an L∞-

algebra, or strong homotopy Lie algebra in the literature.
Recall that an n-multilinear map f is called skew-symmetric if it satisfies the

condition f = sgn(σ)fσ for any σ ∈ Sn.

Proposition 10.1.13. An L∞-algebra structure on a dg module (A, dA) is a family
of skew-symmetric maps `n : A⊗n → A of degree |`n| = n− 2, for all n ≥ 2, which
satisfy the relations∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q

sgn(σ)(−1)(p−1)q(`p ◦1 `q)σ = ∂A(`n) ,

where ∂A is the differential in EndA induced by dA.

Proof. Recall that there is a morphism of operads Lie → Ass defined by [ , ] 7→
µ − µ(12). Its image under the bar construction functor induces a morphism of
dg cooperads BLie → BAss. By Proposition 7.3.2, the morphism between the
syzygy degree 0 cohomology groups of the bar constructions gives a morphism

between the Koszul dual cooperads Lie
¡ → Ass

¡
. If we denote the elements of

these two cooperads by Lie
¡
(n) ∼= K `cn ⊗ sgnSn and by Ass

¡
(n) ∼= Kµcn ⊗ K[Sn]

with |`cn| = |µcn| = n− 1, this map is explicitly given by `cn 7→
∑
σ∈Sn sgn(σ)(µcn)

σ
.

Hence, the formula for the infinitesimal decomposition map of the cooperad Ass
¡

induces

∆(1)(`
c
n) =

∑
p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q

sgn(σ)(−1)(p+1)(q+1)(`cp ◦1 `cq)σ,

since the (p, q)-unshuffles split the surjection Sp+q � (Sp × Sq)\Sp+q, cf. 1.3.2. Let

us denote by `n the image under the structure morphism Φ : ΩLie
¡ → EndA of the

generators −s−1`cn. The Sn-module Lie
¡
(n) being the one-dimensional signature

representation, the map `n is skew-symmetric. The commutation of the structure
morphism Φ with the differentials reads∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q

sgn(σ)(−1)(p−1)q(`p ◦1 `q)σ = ∂A(`n).

�

As in the case of A∞-algebras, we can denote the differential of A by `1 := −dA,
and include it in the relations defining an L∞-algebra as follows∑

p+q=n+1

∑
σ∈Sh−1

p,q

sgn(σ)(−1)(p−1)q(`p ◦1 `q)σ = 0.

This way of writing the definition of a homotopy Lie algebra is more compact but
less explicit about the role of the boundary map `1 = −dA.

In the next proposition, we extend to homotopy algebras the anti-symmetri-
zation construction of 1.1.11, which produces a Lie bracket from an associative
product.
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Proposition 10.1.14. [LS93] Let (A, dA, {mn}n≥2) be an A∞-algebra structure
on a dg module A. The anti-symmetrized maps `n : A⊗n → A, given by

`n :=
∑
σ∈Sn

sgn(σ)mn
σ,

endow the dg module A with an L∞-algebra structure.

Proof. It is a direct corollary of the proof of the previous proposition. The map

of cooperads Lie
¡ → Ass

¡
induces a morphism of dg operads ΩLie

¡ → ΩAss
¡
,

given by `cn 7→
∑
σ∈Sn sgn(σ)(µcn)

σ
. Hence, the pullback of a morphism ΩAss

¡ →
EndA, defining an A∞-algebra structure on A, produces a morphism of dg operads

ΩLie
¡ → EndA, which is the expected L∞-algebra structure on A. �

10.1.15. The convolution algebra encoding L∞-algebras. The under-

lying module of the convolution pre-Lie algebra HomS(Lie
¡
,EndA) is isomorphic

to∏
n≥1

HomS(Lie
¡
,EndA)(n) ∼=

∏
n≥1

Hom(Sn(sA), sA) ∼=
∏
n≥1

s−n+1Hom(ΛnA,A) ,

where ΛnA is the coinvariant space of A⊗n with respect to the signature represen-
tation. Explicitly, it is the quotient of A⊗n by the relations

a1 ⊗ · · · ⊗ an − sgn(σ)εaσ(1) ⊗ · · · ⊗ aσ(n)

for a1, . . . , an ∈ A and for σ ∈ Sn with ε the Koszul sign given by the permutation
of the graded elements a1, . . . , an.

We endow the right-hand side with the following binary product

f ? g :=
∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q

sgn(σ)(−1)(p−1)|g|(f ◦1 g)σ,

for f ∈ Hom(ΛpA,A) and g ∈ Hom(ΛqA,A).
This product is called the Nijenhuis-Richardson product from [NR66, NR67].

Proposition 10.1.16. For any dg module A, the Nijenhuis-Richardson product
endows the space

∏
n≥1 s

−n+1Hom(ΛnA,A) with a dg pre-Lie algebra structure,

which is isomorphic to the convolution dg pre-Lie algebra HomS(Lie
¡
,EndA).

Proof. The proof is similar to the proof of Proposition 10.1.11 with the explicit

form of the infinitesimal decomposition map of the cooperad Lie
¡

given above. We
first check that the two products are sent to one another under this isomorphism.
As a consequence, the Nijenhuis-Richardson product is a pre-Lie product. �

Under this explicit description of the convolution pre-Lie algebra HomS(Lie
¡
,EndA),

we leave it to the reader to verify that a twisting element is exactly an L∞-algebra
structure on the dg module A.

For other examples of homotopy algebras, we refer to Chapter 13, where ex-
amples of algebras over operads are treated in details.



296 10. HOMOTOPY OPERADIC ALGEBRAS

10.1.17. Equivalent definition in terms of square-zero coderivation.
In this section, we give a third equivalent definition of the notion of P∞-algebra.
A structure of P∞-algebra can be faithfully encoded as a square-zero coderivation
as follows.

By Proposition 6.3.17, we have the following isomorphisms

HomS(P
¡
,EndA) ∼= HomModK(P

¡
(A), A) ∼= Coder(P

¡
(A)) ,

where Coder(P ¡
(A)) stands for the module of coderivations on the cofree P ¡

-

coalgebra P ¡
(A). Let us denote by ϕ 7→ drϕ the induced isomorphism from left

to right.

Proposition 10.1.18. The map HomS(P ¡
,EndA) ∼= Coder(P ¡

(A)) is an isomor-
phism of Lie algebras:

[drα, d
r
β ] = dr[α,β] .

Proof. Let ϕ be the image of ϕ under the first isomorphism HomS(P ¡
,EndA) ∼=

HomModK(P ¡
(A), A). If we denote by projA the canonical projection P ¡

(A) � A,
then Proposition 6.3.17 gives projA(drϕ) = ϕ. A direct computation shows that

projA([drα, d
r
β ]) = [α, β], which concludes the proof. �

We consider the sum
dϕ := dP¡

(A)
+ drϕ

of drϕ with the internal differential on P ¡
(A).

Proposition 10.1.19. A structure of P∞-algebra on a dg module A is equivalent

to a square-zero coderivation on the cofree P ¡
-coalgebra P ¡

(A).

Explicitly, an element ϕ ∈ HomS(P ¡
,EndA), such that ϕ(id) = 0, satisfies the

Maurer-Cartan equation ∂(ϕ) + ϕ ? ϕ = 0 if and only if dϕ
2 = 0.

Proof. Any ϕ ∈ Tw(P ¡
,EndA) induces a coderivation drϕ of degree −1 on P ¡

(A).

Since ϕ is a twisting morphism, it vanishes on the counit of P ¡
. As a consequence

drϕ vanishes on A ⊂ P ¡
(A). Under the same notation as in Proposition 10.1.18, we

have

projA
(
dϕ

2
)

= projA(dP¡
(A)
◦ drϕ + drϕ ◦ dP¡

(A)
+ (drϕ)2)

= dA ◦ ϕ+ ϕ ◦ dP¡
(A)

+ ϕ ? ϕ

in HomModK(P ¡
(A), A). We conclude with the relation

∂(ϕ) + ϕ ? ϕ = ∂(ϕ) + ϕ ? ϕ = dA ◦ ϕ+ ϕ ◦ dP¡
(A)

+ ϕ ? ϕ.

�

In this case, (P ¡
(A), dϕ) becomes a quasi-cofree P ¡

-coalgebra. This proposition
shows that a homotopy P-algebra structure on a dg module A is equivalent to a dg

P ¡
-coalgebra structure on P ¡

(A), where the structure maps are encoded into the
coderivation. We call codifferential any degree −1 square-zero coderivation on a

P ¡
-coalgebra. So the set of P∞-algebra structures is equal to the set of codifferen-

tials Codiff(P ¡
(A)).

For example, we get the definitions of A∞-algebras and of L∞-algebras in terms
a square-zero coderivations.
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Proposition 10.1.20. An A∞-algebra structure on a dg module A is equivalent to
a codifferential on the noncounital cofree associative coalgebra T

c
(sA).

Similarly, an L∞-algebra structure on A is equivalent to a codifferential on the
noncounital cofree cocommutative coalgebra S

c
(sA).

Proof. Since the Koszul dual nonsymmetric cooperad As
¡

is isomorphic to As∗ ⊗
H

Endcs−1K by 7.2.3, the quasi-cofree As
¡
-coalgebra As

¡
(A) is isomorphic to the desus-

pension of the noncounital cofree associative coalgebra s−1T
c
(sA).

In the same way, since the Koszul dual cooperad Lie
¡

is isomorphic to Com∗⊗H
Endcs−1K by 7.2.3, the quasi-cofree Lie

¡
-coalgebra Lie

¡
(A) is isomorphic to the

desuspension of the noncounital cofree cocommutative coalgebra s−1S
c
(sA). �

10.1.21. Rosetta Stone. Using the bar-cobar ajdunction of 6.5.9, a P∞-
algebra structure on a dg module A is equivalently defined by a morphism of dg

cooperads P ¡ → B EndA.
Notice that the endomorphism operad EndA is unital but non-necessarily aug-

mented. So by the bar construction of EndA, we mean B EndA := T c(sEndA),
endowed with the same differential map as in 6.5.1. With this definition, the bar-
cobar adjunction still holds.

The four equivalent definitions of homotopy P-algebras are summed up into
the following theorem.

Theorem 10.1.22 (Rosetta Stone). The set of P∞-algebra structures on a dg
module A is equivalently given by

HomdgOp(ΩP
¡
, EndA) ∼= Tw(P

¡
, EndA) ∼= HomdgCoop(P

¡
, B EndA) ∼= Codiff(P

¡
(A)).

10.2. Homotopy algebras: morphisms

In this section, we make the notion of morphism of P∞-algebras explicit. Then
we introduce and study the more general notion of infinity-morphism, denoted ∞-
morphism, of P∞-algebras, which will prove to be more relevant to the homotopy
theory of P∞-algebras. The data of an ∞-morphism does not consist in only one
map but in a family of maps parametrized by the elements of the Koszul dual

cooperad P ¡
. More precisely, these maps live in EndAB := {Hom(A⊗n, B)}n∈N, the

space of multilinear maps between two P∞-algebras.
The examples of ∞-morphisms of A∞-algebras and of L∞-algebras are given.

10.2.1. Morphisms of P∞-algebras. A morphism f : A→ B between P∞-
algebras is a morphism of algebras over the operad P∞ as in 5.2.3.

In terms of twisting morphisms, they are described as follows. Let A and B be

two P∞-algebras, whose associated twisting morphisms are denoted by ϕ : P ¡ →
EndA and ψ : P ¡ → EndB respectively. We denote by EndAB the S-module defined
by

EndAB := {Hom(A⊗n, B)}n∈N.
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In other words, a morphism of P∞-algebras is map f : A → B such that the
following diagram commutes

P ¡ ϕ //

ψ

��

EndA

f∗

��
EndB

f∗ // EndAB ,

where f∗ is the pushforward by f

g ∈ Hom(A⊗n, A) 7→ f∗(g) := fg ∈ Hom(A⊗n, B) ,

and where f∗ is the pullback by f

g ∈ Hom(B⊗n, B) 7→ f∗(g) := g(f, . . . , f) ∈ Hom(A⊗n, B) .

In this case, the two homotopy P-algebra structures strictly commute under f .

10.2.2. Infinity-morphisms of P∞-algebras. We use the third equivalent
definition of homotopy algebras to define the notion of ∞-morphism of homotopy
algebras, which is an enhancement of the previous one.

By Proposition 10.1.19, a homotopy P-algebra structure on A (resp. on B) is

equivalent to a dg P ¡
-coalgebra structure on P ¡

(A) (resp. on P ¡
(B)), with codiffer-

ential denoted by dϕ (resp. dψ).
By definition, an ∞-morphism of P∞-algebras is a morphism

F : (P
¡
(A), dϕ)→ (P

¡
(B), dψ)

of dg P ¡
-coalgebras. The composite of two∞-morphisms is defined as the composite

of the associated morphisms of dg P ¡
-coalgebras:

F ◦G := P
¡
(A)→ P

¡
(B)→ P

¡
(C) .

Therefore P∞-algebras with their ∞-morphisms form a category, which is de-
noted by ∞-P∞-alg. An ∞-morphism between P∞-algebras is denoted by

A B

to avoid confusion with the above notion of morphism.

Proposition 10.2.3. Let C be a cooperad. Any morphism F : C(V ) → C(W ) of
cofree C-coalgebras is completely characterized by its projection f̄ onto the cogener-
ators f̄ := projW ◦ F : C(V )→W .

Explicitly, the unique morphism F : C(V ) → C(W ) of C-coalgebras which
extends a map f̄ : C(V )→W is given by the following composite

F = C(V ) = C ◦ V ∆◦IdV−−−−→ C ◦ C ◦ V IdC◦f̄−−−−→ C ◦W = C(W ).

Proof. The proof uses the same ideas as in Proposition 6.3.17. So it is left to the
reader as an exercise. �

This lemma shows that an ∞-morphism of P∞-algebras is equivalently given

by a map f̄ : P ¡
(A) → B, whose induced morphism F : P ¡

(A) → P ¡
(B) of P ¡

-
coalgebras commutes with the differentials. Any such map f̄ is equivalent to a

map f : P ¡ → EndAB . So an ∞-morphism is made out of a family of maps, from

A⊗n → B, parametrized by P ¡
(n), for any n.
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The next section makes the relation satisfied by an ∞-morphism explicit in
terms of this associated map f .

10.2.4. Infinity-morphisms in terms of twisting morphisms. The mod-

ule HomS(P ¡
,EndA) with its pre-Lie convolution product ? form the pre-Lie algebra

gA := (HomS(P ¡
,EndA), ?).

The module HomS(P ¡
,EndB) is an associative algebra with the associative

product } defined by

ψ } ξ := P
¡ ∆−→ P

¡
◦ P

¡ ψ◦ξ−−→ EndB ◦ EndB
γEndB−−−−→ EndB .

(In general, this is not a graded associative algebra). We denote this associative
algebra by

gB := (HomS(P
¡
,EndB),}) .

Observe that the convolution product ? is defined by the infinitesimal decomposi-
tion map ∆(1), while the product } is defined by the total decomposition map ∆.

The composite of maps endows the S-module EndAB with a left module structure
over the operad EndB :

λ : EndB ◦ EndAB → EndAB ,

and an infinitesimal right module structure over the operad EndA,

ρ : EndAB ◦(1) EndA → EndAB .

They induce the following two actions on gAB := HomS(P ¡
,EndAB):

� for ϕ ∈ gA and f ∈ EndAB , we define f ∗ ϕ : P ¡ → EndAB by

f ∗ ϕ := P
¡ ∆(1)−−−→ P

¡
◦(1) P

¡ f◦(1)ϕ−−−−→ EndAB ◦(1) EndA
ρ−→ EndAB ;

� for ψ ∈ gB and f ∈ EndAB , we define ψ ~ f : P ¡ → EndAB by

ψ ~ f := P
¡ ∆−→ P

¡
◦ P

¡ ψ◦f−−→ EndB ◦ EndAB
λ−→ EndAB .

Proposition 10.2.5. The module (gAB , ∗) is a right module over the pre-Lie algebra
(gA, ?), see 1.4.5. The module (gAB ,~) is a left module over the associative algebra
(gB ,}).

Proof. The right action ∗ coincides with the pre-Lie subalgebra structure on gA⊕gAB
of the pre-Lie algebra (gA⊕B , ?). In the same way, the left action ~ coincides with
the associative subalgebra structure on gB⊕gAB of the associative algebra (gA⊕B ,}).
�

Theorem 10.2.6. Let ϕ ∈ Tw(P ¡
,EndA) and ψ ∈ Tw(P ¡

,EndB) be two P∞-

algebras. An ∞-morphism F : P ¡
(A) → P ¡

(B) of P∞-algebras is equivalent to a

morphism of dg S-modules f : P ¡ → EndAB such that

f ∗ ϕ− ψ ~ f = ∂(f)
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in HomS(P ¡
,EndAB):

P ¡ ∆ //

∆(1)

��

∂(f)

))RRRRRRRRRRRRRRRRRRRR P ¡ ◦ P ¡

ψ◦f
��

EndB ◦EndAB

λ

��
P ¡ ◦(1) P

¡ f◦(1)ϕ // EndAB ◦(1) EndA
ρ // EndAB .

Proof. The morphism F : P ¡
(A)→ P ¡

(B) of dg P ¡
-coalgebras commutes with the

differentials dϕ and dψ if and only if projB(dψ ◦F −F ◦ dϕ) = 0. Using the explicit
form of F given by the previous lemma, this relation is equivalent to the following
commutative diagram

P ¡
(A)

∆◦Id //

dϕ

��

P ¡ ◦ P ¡
(A)

Id◦f // P ¡
(B)

dB+ψ

��
P ¡

(A)
f // B.

We conclude with the explicit form of dϕ given in Proposition 6.3.17. �

Proposition 10.2.7. Let ϕ ∈ Tw(P ¡
,EndA), ψ ∈ Tw(P ¡

,EndB), and ζ ∈ Tw(P ¡
,EndC)

be three P∞-algebras. Let f ∈ HomS(P ¡
,EndAB) and g ∈ HomS(P ¡

,EndBC) be two
∞-morphisms.

Under the isomorphism between codifferentials on cofree P ¡
-coalgebras and twist-

ing morphisms from P ¡
, the composite of the two ∞-morphisms f and g is equal

to

g } f := P
¡ ∆−→ P

¡
◦ P

¡ g◦f−−→ EndBC ◦ EndAB → EndAC ,

where the last map is the natural composition of morphisms.

Proof. By the adjunction HomS(P ¡
,EndAB) ∼= Hom(P ¡

(A), B), f is equivalent to

a map f̄ : P ¡
(A) → B. This latter one is equivalent to a morphism of dg P ¡

-

coalgebras F : P ¡
(A)→ P ¡

(B) by Lemma 10.2.3. Respectively, g : P ¡ → EndBC is

equivalent to a morphism of dg P ¡
-coalgebras G : P ¡

(B)→ P ¡
(C). By the formula

given in Lemma 10.2.3, the projection of the composite G ◦ F onto the space of
cogenerators C is equal to

P
¡
(A) ∼= P

¡
◦A ∆◦IdA−−−−→ P

¡
◦ P

¡
◦A Id◦f̄−−−→ P

¡
(B)

ḡ−→ C.

We conclude by using the adjunction HomS(P ¡
,EndAC) ∼= Hom(P ¡

(A), C) once
again. �

Since the cooperad P ¡
is weight graded, any map f ∈ HomS(P ¡

,EndAB) de-

composes according to this weight, f(n) : P ¡ (n)
→ EndAB . Since ∆ preserves this

weight, the square in the diagram of Proposition 10.2.6 applied to P ¡ (n)
involves

only the maps f(k) up to k = n− 1. Therefore, the term f(n) is a homotopy for the

relation f ∗ ϕ− ψ ~ f = ∂(f(n)) in HomS(P ¡ (n)
,EndAB).
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The first component f(0) : I → Hom(A,B) of an ∞-morphism is equivalent to
a chain map f(0)(id) : A→ B between the underlying chain complexes. In order to
lighten the notions, we still denote this latter map by f(0).

10.2.8. Infinity-isomorphism and infinity-quasi-isomorphism. An ∞-
morphism f is called an ∞-isomorphism (resp. ∞-quasi-isomorphism) if its first
component f(0) : A → B is an isomorphism (resp. a quasi-isomorphism) of chain
complexes. We will show later in 10.4.1 that∞-isomorphisms are the isomorphisms
of the category ∞-P∞-alg.

10.2.9. Infinity-morphisms and P-algebras.

Proposition 10.2.10. A morphism of P∞-algebras is an ∞-morphism with only
one non-vanishing component, namely the first one f(0) : A→ B.

Proof. Let f : P ¡
(A) → B be a morphism of dg modules such that f(n) = 0 for

n ≥ 1. Since P(0) = I, the first component f(0) of f is morphism of dg modules from

A to B. In this particular case, the relation ρ
(
(f◦(1)ϕ)(∆r)

)
−λ
(
(ψ◦f)(∆l)

)
= ∂(f)

applied to P ¡ (n)
for n ≥ 1 is equivalent to f∗(ϕ) = ψ(f∗). �

The category of P∞-algebras with their morphisms forms a non-full subcate-
gory of the category of P∞-algebras with the ∞-morphisms.

One can also consider the category of P-algebras with ∞-morphisms. It forms
a full subcategory of ∞-P∞-alg, which is denoted by ∞-P-alg. Altogether these
four categories assemble to form the following commutative diagram

P-alg not full //

f.f.

��

∞-P-alg

f.f.

��
P∞-alg

not full // ∞-P∞-alg ,

where the vertical functors are full and faithful.

10.2.11. Infinity-morphisms of A∞-algebras and L∞-algebras.

Proposition 10.2.12. An ∞-morphism f : A B of A∞-algebras is a family of
maps {fn : A⊗n → B}n≥1 of degree n− 1 which satisfy: dB ◦ f1 = f1 ◦ dA, that is
f1 is chain map, and for n ≥ 2,∑

p+1+r=k
p+q+r=n

(−1)p+qrfk ◦ (IdA, . . . , IdA︸ ︷︷ ︸
p

,mA
q , IdA, . . . , IdA︸ ︷︷ ︸

r

)−

∑
k≥2

i1+···+ik=n

(−1)εmB
k ◦ (fi1 , . . . , fik) = ∂(fn),

in Hom(A⊗n, B).
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Under the tree representation, this relation becomes ∂(fn) =

∑
(−1)p+qr

mA
q

@@ ~~

fk

CCCCCCCC

<<<<<<<

555555

						

������� −
∑

(−1)ε

fi1

GGGG
::: ���

wwww
fi2

::: wwww
· · · fik

::: ���

mB
k

NNNNNNNNNNN

33333

rrrrrrrrr

.

Proof. Let ϕ ∈ Tw(As
¡
,EndA) and ψ ∈ Tw(As

¡
,EndB) be two A∞-algebra struc-

tures. Recall that As
¡

n = Kµcn with |µcn| = n−1. We denote by mA
n ∈ Hom(A⊗n, A)

the image of µcn under ϕ and by mB
n ∈ Hom(B⊗n, B) the image of µcn under ψ.

An ∞-morphism f : As
¡
→ EndAB between A and B is a family of maps

{fn : A⊗n → B}n≥1 of degree n − 1. For n ≥ 2, the formula of infinitesimal

decomposition map ∆(1) of the cooperad As
¡

shows that the image of µcn under

f ∗ ϕ in EndAB is equal to

(f ∗ ϕ)(µcn) =
∑

p+1+r=k
p+q+r=n

(−1)p+qrfk ◦ (IdA, . . . , IdA︸ ︷︷ ︸
p

,mA
q , IdA, . . . , IdA︸ ︷︷ ︸

r

).

On the other hand, the formula of the decomposition map ∆ of the cooperad As
¡
,

given in Lemma 9.1.7, shows that the image of µcn under ψ~ f in EndAB is equal to

(ψ ~ f)(µcn) =
∑
k≥2

i1+···+ik=n

(−1)εmB
k ◦ (fi1 , . . . , fik),

where ε = (k−1)(i1−1) + (k−2)(i2−1) + · · ·+ 2(ik−2−1) + (ik−1−1). Therefore
we find the same formula as in Section 9.2.11. �

The case of L∞-algebras is similar.

Proposition 10.2.13. An ∞-morphism f : A B of L∞-algebras, is a family of
maps {fn : ΛnA→ B}n≥1 of degree n− 1 which satisfy: dA ◦ f1 = f1 ◦ dA, that is
f1 is chain map, and for n ≥ 2,∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q

sgn(σ)(−1)(p−1)|q|(fp ◦1 `Aq )σ−

∑
k≥2

i1+···+ik=n

∑
σ∈Sh−1

(i1,...,ik)

sgn(σ)(−1)ε`Bk ◦ (fi1 , . . . , fik)σ = ∂(fn),

in Hom(ΛnA,B).

Proof. The proof relies on the explicit morphism of cooperads Lie
¡ → Ass

¡
given

in the proof of Proposition 10.1.13. The results for A∞-algebras transfer to L∞
under this morphism. �

So far, we can see why L∞-algebras are very close to A∞-algebras: the Koszul

dual cooperad Lie
¡

of Lie is the antisymmetrized version of Ass
¡
.
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10.3. Homotopy Transfer Theorem

In this section, we prove that a homotopy P-algebra structure on a dg module
induces a homotopy P-algebra structure on any homotopy equivalent dg module,
with explicit formulae. This structure is called “the” transferred P∞-algebra struc-
ture. We make the examples of A∞-algebras and L∞-algebras explicit.

When A is a P∞-algebra, we have seen in Proposition 10.1.8 that its homotopy
H(A) carries a natural P-algebra structure. When working over a field, the homo-
topy H(A) can be made into a deformation retract of A. It enables us to transfer
the P∞-algebra structure from A to H(A). These higher operations, called the
higher Massey products, extend the P-algebra structure of H(A). They contain
the full homotopy data of A, since this P∞-algebra H(A) is homotopy equivalent
to A.

A meaningful example is given by applying the Homotopy Transfer Theorem to
P = D, the algebra of dual numbers on one generator. In this case, a D-algebra A is
a bicomplex and the transferred structured on H(A) corresponds to the associated
spectral sequence.

Recall that the particular case P = As has been treated independently in 9.4.
It serves as a paradigm for the general theory developed here.

The Homotopy Transfer Theorem for A∞-algebras and L∞-algebras has a long
history in mathematics, often related to the Perturbation Lemma. We refer the
reader to the survey of Stasheff [Sta10] and references therein. A version of it was
recently proved for algebras over the bar-cobar construction ΩBP by Chuang and
Lazarev in [CL10] and by Merkulov in [Mer10a]. Using a generalization of the
Perturbation Lemma, it was proved for P∞-algebras, when P is a homogeneous
Koszul operad, by Berglund in [Ber09]. The existence part of the theorem can
also be proved by model category arguments, see Berger and Moerdijk [BM03a]
and Fresse [Fre09c].

10.3.1. The homotopy transfer problem. Let (V, dV ) be a homotopy re-
tract of (W,dW ):

(W,dW )h
%% p //

(V, dV )
i

oo

IdW − ip = dWh+ hdW ,

where the chain map i is a quasi-isomorphism.
The transfer problem is the following one: given a structure of P∞-algebra on

W , does there exist a P∞-algebra structure on V such that i extends to an ∞-
quasi-isomorphism of P∞-algebras ? We will show that this is always possible and
we say that the P∞-algebra structure of W has been transferred to V .

Theorem 10.3.2 (Homotopy Transfer Theorem). Let P be a Koszul operad and
let (V, dV ) be a homotopy retract of (W,dW ). Any P∞-algebra structure on W can
be transferred into a P∞-algebra structure on V such that i extends to an ∞-quasi-
isomorphism.

Proof. To prove it, we use the third definition of a P∞-algebra given in the Rosetta
Stone 10.1.22:

Homdg Op(ΩP
¡
, EndA) ∼= Tw(P

¡
,EndA) ∼= Homdg Coop(P

¡
, B EndA) .
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The plan of the proof is the following one. First, we show in Proposition 10.3.4 that
the homotopy retract data between V and W induces a morphism of dg cooperads
B EndW → B EndV . Since a P∞-algebra structure on W is equivalently given by a

morphism of dg cooperads P ¡ → B EndW , the composite

P
¡
→ B EndW → B EndV

defines a P∞-algebra structure on V .
We give an explicit formula for this transferred structure in Theorem 10.3.6.

The extension of i into an ∞-quasi-isomorphism is provided through an explicit
formula in Theorem 10.3.11. �

10.3.3. The morphism of dg cooperads B EndW → B EndV . Let (V, dV )
be a homotopy retract of (W,dW ). We consider the map defined by µ ∈ EndW (n) 7→
p µ i⊗n ∈ EndV (n). Since i and p are morphisms of dg modules, this map is a
morphism of dg S-modules. But it does not commute with the operadic composition
maps in general. For µ1 ∈ EndW (k) and µ2 ∈ EndW (l), with k+ l− 1 = n, and for
1 ≤ j ≤ k, we have

(p µ1 i
⊗k) ◦j (p µ2 i

⊗l) = p
(
µ1 ◦j (i p µ2)

)
i⊗n,

which is not equal to p
(
µ1 ◦j µ2

)
i⊗n because ip is not equal to IdW . Since ip is

homotopic to IdW , we will show that this morphism commutes with the operadic
composition maps only up to homotopy. In the previous example, we have to
consider the homotopy µ1 ◦j (hµ2) to get

p (µ1 ◦j (∂(h)µ2)) i⊗n = p
(
µ1 ◦j µ2

)
i⊗n − p

(
µ1 ◦j (i p µ2)

)
i⊗n

Therefore the idea for defining the morphism of dg cooperads Ψ : B EndW →
B EndV is to label the internal edges by the homotopy h as follows. A basis of
T c(sEndW ) is given by trees labelled by elements of sEndW . Let t := t(sµ1, . . . , sµk)
be such a tree, where the vertices 1, . . . , k are read for bottom to top and from left
to right. The image of T under Ψ is defined by the suspension of the following
composite: we label every leaf of the tree t(µ1, . . . , µk) with i : V → W , every
internal edge by h and the root by p.
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This composite scheme defines a map in sEndV . Since T c(sEndV ) is a conilpo-

tent cofree cooperad, this map T c(sEndW ) → sEndV extends to a unique mor-
phism of cooperads Ψ : T c(sEndW )→ T c(sEndV ). Since the degree of h is +1, the
degree of Ψ is 0. The next result states that this morphism of cooperads commutes
with the differentials.
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Proposition 10.3.4. [VdL03, Theorem 5.2] Let (V, dV ) be a homotopy retract of
(W,dW ). The map Ψ : B EndW → B EndV , defined above, is a morphism of dg
cooperads.

Proof. In this proof, by a slight abuse of notation, we denote the above defined
map T c(sEndW )→ sEndV by Ψ. By Proposition 10.5.5, we have to check that

(ξ) : ∂(Ψ)−Ψ T c(Id; γEndW ) ∆′ + γEndV T c(Ψ) ∆ = 0 ,

where the map

γEndV : T c(sEndV )� T c(sEndV )(2) → sEndV

(respectively γEndW ) is given by the partial compositions of the operad EndV (re-
spectively EndW ), see 10.5.1. So it vanishes on T c(sEndV )(≥3) (respectively on
T c(sEndW )(≥3)). We apply Equation (ξ) to a tree t = t(sµ1, . . . , sµk).

(1) The first term ∂(Ψ)(t) is equal to the sum over the internal edges e of t
of trees s t(µ1, . . . , µk), where every internal edge is labeled by h except
e, which is labelled by ∂(h) = dWh+ hdW .

(2) In the second term, one singles out a subtree with two vertices out of
t, composes it in EndW and then one applies Ψ to the resulting tree.
Therefore it is equal to the sum over the internal edges e of t of trees
s t(µ1, . . . , µk), where every internal edge is labeled by h except e, which
is labeled by IdW .

(3) The third term consists in splitting the tree t into two parts, applying Ψ
to the two induced subtrees and then composing the two resulting images
in EndV . Hence it is equal to the sum over all internal edges e of t of trees
s t(µ1, . . . , µk), where every internal edge is labelled by h except e, which
is labeled by ip.

Finally, Equation (ξ) applied to the tree t is equal to the sum, over all internal edges
e of t, of trees s t(µ1, . . . , µk), where every internal edge is labeled by h except e,
which is labeled by

dWh+ hdW − IdW + ip = 0 .

It concludes the proof. �

10.3.5. Transferred structure. Let ϕ ∈ Tw(P ¡
,EndW ) be a P∞-algebra

structure onW . We define a transferred structure of P∞-algebra ψ ∈ Tw(P ¡
,EndV )

on V as follows.
By 6.5.11, the twisting morphism ϕ is equivalent to a morphism of dg cooperads

fϕ : P ¡ → B EndW . We compose it with the morphism of dg cooperads Ψ :
B EndW → B EndV . The resulting composite Ψ fϕ is a morphism of dg cooperads,

which gives the expected twisting morphism ψ ∈ Tw(P ¡
,EndV ) by 6.5.11 again.

P ¡

fψ
$$I

I
I

I
I
fϕ // B EndW

Ψ

��
B EndV .

The associated twisting morphism ψ : P ¡ → EndV is equal to the projection of
Ψfϕ on EndV . By a slight abuse of notation, we still denote it by

ψ = Ψ fϕ : P
¡
→ EndV .
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Theorem 10.3.6 (Explicit Formula). Let P be a Koszul operad, let ϕ ∈ Tw(P ¡
,EndW )

be a P∞-algebra structure on W , and let (V, dV ) be a homotopy retract of (W,dW ).

The transferred P∞-algebra structure ψ ∈ Tw(P ¡
,EndV ), defined above, on the

dg module V is equal to the composite

P
¡ ∆

P¡−−−→ T c(P
¡

)
T c(sϕ)−−−−→ T c(sEndW )

Ψ−→ EndV ,

where ∆
P
¡ is the structure map corresponding to the combinatorial definition of the

cooperad P ¡
, see 5.7.12.

Proof. By Proposition 5.7.14, the unique morphism of dg cooperads fϕ : P ¡ →
B EndW = T c(sEndW ), which extends sϕ : P ¡ → sEndW , is equal to

P
¡ ∆

P¡
−−−→ T c(P

¡

)
T c(sϕ)−−−−→ T c(sEndW ) .

�

So the transferred structure given here is the composite of three distinct maps.

The first map depends only on the cooperad P ¡
, that is on the type of algebraic

structure we want to transfer. The second map depends only the starting P∞-
algebra structure. And the third map depends only on the homotopy retract data.

10.3.7. Examples: A∞ and L∞-algebras transferred. In the case of A∞-
algebras, we recover the formulae given in Section 9.4.

Theorem 10.3.8. Let {mn : W⊗n → W}n≥2 be an A∞-algebra structure on W ,
the transferred A∞-algebra structure {m′n : V ⊗n → V }n≥2 on a homotopy retract
V is equal to

m′n =
∑
PTn

±

i
��

i
��

i
��

i
��

i
��

i
��

HHHHH

~~~~

<<<<<

�����
<<<<< m2

h
zzzz

m3
h

MMMMM m2
h

qqqqq

m2

p

��

,

where the sum runs over the set PTn of planar rooted trees with n leaves.

Proof. The combinatorial definition of the (nonsymmetric) cooperad As
¡

is given
by

∆
As

¡ : µcn 7→
∑

t∈PT n

± t(µc) ∈ T c(As
¡

) ,

where the sum runs over planar rooted trees t with n leaves and whose vertices
with k inputs labeled by µck. We conclude with Theorem 10.3.6. �

Theorem 10.3.9. Let {`n : W⊗n → W}n≥2 be an L∞-algebra structure on W ,
the transferred L∞-algebra structure {ln : V ⊗n → V }n≥2 on a homotopy retract V
is equal to

ln =
∑
t∈RTn

± p t(`, h) i⊗n ,
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where the sum runs over rooted trees t with n leaves and where the notation t(`, h)
stands for the n-multilinear operation on V defined by the composition scheme t
with vertices labeled by the `k and the internal edges labeled by h.

Proof. By 7.2.3, the Koszul dual cooperad Lie
¡

is isomorphic to Endcs−1K⊗
H
Com∗.

Therefore, the decomposition map of the combinatorial definition of the cooperad

Lie
¡

is given, up to signs, by the one of Com∗, which made up of nonplanar rooted
trees. �

10.3.10. Infinity-quasi-isomorphism. We define a map Ψ̃ : T c(sEndW )→
EndVW by the same formula as Ψ except for the root, which is labeled by the ho-

motopy h and not by p this time. We consider the map i∞ : P ¡ → EndVW defined
by the following composite:

i∞ : P ¡
∆
P¡
−−−→ T (P ¡

)
T (sϕ)−−−−→ T (sEndW )

Ψ̃−→ EndVW .

and by id ∈ I 7→ i ∈ Hom(V,W ) ⊂ EndVW .

Theorem 10.3.11. Let P be a Koszul operad, let (W,ϕ) be a P∞-algebra, and let
(V, dV ) be a homotopy retract of (W,dW ).

The map i∞ : P ¡ → EndVW is an∞-quasi-isomorphism between the P∞-algebra
(V, ψ), with the transferred structure, and the P∞-algebra (W,ϕ).

Proof. Using Proposition 10.2.6, we have to prove that i∞ ∗ ψ − ϕ~ i∞ = ∂(i∞).
The first term i∞ ∗ ψ is equal to

((Ψ̃ T c(sϕ) ∆P¡ ) ◦(1) (Ψ T c(sϕ) ∆P¡ )) ∆(1) + i∗Ψ T c(sϕ) ∆P¡ .

It is equal to the composite Ψ̂ T c(sϕ) ∆P¡ , where Ψ̂ is defined as Ψ̃, except that
either one internal edge or the root, is labelled by ip instead of h. To prove this,

we use the formula of ∆P¡ given in 5.7 in terms of the iterations of ∆̃.

The second term −ϕ ~ i∞ is equal to −(ϕ ◦ (Ψ̃ T c(sϕ) ∆P¡ ))∆. It is equal to

−Ψ̆ T c(sϕ) ∆P¡ , where Ψ̆ is defined as Ψ, except for the root, which is labelled by
the identity of W .

The right-hand side ∂(i∞) is equal to dEndVW
i∞−i∞ dP¡ . The latter term i∞ dP¡

is equal to Ψ̃ T c(sϕ) ∆P¡dP¡ . Since dP¡ is a coderivation of the cooperad P ¡
, we

get i∞ dP¡ = Ψ̃ T c(sϕ; sϕ dP¡ ) ∆P¡ , where the notation T c(f ; g) was introduced in
6.3.3. The other term dEndVW

i∞ is equal to

−Ψ̃ T c(sϕ; sdEndW ϕ) ∆P¡ − Ψ̊ T c(sϕ) ∆P¡ + i∗Ψ T c(sϕ) ∆P¡ − Ψ̆ T c(sϕ) ∆P¡ ,

where Ψ̊ is defined as Ψ̃, except that one internal edge, is labelled by [dW , h] instead

of h. Since ϕ is a twisting morphism, ϕ ∈ Tw(P ¡
,EndW ), it satisfies the Maurer-

Cartan equation −dEndW ϕ− ϕdP¡ = (ϕ ◦(1) ϕ)∆(1). Therefore

−Ψ̃ T c(sϕ; sdEndW ϕ)− Ψ̃ T c(sϕ; sϕ dP¡ ) = Ψ T c(sϕ) ∆P¡ ,

where Ψ is defined as Ψ̃ except that one internal edge is labelled by the identity of
W instead of h.

We conclude by using [dW , h] = IdW − ip. �
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This theorem provides a homotopy control of the transferred structure: the
starting P∞-algebra and the transferred one are related by an explicit ∞-quasi-
isomorphism. Therefore the two P∞-algebras are homotopy equivalent, see 10.4.8.

10.3.12. Operadic Massey products. In this section, we suppose the char-
acteristic of the ground field K to be 0.

Let (A, d) be a chain complex and let K be a field. Recall from Lemma 9.4.7,
that, under a choice of sections, the homology (H(A), 0) is a deformation retract
of (A, d)

(A, dA)h
%% p // //

(H(A), 0)oo
i

oo

Lemma 10.3.13. By construction, these maps also satisfy the following side con-
ditions:

h2 = 0, p h = 0, h i = 0.

Proof. It is a straightforward consequence of the proof of Lemma 9.4.7. �

As a consequence, when A carries a P∞-algebra structure, its homotopy H(A)
is endowed with a P∞-algebra structure, such that the map i extends to an ∞-
quasi-isomorphism, by Theorem 10.3.2. In this case, we can prove the same result
for the map p as follows.

To the homotopy h relating IdA and ip, we associate the degree one map hn :
A⊗n → A⊗n defined by

hn :=
1

n!

∑
σ∈Sn

hσ ,

where

hσ := id⊗ · · · ⊗ id⊗ h︸︷︷︸
σ(1)

⊗id⊗ · · · ⊗ id +

id⊗ · · · ⊗ id⊗ ip︸︷︷︸
σ(1)

⊗id⊗ · · · ⊗ id⊗ h︸︷︷︸
σ(2)

⊗id⊗ · · · ⊗ id + · · ·+

i ◦ p⊗ · · · ⊗ ip⊗ h︸︷︷︸
σ(n)

⊗ ip⊗ · · · ⊗ ip .

The map hn is a symmetric homotopy relating Id⊗nA and (ip)⊗n, that is

∂(hn) = Id⊗nA − (ip)⊗n and hnσ = σhn, ∀σ ∈ Sn .

We denote by H the sum H :=
∑
n≥1 h

n : T (A)→ T (A).

We define the map ∆lev as follows. To any element µc ∈ P ¡
, its image under

∆P¡ is a sum of trees. To any of these trees, we associate the sum of all the leveled
trees obtained by putting one and only one non-trivial vertex per level. (Notice
that this operation might permute vertices and therefore it might yield signs). The
image of µc under ∆lev is the sum of all these leveled trees.

Proposition 10.3.14. Let K be a field of characteristic 0. Let P be a Koszul
operad and let (A,ϕ) be a P∞-algebra. The chain map p : A → H(A) extends to
an ∞-quasi-isomorphism p∞ given by the formula

p∞ := p∗T clev(ϕ,H)∆lev
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on P ¡
and by id ∈ P ¡ 7→ p. The map T clev(ϕ,H) first labels the vertices of a leveled

tree by ϕ and the levels by H and then compose the associated maps in EndAH(A).

Proof. The map p∞ given by this formula is well defined thanks to the conilpotency

of the Koszul dual cooperad P ¡
. Let us denote by ψ the transferred P∞-algebra

structure on H(A). By Proposition 10.2.6, we have to prove that p∞ ∗ ϕ − ψ ~
p∞ = ∂(p∞). The arguments are similar to the arguments used in the proofs of
Theorem 10.3.11 and Theorem 10.4.2 but use the side conditions of Lemma 10.3.13.
The computations are left to the reader as a good exercise. �

Theorem 10.3.15 (Higher structures). Let K be a field of characteristic 0. Let P
be a Koszul operad and let A be a P∞-algebra.

� There is a P∞-algebra structure on the homology H(A) of the underlying
chain complex of A, which extends its P-algebra structure.

� The embedding i : H(A) � A and the projection p : A � H(A), as-
sociated to the choice of sections for the homology, extend to ∞-quasi-
isomorphisms of P∞-algebras.

� The P∞-algebra structure on the homotopy H(A) is independent of the
choice of sections of H(A) into A in the following sense: any two such
transferred structures are related by an ∞-isomorphism, whose first map
is the identity on H(A).

Proof. The explicit form of the transferred P∞-algebra structure on H(A), given
in Theorem 10.3.6, proves that it extends the P-algebra structure given in Propo-
sition 10.1.8.

The embedding H(A) � A extends to an ∞-quasi-isomorphism by Theo-
rem 10.3.11. The projection A � H(A) extends to an ∞-quasi-isomorphism by
Proposition 10.3.14.

Let (i, p) and (i′, p′) be the maps associated to two decompositions of the chain
complex A. They induce two P∞-algebra structures on H(A) such that i, i′, p and
p′ extend to ∞-quasi-isomorphisms by Theorem 10.3.11 and Proposition 10.3.14.
The composite p′∞ i∞ defines an ∞-quasi-isomorphism, from H(A) with the first
transferred structure to H(A) with the second transferred structure, such that the
first component is equal to p′ i = IdH(A). �

These higher P∞-operations on the homotopy of a P∞-algebra are called the
higher Massey products.

Examples. The case of the operad As has already been treated in 9.4.10. The
terminology “higher Massey products” comes the example given by the singular
cochains C•sing(X) of a topological space X endowed with its associative cup prod-

uct [Mas58]. The case of the operad Lie was treated by Retakh in [Ret93].

Though the differential on H(A) is equal to 0, the P∞-algebra structure on
H(A) is not trivial in general. In this case, the relations satisfied by the P∞-
algebra operations on H(A) do not involve any differential. Hence the operations
of weight 1 satisfy the relations of a P-algebra. But the higher operations exist and
contain the homotopy data of A.
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10.3.16. An example: HTT for the dual numbers algebra. The homo-
topy transfer theorem (HTT) can be applied to reduced operads which are con-
centrated in arity 1, that is to unital associative algebras. Recall that for such an
operad, an algebra over it is simply a left module. The algebra of dual numbers
D := K[ε]/(ε2 = 0) is obviously Koszul and its Koszul dual coalgebra is the free
coalgebra on one cogenerator D¡ := K[sε]. Observe that the element (sε)n is in
degree n and that the coproduct is given by

∆((sε)n) =
∑
i+j=n
i≥0,j≥0

(sε)i(sε)j .

From 2.2.5 we can compute D∞ := ΩD¡. Denoting by tn the element s−1(sε)n, it
follows that a D∞-module is a chain complex (A, d) equipped with linear maps

tn : A→ A, for n ≥ 1, |tn| = n− 1,

such that for any n ≥ 1 the following identities hold

∂(tn) =
∑
i+j=n
i≥1,j≥1

(−1)ititj .

Observe that, denoting t0 := −d, this identity becomes∑
i+j=n
i≥0,j≥0

(−1)ititj = 0, for any n ≥ 0.

Such a structure (A, t0, . . . , tn, . . .) is called a chain multicomplex . As expected
a D-module is a particular case of chain multicomplex for which tn = 0 for n ≥ 2.

The HTT can be written for any homotopy retract whose big chain complex is
a chain multicomplex (A, {tn}n≥0) and it gives a chain multicomplex structure on
the small chain complex (V, {t′n}n≥0) . The explicit formulae are as follows:

t′n := p
(∑

(−1)k−1tj1 h tj2 h · · ·h tjk
)
i ,

for any n ≥ 1, where the sum runs over j1 + · · ·+ jk = n.

Spectral sequence. Let us look at a particular case. Any first quadrant
bicomplex (C•,•, d

v, dh) gives rise to a chain complex (A, d), which is a left module
over D by declaring that An :=

⊕
p Cp,n, d := dv and the action of ε is induced by

dh. More precisely, since dhdv + dhdv = 0, the restriction of ε to An is (−1)ndh.
It is well-known that any first quadrant bicomplex gives rise to a spectral

sequence {(En, dn)}n≥1 where E1 = H•(C, d
v) and En = H•(E

n−1, dn−1). We
claim that, after choosing sections which make (E1, 0) into a deformation retract of
(C, dv), cf. 9.4.7, the chain multicomplex structure of E1 gives the spectral sequence.
More precisely the map dn is induced by t′n.

The advantage of this point of view on bicomplexes, versus spectral sequence,
is that the HTT can be applied to bicomplexes equipped with a deformation retract
whose boundary map is not necessarily trivial.

For instance the cyclic bicomplex of a unital associative algebra, which involves
the boundary maps b, b′ and the cyclic operator, cf. [LQ84, Lod98], admits a
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deformation retract made up of the columns involving only b. Applying the HTT
to it gives a chain multicomplex for which

t′0 = b, t′1 = 0, t′2 = B, t′n = 0, for n ≥ 3.

So, we get automatically Connes’ boundary map B and we recover the fact that,
in cyclic homology theory, the (b, B)-bicomplex is quasi-isomorphic to the cyclic
bicomplex.

The details for this section can be found in [LV11], where direct explicit proofs
are given.

10.4. Inverse of ∞-isomorphisms and ∞-quasi-isomorphisms

In this section, we first prove that the ∞-isomorphisms are the invertible ∞-
morphisms in the category ∞-P∞-alg. We give the formula for the inverse of an
∞-morphism. Then we show that any P∞-algebra is ∞-isomorphic to the product
of a P∞-algebra whose internal differential is null, with a P∞-algebra whose struc-
ture operations are null and whose underlying chain complex is acyclic. Applying
these two results, we prove that any ∞-quasi-isomorphism admits an ∞-quasi-
isomorphism in the opposite direction. So, being ∞-quasi-isomorphic defines an
equivalence relation among P∞-algebras, which is called the homotopy equivalence.

10.4.1. Inverse of infinity-isomorphisms. Here is the formula for the in-

verse of an ∞-isomorphism. We use the maps ∆̂k : P ¡ → (P ¡
)◦(k+1) introduced in

Section 5.7.6.

Theorem 10.4.2. Let P be a Koszul operad and let A and B be two P∞-algebras.
Any∞-isomorphism f : A B admits a unique inverse in the category∞-P∞-alg.

When f is expressed in terms of f : P ¡ → EndAB, its inverse is given by the formula
(f−1)(0) := (f(0))

−1 : B → A and by

f−1 :=

∞∑
k=0

(−1)k+1(f−1
(0) )∗

(
(f−1

(0) )∗(f)
)◦(k+1)

∆̂k ,

on P ¡
, where the right-hand side is equal to the composite

P
¡ ∆̂k

−−→ (P
¡
)◦(k+1)

((f−1
(0)

)∗(f))◦(k+1)

−−−−−−−−−−−→ (EndB)◦(k+1) → EndB
(f−1

(0)
)∗

−−−−→ EndBA .

For example, when ∆̂ produces an elements of the form

µ

?? zzz

ν

����
@@ ,
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the associated composite in EndBA is

f−1
(0) f−1

(0) f−1
(0)

f(µ)

CCCCCCCC

zzzzzzzz
f(0)

f(ν)

f−1
(0)

zzzzzzzzf−1
(0)

EEEEEEEE

f−1
(0)

.

Proof. Let us denote by g : P ¡ → EndBA the above defined map. It is well defined

thanks to the conilpotency 5.7.6 of the Koszul dual cooperad P ¡
.

We first show that g is an ∞-morphism. Let us denote by ϕ ∈ Tw(P ¡
,EndA)

and by ψ ∈ Tw(P ¡
,EndB) the respective P∞-algebra structures. By Proposi-

tion 10.2.6, we prove now that g ∗ ψ − ϕ ~ g = ∂(g) in HomS(P ¡
,EndBA). By

Proposition 5.7.14, the map g is equal to the composite

P
¡ ∆

P¡
−−−→ T c(P ¡

)
T c(f)−−−−→ T c(EndAB)

Θ−→ EndBA ,

where the map Θ amounts to labeling the leaves, the internal edges and the root
of the trees by f−1

0 and to composing all the maps along the tree scheme. It also
multiplies the elements by (−1)k, where k is the minimal number of levels on which
the tree can be put.

The derivative ∂(g) is equal to

∂(g) = dEndBA
Θ T c(f) ∆P¡ −Θ T c(f) ∆P¡ dP¡ .

Since dP¡ is a coderivation for the cooperad P ¡
, we get

∂(g) = Θ T c(f ; dEndAB
f − f dP¡ ) ∆P¡ .

By Proposition 10.2.6, since the map f is an ∞-morphism, it satisfies ∂(f) =
f ∗ ϕ− ψ ~ f . So we get

∂(g) = Θ T c(f ; f ∗ ϕ) ∆P¡ −Θ T c(f ;ψ ~ f) ∆P¡ .

In f ∗ ϕ, there are two kinds of terms involving either f(0) or f(>1). Therefore the
term Θ T c(f ; f ∗ϕ) ∆P¡ splits into two sums on the trees produced by ∆P¡ because
of the sign based on the number of levels, almost all the terms cancel. Only remains
the trees with ϕ labeling the vertex above the root. Hence, we get

Θ T c(f ; f ∗ ϕ) ∆P¡ = −ϕ~ g .

Using the same kind of arguments, one proves that Θ T c(f ;ψ~ f) ∆P¡ is made up
of trees with ψ labeling any vertex at the top of the tree, that is

Θ T c(f ;ψ ~ f) ∆P¡ = g ∗ ψ .
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By Proposition 10.2.7, it is enough to prove that f } g = IdB and that g} f =

IdA. Since g(0) := (f(0))
−1, these two relations are satisfied on I = P ¡ (0)

. Higher

up, since ∆(µ) = ∆̃(µ) + (id;µ), for any µ ∈ P ¡
, we have

(f } g)(µ) =

∞∑
k=0

(−1)k
(
(f−1

(0) )∗(f)
)◦(k+1)

∆̂k(µ)

+

∞∑
k=0

(−1)k+1
(
(f−1

(0) )∗(f)
)◦(k+1)

∆̂k(µ) = 0 .

In the same way, since ∆(µ) = ∆̄(µ) + (id;µ) + (µ; id, . . . , id), for any µ ∈ P ¡
,

we have

(g } f)(µ) =

∞∑
k=1

(−1)k
(
(f−1

(0) )∗(f)
)◦(k+1)

∆̂k(µ)

+ (f−1
(0) )∗(f)(µ)

+

∞∑
k=0

(−1)k+1
(
(f−1

(0) )∗(f)
)◦(k+1)

∆̂k(µ) = 0 .

�

Remark. The formula which gives the inverse of an ∞-isomorphism is related
to the inverse under composition of power series as follows. Let us consider the
non-symmetric cooperad As∗ and the K-modules A = B = K. There is a bijec-
tion between the power series f(x) = a0x + a1x

2 + · · · with coefficients in K and

the elements of Hom(As∗,EndK), given by f̃ := µcn 7→ an−11n, where µcn is the
generating element of As∗(n) and where 1n is the generating element of EndK(n).

This map is an isomorphism of associative algebras: g̃ ◦ f = g̃ } f̃ . So a power
series is invertible for the composition if and only if a0 is invertible. This condition

is equivalent to f̃(0) invertible in Hom(K,K). When a1 = 1, the formula given in
Theorem 10.4.2 induces the formula for the inverse of the power series f . For yet
another approach to this formula, see 13.11.13.

10.4.3. Decomposition: minimal ⊕ acyclic trivial. By definition, a P∞-
algebra (A, dA, ϕ) is called

� minimal when dA = 0;
� acyclic when the underlying chain complex (A, dA) is acyclic;
� trivial when the structure map is trivial: ϕ = 0.

Lemma 10.4.4. Let (H, 0, ϕ) be a minimal P∞-algebra and let (K, dK , 0) be an
acyclic trivial P∞-algebra. Their product in the category ∞-P∞-alg exists and its
underlying chain complex is the direct sum H ⊕K.

Proof. We consider the following P∞-structure on H ⊕K:

P
¡ ϕ−→ EndH � EndH⊕K .

It satisfies the Maurer-Cartan equation in HomS(P ¡
,EndH⊕K), since ϕ satifies the

Maurer-Cartan equation in HomS(P ¡
,EndH). To any P∞-algebra B with two ∞-

morphisms, f ∈ HomS(P ¡
,EndBH) from B to H and g ∈ HomS(P ¡

,EndBK) from B
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to K respectively, we associate the following morphism

P
¡ f+g−−−→ EndBH ⊕ EndBK

∼= EndBH⊕K .

We leave it to the reader to check that this composite is an ∞-morphism, which
satisfies the universal property of products. �

Theorem 10.4.5 (Minimal model for P∞-algebras). Let K be a field of char-
acteristic 0 and let P be a Koszul operad. In the category of P∞-algebras with
∞-morphisms, any P∞-algebra is ∞-isomorphic to the product of a minimal P∞-
algebra, given by the transferred structure on its homotopy, with an acyclic trivial
P∞-algebra.

Proof. Let (A, dA, ϕ) be a P∞-algebra. As in Lemma 9.4.7, we decompose the chain
complex A with respect to its homology and boundary: An ∼= Bn ⊕ Hn ⊕ Bn−1.
We denote by Kn := Bn ⊕ Bn−1 the acyclic sub-chain complex of A, so that A is
the direct sum of the two dg modules A ∼= H(A) ⊕ K. By Theorems 10.3.2 and
10.3.15, the homotopy H(A) is endowed with a minimal P∞-algebra structure and
we consider the trivial P∞-algebra structure on K.

We define an∞-morphism f from A toK as follows. Let q denote the projection
from A to K and let of f(0) be equal to q. Higher up, f is given by the composite
f = (q h)∗ ϕ

f : P ¡ ϕ−→ EndA
(q h)∗−−−−→ EndAK .

Since the P∞-algebra structure on K is trivial, we only have to check the equality

f ∗ ϕ = ∂(f), by Proposition 10.2.6. This equation reads on P ¡
:

(q h)∗ (ϕ ◦(1) ϕ) ∆(1) + q∗ ϕ = dEndAK
(q h)∗ ϕ− (q h)∗ ϕdP¡ .

Since µ is a twisting morphism, we have

(q h)∗ (ϕ ◦(1) ϕ)(∆(1)) = −(q h)∗ dEndA ϕ− (q h)∗ ϕdP¡ .

We conclude by using the equality q(h ◦ dA + dA ◦ h) = q.
The ∞-morphism p̃ from A to H(A) of Proposition 10.3.14 together with the

∞-morphism f from A to K induce an∞-morphism from A to H(A)⊕K, since this
latter space is the product of H(A) and K by Lemma 10.4.4. The first component
of this ∞-morphism is equal to p + q : A ∼= H(A) ⊕K, which is an isomorphism.
�

10.4.6. Inverse of infinity-quasi-isomorphisms.

Theorem 10.4.7. Let P be a Koszul operad and let A and B be two P∞-algebras.
If there exists an ∞-quasi-isomorphism A

∼
 B, then there exists an ∞-quasi-

isomorphism in the opposite direction B
∼
 A, which is the inverse of H(A)

∼=−→
H(B) on the level on holomogy.

Proof. Let f : A
∼
 B denote an ∞-quasi-isomorphism. By Theorem 10.3.11 and

Proposition 10.3.14, the following composite g of ∞-quasi-isomorphisms

H(A)
iA∞ ///o/o/o/o A

f ///o/o/o/o B
pB∞ ///o/o/o/o H(B)

is a ∞-isomorphism. It admits an inverse ∞-isomorphism g−1 : H(B)  H(A)

by Theorem 10.4.2. The ∞-quasi-isomorphism B
∼
 A is given by the following
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composite of ∞-quasi-isomorphisms

B
pB∞ ///o/o/o/o H(B)

g−1

///o/o/o/o H(A)
iA∞ ///o/o/o/o A .

�

10.4.8. Homotopy equivalence. We define the following relation among
P∞-algebras: a P∞-algebra A is homotopy equivalent to a P∞-algebra B if there
exists an ∞-quasi-isomorphism from A to B. The previous section shows that it is
an equivalence relation. We denote it by A ∼ B.

Under this terminology, the Higher Structure Theorem 10.3.15 implies that in
the homotopy class of any P∞-algebra, there is a minimal P∞-algebra.

10.5. Homotopy operads

In this section, we relax the notion of operad, up to homotopy, thereby defining
homotopy operads. As for associative algebras and homotopy associative algebras,
the relations satisfied by the partial compositions of an (non-unital) operad are
relaxed up to a full hierarchy of higher homotopies. We introduce the notion of∞-
morphism for homotopy operads. We have already used this notion, without saying
it, in Proposition 10.3.4, where the morphism Ψ is an ∞-morphism of operads.

We describe a functor from homotopy operads to homotopy Lie algebras.
Finally, we show that a homotopy representation of an operad, that is a homo-

topy morphism from P to EndA, is equivalent to a ΩBP-algebra structure on A.

The notions of homotopy operad and ∞-morphism come from the work of
Pepijn Van der Laan [VdL02, VdL03].

10.5.1. Definition. A homotopy operad is a graded S-module P with a square-
zero coderivation d of degree −1 on the cofree conilpotent cooperad T c(sP). By
extension, we call the dg cooperad (T c(sP), d) the bar construction of the homotopy
operad P and we denote it by BP. Hence any non-unital operad P is a homotopy
operad and the associated bar construction coincides with the classical bar con-
struction of 6.5.1.

For any graded S-module M , recall from Proposition 6.3.15 that any coderiva-
tion dγ on the cofree cooperad T c(M) is completely characterized by its projection

onto the space of cogenerators γ = proj ◦ dγ : T c(M)→M .

Let α and β be maps in HomS(T c(M),M). Their convolution product α ? β is
defined by the composite

α ? β := T c(M)
∆′−−→ T c(M ; T c(M))

T c(IdM ;β)−−−−−−−→ T c(M ;M)→ T c(M)
α−→M ,

where the first map ∆′ singles out every non-trivial subtree of a tree whose vertices
are indexed by M , see Section 6.3.14.

Lemma 10.5.2. For any map γ of degree −1 in HomS(T c(M),M), the associated
coderivation dγ on the cofree cooperad T c(M) satisfies

(dγ)2 = dγ?γ .
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Proof. Since γ has degree −1, the composite dγ ◦ dγ is equal to 1
2 [dγ , dγ ]; so it is

a coderivation of T c(M). By Proposition 6.3.15, it is completely characterized by
its projection onto M : proj((dγ)2) = γ ? γ. �

Any degree −1 square-zero coderivation d on the cofree cooperad T c(sP) is
equal to the sum d = d1 + dγ , where d1 is the coderivation which extends an
internal differential dP on P and where dγ is the unique coderivation which extends

the restriction γ := proj(d) : T c(sP)(≥2) → sP.

Proposition 10.5.3. Let (P, dP) be a dg S-module. A structure of homotopy
operad on P is equivalently defined by a map γ : T c(sP)(≥2) → sP of degree −1
such that

∂(γ) + γ ? γ = 0

in HomS(T c(sP), sP).

Proof. Any coderivation d : T c(sP) → T c(sP) defining a structure of homotopy
operad satisfies d2 = 0, which is equivalent to d1 dγ + dγ d1 + dγ dγ = 0. By
projecting onto the space of cogenerators, this relation is equivalent to dsP γ +
γ d1 + γ ? γ = 0 in HomS(T c(sP), sP). �

Hence a structure of homotopy operad on a dg S-module P is a family of maps
{γn : T c(sP)(n)→ sP}n≥2, which “compose” any tree with n vertices labelled by
elements of sP. The map γ ?γ composes first any non-trivial subtree of a tree with
γ and then composes the remaining tree with γ once again.

When the S-module P is concentrated in arity 1, a homotopy operad structure
on P is nothing but a homotopy associative algebra on P(1). If the structure map
γ vanishes on T c(sP)(≥3), then the only remaining product

γ2 : T c(sP)(2) ∼= sP ◦(1) sP → sP

satisfies the same relations as the partial compositions 5.3.7 of an operad. In this
case P is a non-unital operad.

One can translate this definition in terms of operations {T (n)(P) → P}n≥2,
without suspending the S-module P. This would involve extra signs as usual.

10.5.4. Infinity-morphisms of homotopy operads. Let (P, γ) and (Q, ν)
be two homotopy operads. By definition, an ∞-morphism of homotopy operads
between P and Q is a morphism

F : BP := (T c(sP), d)→ BQ := (T c(sQ), d′)

of dg cooperads. We denote it by P  Q. Homotopy operads with their ∞-
morphisms form a category, which is denoted by ∞-Op∞.

For any S-module M , we consider the morphism of S-modules

∆′ : T c(M)→ T c(M ; T c(M)(≥2)) ,

which singles out one subtree with at least two vertices. We also consider the
morphism of S-modules

∆ : T c(M)→ T c(T c(M))(≥2)

which is defined by the projection of ∆(M) : T c(M) → T c(T c(M)), see 6.3.14,

onto T c(T c(M))(≥2). In words, it splits a tree into all partitions of subtrees with
at least two non-trivial subtrees.
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Proposition 10.5.5. Let (P, γ) and (Q, ν) be two homotopy operads. An ∞-
morphism of homotopy operads between P and Q is equivalently given by a mor-
phism f : T c(sP)→ sQ of graded S-modules, which satisfies

f T c(Id; γ) ∆′ − ν T c(f) ∆ = ∂(f)

in HomS(T c(sP), sQ):

T c(sP)
∆ //

∆′

��

∂(f)

''PPPPPPPPPPPPPPPPPPPPPPPP T c(T c(sP))(≥2)

T c(f)

��
T c(sQ)(≥2)

ν

��
T c(sP; T c(sP)(≥2))

T c(Id;γ) // T c(sP)
f // sQ .

Proof. The universal property of cofree conilpotent cooperads states that every
morphism F : T c(sP) → T c(sQ) of cooperads is completely characterized by its

projection onto the space of the cogenerators f : T c(sP) → sQ. Explicitly, the

unique morphism of cooperads F which extends a map f : T c(sP)→ sQ is equal
to the composite

F : T c(sP)
∆(sP)−−−−→ T c(T c(sP))

T c(f)−−−−→ T c(sQ) .

The map f defines an ∞-morphism of homotopy operads if and only if the map
F commutes with the differentials d1 + dγ on T c(sP) and d′1 + dν on T c(sQ)
respectively. Since F is a morphism of cooperads and since d1 + dγ and d′1 +
dν are coderivations, the relation (d′1 + dν)F = F (d1 + dγ) holds if and only if
proj((d′1 + dν)F − F (d1 + dγ)) = 0. By the aforementioned universal property of
cofree cooperads and by Proposition 6.3.15, we have

proj((d′1 + dν)F − F (d1 + dγ)) = ∂(f) + ν T c(f) ∆− f T c(Id; γ) ∆′ .

�

Therefore an ∞-morphism P  Q of homotopy operads is a family of maps,
which associate to any tree t labelled by elements of sP an element of sQ. Since
an operad is a particular case of homotopy operad, one can consider ∞-morphism
of operads. Proposition 10.3.4 gives such an example.

Proposition 10.5.6. A morphism of operads is an ∞-morphism with only one
non-vanishing component, namely the first one:

sP ∼= T
c
(sP)(1) → sQ.

Proof. By straightforward application of the definitions. �

As for homotopy algebras, one can define four categories by consider either
operads or homotopy operads for the objects and morphisms or infinity morphisms
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for the maps.

Op
not full //

f.f.

��

∞-Op

f.f.

��
Op∞

not full // ∞-Op∞ .

(A morphism of homotopy operads is an ∞-morphism with non-vanishing compo-
nents except for the first one.)

10.5.7. From homotopy operads to homotopy Lie algebras. We define
a functor from homotopy operads to L∞-algebras, which extends the functor from
operads to Lie-algebras constructed in Proposition 5.3.16

Op //
� _

��

Lie-alg
� _

��
∞-Op∞ //_____ ∞-L∞-alg .

Let P be a dg S-module. We consider either the direct sum of its components⊕
n P(n) or the direct product

∏
n P(n). By a slight abuse of notation, we still

denote it by P in this section.
By Proposition 10.1.20, an L∞-algebra structure on P is equivalent to a degree

−1 square-zero coderivation on the cofree cocommutative coalgebra S
c
(sP). Recall

that its underlying space is the space of invariant elements of the cofree coalgebra
T
c
(sP) under the permutation action. We denote its elements with the symmetric

tensor notation:
S
c
(sP)(n) := sµ1 � · · · � sµn ∈ (sP)�n .

Let t be a tree with n vertices and let µ1, . . . , µn be n elements of P. We denote
by t(sµ1, . . . , sµn) the sum of all the possible ways of labeling the vertices of T with
sµ1, . . . , sµn according to the arity. We consider the following morphism

Θ : S
c
(sP)→ T c(sP) ; Θn(sµ1 � · · · � sµn) :=

∑
t

t(sµ1, . . . , sµn) ,

where t runs over the set of n-vertices trees.

Proposition 10.5.8. Let (P, γ) be a homotopy operad. The maps `n : Sc(sP)(n) →
sP of degree −1, defined by the composite `n := γ ◦ Θn, endow the dg modules⊕

n P(n), respectively
∏
n P(n), with an L∞-algebra structure.

Proof. We consider the “partial” coproduct δ′ on the cofree cocommutative coal-
gebra S

c
(sP) defined by

δ′ : S
c
(sP) → S

c
(sP;S

c
(sP))

sµ1 � · · · � sµn 7→
n−1∑
p=1

∑
σ∈Shp,q

±(sµσ(1) � · · · � sµσ(p))� sµσ(p+1) � · · · � sµσ(n),

where the sign comes from the permutation of the graded elements, as usual. The
unique coderivation on S

c
(sP), which extends dsP + ` is equal to the following

composite

d1 + d` := S
c
(sP)

δ′−→ S
c
(sP, Sc(sP))

S
c
(Id, dsP+`)−−−−−−−−−→ S

c
(sP, sP)→ S

c
(sP) .
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Under the isomorphism sP ∼= P, the map ` defines an L∞-algebra structure on P
if and only if this coderivation squares to zero.

The following commutative diagram

S
c
(sP)

Θ

��

δ′ // S
c
(sP, Sc(sP)(≥2))

S
c
(Id, `) // S

c
(sP, sP) // S

c
(sP)

Θ

��
T c(sP)

∆′ // T c(sP, T c(sP)(≥2))
T c(Id,γ) // T c(sP; sP) // T c(sP) .

proves that Θ commutes with the coderivations d` and dγ . Hence Θ commutes with
the full coderivations d1 +d` and d1 +dγ . Since d1 +d` is a coderivation, it squares
to zero if and only if the projection of (d1 + dl)

2 onto the space of cogenerators sP
vanishes. This projection is equal to the projection of (d1 + dγ)2 Θ on sP, which is
equal to zero, by the definition of a homotopy operad. �

This proposition includes and generalizes Proposition 10.1.14. If P is concen-
trated in arity 1, then it is an A∞-algebra. In this case, the class of trees considered
are only ladders. We recover the formula of Proposition 10.1.14, which associates
an L∞-algebra to an A∞-algebra.

Proposition 10.5.9. Let (P, γ) and (Q, ν) be two homotopy operads and let F :
BP → BQ be an ∞-morphism. The unique morphism of cocommutative coalgebras,
which extends

S
c
(sP)

Θ−→ T c(sP)
F−→ T c(sQ)� sQ ,

commutes with the differentials. In other words, it defines an ∞-morphism of L∞-
algebras. So there is a well-defined functor ∞-Op∞ →∞-L∞-alg.

Proof. Let us denote by F̃ : S
c
(sP)→ S

c
(sQ) this unique morphism of cocommu-

tative coalgebras. We first prove that the map Θ commutes with the morphisms F

and F̃ respectively. Let us introduce the structure map δ : S
c
(sP)→ S

c
(S

c
(sP)),

defined by

δ(sµ1�· · ·�sµn) :=
∑
±(sµσ(1)�· · ·�sµσ(i1))�· · ·�(sµσ(i1+···+in−1+1)�· · ·�sµσ(n)),

where the sum runs over k ≥ 1, i1 + · · · + ik = n and σ ∈ Shi1,··· ,ik . If we denote
by f the projection of F onto the space of cogenerators, then the unique morphism

of cocommutative coalgebras F̃ extending f Θ is equal to F̃ = S
c
(f Θ) δ. Since

the morphism F is equal to the composite F = T c(f) ∆, the following diagram is
commutative

S
c
(sP)

δ //

F̃

((

Θ

��

S
c
(S

c
(sP))

S
c
(f) //

Θ(Θ)

��

S
c
(sQ)

Θ

��
T c(sP)

F

66
∆ // T c(T c(sP))

T c(f) // T c(sQ) .
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Let us denote by d̃γ , and by d̃ν respectively, the induced square-zero coderiva-

tions on S
c
(sP), and on S

c
(sQ) respectively. Since F̃ is a morphism of cocommuta-

tive coalgebras, to prove that it commutes with the coderivations d̃1+d̃γ and d̃′1+d̃ν
respectively, it is enough to prove by projecting onto the space sQ of cogenerators.
To this end, we consider the following commutative diagram.

S
c
(sP)

F̃ //

d̃1+d̃γ

��

Θ

%%KKKKKKKKKKKK
S
c
(sQ)

Θ

yyssssssssssss

d̃′1+d̃ν

��

T c(sP)
F //

d1+dγ

��

T c(sQ)

d′1+dν

��
T c(sP)

F
// T c(sQ)

%% %%KKKKKKKKKKKKK
S
c
(sQ)

����
S
c
(sP)

F̃

//

Θ

99ssssssssssss
S
c
(sQ) // // sQ

Since the internal diagram is commutative, the external one also commutes, which
concludes the proof. �

10.5.10. From homotopy operads to homotopy pre-Lie algebras. The
two aforementioned propositions 10.5.8 and 10.5.9 extend from Lie-algebras and
L∞-algebras to preLie-algebras and preLie∞-algebras respectively, see 13.4.

Finally, we have the following commutative diagram of categories, which sums
up the relations between the various algebraic structures encountered so far.

As-alg
� _

��

))SSSSSSSSSSSiI

vvmmmmmmmmmmm

Op //
� _

��

PreLie-alg
� _

��

// Lie-alg
� _

��

∞-A∞-alg

))SSSSSSSSSiI

vvmmmmmmmm

∞-Op∞ // ∞-PreLie∞-alg // ∞-L∞-alg

10.5.11. Homotopy algebra structures vs ∞-morphisms of operads.
Since a P-algebra structure on a dg module A is given by a morphism of dg operads
P → EndA, it is natural to ask what ∞-morphisms P  EndA between P and
EndA do model, cf. [Lad76, VdL03]. The next proposition shows that a homotopy
representation of an operad P is a ΩBP-algebra.

Proposition 10.5.12. For any operad P and any dg module A, there is a natural
bijection between ∞-morphisms from P to EndA and ΩBP-algebra structures on
A:

Hom∞-Op(P,EndA) ∼= Homdg Op(ΩBP,EndA)



10.6. RÉSUMÉ 321

Proof. By definition, the first set is equal to Homdg Coop(BP,B EndA). The natu-
ral bijection with Homdg Op(ΩBP,EndA) given by the bar-cobar adjunction6.5.10
concludes the proof. �

By pulling back along the morphism of dg operads ΩP ¡ → ΩBP, any ΩBP-
algebra A determines a P∞-algebra. So an∞-morphism of operads from P to EndA
induces a P∞-algebra structure on A.

Any P∞-algebra structure on A is a morphism of dg operads ΩP ¡ → EndA,

which is a particular ∞-morphism of operads from ΩP ¡
to EndA by Proposi-

tion 10.5.6.

B : Homdg Op(ΩP
¡
,EndA) → Homdg Coop(BΩP

¡
,BEndA)

∼= Hom∞-Op(ΩP
¡
,EndA)

Again, what do ∞-morphisms ΩP ¡
 EndA model ? Any ∞-morphism of operads

BΩP ¡ → B EndA induces a P∞-algebra structure on A by pulling back along the

unit of adjunction υP¡ : P ¡ → BΩP ¡
and by using the bar-cobar adjunction. Let

us denote this map by

υ∗ : Hom∞-Op(ΩP
¡
,EndA)→ Homdg Op(ΩP

¡
,EndA).

So the set of P∞-algebra structures on A is a “retract” of the set of ∞-morphisms

from P∞ = ΩP ¡
to EndA.

We sum up the hierarchy of homotopy notions into the following table.

{P-algebra structures on A}� _

��

HomOp(P,EndA)� _

��
Hom∞-Op(P,EndA)

∼=��
{ΩBP-algebra structures on A}

��

Homdg Op(ΩBP,EndA)

��
{P∞-algebra structures on A} Homdg Op(ΩP

¡
,EndA)� _

��
Hom∞-Op(ΩP

¡
,EndA)

υ∗
OO

10.6. Résumé

Homotopy P-algebras.

Homotopy P-algebra: algebra over P∞ := ΩP ¡
.

Rosetta Stone. The set of P∞-algebra structures on A is equal to

HomdgOp(ΩP
¡
, EndA) ∼= Tw(P

¡
, EndA) ∼= HomdgCoop(P

¡
, B EndA) ∼= Codiff(P

¡
(A)).
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Infinity-morphisms. Let (A,ϕ) and (B,ψ) be two P∞-algebras.

Infinity-morphism or ∞-morphism A B : morphism of dg P ¡
-coalgebras

F : (P
¡
(A), dϕ)→ (P

¡
(B), dψ) .

⇐⇒ f : P
¡
→ EndAB , such that f ∗ ϕ− ψ } f = ∂(f) in HomS(P

¡
,EndAB) .

Category of P∞-algebras with ∞-morphisms: ∞-P∞-alg.

P-alg not full //

f.f.

��

∞-P-alg

f.f.

��
P∞-alg

not full // ∞-P∞-alg

∞-isomorphism: when f(0) : A→ B is an isomorphism.

Theorem. ∞-isomorphisms are the isomorphisms of the category ∞-P∞-alg.

∞-quasi-isomorphism: when f(0) : A→ B is a quasi-isomorphism.

Homotopy Transfer Theorem.
Homotopy data: let (V, dV ) be a homotopy retract of (W,dW )

(W,dW )h
%% p //

(V, dV ) .
i

oo

Proposition.
There exists a morphism Ψ : B EndW → B EndV of dg cooperads.

Algebraic data: let ϕ be a P∞-algebra structure on W .

Homotopy Transfer Theorem.
There exists a P∞-algebra structure on V such that i extends to an ∞-quasi-

isomorphism.

P ¡

fψ
$$H

H
H

H
H
fϕ // B EndW

Ψ

��
B EndV

Explicit transferred structure.

P
¡ ∆

P¡
−−−→ T c(P

¡

)
T c(sϕ)−−−−→ T c(sEndW )

Ψ−→ EndV .

Higher Massey products.
They are the higher operations in the particular case: W = A, a P∞-algebra,

and V = H(A).

Chain multicomplex.
Particular case where P = D := K[ε]/(ε2).

D-algebra on A ←→ bicomplex
transferred D∞-algebra on H(A) ←→ spectral sequence
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Homotopy theory of homotopy algebras.
Decomposition: minimal ⊕ acyclic trivial.

Any P∞-algebra A is ∞-isomorphic to a product

A
∼= M ⊕K

in ∞-P∞-alg, where M is minimal, i.e. dM = 0, and where K is acyclic trivial, i.e.
acyclic underlying chain complex and trivial P∞-algebra structure.

Homotopy equivalence.
If there exists an ∞-quasi-isomorphism A

∼
 B, then there exists an ∞-quasi-

isomorphism B
∼
 A.

Homotopy operads.
Homotopy operad: degree −1 square-zero coderivation on T c(sP)

⇐⇒ γ : T c(P)(≥2) → P, such that ∂(γ) + γ ? γ = 0 .

Infinity-morphisms of homotopy operads: morphism of dg cooperads

BP = (T c(sP), d1 + dγ)→ BQ = (T c(sQ), d′1 + dν) .

As-alg
� _

��

))SSSSSSSSSSSiI

vvmmmmmmmmmmm

Op //
� _

��

PreLie-alg
� _

��

// Lie-alg
� _

��

∞-A∞-alg

))SSSSSSSSSiI

vvmmmmmmmm

∞-Op∞ // ∞-PreLie∞-alg // ∞-L∞-alg.

Homotopy representation of operad.

Hom∞-Op(P,EndA) ∼= Homdg Op(ΩBP,EndA) = {ΩBP-algebra structures on A} .

10.7. Exercises

10.7.1. Homotopy P-algebra concentrated in degree 0. Let A be a K-
module. We consider it as a dg module concentrated in degree 0 with trivial differ-
ential. Prove that a P∞-algebra structure on A is a P-algebra structure.

10.7.2. Universal enveloping algebra of an L∞-algebra [LM95]. In
Proposition 10.1.14, we introduced a functor from A∞-algebras to L∞-algebras,

which is the pullback functor f∗ associated to the morphism of operads f : ΩLie
¡ →

ΩAss
¡
, see 5.2.14.

Show that this functor admits a left adjoint functor provided by the universal
enveloping algebra of an L∞-algebra (A, dA, {`n}n≥2):

U(A) := Ass∞(A)/I,

where I is the ideal generated, for n ≥ 2, by the∑
σ∈Sn

sgn(σ) ε (µcn; aσ−1(1), . . . , aσ−1(n))− `n(a1, . . . , an) ,
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where ε is the sign induced by the permutation of the graded elements a1, . . . , an ∈
A.

Hint. It is a direct consequence of Section 5.2.14 and Exercise 5.10.24, where
U(A) = f!(A).

10.7.3. Homotopy pre-Lie-algebra. Make explicit the notion of homotopy
pre-Lie algebra, see 13.4, together with the convolution algebra gpreLie,A, which
controls it.

Hint. The Koszul dual operad of preLie is Perm, which admits a simple
presentation, see 13.4.11.

10.7.4. Equivalent Maurer-Cartan Equation. Let C be a coaugmented
cooperad, with coaugmentation η : I → C, and let (A, dA) be a dg module. To
any morphism α : C → EndA of S-modules, such that α ◦ η = 0, we associate the
morphism of S-modules α̃ : C → EndA defined by α̃ ◦ η(id) := dA and α̃ := α
otherwise. If α has degree −1, then α̃ has also degree −1.

(1) Prove that α satisfies the Maurer-Cartan equation ∂(α) +α?α = 0 if and
only if α̃ squares to zero, α̃ ? α̃ = 0.

Let (B, dB) be another chain complex and let ϕ ∈ Tw(P ¡
,EndA) and ψ ∈ Tw(P ¡

,EndB)
be two P∞-algebra structures on A and B respectively.

(2) Show that any morphism of dg S-modules f : P ¡ → EndAB is an ∞-

morphism if and only if f ∗ ϕ̃ = ψ̃ ~ f .

Let f : P ¡ → EndAB and g : P ¡ → EndBC be two ∞-morphisms.

(3) Show directly that the composite

g } f = P
¡ ∆−→ P

¡
◦ P

¡ g◦f−−→ EndBC ◦ EndAB → EndAC ,

of Proposition 10.2.7 is an ∞-morphism.

10.7.5. Action of the convolution algebra. Let A and B be two dg mod-

ules and let P be a Koszul operad. We denote by gB := HomS(P ¡
,EndB) the

convolution pre-Lie algebra and we consider gAB = HomS(P ¡
,EndAB), as in Sec-

tion 10.2.4. We defined the action ψ ~ f , for ψ ∈ gB and f ∈ gAB and the action
ψ } ξ on gB by the following composite

ψ } ξ := P
¡ ∆−→ P

¡
◦ P

¡ ψ◦ξ−−→ EndB ◦ EndB
γEndB−−−−→ EndB .

(1) Show that } defines an associative algebra structure on gB , where the

unit is the composite of the coaugmentation of P ¡
followed by the unit of

EndB : P ¡ → I→ EndA.
(2) Show that ~ defines a left module action of the associative algebra (gB ,})

on m.
(3) In the same way, show that the action ∗ of gA := HomS(P ¡

,EndA) on m
is a right pre-Lie action.

10.7.6. Inverse of ∞-isomorphisms. Make explicit the inverse of ∞-iso-
morphisms given in Theorem 10.4.2 in the particular cases where the operad P is
the ns operad As, the operad Com, and the operad PreLie.
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10.7.7. Homotopy Transfer Theorem, Solution II. This exercise pro-
poses another proof to the Homotopy Transfer Theorem.

(1) Let C be a dg cooperad and let P and Q be two dg operads. Show that
any ∞-morphism Φ : P  Q between the dg operads P and Q naturally
induces an ∞-morphism

Φ∗ : Hom(C,P) Hom(C,Q)

between the associated convolution operads.

By Proposition 10.5.9, the ∞-morphism Φ∗ induces an ∞-morphism be-
tween the dg Lie algebras

∏
n Hom(C(n),P(n)) and

∏
n Hom(C(n),Q(n)).

(2) Show that this∞-morphism passes to invariant elements, that is it induces
an ∞-morphism φ between the convolution dg Lie algebras HomS(C,P)
and HomS(C,Q).

Hence, the ∞-morphism Ψ : EndW → EndV of operads of Proposi-
tion 10.3.4 induces a natural ∞-morphism

ψ• : gW = HomS(P
¡
,EndW )→ gV = HomS(P

¡
,EndV )

between the associated convolution dg Lie algebras.
(3) Let α be a Maurer-Cartan element in gW , which vanishes on the coaug-

mentation of P ¡
. Show that

∑∞
n=1

1
n!ψ(α, . . . , α) defines a Maurer-Cartan

element in gV , , which vanishes on the coaugmentation of P ¡
.

(4) Compare this solution to the Homotopy Transfer Theorem with the one
given in Proposition 10.3.6.





CHAPTER 11

Bar and cobar construction of an algebra over an
operad

“La mathématique est une science dan-
gereuse : elle dévoile les supercheries et
les erreurs de calcul.”
Galileo Galilei

In the algebra case, a twisting morphism is defined as a particular map from a
dg coassociative coalgebra to a dg associative algebra. Starting with dg associative
algebras, why should one consider the category of dg coassociative coalgebras ?
The conceptual explanation is given by the Koszul duality theory for operads: the
operad As is Koszul and its Koszul dual operad is itself. In order to generalize

the notion of twisting morphism to dg P-algebras, one needs to work with dg P ¡
-

coalgebras. Such a phenomenon has already been noticed in the literature. For

instance, in rational homotopy theory the case P = Lie and P ¡
= Comc was

treated by Quillen in [Qui69] and the case P = Com and P ¡
= Liec was treated

by Sullivan in [Sul77].
In this chapter, we extend to dg P-algebras the notions of twisting morphism,

bar and cobar constructions introduced in the context of dga algebras and dga
coalgebras in Chapter 2. When the operad P is Koszul, this allows us to define
functorial quasi-free resolutions for P-algebras and P∞-algebras. They will be used
in the next chapter to compute homology groups.

Another application is the rectification of homotopy P-algebras, which states
that any homotopy P-algebra is naturally and universally∞-quasi-isomorphic to a
dg P-algebra. This proves that the homotopy category of dg P-algebras is equiva-
lent to the homotopy category of P∞-algebras with their ∞-morphisms.

This chapter essentially follows [GJ94, Liv98b, DTT07, Mil08, HM10].

11.1. Twisting morphism for P-algebras

One can work at two different levels: the level of operads (Chapter 6) or the
level of algebras. In Chapter 2, we defined the notion of twisting morphism between
a dga coalgebra and a dga algebra and in Section 6.4, we defined the notion of
operadic twisting morphism between a dg cooperad and a dg operad.

In this section, we go much further at the algebra level. Associated to an
operadic twisting morphism α : C → P from a dg cooperad C to a dg operad P, we
define the notion of twisting morphism between a dg C-coalgebra and a dg P-algebra
with respect to α.

327
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When P is a quadratic operad, we consider the canonical twisting morphism

κ : P ¡ → P. If, moreover, P is binary, we give a Lie theoretic interpretation of

twisting morphisms between dg P ¡
-coalgebras and dg P-algebras.

11.1.1. Definition. Let α : C → P be an operadic twisting morphism from
a dg cooperad C to a dg operad P (see Section 6.4). Let A be a dg P-algebra and
let C be a dg C-coalgebra. We consider the following unary operator ?α of degree
−1 on Hom(C,A):

?α(ϕ) : C
∆C−−→ C ◦ C α◦ϕ−−→ P ◦A γA−−→ A, for ϕ ∈ Hom(C,A).

A twisting morphism with respect to α is a linear map ϕ : C → A of degree 0 which
is a solution to the Maurer-Cartan equation

∂(ϕ)− ?α(ϕ) = 0.

We denote the space of twisting morphisms with respect to α by Twα(C,A).

Let us recall the three main examples of operadic twisting morphisms between
a dg cooperad and a dg operad, to which we will apply this definition. One can
either work with the universal twisting morphism π : BP → P, associated to any
augmented dg operad P, or with the universal twisting morphism ι : C → ΩC,
associated to any conilpotent dg cooperad. When P is a quadratic operad, we
can also consider the twisting morphisms with respect to the canonical twisting

morphism κ : P ¡ → P, defined in Section 7.4.

11.1.2. Lie theoretical interpretation. In the binary quadratic case, the
term ?α(φ) becomes quadratic. It allows us to interpret the previous equation as a
Maurer-Cartan equation in a dg Lie algebra as follows.

Proposition 11.1.3. Let P be a binary quadratic operad. For any dg P ¡
-coalgebra

C and any dg P-algebra A, the space s−1Hom(C,A) is a dg Lie algebra.

Proof. Let us give a proof when P is finitely generated. Recall from 7.2.2 that

C is a P ¡
-coalgebra if and only if sC is a P ¡ ⊗

H
EndcsK-coalgebra, that is a P !∗-

coalgebra. Proposition 7.6.10 provides a morphism of operads Lie→ P !⊗
H
P. Since

Hom(sC,A) ∼= s−1Hom(C,A) is an algebra over P ! ⊗
H
P, it carries a Lie algebra

structure. The result holds in full generality since we are working with a space of
maps, see formula below. �

When P = P(E,R) is a binary quadratic operad, the Lie bracket is explicit
given by the composite [f, g] :

sC
s∆C−−−→ sP

¡
(C)�s(sE(2)⊗ C⊗2)S2 → E(2)⊗ (sC)⊗2

IdE⊗f⊗g+(−1)|f||g|IdE⊗g⊗f−−−−−−−−−−−−−−−−−−−→ E(2)⊗A⊗2 γA−−→ A,

for f, g ∈ Hom(sC,A).

Corollary 11.1.4. When P is a binary quadratic operad, the equation ∂(ϕ) −
?κ(ϕ) = 0 in Hom(C,A) is equivalent to the Maurer-Cartan equation ∂(s−1ϕ) +
1
2 [s−1ϕ, s−1ϕ] = 0 in the dg Lie algebra s−1Hom(C,A), under the desuspension

isomorphism ϕ 7→ s−1ϕ.
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Proof. When P = P(E,R) is a binary quadratic operad, the above formula for the
Lie bracket on s−1Hom(C,A) ∼= Hom(sC,A) allows us to compute 1

2 [s−1ϕ, s−1ϕ]
as the following composite

sC
s∆C−−−→ sP

¡
(C)� E(sC)

IdE◦s−1ϕ−−−−−−→ E(A)� P(A)
γA−−→ A.

The map between P ¡
(C) and P(A) is equal to the composite κ(ϕ), up to the degree

shift. The differential ∂ in Hom(C,A) is sent to −∂ on s−1Hom(C,A), which
explains the various signs between the two equations. �

Moreover, when P is a non-symmetric operad, Proposition 7.7.4 shows that the
Lie algebra structure on s−1Hom(C,A) comes from an associative algebra structure,
whose product is denoted by ?. In this case, the Maurer-Cartan equation ∂(ϕ) −
?κ(ϕ) = 0 reads

∂(s−1ϕ) +
1

2
[s−1ϕ, s−1ϕ] ≡ ∂(s−1ϕ) + s−1ϕ ? s−1ϕ = 0.

11.1.5. Recollection with the classical notion. In the case of the operadic

twisting morphism κ : As
¡ → As, we recover the classical notion of twisting

morphisms between coaugmented dga coalgebras and augmented dga algebras of
Chapter 2.

Recall that C is a dg As
¡
-coalgebra if and only if sC is a dg As

¡ ⊗
H

EndcsK-

coalgebra. Since the cooperads As
¡ ⊗

H
EndcsK

∼= As∗ are isomorphic, sC is a dga

coalgebra without counit. A dg As-algebra A is a dga algebra without unit. The
dga algebra structure (without unit) on s−1Hom(C,A) ∼= Hom(sC,A) described
above is equal to the dg convolution algebra of Proposition 2.1.2.

Recall the equivalences of categories between dga coalgebras without counit sC
and coaugmented dga coalgebras sC+ := sC⊕K1 and between dga algebras without
unit A and augmented dga algebras A+ := A ⊕ K1. Under these equivalences,
the twisting morphisms with respect to κ are nothing but the classical twisting
morphisms of dga (co)algebras:

Twκ(C,A) ∼= Tw(sC+, A+).

11.2. Bar and Cobar construction for P-algebras

Are the covariant functor Twα(C,−) and the contravariant functor Twα(−, A)
representable ? The bar and cobar constructions of this section provide an affirma-
tive answer to that question. They are the direct generalizations of the construc-
tions of Section 2.2.

11.2.1. Relative composite product. In this section, we generalize to op-
erads and modules over an operad the notion of relative tensor product of modules
over an algebra, see 1.8.14.

Let P be an operad. Let ρ : M ◦ P → M be a right P-module structure on
the S-module M and λ : P ◦N → N be a left P-module structure on N , see 5.2.2.

The relative composite product M ◦P N of M and N over P is defined by the
following coequalizer, i.e. the cokernel of the difference of the two maps,

M ◦ P ◦N
ρ◦IdN //

IdM◦λ
// M ◦N // // M ◦P N.
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When M = M ′ ◦P is a free P-module, the relative composite product M ◦P N
is naturally isomorphic to (M ′ ◦ P) ◦P N ∼= M ′ ◦N . The same statement holds on
the right hand side. This construction extends naturally to the differential graded
case.

We dualize the arguments to define the relative composite product for comod-
ules over a cooperad. Let C be a cooperad, ρ : M →M ◦ C be a right C-comodule
and λ : N → C ◦N be a left C-comodule. The relative composite product M ◦C N
of M and N under C is defined by the following equalizer

M ◦ C ◦N M ◦N
ρ◦IdNoo

IdM◦λ
oo M ◦C N.oooo

In the same way, we have (M ′ ◦C)◦CN ∼= M ′ ◦N , for M = M ′ ◦C being any cofree
C-comodule.

11.2.2. Definition of the bar construction. To any twisting morphism
α : C → P from a dg cooperad C to a dg operad P, we associate a functor

Bα : {dg P-algebras} −→ {dg C-coalgebras}.

Let A be a P-algebra. We consider the cofree C-coalgebra C(A) on A and we
denote by d1 the square zero coderivation dC ◦ IdA. Since it is a cofree C-coalgebra,
there is a unique coderivation d2 which extends the degree −1 map

C(A) = C ◦A α◦IdA−−−−→ P ◦A γA−−→ A,

by Proposition 6.3.17. The coderivation d2 is equal to the composite

C ◦A
∆(1)◦IdA−−−−−−→ (C ◦(1) C) ◦A

(IdC◦(1)α)◦IdA−−−−−−−−−−→(C ◦(1) P) ◦A

∼=C ◦ (A;P ◦A)
IdC◦(IdA;γA)−−−−−−−−→ C ◦A.

Lemma 11.2.3. There is a natural isomorphism

(C(A), d1 + d2) ∼= ((C ◦α P) ◦P A, dα).

Hence, the coderivation d1 + d2 is a square zero coderivation, (d1 + d2)2 = 0.

Proof. The underlying modules C ◦ A ∼= (C ◦ P) ◦P A are naturally isomorphic.
The formula for the twisted differential dα given in 6.4.11 shows that it is equal
to d1 + d2. Actually, the maps drα and d2 are defined as the unique coderivation
extending the same kind of map. �

The dg C-coalgebra BαA := (C(A), d1 + d2) is called the bar construction of A
with respect to α.

We extend this functor to dg P-algebras as follows. When (A, dA) is a dg P-
algebra, the differential dA induces a square zero coderivation on C(A): it is the
unique coderivation on C(A) which extends

C(A)
ε(A)−−−→ I(A) ∼= A

dA−−→ A.

It is explicitly given by IdC ◦′ dA. Now we consider the square zero coderivation
d1 := dC◦A = dC ◦ IdA+ IdC ◦′ dA. Since dA is a derivation, d1 and d2 anticommute,
that is d1 ◦ d2 + d2 ◦ d1 = 0. And the coderivation d1 + d2 still squares to zero.
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In this case, the total complex is called the bar construction of the dg P-algebra
(A, dA) with respect to α, which is denoted by

BαA :=
(
C(A), d = d1 + d2

)
.

The isomorphism of chain complexes BαA ∼= (C ◦α P) ◦P A still holds in this
case. When P is a quadratic operad, we consider the bar construction for dg P-

algebras associated to the canonical twisting morphism κ : P ¡ → P denoted by

BκA := (P ¡
(A), d1 + d2). It is equal to the relative composite product of the right

Koszul complex with A:

BκA ∼= (P
¡
◦κ P) ◦P A.

11.2.4. Recollection with the classical notion. In the case of the Koszul
operad As, we recover the classical bar construction of Eilenberg-Mac Lane, intro-

duced in 2.2.1, with the twisting morphism κ : As
¡ → As, as follows.

Proposition 11.2.5. For any augmented dga algebra A, the bar construction BA
of Section 2.2.1 is related to BκA by the following isomorphism of dga coaugmented
coalgebras

BA ∼= K⊕ sBκĀ ,

under the isomorphism of categories C 7→ sC+ = sC⊕K1 between dg As
¡
-coalgebras

and coaugmented dga coalgebras.

Proof. The bar construction BA is given by the cofree coalgebra T c(sĀ). The

counit splits and T
c
(sĀ) is isomorphic to sAs

¡
(Ā), since As

¡ ⊗
H

EndcsK
∼= As∗. The

coderivation d2 consists in extracting an element of As
¡
(2) from As

¡
, transform it

into an element of As(2) via κ and make it act on Ā. This composite is equal to
the coderivation d2 defining BA. �

Notice that, in the definition of the bar construction given in this section,
there is no extra suspension of the algebra A. The sign and the degree shift are

all encoded into the dg cooperad C, which is often P ¡
. The bar construction Bκ

produces a dg P ¡
-coalgebra. To recover the classical cases, like the ones arising in

rational homotopy theory 11.3.11, one can equivalently consider sBκA which is a
dg P !∗-coalgebra, with underlying space P !∗(sA). Since these two definitions are
equivalent, we prefer the first one which is more intrinsic to the Koszul duality
theory of operads.

11.2.6. Bar construction and quasi-isomorphisms.

Proposition 11.2.7. Let α : C → P be an operadic twisting morphism and let
f : A

∼−→ A′ be a quasi-isomorphism of dg P-algebras. The induced morphism
Bαf : BαA

∼−→ BαA
′ is a quasi-isomorphism of dg C-coalgebras.

Proof. We consider the filtration on BαA defined by Fp BαA := C≤p(A), where C≤p
is the sub-S-module of C made up of elements of homological degree less than p:
C≤p(n) :=

⊕
d≤p Cd(n). This filtration is stable under the differential of the bar

construction: IdC ◦′ dA : Fp → Fp, dC ◦ IdA : Fp → Fp−1 and d2 : Fp → F≤p−1

since C and P are non-negatively graded. Hence, the first term of the associated
spectral sequence is equal to E0

pq BαA ∼= (Cp(A))p+q with d0 = IdC ◦′ dA. The

map E0
p•(f) is a quasi-isomorphism by Künneth formula. Since this filtration is

increasing, bounded below and exhaustive it converges to the homology of the bar
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construction by Theorem 1.5.7. The map E∞••(f) being an isomorphism, it proves
that Bαf is a quasi-isomorphism. �

11.2.8. Definition of the cobar construction. Dually, to any operadic
twisting morphism α : C → P, we associate a functor in the opposite direction

Ωα : {conil. dg C-coalgebras} −→ {dg P-algebras}.

Let C be a conilpotent C-coalgebra, the underlying module of ΩαC is the free
P-algebra on C, that is P(C). It is endowed with a first square zero derivation
d1 := dP ◦C. By Proposition 6.3.12, there is a unique derivation d2 which extends

C
∆−→ C ◦ C α◦IdC−−−−→ P ◦ C.

It is explicitly given by

P ◦ C IdP◦′∆−−−−−→ P ◦ (C; C ◦ C)
IdP◦(IdC ;α◦IdC)−−−−−−−−−−−→P ◦ (C;P ◦ C)

∼=(P ◦(1) P)(C)
γ(1)◦IdC−−−−−→ P ◦ C.

Lemma 11.2.9. There is a natural isomorphism

(P(C), d1 + d2) ∼= ((P ◦α C) ◦C C, dα).

Hence, the derivation d1 + d2 is a square zero derivation, (d1 + d2)2 = 0.

Proof. The underlying modules P ◦C ∼= (P ◦C)◦C C are naturally isomorphic. The
explicit formula for the twisted differential dα given in 6.4.11 shows that it is equal
to the one given above for d2. Both of them are defined as the unique derivation
extending the same kind of map. �

The dg P-algebra ΩαC := (P(C), d1 +d2) is called the cobar construction of C
with respect to α.

We extend this functor to dg C-coalgebras as follows. When (C, dC) is a dg
C-coalgebra, the differential dC induces a square zero derivation IdP ◦′ dC on P(C).
By definition, the derivations dP ◦ IdC and IdP ◦′ dC anticommute. We denote
their sum by d1 := dP ◦ IdC + IdP ◦′ dC . Since dC is a coderivation, d1 and d2

anticommute, that is d1◦d2 +d2◦d1 = 0 and d1 +d2 is still a square zero derivation.
The total complex of this bicomplex is called the cobar construction of the dg

C-coalgebra (C, dC) with respect to α. We denote it by

ΩαC :=
(
P(C), d = d1 + d2

)
.

The isomorphism of chain complexes ΩαC ∼= (P ◦α C) ◦C C still holds in this
case. Given a quadratic operad P, we can consider the cobar construction Ωκ, for

conilpotent dg P ¡
-coalgebras, associated to the twisting morphism κ : P ¡ → P. It

is given by the left Koszul complex

ΩκC ∼= (P ◦κ P
¡
) ◦P

¡

C.

11.2.10. Recollection with the classical notion. In the case of the operad

As, with the twisting morphism κ : As
¡ → As, we recover the cobar construction

of J.F. Adams [Ada56], introduced in 2.2.5.

In this case, since the twisting morphism κ vanishes outside As
¡
(2), the cobar

construction also applies to any dg As
¡
-coalgebras, non-necessarily conilpotent.
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Proposition 11.2.11. Let C be a coaugmented dga coalgebra. Its cobar construc-
tion is isomorphic to the augmented dg algebra

ΩC ∼= K⊕ Ωκ(s−1C),

where s−1C is a dg As
¡
-coalgebra.

Proof. The underlying module of K ⊕ Ωκ(s−1C) ∼= K ⊕ As(s−1C) is the counital

cofree coalgebra T c(s−1C) ∼= K ⊕ T c(s−1C). The derivation d2 defining Ωκ is the
unique derivation with extends the coproduct of C. Therefore it agrees with the
derivation d2 of the classical bar construction ΩC. �

11.2.12. Cobar construction and quasi-isomorphisms. A non-negative-
ly graded dg C-coalgebra C is called connected if C0 = 0.

Proposition 11.2.13. Let α : C → P be an operadic twisting morphism which
vanishes on C(1). Let f : C → C ′ be a quasi-isomorphism between connected

dg C-coalgebras. The induced morphism Ωαf : ΩαC
∼−→ ΩαC

′ between the cobar
constructions is a quasi-isomorphism.

Proof. We consider the following filtration on the cobar construction

Fp ΩαC :=
⊕
n≥−p

P(n)⊗Sn C
⊗n

This increasing filtration is preserved by the differential of the cobar construction:
d1 : Fp → Fp and d2 : Fp → F≤p−1. Hence the first term of the associated spectral
sequence is equal to E0

pq = (P(−p) ⊗S−p C
⊗−p)p+q, with d0 = d1. By Künneth

formula, E0
p•(Ωαf) = IdP ⊗ f⊗−p is a quasi-isomorphism. Since C (respectively

C ′) is a connected dg C-coalgebra, the degree of the elements of C⊗−p is at least −p.
Therefore (FpΩαC)d = 0 for p < −d. The filtration being exhaustive and bounded
below, this spectral sequence converges to the homology of the cobar construction
by Theorem 1.5.7, which concludes the proof. �

This result is the generalization of Proposition 2.2.7. Notice that C is a con-
nected dg C-coalgebra if and only if sC is a 2-connected dg C ⊗ EndcsK-coalgebra.
So the hypotheses are the same. Without this assumption, the result does not hold
anymore, as Proposition 2.4.3 shows.

11.3. Bar-Cobar adjunction for P-algebras

The bar and the cobar constructions are shown to form a pair of adjoint functors
which represent the two functors associated to twisting morphisms with respect to
the operadic twisting morphism α : C → P.

Ωα : {conil. dg C-coalgebras} 
 {dg P-algebras} : Bα

From this adjunction arises universal twisting morphisms. When the twisting
morphism α is a Koszul morphism, the adjunction unit and counit are quasi-
isomorphisms.
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11.3.1. The adjunction.

Proposition 11.3.2. Let α : C → P be an operadic twisting morphism. For any
dg P-algebra A and any conilpotent dg C-coalgebra C, there are natural bijections

HomdgP-alg (ΩαC, A) ∼= Twα(C, A) ∼= Homdg C-coalg (C, BαA) .

Proof. Since P(C) is a free P-algebra, any morphism of P-algebras Φ : P(C)→ A
is characterized by its restriction ϕ : C → A on C, under the formula Φ = γA(IdP ◦
ϕ). The map Φ is a morphism of dg P-algebras if and only if Φ◦ (d1 +d2) = dA ◦Φ.
Since d1 and d2 are derivations on the free P-algebra P(C), it is enough to check this
relation on the space of generators C of P(C), that is (Φ◦(d1 +d2))|C = dA ◦ϕ. We
have (Φ ◦ d2)|C = ?α(ϕ) and ∂(ϕ) = (Φ ◦ d1)|C − dA ◦ ϕ. So the previous equation
is equal to ∂(ϕ) − ?αϕ = 0, which is the Maurer-Cartan equation. Therefore a
map Φ : ΩαC → A is a morphism of dg P-algebras if and only if its restriction
ϕ : C → A is a twisting morphism with respect to α.

The bijection on the right hand side can be made explicit using the same
arguments. Any map ϕ : C → A extends to a unique morphism of C-coalgebras by
the formula (IdC ◦ϕ)(∆C) : C → C◦C → C◦A, see Lemma 10.2.3. This morphism
commutes with the differential if and only if ϕ is a twisting morphism with respect
to α. �

11.3.3. Universal twisting morphisms for P-algebras. As a corollary to
the preceding adjunction, we define several canonical morphisms. When C = BαA,
associated to the identity IdBαA on the right hand side, there is a universal twisting
morphism πα(A) : BαA→ A and a morphism of dg P-algebras εα(A) : ΩαBαA→
A, which is the counit of the adjunction. (For simplicity, we will often forget the
letter A in the notation.) The former is equal to the composite with the counit of
C

πα : BαA = C ◦A ε◦IdA−−−−→ I ◦A = A,

and the latter is equal to the composite

εα : ΩαBαA = P ◦ C ◦A IdP◦πα−−−−−→ P ◦A γA−−→ A.

Dually, let A = ΩαC. Associated to the identity IdΩαC on the left hand side,
there is a universal twisting morphism ια : C → ΩαC and a morphism of dg C-
coalgebras υα : C → BαΩαC, which is the unit of the adjunction. The former is
equal to the composite with the unit of η : I→ P of the operad

ια : C ∼= I ◦ C η◦IdC−−−−→ P ◦ C = ΩαC,

and the latter is equal to the composite

υα : C
∆C−−→ C ◦ C ∼= C ◦ I ◦ C IdC◦η◦IdC−−−−−−−→ C ◦ P ◦ C = BαΩαC.

Both πα and ια satisfy the following universal property.
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Proposition 11.3.4. Any twisting morphism ϕ : C → A with respect to α factors
uniquely through the universal twisting morphisms πα and ια:

ΩαC
gϕ

!!D
D

D
D

C

ια

=={{{{{{{{

fϕ !!C
C

C
C

ϕ // A,

BαA

πα

==zzzzzzzz

where the map g : ΩαC → A is a morphism of dg P-algebras and where the map
f : C → BαA is a morphism of dg C-coalgebras.

11.3.5. Bar-Cobar resolutions.

Theorem 11.3.6. Let α : C → P be an operadic twisting morphism. Suppose that
C and P are connected weight graded and that α preserves this weight grading.

The twisting morphism α is a Koszul morphism if and only if the counit of the
adjunction εα : ΩαBαA

∼−→ A is a quasi-isomorphism of dg P-algebras, for every
dg P-algebra A.

Proof.

(=⇒) The underlying module of ΩαBαA is isomorphic to P ◦C ◦A. We consider
the increasing filtration Fp made up of the elements of P◦C◦A whose total
weight in P and C is less than p. On A, we consider the trivial filtration,
where F′pA := A, for any p ∈ N. The counit of adjunction preserves

this weight grading. The first page E0 is isomorphic to the chain complex
P◦αC◦A. Since α is a Koszul morphism, the spectral sequence collapses at
rank one, E1 ∼= H(A), by the operadic Künneth Formula 6.2.5. Therefore
E1εα is an isomorphism. The respective1 filtrations are bounded below
and exhaustive; so we conclude by the classical convergence theorem of
spectral sequences 1.5.7.

(⇐=) We apply the result to the trivial P-algebra V tr, where V is any dg module
concentrated in degree 0. In this case, the bar-cobar construction is quasi-
isomorphic to ΩαBαV

tr ∼= P ◦α C ◦ V . Hence, we get H(P ◦α C) ◦ V ∼= V ,
for any K-module V . We conclude that P ◦α C is acyclic by the Schur’s
lemma 6.2.6.

�

Theorem 11.3.7. Let α : C → P be an operadic twisting morphism, which van-
ishes on C(1).

The twisting morphism α is a Koszul morphism if and only if the unit of the
adjunction υα : C

∼−→ BαΩαC is a quasi-isomorphism of dg C-coalgebras, for every
dg conilpotent C-coalgebra C.

Proof.

(=⇒) The underlying module of BαΩαC is isomorphic to C◦αP◦C. We consider
the increasing filtration Fp :=

⊕
n≤p(C ◦ P)(n)⊗Sn C

⊗n. It is increasing,
bounded below and exhaustive. We conclude with same arguments as in
the previous proof.
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(⇐=) We apply the result to the trivial C-coalgebra W tr, where W is any dg
module concentrated in degree 0.

�

When these theorems apply, we call the resulting functorial resolutions provided
by the counit (respectively by the unit) of the bar-cobar adjunction, the bar-cobar
resolution of A (respectively of C).

Corollary 11.3.8. Let P be a Koszul operad. For every dg P-algebra A, the counit
of the adjunction

εκ : ΩκBκA = P ◦κ P
¡
(A)

∼−→ A

is a quasi-isomorphism of dg P-algebras.

Dually, for every conilpotent dg P ¡
-coalgebra C, the unit of the adjunction

υκ : C
∼−→ BκΩκC = P

¡
◦κ P(C)

is a quasi-isomorphism of dg P ¡
-coalgebras.

Proof. It is a direct corollary of Theorem 11.3.6. �

When P is not a Koszul operad, one can still apply Theorem 11.3.6 to the
Koszul morphism π : BP → P to get functorial quasi-free resolutions

επ : ΩπBπA = P ◦ BP ◦A ∼−→ A ,

for any dg P-algebra A.

11.3.9. Recollection with the classical case. In the case of the Koszul
operad As with its Koszul morphism κ : As

¡ → As, we recover the classical bar-
cobar resolutions for (co)augmented dga (co)algebras of Proposition 2.3.4.

Proposition 11.3.10. For any augmented dga algebra A, there is an isomorphism
of augmented dga algebras

ΩBA ∼= K⊕ ΩκBκĀ
∼−→ A.

Dually, for any conilpotent dga coalgebra C, there is an isomorphism of coaugmented
dga coalgebras

C
∼−→ BΩC ∼= K⊕ sBκΩκ(s−1C).

Proof. It is a direct corollary of Proposition 11.2.5 and Proposition 11.2.11. �

11.3.11. Rational homotopy theory. When P is the Koszul operad Lie
encoding Lie algebras, the bar construction Bκ is the functor “C” in Quillen [Qui69]
and the cobar construction Ωκ is his functor “L” (see Section 22 of [FHT01]).

When P is the Koszul operad Com encoding commutative algebras, the bar
construction Bκ was introduced and used by Sullivan in [Sul77] to define algebraic
models which compute rational homotopy groups of topological spaces. The bar
construction Bκ is the functor Γ and the cobar construction Ωκ is the functor A
introduced in [SS85] by Schlessinger and Stasheff . These authors also made the
induced bar-cobar resolution explicit and used it to compute Harrison and André-
Quillen cohomology for commutative algebras. For more details on this subject, we
refer the reader to the next chapter.

In the case of the Koszul operad Leib encoding Leibniz algebras, see 13.5, the
bar and the cobar constructions were made explicit in [Liv98b] by Livernet.
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11.3.12. Koszul duality theory for quadratic P-algebras. In the light
of Chapters 2 and 3, one can define the notion of Koszul morphisms for P-algebras
and then prove a Koszul duality theory for P-algebras. The main difficulty here is to
define the proper analogue of the twisted tensor product, i.e. the Koszul complex,
for P-algebras. This problem has been solved by Joan Millès in [Mil10a]. This
theory allows one to simplify the bar-cobar resolutions for quadratic P-algebras. It
provides smaller and minimal resolutions for some quadratic P-algebras, naturally
called Koszul P-algebras.

11.4. Homotopy theory of P-algebras

Let P be a Koszul operad. We apply the previous results to the Koszul mor-

phisms κ : P ¡ → P and ι : P ¡ → ΩP ¡
= P∞.

P P ¡κoo

ι

{{wwwwwwwwwwwwww

P∞ = ΩP ¡

∼

OO

The induced bar construction BιA ∼= P
¡
(A) coincides with the third definition

of P∞-algebras. The counit of adjunction gives a functorial quasi-free resolution
for P∞-algebras. Combining the two adjunctions associated to κ and ι, we define a
pair of adjoint functors between dg P-algebras and P∞-algebras with∞-morphisms.
The unit of this adjunction allows us to rectify universally P∞-algebras: any P∞-
algebra is universally ∞-quasi-isomorphic to a dg P-algebra. As a corollary, it
proves that the homotopy categories of the dg P-algebras and P∞-algebras, with
∞-morphisms, are equivalent.

11.4.1. Third definition of homotopy P-algebras. Let us consider the

operadic twisting morphism ι : P ¡ → ΩP ¡
. By Proposition 11.3.2, it induces the

following adjunction

Ωι : {conil. dg P
¡
-coalgebras} 
 {P∞-algebras} : Bι .

The bar construction BιA = P ¡
(A) is the third equivalent definition of a P∞-

algebra, see 10.1.17. Together with the definition of ∞-morphisms given in 10.2.2,
this result translates exactly into the following proposition.

Proposition 11.4.2. The bar construction Bι, associated to the operadic twisting

morphism ι : P ¡ → ΩP ¡
, extends to an isomorphism of categories

B̃ι : ∞-P∞-alg
∼=−→ quasi-free P

¡
-coalg

between the category of P∞-algebras with their ∞-morphisms and the full sub-

category of P ¡
-coalgebras composed by quasi-free ones.

11.4.3. Bar-cobar resolution of P∞-algebras.

Proposition 11.4.4. Let A be a P∞-algebra. The bar-cobar construction associ-

ated to the operadic twisting morphism ι : P ¡ → ΩP ¡
provides a quasi-free P∞-

algebra quasi-isomorphic to A:

ΩιBιA ∼= P∞(P
¡
(A))

∼−→ A
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Proof. We prove in Lemma 6.5.14 that ι : P ¡ → ΩP ¡
is a Koszul morphism. So

this proposition is a direct corollary of Theorem 11.3.6. �

This result gives a functorial quasi-free resolution to any P∞-algebra. It will be
used in the next chapter to compute the (co)homology theories of P∞-algebras, see
12.4.10. In fact, the assumption that P is Koszul is not necessary, one can apply it

to any quadratic operad and to any ΩP ¡
-algebra.

Notice that the morphism between ΩιBιA and A is a “strict” morphism of
P∞-algebras as defined in 10.2.1.

11.4.5. Rectification. To sum up, the Koszul morphisms κ and ι induce the
following diagram.

dg P-alg
� _

�

Bκ

/ dg P ¡
-coalg

Ωκo

Ωι

xrrrrrrrrrrrrrrrrrrrr

P∞-alg

Bι

8rrrrrrrrrrrrrrrrrrrr

� _

�

∞-P∞-alg
∼=

B̃ι

//

ΩκB̃ι

F

quasi-free P ¡
-coalg

?�

O

Let us denote by j : dg P-alg � P∞-alg and by i : dg P-alg � ∞-P∞-alg

the two “inclusions”. Notice that the bar constructions Bι and B̃ι extend the bar
construction Bκ in the following sense: Bκ = Bι ◦ j = B̃ι ◦ i.

Proposition 11.4.6. Let P be a Koszul operad. The functors

ΩκB̃ι : ∞-P∞-alg 
 dg P-alg : i

form a pair of adjoint functors.

Proof. We use the characterization of adjoint functors given in terms of the unit
and the counit of adjunction, see Proposition B.2.2.

To any P∞-algebra A, we apply the the unit of the adjunction associated to

the twisting morphism κ to the dg P ¡
-coalgebra BιA:

υκ(BιA) : BιA→ BκΩκ(BιA) = Bι(iΩκB̃ι(A)) .

Equivalently, this defines an∞-morphism denoted by υ(A) : A iΩκB̃ι(A), which

in turn induces a transformation of functors υ : Id −→ iΩκB̃ι.
In the other way round, the unit of the adjunction associated to κ gives, for

any dg P-algebra A′, the following morphism of dg P-algebras

εκ(A′) : ΩκB̃ι i(A
′) = ΩκBκ(A′)→ A′ .

This induces the transformation of functors ε : ΩκB̃ι i −→ Id.
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For any P∞-algebra A, the composite ε(ΩκB̃ι(A)) ◦ ΩκB̃ι(υ(A)) is equal to

Ωκ(BιA)
Ωκ(υκ(BιA)) // Ωκ(BκΩκ(BιA))

εκ(Ωκ(BιA)) // Ωκ(BιA)

which is the identity by the adjunction associated to κ.
In the same way, for any dg P-algebra A′, the composite i(ε(A′))◦υ(i(A′)) is an

∞-morphism, whose image under the functor B̃ι is equal to the following morphism

of dg P ¡
-coalgebras

BκA
′ υκ(BκA

′) // (BκΩκ)BκA
′ Bκ(εκ(A′)) // BκA′

Once again, it is the identity by the adjunction associated to κ. �

We use this adjunction to rectify P∞-algebras in a natural way.

Theorem 11.4.7 (Rectification). Let P be a Koszul operad. Any homotopy P-
algebra A is naturally ∞-quasi-isomorphic to the dg P-algebra ΩκBιA:

A
∼
 ΩκBιA .

Proof. To any P∞-algebra A, we apply the unit of the adjunction defined in Propo-

sition 11.4.6: A  iΩκB̃ιA, whose right hand side is equal to the dg P-algebra
ΩκBιA. Since it is defined by the unit υκ(BιA) of the adjunction associated to
the twisting morphism κ applied to BιA, its first component is equal to the chain

morphism A ∼= I ◦ I(A)→ P ◦κ P
¡
(A) ∼= ΩκBιA.

We filter the right hand side by the total weight of P ◦ P ¡
. This defines a

increasing, bounded below and exhaustive filtration, whose first page is isomorphic

to E0 ∼= (qP ◦κ qP
¡
) ◦A. By the operadic Künneth formula 6.2.5, the second page

is isomorphic to E1 ∼= H•(A). We conclude by the classical convergence theorem of
spectral sequences 1.5.7. �

Together with ??, this theorem proves that in the homotopy class of any P∞-
algebra, there are a minimal P∞-algebra and a dg P-algebra

(H, 0, transferred structure) ∼ (A, dA, ϕ) ∼ (ΩκB̃ιA, d,P-algebra structure) .

Proposition 11.4.8 (Universal property (U )). Any∞-morphism F : A V from

a P∞-algebra A to a dg P-algebra V factors uniquely through υ(A) : A
∼
 ΩκBιA

A

F
"""b

"b
"b

"b
"b

"b

υ(A) ///o/o/o/o ΩκBιA

∃! F̄

���
�
�
�

V ,

(U )

where F̄ : ΩκBιA→ V is a morphism of dg P-algebras.

Proof. Since this rectification of P∞-algebras is produced by a left adjoint functor,
it satisfies this universal property. �

Proposition 11.4.9 (Universality of the rectification). Under the property (U ),
any P∞-algebra admits an ∞-quasi-isomorphic dg P-algebras, which is unique up
to unique isomorphism.
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Proof. By the left adjoint property B.2.3, there is a unique dg P-algebra associated,
in a natural way, to any P∞-algebra, which satisfies the property (U ). Moreover,
it is unique up to unique isomorphism. �

Notice moreover that, for any P∞-algebra A, any such dg P-algebra F(A) is
actually ∞-quasi-isomorphic to it since one of them is

F(A)

A

∼
::

:z
:z

:z
:z

:z
:z

:z
∼

υ(A)
///o/o/o/o/o ΩκBιA

∼

OO

11.4.10. Equivalence of homotopy categories. Recall that the homotopy
category Ho(dg P-alg) is obtained by localizing the category of dg P-algebras with
respect to the class of quasi-isomorphisms, see B.6.1. Respectively the homotopy
category Ho(∞-P∞-alg) is obtained by localizing the category of P∞-algebras with
respect to the class of ∞-quasi-isomorphisms Ho(∞-P∞-alg). The two previous
results show that the adjunction 11.4.6 induces an equivalence between these two
homotopy categories.

A morphism of dg P ¡
-coalgebras g : C → D is called a weak equivalence if its

image Ωκg : ΩκC
∼−→ ΩκD under the cobar construction Ωκ is a quasi-isomorphism

of dg P-algebras.

Proposition 11.4.11. Let P be a Koszul operad and let f : A  A′ be an ∞-
morphism of P∞-algebras. It is an ∞-quasi-isomorphism if and only if its image

B̃ιf : B̃ιA → B̃ιA
′ under the bar construction B̃ι is a weak equivalence of dg

P ¡
-coalgebras.

Proof. Since the unit υ of the adjunction 11.4.6 is a transformation of functors, the
following diagram of ∞-morphisms commute

ΩκB̃ιA
ΩκB̃ιf // ΩκB̃ιA

′

A
f

///o/o/o/o/o/o/o/o/o

υ(A)∼

OO
O�
O�
O�
O�

A′ .

υ(A′)∼

OO
O�
O�
O�
O�

The ∞-morphisms υ(A) and υ(A′) are ∞-quasi-isomorphisms by the Rectification
Theorem 11.4.7. The restriction of this diagram to the first components of the
respective ∞-morphisms gives the following diagram of chain morphisms

ΩκB̃ιA
ΩκB̃ιf // ΩκB̃ιA

′

A
f(0)

//

∼

OO

A′ .

∼

OO

Therefore ΩκB̃ιf is a quasi-isomorphism if and only if f(0) is a quasi-isomorphism,
which concludes the proof. �
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As in 2.4, one can prove that weak equivalences of dg P ¡
-coalgebras form a

strict sub-class of quasi-isomorphisms.

Theorem 11.4.12 (Equivalence of homotopy categories). Let P be a Koszul op-
erad. The homotopy category of dg P-algebras and the homotopy category of P∞-
algebras with the ∞-morphisms are equivalent

Ho(dg P-alg) ∼= Ho(∞-P∞-alg) .

Proof. We consider the adjunction of Proposition 11.4.6. The functor i sends quasi-
isomorphisms between dg P-algebras to ∞-quasi-isomorphisms by definition. The

functor ΩκB̃ι sends ∞-quasi-isomorphisms of P∞-algebras to quasi-isomorphisms
by Proposition 11.4.11. So this pair of functors induces a pair of adjoint functors
between the homotopy categories.

Since the counit of adjunction is equal to εκ(A) : ΩκB̃ι i(A) = ΩκBκ(A) →
A for any dg P-algebra A, it is a quasi-isomorphism by Theorem 11.3.8. This
result and Theorem 11.4.7 proves that the unit and the counit of adjunction induce
isomorphisms on the level of the homotopy categories, which concludes the proof.
�

These two homotopy categories Ho(dg P-alg) and Ho(∞-P∞-alg) are also equiv-
alent to the homotopy category Ho(∞-P-alg) of dg P-algebras with the∞-morphisms.
This theorem proves that the homotopy theory of dg P-algebras is “the same as” the
homotopy theory of P∞-algebras or of P-algebras but taken with the∞-morphisms.
The main gain lies in the fact that ∞-quasi-isomorphism are “invertible” on the
opposite to quasi-isomorphisms, see Theorem 10.4.7 and the next proposition.

11.4.13. Quasi-isomorphisms vs ∞-quasi-isomorphisms.

Theorem 11.4.14. Let P be a Koszul operad and let A and B be two dg P-algebras.
The following assertions are equivalent:

(1) there exists a zig-zag of quasi-isomorphisms of dg P-algebras

A
∼← • ∼→ • ∼← • · · · • ∼→ B ,

(2) there exist two quasi-isomorphisms of dg P-algebras

A
∼← • ∼→ B ,

(3) there exists an ∞-quasi-isomorphism of dg P-algebras

A
∼
 B .

Proof.

(2)⇒ (1) Obvious.

(1)⇒ (3) The quasi-isomorphism A
∼← • of dg P-algebras is a particular case of

∞-quasi-isomorphism. Theorem 10.4.7 shows that there is an ∞-quasi-
isomorphism A

∼
 •. Its composite with • ∼→ B provides the required

∞-quasi-isomorphism A
∼
 B.

(3)⇒ (2) Since A and B are dg P-algebras, they satisfy BιA ∼= BκA. By Proposi-

tion 11.4.11, an∞-quasi-isomorphismA
∼
 B induces a quasi-isomorphism

ΩκBκA
∼→ ΩκBκB of dg P-algebras. Finally, the bar-cobar resolution 11.3.8

proves
A
∼← ΩκBκA

∼→ ΩκBκB
∼→ B .

�
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Let P be an operad, that is with trivial differential. A P-algebra A is called
formal , when A and the P-algebra H(A) of Proposition 6.3.10 satisfy the above
theorem.

Proposition 11.4.15. Let P be a Koszul operad and let A be a P-algebra. If the
higher Massey products on H(A) vanish, then A is formal.

Proof. It is proved by the∞-quasi-isomorphism i∞ : A
∼
 H(A) of Theorem 10.3.15.

�

11.5. Résumé

Twisting morphism for P-algebras. Let α : C → P be an operadic twist-
ing morphism, let C be adg C-coalgebra C, and let A be a dg P-algebra A

Twisting morphism with respect to α, Twα(C,A):
solution ϕ ∈ Hom(C,A) to the Maurer-Cartan equation

∂(ϕ)− ?α(ϕ) = 0 .

Bar and Cobar construction for P-algebras. There is a pair of adjoint
functors

Ωα : {conil. dg C-coalgebras}
 {dg P-algebras} : Bα,

which represent the twisting morphism bifunctor

HomdgP-alg (ΩαC, A) ∼= Twα(C, A) ∼= Homdg C-coalg (C, BαA) .

Bar-Cobar Resolution.

α ∈ Kos(C,P) ⇐⇒ εα : ΩαBαA
∼−→ A ⇐⇒ υα : C

∼−→ BαΩαC .

Homotopy theory of homotopy P-algebras. Let P be a Koszul operad.
The twisting morphisms κ and ι induce the following diagrams.

P P ¡κoo

ι

{{wwwwwwwwwwwwww

P∞ = ΩP ¡

∼

OO dg P-alg
� _

�

Bκ

/ dg P ¡
-coalg

Ωκo

Ωι

xrrrrrrrrrrrrrrrrrrrr

P∞-alg

Bι

8rrrrrrrrrrrrrrrrrrrr

� _

�

∞-P∞-alg
∼=

B̃ι

//

ΩκB̃ι

F

quasi-free P ¡
-coalg

?�

O

Bar-Cobar Resolution of P-algebras.

εκ : ΩκBκA ∼= P(P
¡
(A))

∼−→ A .

Bar-Cobar Resolution of P∞-algebras.

ει : ΩιBιA ∼= P∞(P
¡
(A))

∼−→ A .
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Proposition.
The following functors are adjoint to each other.

ΩκB̃ι : ∞-P∞-alg 
 dg P-alg : i

Theorem.
The counit of this adjunction

A
∼
 ΩκBιA.

provides a natural and universal rectification for homotopy P-algebras.

Homotopy class of a P∞-algebra.

(H, 0, transferred structure) ∼ (A, dA, ϕ) ∼ (ΩκB̃ιA, d,P-algebra structure) .

Theorem.
Ho(P-alg) ∼= Ho(∞-P-alg) ∼= Ho(∞-P∞-alg) .

Theorem.
The following assertions are equivalent

� ∃ A
∼← • ∼→ • ∼← • · · · • ∼→ B,

� ∃ A
∼← • ∼→ B,

� ∃ A
∼
 B.

11.6. Exercises

11.6.1. Lie<k>-interpretation of twisting morphisms with respect to
k-ary (co)operads. Let P = P(E,R) be a quadratic operad generated by k-
ary operations, with the integer k fixed. Interpret the Maurer-Cartan equation
∂(ϕ)− ?κ(ϕ) = 0 in term of a Maurer-Cartan equation

∂(s−1ϕ) +
1

k!
[s−1ϕ, . . . , s−1ϕ] = 0

in a dg Lie<k>-algebra, see 13.11.6 for a definition.

11.6.2. Relative composite product. Prove the isomorphism (M ′ ◦ P) ◦P
N ∼= M ′ ◦ N for the relative composite product where M = M ′ ◦ P is a free
P-module.

Dually, prove the isomorphism (M ′◦C)◦CN ∼= M ′◦N for the relative composite
product where M = M ′ ◦ C is a cofree C-comodule.

11.6.3. Bar-cobar adjunction. Prove that Twα(C,−), Twα(−, A), Bα and
Ωα are indeed functors. Show that the bijections given in Proposition 11.3.2 are
natural.

11.6.4. Bar-cobar resolutions. When P is a Koszul operad, prove that the

two resolutions ε : P ◦ P ¡
(A)

∼−→ A and επ : P ◦ BP(A)
∼−→ A are homotopy

equivalent.

11.6.5. Quasi-isomorphisms vs weak equivalences. Let P be a Koszul

operad such that P(1) = I. Prove that weak equivalences of dg P ¡
-coalgebras form

a strict sub-class of quasi-isomorphisms.





CHAPTER 12

(Co)homology of algebras over an operad

“Les mathématiques ne sont pas une
moindre immensité que la mer.”
Victor Hugo

Given an algebra A over a quadratic operad P, one can construct a chain
complex CP• (A) := (P ¡(A), d) out of the Koszul dual cooperad P ¡, whence homology
groups HP• (A). On the other hand, there is a general theory called André-Quillen
(co)homology theory, which provides homological invariants for an algebra over an
operad. It plays a role in many classification problems, like for instance deformation
theory. We show that, when P is Koszul, the operadic homology coincides with
André-Quillen homology, thus providing a small explicit complex to compute it.

In this chapter, we introduce the André-Quillen cohomology and homology of
algebras over an operad. The classical method in homological algebra to define
(co)homology theories is to use the notion of derived functors between abelian
categories. Since the various categories involved here are not abelian, we have
to use the general framework of model categories, Quillen adjunctions and total
derived functors, recalled in Appendix B.6. Thanks to this conceptual approach,
we can compute the associated (co)homology groups with any cofibrant resolution.
We use the resolutions provided by the Koszul duality theory and made explicit in
the previous chapter.

In the first section, we consider the Quillen homology of algebras with trivial
coefficients. It is defined conceptually by deriving the non-abelian functor of inde-
composable elements. When the underlying operad is Koszul, the Quillen homology
is equal to the homology of the bar construction of the algebra. This gives yet an-
other way to prove that an operad is Koszul: one has just to check whether the
homology of the bar construction of the free algebra is trivial, see Ginzburg and
Kapranov [GK94] and Getzler and Jones [GJ94].

The deformation theory of algebras over an operad is the subject of the second
section. It is governed by the convolution dg Lie algebra

g :=
(
HomS(P

¡
,EndA), [ , ], ∂

)
,

introduced in 10.1.2. First, the set of P-algebra structures on a space A is in
one-to-one correspondence with the set of Maurer-Cartan elements of g. Then,
given such an element, one can twist this dg Lie algebra to obtain another one.
Maurer-Cartan elements in this twisted dg Lie algebra correspond to deformations
of the original structure. The underlying cochain complex of the twisted dg Lie
algebra is called the deformation complex. Its cohomology groups are isomorphic

345
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to the André-Quillen cohomology of the P-algebra A with coefficients into itself.
The particular case of associative algebras, as treated by Gerstenhaber in [Ger63],
serves as a paradigm for this general theory. This treatment applies as well to study
the deformation theory of P∞-algebras.

In the last section, we give the complete definition of André-Quillen cohomol-
ogy and homology of algebras over an operad after Hinich [Hin97] and Goerss and
Hopkins [GH00]. It follows the method used by Quillen in [Qui70] and André in
[And74] defining the (co)homology theory of commutative algebras, but extended
to any category of algebras over an operad. It involves several general construc-
tions like the enveloping algebra, the module of Kähler differential forms and the
cotangent complex for example. This latter plays a key role since it represents the
André-Quillen cohomology theory.

This chapter mainly comes from Ginzburg-Kapranov [GK94], Getzler-Jones
[GJ94], Hinich [Hin97], Balavoine [Bal97, Bal98], Goerss-Hopkins [GH00], Millès
[Mil08], and Fresse [Fre09b].

12.1. Homology of algebras over an operad

In this section, we introduce the homology of an algebra over an operad, with
trivial coefficients. When the governing operad P is quadratic, we define the op-
eradic homology of P-algebras by an explicit chain complex made out of the Koszul
dual cooperad. For any augmented operad P, we define the Quillen homology of
P-algebras by a total derived functor. We show that the operadic homology is equal
to the Quillen homology if and only if the operad is Koszul.

This section comes from Ginzburg-Kapranov [GK94] and from Getzler-Jones
[GJ94], see also Livernet [Liv98a].

12.1.1. Operadic chain complex of a P-algebra. For any homogeneous
quadratic operad P = P(E,R) and any P-algebra A, we consider the chain complex
given by the bar construction of A

CP• (A) := BκA = (P
¡
◦κ P) ◦P A ∼= (P

¡
(A), d).

By definition, it forms a dg P ¡
-coalgebra. Recall from Section 11.2.2 that the

differential map d = d2 is the unique coderivation which extends the composite of

the twisting morphism κ : P ¡ → P with the product γA of A. It is explicitly given
by the following composite

P
¡
(A) = P

¡
◦A

∆(1)◦IdA−−−−−−→ (P
¡
◦(1) P

¡
) ◦A

(Id◦(1)κ)◦IdA−−−−−−−−−→

(P
¡
◦(1) P) ◦A� P

¡
◦ P ◦A Id◦γA−−−−→ P

¡
◦A = P

¡
(A).

When E and A are concentrated in degree 0, the homological degree of P ¡ (n)

is n and the chain complex has the following form

CP• (A) : · · · → P
¡ (3)

(A)→ P
¡ (2)

(A)→ P
¡ (1)

(A)→ A.

In low degree, we have explicitly,

· · · → s2R(A)→ sE(A)→ A.
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This definition extends into two directions: to dg P-algebras (A, dA) and to
inhomogeneous quadratic operads P, satisfying the conditions (ql1) and (ql2) of
7.8. In this case, the differential map in the bar construction is the sum of several
terms, as explained in 11.2.2.

Proposition 12.1.2. If the operad P = P(E,R) is binary and quadratic, then the
Koszul complex CP• (A) of the P-algebra A is

CPn (A) = P ¡(n+ 1)⊗Sn+1
A⊗n+1 ,

with differential

d(δ ⊗ (a1, . . . , an+1)) =∑
ξ ⊗ (aσ−1(1), . . . , aσ−1(i−1), µ(aσ−1(i), aσ−1(i+1)), aσ−1(i+2), . . . , aσ−1(n+1))),

for ∆(1)(δ) =
∑

(ξ; id, . . . , id, µ, id, . . . , id;σ), δ ∈ P ¡(n+ 1), ξ ∈ P ¡(n), µ ∈ P ¡(2) =
E, and σ ∈ Sn+1.

Proof. Since P is binary, the infinitesimal decomposition map splits the n + 1-

cooperation δ of P ¡
into an n-cooperation and a binary cooperation of P ¡

. By κ
this latter cooperation is viewed as a binary operation of P. The sum is over all
these possibilities of splitting. �

Example. In the case of the operad As encoding associative algebras, we
recover the Hochschild chain complex introduced in 9.1.11.

12.1.3. Operadic homology of a P-algebra. By definition, the homology
of the chain complex CP• (A) is called the operadic homology of the P-algebra A
and we denote the homology groups by HP• (A).

Proposition 12.1.4. For any quadratic operad P and any dg P-algebra A, the

operadic homology HP• (A) of A is a graded P ¡
-coalgebra. Equivalently HP•+1(A) is

a graded P !-coalgebra.

Proof. Since the chain complex CP• (A) is a dg P ¡
-coalgebra, its homology is a

graded P ¡
-coalgebra. The second statement follows from Section 7.2.3. �

Let P be an augmented operad P = I⊕P and let A be a P-algebra. The space
of indecomposable elements of A is the cokernel of

γA : P(A)→ A .

We denote it by Indec(A). For instance, the indecomposable elements of the free
P-algebra P(V ) is equal to the generating space V . When P is binary, we have
Indec(A) = A/A2, where A2 := γ(E(2)⊗A⊗2), since any product of elements of A
is an iterated composition of binary operations.

Proposition 12.1.5. For any quadratic operad P and for any P-algebra A, we
have HP0 (A) = Indec(A).

Proof. It comes from the explicit form of the operadic complex given above. �

This homology theory permits us to rephrase the Koszul property of an operad.
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Theorem 12.1.6. Let K be a field of characteristic zero. A quadratic operad P
is Koszul if and only if, for any vector space V , the operadic homology of the free
P-algebra P(V ) is equal to

HPn (P(V )) =

{
0 if n ≥ 1
V if n = 0.

Proof. The bar construction of a free P-algebra P(V ) is equal to

CP• (P(V )) = BκP(V ) = (P
¡
◦κ P) ◦ V .

We conclude with Corollary 6.2.6, which states that H•((P
¡ ◦κ P) ◦ V ) = V if and

only if H•(P
¡ ◦κ P) = I. �

This result provides a method to prove that an operad is Koszul. Several
examples are made explicit in 13.

Remark. Recall that the Koszul duality theory for operads holds over a ring of
positive characteristic [Fre04]. In this case, if the operadic homology of any free P-
algebra is concentrated in degree 0, then the operad is Koszul (see Proposition 5.3.5.
of loc. cit.). But the converse is does not hold true because of torsion phenomenon.
For instance Harrison homology of free commutative algebras is not always trivial
in positive characteristic, see Barr [Bar68] and Harrison [Har62]. But the operad
Com is Koszul in positive characteristic, by the rewriting method 8.3, for instance.

12.1.7. Quillen homology of a P-algebra. To give a conceptual definition
of the homology of a P-algebra, we apply to operads, the same method as the one
which defines the Tor functors of modules over an associative algebra, see B.7.2.
However, since we work in a non-additive setting, we need to use the formalism of
model categories: total derived functors and cofibrant objects, see B.6. We show
that it coincides with the previous operadic homology when the operad P is Koszul.

Let f : P → Q be a morphism of operads. The pull back along f defines a
functor f∗ : dg Q-alg→ dg P-alg.

Lemma 12.1.8. The functor f! : dg P-alg → dg Q-alg, given by the relative
composite product f!(A) := Q ◦P A is left adjoint to f∗.

f! : dg P-alg
 dg Q-alg : f∗

Proof. The proof is left to the reader as a good exercise. �

The notation f! is common in the literature and should not be confused with
any Koszul dual.

In general, neither the category of dg P-algebras nor the functor f! are additive,
therefore we cannot try to derive it in the classical sense. Instead, we have to
consider its total derived functor à la Quillen, see B.7.3. Under some assumptions,
for instance when the ground ring K is a characteristic 0 field, the two categories of
dg algebras can be endowed with model category structures, see Proposition B.6.12,
and the aforementioned adjunction is a Quillen functor. So the two functors can
be derived to induce the following adjunction

Lf! : Ho(dg P-alg)
 Ho(dg Q-alg) : Rf∗ .
We apply these results to the augmentation map ε : P → I of an augmented

operad P. In this case, the functor ε∗ : dg ModK → dg P-alg amounts just to
restricting the action to the scalars. Its left adjoint ε! : dg P-alg → dg ModK is
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equal to ε!(A) := I ◦P A = Indec(A), the space of indecomposable elements of the
P-algebra A.

The Quillen homology of a dg P-algebra A is defined as being the homology
H•(L Indec(A)) of the total left derived functor of the indecomposable elements
functor.

As usual, one computes it as the homology H•(Indec)(R)), for any cofibrant

replacement R
∼−→ A of the dg P-algebra A. Recall from 11.3.5 that, when the

operad P is Koszul, the bar-cobar construction ΩκBκA, associated to the Koszul
morphism κ, provides a functorial quasi-free resolution for dg P-algebras A.

Theorem 12.1.9. Let P be a Koszul operad over a field K of characteristic 0. For
any dg P-algebra A, the operadic homology of A is equal to its Koszul homology

H•(L Indec(A)) = HP• (A) .

Proof. It is enough to prove that the resolution

ΩκBκA = (P ◦κ P
¡
◦κ P) ◦P A

∼−→ A

is cofibrant. One considers the filtration on P ¡
(A) given by the weight of P ¡

. It is
straightforward to see that the boundary map lowers the weight filtration. So this
dg P-algebra is quasi-free and triangulated, according to the terminology of B.6.9.
Therefore, it is cofibrant. �

Remark. Recall from 11.3.5 that

ΩπBπA = (P ◦π BP ◦π P) ◦P ◦A
∼−→ A

is always a quasi-free resolution of A. Among graded P-algebras A, i.e. with trivial
differential, the dg P-algebra ΩπBπA provides a functorial cofibrant replacement.
To prove it, it is enough to consider the filtration on (BP)(A) given by the numbers
of elements of P, see Section B.6.9. This resolution gives an explicit chain complex
which computes the Quillen homology of graded P-algebras, even when the operad
P fails to be Koszul.

Moreover, the converse of the above theorem is also true.

Proposition 12.1.10. Let P be a quadratic operad over a field K of characteris-
tic 0. If the operadic homology of any graded P-algebra A is equal to its Koszul
homology

H•(L Indec(A)) = HP• (A) ,

then the operad P is Koszul.

Proof. We apply the assumption to the free P-algebra P(V ) and we compute its
operadic homology with the aforementioned bar-cobar construction ΩπBπP(V ). It
is equal to H•(BP ◦π P)(V ) = V . We conclude with Theorem 12.1.6. �

12.1.11. Operadic homology of a P∞-algebra. In the same way, we define
the operadic homology of a P∞-algebra A by the homology of its bar construction

HP∞• (A) := H•(BιA) .
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Recall from 11.2.2, that the bar construction BιA of a P∞-algebra A is the dg

P ¡
-coalgebra

BιA = (P
¡
◦ι P∞) ◦P∞ A = (P

¡
(A), d) .

Over a field of characteristic 0 and over non-negatively graded dg modules, it
computes the Quillen homology of P∞-algebras, which is defined as the homology
of the derived functor of the indecomposable functor. This uses the model category
structure on the category P∞-alg of P∞-algebras with “strict” morphisms. Notice
that we do not need P to be a Koszul operad to obtain these results.

12.2. Deformation theory of algebra structures

In this section, we use the convolution dg Lie algebra

g :=
(
HomS(P

¡
,EndA), [ , ], ∂

)
introduced in 10.1.2 to study the deformation theory of P-algebra and P∞-algebra
structures. We use the general framework of deformation theory associated to a dg
Lie recalled in 13.2.20. First, we study the case of P-algebra structures: moduli
space, deformation complex, deformation functor, infinitesimal and formal defor-
mations. Since all the proofs are based on general arguments using “Lie calculus”
in the convolution dg Lie algebra, we show that they extend mutatis mutandis to
the P∞-algebra case.

The deformation theory of algebraic structures was initiated by Murray Ger-
stenhaber on the level of associative algebras in [Ger63, Ger64]. It was extended
to Lie algebras by Nijenhuis and Richardson [NR66, NR67]. The case of algebras
over a binary quadratic operads was treated by Balavoine in [Bal97].

For more details and applications on the deformation theory of algebraic struc-
tures, we refer the reader to the book of Kontsevich and Soibelman [KS10] and to
the survey of Keller [Kel05].

12.2.1. Moduli space of P-algebra structures. Recall that in 10.1.2, we
have associated a convolution dg Lie algebra

g = gP,A :=
(
HomS(P

¡
,EndA), [ , ], ∂

)
.

to any a pair (P, A), where P = P(E,R) is a quadratic operad and where A is
a dg K-module. When A is concentrated in degree 0, we consider the following
cohomological degree on g induced by the weight grading

Hom(A,A)
∂−→ HomS(P ¡ (1)

,EndA)
∂−→ HomS(P ¡ (2)

,EndA) · · · ,

0 1 2

where HomS(I,EndA) is identified with Hom(A,A). The coboundary map ∂ is null
when the operad P is homogenous quadratic and is equal to the pullback of the

differential of P ¡
in the inhomogenous case. Under this convention of grading, g

becomes a cohomological dg Lie algebra. Its set MC(g) of degree 1 elements ϕ,
which satisfy the Maurer-Cartan equation ∂(ϕ) + 1

2 [ϕ,ϕ] = 0, is in one-to-one cor-
respondence with the set of P-algebra structures on A by Proposition 10.1.7.
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A finer object to study is the coset of P-algebra structures on A modulo iso-
morphisms. It is called the moduli space of P-algebra structures on A and denoted
by P-alg(A)/ ∼. Let us now apply the general deformation theory associated to a
dg Lie algebra, as recalled in 13.2.20. The degree 0 Lie subalgebra is here equal to
g0 = Hom(A,A) = gl(A). Its Lie group, under proper hypotheses, is the general
Lie group GL(A). It acts on the set of Maurer-Cartan elements to give the moduli
space

MC (gP,A) := MC(gP,A)/GL(A) .

Proposition 12.2.2. Over the field C of complex numbers, for any quadratic op-
erad P and any finite dimensional module A, there is a natural bijection of moduli
spaces

MC (gP,A) ∼= P-alg(A)/ ∼ .

Proof. By definition of the gauge group action, two Maurer-Cartan elements ϕ and
ψ are equivalent if and only if there exists a λ ∈ Hom(A,A) such that ψ = eadλ(ϕ)

in HomS(P ¡ (1)
,EndA). A short computation shows that this is equivalent to ψ(µ) =

eλ ◦ ψ(µ) ◦ (e−λ, . . . , e−λ) in Hom(A⊗m, A) , for any µ ∈ P ¡ (1)
(m). It means that

there exists f = eλ ∈ GL(A) such that ψ(µ) ◦ (f, . . . , f) = f ◦ ϕ(µ), that is f is an
isomorphism of P-algebras. �

The set of P-algebra structures on a module A carries the following geometrical
structure.

Proposition 12.2.3. When the spaces P ¡ (1)
= sE and A are finite dimensional,

the set of P-algebra structures MC(g) is an algebraic variety in the affine space

g1 = HomS(P ¡ (1)
,EndA), which is an intersection of quadrics.

Proof. Under these assumptions, the vector space of g1 = HomS(sE,EndA) is finite
dimensional. We conclude with Proposition 13.2.21. �

As a quotient, the moduli space MC (gP,A) might be a singular space. In
general, it forms an algebraic stack.

12.2.4. Deformation complex of a P-algebra. Given any P-algebra struc-
ture ϕ ∈ MC(g) on A, we associate its deformation complex given by the cochain
complex (

HomS(P
¡
,EndA), ∂ϕ

)
,

where ∂ϕ(f) := ∂(f) + [ϕ, f ] is the twisted differential introduced in 6.4.9.
The homology groups of the deformation complex are often called the tangent

homology. Later in 12.2.12, we will explain why the homology of the deformation
complex can be interpreted as the tangent space at point ϕ of the algebraic stack
MC (gP,A).

12.2.5. Intrinsic Lie bracket. Before analyzing the associated cohomology
groups, let us recall that, by its very definition, the deformation complex carries a
Lie bracket. It is called the intrinsic Lie bracket by Stasheff in [SS85, Sta93].

Proposition 12.2.6. The deformation complex forms a dg Lie algebra

gϕ = gϕP,A :=
(
HomS(P

¡
,EndA), [ , ], ∂ϕ

)
.
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Proof. See Proposition 6.4.10. �

Proposition 12.2.7. For any P-algebra structure ϕ ∈ MC(g) on A, the following
equivalence holds

α ∈ MC(gϕ)⇐⇒ α+ ϕ ∈ MC(g) .

Proof. Under ∂(ϕ)+ 1
2 [ϕ,ϕ] = 0, the equation ∂(α)+[ϕ, α]+ 1

2 [α, α] = 0 is equivalent

to ∂(α) + ∂(ϕ) + 1
2 [α+ ϕ, α+ ϕ] = 0. �

The sum α+ ϕ of two P-algebra structures on A is not in general a P-algebra
structure. This proposition shows that α + ϕ is indeed a P-algebra structure on
A if and only if α is a Maurer-Cartan element in the twisted convolution dg Lie
algebra gϕ.

Equivalently, the algebraic variety MC(gϕ) is the translation under −ϕ of
MC(g) in the affine space g1.

12.2.8. Deformation complex of associative algebras. The convolution
dg Lie algebra associated to the non-symmetric operad As has already been made
explicit in 10.1.10. In the case where the dg module A is concentrated in degree 0,
it coincides with the Hochschild cochain complex of A with coefficients into itself,
endowed with the Lie bracket defined by Gerstenhaber in [Ger63].

When the non-symmetric operad P = As, the Koszul dual ns cooperad As
¡

is
one-dimensional in each arity, so the underlying graded module of the deformation
complex is

gAs,A = Hom(As
¡
,EndA) ∼= {Hom(A⊗n, A)}n∈N∗ ,

where Hom(A⊗n, A) lies in cohomological degree n − 1. The intrinsic Lie bracket
is equal to

[f, g] =

n∑
i=1

(−1)(i−1)(m−1)f ◦i g − (−1)(n−1)(m−1)
m∑
j=1

(−1)(j−1)(n−1)g ◦j f

for f ∈ Hom(A⊗n, A) and g ∈ Hom(A⊗m, A). Since the operad As and the dg
module A are concentrated in degree 0, the cohomological degree considered here
is the opposite of the homological degree considered in 10.1.10. Therefore the signs
are the same and this Lie bracket is equal to the one defined by Gerstenhaber in
[Ger63].

An element µ ∈ Hom(A⊗2, A) satisfies the Maurer-Cartan equation if and only
if it is associative

[µ, µ] =
( �� ����

???? −
??����

????
)

+
( �� ����

???? −
??����

????
)

= 2
( �� ����

???? −
??����

????
)

= 0 ,

when the characteristic of the ground field is not equal to 2.
Given such an associative product µ, the twisted differential ∂µ on

Hom(A,A)
∂µ−→ Hom(A⊗2, A)

∂µ−→ Hom(A⊗3, A) · · · ,

0 1 2
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is equal to

∂µ(f) := [µ, f ] =

====
����

f

====

����� + (−1)n−1

====
����

88888 f

���� − (−1)(n−1)
n∑
j=1

(−1)j−1

AAAA

}}}}

JJJJJJ
j

tttttt

f

for f ∈ Hom(A⊗n, A). Up to a factor (−1)n−1, we recover the differential map

(df)(a1, . . . , an+1) = a1.f(a2, . . . , an+1)

+

n∑
j=1

(−1)jf(a1, . . . , aj .aj+1, . . . , , an+1)

+(−1)n+1f(a1, . . . , an).an+1

of the Hochschild cochain complex C•(A,A), see ??.
In the case of the operad Lie, we recover the Chevalley-Eilenberg cochain com-

plex together with the Nijenhuis-Richardson bracket. For more details, we refer the
reader to Exercise 12.6.2.

12.2.9. Deformation of P-algebra structures. Let R be a local com-
mutative algebra (or ring) with maximal ideal m and with residue field K, i.e.
R ∼= K⊕ m. Later on we will work in details the case of the algebra of dual num-
bers R = K[t]/(t2) and the case of the algebra of formal power series R = K[[t]].

Extending the scalars, one can consider operads and algebras in the symmetric
monoidal category (ModR,⊗R,R) of R-modules. Any S-module M in the category
of K-modules extends to an S-module

M ⊗K R := (M(0)⊗K R,M(1)⊗K R, . . .)

in the category of R-modules. When (P, γ, ι) is a K-linear operad, then P ⊗K R is
endowed with the following R-linear operad structure

(µ⊗ r; ν1 ⊗ r1, . . . , νk ⊗ rk) 7→ γ(µ; ν1, . . . , νk)⊗ rr1. . . . rk .

For instance, any K-linear quadratic operad P = P(E,R) extends to an R-linear
quadratic operad P ⊗K R ∼= P(E ⊗K R, R ⊗K R) since the composition map of
operads is R-linear in the latter case. From now on and as usual, we simplify the
notation ⊗K into ⊗.

In the same way, the extension of scalars provides an R-module A⊗R, whose
endomorphism operad is equal to

EndA⊗R =
{

HomR((A⊗R)⊗Rn, A⊗R)
}
n∈N

∼=
{

HomK(A⊗n, A)⊗R
}
n∈N
∼= EndA ⊗R

by R-linearity.

Lemma 12.2.10. The convolution dg Lie algebra gP⊗R,A⊗R is isomorphic to the
R-linear extension of the convolution dg Lie algebra gP,A

gP⊗R,A⊗R ∼= gP,A ⊗R =
(
HomS(P

¡
,EndA)⊗R, [ , ], ∂

)
.
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Proof. We have seen that the operad P⊗R is equal to the R-linear quadratic operad
P(E ⊗R, R ⊗R). Its Koszul dual cooperad C(sE ⊗R, s2R ⊗R) is isomorphic to

C(sE, s2R)⊗R = P ¡ ⊗R by R-linearity.
By definition, the convolution dg Lie algebra gP⊗R,A⊗R is made up of R-

linear Sn-equivariant morphisms from (P ⊗R)
¡
(n) to HomR((A⊗R)⊗Rn, A⊗R).

Such morphisms are equivalent to K-linear Sn-equivariant morphisms from P ¡
(n)

to Hom(A⊗n, A)⊗R, which concludes the proof. �

Recall that the tensor product of a dg Lie algebra with a commutative algebra
is endowed with a dg Lie algebra structure, where [α⊗X,β ⊗ Y ] := [α, β]⊗XY .

In the other way round, one recovers g from g ⊗ R ∼= g ⊕ g ⊗ m by reducing
modulo m: g ∼= (g⊗K R)⊗R K.

Let ϕ ∈ MC(g) be a P-algebra structure on A. An R-deformation of ϕ is an
R-linear P ⊗R-algebra structure on A⊗R, that is Φ ∈ MC(g⊗R), which reduces
to ϕ modulo m. We denote by Defϕ(R) the set of R-deformations of ϕ.

When m2 = 0, the associated deformations are called infinitesimal deforma-
tions. The paradigm of infinitesimal deformation is the one-parameter case given
by the algebra of dual numbers D = K[t]/(t2).

When the local algebra R is complete, i.e. when R is equal to the limit R =
lim←−R/mn, the associated deformations are called formal deformations. The one-

parameter case is given by the algebra of formal power series K[[t]].

Any P-algebra structure ϕ ∈ MC(g) admits a trivial R-deformation ϕ + 0 ∈
MC(g ⊗ R), which corresponds to the trivial R-linear extension of the P-algebra
structure. The following result shows that the R-deformations of ϕ are controlled
by the dg Lie algebra gϕ ⊗m.

Proposition 12.2.11. For any P-algebra structure ϕ on A, its set of R-deformations
is naturally in bijection with the set of Maurer-Cartan elements in the dg Lie algebra
gϕ ⊗m:

Defϕ(R) ∼= MC(gϕ ⊗m) .

Proof. Since ϕ + 0 ∈ MC(g ⊗R), Proposition 12.2.7 shows that Φ = ϕ + Φ̄, with
Φ̄ ∈ g1 ⊗ m, is in MC(g ⊗ R) if and only if Φ̄ belongs to MC((g ⊗ R)ϕ+0). This
condition is equivalent to Φ̄ ∈ MC(gϕ ⊗m). �

An R-deformation Φ is equivalent to another R-deformation Ψ if there exists an
R-linear isomorphism of P⊗R-algebras (A⊗R,Φ)→ (A⊗R,Ψ), whose restriction
modulo m is equal to the identity of (A,ϕ). Notice that it forms an equivalence
relation denoted Φ ∼ Ψ. The associated deformation functor is denoted by

Defϕ(R) := Defϕ(R)/ ∼ .

12.2.12. Infinitesimal deformations and tangent homology. In this sec-
tion, we consider the case of the algebra of dual numbers R = D = K[t]/(t2).

In this case, a (one-parameter) infinitesimal deformation of ϕ is an element of
the form Φ = ϕ+ ϕ1t in g1 ⊕ g1 ⊗ t. By Proposition 12.2.11, this latter element is
an infinitesimal deformation if and only if

∂(ϕ1)t+ [ϕ,ϕ1]t+
1

2
[ϕ1, ϕ1]t2 = (∂(ϕ1) + [ϕ,ϕ1])t = ∂ϕ(ϕ1) = 0 .
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So the set of infinitesimal deformations of ϕ is canonically in bijection with the set
of 1-cocyles in gϕ.

Two infinitesimal deformations Φ = ϕ+ ϕ1t and Ψ = ϕ+ ψ1t are equivalent if
and only if there exists an isomorphism of P ⊗D-algebras, whose restriction to A
reads

f = IdA + f1t : A→ A⊕A⊗ t .
Notice that an R-linear endomorphism f = IdA + f1t : A→ A⊕A⊗ t of A⊗R is
always an isomorphism with inverse IdA−f1t. So the condition for the deformations
Φ and Ψ depends only on the endomorphism f1 ∈ Hom(A,A) as follows.

Theorem 12.2.13. There are canonical bijections

Defϕ(K[t]/(t2)) ∼= Z1(gϕ) and Defϕ(K[t]/(t2)) ∼= H1(gϕ) .

Proof. An endomorphism f1 ∈ Hom(A,A) induces a morphism of P ⊗D-algebras
f = IdA + f1t if and only if the following diagram commutes

µ ∈ sE = P ¡ (1) � Φ //
_

Ψ

��

ϕ(µ) + ϕ1(µ)t ∈ EndA⊗D_

f∗

��
ϕ(µ) + ψ1(µ)t ∈ EndA⊗D � f∗ // ϕ(µ)+(ϕ1(µ)+f1◦ϕ(µ))t=

ϕ(µ)+(ψ1(µ)+
∑
ϕ(µ)◦(IdA⊗···⊗f1⊗···⊗IdA))t

for any µ ∈ sE and where the last sum runs over all the possible positions of f1. If
µ ∈ sE(m), then ϕ(µ) ∈ Hom(A⊗m, A). Therefore, it is equivalent to

ϕ1(µ)− ψ1(µ) = −f1 ◦ ϕ(µ) +
∑

ϕ(µ) ◦ (IdA ⊗ · · · ⊗ f1 ⊗ · · · ⊗ IdA) .

It remains to show that the right hand side is equal to ∂ϕ(f1)(µ). By definition,
this latter element is equal to

∂ϕ(f1) : P
¡ (1) ∆(1)−−−→ I ◦ P

¡ (1)
⊕ P

¡ (1)
◦(1) I

−f1◦ϕ+ϕ◦(1)f1−−−−−−−−−−→ EndA .

This concludes the proof. �

When t tends to 0, any infinitesimal deformation ϕ + ϕ1t tends to ϕ in the
direction given by ϕ1. With the aforementioned results, this explains why Z1(gϕ)
can be interpreted as the tangent space at ϕ of the algebraic variety MC(g) and
why H1(gϕ) can be interpreted as the tangent space at ϕ of the algebraic stack
MC (g). For more details on this interpretation, we refer the reader to [CFK01].

12.2.14. Formal deformations. Let us now work with R = K[[t]] and (one-
parameter) formal deformations Φ = ϕ +

∑
n≥1 ϕnt

n, where each ϕn ∈ g1, for

n ≥ 1. Denoting Φ̄ :=
∑
n≥1 ϕnt

n, Proposition 12.2.11 shows that Φ is a formal
deformation if and only if

∂(Φ̄) + [ϕ, Φ̄] +
1

2
[Φ̄, Φ̄] = 0 .

By t-linearity, this latter equation is equivalent to the following system

∂(ϕn) + [ϕ,ϕn] +
1

2

n−1∑
k=1

[ϕk, ϕn−k] = 0, for n ≥ 1 .
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For n = 1, it gives ∂(ϕ1)+[ϕ,ϕ1] = 0, that is ϕ1 is a 1-cocyle of gϕ. More generally,
the first non-trivial element ϕk of a formal deformation ϕ +

∑
n≥k ϕnt

n of ϕ is a
1-cocyle of gϕ. For n ≥ 2, it can be rewritten as

∂ϕ(ϕn) = −1

2

n−1∑
k=1

[ϕk, ϕn−k] .

Theorem 12.2.15 (Obstructions). If H2(gϕ) = 0, then any 1-cocycle of gϕ extends
to a formal deformation of ϕ.

Proof. It is enough to prove that, for any n ≥ 2, if ϕ ∈ MC(g) and if ϕ1, . . . , ϕn−1 ∈
g1 satisfy the above equations up to n − 1, then the element

∑n−1
k=1 [ϕk, ϕn−k] is a

2-cocyle in gϕ.
Since ∂ϕ is a derivation with respect to the Lie bracket, we have

∂ϕ

(
n−1∑
k=1

[ϕk, ϕn−k]

)
=

n−1∑
k=1

[∂ϕ(ϕk), ϕn−k]− [ϕk, ∂ϕ(ϕn−k)]

= 2

n−1∑
k=1

[∂ϕ(ϕk), ϕn−k] .

Using the equations satisfied by the element ϕk, we get

∂ϕ

(
n−1∑
k=1

[ϕk, ϕn−k]

)
= −

n−1∑
k=1

k−1∑
l=1

[[ϕl, ϕk−l], ϕn−k] =
∑

a+b+c=n,
a,b,c≥1

[[ϕa, ϕb], ϕc] ,

which vanishes by the Jacobi identity. �

In other words, the second cohomology group H2(gϕ) of the deformation com-
plex carries the obstructions to formal deformations.

An equivalence between two formal deformations is a K[[t]]-linear isomorphism
of P ⊗K[[t]]-algebras, whose first component is the identity of A. It amounts to a
family of K-linear maps

f = IdA +
∑
n≥1

fnt
n : A→ A ⊕ A⊗ t ⊕ A⊗ t2 ⊕ · · · .

Since the first component is invertible, the induced K[[t]]-linear endomorphism of
A⊗K[[t]] is always invertible, see Exercise 12.6.4. So it is an equivalence of defor-
mations if and only if it is a morphism of P ⊗K[[t]]-algebras.

Theorem 12.2.16 (Rigidity). If H1(gϕ) = 0, then any formal deformation of ϕ
is equivalent to the trivial one.

Proof. Let Φ = ϕ +
∑
n≥1 ϕnt

n be a formal deformation of ϕ. The same kind of
commutative diagram as in the proof of Theorem 12.2.13 shows that f = IdA +∑
n≥1 fnt

n is an equivalence between the deformation Φ and the trivial deformation

ϕ+ 0 if and only if for any µ ∈ sE(m)∑
k,l≥0

fk ◦ ϕl(µ) tk+l =
∑

i1,...,im≥0

ϕ(µ) ◦ (fi1 ⊗ · · · ⊗ fim) ti1+···+im ,



12.2. DEFORMATION THEORY OF ALGEBRA STRUCTURES 357

where f0 = IdA and ϕ0 = ϕ by convention. Therefore, f is an equivalence if and
only if for any n ≥ 1 and for any µ ∈ sE(m):∑

k+l=n

fk ◦ ϕl(µ) =
∑

i1+···+im=n

ϕ(µ) ◦ (fi1 ⊗ · · · ⊗ fim) .

This latter relation can be rewritten as

Θn(µ) :=

n−1∑
k=0

fk ◦ ϕn−k(µ)−
∑

i1+···+im=n
i1,...,im<n

ϕ(µ) ◦ (fi1 ⊗ · · · ⊗ fim)

= −fn ◦ ϕ(µ) +
∑

ϕ(µ) ◦ (IdA ⊗ · · · ⊗ fn ⊗ · · · ⊗ IdA)

= ∂ϕ(fn)(µ) .

We now prove by induction on n ≥ 1 that Θn ∈ HomS(P ¡ (1)
,EndA) is a 1-

cocycle, i.e. ∂ϕ(Θn) = 0. Since H1(gϕ) = 0, this will imply that there exists an
element fn ∈ Hom(A,A) such that ∂ϕ(fn) = Θn, and thus concludes the proof.

For n = 1, we have Θ1 = ϕ1, which is a 1-cocyle since Φ is a deformation of ϕ,
see above.

We suppose that the result is true up to n− 1 and we prove it at rank n. It is
a straightforward computation and we leave it to the reader. �

12.2.17. Deformation functor. To study the general case, we have to con-
sider the deformations Defϕ(R) over Artin local algebras R, see 13.2.20. In
this case, the dg Lie algebra gϕ ⊗ m becomes nilpotent. So the Lie subalge-
bra g0 admits a Lie group G, called the gauge group, which acts on the set
of Maurer-Cartan elements. This yields a Deligne groupoid and a moduli space
MC (gϕ ⊗m) := MC(gϕ ⊗m)/G.

Theorem 12.2.18. Let ϕ be a P-algebra structure on A. For any Artin local
algebra R = K⊕m, there is a natural bijection, respectively equivalence of Deligne
groupoids

Defϕ(R) = Defϕ(R)/ ∼ ∼= MC (gϕ ⊗m) := MC(gϕ ⊗m)/G .

Proof. We have already proved in Proposition 12.2.11 the bijection between the de-
formations and the Maurer-Cartan elements. Let us now prove that the equivalence
relation corresponds to the gauge group action.

Let Φ = ϕ+Φ̄ and Ψ = ϕ+Ψ̄ be two R-deformations of ϕ. Let λ ∈ Hom(A,A)⊗
m such that eλ.Φ̄ = Ψ̄ in HomS(P ¡ (1)

,EndA)⊗m. Since λ is a nilpotent element in
the associative algebra Hom(A,A)⊗m, this equality is equivalent to

(eλ.Φ̄)(µ) = eλ ◦ Φ̄(µ) ◦ (e−λ, . . . , e−λ) + eλ ◦ ϕ(µ) ◦ (e−λ, . . . , e−λ)− ϕ(µ)

= Ψ̄(µ) ,

for any µ ∈ P ¡ (1)
. Therefore, the two Maurer-Cartan elements Φ̄ and Ψ̄ are gauge

equivalent if and only if there exists λ ∈ Hom(A,A) ⊗ m such that eλ ◦ Φ(µ) =
Ψ(µ) ◦ (eλ, . . . , eλ). In this case, the two deformations Φ and Ψ are equivalent
under the R-linear isomorphism f = eλ, whose reduction modulo m is equal to
the identity on A. In the other way round, an R-linear isomorphism f = IdA + f̄
between (A⊗R,Φ) and (A⊗R,Ψ) is a morphism of P ⊗R-algebras if and only if
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f ◦Φ(µ) = Ψ(µ)◦(f, . . . , f), for any µ ∈ P ¡ (1)
. The one-to-one correspondence f ↔

λ is given by f = eλ and λ = log(IdA + f̄) in the nilpotent algebra Hom(A,A)⊗m.
We leave it to the reader to verify that this construction is natural. Notice that

here, we actually consider a functor from the category of Artin local algebras to
groupoids. �

This result shows that the dg Lie algebra gϕ faithfully encodes the deformation
problem of the P-algebra structure ϕ on A, according to the philosophy recalled in
13.2.20.

Notice that the algebra of formal power series is not an Artin algebra. One ap-
proximates its deformations by the following limit Defϕ(K[[t]]) ∼= lim←−Defϕ(K[t]/(tn)),

where K[t]/(tn) is an Artin local algebra.

12.2.19. Obstruction theory for P∞-algebra structures. At that point,
the reader might ask: how to treat the case of dg P-algebras ? what is the use of

the higher components HomS(P ¡ (n)
,EndA), for n ≥ 2 ? and why we have not used

the hypothesis that P is a Koszul operad ? The answer is: when the operad P is
Koszul, the full convolution dg Lie algebra

g =
(
HomS(P

¡
,EndA), [ , ], ∂

)
controls the deformations of the P∞-algebra structures on the chain complex (A, dA).

When (A, dA) is a chain complex, we consider the convolution dg Lie algebra
g, with the usual homological degree. Proposition 10.1.3 shows that a P∞-algebra
structure on (A, dA) is equivalent to a twisting morphism, i.e. a degree −1 Maurer-
Cartan element ∂ϕ+ 1

2 [ϕ,ϕ] = 0 in g, with vanishing component on I.
From that point, everything works mutatis mutandis as before in the P-algebra

case since we only used the properties of the convolution dg Lie algebra. For
instance, the following lemma states that the convolution dg Lie algebra g, which
controls the P∞-algebra structures shares similar properties with the convolution
dg Lie algebra gϕ ⊗K[[t]] which controls formal deformations of P-algebras.

Lemma 12.2.20. The convolution dg Lie algebra

g =
(
HomS(P

¡
,EndA), [ , ], ∂

)
.

is a weight graded Lie algebra, g =
∏
n≥0 g

(n). Its differential map is the sum of
two anti-commuting square-zero derivations, ∂ = ∂0 + ∂1, such that the first one
preserves this grading, ∂0 : g(n) → g(n), and such that the second one raises it by
one, ∂1 : g(n−1) → g(n).

Proof. Since the Koszul dual cooperad is a weight graded cooperad, the convolution

Lie algebra is a weight graded Lie algebra g(n) := HomS(P ¡ (n)
,EndA), for n ≥ 0.

The differential is the sum of the following two terms:

∂ϕ(f) = dEndA ◦ f − (−1)|f |f ◦ dP¡ .

The component ∂0(f) := dEndA ◦f preserves the weight grading and the component
∂1(f) := −(−1)|f |f ◦ dP¡ raises it by 1. �

As in 12.2.14, this result allows us to settle an obstruction theory for P∞-
algebra structures: we give below a criterion to say when a family of operations
can be extended to a full P∞-algebra structure.
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Theorem 12.2.21. Let P be a Koszul operad and let (A, dA) be a dg module.

Suppose that we are given an element ϕ1 ∈ HomS(P ¡ (1)
,EndA), such that dA is a

derivation with respect to image operations, that is ∂0(ϕ1) := dEndA ◦ ϕ1 = 0.

If H−2(HomS(P ¡ (n)
,EndA), ∂0) = 0 for n ≥ 2, then ϕ1 extends to a P∞-algebra

structure on A.

Proof. Using the above Lemma 12.2.20, the proof is similar to that of The-
orem 12.2.15. A P∞-algebra structure ϕ on A is a Maurer-Cartan element in g

of degree −1, which vanishes on I, that is ϕ =
∑
n≥1 ϕn, where ϕn ∈ g

(n)
−1 . The

Maurer-Cartan equation splits with respect to the weight grading; it is therefore
equivalent to

ξn := ∂1(ϕn−1) +
1

2

n−1∑
k=1

[ϕk, ϕn−k] = −∂0(ϕn) ,

in g
(n)
−2 , for any n ≥ 1. As in the proof of Theorem 12.2.15, one proves by induction

on n that: ξn is a ∂0-cycle and, since H−2(HomS(P ¡ (n)
,EndA), ∂0) = 0, there exists

ϕn ∈ g
(n)
−1 such that ξn = −∂0(ϕn). The induction is founded by the hypothesis of

the theorem:

∂0(ξ1) = ∂0(
1

2
[ϕ1, ϕ1]) = [∂0(ϕ1), ϕ1] = 0 .

We leave the computations to the reader as a good exercise. The details can be
found in [GCTV09, Appendix C]. �

This method was used in the case of homotopy Lie algebras in [BFLS98].
In [GCTV09], it plays also a crucial role in the proof of the Lian-Zuckerman
conjecture, which states that the BRST complex of a Vertex Operator Algebra is
endowed with a homotopy Batalin-Vilkovisky algebra structure. Notice that this
general method extends to Koszul properads as well, see [GCTV09, Appendix C],
and allows one to endow the differential forms of a closed oriented manifold with a
homotopy Frobenius bialgebra structure, see [Wil07, HM10].

12.2.22. Deformation theory of P∞-algebra structures. In this section,
we study the possible deformations of a given P∞-algebra structure. The same “Lie
calculus” holds and allows us to prove exactly the same results in the P-algebra
case. The only new point comes with the introduction of ∞-morphisms in the
definition of the equivalence relation. From that point, everything works mutatis
mutandis.

Given a P∞-algebra structure ϕ on A, we consider, as in 2.1.4, the twisted
differential ∂ϕ(f) := ∂(f)+[ϕ, f ], which squares to 0. The associated twisted chain
complex (

HomS(P
¡
,EndA), ∂ϕ

)
defines the deformation complex of the P∞-algebra (A,ϕ). Its homology groups are
again called the tangent homology and it is endowed with the same intrinsic Lie
bracket as before. Notice that when (A,ϕ) is concentrated in degree 0 and when ϕ
is a P-algebra structure on A, one recovers the deformation complex of the previous
sections.
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Proposition 12.2.23. Let P be a Koszul operad and let (A, dA) be a chain complex.
For any P∞-algebra structure ϕ ∈ MC(g) on A, the following equivalence holds

α ∈ MC(gϕ)⇐⇒ α+ ϕ ∈ MC(g) .

Proof. Same as Proposition 12.2.7. �

Let (R,m) be a local commutative algebra. An R-deformation of a P∞-algebra
(A,ϕ) is an R-linear P∞⊗R-algebra structure on A⊗R which reduces to ϕ modulo
m. The set of R-deformations of ϕ is denoted by Defϕ(R). By the preceding
proposition and Lemma 12.2.10, we still have a natural bijection

Defϕ(R) ∼= MC(gϕ ⊗m) .

The only new point comes with the following definition of the equivalence rela-
tion. First we define the notion of an R-linear ∞-morphism between two P∞ ⊗R-
algebras (A ⊗ R,Φ) and (A ⊗ R,Ψ) by R-linear extension of the arguments of
Section 10.2.

One can extend Proposition 10.2.6 as follows. Since here the source and target
spaces are the same, (A⊗R,Φ), the operator ∗ is replaced by the R-linear extension

of the preLie product in (HomS(P ¡
,EndA)⊗R, still denoted by ?:

f ? g := P
¡ ∆(1)−−−→ P

¡
◦(1) P

¡ f◦(1)g−−−−→ (EndA ⊗R) ◦(1) (EndA ⊗R)→ EndA ⊗R ,

where the last arrow stands for the composition of morphisms and the product
in the algebra R. In the same way, we replace the operator ~ by the R-linear
extension of the associative product, still denoted }:

f } g := P
¡ ∆(1)−−−→ P

¡
◦ P

¡ f◦g−−→ (EndA ⊗R) ◦ (EndA ⊗R)→ EndA ⊗R .

Finally an R-linear∞-morphism is equivalently given by an element f ∈ HomS(P ¡
,EndA)⊗

R of degree 0, such that
f ? Φ−Ψ} f = ∂(f) ,

in g−1 ⊗R.
An R-deformation Φ is equivalent to another R-deformation Ψ if there exists

an R-linear ∞-isomorphism of P∞ ⊗R-algebras (A⊗R,Φ)  (A⊗R,Ψ), whose
restriction modulo m is equal to the identity of A. By definition 10.2.8, its means
that the first component IdA/f̄ of f ,

f(0) : I→ Hom(A,A)⊗R ; id 7→ IdA + f̄ ,

is invertible in Hom(A,A) ⊗ R. We leave it to the reader to prove that such an
R-linear ∞-isomorphism admits an inverse of the same form; see Exercise 12.6.5
for more details.

In this case, this equivalence relation is denoted by Φ ∼ Ψ and the associated
deformation functor is denoted by

Defϕ(R) := Defϕ(R)/ ∼ .

Under these definitions, all the results proved in the case of P-algebras extend
to the case of P∞-algebras as follows.

Theorem 12.2.24. Let P be a Koszul operad and let ϕ be a P∞-algebra structure
on (A, dA).

� [Infinitesimal deformations] There are canonical bijections

Defϕ(K[t]/(t2)) = Z−1(gϕ) and Defϕ(K[t]/(t2)) = H−1(gϕ) .
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� [Obstructions] If H−2(gϕ) = 0, then any (−1)-cycle of gϕ extends to a
formal deformation of ϕ.

� [Rigidity] If H−1(gϕ) = 0, then any formal deformation of ϕ is equivalent
to the trivial one.

� [Deformation functor] For any Artin local algebra (R,m), there is a natural
bijection, respectively equivalence of Deligne groupoids, between

Defϕ(R) = Defϕ(R)/ ∼ ∼= MC (gϕ ⊗m) := MC(gϕ ⊗m)/G .

Proof. Mutatis mutandis, this proof is similar the previous proofs in the P-algebra
case. Therefore it is left to the reader as a good exercise.

�

12.2.25. Deformation theory of morphisms of operads. The reader would
have noticed that we have never used the particular form of the operad EndA in the
preceeding sections. Actually the aforementioned methods apply as well to study
the deformation theory of morphisms from the operad P, respectively P∞, to any
operad Q. One just has to replace EndA by Q everywhere.

For instance, an operad Q is called multiplicative when it is endowed with a
morphism of operads ϕ : Ass → Q, where Ass is the operad encoding associative
algebras. The associated deformation complex of ϕ is often called the Hochschild
cohomology of Q. This complex plays a crucial role in the solutions of the Deligne
conjecture, see [GV95, MS02].

One can consider the operad Q = Pois encoding Poisson algebras, see 13.3. It
comes equipped with a canonical morphism Ass→ Pois of operads. The associated
deformation complex is related to the rational homology of the long knots and to
Vassiliev invariants, as explained in [Tou04, Sin06, Sin09, LTV10].

12.2.26. Beyond the Koszul case. When an operad P admits a quasi-free
resolution T (C) ∼−→ P, not necessarily quadratic, there exists a convolution algebra
HomS(C,EndA), which carries an L∞-algebra in general. It is a strict dg Lie algebra
only when the resolution is quadratic. In the same way as before, this L∞-algebra
controls the deformations of homotopy P-algebra structures. For more details,
we refer the reader to Van der Laan [VdL02], Kontsevich-Soibelman [KS10] and
Merkulov-Vallette [MV09a, MV09b].

12.3. André-Quillen (co)homology of algebras over an operad

This section is the generalization to algebras over an operad of the conceptual
definition of the (co)homology of commutative algebras given by D. Quillen in
[Qui70] and M. André in [And74].

First, we define the notion of module over an algebra over an operad, which
provides the space of coefficients of this cohomology theory. We consider the space
of derivations from an algebra to such a module. It gives rise to a Quillen adjunc-
tion, that we derive to define the André-Quillen cohomology. Since the functor of
derivations is represented on the left by the module of Kähler differential forms, the
André-Quillen cohomology theory is represented by an object called the cotangent
complex.

The category of modules over an algebra A is equivalent to the category of left
modules over the enveloping algebra of A. We define the André-Quillen homology
of A with coefficients into right modules over the enveloping algebra of A.
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Throughout the section, we study the examples of the operads As, Com, and
Lie. In this way, we recover, up to a degree shift, the Hochschild (co)homology of
associative algebras, the Chevalley-Eilenberg (co)homology of Lie algebras and the
Harrison (co)homology of commutative algebras.

This section comes from V. Ginzburg and M.M. Kapranov [GK94], V. Hinich
[Hin97], D. Balavoine [Bal98], P. Goerss and M. Hopkins [GH00], J. Millès
[Mil08] and B. Fresse [Fre09b].

12.3.1. Module over a P-algebra. Let (P, γ, η) be an operad and let (A, γA)
be a P-algebra. Recall from Section 6.1.1 that to any K-module M , we associate
the following linearized version of the composite product

P ◦ (A;M) :=
⊕
n≥0

P(n)⊗Sn (
⊕

1≤i≤n

A⊗ · · · ⊗A⊗ M︸ ︷︷ ︸
ith position

⊗A⊗ · · · ⊗A) .

An A-module over P, or A-module when the operad is understood, is a K-
module M endowed with two maps

γM : P ◦ (A;M)→M and ηM : M → P ◦ (A;M) ,

satisfying the following commutative diagrams

P ◦ (P(A);P ◦ (A;M))
Id◦(γA;γM )// P ◦ (A;M)

γM

��

(P ◦ P) ◦ (A;M)

∼=

55kkkkkkkkkkkkkkkkkkkk

γ◦(Id;Id)

��
P ◦ (A;M)

γM // M

and

M
ηM //

=

%%JJJJJJJJJJJJJJ P ◦ (A;M)

γM

��
M .

A morphism of A-modules is a morphism of K-modules f : M → N which commutes
to the structure maps γM , γN and ηM , ηN . The associated category of A-modules
over P is denoted by ModPA.

The algebra A itself is the first example of an A-module.

Proposition 12.3.2.

� In the case of the (non-symmetric) operad P = As and of an associative
algebra A, an A-module over As is an A-bimodule A⊗M →M , M⊗A→
M over A.

� In the case of the operad P = Com and of a commutative algebra A, an
A-module over Com is a classical A-module A⊗M →M .
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� In the case of the operad P = Lie and of a Lie algebra g, an g-module
over Lie is a classical Lie module g⊗M →M over g.

Proof. When the operad P(E,R) admits a presentation by generators and relations,
the defining action γM : P ◦ (A;M) → M of an A-module includes an action of
the generating operations E ◦ (A,M)� P ◦ (A;M)→M . The relations that they
have to satisfy is given by the space R. In the other way round, one can reconstruct
the action of any element of P(A;M) thanks to the composition map of the operad
P. These arguments, applied to the three above cases, give the classical notions of
modules. The details are left to the reader as an easy but interesting exercise. �

Recall that the notion of Lie module over a Lie algebra g is equivalent to the
notion of left module over the associative universal enveloping algebra U(g), see
1.1.14.

12.3.3. Abelian extension of A by M . An extension of A by M

0→M � B � A→ 0

is a short exact sequence in the category of P-algebras. A split extension is an
extension

0 // M
� �

i
// B p

// // A

s
}}

// 0 ,

endowed with a K-linear map s satisfying ps = IdA and so

B ∼= A⊕M .

Suppose now that the operad P is augmented P ∼= P ⊕ I. An abelian extension is a
split extension such that the P-algebra structure on M is trivial, i.e. P(M) → M
is zero.

If P happens to be binary, then it is equivalent to requiring that any product of
two elements of M is zero. In this case, it is sometimes called a (split) square-zero
extension in the literature.

When M is an A-module, we consider the following P-algebra structure on
A⊕M :

P(A⊕M)� P(A)⊕ P ◦ (A;M)
γA+γM−−−−−→ A⊕M .

Such a P-algebra structure is denoted by A nM . It is the archetype of abelian
extensions of A by M ,

0→M � AnM � A→ 0 ,

as the following proposition shows.

Proposition 12.3.4. Let P be an augmented operad, let A be a P-algebra and let
M be a K-module. The data of an A-module on M is equivalent to the data of an
abelian extension of A by M

Proof.
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(=⇒) The commutative diagram in the definition of the P-algebra structure on
AnM is equivalent to

P ◦ P(A⊕M) // //

����

P ◦ (P(A);P ◦ (A;M))
Id◦(γA;γM )// P ◦ (A;M)

γM

��

(P ◦ P) ◦ (A;M)

∼=

55kkkkkkkkkkkkkkkkkkkk

γ◦(Id;Id)

��
P ◦ (A;M)

γM // M .

The other one is

A⊕M
η(A⊕M) //

=

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW P(A⊕M) // // P(A)⊕ P(A;M)

γA+γM

��
A⊕M .

Since A is already a P-algebra, it is equivalent to the second commutative
diagram satisfied by an A-module M . So A nM is a P-algebra, which
induces an abelian extension of A by M . (Notice that we do not need the
hypothesis P to be augmented here).

(⇐=) In the other way round, let 0 → M � B � A → 0 be an abelian
extension. Under the isomorphism B ∼= A ⊕M , the P-algebra structure
map on B is given by the composite

P ◦ (A;M)→ P(B)
γB−−→ B →M .

We leave it to the reader to check that it satisfies the axioms of an A-
module.

�

12.3.5. Free A-module over P. The forgetful functor

U : ModPA → ModK ,

which forgets the A-module structure, admits a left adjoint

A⊗P − : ModK → ModPA

as follows.
Let N be a K-module. We consider the following coequalizer in the category

of K-modules

P ◦ (P(A);N)
γ̃ //
γ̃A

// P ◦ (A;N) // // A⊗P N ,

where

γ̃ : P ◦ (P(A);N)→ (P ◦ P) ◦ (A;N)
γ◦(Id,Id)−−−−−−→ P ◦ (A;N)

and where

γ̃A : P ◦ (P(A);N)
Id◦(γA,Id)−−−−−−−→ P ◦ (A;N).



12.3. ANDRÉ-QUILLEN (CO)HOMOLOGY OF ALGEBRAS OVER AN OPERAD 365

Be careful that the notation A ⊗P N stands for a quotient of P(A;N), which is
not in general isomorphic to the tensor product A⊗N . However, in the case of the
operad Com, we will see that A⊗Com N ∼= (A⊕K)⊗N .

Lemma 12.3.6. The composite

P ◦ (A;P ◦ (A;N))→ (P ◦ P) ◦ (A;N)
γ◦(Id;Id)−−−−−−→ P ◦ (A;N)

passes to the quotient P ◦ (A;N)� A⊗P N and induces on A⊗P N an A-module
structure.

Proof. In this proof, we use the shorter notations P(A;N) instead of P ◦ (A;N)
and PP instead of P ◦ P.

The following diagram

P(A;P(P(A);N)) //

��

(PP)(P(A);N)
γ(Id;Id) //

��

P(P(A);N)

��

P(A; (PP)(A;N))

Id(Id;γ(Id;Id))

��

((PP)P)(A;N)

(γId)(Id:Id)

((PPPPPPPPPPPPPPP

∼=

��
(P(PP))(A;N)

(Idγ)(Id:Id)

��

(PP)(A;N)

γ(Id;Id)

��
P(A;P(A;N)) // (PP)(A;N)

γ(Id;Id) // P(A;N)

commutes by the associativity of the composition map γ of the operad P. The
following diagram

P(A;P(P(A);N))) //

Id(Id;Id(γA;Id))

��

(PP)(P(A);N)
γ(Id;Id) //

��

P(P(A);N)

Id(γA;Id)

��
P(A;P(A;N)) // (PP)(A;N)

γ(Id;Id) // P(A;N)

commutes by functoriality of the composite product ◦. It shows that the composite
of the lemma passes to the quotient A ⊗P N and induces a morphism γ̄ : P ◦
(A;A⊗P N)→ A⊗P N .
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Let us now show that γ̄ defines an A-module structure on A ⊗P N . The top-
right composite in the commutative diagram defining an A-module lifts into

P(P(A);P(A;A⊗P N))

Id(γA;γ̄)

��

P(P(A);P(A;P(A;N)))oooo //

��

P(P(A);P(A;N))

��

P(P(A); (PP)(A;N))

Id(γA;γ(Id;Id))

��

Id(Id;γ(Id;Id))

77nnnnnnnnnnnnnnnnn

P(A;A⊗P N)

γ̄

��

P(A;P(A;N))oooo

��

(PP)(P(A);N)

γ(Id;Id)

��
(PP)(A;N)

γ(Id;Id)

��

P(P(A);N)

Id(γA;Id)

vvnnnnnnnnnnnnnnnnn

��
A⊗P N P(A;N)oo (PP)(A;N) ,

γ(Id;Id)
oo

where the bottom-right triangle is not commutative itself, but only after the com-
posite with P(A;N) � A ⊗P N . The bottom-left composite in the commutative
diagram defining an A-module lifts into

(PP)(A;P(A;N))

γ(Id;Id)

��

// // (PP)(A;A⊗P N)

γ(Id;Id)

��
P(A;P(A;N))

��

// // P(A;A⊗P N)

γ̄

��

(PP)(A;N)

γ(Id;Id)

��
P(A;N) // // A⊗P N .

The top-right composite of the former diagram is equal to the bottom-left composite
of the latter diagram by associativity of the composition map γ of the operad P.

We define the second structure map η̄ : A ⊗P N → P(A;A ⊗P N) of the
A-module structure on A⊗P N by

P(A;N)

����

∼= // P(A; I(A;N))
Id(Id;η(Id;Id)) // P(A;P(A;N))

����
A⊗P N

η̄ // P(A;A⊗P N) .
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The last verifications are left to the reader. �

The following proposition shows that for any K-module N , the data (A ⊗P
N, γ̄, ῑ) is the free A-module on N .

Theorem 12.3.7. For any operad P and any P-algebra A, the two functors

A⊗P − : ModK
/ ModPA : Uo

form an adjoint pair, i.e. there are natural linear isomorphisms

HomModPA
(A⊗P N,M) ∼= HomModK(N,U(M)) .

for any A-module M and any K-module N .

Proof. To any morphism f : A⊗P N →M of A-modules, we associate its “restric-
tion” defined by the following composite

f̄ : N ∼= I ◦ (A;N)
ι◦(Id;Id)−−−−−→ P ◦ (A;N)� A⊗P N f−→M .

In the other way round, given any morphism of K-modules g : N → U(M),
we extend it to a morphism of K-modules g̃ : A ⊗P N → M as follows. Let
µ(a1, . . . , n, . . . , ak) be an element of A⊗P N represented by µ(a1, . . . , n, . . . , ak) ∈
P ◦ (A;N). Its image under g̃ is equal to

g̃
(
µ(a1, . . . , n, . . . , ak)

)
:= γM (µ(a1, . . . , g(n), . . . , ak)) .

We leave it to the reader to verify that g̃ is actually a morphism of A-modules and
that the two aforementioned maps are natural linear isomorphisms. �

Notice that

P ◦ (A;N) :=
⊕
k≥0

P(k)⊗Sk (
⊕

1≤i≤k

A⊗ · · · ⊗A⊗ N︸ ︷︷ ︸
ith position

⊗A⊗ · · · ⊗A)

∼=
⊕
k≥0

P(k + 1)⊗Sk (A⊗k ⊗N) .

We denote its elements simply by µ(a1, . . . , ak;n).

Proposition 12.3.8. Let P be an operad and let (A, γA) be a P-algebra. The free
A-module A⊗P N over N is given by the quotient of P ◦ (A;N) under the relation

µ(a1, . . . , ai−1, γA(ν(ai, . . . , ai+l−1)), ai+l, . . . , ak;n) ∼ (µ ◦i ν)(a1, . . . , ak;n) ,

for any k ≥ 1, i+ l ≤ k + 1, µ ∈ P(k + 1), ν ∈ P(l), a1, . . . , ak ∈ A and n ∈ N .

Proof. It is a direct consequence of the partial definition 5.3.7 of an operad. �

Examples. To treat the examples As, Com and Lie below, one can either
use Proposition 12.3.2, and conclude by the well-known respective notions of free
module, or use the above Proposition 12.3.8 to compute the coequalizer A ⊗P N ,
each time.

� In the case of the (non-symmetric) operad P = As and of an associative
(non-necessarily unital) algebra A, the underlying K-module of the free
A-module over As is given by

A⊗As N ∼= N ⊕ A⊗N ⊕ N ⊗A ⊕ A⊗N ⊗A ∼= (A⊕K)⊗N ⊗ (A⊕K) .



368 12. (CO)HOMOLOGY OF ALGEBRAS OVER AN OPERAD

To prove it, it is enough to notice that the composition of the following
elements gives

A

<<<<< A A

�����
N A

77777 A

�����

PPPPPPPPPP

ooooooooo
�

A

JJJJJJJJJJJJJJJ A

??????????? A

///////// N A

���������
A

wwwwwwwwwwwww

in the operadAs. Therefore a1 ⊗ a2 ⊗ a3 ⊗ ν ⊗ a4 ⊗ a5 is equal to a1.a2.a3 ⊗ ν ⊗ a4.a5

in A⊗As N .
� In the case of the operad P = Com and of a commutative algebra A, the

underlying K-module of the free A-module over Com is given by

A⊗Com N ∼= N ⊕ A⊗N ∼= (A⊕K)⊗N .

� In the case of the operad P = Lie and of a Lie algebra g, the underlying
K-module of the free g-module over Lie is given by

g⊗Lie N ∼= U(g)⊗N,
where U(g) is the universal enveloping algebra of the Lie algebra g.

This last example will be generalized in the next section.

Proposition B.4.2, applied to the above adjunction, endow the composite U(A⊗P
−) with a monad structure on ModK.

Proposition 12.3.9. The category of A-modules over P is isomorphic to the cat-
egory of algebras over the monad U(A⊗P −).

Proof. This result follows from Beck’s Theorem, see [ML98, Chapter VI, Section
7] and the study of reflexive coequalizers given in Goerss-Hopkins [GH00]. �

12.3.10. Enveloping algebra of a P-algebra. One can show that the cat-
egory ModPA is an abelian category, see [GH00]. By Freyd-Mitchell Embedding
Theorem, we know that it is a full subcategory of a category of modules over some
ring, which is given as follows.

We consider the free A-module A ⊗P K over the ground ring K. It can be
endowed with the following binary operation

µ : (A⊗P K)⊗ (A⊗P K) ∼= (A⊗P (A⊗P K))→ A⊗P K ,

where the first map comes from the general isomorphism (A⊗P K)⊗N ∼= A⊗P N
and where the second map is given by the composition product of the monad
U(A⊗P −). We denote by

u := η̄ : K→ A⊗P K
the second structure map of the free A-module over K.

The triple
UP(A) := (A⊗P K, µ, u)

is called enveloping algebra of the P-algebra A .

Lemma 12.3.11. The enveloping algebra UP(A) of a P-algebra A is a unital as-
sociative algebra.
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Proof. The associativity of the product µ is a direct consequence of the associativity
of the monad U(A⊗P −). �

Proposition 12.3.8 shows that the elements of the form ν(a1, . . . , ak; 1) provide
representatives for the enveloping algebra UP(A) under the relation ∼. Under this
presentation, the product µ of the enveloping algebra is equal to

µ(ν(a1, . . . , ak; 1), ξ(ak+1, . . . , ak+l; 1)) = (ν ◦k+1 ξ)(a1, . . . , ak+l; 1) .

The relation (I) of 5.3.7 satisfied by the partial products ◦i of an operad give an-
other proof of the associativity of µ.

Examples.

� The enveloping algebra UAs(A) of a an associative (non-necessarily unital)
algebra A is equal to the classical enveloping algebra of the augmentation
A+ := A⊕K of A:

UAs(A) ∼= A+ ⊗Aop
+ ,

where Aop
+ is the opposite algebra associated to A+.

� The enveloping algebra UCom(A) of a a commutative algebra A is equal
to the augmentation of A:

UCom(A) ∼= A+ := A⊕K .

� The enveloping algebra ULie(g) of a a Lie algebra g is equal to the classical
universal enveloping algebra:

ULie(g) ∼= U(g) .

Proposition 12.3.12. The category of A-modules over P is isomorphic to the
category of left modules over the enveloping algebra UP(A).

Proof. Using the isomorphism of K-modules (A ⊗P K) ⊗M ∼= U(A ⊗P M), we
prove that the category of left modules over the enveloping algebra UP(A) is iso-
morphic to the category of algebras over the monad U(A⊗P −). We conclude with
Proposition 12.3.9. �

The aforementioned isomorphism A ⊗P N ∼= UP(A) ⊗ N give two ways of
making the free A-module on N explicit.

Proposition 12.3.13. For any operad P, the enveloping algebra construction pro-
vides a functor

UP : P-alg→ uAs-alg .

Proof. Let f : B → A be a morphism of P-algebras. The map UP(f) : UP(B) →
UP(A) induced by P◦(B;K)

Id◦(f ;Id)−−−−−−→ P◦(A;K) is a morphism of unital associative
algebras. �

12.3.14. Relative free module. Any morphism f : B → A of P-algebras
induces a functor

f∗ : ModPA → ModPB ,

called restriction of scalars. We show that it admits a left adjoint

f! : ModPB → ModPA ,

as follows.
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By Proposition 12.3.13, the map UP(f) : UP(B) → UP(A) is a morphism of
unital associative algebras. It endows UP(A) with a right UP(B)-module structure.
For any B-module M , we define its free relative A-module f!(M) := A ⊗PB M by
the classical relative tensor product

A⊗PB M := UP(A)⊗UP(B) M ,

which is defined by the following coequalizer

UP(A)⊗ UP(B)⊗M //// UP(A)⊗M // // UP(A)⊗UP(B) M .

The notation f! is classical and should not be confused with any Koszul dual con-
struction.

Proposition 12.3.15. For any operad P and any morphism f : B → A of P-
algebras, the two functors

f! : ModPB
/ ModPA : f∗o

form an adjoint pair, i.e. there are natural linear isomorphisms

HomModPA
(f!(N),M) ∼= HomModPB

(N, f∗(M)) ,

for any A-module M and any B-module N .

Proof. It is a direct corollary of Proposition 12.3.12. �

Examples. Using the classical relative tensor product ⊗B , we recover the
classical cases as follows.

� In the case of the (non-symmetric) operad P = As, the underlying K-
module of the free A-module over the algebra B is given by

A⊗AsB N ∼= (A⊕K)⊗B N ⊗B (A⊕K) ,

where the action of B on K is null.
� In the case of the operad P = Com, the underlying K-module of the free
A-module over the algebra B is given by

A⊗AsB N ∼= (A⊕K)⊗B N ,

where the action of B on K is null.
� In the case of the operad P = Lie, the underlying K-module of the free
g-module over g′ is given by

g⊗Lieg′ N ∼= U(g)⊗g′ N,

where U(g) is the universal enveloping algebra of the Lie algebra g.

12.3.16. The category of P-algebras over a fixed P-algebra. Let A be
a fixed P-algebra. We consider the category P-alg/A of P-algebras over A. Its
objects are the morphisms of P-algebras f : B → A and its morphisms are the
commutative triangles

B //

f
��@@@@@@@ B′

f ′~~}}}}}}}

A

of P-algebras.
For instance, when M is an A-module, the abelian extension AnM → A is a

P-algebra over A.



12.3. ANDRÉ-QUILLEN (CO)HOMOLOGY OF ALGEBRAS OVER AN OPERAD 371

12.3.17. Derivations. Let f : B → A be a P-algebra over A and let M be an
A-module. An A-derivation from B to M is a morphism of K-modules d : B →M
satisfying the following commutative diagram

P(B) ∼= P ◦B

γB

��

Id◦′d // P ◦ (B;M)
Id◦(f ;Id) // P ◦ (A;M)

γM

��
B

d // M .

Recall that the infinitesimal composite of morphisms Id ◦′ d was defined in 6.1.5.
Notice that the linear combination of A-derivations is again an A-derivation. The
module of A-derivations from B to M is denoted by DerA(B,M). It induces a

bifunctor from the category (P-alg/A)op × ModPA, which is representable on the
right-hand side by the functor of abelian extensions.

Proposition 12.3.18. For any operad P and any P-algebra A, there are natural
linear isomorphisms

DerA(B,M) ∼= HomP-alg/A(B,AnM) ,

for any A-module M and any P-algebra B → A over A.

Proof. Let us denote f : B → A the morphism of P-algebras. Any morphisms in
P-alg/A from B to AnM is of the form

B
f+d //

f   BBBBBBBB AnM = A⊕M

wwwwoooooooooooo

A .

The map f + d is a morphism of P-algebras if and only if the map d is an A-
derivation. �

Examples. In the examples of the operads As, Com and Lie, we recover the
classical notions of derivations.

12.3.19. Module of Kähler differential forms. To represent the module
of A-derivations on the left-hand side, we introduce the module of Kähler differen-
tial forms as follows.

To any P-algebra A, we associate the coequalizer

A⊗P P(A)
γ̃(1) //
γ̃A

// A⊗P A // // ΩPA ,

where the map γ̃(1) comes from

P ◦ (A;P(A))→ P ◦ (A;P ◦ (A;A))→ (P ◦(1) P) ◦ (A;A)
γ(1)◦(Id;Id)
−−−−−−−→ P ◦ (A;A)

and where the map γ̃A comes from

P ◦ (A;P(A))
Id◦(Id;γA)−−−−−−−→ P ◦ (A;A) .

The A-module structure on A ⊗P A passes to the quotient ΩPA. We call this
A-module the module of Kähler differential forms.
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Lemma 12.3.20. The module of Kähler differential forms ΩPA of a P-algebra A is
given by the quotient of P(A;A), whose elements are denoted by µ(b1, . . . , dbi, . . . , bk),
under the relations

µ(a1, . . . , ai−1, γA(ν(ai, . . . , ai+l−1)), ai+l, . . . , daj , . . . , ak)

≈ (µ ◦i ν)(a1, . . . , daj , . . . , ak) ,

and

µ(a1, . . . , ai−1, dγA(ν(ai, . . . , ai+l−1)), ai+l, . . . , ak)

≈
l−1∑
j=0

(µ ◦i ν)(a1, . . . , dai+j , . . . , ak) .

Proof. The first relation stands for the free module relation ∼ introduced in Propo-
sition 12.3.8. The second relation is equivalent to the above coequalizer. �

When A = P(V ) is a free P-algebra, its module of Kähler differential forms is
equal to

ΩPP(V ) ∼= P(V, V ) .

Examples.

� In the case of the operad P = Com, the operadic module of Kähler
differential forms agrees with the classical module of Kähler differential
forms

ΩComA ∼= Ω1
A ,

where Ω1
A is the free A+-module on A modulo the derivation relation

a⊗ d(b.c) = (a.b)⊗ dc+ (a.c)⊗ db ,

see for instance [Lod98, Chapter 1] for more details.
� In the case of the (non-symmetric) operad P = As, the module of Kähler

differential forms of an associative algebra agrees with the notion intro-
duced in non-commutative geometry [Con85, Kar87]. In this case, it is
equal to

ΩAsA ∼= A+ ⊗A⊗A+/ ≡ ,

that is the free A+-bimodule over A, modulo the relation

a⊗ d(bb′)⊗ c ≡ (ab)⊗ db′ ⊗ c+ a⊗ db⊗ (b′c) .

� In the case of the operad P = Lie, the module of Kähler differential forms
of a Lie algebra g is isomorphic to the augmentation ideal of its enveloping
algebra

ΩLie(g) ∼= Ū(g) ,

with its left U(g)-module structure, see [Fre09b, Section 4.4].

Proposition 12.3.21. For any operad P and any P-algebra A, there are natural
linear isomorphisms

HomModPB
(ΩPB, f

∗(M)) ∼= DerA(B,M) ,

for any A-module M and any P-algebra f : B → A over A.
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Proof. We use the description of ΩPB given in Lemma 12.3.20. To any map
d : B →M , we associate the map D : P(B;B)→M defined by

µ(b1, . . . , dbi, . . . , bk) 7→ γM (µ(f(b1), . . . , d(bi), . . . , f(bk))) .

Since d is an A-derivation, it factors through the quotient under the relations ≈
to define a morphism of B-modules D̃ : ΩPB → f∗(M). In the other way round,
the restriction of any map ΩPB → f∗(M) to I ◦ (db) gives a map B → M . If the
former is a morphism of B-modules, then the latter is an A-derivation. �

12.3.22. Quillen Adjunction. The two aforementioned propositions do not
induce directly a pair of adjoint functors because the underlying category of the
left-hand side “representation” depends on the P-algebra B. The final adjunction,
we are interested in, comes after considering the adjunction of Proposition 12.3.15
between the categories of B-modules and A-modules.

Theorem 12.3.23. Let P be an operad and let A be a P-algebra. The following
two functors

A⊗P− ΩP− : P-alg/A / ModPA : An−o

form an adjoint pair. They represent the bifunctor of A-derivations, i.e. there exist
natural linear isomorphisms

HomModPA
(A⊗PB ΩPB,M) ∼= DerA(B,M) ∼= HomP-alg/A(B,AnM) ,

for any A-module M and any P-algebra B → A over A.

Proof. The proof follows directly from Propositions 12.3.18, 12.3.21 and 12.3.15. �

All the constructions of this section can be generalized in a straightforward way
from the category of K-modules to the category of dg modules. All the propositions,
like the adjunctions, admit a generalize to the various categories of dg modules as
follows. Either one considers morphisms preserving the grading and then the linear
isomorphisms of the various results extend to isomorphisms of dg modules. Or one
can consider morphisms of dg modules and then the linear isomorphisms extend
only to grading preserving linear isomorphisms.

Let us assume, from now on, that the ground ring K is a field of characteristic
0. One can extend Proposition B.6.12 and show that the category of dg P-algebras
over a fixed dg P-algebra A, still denoted P-alg/A, can be endowed with a model
category structure such that the weak equivalences (resp. fibrations) are the quasi-
isomorphisms (resp. degree-wise epimorphisms).

In the same way, the category of dg A-modules over P, still denoted ModPA, is
endowed with a model category structure such that the weak equivalences (resp.
fibrations) are the quasi-isomorphisms (resp. degree-wise epimorphisms).

For these two results, we refer the reader to Hinich [Hin97]. For more refined
results, for instance with weaken assumptions on the ground ring, we refer the
reader to the monography [Fre09b].

Proposition 12.3.24. Let P be a dg operad and let A be a dg P-algebra. The
adjoint pair of functors

A⊗P− ΩP− : P-alg/A / ModPA : An−o

is a Quillen adjunction.
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Proof. For the notion of Quillen adjunction, see B.7.3. It is enough to show that
the right adjoint functor An− preserves the fibrations and the acyclic fibrations.
Since AnM = A⊕M , the proof is straightforward from the definition of the two
model category structures considered here. �

Therefore, we can consider the associated total derived functors

L(A⊗P− ΩP−) : Ho(P-alg/A) / Ho(ModPA) : R(An−)o ,

which form an adjoint pair between the homotopy categories.

12.3.25. Cotangent complex. The cotangent complex of A is the image un-
der the total derived functor L(A⊗P− ΩP−) of the dg P-algebra A → A over A in
the homotopy category of dg A-modules.

To make explicit one representative, we consider a cofibrant replacement R
∼−→

A in the category of dg P-algebras. It provides a cofibrant replacement of A in the
category of dg P-algebras over A. The class of

LR/A := A⊗PR ΩPR

in Ho(ModPA) is a representative of the cotangent complex.

12.3.26. André-Quillen (co)homology. The André-Quillen cohomology of
a dg P-algebra A with coefficients in a dg A-module M is defined by

H•AQ(A,M) := H•(HomHo(ModPA)(LR/A,M)) .

Proposition 12.3.24 shows that these homology groups are independent of the cofi-
brant resolution R

∼−→ A of the P-algebra A.
Theorem 12.3.23 and Proposition 12.3.24 show that the André-Quillen coho-

mology is actually equal to the homology of the “derived” functor of A-derivations:

H•AQ(A,M) ∼= H•(DerA(R,M)) .

Dually, the André-Quillen homology of a dg P-algebra A with coefficients in a
dg right UP(A)-module M is defined by

HAQ
• (A,M) := H•(M ⊗UP(A) LR/A) .

The André-Quillen homology can be seen as the homology of the derived functor
of the functor

(B
f−→ A) 7→ f∗(M)⊗UP(B) ΩPB ,

see [Fre09b, Chapter 13] for more details.
Notice that the coefficients for the André-Quillen cohomology live in the cate-

gory of left UP(A)-modules, whereas the coefficients for the André-Quillen homol-
ogy live in the category of right UP(A)-modules. In the case the three operads As,
Com and Lie, the two categories of left and right UP(A)-modules are equivalent.
The first example of an operad, for which it is not the case, was given in [LP93]
by the operad Leib encoding Leibniz algebras, see 12.6.10.
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12.4. Operadic cohomology of algebras with coefficients

To an algebra A over a quadratic operad P and to an A-module M , one can
associate the operadic cochain complex

C•P(A,M) := (Hom(P ¡(A),M), ∂πκ) .

When the underlying operad is Koszul, this cochain complex computes the
André-Quillen cohomology groups. It shows, for instance, that the first cohomology
group H1

P(A,M) is in one-to-one correspondence with the coset of abelian extension
A by M . All these definitions apply as well to P∞-algebras to define the André-
Quillen (co)homology of homotopy P-algebras.

12.4.1. Operadic cochain complex of a P-algebra with coefficients.
Let P = P(E,R) be a quadratic operad, let A be a P-algebra, and let M be an
A-module. Suppose first that P is homogeneous quadratic and that A and M are
concentrated in degree 0.

We define the operadic cochain complex by

C•P(A,M) := (Hom(P ¡(A),M), ∂πκ) ,

where the differential map ∂πκ is given by

∂πκ(g) := ∂̄(g)− (−1)|g|gd .

The notation d stands for the differential of the bar construction BκA := (P ¡
(A), d)

of A, see 11.2.2 and the map ∂̄(g) is equal to the following composite

P
¡
(A)

∆−→ P
¡
◦ P

¡
(A)

κ◦(πκ;g)−−−−−→ P ◦ (A;M)
γM−−→M .

The map πκ : P ¡
(A)� I ◦A ∼= A is the universal twisting morphism, see 11.3.3.

Considering the cohomological degree, which is the opposite of the homological
degree, we get the following cochain complex

Hom(A,M) −→ HomS(P ¡ (1)
(A),M) −→ HomS(P ¡ (2)

(A),M) · · · ,

0 1 2

With the presentation P(E,R) of the operad P, it gives explicitely

Hom(A,M) −→ HomS(E(A),M) −→ HomS(R(A),M) · · · .

It can be checked by hand that (∂πκ)2 = 0, but it is also a direct consequence of
the next section. The associated cohomology groups form the operadic cohomology
of A with coefficients into M .

This definition extends into two directions. One can consider inhomogeneous
quadratic operads P, satisfying the conditions (ql1) and (ql2) of 7.8. Or one can
consider dg P-algebras (A, dA) and dg A-module M . (In this last case, the degree
is not given by the weight of the Koszul dual cooperad anymore). In these cases,
the differential map is the sum of several terms

∂πκ(g) := ∂̄(g) + dMg − (−1)|g|g(d2 + dP¡ ◦ Id + Id ◦′ dA) .

Proposition 12.4.2. Let P be a quadratic operad and let A and M be respectively
a P-algebra and an A-module. The operadic cohomology of A with coefficients into
M is a subspace of the tangent homology of the P-algebra AnM .
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Proof. Under the inclusion

Hom(P
¡
(A),M) ∼= HomS(P

¡
,EndAM ) ⊂ HomS(P

¡
,EndA⊕M ) = gAnM ,

the chain complex

(Hom(P
¡
(A),M), ∂πκ) ⊂ (HomS(P

¡
,EndA⊕M ), ∂ϕ)

is a chain subcomplex of the deformation complex. �

Since a P-algebra A is an example of a module over itself, we can consider the
operadic cohomology H•P(A,A) of A with coefficients in A. These (co)homology
groups are isomorphic to the tangent homology of the P-algebra A, that is the
homology of the deformation complex of A, see 12.2.4.

Examples. We recover the classical cases, up to a degree shift.

� In the case of the operad As, the operadic (co)homology is isomorphic to
the Hochschild (co)homology of associative algebras, see Section 9.1.13.

� In the case of the operad Com, the operadic (co)homology is isomorphic to
the Harrison (co)homology of commutative algebras, see Section 13.1.10
(recall that we work over a field K of characteristic 0).

� In the case of the operad Lie, the operadic (co)homology is isomorphic to
the Chevalley-Eilenberg (co)homology of Lie algebras, see Section 13.2.11.

Proposition 12.4.3. For any P-algebra A and any A-module M , both concentrated
in degree 0, there is a natural isomorphism

H0
P(A,M) ∼= DerA(A,M) .

Proof. A map d : A→M satisfies ∂πκ(d) = 0 if and only if d ∈ DerA(A,M). �

12.4.4. Operadic cohomology vs André-Quillen cohomology. The goal
of this section is to prove the following theorem.

Theorem 12.4.5. Working over non-negatively graded chain complexes, if P is
a Koszul operad, then the André-Quillen cohomology is isomorphic to the operadic
cohomology

H•AQ(A,M) ∼= H•P(A,M) ∼= H•(Hom(P
¡
(A),M), ∂πκ) ,

and a representative of the cotangent complex of any dg P-algebra A is given by

LΩκBκA/A
∼= (A⊗P P

¡
(A), dπκ) .

We suppose that the operad P is equipped with an operadic twisting morphism
α : C → P. We suppose that the dg P-algebra A admits a twisting morphism ϕ :
C → A, where C is a conilpotent dg C-coalgebra, such that the induced morphism
of dg P-algebras

fϕ : ΩαC := P(C)
∼−→ A

is a quasi-isomorphism, see 11.3.3. Let us assume that the dg P-algebra ΩαC is
cofibrant. Since it is a quasi-free dg P-algebra, it is cofibrant when working over
non-negatively graded chain complexes by Proposition B.6.13.

As in the last section, we denote by α◦(ϕ; Id) : C(C)→ P◦(A;C) the composite

C(C)
α◦′Id−−−→ P ◦ (C;C)

Id◦(ϕ;Id)−−−−−−→ P ◦ (A;C) .
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Lemma 12.4.6. The above cofibrant resolution ΩαC of the dg P-algebra A gives
the following representative of the cotangent complex

LΩαC/A
∼= (A⊗P C, dϕ) ,

where the differential map dϕ is the sum of dA⊗PC with the differential coming from
the composite

P ◦ (A;C)
Id◦(Id;∆C)−−−−−−−→ P ◦ (A; C(C))

Id◦(Id;α◦(ϕ;Id))−−−−−−−−−−→ P ◦ (A;P ◦ (A;C))→

(P ◦(1) P) ◦ (A;C)
γ(1)◦(Id;Id)
−−−−−−−→ P ◦ (A;C) .

Proof. The above composite passes to the quotient which defines the free A-module
A⊗P C on C. Tracing through the various coequalizers, we get an isomorphism of
graded K-modules

A⊗PP(C) ΩPP(C) ∼= A⊗P C .

Under this isomorphism, the differential on A⊗PP(C) ΩPP(C) is sent to the expected

differential. �

Fundamental Example. We consider the case of the operad P = As, the

cooperad C = As
¡

and the Koszul morphism α = κ : As
¡ → As. In this case, we

get the following representative of the cotangent complex

A⊗As C ∼= A+ ⊗ϕ C ⊗ϕ A+ ,

which is nothing but the twisted bitensor product introduced in Exercise 2.7.5.

Let M be a dg A-module. We consider the following twisted differential ∂ϕ :=
∂ + ∂̄ϕ on the mapping space Hom(C,M), where

∂̄ϕ(g) := C
∆C−−→ C(C)

α◦(ϕ;g)−−−−−→ P ◦ (A;M)
γM−−→M .

Proposition 12.4.7. Under the above given data, any cofibrant resolution fϕ :

ΩαC
∼−→ A gives rise to a natural isomorphisms of dg modules

(DerA(ΩαC,M), ∂) ∼= (Hom(C,M), ∂ϕ) .

Proof. It is a consequence of Lemma 12.4.6. �

Hence the André-Quillen cohomology of a P-algebra A with coefficients in an
A-module M can be computed using this resolution:

H•AQ(A,M) ∼= H•(Hom(C,M), ∂ϕ) .

When the operad P is Koszul, we take C = P ¡
to be the Koszul dual cooperad,

α = κ : P ¡ → P to be the Koszul morphism and C = BκA. This data induces
a universal twisting morphism πκ : C := BκA → A, see Proposition 11.3.4, and
provides a cofibrant replacement functor

ΩκBκA
∼−→ A ,

by Theorem 11.3.8

Proof.(Theorem 12.4.5) It is corollary of the above Lemma 12.4.6 and Proposi-
tion 12.4.7. �
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12.4.8. Extensions and H1
P(A,M). Recall that we defined the notion of

abelian extension
0→M � B � A→ 0

of a P-algebra A by an A-module M in Section 12.3.3.
Two abelian extensions are equivalent when there exists a morphism of P-

algebras f : B → B′ such that the following diagram is commutative

0 // M
� � // B // //

f

��

A // 0

0 // M
� � // B′ // // A // 0 .

Since such an f is an isomorphism, this defines an equivalence relation among ex-
tensions of A by M , whose coset is denoted by E xt(A,M). Using the cohomological
degree convention of the previous section ??, we have the following interpretation.

Theorem 12.4.9. Let P be a quadratic operad. Let A and M be respectively a
P-algebra and an A-module, both concentrated in degree 0. There is a canonical
bijection

H1
P(A,M) ∼= E xt(A,M) .

Proof. To any element ϕ ∈ HomS(P ¡ (1)
,EndAM ), we associate a map s−1ϕ : E(A) ∼=

s−1P ¡ (1)
(A) → M . When ϕ is a 1-cocyle, that is ∂πκ(ϕ) = 0, it induces a map

Φ : P(A) → M . From this data, we consider the following P-algebra structure on
A⊕M :

P ◦ (A;M)� P(A)⊕ P ◦ (A;M)
γA⊕(Φ+γM )−−−−−−−−→ A⊕M .

We denote the associated abelian extension by AnϕM .
Let ϕ′ be another 1-cocycle such that ϕ′ = ϕ+ ∂πκ(α), with α ∈ Hom(A,M).

Then the morphism of P-algebras Anϕ′M → AnϕM defined by (a,m) 7→ (a,m+
α(a)) yields an equivalent of extensions.

In the other way round, let 0 → M � B � A → 0 be an abelian extension.
Under the isomorphism B ∼= A ⊕M , the P-algebra structure on A ⊕M induces

a 1-cocycle P ¡ (1)
(A) ∼= sE(A) → M . This defines a map, which passes to the

respective quotients. �

Notice the parallel with Theorem 12.2.13, which relates infinitesimal deforma-
tions and the cohomology group H1 of the deformation complex. In the present
case, we deform the P-algebra structure AnM in a certain way.

An interpretation ofH2
P(A,M) in terms of crossed modules is given in [BMR04].

12.4.10. André-Quillen cohomology of P∞-algebras. One can apply the
definition of the André-Quillen cohomology and homology to P∞-algebras as well.
In this case, we use the functorial cofibrant replacement

ΩιBιA = P∞(P
¡
(A))

∼−→ A

of P∞-algebras given in 11.4.4.

Proposition 12.4.11. With this resolution, the André-Quillen cohomology of P∞-
algebras is computed by

H•AQ(A,M) ∼= H•P∞(A,M) := H•(Hom(P
¡
(A),M), ∂πι) .
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The same interpretation in terms of tangent homology as in 12.4.2. holds in the
case of P∞-algebras. Notice that the operad P need not be Koszul; this treatment
holds for any operad of the form ΩC.

In the case of the operad A∞, one recovers the cohomology theory defined by
Markl in [Mar92]. For more details, see [Mil10a, Section 3].

12.4.12. André-Quillen cohomology and classical Ext functor. Since
the notion of A-module is equivalent to the notion of left module over the envelop-
ing algebra UP(A), one can study the following question: is the André-Quillen
cohomology equal to the classical Ext-functor

H•P∞(A,M) ∼= Ext•UP(A)(ΩPA,M) ?

It is known to be the case for the Koszul operads As and Lie and it is not the
case for the Koszul operad Com. A general answer is given by the following result.
An operad satisfies the PBW property, when the graded module associated to the
natural filtration of UP(A) is isomorphic to the enveloping algebra UP(Atr) of the
trivial algebra on A: grUP(A) ∼= UP(Atr), for any P-algebra A.

Proposition 12.4.13. [Mil10a] To any Koszul operad P satisfying the PBW prop-
erty, there exists a chain complex of obstructions OP , such that: OP is acyclic if
and only if the André-Quillen cohomology of P-algebras is isomorphic to the Ext-
functor over the enveloping algebra.

For instance, the author proves that OAs and OLie are acyclic. He exhibits non
trivial homology groups in OCom.

Moreover he proves that OΩC is acyclic, for any cooperad C, showing that
the André-Quillen cohomology of P∞-algebra is an Ext-functor. This induces the
following result.

Theorem 12.4.14. [Mil10a] Let P be a Koszul operad, let A be a P-algebra and
let M be an A-module. There are natural isomorphisms

H•AQ(A,M) ∼= H•P∞(A,M) ∼= Ext•UP∞ (A)(ΩP∞A,M) .

12.4.15. Other cohomology theories.
Cotriple cohomology. Since an operad P is a particular kind of monad,

one can consider the triple cohomology of P-algebras as defined by Barr and Beck in
[BB69]. The André-Quillen cohomology of P-algebras was proved to be isomorphic
to the triple cohomology by Fresse in [Fre09b, Section 13].

Gamma cohomology. When the operad P fails to have nice enough proper-
ties so as to induce a model category structure on the category of P-algebras, one
cannot apply the aforementioned arguments. However, it was proved directly by
Hoffbeck in [Hof10b] that the various derived functors are well defined. This leads
to the definition of the Γ-cohomology of P-algebras. In the case of the operad Com,
one recovers the Γ-cohomology of Robinson and Whitehouse [RW02, Rob03]. The
first Γ-cohomology groups are interpreted as obstructions to lifting homotopy maps
of P-algebras in [Liv99, Hof10a].

12.5. Résumé

Homology of algebras over an operad.
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Operadic homology:

HP• (A) := H•(BκA) ∼= H•(P
¡
(A), d) : graded P

¡
-coalgebra

CP• (A) : · · · → P
¡ (3)

(A)→ P
¡ (2)

(A)→ P
¡ (1)

(A)→ A

Theorem:

H0(A) ∼= Indec(A) & P Koszul⇐⇒ HP• (P(V )) ∼= V

Quillen homology: H•(L Indec(A))

Theorem:

P Koszul⇐⇒ operadic homology ∼= Quillen homology

Deformation theory of algebra structures.
Convolution dg Lie algebra:

g = gP,A :=
(
HomS(P

¡
,EndA), [ , ], ∂

)
Proposition:

P-algebra structure on A
1−1←→ ϕ ∈ MC(g)

MC (g) := MC(g)/GL(A) ∼= P-alg(A)/iso

Twisted convolution dg Lie algebra: Given a P-algebra structure ϕ ∈ MC(g) on A,
we consider the twisting dg Lie algebra

gϕ = gϕP,A :=
(
HomS(P

¡
,EndA), [ , ], ∂ϕ

)
called the deformation complex.

Tangent homology: H•(gϕ)

R-deformation of ϕ: P ⊗R-algebra structure on A⊗R which reduces to ϕ modulo
m.
Theorem: R Artin ring

MC (gϕ ⊗m) := MC(gϕ ⊗m)/G ∼= Defϕ(R) = Defϕ(R)/ ∼

Infinitesimal deformation: R = K[t]/(t2)

Theorem:
Defϕ(K[t]/(t2)) ∼= H1(gϕ)

Formal deformation: R = K[[t]]

Theorem:
(Obstructions) If H2(gϕ) = 0, then any 1-cocycle of gϕ extends to a formal

deformation of ϕ.
(Rigidity) If H1(gϕ) = 0, then any formal deformation of ϕ is equivalent to the

trivial one.

The full convolution dg Lie algebra g = gP,A encodes the P∞-algebra structures
on A.

Theorem: (Obstructions for P∞-algebras)

If H−2(HomS(P ¡ (n)
,EndA), ∂0) = 0 for n ≥ 2, then any weight one ∂0-cocyle

extends to a P∞-algebra structure on A.
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By considering ∞-isomorphisms, the above results extend to P∞-algebras.

André-Quillen (co)homology of algebras over an operad.

A-module over P: ModPA
free A-module: A⊗P N
Enveloping algebra: UP(A) := A⊗P K

Proposition: ModPA
∼= UP(A)-Mod

Module of Kähler differential forms: ΩPA

Theorem:

HomModPA
(A⊗PB ΩPB,M) ∼= DerA(B,M) ∼= HomP-alg/A(B,AnM) .

It forms a Quillen adjunction that we derive to give the
Cotangent complex:

LR/A := A⊗PR ΩPR

in Ho(ModPA) for a cofibrant resolution R
∼−→ A.

André-Quillen cohomology of a P-algebra A with coefficients into a left UP(A)-
module M :

H•P(A,M) := H•(HomHo(ModPA)(LR/A,M)) ∼= H•(DerA(R,M)) .

André-Quillen homology of a P-algebra A with coefficients into a right UP(A)-
module M :

HP• (A,M) := H•(M ⊗UP(A) LR/A) .

Operadic (co)homology of algebras over an operad.
When P is a Koszul operad:

H•P(A,M) ∼= H•(Hom(P
¡
(A),M), ∂πκ)

H0
P(A,M) ∼= DerA(A,M) & H1

P(A,M) ∼= E xt(A,M) .

12.6. Exercices

12.6.1. Chevalley-Eilenberg homology of the free Lie algebra. Com-
pute the Chevalley-Eilenberg homology of the free Lie algebra.

Hint: The Chevalley-Eilenberg homology 13.2.8 is equal to the operadic ho-
mology (and to the Quillen homology).

12.6.2. Deformation complex of Lie algebras. Make explicit the defor-
mation complex of Lie algebras, together with its intrinsic Lie bracket, in the same
way as Section 12.2.8 for associative algebras.

Show that one recovers the Chevalley-Eilenberg cochain complex of a Lie alge-
bra 13.2.11, up to a degree shift, endowed with the Nijenhuis-Richardson bracket
[NR66, NR67].

Hint. Use the description of the convolution dg Lie algebra associated to the
operad Lie given in 10.1.12

Notice that the interpretation of the cohomology groups H1 and H2 given in
Theorems 12.2.13, 12.2.15 and 12.2.16 in terms of infinitesimal and formal defor-
mations coincide with the results of [NR66, NR67] in the case of Lie algebras.
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12.6.3. Equivalence of deformations. Using the fact any R-linear endo-
morphism of A⊗R is completely characterized by its restriction on A:

A→ A⊗R ∼= A⊕A⊗m ,

prove that the equivalence of R-deformations defined in 12.2.9 is an equivalence
relation.

12.6.4. Invertibility. Let A be K-module. Show that a K[[t]]-linear endo-
morphism f of A⊗K[[t]] is an isomorphism if and only if its first component f0 (or
reduction modulo t) is a K-linear isomorphism of A.

f|A = f0 +
∑
n≥1

fnt
n : A→ A ⊕ A⊗ t ⊕ A⊗ t2 ⊕ · · · .

Extend this result (with the same kind of proof), to any R-extension A⊗R of
A, where R is a local complete ring, i.e. R = lim←−R/mn.

What happens when R is an Artin local ring ?

12.6.5. Equivalence and ∞-isomorphism. Let (R,m) be a local complete
ring. Using the result of the previous exercise, show that an R-linear ∞-morphism
between two P∞⊗R-algebras (A⊗R,Φ) and (A⊗R,Ψ) is invertible if and only if

the reduction modulo m of its first component, I = P ¡ (0)
→ Hom(A,A), is invertible

in Hom(A,A).
Hint. Use the characterization of invertible ∞-morphism given in Theo-

rem 10.4.2.
From this, conclude that the relation ∼ between R-deformations of P∞-algebra

structures, defined in 12.2.22, is an equivalence relation.

12.6.6. Examples of deformation complexes. Make explicit the defor-
mation complexes of A∞-algebras, L∞-algebras, C∞-algebras, G∞-algebras and
BV∞-algebras.

Explain the relationship between them.
Hint. The last two cases are described in details in [GCTV09].

12.6.7. Obstructions to P∞-algebra structure. Fulfill the missing com-
putations in the proof of Theorem 12.2.21.

12.6.8. Independance of the deformation functor. Show that the de-
formation theory of P∞-algebras can equivalently be studied with the bar-cobar
construction as follows.

When P is a Koszul operad, prove that the convolution dg Lie algebra HomS(P ¡
,EndA)

is quasi-isomorphic to the convolution dg Lie algebra HomS(BP,EndA) associated
to the bar construction of P. Conclude that the associated deformation functors
are isomorphic.

Hint. Do not forget to use Theorem 13.2.24.

12.6.9. Modules over a P-algebra. Write the details of the proof of Propo-
sition 12.3.2, which states that for the three graces As, Com and Lie, the respective
notions of module over a P-algebra is equivalent to the classical notions of modules,
i.e. bimodule, module and Lie module respectively.

Give a similar equivalent definition for the notion of A-module over an operad
P, in the cases where P = PreLie, see 13.4 and [Dzh99], P = Perm, see 13.4.11
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and [Mil08], P = Leib, see 13.5 and [LP93], P = Zinb, see 13.5.2 and [Bal98],
P = Dias, see 13.6.9 and [Fra01], P = Pois, see 13.3 and [Fre06].

Hint. The references given above provide solutions.

12.6.10. Left and right Modules over ULeib(A). Give a Leibniz algebra A
for which the category of left modules over the enveloping algebra ULeib(A) is not
equivalent to the category of right modules over ULeib(A).

See Section 13.5 for the definition of Leibniz algebras.

12.6.11. Explicit module-enveloping algebra-Kähler. Let P be an op-
erad given with a following presentation P = P(E,R) = T (E)/(R) by generators
and relations. Let A be a P-algebra.

Make explicit the notions of free A-module A⊗PN , enveloping algebras UP(A)
and module of Kähler differential forms ΩPA in terms of E and R.

Using this results, recover the examples of the operads As, Com and Lie.

12.6.12. Examples of André-Quillen (co)homology. Make explicit the
André-Quillen (co)homology of algebras over the operadsDias [Fra01], Leib [LP93]
and Perm [Mil10a].

12.6.13. Operadic homology with coefficients. When the operad P is
Koszul, using the representation of the cotangent complex obtained in Theorem 12.4.5,
make explicit a chain complex which computes the André-Quillen homology with
coefficients.

Since K is a right UP(A)-module, show that, in this case, we recover the op-
eradic (or equivalently the Quillen) homology of the P-algebra A, as defined in
Section 12.1.

12.6.14. (Co)homology of operads. Let (P, γ) be an operad. An infinites-
imal P-bimodule is an S-module M equipped with a left action λ : P ◦(P;M)→M
and a right action ρ : M ◦ P → such that the following diagrams commute

M ◦ P ◦ P
Id◦γ //

ρ◦Id
��

M ◦ P
ρ

��
M ◦ P

ρ // M

P ◦ (P ◦ P;P ◦ (P;M))
Id◦(γ;λ) //

∼=

tthhhhhhhhhhhhhhhhhh
P ◦ (P;M)

λ

��

(P ◦ P) ◦ (P;M)

γ◦(Id;Id)

��
P ◦ (P;M)

λ // M
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P ◦ (P ◦ P;M ◦ P)
Id◦(γ;ρ) //

∼=

ttiiiiiiiiiiiiiiii
P ◦ (P;M)

λ

��

P ◦ (P;M) ◦ P

λ◦Id
��

M ◦ P
ρ // M .

Show that such a data is equivalent to an operad structure on P ⊕M , where
the composite of at least two elements coming from M vanishes. This operad is
called an abelian extension of P by M and is denoted by P nM .

Give an equivalent definition of the notion of infinitesimal P-bimodule in terms
of two infinitesimal actions of the form

ρ̄ : M ◦(1) P →M and λ̄ : P ◦(1) M →M .

Show that the free infinitesimal P-bimodule over N is given by the S-module
P ◦ (P;N) ◦ P.

Let f : Q → P be a morphism of operads and let M be an infinitesimal P-
bimodule. A P-derivation from Q to M is a morphism of S-modules d : Q → M
satisfying

Q ◦(1) Q
γQ

(1) //

f◦(1)d⊕ d◦(1)f

��

Q

d

��
P ◦(1) M ⊕M ◦(1) P

λ̄+ρ̄ // M .

Show that there exist natural isomorphisms

DerP(Q,M) ∼= Homop/P(Q,P nM) ,

where op/P denotes the category of operads over the fixed operad P.
To any operad Q, make explicit a suitable notion of infinitesimal Kähler Q-

bimodule of differential forms Ω(Q), such that

Hominf-Q biMod(Ω(Q), f∗(M)) ∼= DerP(Q,M) ,

where f∗(M) stands for the infinitesimal P-bimodule structure on M obtained
under f .

Male explicit the left adjoint f! : inf-Q biMod→ inf-P biMod to f∗ : inf-P biMod→
inf-Q biMod.

Show that

Hominf-P biMod(f!(Ω(Q),M) ∼= DerP(Q,M) ∼= Homop/P(Q,P nM) ,

forms a Quillen adjunction. Derive it to define the André-Quillen cohomology of
the operad P with coefficients into M .

Let f : R ∼−→ P be a cofibrant resolution of the operad P. Prove that the
André-Quillen cohomology of P is represented by the cotangent complex of P, whose
representative is given by

LR/P := f!(Ω(R)) .

Using either the bar-cobar resolution ΩBP of P or the Koszul resolution ΩP ¡

of P, make this cotangent complex explicit.
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Let P is a Koszul operad and let A be a P-algebra P → EndA. Show that
the André-Quillen cohomology of P with coefficients in EndA is isomorphic to the
tangent homology of A, defined in 12.2.4.

This exercise comes from [MV09b, Section 2]; see also [Rez96, BJT97].





CHAPTER 13

Examples of algebraic operads

“Autrement dit, voici un livre qui ne peut se
conclure que sur un “et coetera”.
Umberto Eco
“Vertige de la liste”, Flammarion, 2009.

In Chapter 9, we studied in detail the operad Ass encoding the associative
algebras. It is a paradigm for nonsymmetric operads, symmetric operads, cyclic
operads. In this chapter we present several other examples of operads. First, the
two other graces, the operads Com and Lie encoding respectively the commutative
(meaning commutative and associative) algebras, and the Lie algebras. Second,
we introduce more examples of binary quadratic operads: Poisson, Gerstenhaber,
pre-Lie, Leibniz, Zinbiel, dendriform, magmatic, several variations like Jordan al-
gebra, divided power algebra, Batalin-Vilkovisky algebra. Then we present various
examples of operads involving higher ary-operations: homotopy algebras, infinite-
magmatic, brace, multibrace, Jordan triples, Lie triples. The choice is dictated
by their relevance in various parts of mathematics: differential geometry, noncom-
mutative geometry, harmonic analysis, algebraic combinatorics, theoretical physics,
computer science. Of course, this list does not exhaust the examples appearing in
the existing literature. The reader may have a look at the cornucopia of types of
algebras [Lod11b] to find more examples.

In many cases the (co)homology theory of a given type of algebras was de-
vised before the operad theory tells us how to construct an explicit chain complex.
Sometimes the equivalence between the two is not immediate, the Com case for in-
stance. In general we first describe the known chain complex, and, then, we relate
it with the operadic chain complex. We let it to the reader to figure out the notion
of module and the cohomology theory with coefficients. In fact, in many cases it
already exists in the literature.

We make this chapter as self-contained as possible concerning the definitions
and the statements. So there is some redundancy with other parts of this book.
In most cases we refer to the “general theorems” proved in the previous chapters
or to the literature. We work in the category of vector spaces over a field K. For
symmetric operads the assumption “K is a characteristic zero field” is, in general,
required. However all the definitions make sense in the category of modules over a
commutative ring, like Z or a polynomial ring for instance. For many examples, the
interesting notion takes place in the category of graded vector spaces (supercase),
or, even, in the category of differential graded vector spaces. Most of the time we
leave it to the reader to make explicit the definitions in these cases since they are
straightforward.

387
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Many of the operads presented in this chapter are Koszul operads. Therefore all
the results proved for Koszul operads in the preceding chapters can be applied. In
some specific cases, they have been already proved and published in the literature.
In general we leave it to the reader to state the exact statements.

In this book we have presented four types of operads: symmetric operads,
nonsymmetric operads, shuffle operads, unital associative algebras. In the last
section we present, very briefly, other kinds of operads from the combinatorial
point of view.

13.1. Commutative algebras and the operad Com

We study the operad Com which encodes the (nonunital) commutative algebras
(associativity is understood). It is a binary, quadratic, Koszul symmetric operad,
which comes from a set-theoretic operad. Its Koszul dual operad is: Com! = Lie
encoding Lie algebras. The operadic homology is Harrison homology in charac-
teristic zero. The notion of homotopy commutative algebra in the operadic sense
coincides with the notion of C∞-algebra due to T. Kadeishvili [Kad82]. We com-
pare commutative algebras with divided power algebras and in the last subsection
we “split” the commutative operation.

13.1.1. Commutative algebra. By definition a commutative algebra over
the field K is an associative algebra A which satisfies the following commutativity
symmetry :

xy = yx

for any x, y ∈ A. Let τ : V ⊗V → V ⊗V be the switching map (cf. 1.5.2). Denoting
by µ the associative binary operation, the commutativity relation reads

µτ = µ .

There is an obvious notion of morphism between commutative algebras and we
denote by Com-alg the category of commutative algebras.

Here we work in the symmetric monoidal category of vector spaces over K,
but, because of the form of the relations, we could as well work in the symmetric
monoidal category of sets, resp. topological sets, resp. simplicial sets. Then we
would obtain the notion of commutative monoid, resp. topological commutative
monoid, resp. simplicial commutative monoid. If we replace the category Vect by
the category gVect of sign-graded vector spaces, the commutativity relation becomes

yx = (−1)|x||y|xy .

One can either work with nonunital commutative algebras or with unital commu-
tative algebras. In this latter case we denote the operad by uCom.

It is sometimes necessary to work with algebras equipped with a binary opera-
tion which satisfies the commutativity symmetry relation, but which is not associa-
tive. We propose to call them commutative magmatic algebras and to denote the
associated operad by ComMag, cf. 13.8.4.

13.1.2. Free commutative algebra. The free commutative algebra over the
vector space V is known to be the reduced symmetric module S(V ) =

⊕
n≥1(V ⊗n)Sn

equipped with the concatenation product. It is called the reduced symmetric alge-
bra. If V is spanned by the basis elements x1, . . . , xn, then S(V ) is the algebra of
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polynomials in x1, . . . , xn modulo the constants: K[x1, . . . , xn]/K 1. The composi-
tion of polynomials γ(V ) : S(S(V ))→ S(V ) is given by substitution of polynomials:
if P (X1, . . . , Xk) is a polynomial in the variables Xi’s and if each Xi is a polynomial
in the variables xj ’s, then P (X1(x1, . . . , xn), . . . , Xk(x1, . . . , xn)) is a polynomial in
the variables xj ’s called the composite. This composition is obviously associative
and commutative.

In the unital case the free algebra is the symmetric algebra: uCom(V ) = S(V ).

13.1.3. The operad Com. We denote by Com the operad encoding the cate-
gory Com-alg of commutative algebras. From the polynomial description of the free
commutative algebra it follows that the space of n-ary operations is Com(n) ∼= K
equipped with the trivial action of the symmetric group. The n-ary operation
µn ∈ Com(n) = K 1 corresponding to the generator is

µn(x1, . . . , xn) := x1 . . . xn .

In the nonunital case we have Com(0) = 0 and in the unital case uCom(0) = K 1.
Since the composition γ in the operad Com is given by the substitution of

polynomials, we get
γ(µk;µi1 , . . . , µik) = µi1+···+ik .

The generating series of the operad Com is

fCom(x) =
∑
n≥1

xn

n!
= exp(x)− 1 .

As a quadratic operad Com is presented by the quadratic data (ECom, RCom)
where ECom is the S-module concentrated in arity 2: ECom(2) = Kµ being the triv-
ial representation. Let us think of this generator as the operation xy, which satisfies
xy = yx. This operation determines the space T (ECom)(2), which is 3-dimensional
spanned by x(yz), y(zx), z(xy) or equivalently x(yz), (xz)y, (xy)z (compare with
the shuffles trees). The space of relations RCom is the sub-S3-space of T (ECom)(2)

generated by the associator (xy)z − x(zy). Therefore it is spanned (for instance)
by the two elements x(yz) − y(zx), y(zx) − z(xy). Observe that the quotient
T (ECom)(2)/RCom is the trivial representation of S3 as expected.

13.1.4. Relationship with other types of algebras. The operad Com is
obviously related to many operads: Ass, Pois, Gerst, Zinb, BV , ComMag and
many others, see below.

By forgetting the commutativity property, a commutative algebra can be con-
sidered as an associative algebra. So there is an “inclusion” functor:

Com-alg→ Ass-alg

giving rise to a morphism of operads Ass � Com. In arity n the representation
Ass(n) is the regular representation of Sn, which is isomorphic to the sum of its
isotypic components. The isotypic component corresponding to the trivial repre-
sentation is one-dimensional and the map

K[Sn] = Ass(n)� Com(n) = K,
is precisely the projection onto this component. It is the augmentation map σ 7→ 1.
Let us also recall the following well-known fact: the matrices over a commutative
algebra form an associative algebra.

The relationship with other operads will be treated in the relevant sections.
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13.1.5. Koszul dual of Com. We show that the dual of Com is Lie and that
both operads are Koszul operads.

Proposition 13.1.6. The Koszul dual operad of the operad Com encoding com-
mutative algebras is the operad Lie encoding Lie algebras:

Com! = Lie .

Proof. Since Com is generated by a symmetric operation, Com! is generated by
an antisymmetric operation. Let us denote this operation by [x, y]. In arity 3 the
operations [[x, y], z] , [[y, z], x] , [[z, x], y] form a linear basis of the of the weight 2
part of free operad generated by [−,−]. As a representation of S3 we get a copy of
the signature representation and a copy of the hook representation:

⊕

The module of relations RCom defining Com is two-dimensional and spanned, for in-
stance, by (xy)z−x(yz) and (yz)x−y(zx). It follows that RCom

⊥ is one-dimensional

; so RCom
⊥ is the signature representation. It is spanned by the sum of the three

generators. Hence the relation defining Com! is

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 .

This is the Jacobi relation, hence Com! = Lie . �

Proposition 13.1.7. The operad Com is a Koszul operad.

Proof. There are several ways to prove that Com (and therefore Lie) is Koszul.
For instance, it suffices by Proposition 7.4.11 to show that HCom

• (Com(V )) = V
concentrated in degree 1. We will show below that the operadic homology of Com
is Harrison homology. The computation of Harrison homology of the symmetric
algebra is well-known. It follows from the computation of the Hochschild homology
of the symmetric algebra (cf. [Lod98] for instance).

Another proof would consist in computing the Lie algebra homology of the free
Lie algebra (cf. 13.2.8). The poset method (cf. 8.7) does not need the characteristic
zero hypothesis. The rewriting method (cf. 8.5.6) works also pretty well. �

13.1.8. Comparison of Ass with Com and Lie. Since a commutative al-
gebra is a particular case of associative algebra, there is a well-defined morphism of
operads Ass � Com . In arity n, it is the augmentation map K[Sn] → K, σ 7→ 1.
Taking the Koszul dual of this operad morphism, we get of morphism of cooperads:

Ass¡ = H0(BAss)→ H0(BCom) = Com¡.

Translated to the Koszul dual operads we get

Lie = Com! → Ass.

Proposition 13.1.9. The Koszul dual of the functor Com-alg → Ass-alg is the
functor Ass-alg→ Lie-alg, A 7→ ALie.
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Proof. For the purpose of this proof, we denote by µ ∈ Ass(2) the generating
operation of Ass and by ν ∈ Com(2) the generating operation of Com. We know
that both µ and µ(12) map to ν. As a consequence, the cooperad morphism Ass¡ →
Com¡ maps both µc and (µ(12))c to νc. Denoting by m the linear dual of µc

in Ass! = S ⊗
H

(Ass¡)∗ and by c (“crochet” in French) the linear dual of νc in

Lie = Com! = S ⊗
H

(Com¡)∗, we see that the map Lie(2) → Ass(2) sends c to

m−m(12). In other words, we get [x, y] = xy − yx as expected. �

13.1.10. Harrison (co)homology. Let us recall the definition of Harrison
homology [Har62] of a (nonunital) commutative algebra A. Let C•(A) be the
Hochschild complex of A, that is Cn(A) = A⊗n and the Hochschild boundary map
is b′, cf. 9.1.11. We denote by CHarr• (A) the quotient of C•(A) by the nontrivial
signed shuffles, that is by the (p1, . . . , pr)-shuffles for pi ≥ 1, p1 + · · ·+ pr = n, and
r ≥ 2. For instance

CHarr2 (A) = A⊗2/{nontrivial shuffles} = A⊗2/{a⊗ b− b⊗ a} = S2(A).

Thinking of C•(A) as the graded shuffle algebra over the space A of 1.3.2, CHarr• (A)
is the space of indecomposables. Since A is commutative, the boundary operator b′

passes to the quotient and we get a chain complex called the Harrison complex of
A (for a conceptual explanation of this compatibility between b′ and the shuffles,
see [Lod89]). Its homology is Harrison homology HHarr

• (A). Observe that we are
working here in the nonunital framework.

Proposition 13.1.11. In characteristic zero, the operadic homology of Com-algebras
is the Harrison homology of commutative algebras, up to a shift of degree.

Proof. Recall from Proposition 12.1.2 that the operadic chain complex of A is such
that CComn−1 (A) := Lie(n)∗ ⊗Sn A

⊗n. By Theorem 1.3.9, we know that Lie(n)∗ is
isomorphic to the quotient of the regular representation K[Sn] by the nontrivial
shuffles. Hence we get Lie(n)∗ ⊗Sn A

⊗n = CHarrn (A). By Proposition 12.1.2 it
follows that the operadic differential corresponds to the Hochschild boundary map
under this isomorphism, since the dual of the operad map Ass→ Com is the operad

map Lie
−−→ Ass. �

Corollary 13.1.12. The operadic homology HCom
•+1 (A) of a commutative algebra A

inherits a graded Lie-coalgebra structure.

Proof. This is an immediate consequence of Proposition ??, and of Proposition
13.1.6. �

13.1.13. Homotopy commutative algebra, alias C∞-algebra. From the
general theory of homotopy algebras, cf. Chapter 10, we know that a homotopy
commutative algebra, also called strong homotopy commutative algebra, is an al-

gebra over the dg operad Com∞ := ΩCom
¡
. From the computation of the dual

operad of Com we know that the cooperad Com
¡

is, up to suspension, the cooperad
Liec encoding Lie coalgebras.

As for homotopy associative algebras, the notion of homotopy commutative
algebra appeared in the literature in [Kad88] before the Koszul duality theory for
operads was set up. It is called C∞-algebra.

By definition a C∞-algebra is a graded vector space A = {Ak}k∈Z equipped
with a differential map d : Liec(sA)→ Liec(sA) (so |d| = −1 and d ◦ d = 0) which
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is a coderivation (cf. 1.2.8). Recall that that Liec is the cofree coLie coalgebra
functor. These two notions coincide since this last definition is the fourth one in
the Rosetta Stone 10.1.21.

Proposition 13.1.14. A C∞-algebra structure on a dg module (A, dA) is an A∞-
algebra (A, {mn}n≥2) such that each map mn : A⊗n → A is a Harrison cochain,
i.e. mn vanishes on the sum of all (p, q)-shuffles for p+ q = n, p.

Proof. The aforementioned morphism of cooperad Ass¡ → Com¡ shows that a
C∞-algebra induces an A∞-algebra.

Ass¡ //

##H
H

H
H

H Com¡

��
EndA

Since Com¡ ∼= Endcs−1K⊗HLiec, we conclude with Ree’s Theorem 1.3.9, which
states that the kernel of Assc → Liec is spanned by the sums of the shuffles. �

Notice that in the above definition of a C∞-algebra, only the associativity
relation of a commutative algebra has been relaxed up to homotopy. The symmetry
of the binary product remains strict. A differential graded commutative algebra,
dgc algebra for short, is a C∞-algebra whose higher operations vanish: cn = 0 for
n ≥ 3. The linear dual notion of C∞-coalgebra, defined as a square-zero derivation
on the free Lie algebra, is omnipresent in rational homotopy theory trough Quillen’s
constructions of [Qui69].

Example. The Lie algebra L1 of polynomial vector fields over the line K1, men-
tioned in 1.4.4 (b) has a computable cohomology. It can be shown that dimHn

CE(L1) =
2 for any n ≥ 2. But, as a C∞-algebra it is generated by H1

CE(L1) as shown by
Millionshchikov in [Mil10b].

13.1.15. Homotopy transfer theorem for C∞-algebras. The structure
of differential graded commutative (dgc) algebra is not stable under homotopy
equivalence, but the structure of C∞-algebra is. The homotopy transfer theorem
for commutative algebras takes the same form as the transfer theorem 9.4.14 for
associative algebras mutatis mutandis. See for instance [CG08].

Proposition 13.1.16. Let

(A, dA)h
%% p //

(V, dV )
i

oo

be a homotopy retract, i.e. IdA−ip = dh+hd and i is a quasi-isomorphism, and let
{µn : A⊗n → A}n≥2 be a C∞-algebra structure on A. The transferred A∞-algebra
structure on V given by the tree-formula of Theorem 9.4.14

mn :=
∑

t∈PTn+2

±mt,

where, for any planar tree t, the n-ary operation mt is obtained by putting i on the
leaves, µk on the k-ary vertices, h on the internal edges and p on the root, is a
C∞-algebra structure. The ∞-A∞-morphism i∞ : V

∼
 A, extending i, given by

the tree formula of Theorem 9.4.14 defines an ∞-C∞-quasi-isomorphism.
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Proof. This statement follows from the general homotopy transfer theorem 10.3.2,
with the explicit formulae of 10.3.6 and of 10.3.11. The relation between the A∞-
algebra structures and the C∞-algebra structures comes from the morphism of
cooperads Lie¡ → Ass¡. �

As an application, this proposition allows one [CG08] to transfer the dgc al-
gebra structure of the De Rham cochain complex of the differential forms Ω•∆n on
the n-simplex ∆n to the normalized simplicial cochain complex N•∆n through the
Dupont contraction [Dup76, Dup78]. This result has applications in deformation
theory [Get09] and renormalization theory [Mnë09].

13.1.17. E-infinity algebra. In algebraic topology, one also needs to relax
the symmetry of the commutative product “up to homotopy”. By definition, an
E∞-operad is a dg operad E which is a model for Com, that is endowed with a quasi-
isomorphism E ∼−→ Com. Moreover, one often requires the underlying S-module of E
to be projective, i.e. E(n) is a projective K[Sn]-module, for any n ≥ 1. The property
ensures that the category of algebras over E has nice homotopy behaviour, namely it
admits a model category structure with quasi-isomorphisms for weak equivalences,
see B.6.11. Notice that this extra assumption is always satisfied over a field K
of charateristic 0 ; in that case Com∞ is an E∞-operad. In this framework, a
projective quasi-free model is cofibrant.

The notation E∞ stands for ‘everything up to homotopy’ since everything,
associativity and commutativity, has been relaxed up to homotopy. An E∞-algebra
is an algebra over an E∞-operad. Observe that, in this terminology, two E∞-
algebras may be defined over different E∞-operads E ′ and E ′′. However this is
not too much of a problem since there always exists another model E with quasi-
isomorphisms

E ∼ //____

∼

���
�
�
�

∼

""EEEEEEEEEEE E ′′

∼
����

E ′ ∼ // // Com .

By the end, it is enough to consider a cofibrant E∞-operad E , see B.6.9. So, by
composition, the two E∞-algebras can be considered as algebras over the same
operad E .

Recall that when the characteristic of the ground field is 0, rational homotopy
theory of Quillen [Qui69] and Sullivan [Sul77], tells us that the rational homotopy
type of a simply-connected CW-complex, satisfying mild assumptions, is faithfully
determined by the algebraic structure of some dg commutative algebra (resp. dg Lie
algebra). The main interest in E∞-algebra structures lies in the following results of
Mandell [Man06, Man01], which generalizes the philosophy of rational homotopy
theory over Z and in characteristic p. It asserts that the singular cochain complex of
a simply-connected CW-complex, satisfying finiteness and completeness conditions,
carries an E∞-algebra structure, which faithfully determines its homotopy type,
respectively its p-adic homotopy type.

13.1.18. Barrat-Eccles operad. An example of an E∞-operad is given by
the Barratt-Eccles operad E , introduced in [BF04] and dubbed after [BE74]. For
any k ≥ 1, one defines E(k) to be the normalized bar construction of the symmetric
group Sk. In other words, the space Ed(k) is the quotient of the free K-module
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(K might be Z), on the set of d + 1-tuples (ω0, . . . , ωd) of elements of Sk by the
degenerate tuples such that ωi = ωi+1, for at least one 0 ≤ i ≤ d−1. The differential
map is the simplicial one given by

dE(ω0, . . . , ωd) :=

d∑
i=0

(−1)i(ω0, . . . , ω̂i, . . . , ωd) .

The action of the symmetric group is diagonal

(ω0, . . . , ωd)
σ := (ωσ0 , . . . , ω

σ
d ) .

The composite product of this operad is given by the combinatorics of the permu-
tations. We refer the reader to Section 1.1.3 of [BF04] for details. Notice that the
Barratt-Eccles operad is a Hopf operad with the coproduct

∆(ω0, . . . , ωd) :=

d∑
l=0

(ω0, . . . , ωl)⊗ (ωl+1, . . . , ωd) .

One defines a quasi-isomorphism of dg operads E ∼−→ Com by the augmentation
(ω0, . . . , ωd) 7→ 0 for d > 0 and (ω0, . . . , ωd) 7→ 1 for d = 0.

The suboperad of E , made of the elements of degree 0, E0(k) = K[Sk], is the
symmetric operad Ass, inducing the following diagram of dg operads

Ass

$$HHHHHHHHHHH
// // E

∼
����

Com .

Actually the Barrat-Eccles operad comes equipped with a filtration, defined by the
number of descents of permutations, such that

Ass = E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ⊂ colimn En = E .

This gives intermediate ways to relax the notion of commutative algebra up to
homotopy. In [Fre09b], Fresse proved that, in a way, the operads En are Koszul,
see Section 13.3.23 for more details.

For each n ≥ 1, the operad En is quasi-isomorphic over Z to the chains of
the little n-discs operad [Smi89, Kas93, Ber96]. Such a dg operad is called an
En-operad.

13.1.19. Divided power algebras. Let K be a field, possibly of finite char-
acteristic, or Z. A divided power algebra A is an augmented commutative algebra
A = K 1 ⊕ Ā equipped with operations γi : Ā → Ā, i ≥ 1, called divided power
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operations, such that the following relations hold:

γ1(x) = x , γi(λx) = λiγ(x) for λ ∈ K,

γi(x+ y) =

i∑
j=0

γj(x)γi−j(y),

γi(xy) = i!γi(x)γi(y)

γi(x)γj(x) =
(i+ j)!

i!j!
γi+j(x),

γi(γj(x)) =
(ij)!

i!(j!)i
γij(x),

for any x, y ∈ Ā and where, by convention γ0(x) = 1. Observe that, if K is a

characteristic zero field, then we have γn(x) = x∗n

n! , so there is no extra data. In
characteristic p the divided power algebra is completely determined by the associa-
tive and commutative product and by γ(x) := γp(x).

We have mentioned in 5.2.10 that any symmetric operad P gives rise to an
operad ΓP coding for P-algebras with divided powers. For Com we get ΓCom. One
can check, cf. [Fre00], that a ΓCom-algebra is a commutative algebra with divided
powers as defined above. In the literature, the divided power algebra ΓCom(V )
over the vector space V is denoted Γ(V ).

Example. On the space K[x] of polynomials in one variable, one can define
two different commutative algebra structures:

xn xm := xn+m ,
xn ∗ xm :=

(
n+m
n

)
xn+m ,

see Exercise 1.8.5. We denote the first algebra by K[x] and the second one by
Γ(Kx). In the second case, we observe that xn is not obtainable from x under the
product ∗, unless n! is invertible, since

x∗n := x ∗ x ∗ . . . ∗ x︸ ︷︷ ︸
n

= n!xn.

The unary operation γn(x) = xn obviously satisfies the formal properties of x∗n

n!
even when n! is not invertible in K, e.g. when K is of finite characteristic. This is
the free ΓCom-algebra on one generator x.

13.1.20. Splitting associativity. The commutative algebra Γ(Kx), i.e. the
polynomials in one variable equipped with the product ∗, has the following property:

the associative product ∗ splits into the sum

xn ∗ xm = xn ≺ xm + xm ≺ xn,
where

xn ≺ xm :=

(
n+m− 1

n− 1

)
xn+m .

It is a consequence of the binomial formula
(
n+m
n

)
=
(
n+m−1
n−1

)
+
(
n+m−1
m−1

)
. It is

immediate to check that the binary product xn ≺ xm satisfies the following relation

(xn ≺ xm) ≺ xp = xn ≺ (xm ≺ xp) + xn ≺ (xp ≺ xm) .

This is a particular case of a more general phenomenon that will be dealt with in
13.5.
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13.2. Lie algebras and the operad Lie

The category of Lie algebras determines the operad Lie. It is a binary qua-
dratic operad which is Koszul. Its Koszul dual operad is Com. However, unlike
Com, it does not come from a set-theoretic operad. We already mentioned various
characterizations of Lie(V ) as a subspace of T (V ) in 1.1.11. The representation
Lie(n) is a rather complicated one, which has been treated in several papers, cf.
for instance [Reu93]. The operadic (co)homology theory is the classical Chevalley-
Eilenberg theory. Homotopy Lie algebras, or L∞-algebras, play a prominent role in
many parts of mathematics, for instance in the deformation quantization of Poisson
manifolds by Maxim Kontsevich [Kon03].

13.2.1. Lie algebra. Let us recall that a Lie algebra g is a vector space
equipped with a binary operation called the bracket (or Lie bracket), which is
skew-symmetric:

[x, y] = −[y, x]

and which satisfies the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 .

See 1.1.11 for comments on this presentation. Its name comes from the Norwegian
mathematician Sophus Lie.

It is often helpful to adopt the notation c(x, y) := [x, y]. The symmetry prop-
erty and the Jacobi relation become:

c(12) = −c, c ◦ (c⊗ id) + c ◦ (c⊗ id)(123) + c ◦ (c⊗ id)(321) = 0.

13.2.2. Free Lie algebra. There are several characterizations of the free Lie
algebra Lie(V ) over the vector space V as a subspace of T (V ). The following is a
helpful result in the study of the free Lie algebra and its associated representations.

Proposition 13.2.3. Each one of the following statements characterizes Lie(V )
as a subspace of the tensor algebra T (V ):

a) The subspace Lie(V ) of T (V ) is generated by V under the bracket operation.
b) Let D : V ⊗n → V ⊗n (Dynkin bracketing) be the map defined by

D(v1 · · · vn) := [. . . [[v1, v2], v3], . . . , vn].

The element ω ∈ V ⊗n lies in Lie(V ) if and only if D(ω) = nω.
c) The space Lie(V ) is the image of the Eulerian idempotent defined as

e(1) := log?(Id) : T (V )→ T (V ),

where ? is the convolution product of the Hopf algebra T (V ).
d) The space Lie(V ) is made of the primitive elements in the tensor algebra

T (V ) (viewed as a cocommutative bialgebra).

Proof. We already mentioned this result in 1.3.5. �

13.2.4. The operad Lie. From the presentation of a Lie algebra it follows
that the operad Lie encoding Lie algebras is the quotient

Lie = T (ELie)/(RLie),

where ELie = K c, c being an antisymmeric operation, and RLie is the S3-submodule
of T (Kc)(2) generated by the Jacobiator. Recall that T (Kc)(2) is 3-dimensional
spanned by c ◦1 c, (c ◦1 c)(123), (c ◦1 c)(132) and the Jacobiator is the sum of these
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three elements. As a consequence the quotient Lie(2) = T (Kc)(2)/RLie is the
2-dimensional hook representation.

From the various constructions of Lie(V ) it can be deduced that dimLie(n) =
(n− 1)!. As a consequence the Poincaré series is

fLie(x) =
∑
n≥1

xn

n
= −log(1− x).

As a complex representation of Sn, it can be shown (cf. loc.cit.) that Lie(n) is the

induced representation IndSn
Z/nZ(ρ), where (ρ) is the one-dimensional representation

of the cyclic group given by an irreducible nth root of unity.

13.2.5. A basis for Lie(n). For the operads Ass and Com we do know about
a basis of the space of n-ary operations which behaves well with respect to the op-
eradic composition and the action of the symmetric group. For Lie(n) the situation
is more complicated. This can be readily seen for n = 3. Indeed, Lie(3) is the
unique 2-dimensional irreducible representation of S3 (hook representation S2,1).
It can be constructed as the hyperplane of Ku⊕K v⊕Kw orthogonal to the vector
u+ v+w. The three vectors u− v, v−w,w− u lie in this hyperplane and any pair
forms a basis. A bijection with Lie(3) can be obtained by

c ◦1 c = u− v,
(c ◦1 c)(123) = v − w,
(c ◦1 c)(321) = w − u,

where c is the Lie bracket and (123), resp. (321) are cyclic permutations.
Therefore in order to bypass this difficulty, in most cases the way to handle

Lie(n) is to view it as a subspace of Ass(n) = K[Sn], see Proposition 13.2.3. The
construction of the Harrison chain complex is a typical example.

However there are several ways to construct an explicit basis of Lie(n) as
elements of Lie(Kx1 ⊕ · · · ⊕Kxn). Here are two of them.

13.2.5.1. Dynkin elements. Consider the element

[[. . . [[x1, x2], x3], . . .], xn].

Let the symmetric group Sn−1 act on the index set {2, . . . , n}. The (n−1)! elements
given by the action of Sn−1 span Lie(n), cf. [Reu93]. The behavior of this basis
under operadic composition is rather complicated (cf. 8.3).

13.2.5.2. Indexed trees. [MR96] Let t be a planar binary tree with n leaves
(cf. C.1.1). Index the leaves by {1, . . . , n} such that, for any given vertex, the left-
most (resp. right-most) index is the smallest (resp. largest) index among the indices
involved by this vertex. Any such indexed tree determines an element in Lie(n) by
bracketing. It is proved in loc.cit. that one gets a basis of Lie(n). For instance (we
write just i in place of xi):

1
>>>> 2

����
1

>>> 2

���
3

}}}}}}}

DDDDD

1

AAAAAAA 2
=== 3

���

yyyy

[1, 2] ∈ Lie(2), [[1, 2], 3], [1, [2, 3]] ∈ Lie(3),
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in Lie(4) :
[[[1, 2], 3], 4], [[1, [2, 3]], 4], [[1, 2], [3, 4]], [[1, 3], [2, 4]], [1, [[2, 3], 4]], [1, [2, [3, 4]]].

This basis behaves well with respect to partial composition. Indeed, if t and s
are two basis elements, then so is t ◦i s. It is obtained by grafting the root of s on
the leaf of t with label i and by shifting the indices accordingly (standardization).
Equivalently, the tree [t, s] is obtained by grafting the trees t and s and standardize
the labels of s.

This basis is the PBW basis obtained in 8.3. It appears quite often in the
literature when one wants to prove that some representation of the symmetric
group, coming either from algebraic topology or algebraic combinatorics, is indeed
isomorphic to Lie(n), see for instance [Coh76, RW02, Tou06, ST09].

13.2.6. Relationship of Lie with other types of algebras. The most
important one is the “forgetful” functor:

Ass-alg
−−→ Lie-alg, A 7→ ALie

induced by the inclusion Lie � Ass and already mentioned (cf. 1.1.11). It is
called forgetful because, when dealing with the presentation of Ass by a symmetric
operation and an anti-symmetric operation (cf. 9.1.5), then it simply consists in
forgetting the symmetric operation.

There is of course an obvious relationship with the operad Pois encoding Pois-
son algebras, namely Lie� Pois, cf. 13.3.

In order for the “bracketing process” to give a Lie algebra, the starting binary
operation x · y need not be associative. In fact it suffices that the Jacobi identity
holds for [x, y] := x · y − y · x. It is easy to check that the “Jacobiator” (left part
of the Jacobi identity) is made of 12 monomials corresponding to the two ways of
parenthesizing the six permutations of xyz. A vector space equipped with a binary
operation satisfying this property is called a Lie-admissible algebra.

A pre-Lie algebra (cf. 1.4) is an example of a Lie-admissible algebra which is
not an associative algebra. So there are functors:

Ass-alg→ preLie-alg→ LieAdm-alg
−−→ Lie-alg ,

giving rise to operadic morphisms

Lie→ LieAdm→ preLie→ Ass.

13.2.7. Koszul dual of Lie. We know that the Koszul dual operad of Com
is Lie, therefore, by Proposition 7.2.5, the Koszul dual operad of Lie is Com:

Lie! = Com

and Lie is a Koszul operad. By Theorem 7.6.13 the Poincaré series of Com and Lie
are inverse under composition. This is no surprise since exp and log are inverse to
each other under composition. More interesting is the relationship for the Frobenius
characteristic, see [Mac95] p. 120.

We refer to 8.3 for a direct proof of the Koszulity of the Lie operad.
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13.2.8. Chevalley-Eilenberg homology. Chevalley and Eilenberg defined
the homology of a Lie algebra g as follows [CE48]. The module of n-chains is
CCEn (g) := Λn(g), the n-th exterior power of the space g (graded symmetric power
of g placed in degree 1). The boundary map is induced by the bracket:

d(x1 ∧ · · · ∧ xn) =
∑
i<j

(−1)i+j−1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn .

The antisymmetry property of the bracket ensures that the map d is well-defined.
The Jacobi identity ensures that d2 = 0.

Proposition 13.2.9. In characteristic zero, the operadic homology theory of a Lie
algebra is the Chevalley-Eilenberg homology theory, up to a shift of degree.

Proof. Since the Koszul dual operad of Lie is Com, it follows that the operadic
chain complex computing the homology of g is such that CLien−1(g) = (sCom(n)∗)⊗Sn
g⊗n. We have to remember that the symmetric group is acting via the signature
representation. Since Com(n) is the one-dimensional trivial representation, it comes

CLien−1(g) = Λn(g) .

By Proposition 12.1.2 the differential of the operadic chain complex is, up to sus-
pension, the Chevalley-Eilenberg boundary map. �

Corollary 13.2.10. The operadic homology HLie
•+1(g) of a Lie algebra g is a graded

commutative coalgebra.

Proof. It is a consequence of Theorem 12.1.4 applied to the Koszul operad Lie and
to the fact that the Koszul dual operad of Lie is Com, cf. 13.2.7. �

13.2.11. Lie homology and cohomology with coefficients. In Chap-
ter 12 we have shown that for any Koszul operad one can construct a small chain
complex to construct (co)homology with coefficients. In the Lie case it gives pre-
cisely the Chevalley-Eilenberg complex (cf. for instance [CE48]).

13.2.12. Homotopy Lie algebras, alias L∞-algebras. From the general
theory of homotopy algebras, cf. chapter 10, we know that a homotopy Lie algebra,
also called L∞-algebra (or strong homotopy Lie algebra) in the literature, is an

algebra over the operad Lie∞ := ΩLie
¡
. From the computation of the dual operad

of Lie, we know that the cooperad Lie
¡

is, up to suspension, the cooperad Comc

encoding commutative coalgebras.
Using the Rosetta Stone 10.1.21, an L∞-algebra can equivalently be defined in

the three following ways.
By definition, an L∞-algebra is a dg module (A, dA) equipped with skew-

symmetric operations ln : A⊗n → A of degree n − 2, for n ≥ 2, which satisfy
the relations ∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q

sgn(σ)(−1)(p−1)q(lp ◦1 lq)σ = ∂A(ln),

for n ≥ 1, where ∂A is the differential in EndA induced by dA and where Sh−1
p,q

denotes the set of (p, q)-unshuffles, cf. 1.3.2. See Proposition 10.1.13 for more
details.

The second definition is given by a square-zero coderivation d : S
c
(sA) →

S
c
(sA) of degree −1 on the non-counital cofree cocommutative coalgebra of the



400 13. EXAMPLES OF ALGEBRAIC OPERADS

suspension of a graded module A = {Ak}k∈Z. Hence the coderivation d gives rise,
for each n ≥ 1, to a map

ln : Λn(A)→ A

of degree n− 2, which corresponds to the n-ary operation. The proof was given in
Proposition 10.1.20. An∞-morphism between two L∞-algebras A and A′ is defined
as a morphism of dg cocommutative coalgebras between S

c
(sA) and S

c
(sA′). It is

sometimes called an L∞-morphism in the literature.
A third equivalent definition is given by solutions to the Maurer-Cartan equa-

tion in the Nijenhuis-Richardson dg (pre-)Lie algebra
(∏

n s
−n+1Hom(ΛnA,A), ?

)
,

see Proposition 10.1.16. This latter one is the Chevalley-Eilenberg cochain complex
with trivial Lie algebra structure on A.

13.2.13. Formal Manifold. The second definition of an L∞-algebra allows
Kontsevich [Kon03, Section 4] to describe this notion with the geometrical lan-
guage of formal manifolds as follows.

One can think of the vector space A as a manifold. When it is finite dimensional,
the linear dual of S

c
(sA), is up to suspension, isomorphic to S(A∗), the structure

sheaf formed by the algebra of formal functions on A which vanish at 0. Under
this isomorphism, square-zero coderivations are in one-to-one correspondence with
square-zero derivations. A derivation on the free commutative algebra without
unit S(A∗) is completely characterized by its restriction on the generators, that
is A∗ → S(A∗), which corresponds to a vector field in the geometrical language.
When it squares to zero, it is called a homological vector field.

Proposition 13.2.14. The data of a homological vector field on a formal manifold
is equivalent an L∞-algebra structure on a finite dimensional chain complex.

13.2.15. Comparison of L∞-algebras with A∞-algebras. The morphism
of quadratic operads Lie � Ass induces the following morphism of Koszul dual
cooperads Lie¡ � Ass¡. Since the cobar construction Ω is a functor, it induces the
following morphism of dg operads Lie∞� Ass∞.

Proposition 13.2.16. The functor

A∞-alg→ L∞-alg

consists in anti-symmetrizing the operations mn to get the operations ln.

Proof. See the proof of Proposition 10.1.14. �

Together with Proposition 13.1.14, we get the following functors

L∞-alg← A∞-alg← C∞-alg ,

where a C∞-algebra is viewed as an A∞-algebra whose operations vanish on the
sum of the shuffles.

13.2.17. The notion of L∞-algebra in the literature. As for homotopy
associative algebras, the notion of homotopy Lie algebra appeared in the literature
before the Koszul duality theory of operads was set up.

In the first place, the dual notion of L∞-coalgebra is omnipresent in the ratio-
nal homotopy theory of Sullivan [Sul77] through the minimal model construction,
which a quasi-free dg commutative algebra. It was used in the early 1980’s in de-
formation theory [SS85, GM88], extending the general philosophy of Deligne and
Grothendieck which states that a deformation problem should be governed by a dg
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Lie algebra, see 13.2.20. This notion was explicitly used in mathematical physics
at the beginning of the 1990’s, see [LS93], for instance in string field theory by
Zwiebach [Zwi93]. The Koszul resolution L∞ of the operad Lie is explicitly given
by Hinich and Schechtman in [HS93], before the general paper of Ginzburg and
Kapranov [GK94] on the Koszul duality theory. The notion of ∞-L∞-morphisms
plays a crucial role in the proof the deformation-quantization of Poisson manifolds
by Kontsevich [Kon03], as explained below.

Notice that it should not be confused with the Lie algebra structure on the
homotopy groups of a topological space [Whi41, Sam53], which is also called
‘homotopy Lie algebra’.

13.2.18. Homotopy theory of L∞-algebras. The general results on homo-
topy algebras of Chapters 10 and 11 can be applied to L∞-algebras. Actually, there
were first proved on the level of L∞-algebras, by Sullivan [Sul77] and Kontsevich
[Kon03].

Proposition 13.2.19. For any homotopy retract a L∞-algebra structure can be
transferred so that the resulting L∞-algebra is homotopy equivalent to the starting
one.

Proof. It is the HTT 10.3.2 applied to the Koszul oerad Lie. �

An explicit formula, based on labelled trees, is given in Proposition 10.3.9. In
the case of the homology of a dg Lie algebra, the induced operations are sometimes
called the Lie-Massey products [Ret93] in the literature.

The other results are the following ones.

� Any L∞-algebra is ∞-isomorphic to the product (direct sum) of a mini-
mal L∞-algebra, its homology, with an acyclic trivial L∞-algebra by The-
orem 10.4.5.

� For any ∞-quasi-isomorphism between two L∞-algebras, there exists an
∞-quasi-isomorphism in the other way round, which extends the inverse
of the isomorphism on the level of the homotopy groups (the homology of
the underlying chain complexes), see Theorem 10.4.7.

� One can universally rectify any homotopy Lie algebra by Proposition 11.4.9.
� Finally the homotopy category of dg Lie algebras is equivalent to the ho-

motopy category of L∞-algebras with ∞-morphisms by Theorem 11.4.12.

13.2.20. Deformation theory. This section deals with deformation theory
using dg Lie algebras over a ground field K of characteristic 0. The philosophy of
using dg Lie algebras to encode deformation problems goes back to Deligne and
Grothendieck according to [GM88, SS85].

The general idea of deformation theory is to study the possible deformations,
up to some equivalence relation, of a given structure, which can be algebraic as in
12.2 or geometric. There are basically two approaches.

The first one, due to M. Schlessinger [Sch68] and Grothendieck, relies on a
functor which associates the coset of equivalent deformations to a ring made of
the possible parameters of deformation. Such a functor is called the deformation
functor . This method forgets the data of the equivalences themselves to keep only
track of the equivalence classes. It might also give rise to singular spaces.
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The other approach due to Deligne encodes the two data of the possible de-
formations and their equivalences into a category. By definition, the objects are
the deformations themselves and the morphism sets between two deformations is
made of the equivalences between them. Since one works with an equivalence re-
lation, every morphism of the category is an isomorphism. So this category is a
groupoid called the Deligne groupoid. Deligne groupoids are often obtained as sets
of deformations with a group action encoding the equivalences. In this language,
two deformation problems are equivalent if the associated Deligne groupoids are
equivalent.

Ultimately a deformation problem is encoded by a dg Lie algebra as follows.
To any dg Lie algebra (g, [ , ], d), one can associate the set MC(g) of Maurer-Cartan
elements:

MC(g) :=

{
α ∈ g1 | dα+

1

2
[α, α] = 0

}
.

Here we use the cohomological convention |d| = |α| = +1, which is often the case
in the literature, for instance in 12.2.

Proposition 13.2.21. When the dimension of g1 is finite, the set of MC(g) of
Maurer-Cartan elements forms an algebraic variety in the affine space g1, which is
an intersection of quadrics.

Proof. Choosing a finite basis {ei}1≤i≤m for g1 and a finite basis {fj}1≤j≤n for the
images of the differential and the bracket in g2, we have

dei =
∑

1≤j≤m

λijfj and [ei, ei′ ] =
∑

1≤j≤m

λi,i
′

j fj .

Therefore, an element α = X1e1 + · · ·+Xnen lies in MC(g) if and only if it satisfies
the quadratic relations∑

1≤i≤n

λijXi +
1

2

∑
1≤i,i′≤n

λi,i
′

j XiXi′ = 0 ,

for any 1 ≤ j ≤ m. �

We denote the quadratic mapping

g1 → g2; α 7→ Q(α) := dα+
1

2
[α, α] .

Such that MC(g) = Q−1(0).

Lemma 13.2.22. The map

λ ∈ g0 7→ dλ+ [−, λ] ∈ Γ(MC(g), T MC(g))

is a morphism of Lie algebras from g0 to the Lie algebra of affine vector fields of
MC(g).

Proof. Since the set MC(g) is the zero locus of the map Q, it is enough to compute
its derivative: dαQ(β) = dβ+ [α, β]. So the tangent space at the point α of MC(g)
is equal to

TαMC(g) := {β ∈ g1 | dβ + [α, β] = 0} .
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For any α ∈ MC(g) and any λ ∈ g0, we have

dαQ(dλ+ [α, λ]) = [dα, λ]− [α, dλ] + [α, dλ] + [α, [α, λ]]

= [dα, λ] +
1

2
[[α, α], λ] = [Q(α), λ] = 0 .

This proves that the aforementioned map lands in vector fields of MC(g). We leave
it to the reader to verify that this map is a morphism of Lie algebras. �

The idea now is to look for an equivalence relation on Maurer-Cartan elements
using the differential equation associated to flow given by elements of g0: two
elements α, β ∈ MC(g) are equivalent if there exist λ ∈ g0 and a curve ξ(t) in
MC(g) such that

dξ(t)

dt
= dλ+ [ξ(t), λ], ξ(0) = α and ξ(1) = β .

To do so, we suppose that the Lie algebra g is nilpotent, i.e. the lower cen-
tral series g ⊃ [g, g] ⊃ [g, [g, g]] ⊃ · · · vanishes eventually. In this case, the Lie
subalgebra g0 is the the tangent Lie algebra of a Lie group G, called the gauge
group. Its underlying set is in bijection with g0 and explicit given by elements of
the form {eλ, λ ∈ g0}. The neutral element is e0 and the group law is given by the
Baker-Cambell-Hausdorff formula

eλ ∗ eµ := eBCH(λ,µ) = eλ+µ+ 1
2 [λ,µ]+ 1

12 [λ,[λ,µ]]− 1
12 [µ,[λ,µ]]+··· .

For more details on this point, we refer to [Ser06]. The one-parameter subgroups
etλ of G associated to λ ∈ g0 acts on MC(g) by the formula

etλ.α := et adλ(α) +
Id− et adλ

adλ
(dλ) ,

where adλ(α) = [λ, α]. Therefore, two elements α, β ∈ MC(g) are defined to be
equivalent if there exists λ ∈ g0 such that eλ.α = β.

The cosets under this action forms the moduli space of Maurer-Cartan elements
of g:

MC (g) := MC(g)/G .

One can also consider the associated Deligne groupoid. The objects are the Maurer-
Cartan elements and the morphism sets are given by the elements of the gauge
group.

Recall that, in an Artin ring R, any descending chain of ideals stabilizes

. . . = In+1 = In ⊂ In−1 ⊂ · · · I1 ⊂ I0 .

To satisfy the nilpotency condition, one considers the nilpotent dg Lie algebras
g ⊗ m, where m is the maximal ideal of a local Artin ring R. In the end, the
deformation functor

Defg : local Artin ring → Set
R = K⊕m 7→ MC (g⊗m)

faithfully encompasses the global moduli space of Maurer-Cartan elements of g. The
idea of tensoring with a nilpotent maximal ideal is the same as that of distribution
in Analysis, as explained below.
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Lemma 13.2.23. By linear dualization, the category of local Artin rings is equiv-
alent to the category of conilpotent coalgebras

conilpotent coalgebra → local Artin ring
C 7→ C∗ .

Proof. The linear dual of a coaugmented coalgebra is a local ring. Under dualiza-
tion, a conilpotent coalgebra gives an Artin ring. �

So, one can equivalently consider the deformation functor

conilpotent coalgebra → Set
C = K⊕ C 7→ T W (C, g) ,

where T W (C, g) stands for the moduli space of twisting morphisms, that is Maurer-
Cartan elements in the nilpotent convolution Lie algebra Hom(C, g), see 11.1.

A deformation problem is encoded by a dg Lie algebra when the possible
structures one wants to consider are in one-to-one correspondence with the set
of Maurer-Cartan elements and when the equivalence between them correspond
to the gauge group action. One can consider deformation functors with value in
Deligne groupoids, which we do not do in this book.

Deformation functors are invariant under quasi-isomorphisms of dg Lie alge-
bras.

Theorem 13.2.24. [GM88, Theorem 2.4] Any quasi-isomorphism g
∼−→ g′ of dg

Lie algebras induces an isomorphism between the deformation functors Defg ∼=
Defg′ .

Theorem 13.2.25. [Kon03] Any ∞-quasi-isomorphism g
∼
 g′ of dg Lie algebras

induces an isomorphism between the deformation functors Defg ∼= Defg′ .

Proof. The rectification theorem 11.4.7 gives the following commutative diagram
of ∞-quasi-isomorphisms

g ∼ ///o/o/o/o/o/o/o g′

ΩκBι g
∼ //

∼

OO

ΩκBι g
′ ,

∼

OO

where the three solid arrows are quasi-isomorphisms of dg Lie algebras. The state-
ment is a consequence of the previous proposition. �

So, it is enough to show that two dg Lie algebras are ∞-quasi-isomorphic to
prove the equivalence of the associated deformation functors. This method was used
in a crucial way by Kontsevich in [Kon03] to prove that any Poisson manifold can
be quantized by deformation. More precisely, he extended the Hochschild-Kostant-
Rosenberg quasi-isomorphism into an explicit ∞-quasi-isomorphism

ΛA DerA
∼
 C•(A,A)

of L∞-algebras, when A = C∞(M) is the algebra of smooth functions on a Poisson
manifold M . This result proves the formality of the Hochschild cochain complex
as a dg Lie algebra.

For more exhaustive accounts on deformation theory, we refer the reader to
[Man99a, Kon03, Kel05, KS10].
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13.2.26. Restricted Lie algebras. Let A be an associative algebra over a
characteristic p field K. The bracket [x, y] and the pth power xp are operations
related by the following relation:

(x+ y)p = xp + yp +

p−1∑
i=1

si(x, y),

where the polynomial si(x, y) is of degree i in x. It turns out that these polynomials
are Lie polynomials in x and y, that is, when A = T (V ) they lie in Lie(V ). So they
are universally determined as Lie polynomials.

By definition, cf. [Jac62], a restricted Lie algebra is a pair (L, [p]) where L is
a Lie algebra over a characteristic p 6= 0 field K and [p] : L→ L, x 7→ x[p] is map,
called the Frobenius map, which satisfies the following relations:

(αx)[p] = αpx[p], α ∈ K, x ∈ L
[x, y[p] ] = [· · · [x, y ], y ] · · · , y︸ ︷︷ ︸

p

], x, y ∈ L

(x+ y)[p] = x[p] + y[p] +

p−1∑
i=1

si(x, y),

where si(x, y) is the aforementioned Lie polynomial. A morphism f : L → L′ of
restricted Lie algebras is a Lie morphism such that f(x[p]) = f(x)[p].

The relationship with operads is the following. We have mentioned in 5.2.10
that any symmetric operad P gives rise to a divided powers operad ΓP. Applied to
P = Lie we get the notion of ΓLie-algebra. It is proved in [Fre00] that the notion
of ΓLie-algebra coincides with the notion of restricted Lie algebra.

Example. Any associative algebra A over a characteristic p field K has the
structure of restricted Lie algebra with Frobenius map given by a 7→ ap. In the
case of n×n-matrices over A this Lie algebra is usually denoted by gln(A). The Lie
sub-algebra of trace zero matrices, denoted sln(A), is also a restricted Lie algebra.

Let A be a magmatic algebra. The space of derivations D on A is a Lie algebra
for the bracket [D,D′] = D ◦D′ −D′ ◦D. It is also a restricted Lie algebra for the
Frobenius map D 7→ Dp.

13.3. Poisson algebras and Gerstenhaber algebras

Poisson algebras mix a commutative operation and a Lie bracket by means of
a distributive law. They appeared in differential geometry as the structure of the
space of real valued functions on a symplectic manifold, and more generally Poisson
manifold. A Gerstenhaber algebra is a Poisson algebra with the Lie bracket in
degree 1. This notion plays a crucial role in current mathematics: the Hochschild
cohomology of an associative algebra with coefficients in itself and the polyvector
fields of a smooth manifold carry a structure of Gerstenhaber algebra. The Poisson
operad is a sort of trivial extension of the operads Com and Lie.

13.3.1. Poisson algebra. By definition, a Poisson algebra A is a vector space
equipped with a symmetric operation x · y and an antisymmetric operation [x, y],
which satisfy the following relations:
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 [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 ,
[x · y, z] = x · [y, z] + [x, z] · y ,

(x · y) · z = x · (y · z) .
In other words, one has a commutative operation and a Lie bracket entwined by the
Leibniz relation. Its name comes from the French mathematician Siméon Poisson.

13.3.2. Free Poisson algebra. The free Poisson algebra Pois(V ) over V is
the reduced tensor module T (V ) as a vector space. The commutative structure
and the Lie structure are obtained as follows. Recall that there is an isomorphism
of coalgebras (Eulerian isomorphism) T (V ) ∼= S(Lie(V )). From this isomorphism
we deduce the structure of commutative algebra. The structure of Lie algebra on
Lie(V ) is obvious. It is extended to S(Lie(V )) by means of the Leibniz relation
(distributive law), and then transferred to T (V ).

13.3.3. The operad Pois. The operad encoding Poisson algebras is denoted
by Pois. By definition, the operad Pois fits into the two following sequences of
operads

Com� Pois� Lie,

Lie� Pois� Com.

The operad Pois can be constructed out of Lie and Com by means of a distributive
law, see 8.6,

Pois ∼= Com ◦ Lie .
This distributive law Lie ◦Com→ Com ◦Lie is given by the second relation in the
presentation of the Poisson operad.

1
::: 2

����
·

??? 3
}}}

[ , ]

=

1
AAA 3

}}}
[ , ]

CCC 2
���
·

+

2
AAA 3

}}}

1
??? [ , ]

{{{
·

By Proposition 8.6.2, it makes the composite Com ◦ Lie into an operad. This is
precisely the operad Pois.

From this isomorphism and the isomorphism Ass ∼= Com ◦ Lie, it follows that
Pois(n) ∼= K[Sn] (regular representation).

13.3.4. Parametrized Poisson operad. The Poisson operad and the as-
sociative operad are related by a family of operads as follows. Let q ∈ K be a
parameter. Consider the algebras having a symmetric operation x · y and an anti-
symmetric operation [x, y] satisfying the relations: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0,

[x · y, z] = x · [y, z] + [x, z] · y
(x · y) · z − x · (y · z) = q [y, [x, z]] .

For q = 0 we get the Poisson operad. We have seen in 9.1.5 that for q = 1 we
get the associative operad. It is easy to show that, if (

√
q)−1 exists in K, then the

associated operad is isomorphic to Ass.
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The parametrized Poisson operad Poisq can also be presented by a unique
operation without symmetry, denoted ab, with relation

(ab)c = a(bc) +
q − 1

q + 3
(−a(cb) + c(ab) + b(ac)− b(ca)).

Hence, taking q = 0, a Poisson algebra is defined by a binary operation ab satisfying

(ab)c = a(bc)− 1

3
(−a(cb) + c(ab) + b(ac)− b(ca)).

The relationship with the previous presentation is given by ab = a · b+ [a, b].

13.3.5. Koszul dual of Pois. From the duality exchanging Com and Lie
and from the distributive law, one can check that the Poisson operad is Koszul
self-dual: Pois! = Pois. It is an example of Koszul duality for distributive laws,
cf. 8.6.

More generally the Koszul dual operad of the parametrized Poisson operad is
generated by a binary operation ab with relation

a(bc) = (ab)c+
q − 1

q + 3

(
+ (ac)b+ (bc)a− (ba)c− (ca)b

)
.

This is precisely the opposite type of Poisq.

13.3.6. Poisson homology and Eulerian idempotents. Let A be a Pois-
son algebra. Since the operad Pois is Koszul self-dual, the module of n-chains of
A is Cn(A) := A⊗n.

Denote by

Cn(A) = C(1)
n (A)⊕ · · · ⊕ C(n)

n (A)

the Eulerian decomposition 1.3.11, cf. [Lod89], of Cn(A) (sometimes called the
Hodge decomposition). Operadically it is obtained as

C(i)
n (A) = (Comc(i) ◦ Liec)(A).

Benoit Fresse has shown in [Fre06] that there is a differential map dh : C
(p)
p+q(A)→

C
(p−1)
p+q−1(A) induced by the bracket operation, and a differential map dv : C

(p)
p+q(A)→

C
(p)
p+q−1(A) induced by the commutative operation (dot operation), which define a

bicomplex:
· · ·

��
C

(1)
3

dv

��

· · ·oo

dv

��
C

(1)
2

dv

��

C
(2)
3

dhoo

dv

��

· · ·dhoo

��
C

(1)
1 C

(2)
2

dhoo C
(3)
3

dhoo · · ·dhoo

In low dimension the equality dhdh = 0, resp. dvdh + dhdv = 0, resp. dvdv = 0,
is precisely the first, resp. second, resp. third, relation of a Poisson algebra. Fresse
has shown that the total complex of this bicomplex is the operadic chain complex
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CPois•−1 (A). The vertical complex C
(1)
• (A) = (Comc(1) ◦ Lie)c(A) is the Harrison

complex of the underlying commutative algebra A, and the bottom horizontal com-

plex
⊕

n C
(n)
n (A) =

⊕
n(Comc(n) ◦ I)(A) =

⊕
n Λn(A) is the Chevalley-Eilenberg

complex of the Lie algebra ALie.

13.3.7. Poisson homology and straight shuffles. From the presentation
of Poisson algebras by one binary operation ab without symmetry it follows that
the boundary map of the chain complex

CPois•−1 (A) · · · → A⊗n
dn−→ A⊗n−1 → · · · → A⊗3 d3−→ A⊗2 d2−→ A

is as follows in low dimension:

d2(a, b) = ab,

d3(a, b, c) = 3(ab)⊗ c− 3a⊗ (bc) + a⊗ (cb)− c⊗ (ab)− b⊗ (ac) + b⊗ (ca).

Making dn explicit higher up is a challenge, but can be done using the notion of
straight shuffles and the computations of the Koszul dual cooperad Pois¡ [GCTV09,
Section 2].

13.3.8. Poisson homology of smooth algebras. Before the operad the-
ory tells us about the correct chain complex to compute the (co)homology of a
Poisson algebra, people were using a different complex for Poisson homology with
coefficients, defined as follows. Let A be the Poisson algebra and M be a Pois-
son module. There is a well-defined differential map on M ⊗A Ω•A induced by the
bracket operation. Here Ω•A stands for the space of classical differential forms of
the commutative algebra A. When A is smooth as a commutative algebra, it turns
out that the bicomplex (with coefficients in M) is quasi-isomorphic to its lower row
which is the complex M ⊗A Ω•A (cf. [Fre06], section 1.4).

13.3.9. Graded Poisson algebras. If we denote by m the generator of
the operad Pois corresponding to the commutative operation, resp. c for the Lie
bracket, of a Poisson algebra, then the relations read:

c ◦1 c+ (c ◦1 c)(123) + (c ◦1 c)(321) = 0,

c ◦1 m = m ◦2 c+ (m ◦1 c)(23),

m ◦1 m = m ◦2 m.

A graded Poisson algebra is a graded vector space A equipped with two binary
operations m and c of degree 0 satisfying the aforementioned relations. When
applying these relations on homogeneous elements, the degree comes into play. For
instance the second relation gives:

[x · y, z] = x · [y, z] + (−1)|y| |z][x, z] · y.

13.3.10. Gerstenhaber algebras. A Gerstenhaber algebra [Ger63] is a graded
vector space A equipped with a (sign-graded) symmetric associative product x · y
of degree 0 on A and a (sign-graded) symmetric operation 〈x, y〉 of degree +1, that
is |〈x, y〉| = |x| + |y| + 1, which satisfies the Jacobi relation. They are related by
the Leibniz relation. In plain words, a Gerstenhaber algebra is a graded Poisson
algebra, except that the skew-symmetric degree 0 bracket becomes a symmetric
degree 1 binary operation. The assumption that 〈 , 〉 has homological degree 1 does
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not change the appearing signs because of the permutation of the variables. For
instance, one has 〈y, x〉 = (−1)|x||y|〈x, y〉 and

〈〈x, y〉, z〉+ (−1)|x|(|y|+|z|)〈〈y, z〉, x〉+ (−1)|z|(|x|+|y|)〈〈z, x〉, y〉 = 0.

One sometimes defines equivalently a Gerstenhaber algebra by Lie bracket [ , ]
of degree 0 on sA, the suspension of A, see [Get94, TT00] for instance. It is
supposed to satisfy the Leibniz relation with the commutative product, but since
they do not act on the same space, we need the preceding refinement to make that
relation precise. Moreover, to encode the category of Gerstenhaber algebras with an
operad, we need it to act on the same space. A Lie bracket [ , ] on sA is equivalent
to a commutative operation 〈 , 〉 of degree +1 on A under the formula

〈 -, - 〉 := s−1[-, -] ◦ (s⊗ s) ,

which gives 〈x, y〉 := (−1)|x|s−1[sx, sy] on elements. The commutativity follows
from

〈 , 〉(12) = (s−1[ , ] ◦ s⊗ s)(12) = −s−1([ , ](12)) ◦ s⊗ s = s−1[ , ] ◦ s⊗ s = 〈 , 〉,

which, applied to homogeneous elements, reads

〈y, x〉 = (−1)|y|s−1[sy, sx] = (−1)|y|+1+(|x|+1)(|y|+1)s−1[sx, sy] = (−1)|x||y|〈x, y〉.

Example. Let M be a smooth manifold and let Γ(M,TM) denote the space
of vector fields, i.e. the sections of the tangent bundle, endowed with the classical
Lie bracket. The space of polyvector fields Γ(M,S(sTM)) ∼= Γ(M,Λ(TM)) is
equipped with a Gerstenhaber algebra structure, whose Lie bracket is obtained
from the previous one under the Leibniz rule.

13.3.11. Gerstenhaber algebra structure on Hochschild cohomology.
The origin of this algebraic structure lies in the following result.

Proposition 13.3.12 ([Ger63]). For any associative algebra A, the Hochschild
cohomology of A with coefficients in itself inherits a Gerstenhaber algebra structure
whose product is induced by the cup product and whose bracket comes from the
pre-Lie product.

Proof. The Hochschild cochain complex of an associative algebra (A,µ) with coef-
ficients into itself is equal to the convolution dg pre-Lie algebra

gAs,A = Hom(As
¡
,EndA) ∼=

∏
n≥1

s−n+1Hom(A⊗n, A) .

Under this homological degree convention, the cup product f ∪ g := µ ◦ (f ⊗ g)
endows the desuspension s−1gAs,A with a degree 0 associative product. Recall that
the boundary map is given by ∂(f) = [µ, f ]. The relation

f ∪ g − (−1)|f ||g|g ∪ f = ∂(f) ? g + (−1)|f | − ∂(f ? g)

shows that the induced associative product on homology is commutative. One can
write the Leibniz relation in terms ∂({f}{g, h}), showing that this relation holds
on homology. �

This result is a consequence of a more refined algebraic structure on the cochain
level, namely that of a multiplicative operad, which induces the brace operations
{-; -, . . . , -}, cf. 13.11.7. Notice that in the literature, the cohomological degree
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convention CnHoch(A,A) = sn Hom(A⊗n, A) is often used. In this case, the Ger-
stenhaber algebra operations have opposite degree.

One applies this structure as follows to compute the Hochschild cohomology of
smooth algebras. The cycles of C1(A,A) = Hom(A,A) are exactly the derivations
HH1(A,A) ∼= DerA of the algebra A, which form a Lie sub-algebra. One extends
this Lie algebra structure on the free commutative algebra ΛA DerA by the Leibniz
relation. This endows ΛA DerA with a Gerstenhaber algebra structure. (This is
the algebraic analogue of the Gerstenhaber polyvector fields algebra.)

Proposition 13.3.13. [HKR62] Let A = C∞(M) be the algebra of smooth func-
tions on a manifold M or let A = S(V ) be a free commutative algebra on a finite
vector space V . The natural morphism of Gerstenhaber algebras

Λ•A DerA
'−→ HH•(A,A)

is an isomorphism.

Since the cup product is not commutative on the cochain level, one can de-
fine a direct quasi-isomorphism Λ•A DerA

∼−→ C•(A,A) by anti-symmetrization
(d1, . . . , dn) 7→

∑
σ∈Sn ± dσ(1) ∪ · · · ∪ dσ(n).

13.3.14. The operad Gerst. A Gerstenhaber algebra is an algebra over the
graded operad Gerst, which admits the following quadratic presentation. The
space of generators is EGerst = Km ⊕ K c, which is the direct sum of two one-
dimensional trivial representations of S2, one in degree 0 denoted by m and one in
degree 1 denoted by c. The space of relations RGerst is the K[S3]-module generated
by  c ◦1 c+ (c ◦1 c)(123) + (c ◦1 c)(321),

c ◦1 m−m ◦2 c− (m ◦1 c)(23),
m ◦1 m−m ◦2 m .

Recall that sA is a Lie algebra if and only in A = s−1(sA) is a Lie⊗
H

Ends−1K =

S−1Lie-algebra. The operad S−1Lie admits the quadratic presentation P(Kc, c ◦1
c+(c◦1 c)(123) +(c◦1 c)(321)). Like the operad Pois, the operad Gerst is isomorphic
to an operad obtained by means of a distributive law:

Gerst ∼= Com ◦ S−1Lie .

13.3.15. Relationship with the little discs operad. We introduced the
littles discs operad D in 5.3.10.

Theorem 13.3.16 ([Coh76]). The singular homology H•(D) of the little discs
operad is isomorphic to the operad Gerst.

Roughly speaking, the little discs operad D is made of the configurations of
n discs inside the unit disc of the plane. The operadic composition is given by
shrinking and inserting discs. Since a double loop space Ω2X is an algebra over
the little discs operad, this theorem proves that the homology of a double loop
space carries a natural structure of Gerstenhaber algebra, where the product is the
Pontryagin product and the bracket is the Browder bracket, see [Get94] for details.
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13.3.17. Homotopy Gerstenhaber algebras. As well as for the operad
Pois, the Koszul duality theory applies to the graded operad Gerst. The Koszul
resolution G∞ := ΩGerst¡

∼−→ Gerst produces the minimal model of Gerst.

Proposition 13.3.18 ([GJ94]). The operad Gerst is a Koszul operad, whose
Koszul dual operad is given by

Gerst! ∼= SGerst = Gerst⊗
H

EndsK .

As usual, an algebra over the operad G∞ is called a G∞-algebra or a homotopy
Gerstenhaber algebra. This notion is different from that of “Homotopy G-algebra”
[GV95]. To avoid any confusion, we call this later one “GV -algebras”, see 13.11.7.
A G∞-algebra can be equivalently defined by a square-zero coderivation on the
cofree “Gerstenhaber coalgebra”

G
¡
(A) ∼= s−1Gerstc(sA) ∼= s−2Comc(sLiec(sA)) .

Up to suspension, the right hand side is given by the cofree cocommutative coal-
gebra (without counit) on the cofree Lie coalgebra S

c
(sLiec(A)). The explicit

structure of Gerstenhaber coalgebra on such a space was described in [GCTV09,
Section 2]. As a corollary, it gives the explicit definition of a G∞-algebra in terms
of generating operations and relations [GCTV09, Proposition 16].

13.3.19. Deligne’s conjecture. Theorems 13.3.12 and 13.3.16 lead Deligne
[Del93] to ask the following question, which is now called the Deligne’s conjecture.

“Is there an action of an operad, homotopy equivalent to the operad of singular
chains of the little discs operad D, on the Hochschild cochain complex of an asso-
ciative algebra, which induces the Gerstenhaber algebra structure on cohomology ?”

The ‘homotopy equivalence’ refers to the homotopy category of dg operads B.6;
it means that the two operads should be related by a zig-zag of quasi-isomorphisms.
This conjecture has now been proved by many authors [Tam98, Vor00, KS00,
MS02, BF04, Kau07]. Here we just mention the proof given by Tamarkin using
the Koszul model.

Theorem 13.3.20. [Tam98] There is an action of the operad G∞ on the Hoch-
schild cochain complex of an associative algebra, which induces the Gerstenhaber
algebra on cohomology.

We also refer the reader to [TT00, Hin03] for more details. To fully answer
Deligne’s question, Tamarkin proved the formality of the little discs operad.

Theorem 13.3.21. [Tam03] There is a zig-zag of quasi-isomorphisms of dg op-
erads

C•(D)
∼←− · ∼−→ H•(D) .

Since H•(D) ∼= Gerst by Cohen’s Theorem 13.3.16, the operad G∞ is homotopy
equivalent to the chain operad C•(D) of the little discs operad.

C•(D)
∼←− · ∼−→ H•(D) ∼= Gerst

∼←− G∞ −→ EndC•(A,A)

These two results allowed Tamarkin in [Tam98] to give another proof of Kont-
sevich formality theorem, which implies the deformation-quantization of Poisson
manifolds. For a polynomial algebra A = S(V ), with V finite-dimensional, he
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proved the vanishing of the obstructions to extending the Hochschild-Kostant-
Rosenberg quasi-isomorphism Λ•A DerA

∼−→ C•(A,A) into an∞-quasi-isomorphism
of G∞-algebras. Since there is an inclusion S−1L∞� G∞, it implies the existence
of an ∞-quasi-isomorphism of L∞-algebras. Contrarily to Kontsevich proof, this
one is not explicit. In [DTT07], the authors refine these arguments and construct
a zig-zag of ∞-quasi-isomorphisms of G∞-algebras. The method depends on the
rectification theorem 11.4.7.

13.3.22. The operads en. The Gerstenhaber operad is defined as the Pois-
son operad but with a twisting of sign and a degree shift on one generator. More
generally, for n ≥ 2, we define the operads en by the following quadratic presenta-
tion. The space of generators is Een := Km ⊕ K cn−1, which is the direct sum of
two one-dimensional representations of S2, Km of degree 0 with trivial action and
K cn−1 of degree n− 1 and with sgn⊗nS2

-action, that is trivial for n even and sgnS2

for n odd. The space of relations Ren is the K[S3]-module generated by cn−1 ◦1 cn−1 + (cn−1 ◦1 cn−1)(123) + (cn−1 ◦1 cn−1)(321),
cn−1 ◦1 m−m ◦2 cn−1 − (m ◦1 cn−1)(23),
m ◦1 m−m ◦2 m .

For n = 1, the convention is e1 := Ass, the symmetric operad encoding associative
algebras. For n = 2, we find back e2 = Gerst.

These operads allow one [Coh76] to extend Theorem 13.3.16 to higher dimen-
sions: the homology operads of the little n-discs operads are isomorphic to en:

H•(Dn) ∼= en, for n ≥ 1 .

There is a sequence of morphisms of operads

Ass = e1 → e2 → · · · → en → · · · → colimn en = Com,

where in : en → en+1 is given by m 7→ m and cn−1 7→ 0. At the limit n→∞, one
recovers the operad Com and the operads en interpolate between Ass and Com.

By the same proof as in Proposition 13.3.18, one can show that the operad en
is Koszul [GJ94] and satisfies

en
! ∼= Sn−1en = EndsK ⊗

H
· · · ⊗

H
EndsK︸ ︷︷ ︸

n−1

⊗
H
en .

Let us denote by κn : en
¡ → en the Koszul morphism, which is given by sm 7→ m

and scn−1 7→ cn−1. We define the following morphisms of quadratic cooperads

jn : en
¡
→ en+1

¡
by sm 7→ sm and scn−1 7→ 0 ,

making the following diagram to commute

en
¡ jn //

κn

��

en+1
¡

κn+1

��
en

in // en+1 .

They correspond to the morphisms Sen+1 → en given by s−1m 7→ 0 and by
s−1cn 7→ cn−1 at the level of the Koszul dual operads. Finally, they induce the
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following commutative diagram of dg operads

A∞

∼

��

// · · · // Ω en
¡ //

∼

��

Ω en+1
¡

∼

��

// · · · // C∞

∼

��
Ass // · · · // en // en+1 // · · · // Com .

Therefore, the operads Ω e
¡

n interpolate between A∞ and C∞.

13.3.23. Koszul duality of the operads En. Recall from Section 13.1.18
that the Barrat-Eccles dg operad E comes equipped with a filtration of suboperads

Ass = E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ⊂ Colimn En = E .

Passing to homology, we get H•(En) = en and so we recover the aforementioned
sequence of morphisms

Ass = e1 → e2 → · · · → en → · · · → colimn en = Com .

Fresse in [Fre09a] has extended the above results to the level of the operads
En as follows. By a slight abuse of notation, let us take the following convention
for the dg cooperads

En
¡

:= Endcs−1K ⊗
H
· · · ⊗

H
Endcs−1K︸ ︷︷ ︸

n

⊗
H
E∗n .

Proposition 13.3.24. [Fre09a] For any n ≥ 1, there exists a Koszul morphism

κn : E ¡n → En.

It gives the quasi-free model Ω E ¡

n
∼−→ En. Moreover, there exists morphisms of

dg cooperads E ¡

n → E
¡

n+1 such that

En
¡ //

κn

��

En+1

¡

κn+1

��
En // // En+1 .

They imply the following commutative diagram of operads.

ΩAss
¡

∼

��

// · · · // Ω En
¡ //

∼

��

Ω En+1

¡

∼

��

// · · · //
Ω E ¡

∼

��
Ass // · · · // En // En+1

// · · · // E ,

where E ¡
is the colimit of the En

¡
.

The quasi-free, thus cofibrant, resolution Ω E ¡

n
∼−→ En provides a small chain

complex which computes the homology of En-algebras. This last one is equal to the
homology of the n-fold iterated bar construction [Fre08]. Applied to the normalized
singular chain complex of a topological space X, it also computes the homology of
its n-fold loop space ΩnX. The case of the spheres X = Sm is treated in [Fre10].
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13.3.25. Lie-Rinehart algebras. Let A be a commutative algebra and let
L be a Lie algebra. We suppose that L is equipped with a module structure over
A:

A⊗ L→ L, (a,X) 7→ aX,

and we suppose that there is given a Lie algebra morphism

ω : L→ Der(A), X 7→ (a 7→ X(a))

where Der(A) is the Lie algebra of derivations of the algebra A. The pair (A,L) is
called a Lie-Rinehart algebra with anchor ω, provided the following relations hold:{

(aX)(b) = a(X(b)), X ∈ L, a, b ∈ A,
[X, aY ] = a[X,Y ] +X(a)Y, X, Y ∈ L, a ∈ A.

There is an obvious notion of morphism of Lie-Rinehart algebras and therefore
a category of Lie-Rinehart algebras.

Any associative algebra R gives rise to a Lie-Rinehart algebra (A,L) as follows:
A = Rab := R/[R,R], and L = RLie is the vector space R considered as a Lie
algebra for the usual bracket [r, s] = rs− sr.

Proposition 13.3.26. Any Lie-Rinehart algebra (A,L) gives rise to a Poisson
algebra P = A⊕ L such that the two operations · and [ , ] take values as follows:

A⊗A ·−→ A , A⊗A [ , ]−−→ 0,

A⊗ L ·−→ L , L⊗A [ , ]−−→ A,

L⊗ L ·−→ 0 , L⊗ L [ , ]−−→ L.

Conversely, any Poisson algebra P , whose underlying vector space can be split
as P = A ⊕ L and such that the two operations take values as indicated above,
defines a Lie-Rinehart algebra. The two constructions are inverse to each other.

Proof. Let us start with a Lie-Rinehart algebra (A,L). We define the two operations
x · y and [x, y] on A⊕ L as follows

(a+X) · (b+ Y ) := ab+ (aY + bX),

[a+X, b+ Y ] := (X(b)− Y (a)) + [X,Y ],

for any a, b ∈ A and any X,Y ∈ L. Checking the axioms of a Poisson algebra is
straightforward.

The rest of the proof is straightforward. �

Let us mention that one can also study Lie-Rinehart algebras operadically
by constructing a two-colored Koszul operad whose algebras are the Lie-Rinehart
algebras, cf. 13.14.1.

13.4. Pre-Lie algebras and Perm algebras

The notion of pre-Lie algebra appeared first in the study of Hochschild coho-
mology and in differential geometry (flat affine connections on a given manifold),
but nowadays it is also present in algebraic combinatorics and theoretical physics
(renormalization). It also plays a role in operad theory since the convolution al-
gebra of the morphisms from a cooperad to an operad is a pre-Lie algebra. We
already introduced pre-Lie algebras in Chapter 1, see 1.4
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13.4.1. Pre-Lie algebra. By definition a (right) pre-Lie algebra is a vector
space A equipped with a binary operation {x, y} which satisfies the following rela-
tion:

{{x, y}, z} − {x, {y, z}} = {{x, z}, y} − {x, {z, y}} .
In plain words, the associator is right-symmetric. For the opposite type (i.e.
〈x, y〉 := {y, x}) the associator is left-symmetric.

13.4.2. Rooted trees and free pre-Lie algebra. For the purpose of this
section we consider the set of rooted trees which have no leaves and such that the
number of inputs is nonnegative (so 0 input is allowed). We denote by rT (n) the
set of such trees endowed with an enumeration of the n vertices (see some drawings
below). The change of enumeration gives an action of the symmetric group. For any
space V there is defined a binary operation on

⊕
nK[rT (n)]⊗SnV

⊗n as follows. The
parameters v1, . . . , vn are labellings of the vertices of the tree. The following pictures
represent the elements x, {x, y}, {x, {y, z}} , {{x, y}, z} − {x, {y, z}} respectively:

z •
y • y • y •

PPPPP z •
nnnnnn

x • x • x • x •
The operation {−,−} on two decorated trees is constructed as follows: draw

an edge from any vertex of the first tree to the root of the second one, keep the
decorations, keep the root of the first tree as root of the new tree, add all the
elements so obtained.

Proposition 13.4.3 (Chapoton-Livernet [CL01]). The product {−,−} is pre-Lie
and

⊕
n≥1 K[rT (n)]⊗Sn V

⊗n is the free pre-Lie algebra over V .

Proof. We refer to the original article [CL01] for the proof of this result. �

13.4.4. The operad preLie. The operad which encodes the pre-Lie algebras
is denoted by preLie (without “dash”). From the description of the free pre-Lie
algebra given above it follows that preLie(n) is spanned by the rooted trees with
vertices labelled by {1, . . . , n}.

For n = 1, there is only one tree (and no edges), which codes for the identity
operation b1
For n = 2, there are two trees coding respectively for the operations {x1, x2} and
{x2, x1}: br12 br21
For n = 3 there are nine trees, six of them code for the operation {x1, {x2, x3}} and
its analogues under the action of S3 and the other three code for {x1, {x2, x3}} −
{{x1, x2}, x3} and its analogues:

brr12
3

brr13
2

brr23
1

brr21
3

brr31
2

brr32
1

br r
@�

1

2 3 br r
@�

2

1 3 br r
@�

3

1 2

The action of Sn is by permutation of the labels (recall that the trees are not
planar).



416 13. EXAMPLES OF ALGEBRAIC OPERADS

13.4.5. Relationship of preLie with other operads. The terminology
“pre-Lie” comes from the following immediate property: the antisymmetrized op-
eration [x, y] := {x, y} − {y, x} is a Lie bracket, cf. Lemma 1.4.2. So there is a
functor:

preLie-alg→ Lie-alg .

Proposition 13.4.6. The morphism of operads Lie→ preLie induced by [x, y] :=
{x, y} − {y, x} is injective.

Proof. It can either be proved directly, or by using the following commutative
diagram of operads (cf. 13.6.15):

Lie //

��

preLie

��
Ass // Dend

Since the maps from Lie to Ass (CMM Theorem) and from As to Dend (Ronco’s
Theorem [Ron02]) are known to be injective, so is the map from Lie to preLie. �

In the case of commutative algebras it is known that the symmetrized product
satisfies some relations, for instance the Jordan relation (cf. 13.10). In the pre-Lie
case the situation is completely different. Let us recall that ComMag denotes the
operad generated by one symmetric binary operation with no relation (cf. 13.8.4).

Proposition 13.4.7. [Bergeron-Loday [BL]] The morphism of operads ComMag →
preLie induced by x · y := {x, y}+ {y, x} is injective.

Proof. The proof follows from the comparison with the operads Dend and Dup.
We refer the reader to loc. cit. for the details of the proof. �

Proposition 13.4.8. Let P be a symmetric operad (resp. a nonsymmetric op-
erad). Composition in the operad P induces a pre-Lie algebra structure on the
space

⊕
n P(n) (resp.

⊕
n Pn).

Proof. We already mentioned and proved this result, cf. 5.3.16 and 5.8.17. It is a
particular case of a stronger one involving brace algebras, cf. 13.11.8. �

13.4.9. Symmetric brace algebras. Starting with a pre-Lie algebra A one
can construct recursively an (1 + n)-ary operation for all n ≥ 1 as follows:

M11(x; y) := {x, y},
M1n(x; y1 . . . yn) := M11(M1(n−1)(x; y1 . . . yn−1); yn)−∑

1≤i≤n−1

M1(n−1)(x; y1 . . .M11(yi; yn) . . . yn−1),

for x, y1, . . . , yn ∈ V . So for n = 1 this is the pre-Lie bracket. One can show that
these multi-ary operations satisfy some relations which make A into a brace algebra
(cf. 13.11.7).

By definition a symmetric brace algebra is a brace algebra such that the op-
eration M1n(x; y1 . . . yn) is symmetric in the variables yi’s. The aforementionned
formulas construct a symmetric brace algebra out of a pre-Lie algebra. On the
other hand, any symmetric brace algebra gives rise to a pre-Lie algebra by taking
only M11 into account.
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Proposition 13.4.10 (Guin-Oudom). The notion of symmetric brace algebra is
equivalent to the notion of pre-Lie algebra in characteristic zero.

Proof. In arity 3 the brace relation reads

{{x, y}, z} − {x, {y, z}} = {x; y, z}+ {x : z, y}.

Hence, if 2 is invertible in K and if the brace is symmetric, then the ternary op-
eration can be written in terms of the binary operation. The same phenomenon
holds for the other higher operations. The details of the proof can be found in
[OG08, LM05]. �

13.4.11. Koszul dual operad of preLie: the operad Perm. It is easy
to check that the Koszul dual operad of preLie is the operad dubbed Perm by
Chapoton in [Cha01a]. A Perm-algebra is a vector space equipped with a binary
operation xy satisfying the following relations:

(xy)z = x(yz) = (xz)y .

In plain words, it is an associative algebra which is commutative on the right hand
side as soon as there are at least 3 entries. The free Perm-algebra over the vector
space V is isomorphic to V ⊗ S(V ). It follows that dimPerm(n) = n. As a
representation of the symmetric group, Perm(n) = Kn, where the action is simply
the permutation of the coordinates. The basis is given by the operations

xix1x2 · · · x̂i · · ·xn, i = 1, . . . , n.

Since dimPerm(n) = n, the generating series is fPerm(x) = x exp(x). The
Koszulity of the operads preLie and Perm has been proved in [CL01]. It can also
be obtained through the poset method and by the rewriting process method. It
implies that the generating series of preLie, that is y = fpreLie(x), satisfies the
functional equation y = x exp(y). It follows that

fpreLie(x) =
∑
n≥1

nn−1

n!
xn ,

so dim preLie(n) = nn−1.

13.4.12. Pre-Lie homology. Let A be a pre-Lie algebra. We construct a

chain complex CpreLie• (A) as follows. First we define CpreLien−1 (A) := A ⊗ Λn(A).
Second we define the boundary map by the formula:

d(x0;x1, . . . , xn) = b′
( ∑
σ∈Sn

sgn(σ)(x0;xσ(1), . . . , xσ(n))
)
,

where b′(x0;x1, . . . , xn) =
∑n−1
i=0 (−1)i(x0;x1, . . . , xixi+1, . . . , xn).

Proposition 13.4.13. The chain complex CpreLie• (A) constructed above is the op-
eradic chain complex of the pre-Lie algebra A.

Proof. The free Perm algebra is Perm(V ) = V ⊗ S(V ). Hence the operadic

chain complex of a pre-Lie algebra A is such that CpreLien−1 (A) = A ⊗ Λn(A). The
computation of the boundary map is straightforward from Proposition 12.1.2. �
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13.4.14. Homotopy pre-Lie algebras. Since we know the Koszul dual op-
erad of preLie, the notion of (strong) pre-Lie algebra up to homotopy can be
described explicitly. Since dimPerm(n) = n the space preLie∞(n) contains n gen-
erating operations. The symmetric group Sn is acting by permutation. We refer to
[Mer05] for details and application of this structure in geometry.

13.4.15. Splitting and preLie. According to [Val08] the black Manin prod-
uct of operads (cf. 8.8.4) gives the following isomorphisms of operads:

preLie • Com = Zinb, preLie •As = Dend, preLie • Lie = preLie,

where Zinb is the operad of Zinbiel algebras (cf. 13.5.2) and Dend is the operad of
dendriform algebras (cf. 13.6.1). So, in a sense, the functor preLie•− is “splitting”
the binary operations when applied to binary operads. This process is similar to
the splitting of operations using a Rota-Baxter operator [Uch10].

Dually, there is another way to split the operations of a P-algebra: one can
consider the new operad Perm ◦ P obtained by taking the Manin white product
with the operad Perm. One can also use the differential of a P-algebra to define de-
rived products, like [d(−),−] and [−, d(−)] for a dg Lie algebra. Such constructions
play an important role in differential geometry, see [KS96, KS04]. Uchino proved
that these two processes are the same [Uch10]. Interpreting the Rota-Baxter op-
erator as the integration operator, this result gives a Koszul duality interpretation

PreLie
!←→ Perm of the classical integration-derivation duality.

13.4.16. From pre-Lie algebras to Hopf algebras. Since, by antisym-
metrization, a pre-Lie algebra gives rise to a Lie algebra, one can then take the
universal enveloping algebra of this Lie algebra to get a Hopf algebra. It turns
out that, first, many examples of this type arise in the literature, second, these
Hopf algebras are “cofree cocommutative right-sided combinatorial Hopf algebras”,
studied in [LR10]. For instance, if preLie(K) is the free preLie algebra on one gen-
erator, then U(preLie(K)Lie) is the Grossman-Larson Hopf algebra, whose graded
linear dual is the Connes-Kreimer Hopf algebra (cf. [GL89, CK98, CL01]). This
latter Hopf algebra plays a prominent role in renormalization theory, because there
is a way to compute the counter-term of some divergent integrals by means of the
antipode of this Hopf algebra.

Another example is given by the vector space L1 := ⊕n≥1Kxn equipped with
the pre-Lie product

{xp, xq} := (p+ 1)xp+q

(cf. 1.4.4). The associated Hopf algebra is dual to the Faà di Bruno Hopf algebra.

13.5. Leibniz algebras and Zinbiel algebras

As shown in Bourbaki, the main property of a Lie bracket is to be a derivation
for itself. So it is natural to introduce the algebras equipped with a not necessarily
antisymmetric operation satisfying this derivation property. It turned out to be
relevant in many mathematical domains.

13.5.1. Leibniz algebra. [Lod93] By definition a (right) Leibniz algebra is
a vector space A equipped with a linear map (called bracket)

[-, -] : A⊗A→ A
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satisfying the Leibniz relation

[[x, y], z] = [x, [y, z]] + [[x, z], y] .

In the sign-graded case (cf. 1.5.3), this relation reads

[[x, y], z] = [x, [y, z]] + (−1)|y||z|[[x, z], y] .

It is dubbed after George Wilhelm Leibniz (one of our ancestors) because of the form
of the relation which says that [−, z] is a derivation. It also appears sometimes in
the literature under the name Loday algebra. Obviously a Lie algebra is an example
of a Leibniz algebra. It is a Leibniz algebra whose bracket is antisymmetric.

It is shown in loc. cit. that the free Leibniz algebra over V is the reduced tensor
module T (V ) equipped with a binary operation [-, -] such that

x1 · · ·xn = [. . . [[x1, x2], x3], . . . , xn] .

Here is an example of computation in this algebra (for x, y, z ∈ V ):

[x, yz] = [x, [y, z]]
= [[x, y], z]− [[x, z], y]
= xyz − xzy .

Though the space Leib(n) is the regular representation: Leib(n) = K[Sn], the
Leibniz algebras are not encoded by a nonsymmetric operad. This is because, in the
Leibniz relation, the variables do not stay in order, so the composition γ involves
the symmetric group.

We refer to 13.6.16 for the relationship of Leibniz algebras with other types of
algebras.

The Koszul dual operad of Leib is the Zinbiel operad denoted Zinb that we
now introduce.

13.5.2. Zinbiel algebras [Lod95, Lod01]. By definition a Zinbiel algebra is
a vector space A equipped with a binary operation ≺ verifying the Zinbiel relation

(x ≺ y) ≺ z = x ≺ (y ≺ z + z ≺ y) .

It is dubbed after the virtual mathematician Guillaume Georges Zinbiel.
In loc. cit. the free Zinbiel algebra over V has been shown to be the tensor

module T (V ) equipped with the half-shuffle as operation ≺:

x1 · · ·xp ≺ xp+1 · · ·xp+q =
∑

σ∈Sh(p−1,q)

x1xσ(2) · · ·xσ(n).

As a consequence we deduce the structure of the operad Zinb encoding Zinbiel
algebras, namely Zinb(n) = K[Sn]. Using Proposition 7.6.8 it is easy to show
that the Koszul dual operad of Zinb is Leib. This is why Zinbiel algebras were
first called “dual Leibniz algebras” (cf. [Lod95]). As an immediate consequence of
Proposition 7.6.10 the tensor product of a Leibniz algebra with a Zinbiel algebra
has a Lie structure. In fact it can be shown that it is even a pre-Lie algebra, cf.
13.9.

The Koszul dual of the functor Lie-alg → Leib-alg is the functor Zinb-alg
→ Com-alg given by symmetrizing the binary operation. In other words on a
Zinbiel algebra the symmetrized operation xy := x ≺ y+y ≺ x is commutative and
associative. For instance the commutative algebra associated to the free Zinbiel
algebra is the shuffle algebra (cf. tensorbialgebra).
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It has been shown in [Val09] that the Zinbiel operad is the Manin black product
of preLie and Com: Zinb = preLie • Com.

13.5.3. Zinbiel algebras and divided powers. The commutative algebra
obtained as the image of a Zinbiel algebra has more properties: it is a divided
powers algebra (cf. 13.1.19). Indeed it is easy to show that the operation

x 7→ x≺n := (x ≺ (x ≺ . . . ≺ (x ≺ x) . . .))︸ ︷︷ ︸
n

is a divided power operation. Moreover, if we start with a free Zinbiel algebra

Zinb(V ) = T
sh

(V ), then it is free as a divided powers algebra (cf. [Dok09]). If V
is one-dimensional generated by x, we get the algebra Γ(Kx) mentioned in 1.8.5.

13.5.4. Leibniz homology. The chain complex of a Leibniz algebra was in-
troduced in [Lod93] and was further studied in [LP93]. Up to a shift it turns out
to be the same as the operadic chain complex (cf. 12.1.2), given as follows:

CLeib•−1 : · · · −→ g⊗n
d−→ g⊗n−1 −→ · · · −→ g⊗2 → g ,

where

d(x1, . . . , xn) =
∑

1≤i<j≤n

(−1)j(x1, . . . , xi−1, [xi, xj ], . . . , x̂j , . . . , xn) .

The homology of this complex is denoted either by HLeib
• (g) or HL•(g). We remark

that it is a lifting of the Chevalley-Eilenberg complex. Indeed, the boundary map
in the CE complex can be written:

dCE(x1 ∧ . . . ∧ xn) =
∑

1≤i<j≤n

(−1)j(x1 ∧ . . . ∧ xi−1 ∧ [xi, xj ] ∧ . . . ∧ x̂j ∧ . . . ∧ xn) .

Its operadic interpretation is the following. The map of operads Leib → Lie in-

duce a map of cooperads Leib
¡ → Lie

¡
, whence a morphism of chain complexes

CLeib• (g) → CLie• (g). This map is given by quotienting by the action of the
symmetric group. Leibniz (co)homology has been studied in various papers, cf.
[LP93, Pir94]. Let us just mention one peculiar feature: the Leibniz homology of
a finite dimensional semi-simple Lie algebra is trivial, cf. [Pir94, Nto94].

By Theorem 12.1.4 the homology (resp. cohomology) of a Leibniz algebra is a
graded Zinbiel coalgebra (resp. graded Zinbiel algebra), and hence a graded commu-
tative coalgebra (resp. graded commutative algebra). This result has been proved
earlier in [Lod95] by an ad hoc method.

13.5.5. Homotopy Leibniz algebra, homotopy Zinbiel algebra. From
the explicit description of the Leibniz operad (resp. Zinbiel operad) it is straightfor-
ward to describe the notion of Zinbiel algebra up to homotopy (resp. Leibniz algebra
up to homotopy). The structure of Leib∞-algebra has been used for instance in
differential geometry and deformation theory by [AP10] and by [Mer08], where
this structure is made explicit.
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13.6. Dendriform algebras and diassociative algebras

Periodicity questions in algebraic K-theory led to the construction of “dias-
sociative algebras” [Lod95], cf. [Lod97] for a survey on these problems. The
explicitation of the homology of a diassociative algebra led to the discovery of the
Koszul dual structure, which was baptized later “dendriform algebra” in [Lod01].
It turned out that this notion found its way in several domains like combinatorial
algebra, theoretical physics, algebraic topology. It is not so surprising because,
first, the dendriform structure models the “noncommutative suffles”, second, the
dendriform operad is closely related to planar binary trees [Lod02], third, the den-
driform operations “split associativity”. We will see that the dendriform operad
comes from a nonsymmetric operad.

13.6.1. Dendriform algebra. By definition a dendriform algebra is a vector
space A equipped with two linear maps (binary operations)

≺ : A⊗A→ A and � : A⊗A→ A

called the left operation and the right operation respectively, satisfying the following
three relations (x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (y � z),

(x � y) ≺ z = x � (y ≺ z),
(x ≺ y) � z + (x � y) � z = x � (y � z).

A morphism f : A → A′ of dendriform algebras is a linear map compatible with
the two operations:
f(a ≺ b) = f(a) ≺ f(b) and f(a � b) = f(a) � f(b) for any a, b ∈ A.

Let us introduce the operation ∗ given by

x ∗ y := x ≺ y + x � y .

Adding the three relations shows that the operation ∗ is associative. So a dendriform
algebra is an associative algebra whose product splits as the sum of two operations.
The axioms imply that the associative algebra A has an extra bimodule structure
over itself:  (x ≺ y) ≺ z = x ≺ (y ∗ z),

(x � y) ≺ z = x � (y ≺ z),
(x ∗ y) � z = x � (y � z).

As a consequence, a dendriform algebra structure on A gives rise to an abelian
extension of associative algebras

0→ A→ A⊕A→ A→ 0,

(the product on the kernel is 0 and the product on the cokernel is ∗).

13.6.2. The free dendriform algebra. In order to describe explicitly the
free dendriform algebra we need the notion of planar binary trees (pb trees), cf.
C.1.1. Recall that PBTn+1 denotes the set of pb trees with n vertices (and so n+1
leaves). We first describe the free dendriform algebra on one generator. The free
dendriform algebra on a vector space V is easily deduced.
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Proposition 13.6.3. The vector space
⊕

n>0 K[PBTn+1] equipped with the two
binary operations ≺ and � is defined inductively by the formulas

t ≺ s := tl ∨ (tr ∗ s),
t � s := (t ∗ sl) ∨ sr),

on the trees t = tl ∨ tr and s = sl ∨ sr, and | ∗ t = t = t ∗ |, is a dendriform

algebra generated by the tree ��
?? ∈ PBT2. It is the free dendriform algebra on

one generator Dend(K).

Proof. In the statement of the proposition we use the notation t = tl ∨ tr meaning
that any planar binary tree with at least two leaves can be written uniquely as the
grafting of two other trees (cf. Appendix C). For the proof of this proposition we
refer to the original article [Lod95, Lod01]. �

Corollary 13.6.4. The free dendriform algebra on the vector space V is
⊕

n>0 K[PBTn+1]⊗
V ⊗n equipped with the operations

(t; v1 · · · vp) ≺ (s; vp+1 · · · vp+q) = (t ≺ s; v1 · · · vp+q)
(t; v1 · · · vp) � (s; vp+1 · · · vp+q) = (t � s; v1 · · · vp+q).

In particular, if V = K[X] for some set X, then the degree n component of
Dend(V ) is spanned by PBTn+1 ×Xn.

As an immediate consequence of this corollary the generating series of the
operad Dend is

fDend(x) =
1− x−

√
1− 4x

2x
.

13.6.5. Examples of computation. Let us denote by Y the generator of

Dend(K) = Dend(K Y), which corresponds to the tree ��
??

. In low dimension we

get:

Y ≺ Y =
??����

???? , Y � Y =
�� ����

???? ,

Y ≺ (Y ≺ Y) =

?????? ������

?????? , Y ≺ (Y � Y) =
��???? ������

?????? , Y � Y ≺ Y =
�� ??������

?????? ,

(Y ≺ Y) � Y =

??����
������

?????? , (Y � Y) � Y =
�� ����

������

?????? .

Observe that the orientation of the leaves corresponds precisely to the opera-
tions involved in the monomial.

We know that on the set of pb trees there is a simple operation: the grafting
t ∨ s. It is not difficult to show that it corresponds to the following operation in
Dend(K):

t ∨ s = t � Y ≺ s.



13.6. DENDRIFORM ALGEBRAS AND DIASSOCIATIVE ALGEBRAS 423

13.6.6. Unital dendriform algebras. We know that associative algebras
can be unitarized, cf. 1.1.1. Similarly dendriform algebras can be unitarized as
follows. By definition a unital dendriform algebra is a vector space A := K1 ⊕ Ā
such that Ā is a dendriform algebra and the left and right operations are (partially)
extended to A by the formulas{

1 ≺ a = 0 , a ≺ 1 = a,
1 � a = a , a � 1 = 0,

for any a ∈ A. Observe that one has 1 ∗ a = a = a ∗ 1, so A is a unital associative
algebra, but 1 ≺ 1 and 1 � 1 are not defined.

A morphism of unital dendriform algebras is a linear map f : A → A′ which
maps 1 to 1, Ā to Ā′ and f restricted to A is a dendriform morphism.

Observe that the three relations defining a dendriform algebra are still valid
whenever two of the variables are in Ā and the third is equal to 1.

13.6.7. The operad Dend. Since the generating operations have no sym-
metry and, in the relations, the variables stay in the same order, the category of
dendriform algebras is encoded by a nonsymmetric operad. We denote it by Dend
and we still denote by Dend, instead of Dend ⊗ Ass, the associated symmetric
operad if no confusion can arise. As a consequence the operad Dend is completely
determined by the free dendriform algebra on one generator. By Proposition 13.6.3
we get Dendn = K[PBTn+1]. Considering Dend as a symmetric operad we get
Dend(n) = K[PBTn+1] ⊗ K[Sn] = K[PBTn+1 × Sn]. The operadic composition is
deduced from the formula given in this Proposition.

The operad Dend does not come from a set-theoretic operad. However the
family of non-empty subsets of PBTn+1, for all n, do form a set-operad. It has
been studied in [Lod02].

13.6.8. Koszul dual operad of Dend. Since Dend is a binary quadratic
nonsymmetric operad its Koszul dual operad can be computed by applying Theorem
7.7.2. It gives rise to diassociative algebras that we know describe. Historically,
diassociative algebras cropped up first, then dendriform algebras appeared in the
construction of the the homology theory for diassociative algebras, cf. [Lod95].

13.6.9. Diassociative algebra. By definition a diassociative algebra (orDias-
algebra) is a vector space A equipped with two linear maps (binary operations)

a : A⊗A→ A and ` : A⊗A→ A

called the left operation and the right operation respectively, satisfying the following
five relations 

(x a y) a z = x a (y a z),
(x a y) a z = x a (y ` z),
(x ` y) a z = x ` (y a z),
(x a y) ` z = x ` (y ` z),
(x ` y) ` z = x ` (y ` z).

The operad Dias comes from a set-theoretic nonsymmetric operad. The space
Diasn is n-dimensional and one can take, as linear generators, the operations

x1 ` · · · ` xi−1 ` xi a xi+1 a · · · a xn, for i = 1, . . . , n.
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In the tensor algebra T (V ) the monomial x1 . . . xn is the generic element. Similarly,
in the free diassociative algebra Dias(V ) it is helpful to denote by

x1 . . . x̌i . . . xn

the generic element corresponding to the ith operation, i = 1, . . . , n. The the
left (resp. right) operation is simply concatenation where one keeps the decoration
indicated by the pointer:

x1x2x̌3 ` x̌4x5 = x1x2x3x̌4x5.

Let us mention that the Milnor invariants of tangles can be interpreted as a mor-
phism of operads

Tangles→ Dias,

cf. [KP10].

Proposition 13.6.10. [Lod01] The operad Dend is a Koszul operad whose
Koszul dual operad is

Dend ! = Dias.

Proof. The dual basis of {≺,�} is denoted {a,`}. By Theorem 7.7.2 we only need
to verify that, in the eight-dimensional space spanned by (a ◦ b) ◦′ c and a ◦ (b ◦′ c),
where ◦ and ◦′ =≺ or �, the relators of Dend are dual to the relators of Dias.
Since the space of relations of Dend is of dimension 3, the space of relations of
Dias is going to be 5-dimensional. Now it suffices to check the orthogonality of the
relators. We only do it for two pairs, checking the other cases is similar:

〈(a ≺ b) ≺ c− a ≺ (b ≺ c)− a ≺ (b � c), (a a b) a c− a a (b a c)〉
= +1 + 0 + 0 + (−1) + 0 + 0 = 0.

〈(a ≺ b) ≺ c− a ≺ (b ≺ c)− a ≺ (b � c), (a a b) a c− a a (b ` c)〉
= +1 + 0 + 0 + 0 + 0 + (−1) = 0.

The acyclicity of the Koszul complex of Dend has been first proved in [Lod01].
But it is easier to show the acyclicity of the Koszul complex of Dias as done in
[Lod08] (and apply Proposition 7.4.8). In fact most of the methods for proving
Koszulness (Gröbner basis, poset method, rewriting process) work pretty well in
this case. �

13.6.11. Digroups. Because of the form of the relations we can define an
object analogous to a diassociative algebra in the category of sets. A dimonoid is
a set with two binary operations satisfying the five diassociative axioms. Moreover
we suppose the existence of an element 1 which is a unit for the bar side:

x a 1 = x = 1 ` x.

There is even an analogue of the notion of group as follows. A digroup is a dimonoid
D such that for any x ∈ D we are given an element x−1 ∈ D such that

x ` x−1 = 1 = x−1 a x.

A group is an example of a digroup (for which a = `).
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13.6.12. Dendriform homology. From the explicit description of the space
Diasn given in 13.6.9 it follows that the operadic chain complex of the dendriform
algebra A is

CDend•−1 · · · → Kn ⊗A⊗n d−→ Kn−1 ⊗A⊗n−1 → · · · → A

where the boundary map d =
∑i=n−1
i=1 (−1)idi is given as follows. First, we define

di on the set of indices {1, . . . , n} by

di(r) =

{
r − 1 if i ≤ r − 1,
r if i ≥ r.

Second, we define the operation ◦ri as

◦ri =


∗ if i < r − 1,
� if i = r − 1,
≺ if i = r,
∗ if i > r.

Recall that a ∗ b = a ≺ b+ a � b. Finally the map di is given by

di(r; a1, . . . , an) = (di(r); a1, . . . , ai ◦ri ai+1, . . . , an).

From the general result on Koszul dual operad, see 12.1.4, it follows that the op-

eradic homology HDend
•+1 (A) is a graded diassociative coalgebra.

13.6.13. Dendriform algebra up to homotopy. Since we know an explicit
presentation of Dias = Dend!, and therefore of Dend¡ it is easy to describe the
notion ofDend∞-algebra. It has n n-ary generating operations denoted bymn,i, 1 ≤
i ≤ n, for any n ≥ 2. The only relation is given by the explicit expression of the
boundary of mn,i, which is as follows:

∂(mn,i) =
∑

(−1)p+qrmp+1+r,`(id, · · · , id︸ ︷︷ ︸
p

,mq,j , id, · · · , id︸ ︷︷ ︸
r

)

where, for fixed n and i, the sum is extended to all the quintuples p, q, r, `, j satis-
fying: p ≥ 0, q ≥ 2, r ≥ 0, p+ q + r = n, 1 ≤ ` ≤ p+ 1 + q, 1 ≤ j ≤ q and either one
of the following:

• i = q + `, when 1 ≤ p+ 1 ≤ `− 1,
• i = `− 1 + j, when p+ 1 = `,
• i = `, when `+ 1 ≤ p+ 1.

For instance in low dimension we get the following relations:

∂(m2,1) = 0,

∂(m2,2) = 0,

∂(m3,1) = m2,1 ◦1 m2,1 −m2,1 ◦2 m2,1,

∂(m3,2) = m2,1 ◦1 m2,2 −m2,2 ◦2 m2,1,

∂(m3,3) = m2,2 ◦1 m2,2 −m2,2 ◦2 m2,2.

So, as expected, the dendriform relations are valid only up to homotopy.
The presentation of Dias∞ algebra is slightly more complicated. It is given,

up to sign, in [Lod01].
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13.6.14. Relationship with other types of algebras. We already know
that Dend is related to As since the operation x ∗ y = x ≺ y+ x � y is associative.
So any dendriform algebra gives rise to an associative algebra (a forgetful functor).

Let us define a commutative dendriform algebra as a dendriform algebra in
which the following symmetry condition holds: x ≺ y = y � x for any x and y.
This new type of algebras turns out to be the same as Zinbiel algebra which appears
as dual of the Leibniz algebra, cf. 13.5. Recall that the Zinbiel operad is the Manin
black product of preLie and Com. If one replaces Com by Ass, then it has been
shown in [Val09] that

preLie •Ass = Dend,

in the category of symmetric operads. Composing with the morphism Lie → Ass
and taking into account that Lie is neutral for the black product it gives a morphism
preLie→ Dend. This result can be proved directly as follows.

Lemma 13.6.15. For any dendriform algebra A the binary operation

{a, b} := a ≺ b− b � a

is a right pre-Lie product.

Proof. It suffices to check that the associator of the operation {−,−} is symmetric
in the last two variables:

{{a, b}, c} − {a, {b, c}} = (a ≺ b− b � a) ≺ c− c � (a ≺ b− b � a)

−a ≺ (b ≺ c− c � b) + (b ≺ c− c � b) � a
= a ≺ (b � c)− (b � a) ≺ c− c � (a ≺ b) + (c ≺ b) � a

+a ≺ (c � b) + (b ≺ c) � a
= a ≺ (b � c)− b � a ≺ c+ (c ≺ b) � a

+a ≺ (c � b)− c � a ≺ b+ (b ≺ c) � a.

�

13.6.16. Butterfly diagram and more. The following diagram summarizes
the relationship between various types of algebras. We use the short notation P to
denote the category P-alg:

Dend
+

##FFFFFFFF Dias
−

##FFFFFFFF 4

Zinb
, �

;;vvvvvvvvv

+

##HHHHHHHHH Ass
- 

<<yyyyyyyy

−

""EEEEEEEE Leib 2

Com
- 

;;xxxxxxxx
Lie

- 

;;xxxxxxxx
1

The integer on the right hand side indicates the dimension of the space P(2). Koszul
duality is given by the symmetry around the vertical axis passing through As. This
“butterfly diagram” has been completed in [?].
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Here is another diagram, due to F. Chapoton [Cha01a], which includes the
pre-Lie operad (cf. Lemma 13.6.15):

Zinb //

��

Dend //

��

preLie

��
Com //

��

Ass //

��

Lie

��
Perm // Dias // Leib

Koszul duality is given by central symmetry. The first column is the middle column
made commutative. The first row is the middle row blackproducted with preLie and
so the last row is the middle row whiteproducted with Perm (cf. Theorem 8.8.8).
However in several questions (for instance the study of generalized bialgebras) it is
better to put brace in place of preLie in this diagram.

13.6.17. Dendriform variations. There are several variations of dendriform
algebras. We already saw the commutative dendriform, i.e. Zinbiel. Here are some
more (not exhaustive list):

� parametrized dendriform algebras. Let λ ∈ K be a parameter. We slightly
modify the three relations of a dendriform algebra as follows: (x ≺ y) ≺ z = x ≺ (y ≺ z) + λx ≺ (y � z),

(x � y) ≺ z = x � (y ≺ z),
λ(x ≺ y) � z + (x � y) � z = x � (y � z).

So, for λ = 1 we get the dendriform case. For λ = 0 we call them
duplicial algebras, cf. 13.13.3. It is easy to see that for any λ the operad
can be described by planar binary trees, like in the dendriform case.

� tridendriform algebras [LR]. We have seen that the dendriform operad
is strongly related to the planar binary trees. In fact there is a way to
enlarge this operad so that it involves the planar trees (not just binary)
under similar rules, as follows.

We assume that the associative product ∗ splits into the sum of three
operations: x∗y = x ≺ y+x � y+x ·y, and that the associativity relation
splits into 7 relations (one for each cell of the triangle, cf. loc.cit.):

(x ≺ y) ≺ z = x ≺ (y ∗ z),
(x � y) ≺ z = x � (y ≺ z),
(x ∗ y) � z = x � (y � z),
(x � y) · z = x � (y · z),
(x ≺ y) · z = x · (y � z),
(x · y) ≺ z = x · (y ≺ z),

(x · y) · z = x · (y · z).

The ns operad Tridend can be described in terms of planar trees.
We let it to the reader the pleasure of computing the Koszul dual operad
Trias, cf. loc.cit. There are important variations of Tridend like the
graded tridendriform algebras, whose operad is related to the Stasheff
polytope, cf. [Cha02, BM09].
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� commutative tridendriform algebras. They are tridendriform algebras such
that x ≺ y = y � x and x · y = y · x. They are strongly related to quasi-
shuffle algebras, cf. [Lod07].

� quadrialgebras. We start with pairs of dendriform operations, that is 4
operations denoted ↖,↗,↘,↙, satisfying 9 relations, cf. [AL04]. In
this case the associative product is split into the sum of four operations.
It turns out to be the Manin black product preLie•Dend in the category
of symmetric operads and the Manin black product Dend�Dend in the
category of nonsymmetric operads cf. 8.8, [EFG05] and [Val08].

� locally commutative dendriform algebras. One can impose a different kind
of symmetry property on dendriform operations, namely x ≺ y = y ≺ x
and x � y = y � x. They also imply that the associative operation x ∗ y
is commutative. It does not seem that locally commutative dendriform
algebras have been studied so far.

For all these operads the poset method is well-adapted to prove their Koszulity.

13.7. Batalin-Vilkovisky algebras and the operad BV

ABV -algebra is a Gerstenhaber algebra with a compatible square-zero operator
∆. Such an algebraic structure appears in differential geometry on polyvector fields,
on the Hochschild cohomology of unital cyclic associative algebras, on the homology
of free loop spaces, on vertex operator algebras, on conformal field theories and, of
course, in mathematical physics with the Batalin-Vilkovisky formalism.

The introduction of the operad BV with applications to double loop spaces
and topological conformal field theories was pioneered by Getzler in [Get94]. The
extension of some results from BV -algebras to homotopy BV -algebras was done in
[GCTV09].

13.7.1. Definitions of BV -algebras. A Batalin-Vilkovisky algebra, BV -
algebra for short, is a graded vector space equipped with a commutative product
of degree 0, denoted x · y, and a unary operation denoted ∆ of degree 1 (it is not
a coproduct), satisfying ∆ ◦∆ = 0. These two operations are supposed to satisfy
the following relation, which is ternary (3 variables) and cubical (composite of 3
generating operations):

∆(- · - · -)− (∆(- · -) · -)id+(123)+(321) + (∆(-) · - · -)id+(123)+(321) = 0 .

With such a structure, we can define the binary operation

〈-, -〉 := ∆(- · -)− (∆(-) · -)− (- ·∆(-)) .

In plain words: the bracket operation is the obstruction to ∆ being a derivation for
the commutative product. As a consequence, the operation 〈-, -〉 is symmetric and
of degree one. The aforementioned relation between the commutative product and
the operator ∆ implies that 〈-, -〉 satisfies the following Jacobi identity

〈〈-, -〉, -〉+ 〈〈-, -〉, -〉(123) + 〈〈-, -〉, -〉(132) = 0.

and the Leibniz relation

〈 - · -, - 〉 = (- · 〈 -, - 〉) + (〈 -, - 〉 · -)(23) .

An operator ∆ on a commutative algebra, whose associated bracket satisfies the
Leibniz relation, is called an operator of order less than 2, see [GCTV09, Sec-
tion 2.4].
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Therefore a BV -algebra carries a Gerstenhaber algebra structure, see 13.3.10.
So forgetting the operator ∆ but keeping the bracket 〈-, -〉, we get the inclusion of
categories

BV -alg→ Gerst-alg .

Proposition 13.7.2. [Get94] The data of a BV -algebra structure (A, ·,∆) is
equivalent to that of a Gerstenhaber algebra structure (A, ·, 〈-, -〉) endowed with a
square-zero degree 1 unary operator ∆, such that

〈-, -〉 := ∆(- · -)− (∆(-) · -)− (- ·∆(-)) .

Proof. The proof is a straightforward checking and therefore left to the reader. �

Notice that, as a consequence of its definition and independently from the
cubical relation, the operator ∆ is a derivation for the bracket

∆(〈 -, - 〉) + 〈∆(-), - 〉 + 〈 -,∆(-)〉 = 0 .

Example. Let M be a smooth oriented n-dimensional manifold equipped
with a volume form ω. Recall from 13.3.10, that the space of polyvector fields
Γ(M,Λ(TM)) is equipped with a Gerstenhaber algebra structure. The contraction
of ω along polyvector fields defines the following isomorphism with the differential
forms

Γ(M,Λ•(TM)) → Ωn−•(M)

π 7→ iπ(ω) := ω(π, -) .

The transfer of the De Rham differential map dDR, from the differential forms
to polyvector fields, defines the divergence operator ∆ := divω, which endows
Γ(M,Λ(TM)) with a BV -algebra structure [TT00].

13.7.3. Batalin-Vilkovisky formalism. LetW be a finite dimensional chain
complex. We consider it as a manifold with the structure sheaf of formal functions
which vanish at 0:

Ŝ(W ∗) :=
∏
n≥1

(W ∗)�n ,

where the symmetric tensor product � is equal to (W ∗)�n = ((W ∗)⊗n)/Sn. To
any finite dimensional chain complex V , we associate its “cotangent bundle” W :=
V ⊕ sV ∗. (It is equipped with a canonical non-degenerate bilinear form, as any
cotangent bundle is endowed with a canonical symplectic manifold structure). Its

commutative algebra of functions Ŝ(V ∗ ⊕ sV ) carries the following degree −1 op-
erator ∆. Let {vi}1≤i≤n and {νi}1≤i≤n denote respectively a basis of V and the

dual basis of V ∗. To any formal function α ∈ Ŝ(V ∗ ⊕ sV ), we associate

∆(α) :=

n∑
i=1

∂α

∂vi

∂α

∂νi
.

Proposition 13.7.4. The algebra of formal functions
(
Ŝ(V ∗ ⊕ sV ), ·,∆

)
satisfies

the relations of a Batalin-Vilkolisky algebra with a differential map and the operator
∆ of same degree −1.

Then one considers the quantized version of this algebra, namely

Ŝ(V ∗ ⊕ sV )[[~]] := Ŝ(V ∗ ⊕ sV )⊗K[[~]] ,



430 13. EXAMPLES OF ALGEBRAIC OPERADS

where the product and the operator ∆ are extended by ~-linearity. It is again a BV-
algebra. The Batalin-Vilkovisky formalism [BV81, Sch93] relies on the functions
which are solution to the Master equation:

d(α) + ~∆(α) +
1

2
〈α, α〉 = 0 .

Following the same ideas as in Chapter 10, S. Merkulov in [Mer10b] showed
that solutions to the master equations are in bijective correspondence with some
homotopy algebraic structure on V .

Remark. We have chosen the topological, or homological, definition of a BV-
algebra: the underlying differential map and the operator ∆ have different signs.
In the Batalin-Vilkovisky formalism, the authors, use the same algebraic structure
but with the same signs for the underlying differential map and the operator ∆, see
also [BD04].

13.7.5. BV -algebra structure on Hochschild cohomology of a unital
cyclic associative algebra. Since the notion of BV-algebra is a refinement of that
of Gerstenhaber algebra, let us see how the Gerstenhaber algebra structure on the
Hochschild cohomology of an associative algebra of Proposition 13.3.12, lifts to a
BV -algebra structure. To this extent, we need an extra structure on the associative
algebra A.

Let A be an cyclic unital associative algebra, that is an algebra over the cyclic
operad uAss, cf. 13.14.6. By definition, A a unital associative algebra endowed with
a symmetric non-degenerate bilinear form (-, -) : A⊗ A→ K satisfying the follow-
ing invariance property (a.b, c) = (a, b.c), and thus (a.b, c) = (−1)|a|(|b|+|c|)(b, c.a).
In this case, A is finite dimensional and there is an isomorphism of A → A∗ of
A-bimodules. (In representation theory such an algebraic structure is called a sym-
metric algebra.) This latter isomorphism allows us to transport Connes’ boundary
map ?? from homology to cohomology, which defines the BV -operator ∆. This
method is the algebraic analogue of the aforementioned polyvector fields case.

Proposition 13.7.6. [Tra08, Men09, Gin06] For any cyclic unital associative
algebra A, the Hochschild cohomology of A with coefficients into itself inherits
a BV-algebra structure, extending the Gerstenhaber algebra structure of Proposi-
tion 13.3.12.

Proof. When A is a cyclic unital associative algebra, with Φ : A→ A∗ for isomor-
phism of A-bimodules, there are isomorphisms of chain complexes

C•Hoch(A,A) ∼= C•Hoch(A,A∗) ∼= (CHoch• (A,A))∗ .

The first one is given by f ∈ Hom(A⊗n, A) 7→ Φ ◦ f ∈ Hom(A⊗n, A∗) and the
second is given by Hom(A⊗n,Hom(A,K)) ∼= Hom(A⊗n ⊗ A,K). We consider the
dual of Connes’ boundary map B : CHochn (A,A) → CHochn+1 (A,A) and transport it,
through these isomorphisms, on C•Hoch(A,A) to define a degree 1 operator (with
the homological convention), which commutes with the differential map. It induces
a square-zero degree 1 operator ∆ on cohomology HH•(A,A), which satisfies the
axioms of a BV -algebra with the Gerstenhaber algebra. We refer the reader to the
aforementioned references for more details. �
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The explicit formula of Connes’ boundary map B (cf. for instance [Lod98]
Chapter 2), induces the following formula for the operator ∆ on the cochain level:

(∆(f)(a1, . . . , an−1), an) =

n∑
i=1

(−1)i(n−1) (f(ai, . . . , an, a1, . . . , ai−1), 1) .

Notice that this result still holds when there is only a quasi-isomorphism A→
A∗ of A-bimodules [Gin06]; such an algebra is called a Calabi-Yau algebra.

13.7.7. The operad BV . The previous equivalent definitions of BV -algebras
allow us to give several presentations by generators and relations for the operad
BV . The first definition gives a presentation with 2 generators m and ∆, under
the convention of 13.3.9, and 3 homogeneous relations, two quadratic and one cu-
bic. The other presentation is made of 3 generators m, c and ∆. In that case, the
relations are homogeneous quadratic, except from the one expressing c as the ob-
struction for ∆ to be a derivation for m, which involves quadratic and linear terms.
To be able to apply the inhomogeneous Koszul duality theory of 7.8, we choose this
presentation, to which we include in the space of relations, the derivation of ∆ with
c, so that it satisfies Condition (ql2).

Finally, it gives BV ∼= T (EBV )/(RBV ), with

EBV = Km⊕ K c⊕K∆ ,

where K∆ is a one-dimensional graded vector space (S1-module) concentrated in
degree 1. The space of relations RBV is the K[S3]-module generated by

m ◦1 m−m ◦2 m,
c ◦1 c+ (c ◦1 c)(123) + (c ◦1 c)(321),
∆2,
c ◦1 m−m ◦2 c− (m ◦1 c)(23),
c−∆ ◦1 m+m ◦1 ∆ +m ◦2 ∆,
∆ ◦1 c+ c ◦1 ∆ + c ◦2 ∆ .

The last two relations allow us to pull up the operator ∆ in the operad BV .
More precisely, Proposition 7.8.15 shows that the underlying S-module of the operad
BV is given by following composite:

BV ∼= Com ◦ S−1Lie ◦D ,

where D = T (∆)/(∆2) is the algebra of dual numbers on a degree 1 element.
The operad structure on BV can be extended to a cyclic operad structure.

13.7.8. Relationship with the framed little discs operad. To extend
Theorem 13.3.16 to the operad BV , we need to consider the following refinement
of the little discs operad. The framed little discs operad fD is made of the config-
urations of n framed discs, that is with a point on the boundary, inside the unit
disc of the plane.

Proposition 13.7.9. [Get94] The singular homology H•(fD) of the framed little
discs operad is an algebraic operad isomorphic to the operad BV .

Proof. The framing induces the square-zero degree 1 operator ∆ on homology. �
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Since a double loop space Ω2X on a pointed topological space X endowed
with an action of the circle S1 is an algebra over the framed little discs operad, this
theorem proves that the homology of a double loop space carries a natural structure
of BV -algebra [Get94].

13.7.10. Relationship with the Riemann sphere operad and TCFT.
After Segal [Seg04], we consider the moduli space R of isomorphism classes of
connected Riemann surfaces of arbitrary genus with biholomorphic maps from the
disjoint union of n+m discs. The gluing along the boundaries endows this topolog-
ical space with a properad structure, see [?]. Segal proposed to define a Conformal
Field Theory, CFT for short, as an algebra over R. In the same way, a Topological
Conformal Field Theory, TCFT for short, is an algebra over the singular chains
C•(R) of R.

The Riemann spheres R, i.e. Riemann surfaces of genus 0, with n input discs
and 1 output disc, form the operadic part of R. The frame little discs operad is
a deformation retract of the operad R: look through the outgoing disc to see a
configuration of n framed discs inside a unit disk. Therefore Proposition 13.7.9
induces the isomorphism of operads H•(R) ∼= H•(fD) ∼= BV , which leads to the
following consequence.

Proposition 13.7.11. [Get94] The homology of a TCFT carries a natural BV -
algebra structure, whose product is given by the degree 0 homology class of R(2) and
whose degree 1 operator ∆ is given by the fundamental class of the circle R(1) ∼ S1.

13.7.12. Homotopy BV -algebras. The quadratic-linear presentation of the
operad BV above in 13.7.7 satisfies the conditions of the inhomogeneous Koszul
duality theory 7.8.13. Hence, it provides a quasi-free, but not minimal, resolution

BV∞ := ΩBV
¡ ∼−→ BV

of the operad BV . Algebras over this cofibrant resolution are called homotopy BV -
algebras. We refer the reader to Section 2.3 of [GCTV09] for the explicit definition
in terms of operations and relations.

This definition is a generalization of the notion of commutative BV∞-algebra
by O. Kravchenko [Kra00] and it is a particular case of a definition proposed by D.
Tamarkin and B. Tsygan in [TT00], which is an algebra over a properad. Contrar-
ily to these two other definitions, the one given here comes from a cofibrant operad.
Therefore it shares the required homotopy properties, as shown by the following
examples.

Remark. One gets the minimal model of the operad BV by first computing the

homotopy H•(BV
¡
), i.e. the underlying homology, of the dg cooperad (BV

¡
, dϕ).

This computation was done in [DCV11, DK10] and the result is related to the
homology of the moduli space of curves, which is the operad Gravity, see 13.11.2.

Then, one has to endow H•(BV
¡
) with a homotopy cooperad structure transferred

from the dg cooperad structure on BV
¡
, see [DCV11].

We will need the following formality result, which extends Theorem 13.3.21.



13.7. BATALIN-VILKOVISKY ALGEBRAS AND THE OPERAD BV 433

Theorem 13.7.13. [Šev10, GS10] The framed little discs operad is formal, i.e.
there is a zig-zag of quasi-isomorphisms of dg operads

C•(fD)
∼←− · ∼−→ H•(fD) .

Together with the cofibrancy of BV∞, it implies the following theorem.

Theorem 13.7.14. [GCTV09]There exists a commuting diagram of quasi-iso-
morphisms

C•(R) C•(fD)oo

·
����

OO

BV∞ //

::vvvvvvvvvvvvvvvv

OO

BV ∼= H•(fD).

Proof. The proof relies on the left lifting property of cofibrant objects in the model
category of dg operads, see B.6.9. For the details, we refer the reader to the proof
of Theorem 11 of [GCTV09]. �

This theorem and its proof illustrate well how one can use homotopy properties
of dg operads to obtain results on algebraic structures.

Corollary 13.7.15. [GCTV09]

� The singular chains C•(Ω
2X) of the double loop space on a topological

space X endowed with an action of the circle S1 carries a homotopy BV-
algebra structure, which is homotopy equivalent to that of C•(fD).

� Any TCFT carries a homotopy BV-algebra structure, which is homotopy
equivalent to the action of the operadic part C•(R).

Thus an important part of a TCFT structure is encoded in the algebraic notion
of homotopy BV-algebra structure. These two structures lift, on the chain level and
up to homotopy, the BV -algebra structures on homology. Then by the Homotopy
Transfer Theorem 10.3.15, one extends this BV -algebra structures on homology to
a homotopy BV -algebra structure, which defines new homotopy invariants.

13.7.16. Vertex operator algebras and homotopy BV -algebras. A ver-
tex operator algebra is an algebraic structure introduced by Richard Borcherds with
motivation in conformal field theory and the monstrous moonshine. We refer to
[Kac98, FBZ04] for the full definition. Yi-Zhi Huang [Hua97] proved that a
vertex operator algebra is a “partial” algebra over the Riemann sphere operad R.
Hence Theorem 13.7.14 motivates the following result.

Theorem 13.7.17 (Lian-Zuckerman conjecture [GCTV09]). Any topological ver-
tex operator algebra A, with non-negatively graded conformal weight, carries an
explicit homotopy BV-algebra structure, which extends the Lian-Zuckerman opera-
tions in conformal weight zero and which induces the Lian–Zuckerman BV-algebra
structure on H•(A).

Proof. The proof relies on the obstruction theory applied to the convolution dg Lie

algebra gBV,A := HomS(BV
¡
,EndA), see 10.1.2. Since the Koszul dual dg cooperad

BV
¡

is weight-graded, so is gBV,A. Starting from the Lian-Zuckerman operations in
weight 0, one shows that the obstructions, i.e some homology groups, to extending
them vanish. The definition of a topological vertex operator algebra actually gives
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a contracting homotopy for this, which shows that one can explicitly construct the
homotopy BV -algebra structure inductively. �

13.7.18. Cyclic Deligne conjecture. The Cyclic Deligne Conjecture is the
generalization from the Gerstenhaber algebra case to the BV -algebra case, of the
Deligne conjecture [Tam98].

Theorem 13.7.19 (Cyclic Deligne conjecture [GCTV09]). Let A be a cyclic unital
associative algebra. There is a homotopy BV-algebra structure on its Hochschild
cochain complex, which lifts the BV-algebra structure on Hochschild cohomology.

Proof. Kaufmann proved in [Kau08] that the operad C•(fD), made of the
singular chains of the framed little discs operad, acts on C•(A,A). Finally, we
conclude with Theorem 13.7.14. �

This conjecture was proved with various topological models in [Kau08] (framed
little discs, cacti), in [TZ06] (cyclic Sullivan chord diagram), in [Cos07] (Riemann
sphere), and in [KS09] (configuration of points of the cylinder). Since the operad
BV∞ is cofibrant, it provides a canonical model for the cyclic Deligne conjecture.

13.8. Magmatic algebras

The notion of associative algebra is so important that the algebras of any other
type used to be called “nonassociative algebras”. This terminology includes the
algebras which have one binary operation with no further relation. On the other
hand, Bourbaki calls “magma” a set equipped with a binary operation without any
further relation. So we adopt the terminology magmatic for this precise type of
nonassociative algebras. It is an interesting case because the associated operad is
free.

13.8.1. Definition of a magmatic algebra. A magmatic algebra is a vector
space equipped with a binary operation xy with no relation. The free magmatic
algebra on one generator x is spanned by the monomials in x with a parenthesizing,
for instance:

(x(xx)(xx)).

It is often helpful to replace the parenthesizings by the planar binary trees, therefore
the free magmatic algebraMag(K) on one generator x isMag(K) =

⊕
n≥1 K[PBTn].

Under this identification the generator is the tree | and the binary product is the
grafting: t1t2 = t1 ∨ t2.

As in the associative case we can work either in the unital case (existence of an
element 1 such that 1 ·x = x = x · 1, played by the empty tree), or in the nonunital
case.

13.8.2. The operad Mag. The category of magmatic algebras can be en-
coded by a nonsymmetric operad which comes from a set-theoretic operad. We
denote by Mag. From the previous discussion we get:

Magn = K[PBTn].

As mentioned before the operad Mag is the free ns operad on one binary operation
that we have met in 5.4 and 5.8.6:

Mag = T (K ��
??

).
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It is a nonsymmetric operad, which is binary and quadratic. In the unital case we
denote the associated ns operad by uMag.

13.8.3. Koszul dual of Mag. The Koszul dual operad ofMag is the nilpotent
operad Nil having one binary operation xy as generator and relations

(xy)z = 0 = x(yz).

Since Mag is free, i.e. RMag = 0, its Koszul dual operad is the quotient of

T (K ��
??

) by the operadic ideal generated by T (K ��
??

)(2), that is the compos-

ites ��
?? ◦1 ��

??
and ��

?? ◦2 ��
??

. It is trivial to show that these operads

are Koszul. As a consequence we get, without any calculation, the algebraic ex-
pression of the Catalan series. The generating series for the nilpotent operad is
simply fNil(x) = x + x2, and the generating series for the magmatic operad is
fMag(x) =

∑
n≥1 cnx

n, where cn is the Catalan number (number of planar binary

trees). From the functional equation relating the generating series of Koszul dual
operads (cf. 7.6.13) we get ∑

n≥1

cnx
n =

1−
√

1− 4x

2
,

and therefore cn = 1
n+1

(
2n
n

)
.

We have mentioned before that the blackproduct with preLie amounts to do
some dichotomization. In the case of Nil the following surprizing phenomenon
occurs: the symmetric operad preLie •Nil is not Koszul. The proof can be done
by computing the generating series, cf. [Val08].

13.8.4. Commutative magmatic algebras. It is sometimes necessary to
work with algebras having one commutative operation without any further relation
(so not associative for instance). We call it a commutative magmatic algebra and we
denote the operad by ComMag. The operad is described by (non-planar) binary
trees. The dimension of the space of n-ary operations is

dim ComMag(n) = (2n− 1)!! = 1× 3× 5× 7× · · · × (2n− 1) .

A basis of ComMag(n) is given by the binary shuffle trees introduced in 8.2.3.

13.9. Parametrized binary quadratic operads

Associative algebras, Poisson algebras, Leibniz algebras and Zinbiel algebras
are examples of types of algebras generated by one operation (without symmetry)
with one quadratic relation of the form

(xy)z =
∑
σ∈S3

aσσ
(
x(yz)

)
for some coefficients aσ ∈ K.

We have seen in Proposition 7.6.7 that the Koszul dual operad is generated by
one operation with the quadratic relation

x(yz) =
∑
σ∈S3

sgn(σ)aσ−1σ
(
(xy)z)

)
.
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One passes from the type of algebras with relations of the form (xy)z =∑
−(−−) to those with relations of the form x(yz) =

∑
((−−)− by taking the

“opposite type” given by x · y := yx.
If A is an algebra of the first type and B is an algebra of the dual type, then we

know by Theorem 7.6.10 that A⊗B is a Lie algebra. In fact it has a finer structure
here.

Proposition 13.9.1. Under the aforementioned hypothesis the operation {a⊗b, a′⊗
b′} := aa′ ⊗ bb′ is a pre-Lie product.

Proof. The verification is a direct calculation. �

13.10. Jordan algebras, interchange algebras

The symmetrization of an associative product motivates the introduction of
the notion of Jordan algebra. The associated operad is binary and cubic (rela-
tions involving 3 operations). It is a key tool in the analysis of symmetric spaces.
We briefly mention another type of cubic operad: the operad which encodes the
interchange algebras.

13.10.1. Definition of Jordan algebras. A Jordan algebra is a vector space
equipped with a symmetric binary operation x · y which satisfies the relation:

(a·2) · (b · a) = ((a·2) · b) · a .

A priori operads do not code for such types of algebras because the relation is
not multilinear. However, if 3 is invertible in K, the relation is equivalent to its
multilinearized form which is the cubic relation:

(x ·y) · (t ·z)+(x ·z) · (t ·y)+(y ·z) · (t ·x) = ((x ·y) · t) ·z+((x ·z) · t) ·y+((y ·z) · t) ·x

which is symmetric in x, y, z. So, for the purpose of this book we call Jordan algebra
a vector space equipped with one binary operation satisfying this cubic relation.
The associated operad is denoted by Jord.

13.10.2. From associative algebras to Jordan algebras. Let A be an
associative algebra with product xy. We denote by x ·y := xy+yx the symmetrized
product. It is well-known, and easy to check, that the symmetrized product satisfies
the cubic relation of Jordan algebras. More precisely, in arity 3, there are 3 different
operations, all of the type (x ·y) ·z, which are linearly independent. In arity 4, there
are 15 different operations, 12 of the type ((x ·y) ·z) · t and 3 of the type (x ·y) ·(z · t)
(cf. 13.8.4). However the 15 operations in arity 4 are not linearly independent, since
they satisfy the cubic formula. As a consequence we get a morphism of operads

Jord→ Ass .

Contrarily to the Lie case, this morphism is not injective. In other words there
are relations satisfied by the symmetrized associative product which are not conse-
quences of the Jordan relation. The first examples appear in arity 8: the Glennie
relations, see page 79 of [ZSSS82].
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13.10.3. Jordan triple. The relation which defines Jordan algebra is not
quadratic. However there is a close notion called Jordan triples, whose relation
is quadratic. By definition a Jordan triple (also called Jordan triple system) is a
vector space A equipped with a ternary operation satisfying the symmetry relation

(xyz) = (zyx) ,

and the quadratic relation

(uv(xyz)) = ((uvx)yz)− (x(yuv)z) + (xy(uvz)) .

Because of the symmetry relation there are several ways of writing the quadratic
relation. The way we wrote it here is close to a Leibniz type relation. The operad
of Jordan triples is denoted by JT . The relation with Jordan algebras is as follows.
Any Jordan algebra gives rise to a Jordan triple by the formula:

(xyz) := x(yz)− y(xz) + (xy)z .

Any associative algebra gives a Jordan triple by the formula:

(xyz) := xyz + zyx.

In the next section we introduce the notion of ternary totally associative al-
gebra, denoted tAs〈3〉-algebra. There is a functor tAs〈3〉-alg → JT -alg, given by
〈xyz〉 := (xyz)+(zyx). Indeed, the operation 〈xyz〉 satisfies the symmetry property
of the Jordan triples by definition. It satisfies also the quadratic relation because
this quadratic relation is already fulfilled for (xyz) if this operation is totally asso-
ciative.

This functor is similar to the functor Ass-alg → Lie-alg. In this Jordan frame-
work the role of commutative algebras is played by the totally associative ternary
algebras which satisfy the symmetry relation

(xyz) = (zyx).

13.10.4. Interchange algebra. Let x · y and x ∗ y be two binary operations.
The following relation

(a · b) ∗ (c · d) = (a ∗ c) · (b ∗ d)

crops up in many places in mathematics. It is called the interchange relation. In
many examples the two operations are supposed to be associative. For instance, it
is the key formula to show that the higher homotopy groups are abelian (Eckmann-
Hilton argument). It also permits us to define the notion of “bicategory”. When
· = ∗, any idempotent x (i.e. x ∗ x = x) gives the identity

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

This is called the “right-distributivity property”. It is related with many structures,
like braids and knots for instance.

The operad defined by these two binary operations and the interchange relation
is binary cubic and deserves to be studied.
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13.11. Multi-ary algebras

So far we essentially dealt with examples of operads generated by binary op-
erations. Of course, there is no reason to study only these ones, and in fact there
are some very interesting operads generated by operations in any arity. We already
met some, when working with P∞-algebras. Here are some others involved in the
study of moduli spaces, together with an elementary application to the inversion of
power series.

13.11.1. Totally and partially associative 〈k〉-algebra. By definition a
totally, resp. partially, associative 〈k〉-algebra is a vector space A equipped with a
k-ary operation:

( ) : A⊗k −→ A

which satisfies

((x1 · · ·xk)xk+1 · · ·x2k−1) = (x1 · · ·xi(xi+1 · · ·xi+k) · · ·x2k−1) for any i,

resp.
∑i=k−1
i=0 (−1)i(k−1)(x1 · · ·xi(xi+1 · · ·xi+k) · · ·x2k−1) = 0 .

The category of totally, resp. partially, associative 〈k〉-algebras is coded by a non-
symmetric operad denoted by tAs〈k〉, resp. pAs〈k〉. V. Gnedbaye showed in [Gne]

that they are Koszul dual to each other: tAs〈k〉
!

= pAs〈k〉. The space on n-ary
nonsymmetric operations of tAs〈k〉 is given by

tAs
〈k〉
ik−i−1 = K, tAs〈k〉n = 0 otherwise.

13.11.2. Hypercommutative algebra and gravity algebra. A hypercom-
mutative algebra A is a chain complex A equipped with a totally symmetric n-ary
operation (x1, . . . , xn) of degree 2(n − 2) for any n ≥ 2. They are supposed to
satisfy the following generalized associativity relation:∑

S1tS2={1,...,n}

((a, b, xS1
), c, xS2

) =
∑

S1tS2={1,...,n}

(−1)|c||xS1
|(a, (b, xS1

, c), xS2
) ,

for any n ≥ 0. We denote the associated operad by HyperCom.
Consider the moduli spaceMg,n+1 of smooth projective curves of genus g with

n + 1 marked points. It admits a compactification Mg,n+1 made of stable curves,
which is due to Deligne, Mumford and Knudsen [DM69, Knu83]. The gluing of
the latter curves along one point defines an operad structure. Actually, it forms a
cyclic and a modular operad (see ?? and ??). (Here we think at the first marked
point as the output.)

Proposition 13.11.3. [KM94, Get95] The operad formed by the homology H•(M0,n+1)
of the genus 0 part of the moduli space of stable curves is isomorphic to the operad
encoding hypercommutative algebras.

Proof. The genus 0 moduli space M0,n+1 is a compact manifold of dimension
2(n− 2). One sends its fundamental class to the generating n-ary operations of the
operad HyperCom. For the rest of the proof, we refer the reader to the original
papers. �
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The Gromov-Witten invariants endow the cohomology of any symplectic man-
ifold or any smooth projective variety with a hypercommutative algebra structure.
(Notice that in the book [Man99b], this structure is called a Comm∞-algebra. To
avoid confusion with C∞ = Com∞-algebra, that is homotopy commutative algebra,
we stick to the notation HyperCom).

A gravity algebra is a chain complex A endowed with (graded) skew-symmetric
operations [x1, . . . , xn] : A⊗n → A of degree 2− n for any n ≥ 2. They satisfy the
following relations:∑

1≤i<j≤k

±[[xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk, y1, . . . , yl] =

{
[[x1, . . . , xk], y1, . . . , yl] for l > 0,
0 for l > 0.

We denote the associated operad by Grav.
The gluing along one point of two smooth curves does not produce a smooth

curve anymore. However, this gluing endows the suspension of the homology
sH•(M0,n+1) with an operad structure.

Proposition 13.11.4. [KM94, Get95] The operad formed by the homology sH•(M0,n+1)
of the genus 0 part of the moduli space of smooth curves is isomorphic to the operad
encoding gravity algebras.

Theorem 13.11.5. [Get95] The operads HyperCom and Grav are Koszul dual
to each other.

Proof. This proof relies on the mixed Hodge structure of the moduli spaces of
curves, see [Get95]. �

13.11.6. Lie and Leibniz 〈k〉-algebra. By definition a Leibniz 〈k〉-algebra
is a vector space A equipped with a k-ary operation

[ ] : A⊗k −→ A

satisfying the quadratic relation

[[x1 · · ·xk]y1 · · · yk−1] =

i=k−1∑
i=0

[x1 · · ·xi−1[xiy1 · · · yk−1]xi+1 · · ·xk] .

The notion has been introduced and studied in [CLP02]. For k = 2 it is the notion
of Leibniz algebra mentioned in 13.5.

By definition a Lie 〈k〉-algebra [VV] is a Leibniz 〈k〉-algebra whose k-ary
bracket satisfies the following symmetry property:

[xσ(1) · · ·xσ(k)] = sgn(σ)[x1 · · ·xk] for any permutation σ.

This notion has been used in combinatorics, see for instance [HW95].
For k = 2 this is the classical notion of Lie algebras. For k = 3 there is an

intermediate structure studied in the literature, called Lie triple systems [Lis52]. It
consists in starting with a Leibniz 3-algebra and imposing the symmetry property:

[x1x2x3] + [x2x1x2] + [x3x1x2] = 0.

For higher k’s this notion is involved in the so-called Nambu mechanics [Tak94].
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13.11.7. Brace algebras. A brace algebra is a vector space R equipped with
a (1 + n)-ary operation denoted either {-; -, . . . , -} or M1n for n ≥ 1 satisfying the
following formulas:

{{x; y1, . . . , yn}; z1, . . . , zm} =
∑
{x; . . . , {y1; . . .}, . . . , {yn; . . . , }, . . .}.

On the right-hand side the dots are filled with the variables zi’s (in order) with
the convention {yk; ∅} = yk. The first nontrivial relation, which relates the 2-ary
operation and the 3-ary operation reads

{{x; y}; z} = {x; z, y}+ {x; {y; z}}+ {x; y, z} .

Observe that, as a consequence of this relation, the binary operation {-; -} is a
pre-Lie product since its associator is right-symmetric:

{{x; y}; z} − {x; {y; z}} = {x; y, z}+ {x; z, y} .

This notion was implicitly used in [Ger63] and has been formally introduced
by Gerstenhaber and Voronov in [GV95].

When the (1 + n)-ary brace operation {x; y1, . . . , yn} is symmetric in the y
variables for any n, then the brace algebra is said to be symmetric. We mentioned
the equivalence between symmetric brace algebras and pre-Lie algebras in 13.4.9.

The pre-Lie structure of P(K) for a ns operad P mentioned in 5.8.17 can be
extended as follows.

Proposition 13.11.8. For any nonsymmetric operad P the free P-algebra on one
generator P(K) = ⊕nPn, is a brace algebra, in particular it is a pre-Lie algebra.

Proof. The operad structure of P is determined by the composition maps

γi1···ik : Pk ⊗ Pi1 ⊗ · · · ⊗ Pik → Pi1+···+ik .

Since P(K) =
⊕

n Pn we define

M1n : P(K)⊗ P(K)⊗n → P(K)

as follows for µn ∈ Pn and νij ∈ Pij :

M1n(µn; νi1 , . . . , νik) = 0 if n < k,

M1n(µn; νi1 , . . . , νik) = γ(µk; νi1 , . . . , νik) if n = k,

M1n(µn; νi1 , . . . , νik) =
∑

γ(µn; id, . . . , id, νi1 , id, . . . , id, νik , . . .) if n > k.

Observe that the elements on the right hand side lie in Pi1+···+ik+n−k.
The brace relations are a consequence of the associativity of γ. �

The operad Brace encoding the brace algebras can be described by using the
planar rooted trees (see for instance [LR10]). It is related to many other types of
algebras. One of the main point is the following.

Proposition 13.11.9. [Ronco [Ron02]] For any brace algebra R the tensor module
T (R) is a unital dendriform algebra. Equipped with the deconcatenation coproduct,
this tensor module becomes a cofree Hopf algebra.
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Proof. We refer to the original papers [Ron00, Ron02] for the proofs. Let us state
the main formula relating the dendriform structure of (T (R),≺,�) and the brace
structure of R. For any x1, . . . , xk ∈ R we introduce Ronco’s elements

wi≺(x1, . . . , xk) := (x1 ≺ (x2 ≺ (. . . ≺ xk))),
wi�(x1, . . . , xk) := (((x1 � x2) � . . .) � xk).

The brace operations and the dendriform operations are related by:

{x; y1, . . . , yn} =

n+1∑
i=1

(−1)iwi≺(y1, . . . , yi−1) � x ≺ wi�(yi, . . . , yn).

�

Remark When P = End(A), for A an associative algebra, the Hochshild
cochain complex C•Hoch(A,A) := ⊕nHom(A⊗n, A) has a an associative product
and a Lie bracket which make it into a GV algebra. This structure plays a key role
in the proof of the Deligne conjecture, cf. 13.3.19.

13.11.10. Multibrace algebra. The notion of brace algebra is a particular
case of a more general notion, called multibrace algebra, which is defined as follows.

A multibrace algebra is a vector space A equipped with (p+ q)-ary operations
Mpq : A⊗p+q → A, p ≥ 0, q ≥ 0, such that

M00 = 0,M01 = id = M10,M0q = 0 = Mp0, for p > 1, q > 1,

(Rijk) :∑
1≤l≤i+j

Mlk ◦ (Mi1j1 . . .Miljl ; id⊗k) =
∑

1≤m≤j+k

Mim ◦ (id⊗i;Mj1k1 . . .Mjmkm)

where the left sum is extended to all sets of indices i1, . . . , il; j1, . . . , jl such that
i1 + · · ·+ il = i; j1 + · · ·+ jl = j, and the right sum is extended to all sets of indices
i1, . . . , im; j1, . . . , jm such that j1 + · · · + jm = j; k1 + · · · + km = k. We denote
the associated operad by MB. The notion of differential graded multibrace algebra
first appeared under the name B∞-algebra in [GJ94], see also [GV95]. The plain
version was denoted B∞ in [LR06]. The relationship with brace algebras is given
by the following statement: if, in a given B∞-algebra, the operations Mnm are 0
for n ≥ 2, then it is a brace algebra for {−;−, . . . ,−} := M1,p. Our interest for
this structure is justified by the following Proposition.

Proposition 13.11.11 (Loday-Ronco, [LR06]). For any multibrace algebra R the
tensor module T (R) is a unital 2-associative algebra. Equipped with the deconcate-
nation coproduct, this tensor module becomes a cofree Hopf algebra. Conversely,
any cofree Hopf algebra equipped with an isomorphism with the tensor module over
its primitive part is of this form.

Proof. We refer to the original papers [LR06] for the proof. See also [LR10] for
more information. �

There is a strong relationship between brace algebras and multibrace algebras.
A brace algebra is nothing but a multibrace algebra such that Mpq = 0 for any
p ≥ 2. Moreover this vanishing condition is equivalent to a “right-sided property”
of the Hopf algebra, which reads as follows:

“ for any q ≥ 0 the space
⊕

n≥q R
⊗n is a right ideal of T (R) ”.

We refer to [LR10] for more on this subject.
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13.11.12. From (multi)brace algebras to Hopf algebras. If one takes
the tensor module over a multibrace algebra, then one gets a bialgebra (in fact
a Hopf algebra). The multibrace algebra is the primitive part of the bialgebra.
Starting with a brace algebra gives a bialgebra satisfying some special property
(rightsidedness), cf. 13.11.9. We refer to [LR10] and [MV09a] for more information
on this subject.

13.11.13. Magmatic-infinity algebras. We have seen in 13.8 that the mag-
matic operad is the free ns operad on a binary operation. Let us start with one
operation in each arity n ≥ 2. We denote by Mag∞ the free operad on this set of
operations. So a Mag∞-algebra is simply a vector space equipped with one n-ary
operation µn for each n ≥ 2 without any further relation. We recall that this is the
beginning of the description of A∞. We have seen in 9.2.6 that the free Mag∞-
algebra on one generator is spanned by the planar trees (with at least two inputs).
As in the case of Mag, the dual operad is easy to describe since it is a nilpotent
operad. The functional equation of the generating series permits us to show that
the number of planar trees is given by the little Schroeder numbers. Instead of
giving the details, we will show a refinement of this result as follows. Given a
generic formal power series, the next Proposition make explicit the coefficients of
its inverse for composition. It is a well-known result, but the proof that we are
going to provide is very simple and makes it clear why the number of planar trees
of a given type plays a role in the formula.

Proposition 13.11.14. Let f(x) = x + a1x
2 + · · · + an−1x

n + · · · be a generic
formal power series, and let g(x) = x+ b1x

2 + · · ·+ bn−1x
n + · · · be its inverse for

composition. The coefficient bn is a polynomial in the coefficients a1, . . . , an given
by the following formula:

b1 = −a1,
b2 = 2a1

2 − a2,
b3 = −5a1

3 + 5a1a2 − a3,
b4 = 14a1

4 − 21a1
2a2 + 6a1a3 + 3a2

2 − a4,

and more generally

bn =
∑

i1+2i2+···+kik=n

(−1)i1+i2+···+ikci1···ika1
i1a2

i2 . . . ak
ik ,

where the coefficient ci1···ik is the number of planar rooted trees having n+ 2 leaves
and ij vertices with j + 1 inputs (cf. [Sta97]).

Proof. [Val07a, Lod06]. First we remark that it is sufficient to prove this state-
ment under the hypothesis that the elements an are positive integers. Under this
assumption, let P be the free ns operad on an−1 n-ary operations (n ≥ 2). The
space Pn of n-ary operations is spanned by the compositions of these generating
operations. Therefore a linear basis of Pn is obtained by taking all the planar trees
with n leaves and decorating each vertex with j inputs by one of the aj−1 operations
of arity j. Recall that there are ij such vertices. Therefore the generating series of
P is (up to signs) g(x).

The dual of P is the nilpotent operad having an−1 n-ary operations (n ≥
2). Because of the nilpotency there is no new operation created by composition.
Therefore its generating series is f(x). Since P is a free operad, it is Koszul and
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the functional equation between the two generating series (cf. 7.5.1 and [Val07a]
section 4.3) gives the expected result for y = 1 and x = t. �

Observe that ci1···ik is also the number of cells of the (k− 1)-dimensional asso-
ciahedron Kk−1, which are of the form (K0)i1 × · · · × (Kk−1)ik .

13.12. Examples of operads with 1-ary operations, 0-ary operation

We first comment briefly on the case of associative algebras viewed as operads.
We have already seen one example of operad mixing unary operation and binary

operations: the Batalin-Vilkovisky operad, cf. 13.7. We briefly mention another
one: associative algebras with derivation. In the last subsection we give a brief
comment on operads with a 0-ary operation.

13.12.1. Unital associative algebras as operads. We already mentioned
that a unital associative algebra R can be viewed as a ns operad concentrated in
arity one: P(1) = R and P(n) = 0 for n ≥ 2. Therefore the theorems of the general
theory apply, in particular the Homotopy Transfer Theorem. An algebra of this
operad P is simply a left module over R. An algebra over ΩP ¡ is a left dg module
over the dg algebra ΩR¡.

Surprisingly the case of the dual numbers R = K[ε]/(ε2 = 0) gives rise to a
structure which generalizes the notion of spectral sequence. We already give details
on this case in 10.3.16.

In the case of the symmetric algebra the Koszul duality between S(V ) and
Λc(V ) gives essentially the Bernstein-Gelfand-Gelfand [BGG78] correspondence.

13.12.2. Associative algebras with derivation. Let A be nonunital asso-
ciative algebra over K. A derivation of A is a linear map DA : A → A which
satisfies the Leibniz relation

DA(ab) = DA(a)b+ aDA(b)

for any a, b ∈ A. There is an obvious notion of morphism. The nonsymmetric
operad encoding the category of associative algebras with derivation is denoted by
AsDer. It admits the following presentation. There are two generating operations,
one of arity 1, that we denote by D, and one of arity 2 that we denote by µ. The
relations are: {

µ ◦ (µ, id) = µ ◦ (id, µ),
D ◦ µ = µ ◦ (D, id) + µ ◦ (id, D).

The ns operadAsDer is determined by a certain family of vector spacesAsDern, n ≥
1, and composition maps

γi1,...,ik : AsDerk ⊗AsDeri1 ⊗ · · · ⊗AsDerik → AsDern

where n = i1 + · · · + ik. As a vector space AsDern is isomorphic to the space of
polynomials in n variables:

AsDern = K[x1, . . . , xn],

so it is not finite dimensional. The composition map γ = γi1,...,ik is given by

γ(P ;Q1, . . . , Qk)(x1, . . . , xn) =

P (x1 + · · ·+ xi1 , xi1+1 + · · ·+ xi1+i2 , xi1+i2+1 + · · · , . . .)
Q1(x1, . . . , xi1)Q2(xi1+1, . . . , xi1+i2) · · · .
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Under this identification the operations id, D, µ correspond to 11, x1 ∈ K[x1] and
to 12 ∈ K[x1, x2] respectively. More generally the operation

(a1, . . . , an) 7→ Dj1(a1)Dj2(a2) · · ·Djn(an)

corresponds to the monomial xj11 x
j2
2 · · ·xjnn .

We refer to [Lod10] for the study of this operad and several generalizations
of this case. One of them is particularly interesting: it consists in replacing the
polynomials by the rational functions. So in arity one the operation x gets an
inverse for composition x−1. Since x corresponds to the derivation D, its inverse
corresponds to integration. So the integro-differential calculus can be written within
this operad.

13.12.3. Some examples of operads with a 0-ary operation. So far, we
did not worked out the operads with non-trivial 0-ary operation. In the definition of
a P-algebra A, any 0-ary operation u ∈ P(0) induces a map K→ A, or equivalently
a particular element in A.

The main example is unital associative algebras. The nonsymmetric operad
uAs encoding them is equal to the operad As for associative algebras plus one
element in arity 0: uAs(0) = Ku. The composition product of the ns operad
uAs is given by the composition product operad in As plus some composition
invoving the unit. Explicitly, the ns operad uAs admits the following presentation
uAs = T (u, µ)/(RuAs). The space of relations RuAs is generated by the associator
of µ and

µ ◦1 u = id = µ ◦2 u :

•

?????

�����
= =

•

?????

�����
.

These relations involve binary (2-ary) and constant (0-ary) operations. Therefore
this example does not fit into the Koszul duality theory as developed here. We re-
fer the reader to the paper [HM10] of Joey Hirsh and Joan Millès for the suitable
generalization. In this case, the Koszul dual cooperad is equipped with a “cur-
vature”, which makes it into a non dg object. This theory produces a notion of
homotopy unital associative algebra, which is closely related to the ones appearing
in symplectic geometry [FOOO09a, FOOO09b, Sei08].

Other types of algebras admit a coherent unit, like commutative algebras,
Perm-algebras, for instance. In these cases, one has to use operads with a non-
trivial 0-ary operation to encode them. There are also cases where it is useful
to introduce a unit, though composition is not everywhere defined. The case of
dendriform algebras is a paradigm, cf. 13.6.6. For an elementary introduction to
operads with coherent units, see [Lod04b]. Some further study can be found in
[Hol06] and [EFG07]

13.13. Generalized bialgebras and triples of operads

We have seen in 1.3.2 that the free associative algebra is in fact a cocommutative
bialgebra. In other words it is naturally equipped with a structure of cocommu-
tative coalgebra satisfying the Hopf compatibility relation. A similar phenomenon
occurs in many other situations. For instance, if we replace the Hopf compatibil-
ity relation by the unital infinitesimal compatibility relation, then the cooperation
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is the deconcatenation coproduct (which is coassociative). In this section we give
some more examples and we summarize the general results on the “generalized
bialgebras”. They consist in structure theorems which were stated and proved in
[LR06, Lod08].

13.13.1. Unital infinitesimal bialgebra. A unital infinitesimal bialgebra,
u.i. bialgebra for short, is a vector space H equipped with a unital associative
product xy, a counital coassociative coproduct ∆(x), which satisfy the unital in-
finitesimal compatibility relation:

∆(xy) = −x⊗ y + ∆(x)(1⊗ y) + (x⊗ 1)∆(y).

This compatibility relation can be pictured as:

???
���

��� ??? = − +
��� ???

???
��� +

��� ???

???
���

The main example is the following. Let T (V ) be the tensor module that
we equip with the concatenation product and the deconcatenation coproduct (see
1.2.6). Then it can easily be proved that concatenation and deconcatenation satisfy
the u.i. compatibility relation. It turns out that, if the u.i. bialgebra is supposed to
be conilpotent, then it is a tensor algebra:

Proposition 13.13.2 (Loday-Ronco [LR06]). Let H be a u.i. bialgebra over the
filed K. Then the following are equivalent:

a) H is conilpotent,
b) H ∼= T (PrimH) as a u.i. bialgebra.

Here PrimH is the primitive part of H, that is the kernel of the reduced co-
product. This result is analogous to the Hopf-Borel theorem (a particular case of
the CMM theorem), which asserts that, over a characteristic zero field, a commu-
tative cocommutative Hopf algebra which is conilpotent is the symmetric algebra
over its primitive part. Observe that, in the associative case, the characteristic zero
hypothesis is not necessary. It comes from the fact that the involved operads are
nonsymmetric operads and the compatibility relation does not use the symmetric
groups.

The Hopf-Borel theorem admits a generalization: the CMM theorem. Similarly
the above mentioned structure theorem admits a generalization which involves “du-
plicial algebras”.

13.13.3. Duplicial structures. [[Lod08] Chapter 5] A duplicial algebra is a
vector space A equipped with two operations x ≺ y and x � y which satisfy the
following axioms:

(x ≺ y) ≺ z = x ≺ (y ≺ z) ,
(x � y) ≺ z = x � (y ≺ z) ,
(x � y) � z = x � (y � z) .

A duplicial bialgebra is a duplicial algebra H equipped with a coassociative
coproduct ∆ which satisfy the following n.u.i. compatibility relations:
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BB ||
≺

uuu III
= +

��� ???

BB ||
≺

+
��� ???

BB ||
≺

BB ||
�

uuu III
= +

��� ???

BB ||
�

+
��� ???

BB ||
�

Observe that, here, we work into a nonunital context. It can be shown, by an
argument similar to the classical case, that the free duplicial algebra is naturally a
duplicial bialgebra. Let us introduce the operation “dot” defined by

x · y := x � y − x ≺ y.

It gives rise to a forgetful functor Dup-alg→Mag-alg from the category of duplicial
algebras to the category of magmatic algebras. Since it is a forgetful functor it
admits a left adjoint which we denote by U : Mag-alg→ Dup-alg.

Theorem 13.13.4 (Loday-Ronco [LR06]). Let H be a duplicial bialgebra over a
field K. The following conditions are equivalent:

a) H is conilpotent,
b) H ∼= U(PrimH) as a duplicial bialgebra,

c) H ∼= T
c
(PrimH) as a coassociative coalgebra.

The key point of the proof is the property of the free duplicial algebra mentioned
above: it is naturally a duplicial bialgebra. Its coproduct is constructed as follows.
First, we remark that the tensor product of two duplicial algebras A and B can be
made into a duplicial algebra by taking

(x⊗ y) ≺ (x′ ⊗ y′) := (x ≺ x′)⊗ (y ≺ y′),
(x⊗ y) � (x′ ⊗ y′) := (x � x′)⊗ (y � y′).

The coproduct ∆ : Dup(V ) → Dup(V ) ⊗ Dup(V ) is constructed as follows: it is
the unique extension of the map 0 : V → Dup(V )⊗Dup(V ) which satisfy the n.u.i.
compatibility relations. Observe that ∆ is not 0 since ∆(v ≺ w) = v ⊗ w = ∆(v �
w) for any v, w ∈ V .

As a corollary of the theorem we get the following isomorphism of functors (or
graded vector spaces):

Dup ∼= As ◦Mag

which is the associative analog of As ∼= Com ◦ Lie. In particular the natural map
Mag(V ) → Dup(V ) is injective. This fact plays a key role in the proof of the
property of the symmetrized pre-Lie product, cf. 13.4.5.

The structure theorem 13.13.4 is an analog of the CMM-PBW theorem in the
noncocommutative framework. Several other structure theorems of this type can
be proven. The general framework is as follows.
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13.13.5. Generalized bialgebras. Let A and C be two algebraic operads.
We assume that A(0) = 0 = C(0), A(1) = K id = C(1) and that there is a finite
number of generating operations in each arity. As a consequence C(n) and A(n)
are finite dimensional vector spaces.

By definition a (Cc, G,A)-bialgebra, or Cc-A-bialgebra for short, also called gen-
eralized bialgebra, is a vector space H which is an A-algebra, a C-coalgebra, and
such that the operations of A and the cooperations of C acting on H satisfy some
compatibility relations, denoted G, read “between” (some equalities involving com-
position of operations and cooperations valid for any elements of H). This set of
relations is, of course, part of the structure. A category of generalized bialgebras
is governed by an algebraic prop (we simply say a prop). Props can be defined as
algebras over some combinatorial monad like in Section 13.14. Starting with any
presentation of the operad A and of the cooperad C, this prop is obtained as the
quotient of the free prop generated by the generators of A and C (considered as
multivalued operations), modulo the relations between the operations, the relations
between the cooperations and the relations entwining operations and cooperations.
The gebras over this quotient are the generalized bialgebras.

A distributive compatibility relation between the operation µ and the coopera-
tion δ is a relation of the form

δ ◦ µ =
∑
i

(µi1 ⊗ · · · ⊗ µim) ◦ ωi ◦ (δi1 ⊗ · · · ⊗ δin) (G)

where 
µ ∈ A(n), µi1 ∈ A(k1), . . . , µim ∈ A(km),
δ ∈ C(m), δi1 ∈ C(l1), . . . , δin ∈ C(ln),
k1 + · · ·+ km = l1 + · · ·+ ln = ri,
ωi ∈ K[Sri ].

Hence, in a generalized bialgebra with distributive compatibility relations, the
composite of an operation and a cooperation can be re-written as cooperations
first and then operations. Observe that the identity is both an operation and a
cooperation.

13.13.6. Hypothesis (H0). There is a distributive compatibility relation for
any pair (δ, µ) where µ is an operation and δ is a cooperation, which preserves the
composition of the operad A and of the cooperad C.

The distributive compatibility relations induce a mixed distributive law in the
sense of Fox and Markl [FM97], that is a map

P(m)⊗ C(n)→
⊕
C(i1)⊗ · · · ⊗ C(im)⊗Si K[SN ]⊗Sj P(j1)⊗ · · · ⊗ P(jn).

Here we used the multi-index notation for i = (i1, . . . , im) and for j, and Si :=
Si1 × · · · × Sim , N = i1 + · · ·+ im = j1 + · · ·+ jn.

Example of a compatibility relation for the pair (δ, µ) with n = 3,m = 4 and
r = 8 :
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Here we have l1 = 1, l2 = 3, l3 = 4; k1 = 2, k2 = 1, k3 = 3, k4 = 2 and so
r = 1 + 3 + 4 = 2 + 1 + 3 + 2. Observe that, in the general case, the right-hand side
term is a sum of such compositions.

When both operads A and C are nonsymmetric and, in the compatibility rela-
tions, there is no crossing (in particular the only permutations ω are the identity),
then we say that this is a nonsymmetric case and that Cc-A is a nonsymmetric
prop.

13.13.7. The primitive operad. Given a type of algebra (C, G,A) we assume
the following hypothesis:
(H1) The free A-algebra A(V ) is equipped with a Cc-A-bialgebra structure which
is functorial in V .

For instance we have seen in 1.3.2 that As(V ) = T (V ) is a
(Com,Hopf,Ass)-bialgebra and in 13.13.1 that it is also a (As, u.i., As)-bialgebra
(we refer here to the nonunital cases, see Exercise 1.8.11). This hypothesis will prove
useful in constructing the operad which encodes the structure of the primitive part
of a generalized bialgebra. An operation in A(n) is said to be primitive if, for any
cooperation δ ∈ C̄(m), we have δ ◦ µ = 0. This condition amounts to say that for
any generic element v1 . . . vm ∈ V ⊗m we have δ(µ(v1 . . . vm)) = 0 ∈ A(V )⊗m. We
denote by P(n) the sub-S-module of A(n) spanned by the primitive operations and
the identity. In [Lod08] we proved the following result.

Theorem 13.13.8. For any bialgebra type (C, G, α) satisfying the hypotheses (H0)

and (H1) the sub-S-module P is a sub-operad of A.

It should be noted that, even when A and C are presented by a small number
of generating operations and relations, it is a challenge to find such a presentation
for P. So, in general, we cannot just stay with “ types of algebras”, we need to use
operads. The interest of the primitive operad lies in the following result.

Proposition 13.13.9. For any bialgebra type (C, G,A) satisfying the hypotheses
(H0) and (H1) , the primitive part PrimH of a (C, G,A)-bialgebra H is a P-algebra.

In the classical case we know that P = Lie, in the duplicial bialgebra case we
can prove that P = Mag.

13.13.10. Triples of operads. For any generalized bialgebra type (C, G,A)
satisfying the hypotheses (H0) and (H1) , we call (C,A,P) a triple of operads (the
compatibility relations G are understood, but part of the structure). In the classical
case (Com,Ass, Lie) we know that there is a nice structure theorem: the CMM-
PBW theorem, cf. 1.3.6. We will find some conditions which ensure that a similar
structure theorem holds in more generality.

Since A(V ) is a Cc-A-bialgebra by hypothesis (H1) the natural projection map
ϕ(V ) : A(V )→ V determines a unique coalgebra mapA(V )⊗Cc(V ). Let us suppose
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that there is a natural coalgebra splitting s(V ) : Cc(V )→ A(V ), ϕ ◦ s = idC . This
is called hypothesis (H2epi) . Then the following structure theorem holds.

Theorem 13.13.11 (Structure Theorem for generalized bialgebras [Lod08]). Let
Cc-A be a type of generalized bialgebras over a field of characteristic zero. Assume
that the hypotheses (H0) , (H1) , and (H2epi) hold. Then, for any Cc-A-bialgebra
H, the following statements are equivalent:
a) the Cc-A-bialgebra H is conilpotent,
b) there is an isomorphism of bialgebras H ∼= U(PrimH),
c) there is an isomorphism of conilpotent coalgebras H ∼= Cc(PrimH).

In this statement the functor U : P-alg → A-alg is the left adjoint to the
forgetful functor A-alg→ P-alg induced by the inclusion of operads P ⊂ A. When
A and C are nonsymmetric operads and the compatibility relations do not involve
the symmetric groups, then P is also a nonsymmetric operad and the characteristic
zero hypothesis is not required.

When the structure theorem holds the triple (C,A,P) is called a good triple of
operads. We have seen that (Com,As, Lie) and (As,Dup,Mag) are good triples
of operads. More examples, like (As,Dend,Brace) (due to M. Ronco), and proofs
can be found in [Lod08].

13.13.12. Combinatorial Hopf algebras. The PBW theorem says that a
conilpotent cocommutative bialgebra is isomorphic, as a coalgebra, to the cofree
coalgebra over its primitive part. This isomorphism is not unique. One can con-
struct a specific iso by using the Eulerian idempotents for instance, but other choices
are possible. If, once such a choice has been made, the product is “right-sided”,
then one can prove that the primitive part has more algebraic structure than being
a Lie algebra: it is a pre-Lie algebra. Let us recall the notion of “right-sidedness”.
Let H = (Sc(R), ∗) be a bialgebra structure on the cofree cocommutative coalgebra
over R. There is a natural grading H = ⊕nHn given by Hn := Sn(R). We say that
it is right-sided if, for any integer q, the subspace

⊕
n≥qHn is a right-sided ideal

of H.
If the conilpotent bialgebra H is not cocommutative, then there is no PBW

theorem. However, if it happens that it is cofree as a coassociative coalgebra, then
we can find a structure theorem. Let us make it explicit in the “right-sided” case
(replace Sn by Tn in the previous definition). It can be shown that the primitive
part of H is more than a Lie algebra: it is a brace algebra. Of course the Lie
bracket is obtained from the brace structure. It is the antisymmetrization of the
binary brace. Moreover one can show that there is also a finer algebra structure
on H = T c(R) than the associative structure: it is a dendriform algebra. So the
good triple which is governing these right-sided cofree coassociative bialgebras is
(As,Dend,Brace) (due to M. Ronco [Ron02]).

We have given in [LR10] more examples of this kind and we called them com-
binatorial Hopf algebras because they cover all the Hopf algebras appearing in
algebraic combinatorics under this terminology.

One should remark that what we have done here for classical bialgebras, that
is extracting finer structures from explicit PBW iso, can also be done in the case
of generalized bialgebras. But explicit examples are still to be done.
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13.14. Types of operads

There are several variations of the notion of “symmetric operad”. First, one can
replace the monoidal category of vector spaces by some other monoidal categories:
modules over a commutative ring, sets, simplicial sets, topological spaces, etc. (cf.
5.3.9). Second, we know that a natural generalization of the notion of monoid is
the notion of category: the product of two elements can be performed only when
the source of one is equal to the target of the other one. In the operadic framework
it gives rise to the notion of “colored operad”: operations can be composed only
whenever the colors match. Among them we find the operad encoding morphisms
between algebras and also the planar algebras devised by Vaughn Jones in his
analysis of knot theory. Third, as already mentioned, a symmetric operad can be
seen as an algebra over the monad of rooted trees. We have already seen that
some other combinatorial objects give rise to other types of operads: planar rooted
trees give ns operads, shuffle trees give shuffle operads, ladders give associative
algebras. There are many more and we only briefly comment on some of them:
cyclic operads, permutads, modular operads, properads. Sometimes Koszul duality
theory, as devised in this book, can be extended to these cases, though it is not yet
always written in full in the literature, see for instance [VdL03, Val07a].

13.14.1. Colored operads. A colored operad is to an operad what a category
is to a monoid. An operation in a colored operad comes with a color for each input
and a color for the output. A composition is going to be possible whenever the
colors match. There is a notion of algebra over a colored operad. It is a colored
object and the evaluation of an operation on a tuple of elements is possible only
if the colors match. This generalization works for symmetric operads, ns operads,
shuffle operads and also for associative algebras. In this last case a particular
example gives rise to .... ns operads, see 13.14.3.

13.14.2. Morphism operads. Let P be an operad. In order to encode the
category of morphisms between two P-algebras, we construct a colored operad,
called morphism operad , as follows. The colors are going to be 0 (light blue) and
1 (dark blue). If the operad P is presented as P = P(E,R), then the morphism
operad P0→1 admits the following presentation:

P0→1 = P(E0 ⊕ E1 ⊕Kf, R0 ⊕R1 ⊕Rf),

where the various ingredients are as follows. The space E0 (resp. E1) is a copy of
E with input and output colors 0 (resp. 1). The one-dimensional space Kf, of arity
1, has input color 0 and output color 1. The space R0 (resp. R1) is a copy of R.
The space Rf is spanned by the operations µ0 ◦ (f, . . . , f)︸ ︷︷ ︸

n

−f◦µ1 where µ0 ∈ E0(n)

and µ1 ∈ E1(n) are copies of the same operation µ ∈ E(n). So, in P0→1 we have:

0 0 0

µ0

xxxx
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• f

1
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0 0 0

•f •f • f
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An algebra over P0→1 is determined by a P-algebra A0, a P-algebra A1, and a
morphism of P-algebras f : A0 → A1.

When P is a quadratic operad, the colored operad P0→1 admits a presentation
involving cubical terms. So Koszul duality theory, as developed in this book, cannot
be applied. However, when P is a Koszul operad, one can apply a generalization of
Koszul duality theory given in [MV09a, MV09b], called homotopy Koszul duality.
This gives the minimal model for the operad P0→1. An algebra over this resolution
is the data of two P∞-algebras A0 and A1 together with an∞-morphism, as defined
in 10.2.2, between them.

In the particular case P = As, the minimal model of As0→1, like the construc-
tion done in Chapter 9 for As, see also [Mar04]. It turns out that, here, the role of
Stasheff polytope (alias associahedron) is taken by the multiplihedron, cf. [Sta63].

13.14.3. Grafting algebras vs ns operads. In [Ron10] M. Ronco intro-
duced the notion of grafting algebra (and variations of it). It is in fact a “colored”
algebra for which the colors are the natural numbers. By definition a grafting alge-
bra is a graded vector space A =

⊕
n≥0An, where A0 = K 1, equipped with binary

operations

•i : Am ⊗An → Am+n, for 0 ≤ i ≤ m,
satisfying:

(x •j y) •i+j z = x •j (y •i z), for 0 ≤ i ≤ m, 0 ≤ j ≤ l,
(x •j y) •j+n z = x •j (y •i z), for 0 ≤ i < j,

for any x ∈ Al, y ∈ Am and z ∈ An. It is also supposed that 1 ∈ A0 is a unit on
both sides of the operations.

Let us introduce another notation as follows. We put Pn := An−1 and we let

◦i : Pm ⊗ Pn → Pm+n−1

be equal to

•i−1 : Am−1 ⊗An−1 → Am+n−2

for 1 ≤ i ≤ m under this identification. Strictly speaking there is one operation •i
for each input colors (m,n) whenever i ≤ m. The output color of this operation is
n+m. The description of grafting algebras given here differ from the one given in
[Ron10] by taking the “opposite” operations (our x •i y corresponds to her y •i x).

From the definition given in 5.8.4, it follows that a ns operad P such that
P0 = 0 and P1 = K is equivalent to a grafting algebra (compare with [Ger63]). So
the notion of ns operad can be seen as some type of colored algebras.

13.14.4. Tangle operad, planar algebras. The notion of planar algebras
was introduced in the late nineties by Vaughan Jones [Jon99] in connection with
its famous invariants for knots. In [Jon10] he informally defines them as follows:
“A planar algebra consists of vector spaces together with multilinear operations be-
tween them indexed by planar tangles-large discs with internal (input) discs all
connected up by non-intersecting curves called strings”.
In fact a planar algebra is an algebra over a colored operad, called the operad of
tangles. This operad is a variation of the operad of little discs, where the region
outside the little discs have been decorated. We recall here the version given in
[Jon10], Definition 2.1.1.
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Figure 1. A Tangle (Courtesy of V.F.R. Jones)

A tangle is a disc equipped with (disjoint) little discs with the following dec-
oration, see Figure 1. Each disc (including the outside one) is equipped with an
even number of marked points, one of them being distinguished (base-point, pic-
tured as ∗). Each marked point is joined to another one by a path called string.
Strings without end points are also allowed (see picture), and all the strings are
disjoint. The regions formed by the strings are labelled either by + (left blank
in the picture) or by − (shaded in the picture), so that adjacent regions are of
different labels. These objects are considered up to isotopy, so a tangle is really a
combinatorial object (unlike in the case of the little discs operad).

Composition among tangles is defined as in the case of the little discs operad.
More precisely, let T be a tangle and choose an inside circle α with 2k marked points
on the outside circle. The (partial) composition T ◦α S is the tangle obtained by
plugging S in α while respecting the marked points, the distinguished points and
the labels. The fact that S has to have the same number of marked points as α in
order to achieve the composition implies that we get a colored operad instead of an
operad. It is called the operad of tangles. V. Jones defines a planar algebra as an
algebra over the operad of tangles.

The operad of tangles is a very rich operad which admits a lots of possible
variations. For instance there is an interesting suboperad made of the tangles with
only one interior disc (related to the Temperley-Lieb algebra).

13.14.5. Types of operads based on combinatorial objects. We have
seen in Section 5.5, resp. 5.8.5, resp. 8.2, that a symmetric operad, resp. nonsym-
metric operad, resp. shuffle operad, can be viewed as an algebra over some monad,
namely the monad of nonplanar rooted trees, resp. planar rooted trees, resp. shuf-
fle trees. The key ingredient in the construction of these monads is the notion of
substitution of a tree at a vertex. A fourth example is given by the ladder trees,
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which also form a monad under substitution. The algebras over this monad are
simply the unital associative algebras. In all these examples the basic tool is a
family of graphs (in fact trees here) for which there is a notion of “substitution”,
see for instance 5.5 and 8.2. We refer the reader to the paper of D. Borisov and
Y.I. Manin [BM08] for a complete study.

There is a lot of examples of this kind, see for instance [Mer10b], and we
provide some of them in the next sections. We only describe the set of graphs
which is used and the substitution process on them. It is a good exercise to write
down the other types of definitions: monoidal, classical, partial, when they exist.
One should note that for some of these combinatorial monads, the type of operads
that they define (that is the algebras over this monad) are themselves monads, but
over a different category. For instance the monad giving rise to symmetric operads
is a monad on S-modules, while a symmetric operad is a monad on the category of
vector spaces. But it does not always happen that the algebras over a some fixed
combinatorial monad are themselves a monad.

There are many other types of operads like dioperads, properads, props, wheeleds
props, to name but a few.

When a type of operads admits an equivalent definition as a monoid in a
monoidal category, one can develop a Koszul duality theory on that level, following
the pattern given in this book. The case of colored operad was treated by P. Van
der Laan in [VdL03], the case of dioperads was treated by W.L. Gan in [Gan03]
and the case of properads was treated in [Val07a].

13.14.6. Cyclic operads. We consider finite trees (nonplanar nonrooted).
Substitution is like in the case of the monad T defining symmetric operads. We
observe that in order to define the monad we need more than an S-module, because
among the edges pertaining to a given vertex, there is no pointed one (no root).
So, if the number of these edges is n + 1, then we need an Sn+1-module. It is
customary, by comparison with symmetric operads, to see this permutation group
as generated by Sn and the cyclic group of order n + 1, whence the terminology
cyclic operad for the algebras over this monad. This notion is due to E. Getzler
and M.M. Kapranov [GK95a].

It is interesting to look for a presentation of a cyclic operad by means of partial
operations. In fact, we first start with a symmetric operad P and unravel the extra
structure needed to make it into a cyclic operad as follows. First, we need an action
of the cyclic operator τ , of order n+1, on P(n) so that it becomes an Sn+1-module.
Second, we have to say how these operators behave with respect to composition in
the operad P. The trick is to think of τ as changing the last input into the output
and the output into the first input. Then the formulas relating the action of τ with
the partial operations of the operad P, that is

τ(µ ◦i ν) = τ(µ) ◦i+1 ν, for 1 ≤ i < m,

τ(µ ◦m ν) = τ(ν) ◦1 τ(µ),

follow from the following pictures:
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The symmetric operad Ass can be seen as a cyclic operad as follows. We
endow Ass(n) ∼= K[Sn] with the following right action of the symmetric group S1+n.
Consider the set S1+n as a right S1+n-set given by conjugation: ωg := g−1ωg. Let
U1+n be the subset of S1+n made up of the permutations which have only one cycle,
that is the orbit of (0 1 . . . n). The bijection Sn → U1+n, σ 7→ (0 σ(1) . . . σ(n))
permits us to view Sn as a S1+n-set. The restriction of this action to the subgroup
Sn of S1+n is immediately seen to be the right multiplication.

An important case of a cyclic operad is the endomorphism operad. Let A be a
finite dimensional vector space, equipped with a non-degenerate symmetric pairing
〈−,−〉 : A ⊗ A → K. This pairing gives rise to an isomorphism A → A∗, and
so we have an isomorphism EndA(n) := Hom(A⊗n, A) ∼= Hom(A⊗n+1,K). As a
consequence, we get an action of Sn+1 on EndA(n), which makes EndA into a cyclic
operad.
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The data of an algebra over a cyclic operad is given by a morphism of cyclic
operad P → EndA. For example an algebra over the cyclic operad Ass is a finite
dimensional associative algebra equipped with a non-degenerate symmetric pairing
〈−,−〉 such that

〈ab, c〉 = 〈a, bc〉 ,

for any a, b, c ∈ A, see 13.7.5.

13.14.7. Permutads vs shuffle algebras. Let n = {1, . . . , n}. To any sur-
jection t : n → k, we associate a graph as follows. It is a bipartite graph, the first
row is made up of n vertices labelled from 1 to n and the second row is made up of
k vertices labelled from 1 to k. There is an edge from vertex i in the first row to
vertex j on the second row whenever t(i) = j.

Example.
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We define a substitution as corresponding to the composition of surjective maps
(so we perform substitution only on the second row vertices). This combinatorial
data defines a monad P over the category of arity-graded vector spaces (compare
with ns operads, cf. 5.8.5). An algebra over the monad P is called a permutad.

When presenting a permutad in terms of partial operations, one sees that this
notion is exactly the same as the notion of “shuffle algebra” introduced by M.
Ronco in [Ron10]. Interpreting the bipartite graphs corresponding to surjections
as shuffle trees whose underlying tree is a left comb, cf. 8.2, we get a comparison
between permutads and shuffle operads.

There is a permutad pAs similar to the ns operad As, in particular pAsn is
one-dimensional. Its minimal model can be described using the permutohedron (in
place of the associahedron).

13.14.8. Modular operads. There is an obvious definition of substitution
for finite graphs whose edges are enumerated by nonnegative integers. A modular
operad is an algebra over the monad on S-modules defined by the “stable” graphs,
see [GK98] for details. One of the motivating examples of a modular operad is
Mg,n, where Mg,n is the moduli space of genus g stable curves with n marked
points.

It is a higher genus extension of the notion of cyclic operads.

13.14.9. Properads. We consider the automorphism classes of finite con-
nected directed graphs, see C.4.1. So each vertex has some inputs, let us say n ≥ 1
and some outputs, let us say m ≥ 1. Among the outer edges, depending on the
orientation, we have leaves, oriented towards the vertex, and roots, oriented out-
wards the vertex. We suppose that for each vertex the set of inputs (resp. outputs)
is endowed with a bijection to {1, . . . , n} (resp. {1, . . . ,m}). We also suppose that
the set of leaves (resp. the set of roots) has a similar labeling, see Figure 2.
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Figure 2. Labeled connected graph.

We define a substitution of a graph at a vertex like in the general case, but
taking the labelings into consideration: the labeling of the set of leaves of the to be-
inserted graph is used to identify them with the inputs of the vertex, and similarly
for the roots.

From this data we can construct a monad on S-bimodules, i.e. families of
Sn × Sopm -modules. A properad, as introduced slightly differently in [Val07a], is
an algebra over this monad.

Observe that if we restrict ourself to the graphs whose vertices have one and
only one output, then we get the notion of symmetric operad (since Sn× S1

∼= Sn).
Properads model operations with several inputs and several outputs. Many types
of bialgebras can be encoded by properads. On the opposite to modular operads,
properads can act on infinite dimensional vector spaces and do not require any
pairing.

In [Val07a], the category of S-bimodules is endowed with a monoidal product,
which extends the monoidal product ◦ of S-modules. In loc. cit., a properad is
defined as a monoid in this monoidal category. The Koszul duality for properads
is proved following exactly the same pattern as in Chapters 3 and 7.



APPENDIX A

The symmetric group

The purpose of this appendix is essentially to fix the notations and to recall
some elementary facts about the representations of the symmetric group that are
needed in this book. The main result is the Schur Lemma which says that in
characteristic zero any homogeneous polynomial functor is completely determined
by a representation of the symmetric group.

For more details the reader can consult any book on the subject, for instance
[Mac95, Sag01].

A.1. Action of groups

A.1.1. Group algebra, representation. The group algebra K[G] of a group
G over a commutative algebra K is the free module with basis the elements of G.
The product is induced by the product in the group:

(
∑
i

aigi)(
∑
j

ajgj) =
∑
i,j

(aiaj)(gigj).

The tensor product of modules over K[G] is often denoted by − ⊗G − instead of
−⊗K[G] −.

A representation of the group G is a left module M over K[G]. The action of
g ∈ G on m ∈M is denoted either by g ·m or by gm if there is no ambiguity. The
algebra K[G] is called the regular representation of G when viewed as a left module
over itself.

A.1.2. Invariants and coinvariants. To any representation M of G is as-
sociated its space of invariants MG and its space of coinvariants MG defined as
follows:

MG := {m ∈M | g ·m = m, ∀g ∈ G},

MG := M/{g ·m−m | g ∈ G,m ∈M}.

The notation follows the usual convention since MG is contravariant in G and MG

is covariant in G.
There is a natural map from invariants to coinvariants:

MG�M �MG.

Whenever G is finite and #G is invertible in the ground ring, then this map is an
isomorphism. Indeed an inverse is given by [m] 7→ 1

#G

∑
g∈G g ·m, where [m] is the

class of m ∈M in MG.
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A.1.3. Restriction and induction. Let H be a subgroup of G. The restric-
tion of a representation of G to H is simply the same space but viewed as a module
over H. If M is a right H-module, then the induced representation is the following
representation of G:

IndGHM := M ⊗H K[G],

where K[G] is viewed as a left module over K[H] through the multiplication in K[G].

Observe that the space IndGHM can be identified with the space M ⊗K K[H\G].

A.1.4. Equivariance. Let M and N be two (left) G-modules. A linear map
f : M → N is said to be G-equivariant , or simply equivariant, if, for any g ∈ G,m ∈
M one has f(g ·m) = g · f(m). In other words f is a morphism in the category of

G-modules. The space of G-equivariant maps is denoted by HomG(M,N) since it
is made of the morphisms which are invariant for the action of G by (g · f)(m) :=
g−1 · f(g ·m). If L is another G-module, one has a natural isomorphism

HomG(M,Hom(N,L)) ∼= Hom(M ⊗G N,L).

A.2. Representations of the symmetric group Sn
A.2.1. The symmetric group Sn. By definition the symmetric group Sn

is the group of automorphisms of the set {1, 2, . . . , n}. Its elements are called
permutations. The image of the permutation σ is denoted either by (σ(1), . . . , σ(n))
or, sometimes, by [σ(1) . . . σ(n)]. The neutral element is denoted either by 1 or 1n
or even idn. Let us denote by si the permutation which exchanges the elements i
and i + 1 and leaves the others fixed. It is called a transposition and sometimes
denoted by (i i+ 1) (cycle notation). The transpositions generate Sn. In fact Sn is
presented by the set of generators {s1, . . . , sn−1} and the set of relations s2

i = 1, for i = 1, . . . , n− 1,
sisj = sjsi, for |i− j| ≥ 2,

sisi+1si = si+1sisi+1, for i = 1, . . . , n− 2.

This is called the Coxeter presentation of the symmetric group. In general there
is no preferred way of writing a permutation in terms of the Coxeter generators.
However, for any permutation σ there is a minimum number of generators in such
a writing. It is called the length of the permutation and is denoted by `(σ). For
instance we have `([321]) = 3 since [321] = s1s2s1.

A.2.2. Irreducible representations. A representation of Sn is said to be
irreducible if it is not isomorphic to the direct sum of two non-zero representations.
It can be shown that the isomorphism classes of representations of the symmetric
group Sn are in one-to-one correspondence with the partitions of the integer n,
that is the sequence of integers λ = (λ1, . . . , λr) such that λ1 ≥ . . . ≥ λr ≥ 1 and∑
i λi = n. It is often helpful to represent such a sequence by a Young diagram.

For instance the Young diagram of (4, 2, 1) is
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The irreducible representation associated to λ is denoted by Sλ and called the
Specht module. Any finite dimensional representation M of Sn is isomorphic to the
sum of its isotypic components Mλ, one for each irreducible representation:

M =
⊕
λ

Mλ

where Mλ is isomorphic to the sum of a finite number of copies of Sλ. This
number is called the multiplicity of Sλ in M . For instance the multiplicity of Sλ in
the regular representation is equal to the dimension of Sλ. From this result follows
the formula: ∑

λ

(dimSλ)2 = n! .

Examples:
n = 1. The unique irreducible representation of S1 is one-dimensional.
n = 2. There are two partitions of 2: λ = (2) and λ = (1, 1):

The representation S2 is the one-dimensional trivial representation, so S2 =
Kx and [21] · x = x. The representation S1,1 is the one-dimensional signature
representation, so S1,1 = Kx and [21] · x = −x.

n = 3. There are three partitions of 3: λ = (3), λ = (2, 1) and λ = (1, 1, 1):

The associated representations are the trivial representation for λ = (3) and the
signature representation for λ = (1, 1, 1). For λ = (2, 1) it is the hook representation
which can be described as follows. Consider the three-dimensional space Kx1 ⊕
Kx2⊕Kx3 on which S3 acts by permutation of the indices. The kernel of the linear
map Kx1 ⊕ Kx2 ⊕ Kx3 → K, xi 7→ 1 is clearly invariant under the action of S3.
This is the 2-dimensional hook representation S2,1. Observe that the three elements
x1 − x2, x2 − x3, x3 − x1 lie in the kernel, but are not linearly independent since
their sum is zero. Any two of them form a basis of S2,1. The vector x1 + x2 + x3

is invariant under the action of S3, hence it is isomorphic to S3 and there is an
isomorphism

Kx1 ⊕Kx2 ⊕Kx3
∼= S2,1 ⊕ S3.

n = 4. There are four partitions of 4: λ = (4), λ = (3, 1), λ = (2, 2), λ =
(2, 1, 1) and λ = (1, 1, 1, 1):
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The associated irreducible representations are as follows:
S4 is the one-dimensional trivial representation,
S3,1 is the hook representation, that is the kernel of ⊕i=4

i=1Kxi → K, xi 7→ 1,
S2,2 is described below,
S2,1,1 is the kernel of ⊕i=4

i=1Kxi → K, xi 7→ 1, where we let S4 act on the
four-dimensional space by permutation of the indices and multiplication by the
signature.

S1,1,1,1 is the one-dimensional signature representation.
In the set of four elements {a, b, c, d} we consider the non-ordered subsets of

non-ordered pairs. So we have only three elements :

{{a, b}, {c, d}}; {{a, c}, {b, d}}; {{a, d}, {b, c}}.
We let S4 act on the ordered set {a, b, c, d} as usual, hence the 3-dimensional vector
space K3 spanned by the aforementioned subsets of pairs is a representation of
S4. Consider the map K3 → K which sends each generator to 1. The kernel is a
two-dimensional representation of S4. This is S2,2.

A.2.3. The Schur Lemma. The following result, called the Schur Lemma,
says that, for an infinite field, any homogeneous polynomial functor of degree n is
of the form V 7→ M(n)⊗Sn V

⊗n for some Sn-module M(n). It justifies the choice
of S-modules to define an operad in characteristic zero.

Lemma A.2.4. If K is an infinite field, then any natural transformation θ : V ⊗n →
V ⊗n is of the form θn · (v1, . . . , vn) for some θn ∈ K[Sn].

Proof. Let GL(V ) be the group of isomorphisms of the space V (general linear
group). Let α ∈ GL(V ) act on End(V ) by conjugation:

α · f := αfα−1.

We let GL(V ) act on End(V ⊗n) diagonally, and we denote by End(V ⊗n)GL(V ) the
space of invariants. We first show that, for r = dimV ≥ n, the map

ξ : K[Sn]→ End(V ⊗n)GL(V ), θn 7→ (ω 7→ θn · ω)

is an isomorphism.
Let e1, . . . , er be a basis of V and let f ∈ End(V ⊗n)GL(V ). The element

f(e1, . . . , er) can be written
∑
ai(ei1 , . . . , eir ) where ai ∈ K and i = (i1, . . . , ir).

Replacing e1 by λe1, for λ ∈ K, the element f(e1, . . . , en) is multiplied by λ. Since
the field K is infinite, the index 1 must occur once and only once in each sequence
i. Similarly each index 2, . . . , n must occur once and only once. It follows from this
fact that each sequence i is a permutation of (1, . . . , n). Therefore we get

f(e1, . . . , en) =
∑
σ

aσσ(e1, . . . , en)

and so f = θn for θn =
∑
σ aσ. Indeed, for any other vector basis of V ⊗n one can

find α ∈ End(V ) such that this vector is α(e1, . . . , en). Since f is GL(V )-invariant
one has

f(α(e1, . . . , en)) = α(f(e1, . . . , en))

= α(θn(e1, . . . , en))

= θn(α(e1, . . . , en))

as expected.
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Since r = dimV ≥ n by hypothesis, the element θn is unique because the
vectors σ(e1, . . . , en) are linearly independent in V ⊗n. Finally we have proved that
ξ is an isomorphism.

Since ξ(θn) is GL(V )-invariant, it follows that any natural transformation of
V ⊗n into itself is completely determined by some θn ∈ K[Sn]. �

Remark. In positive characteristic p there are transformations of functors
which do not come from morphisms of S-modules. For instance the Frobenius map
given by the p-th power, is one of them:

F : (V ⊗n)Sn → (V ⊗pn)Sn , F (x1, . . . , xn) = (xp1, . . . , x
p
n).

It is a consequence of the fact that the binomial coefficients are zero in characteristic
p.





APPENDIX B

Categories

“ . . . the discovery of ideas as general as these [category
and the like] is chiefly the willingness to make a brash or
speculative abstraction, in this case supported by the plea-
sure of purloining words from the philosophers: “Category”
from Aristotle and Kant, “Functor” from Carnap (Logis-
che Syntax der Sprache) and “natural transformation” from
then informal parlane.”
Saunders MacLane in “Categories for the working mathemati-
cian”.

This appendix is a brief but complete survey on categories: functors, transfor-
mations of functors, adjoint functors and monads (a word borrowed from Leibniz).
In the last part, we introduce the notions of model categories, homotopy categories
and derived functors. The purpose is essentially to fix the terminology and nota-
tions used in this book. For more details we refer to the books of Saunders McLane
[ML98] and Daniel Quillen [Qui67].

B.1. Categories and functors

The idea of the notion of category is to put emphasize on morphisms instead
of objects themselves. Category theory is the “algebra of algebra”; it provides a
general common framework for many theories.

B.1.1. Categories. A category C is made up of objects and, for any two
objects C and C ′ we are given a set of morphisms, also called maps or arrows,
denoted either by HomC(C,C ′), Hom(C,C ′) or C(C,C ′). For any morphism f :
C → C ′, the object C is called the source of f and the object C ′ is called the
target of f . There is a notion of composition of two morphisms f : C → C ′ and
g : C ′ → C ′′ provided that the target of f is the same as the source of g. The
composite is denoted as usual g ◦ f : C → C ′′ or gf if there is no ambiguity.
Composition of morphisms is supposed to be associative. To any object C, there
exists an identity morphism denoted either by IdC , or Id. Composition with the
identity does not change the morphism. By reverting the orientation of all arrows,
one defines the opposite category denoted Cop.

Left cancelable morphisms, i.e. fg = fg′ implies g = g′, are called monomor-
phisms and denoted by �. Right cancelable morphisms are called epimorphisms
and denoted by �. Invertible morphisms are called isomorphisms and denoted by
'−→ or ∼= or simply by = when there is no ambiguity.

463
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B.1.2. Functors. Given two categories C and D there is a notion of functor
F : C → D. It consists in the following data. First to any element C of C, it
associates an element F (C) in D. Then to any morphism f : C → C ′ in C, we are
given a morphism F (f) : F (C)→ F (C ′) in D such that F (g ◦f) = F (g)◦F (f) and
F (IdC) = IdF (C).

A subcategory C ⊂ D is a category made up of a subclass of objets of D,
and for any pair X,Y of objects of C, the set of morphisms is a subset of that
of D: HomC(X,Y ) ⊂ HomD(X,Y ). A subcategory C ⊂ D is called full when
HomC(X,Y ) = HomD(X,Y ), for any pair X,Y of objects of C.

A functor F : C → D is faithful if the set-theoretic maps HomC(X,Y ) �
HomD(F (X), F (Y )) are injective, for any pair X,Y of objects of C. It is the case
for a subcategory of a category. A functor F : C→ D is full if the set-theoretic maps
HomC(X,Y ) � HomD(F (X), F (Y )) are surjective, for any pair X,Y of objects of
C. It is the case for full subcategories.

B.1.3. First examples. The category of sets, with set-theoretic maps, is de-
noted by Set. The category of vector spaces over the field K, with linear morphisms,
is denoted by VectK or, more often, simply by Vect. One defines the forgetful func-
tor, U : Vect→ Set, by associating to a vector space its underlying set. The image
of a linear morphism under this functor is simply the underlying set-theoretic map.

In the other way round, to any set X one can associate a vector space K[X]
which is spanned by the elements of X. Any set-map f : X → Y can be uniquely
extended linearly to define a vector space morphism f : K[X] → K[Y ], whence a
functor F : Set→ Vect.

B.1.4. Natural transformation. If F and G are two functors C→ D, there
is a notion of natural transformation of functors α : F → G from F to G as follows.
For any object C of C, we are given a morphism α(C) : F (C) → G(C) in D. It is
natural in the following way: for any morphism f : C → C ′ in C, it is required that
the following diagram

F (C)
F (f) //

α(C)

��

F (C ′)

α(C′)

��
G(C)

G(f) // G(C ′) .

is commutative. Notice that one can compose natural transformations of functors.
When α(C) is an isomorphism for any C of C, α is called a natural isomorphism
and denoted by α : F ∼= G. When such a natural isomorphism exists, one says that
the two functors F and G are naturally isomorphic.

B.1.5. Equivalence of categories. A functor F : C→ D is called an equiva-
lence of categories if there exists a functor G : D→ C such that the two composites
GF ∼= IdC and FG ∼= IdD are naturally isomorphic to the identity functors. There
exists a more strict notion of isomorphism of categories, when a functor F : C→ D
admits a strict inverse. Such a situation nearly never appears in practice since a
functor changes the objects and it is not possible to get them back. However, it is
sometimes possible to recover an object in the same isomorphism class, whence an
equivalence of categories as the following proposition shows. A functor F : C→ D is
called essential surjective if for any D in D , there is a C in C such that D ∼= F (C).



B.1. CATEGORIES AND FUNCTORS 465

Proposition B.1.6. A functor F : C → D is an equivalence of categories if and
only if F is essential surjective, full and faithful.

For example, the category of vector spaces with a given basis is equivalent to
Vect.

A skeletal subcategory C of a category D is made up of one and only one object
per isomorphism class and full sets of morphisms. In this case, the inclusion functor
C→ D is an equivalence of categories.

B.1.7. Limits and colimits. A object ∅ of a category C is called an initial
object if there exists one and only one map ∅ → X associated to any object X of
C. An object which satisfies the dual property is called a terminal object. In the
category of sets, the initial object is given by the empty set and every set with one
element {∗} is a terminal object.

The data of a diagram of type D in a category C is equivalent to the data of a
functor from a category D, made up of the underlying graph, to the category C:

Z // X Yoo ⇐⇒ (F : • // • •oo → C) .

A cone of F is an element C in C together with maps gx : C → F (x) in C, for any
object x in D, such that F (f) ◦ gx = gy, for any map f : x→ y in D. A morphism
of cones is a map h : C → C ′ in C which makes the following diagram commutative

C

gy

��

gx



h

��
C ′

g′y

!!DDDDDDDD
g′x

||zzzzzzzz

F (x)
F (f)

// F (y)

for any f : x→ y in D. This forms the category cone(F ) of cones of the functor F .
Dually, by reversing the arrows g, one defines the category cocone(F ) of cocones of
the functor F .

A limit limF of the diagram (respectively functor) F is a terminal object in the
category coneF of cones over F .

C

��

$$

!!D
D

D
D

limF

��

// Y

��
X // Z

Dually, a colimit colimF of the diagram (respectively functor) F is an initial object
in the category coconeF of cocones over F . The following table gives the main
examples of limits and colimits.
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type of diagram limit colimit
• terminal object initial object
• • products coproducts
• //// • equalizers coequalizers

• // • •oo pullback (fiber product)
• •oo // • pushout (fibered sum)

B.2. Adjoint functors, free objects

The notion of adjunction functors allows one to compare two categories in both
directions.

B.2.1. Adjoint functors. Let L : C → D and R : D → C be a pair of
functors.

L : C / D : Ro

The functor L is said to be a left adjoint to R, and R a right adjoint to L if, for
any objects C in C and D in D, there is a natural bijection

HomD(L(C), D) ∼= HomC(C,R(D)).

The word “natural” means that such a bijection is required to be compatible with
the morphisms of each category.

Let C be an object of C. Taking D = L(C), there is a particular element in
HomD(L(C), L(C)) which is IdL(C). Its image under the adjunction bijection gives
a morphism υ(C) : C → R(L(C)) in C. The resulting transformation of functors

υ : IdC → RL

is called the unit of the adjunction.
Dually, let D be an object of D. Taking C = R(D), there is a particular element

in HomC(R(D), R(D)) which is IdR(D). Its image under the adjunction bijection
gives a morphism ε(D) : L(R(D))→ D. The resulting transformation of functors

ε : LR→ IdD

is called the counit of the adjunction.
Conversely, the adjunction bijection is given by the unit as follows(

f : L(C)→ D
) � //

(
R(f) ◦ υ(C) : C → R(D)

)
and by the counit as follows(

ε(D) ◦ L(g) : L(C)→ D
) (

g : C → R(D)
)
.�oo

Proposition B.2.2.

• When L : C
/
D : Ro form a pair of adjoint functors, the unit υ

and the counit ε of the adjunction satisfy the following relations

( L
L◦υ // L(RL) = (LR)L

ε◦L // L ) = IdL

( R
υ◦R // RL(R) = R(LR)

R◦ε // R ) = IdR

• In the other way round, let L : C → D and R : D → C be a pair of
functors. If there exist two natural transformations υ : IdC → RL and
ε : LR → IdD, whose above composites are equal to the identity, then
(L,R) form a pair of adjoint functors.
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Examples. The two aforementioned functors

F : Set / Vect : Uo

are adjoint.
In the category of sets the functors −× Y and Hom(Y,−) are adjoint to each

other since there is a natural bijection

Hom(X × Y,Z) ∼= Hom(X,Hom(Y,Z))

for any sets X,Y, Z.
Similarly, in the category of vector spaces the functors − ⊗ V and Hom(V,−)

are adjoint to each other since there is a natural bijection

Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W ))

for any vector spaces U, V,W . Of course, here, Hom(V,W ) is equipped with its
vector space structure.

Notice that the unit and the counit of an adjunction provide good candidates
for natural isomorphisms to prove that L and R form an equivalence of categories.

B.2.3. Free objects. Let U : C → D be a functor such that the objects of
D are the same as the objects of C except that we do not take into account some
of the data. Such a functor is often called a forgetful functor. We have already
seen an example at B.1. Another one is when the category C is the category of
unital associative algebras, D is the category of vector spaces and U assigns to the
associative algebra A its underlying vector space. So, U consists in forgetting the
algebra structure. Most of the time the image of an object by a forgetful functor is
denoted by the same symbol (i.e. C instead of U(C)).

Let F : D → C be a functor left adjoint to U . The image of an object D of D
by F is called a free object. Observe that this notion of freeness is relative to the
structure which has been forgotten. In the first example, when U : VectK → Set is
the functor which assigns to a vector space its underlying set, we forget the linear
space structure. Hence, its left adjoint X 7→ K[X] assigns to a set X, the free vector
space on X. In the other example, the left adjoint is the tensor algebra functor.

A composite of left adjoint functors is still left adjoint. So the left adjoint of the
functor As-alg → Set, which assigns to a unital associative algebra its underlying
set, is X 7→ T (K[X]).

The free object F(V ) (in D) over the object V of C is characterized by the
following property. For any object A in C and any morphism f : V → U(A) in C,

there exists a unique morphism f̃ : F(V ) → A in D, which renders the following
diagram commutative (in C):

V
υ(V ) //

f $$JJJJJJJJJJ U(F(V ))

U(f̃)

��
U(A)

As said before, when U is a forgetful functor, we usually write A instead of U(A)
and also g instead of U(g) for morphisms. So the commutative diagram is usually
written:
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V
i //

f
""DDDDDDDDD F(V )

f̃

��
A

Under this property, F(V ) is unique up to a unique isomorphism.
Observe that F stands for “Free” and U stands for “Underlying”.

B.2.4. Representability. A functor F : C → Set is said to be representable
if it is isomorphic to a functor of the form HomC(X,−), for an object X in C. This
means that there are natural bijections F (C) ∼= HomC(X,C).

Similarly a contravariant functor, i.e. a functor from the opposite category, is
said to be co-representable if it is isomorphic to a functor of the form HomC(−, Y ),
for an object Y in C.

The celebrated Yoneda Lemma says the following.

Lemma B.2.5. If F : C→ Set is a functor and C is an object in C, then there is
a bijection

Nat(HomC(C,−), F ) ∼= F (C)

which sends each natural transformation α : HomC(C,−)→ F to α(C)(IdC).

B.3. Monoidal category

The notion of monoidal category [Bén63, ML63] is the natural extension of
the notion of cartesian product of sets and of tensor product of vector spaces.

B.3.1. Definition of a monoidal category. A monoidal category is a sex-
tuple (C,�, α, I, λ, ρ) where

• C is a category;
• � : C× C→ C is a bifunctor, i.e. a functor from the category defined by

the cartesian product of objects and morphisms;
• α is a natural isomorphism

α(A,B,C) : (A�B)�C
'−→ A�(B�C),

satisfying the following pentagon relation

((A�B)�C)�D

α(A�B,C,D)

""FFFFFFFFFFFFFFFFFFFFF
α(A,B,C)�D

uukkkkkkkkkkkkkk

((A�(B�C))�D

α(A,B�C,D)

��

(A�B)�(C�D)

α(A,B,C�D)

||xxxxxxxxxxxxxxxxxxxxx

A�((B�C)�D)

A�α(B,C,D) ))SSSSSSSSSSSSSS

A�(B�(C�D))
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where notations like α(A,B,C)�D stand for α(A,B,C)�IdD;
• I is an object of C;

• λ is a natural isomorphism λ(A) : I�A
'−→ A;

• ρ is a natural isomorphism ρ(A) : A�I
'−→ A, such that

λ(I) = ρ(I) : I�I→ I and such that

(A�I)�B
α(A,I,B) //

λ(A)�B %%LLLLLLLLLL
A�(I�B)

A�ρ(B)yyrrrrrrrrrr

A�B.

A monoidal category is called strict if the three natural isomorphisms α, λ and
ρ are identities.

Examples. The category (EndoFunctC, ◦, IdC) of endofunctors of a category C
together with the composite of functors is a strict monoidal category.

The category of sets (Set,×, {∗}) and the category of vector spaces (Vect,⊗,K)
are strong but not strict monoidal categories.

B.3.2. Monoid. A monoid (M,γ, η) in a monoidal category (C,�, α, I, λ, ρ)
is an object M of C endowed with

• a morphism called multiplication γ : M�M →M , which is associative

(M�M)�M

γ�M

��

α(M,M,M) // M�(M�M)

M � γ

��
M�M

γ

&&NNNNNNNNNNNNNNNN M�M

γ

xxpppppppppppppppp

M

• and a morphism called unit η : I→M such that

I�M
η�M //

λ(M)
%%LLLLLLLLLLLL M�M

γ

��

M�I
M�ηoo

ρ(M)
yyrrrrrrrrrrrr

M.

Examples. A monoid in the monoidal category (Set,×, {∗}) is an ordinary
monoid or semigroup. A monoid in the monoidal category (Vect,⊗,K) is a unital
associative algebra. A monoid in the monoidal category of (EndoFunctC, ◦, IdC) is
called a monad, see Section B.4.

Reversing all the arrows, ∆ : C → C�C and ε : C → I for instance, one gets the
notion of a comonoid (C,∆, ε). A (left) module (N, ζ) over a monoid (M,γ, η), is an
object of C equipped with an action map ζ : M�N → N satisfying compatibility
relations with the multiplication γ and the unit η.
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B.3.3. Monoidal functor. A (lax) monoidal functor between two monoidal
categories (C,�, α, I, λ, ρ) and (D,�, β, J, ν, σ) is a functor F : C → D endowed
with

• a natural transformation

φ(A,B) : F (A)� F (B)→ F (A�B) ,

• a morphism ψ : J→ F (I) in D,

such that the following properties hold:

• Associativity compatibility:

(F (A)� F (B))� F (C)
β(F (A),F (B),F (C)) //

φ(A,B)�F (C)

��

F (A)� (F (B)� F (C))

F (A)�φ(B,C)

��
F (A�B)� F (C)

φ(A�B,C)

��

F (A)� F (B�C)

φ(A,B�C)

��
F ((A�B)�C)

F (α(A,B,C)) // F (A�(B�C))

• Unit compatibility:

J� F (A)
ψ�F (A) //

ν(F (A))

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY F (I)� F (A)
φ(I,A) // F (I�A)

F (λ(A))

��
F (A)

F (A)� J
F (A)�ψ //

σ(F (A))

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY F (A)� F (I)
φ(A,I) // F (A�I)

F (ρ(A))

��
F (A)

The preceding definition is motivated by the following proposition.

Proposition B.3.4. The image F (M) of a monoid (M,γ, η) of C under a lax
monoidal functor F : C→ D is a monoid of D with product

F (M)� F (M)
φ(M,M)−−−−−→ F (M�M)

F (γ)−−−→ F (M)

and unit

J
ψ−→ F (I)

F (η)−−−→ F (M) .

A (lax) monoidal functor is called strong if φ is a natural isomorphism and ψ is
an isomorphism. It is called a strict monoidal functor if they are identities. Notice
that, for a morphism between two monoidal categories, being monoidal amounts to
an extra structure, whereas being strict is an extra property.
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Example. The forgetful functor (Vect,⊗,K) → (Set,×, {∗}) is a lax, but not
strong, monoidal functor.

Two monoidal categories are monoidally equivalent if they admit a pair of
strong monoidal functors which provide an equivalence of categories.

B.3.5. Coherence Theorem. In practice, any theorem on monoidal cate-
gories can be proven by, first, proving it for strict monoidal categories and then, by
invoking the following proposition [ML98, Chapter VII].

Proposition B.3.6 (Strictification). Every monoidal category is monoidally equiv-
alent to a strict monoidal category.

This proposition is essentially equivalent to the next theorem.

Theorem B.3.7 (Mac Lane’s Coherence Theorem). In a monoidal category (C,�, α, I, λ, ρ),
every diagram whose vertices come from words in � and I and whose edges come
from the natural isomorphisms α, λ and ρ commute.

This coherence theorem claims that it is enough to check the pentagon and
triangle commutative diagram in the definition of a monoidal category to get that
“any” diagram commutes.

B.4. Monads

B.4.1. Definition of a monad. A monad (T , γ, η) in a category C consists
of a functor T : C→ C and two natural transformations

γ : T ◦ T → T , and η : IdC → T ,

which make the following diagrams commute

T ◦ T ◦ T
γ◦Id //

Id◦γ

��

T ◦ T

γ

��
T ◦ T

γ // T

IdC ◦ T
η◦Id //

LLLLLLLLLLLLL

LLLLLLLLLLLLL T ◦ T

γ

��

T ◦ IdC
Id◦ηoo

rrrrrrrrrrrrr

rrrrrrrrrrrrr

T

So a monad is nothing but a monoid in the strict monoidal category of endo-
functors (EndoFunctC, ◦, IdC). Similarly a comonad is a comonoid in the monoidal
category of endofunctors.

Example. When (C,�, I) is a monoidal category, any monoid (M,γ, η) gives
rise to the monad: TM (C) := M�C.

Proposition B.4.2. Any adjunction (L,R, υ, ε) gives rise to a monad structure
on T := RL by γ := RεL, η := υ and dually to a comonad structure on T c := LR
by ∆ := LυR, ε := ε. Conversely, every monad and comonad arises in that way.
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B.4.3. Algebra over a monad. An algebra over the monad (T , γ, η) is an
object A of C equipped with a morphism γA : T (A)→ A which makes the following
diagrams commute

T ◦ T (A)
γ(A) //

T (γA)

��

T (A)

γA

��
T (A)

γA // A

IdC(A)
η(A) //

KKKKKKKKKKKKK

KKKKKKKKKKKKK
T (A)

γA

��
A

There is an obvious notion of morphism of T -algebras. It can be shown, cf. loc.cit.,
that any monad T is completely determined by its category of T -algebras together
with the forgetful functor to the underlying category C.

Example. Pursuing with the previous example of the monad TM associated
to a monoid M , an algebra over TM is a left module over M .

B.4.4. Module over a monad. There is also a notion of left T -module. It is
an endofunctorM : C→ C equipped with a natural transformation γM : T ◦M→
M such that the following diagrams are commutative

T ◦ T ◦M
T (γM) //

γ(M)

��

T ◦M

γM

��
T ◦M

γM //M

IdC ◦M
η(M) //

MMMMMMMMMMMMM

MMMMMMMMMMMMM T ◦M

γM

��
M

One recovers the aforementionned definition of an algebra over a monad by
considering the constant functor, which sends every element of C to the object A.

B.5. Categories over finite sets

B.5.1. Category of finite sets. Let Fin be the category of finite sets with any
set-maps. We denote by Bij its subcategory made up of finite sets and bijections. Its
skeleton is the category denoted Γ which has only one object for any non-negative
integer n, namely the set [n] := {0, 1, . . . , n}. So a morphism f : [n] → [m] is
completely determined by the integers f(i) ∈ {0, 1, . . . ,m} for i = 0, . . . , n. Since
Γ is subcategory of Fin any functor Fin → C determines a functor Γ → C by
restriction. In the other way round, if the category C admits finite products, then
any functor M : Γ→ C can be extended to Fin by the following trick:

M(X) :=
( ∏

Bij([n],X)

M([n])
)
/ ∼

where |X| = n and the equivalence relation ∼ is as follows. Let µ ∈M([n]) and let
f, g ∈ Bij([n], X). Then we define

(f ;µ) ∼ (g; g−1
• f•(µ)) .
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B.5.2. Simplicial category. Putting on [n] := {0, 1, . . . , n} the usual total
order 0 < 1 < · · · < n, we consider the morphims f : [n] → [m] in Γ which
are weakly increasing, i.e. f(i) ≤ f(j) for any i < j. Since they are stable under
composition, they form a subcategory denoted ∆ and called the simplicial category.

∆� Γ.

B.5.3. Category of noncommutative finite sets. We now introduce the
category of noncommutative finite sets, denoted ∆S, as follows. It has the same
objects as Γ, but the morphisms are set-maps enriched with the following data:
each fiber is equipped with a total order. It means that for f : [n] → [m] and any
i ∈ [m] the set f−1(i) is totally ordered. It is clear that, for a composite g ◦ f of
such maps, the fibers (g ◦ f)−1(i) are also totally ordered. So we get a well-defined
category. For instance there are two elements in Hom∆S([1], [0]). There is only one
set-map, which sends 0 and 1 to 0. The unique fiber is {0, 1} and there are two
different total orders: 0 < 1 and 1 < 0. Each one of them gives a map in ∆S.

Forgetting the information about the order of the fibers gives a full functor

∆S� Γ.

Let us denote by S the groupoid with the same objects as Γ and with isomor-
phisms Aut([n]) = Sn+1. There is an obvious inclusion S � ∆S since any fiber
reduced to one element is totally ordered.

There is also an inclusion ∆� ∆S since we can identify the morphisms of ∆
with the morphisms of ∆S such that the total order of the fiber coincides with the
total order induced by the natural total order 0 < 1 < . . . < n.

Proposition B.5.4 ([FL91, Lod98]). Any morphism f : [n]→ [m] in the category
of noncommutative finite sets ∆S can be written uniquely as the composite f = ϕ◦σ:

[n]
σ−→ [n]

ϕ−→ [m]

where σ ∈ Aut([n]) = Sn+1 and ϕ ∈ Hom∆([n], [m]).

B.5.5. Comments. From the above proposition any composite ω ◦ ϕ where
ω ∈ HomS([m], [m]) and ϕ ∈ Hom∆([n], [m]) can be written

ω ◦ ϕ = ω∗(ϕ) ◦ ϕ∗(ω)

where ω∗(ϕ) ∈ Hom∆([n], [m]) and ϕ∗(ω) ∈ HomS([n], [n]). The family of maps

Hom∆([n], [m])× Sm+1 → Sn+1 ×Hom∆([n], [m]), (ϕ, ω) 7→ (ϕ∗(ω), ω∗(ϕ))

is called a distributive law . The pair (∆,S) with its distributive law is sometimes
called a matching pair of categories. The category ∆S is sometimes called a bicrossed
product of the categories ∆ and S.

The cyclic permutation (0 1 . . . n) ∈ Sn+1 generates the cyclic group Cn+1 of
order n+ 1. If the permutation ω is cyclic, then so is ϕ∗(ω):

ω ∈ Cm+1 ⊂ Sm+1 → ϕ∗(ω) ∈ Cn+1 ⊂ Sn+1.

As a consequence, there is a well-defined subcategory of ∆S which is made up of
the morphisms ϕ ◦ σ where σ is a cyclic permutation. It is denoted by ∆C and
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called the cyclic category, or Connes’ category [Con85]:

Γ
' // Fin

∆ // // ∆S

OOOO

Soooo ' // Bij

∆C

OO

OO

The column ∆C � ∆S � Γ not being an exact sequence !

B.5.6. Categories of pointed sets. The category of pointed finite sets, de-
noted Fin′, is such that an object is a finite set together with the choice of one of
its elements called the base-point. The morphisms are the set-maps which send the
base-point of the source to the base-point of the target. Let us choose the point 0 as
the base-point of [n]. The skeleton of Fin′ is denoted by Γ′. In each of the categories
considered in the preceding section, we consider the subcategory made up of mor-
phisms respecting the base-points. This subcategory is denoted by decorating the
symbol by −′. It is immediate to verify that HomS′([n], [n]) = Aut(∆S)′([n], [n]) =
Sn is viewed as the automorphism group of {1, . . . , , n}. On the other hand we can
check that (∆C)′ = ∆op (the opposite category of ∆):

∆op = (∆C)′� (∆S)′ � Γ′.

B.6. Model categories

A homotopical category is usually defined as a category of fractions, à la
Gabriel-Zisman, where one localizes with respect to some family morphisms. An-
other way of doing, proposed by Dan Quillen, is to distinguish two sub-families
of morphisms: the fibrations and the cofibrations, required to satisfy some axioms.
This extra data models the homotopy category. Moreover model category structures
allow one to do homotopy theory in many other categories than that of topological
space.

The papers [GS07, DS95] provides two concise presentations for this topic.
For more details, we refer the reader to the original lecture note [Qui67] and to
the book [Hov99].

B.6.1. Localization of categories. One localizes categories in the same way
as rings: by adding to a category formal inverse morphisms for some class of mor-
phisms to make them become isomorphisms [GZ67].

Let C be a category with a distinguished subclass W of morphisms. A localized
category of C at W is a category L, endowed with a functor ρ : C→ L such that

(1) For any f ∈W , its image ρ(f) is an isomorphism in L.
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(2) For any functor F : C→ D, which sends elements of W to isomorphisms

in D, there exists a unique functor F̃ : L→ D, which factors F through ρ

C
ρ //

F   @@@@@@@@ L

∃! F̃
���
�
�

D.

When such a category exists, Property (2) implies that it is unique up to a
unique isomorphism. We now give a realization of it, denoted by C[W−1].

� Objects: Objects of C,
� Morphisms: To any pair (A,B) of objects of C, we consider the chains

Ch(A,B) of maps either from the morphisms of C or from the formal
inverse of elements of W between A and B, like

A // • // • // •
∼
hh // • · · · • // • // •

∼
hh // •

∼
ii // B .

We define the set (when it is actually a set) of morphisms HomC[W−1](A,B)
by the set Ch(A,B)/ ≈ of chains quotiented by the following relations

C
f // D

g // E ≈ C
g◦f // E ,

C
∼
f
// D // C

f

∼

`` ≈ IdC ,

D // C
f

∼

``
∼
f
// D ≈ IdD .

Because of the form of this definition, it is difficult to work in practice with
such a category. The following results give a method to compare various homotopy
categories.

Let C and D be two categories with, respectively, two subclasses WC and WD.
Let L : C 
 D : R be a pair of adjoint functors, which preserve the two classes
WC and WD. This means that the image under L of any map of WC lives in WD

and dually for R. In this case, this adjunction induces an adjunction

L̃ : C[W−1
C ] / D[W−1

D ] : R̃o

Proposition B.6.2. When the unit and the counit of an adjunction L : C 
 D : R
are defined by morphisms in the localizing classes WC and WD or by isomorphisms,
the induced adjunction is an equivalence between the localized categories C[W−1

C ]

and D[W−1
D ].

B.6.3. Homotopy category. We have no choices: when W is the class of
quasi-isomorphisms of chain complexes or of dg algebras, the localized category
Ho(C) := C[W−1], called the homotopy category, or derived category for chain
complexes, is the good framework for homological algebra. The homotopy category
is the universal category for which quasi-isomorphisms become isomorphisms. For
instance, such categories are the source and target categories for derived functors,
see Section B.7.1.
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B.6.4. Definition of model category. Let C be a category with a distin-
guished class W of morphisms called the weak equivalences, denoted by

∼→. The
category C is endowed with a model category structure if it admits two other distin-
guished classes of morphisms: the fibrations, denoted by �, and the cofibrations,
denoted by �, which satisfy the following axioms.

[MC 1] (Limits-Colimits) The category C admits finite limits and finite colimits.
[MC 2] (2 out of 3) For any pair f, g of composable morphisms, if two of the three

morphisms f , g, gf are weak equivalences, then so is the third one.
[MC 3] (Retracts) These three classes of morphisms are stable under retracts.
[MC 4] (Lifting property) For any commutative diagram (solid arrows) of the form

A //
��

��

B

����

X //

??~
~

~
~

Y,

there exists a map X → B if either the cofibration A
∼
� X is a weak-

equivalence or if the fibration B
∼
� Y is a weak-equivalence.

[MC 5] (Factorization) Any morphism f : A→ B factors into two ways:

f = A
∼
� X � B and f = A� Y

∼
� B

Notice that the class of cofibrations (respectively fibrations) is completely char-
acterized by the class of fibrations (respectively cofibrations), which are weak equiv-
alences, under the lifting property [MC 4].

Examples. The toy model for this notion is the category of nonnegatively
graded chain complexes. It is endowed with a model category structure where

� the weak equivalences are the quasi-isomorphisms,
� the fibrations are the degree-wise epimorphisms, Cn � Dn, for n ≥ 1,
� the cofibrations are the degree-wise monomorphisms, Cn � Dn, with

projective cokernel, for n ≥ 0.

The categories of topological spaces and simplicial sets are two other important
examples.

B.6.5. Fibrant and cofibrant objects. An object C of a model category C
is called cofibrant if the map from the initial object 0� C is a cofibration. Dually
an object F is called fibrant if the map to the terminal object F � ∗ is a fibration.
A cofibrant resolution, or cofibrant replacement, of an object A of C is a cofibrant
object C

∼→ A weakly equivalent to A. The factorization axiom [MC 5] ensures that
such a resolution always exists. The lifting property [MC 4] shows that cofibrant
replacements are in some sense unique.

Dually, one defines the notion of fibrant resolution, or fibrant replacement, A
∼→

F .
In the aforementioned example of nonnegatively graded chain complexes, ev-

ery object is fibrant. A chain complex is cofibrant if and only if it is projective.
Therefore, a cofibrant resolution is nothing but a projective resolution.
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B.6.6. Main theorem. We consider the full subcategory Ccf of fibrant and
cofibrant objects. On the sets HomCcf

(A,B) of morphisms of this category, one
defines an equivalence relation ∼ called homotopy equivalence. Since it is well
behaved with respect to composition of maps, it induces a quotient category Ccf/ ∼.

Theorem B.6.7 ([Qui67]). The following two categories are equivalent

Ho(C) = C[W−1] ∼= Ccf/ ∼ .

In the example of chain complexes, this notion of homotopy equivalence is the
classical notion of homotopy equivalence between morphisms of chain complexes.
This theorem asserts that the homotopy category (or derived category) is equivalent
to the category of projective complexes with the homotopy classes of morphisms.

B.6.8. Model category structure on operads. The category of dg operads
can be endowed with a model category structure [Hin97], which allows one to
perform homotopical algebra at that level.

Proposition B.6.9. Over a field K of characteristic 0, the category of dg operads
admits a model category structure where

� the weak equivalences are the arity-wise quasi-isomorphisms,
� the fibrations are the arity-wise and degree-wise epimorphisms,
� the cofibrations are characterized by the lifting property.

When the characteristic of the ground field is not equal to 0, the result still holds
but one has to restrict one-self to reduced operads P(0) = 0 [Hin97]. Otherwise,
one gets a semi -model category structure [Spi01], which a slightly weaker notion.

Under some assumptions, the category of operads over a symmetric monoidal
model category admits a model category structure where the weak equivalences
(respectively the fibrations) are the arity-wise weak equivalences (respectively the
fibrations) [BM03a, Fre09b]. This applies to the categories of topological operads
and simplicial operads, for instance.

Proposition B.6.10. In the category of nonnegatively graded dg operads with the
model category structure of Proposition B.6.9, any quasi-free operad (T (X), d) is
cofibrant.

A quasi-free operad (T (X), d) is called triangulated after D. Sullivan, when its
space of generators X is endowed with a exhaustive filtration F0X = {0} ⊂ F1X ⊂
· · · ⊂ FnX ⊂ · · · satisfying d(FnX) ⊂ T (Fn−1). Over unbounded chain complexes,
triangulated quasi-free operads are cofibrant.

B.6.11. Model category structure on algebras over an operad. The
category of dg algebras over an operad can also be endowed with a model category
structure [Hin97].

Proposition B.6.12. Let K be a field of characteristic 0 and let P be a dg operad.
The category of dg P-algebras, admits a model category structure where

� the weak equivalences are the quasi-isomorphisms,
� the fibrations are the degree-wise epimorphisms,
� the cofibrations are characterized by the lifting property.
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In general, when the characteristic of the ground field is not equal to 0, one has
to require that the underlying K[Sn]-modules P(n) of the operad P are projective,
for any n. In this case, one says that the dg S-module P is S-cofibrant, because
it is cofibrant in the model category of dg S-modules. When the dg operad P is
S-cofibrant, the category of dg P-algebras admits a semi-model category structure,
with the same classes of maps as above [Spi01, BM03a, Fre09b].

Proposition B.6.13. In the category of nonnegatively graded dg P-algebras with
the model category structure of Proposition B.6.12, any quasi-free P-algebra (P(X), d)
is cofibrant.

As for operads, a quasi-free P-algebra (P(X), d) is called triangulated, when
its space of generators X is endowed with an exhaustive filtration F0X = {0} ⊂
F1X ⊂ · · · ⊂ FnX ⊂ · · · satisfying d(FnX) ⊂ P(Fn−1). Over unbounded chain
complexes, triangulated quasi-free P-algebras are cofibrant.

In the literature, one usually defines the notion of homotopy P-algebra by a
category of algebras over a cofibrant replacement Q ∼−→ P of the operad P. It is
well defined in the following sense.

Lemma B.6.14.

� Any cofibrant operad is S-cofibrant.
� Let P ∼−→ P ′ be two weakly equivalent S-cofibrant operads. The homotopy

categories of dg P-algebras and dg P ′-algebras are equivalent.

Ho(dg P-alg) ∼= Ho(dg P ′-alg)

This lemma shows that the homotopy category of homotopy P-algebras is in-
dependent of the chosen cofibrant resolution. In this book, we provide canonical
ones, the ones given by the Koszul duality theory. Since the 70’s, it is known
that the categories of algebras over cofibrant (topological) operads have nice ho-
motopy invariance properties [BV73], the homotopy transfer theorem along weak
equivalences for instance.

B.7. Derived functors and homology theories

Cartan-Eilenberg [CE56] and Grothendieck [Gro57] gave a method to define
(co)homology theories in abelian categories by using the notion of derived functor.
This latter notion was generalized by Quillen beyond the additive case in the con-
text of model categories. It provides a way to show that homotopy categories are
equivalent.

B.7.1. Derived functors. Recall that an abelian category is a category whose
Hom-sets are abelian groups and which satisfies some assumptions, see Chapter VIII
of [ML98]. In an abelian category, one can define the notion of projective (resp.
injective) objects and (resp. injective) resolutions, as usual.

Let F : C → D be an additive functor between two abelian categories. If this
functor does not preserve short exact sequences but only the right part of them, one
would like to measure the default from being left exact. To do so, one defines the
notion of (left) derived functor, denoted LF . If the abelian category C has enough

projective objects, then every object A admits a projective resolution P•
∼−→ A,
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unique up to homotopy equivalences. The left derived functor of F at A is defined
by the homology groups of F (P•):

L•F (A) := H•(F (P•)).

Its definition does not depend on the chosen projective resolution chosen. Hence,
it is well defined. More generally, the derived functor LF is defined to be a functor
between the derived categories of chain complexes of C and of D respectively.

There are two main advantages to define homology theories like this. In the
first place, this conceptual approach permits us to prove general results, valid for
any homological theory defined via derived functors. Then, it makes it easier to
compute homology groups; for a particular object A, there are sometimes ad hoc
small projective resolutions of A. Therefore, the left derived functor is computable
with this resolution. For more details, we refer the reader to Chapter III of [GM03].

B.7.2. Tor and Ext functors. We illustrate these ideas on the following
example. Let f : R → S be a morphism between two rings. We consider the
categories of left modules over R and S respectively, that we denoted by R-Mod
and S-Mod. By pulling back along f , an S-module M becomes an R-module:
r.m := f(r).m, for r ∈ R and m ∈ M . We denote this functor by f∗ : S-Mod →
R-Mod. The opposite functor f∗ : R-Mod → S-Mod is the extension of scalars
given by the relative tensor product f!(N) := S ⊗R N . These two functors are
additive. Since they form a pair of adjoint functors

f! : R-Mod
 S-Mod : f∗ ,

f∗ is right exact and f∗ is left exact. Therefore, we can consider the left derived
functor of f∗ denoted L(S ⊗R −). More generally, one can derive the functors
M ⊗R − and −⊗R N on the left. A classical result states that they give the same
homology, that is L(M ⊗R −)(N) ∼= L(− ⊗R N)(M). Therefore, this defines a

bifunctor called the Tor functor denoted by TorR• (M,N) or M ⊗L
R N . Under this

notation, we have

Lf∗(N) = TorR• (S,N) = S ⊗L
R N .

When R is an augmented algebra over a ring K, with augmentation denoted
by ε : R→ K, the functor ε!(M) = K⊗RM is equal to the functor that gives the
indecomposable elements of M for the action of R: Indec(M) := M/R.M = ε!(M).
In order to study the properties of the action of R on M , we derive this functor on
the left. We consider the left derived functor

L Indec(M) = Lε∗(M) = K⊗L
RM = TorR• (K,M).

The Hochschild homology of an associative algebra A with coefficients in a mod-
ule M (not a bimodule) is defined in this way, i.e. via TorA• (K,M). The Chevalley-
Eilenberg homology of a Lie algebra g with coefficients in a module M is also defined

in this way, i.e. via TorU(g)
• (K,M) where U(g) is the universal enveloping algebra

of g.
Dually, replacingM⊗RN by HomR(M,N), one defines the Ext functor Ext•R(M,N)

as the right derived functor of the Hom functor.
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B.7.3. Total derived functors. Quillen settled in [Qui67] a way to derive
functors in a non-additive setting by using the notion of model categories as follows.

Let C and D be two model categories. A Quillen functor is a pair of adjoint
functors

F : C / D : Go

such that F preserves cofibrations and G preserves fibrations. (The functor F is the
left adjoint). Notice that this condition is equivalent to F preserving cofibrations
and acyclic cofibrations; it is also equivalent to G preserving fibrations and acyclic
fibrations.

In this case, one extends the aforementioned definition of derived functor in the
same way. The image of any object A in C under the total left derived functor LF
is given by the image F (C), where C is a cofibrant replacement of A, C

∼−→ A. One
proceeds dually, with fibrant replacements, to define the total right derived functor
RG. These two total derived functors form a pair of adjoint functors between the
associated homotopy categories

LF : Ho(C) / Ho(D) : RGo .

B.7.4. Equivalence of homotopy categories. One of the main use of the
notion of total derived functors is to provide equivalences between the homotopy
categories. This is heavily used by Quillen in [Qui69], where he showed that the
homotopy theories of various categories are the same.

Proposition B.7.5. Let

F : C / D : Go

be a Quillen functor. The induced adjunction

LF : Ho(C) / Ho(D) : RGo

is an equivalence of categories if and only if, for any cofibrant object X of C and
for any fibrant object Y of D, a map X

∼−→ G(Y ) is a weak equivalence in C if and

only if the adjoint map F (X)
∼−→ Y is a weak equivalence in D.

In this case, the Quillen functor is called a Quillen equivalence.



APPENDIX C

Trees

We introduce the combinatorial objects named “trees” and “graphs”. There
are various sorts of trees: planar, binary, nonplanar (abstract), circled, ladder, and
so on. They play an important role in the operad theory because the free operad
can be explicitly described in terms of trees.

Moreover they are closely related to a geometric object called the associahedron
(alias Stasheff polytope) for which we give two different cellular realizations. They
both play a role in the analysis of operads associated to the operad As.

C.1. Planar binary trees

C.1.1. Magma and planar binary trees. A magma is a set X equipped
with a binary operation, that is a set map X×X → X without any further assump-
tion. The free magma on one element, say x, is made of all the parenthesizings of
a word of finite length in x:

x, (xx), ((xx)x), (x(xx)), (((xx)x)x), . . .

It is slightly easier to work with combinatorial objects which are in bijection with
the parenthesizings: the planar binary rooted trees, abbreviated into pb trees (note
that graph theorists would say plane instead of planar). We denote by PBTn the
set of pb trees with n leaves (we do not mention the word rooted anymore, unless
necessary):

PBT1 := {|} , PBT2 :=

{
��

??
}
, PBT3 :=

{
�� ����

???? ,
??����

????

}
,

PBT4 :=

 �� ����
������

?????? ,

??����
������

?????? ,
�� ??������

?????? ,
��???? ������

?????? ,

?????? ������

??????

 .

So t ∈ PBTn has one root, n leaves, (n− 1) vertices, (n− 2) edges.
The grafting of the trees r ∈ PBTn and s ∈ PBTm is the tree r∨ s ∈ PBTn+m

obtained by joining the root of r and the root of s to a new vertex and adding
a new root. Under the bijection with parenthesizings, grafting corresponds to the
product in the magma. For n > 1, any tree t ∈ PBTn can be written uniquely as
the grafting of uniquely determined trees:

t = tl ∨ tr.

So there is a bijection PBTn =
⋃
p+q=n,p≥1,q≥1 PBTp × PBTq.

The number of elements in PBTn+1 is known to be the Catalan number cn =
(2n)!

n! (n+1)! , that is

481
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n 0 1 2 3 4 5 6 7 · · ·
cn 1 1 2 5 14 42 132 429 · · ·

The generating series for the Catalan numbers is∑
n≥1

cnx
n =

1−
√

1− 4x

2
.

It is helpful to enumerate the leaves from left to right beginning with 1 as in
the following example:

1 2 3 4 5
���

=== ���
===EEEE

}}}}}}yyyyyyy

EEEEEEEEEEE

As a consequence the set of vertices gets a total order: the vertex i lies in
between the leaves i and i+ 1:

1
��

==
3

{{
CC

4

<<

������

2

{{{{{{

:::::::::

For two trees t and s the partial composite t ◦i s is the tree obtained by identi-
fying the root of s with the ith leaf of t. The result is a tree with m− 1 + n leaves
if the number of leaves of t (resp. s) is m (resp. n). This construction makes sense
whenever 1 ≤ i ≤ m.

The grafting operation obviously satisfies the following relations for any r ∈
PBTl, s ∈ PBTm, t ∈ PBTn:

{
(I) (r ◦i s) ◦i−1+j t = r ◦i (s ◦j t), for 1 ≤ i ≤ l, 1 ≤ j ≤ m,
(II) (r ◦i s) ◦k−1+m t = (r ◦k t) ◦i s, for 1 ≤ i < k ≤ l,

These two relations correspond, respectively, to the following two situations:
RRRRRRR

HHHHH
vvvvv

lllllllSSSSSSSSSSSSSS

QQQQQQQQQQQ

rrrrrrrrr

nnnnnnnnnnnn

SSSSSSSSSSSSSS

QQQQQQQQQQQ

rrrrrrrrr

nnnnnnnnnnnn

PPPPPP
AAAA }}}}

kkkkkkk · · · · · ·
AAAA }}}}

NNNNNNNNNNNNNNNNNNNNNN

KKKKKKKKKKKKKKK

yyyyyyyyyyyyy

uuuuuuuuuuuuuuuuuu

C.1.2. Tamari poset structure on PBTn. On the set of planar binary trees
PBTn there is a poset (partially ordered set) structure, called the Tamari poset
structure, which has a lot of interesting properties with respect to the algebraic
operations on trees. It is defined as follows. Let us suppose that s ∈ PBTn can
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be obtained from t ∈ PBTn by moving some edge, or leaf, from left to right over a
vertex:

t =
�� ����

???? 7→ s =
??����

???? .

Then we say that t is less than s and we write either t→ s or t < s. It is called
a covering relation. The poset structure of PBTn is induced by these covering
relations. In low dimension we get

Figure 1. The Tamari poset PBT4

The left (resp. right) comb is the minimum (resp. maximum) of PBTn for this
poset structure.

C.1.3. From permutations to pb trees. For any n there is a map ϕ : Sn →
PBTn+1 compatible with several algebraic structures. It is constructed as follows.
First, it is helpful to introduce the notion of leveled tree. It is a pb tree such that
each vertex is assigned a level (from top to bottom, 1 to n), with the requirements
that there is only one vertex per level. So the rightmost tree in Figure 1 gives rise
to two leveled trees. For a given leveled tree, assigning to each vertex its levels
determines a permutation of {1, . . . , n}. Whence a bijection between Sn and the

set of leveled trees with n + 1 leaves, denoted by ˜PBTn+1. Forgetting the levels
gives the map

ϕ : Sn ∼= ˜PBTn+1 → PBTn+1.

See for instance [Lod01] appendix A.

C.2. Planar trees and Stasheff polytope

Orienting the edges of a given pb tree from top to bottom, we see that each
vertex has two inputs and one output. We now consider the planar trees for which
any vertex has k inputs and one output. We first consider the case when k ≥ 2.
We denote by PTn the set of planar (rooted) trees with n leaves:

PT1 := {|} , PT2 :=

{
��

??
}
, PT3 :=

{
�� ����

???? ,
??����

???? ,
����

????

}
,
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PT4 :=

 �� ����
������

?????? , . . . ,
����

������

?????? , . . . ,
������

??????

****
����

 .

Each set PTn is graded according to the number of vertices, i.e. PTn =
⋃
n≥k PTn,k

where PTn,k is the set of planar trees with n leaves and k vertices. For instance
PTn,1 contains only one element which we call the n-corolla (the last element in
the above sets). It is clear that PTn,n−1 = PBTn.

Any tree t ∈ PTn, n > 1, is uniquely obtained as the grafting of k trees:

t = t(1) ∨ . . . ∨ t(k), with k ≥ 2.

The notion of partial composite (grafting ◦i) extends to all the planar trees.
The number of elements in PTn+1 is the Schröder number (also called super Catalan
number) and is denoted Cn:

n 0 1 2 3 4 5 6 7 · · ·
Cn 1 1 3 11 45 197 903 4279 · · ·

Let us introduce the generating series in two variables

fKy (x) :=
∑
n≥1

∑
k≥0

(−1)k#PBTn+1,n−k y
k

xn.

One can show (cf. [Sta97] for instance) that

fKy (x) =
1− (2 + y)x)−

√
1− 2(2 + y)x+ y2x2

2(1 + y)x
.

C.2.1. The associahedron, alias Stasheff polytope [Sta63]. The asso-
ciahedron is a cell complex Kn of dimension n which can be realized as a convex
polytope as follows. To any tree t ∈ PBTn+2 we associate a point M(t) ∈ Rn+1

by the following algorithm: M(t) := (a1b1, . . . , an+1bn+1) where ai is the number
of leaves standing on the left side of the ith vertex, and bi is the number of leaves
standing on the right side of the ith vertex. Equivalently

M(t) = M(tl ∨ tr) = (M(tl), pq,M(tr))

whenever tl ∈ PBTp and tr ∈ PBTq .
It can be shown that all the points M(t) lie in the hyperplane

∑
i aibi =

(n+1)(n+2)
2 and the convex hull of all these points is the Stasheff polytope (cf.

[Lod04a]).
From this construction it follows that the Stasheff polytope is a cell complex

whose cells are in bijection with the planar trees. For instance the vertices corre-
spond to the planar binary trees and the big cell corresponds to the corolla. More
precisely the cells of dimension k of Kn are in bijection with the planar trees having
n+ 2 leaves and n+ 1− k vertices.

Examples:

• //
wwooooo

$$JJJJJJJJ

��
zztttttttt

''OOOOO

//cc

GGGGGG
�����

��

gg OOO
::

ttttt

�����������cc

GGGGGG

��/
/////

//
�����

��������

��/
//

//__

?????? gg
//

�� ��
??

����
//
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K0 K1 K2 K3

C.2.2. The cubical version of the associahedron. For any tree t ∈ PBTn+2

and any point u ∈ In (here I = [0, 1] ⊂ R is the unit interval) we associate a metric
tree (t, u) by requiring that the edges have a length given by u. Observe that, when
some of the coordinates of u are 0, the shape of the metric tree is not binary any-
more. We quotient the disjoint union of the cubes PBTn+2 × In by the following
equivalence relation:

(t, u) ∼ (s, u)

if the associated metric trees are the same. For instance
( �� ����

???? , (0)
)
∼
( ??����

???? , (0)
)

since both metric trees are the tree
����

???? . The quotient Kn := PBTn+2×In/ ∼

gives a new cell decomposition of the Stasheff polytope denoted by Kncub. It is due
to Stasheff [Sta63] and was used in [BV73]. Observe that the top-cells are n-cubes
and there are cn+2 of them:

• |
�������

==========

//////

666666

������

����������

???????
������

K0
cube K1

cube K2
cube

We are going to describe combinatorial objects which encode all the cells of this
cellular decomposition.

C.2.3. Circled trees. By definition a circled planar tree is a planar rooted
tree in which each vertex has been replaced by a planar tree whose number of leaves
is the same as the number of inputs of the vertex. Here are some examples: see
figure B44
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The set of circled planar trees with n leaves is denoted CPTn.

Proposition C.2.4. The set of circled planar trees encodes the cells of the cubical
cell decomposition of the associahedron.

Proof. It suffices to encode a given cube and to check that the equivalence relation
described in C.2.1 is coherent with the encoding.

Let t be a planar tree. Choose a bijection between the set of vertices and the
directions in the cube. A cell in the cube is determined by the choice of 0, 1

2 , 1 in
each direction. For instance, in the case of the interval I, the choice 0 encodes for
the 0-cell {0}, the choice 1

2 encodes for the 1-cell I, the choice 1 encodes for the 0-
cell {1}. We construct a circled tree out of this data and the convention as follows.
For a given direction, the choice of 0 shrinks the associated edge to a point. If the
choice is 1

2 , then the two adjacent vertices of the edge are going to be encircled in
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the same circle. If the choice is 1, then the two adjacent vertices are going to be
encircled by different circles.
Examples: see figure B45bis.

It is immediate to check that the encoding is coherent with the equivalence
relation ∼ described in C.2.1. �
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From the construction of the cell-complexes Kn and Kncub we see that there is
a natural cellular map Kn → Kncub. At the chain complex level it induces a graded
map

C•(Kn)→ C•(Kncub) , big cell 7→
∑

top-cells .

C.3. Other trees

C.3.1. Other planar trees. In the preceding sections of this appendix the
vertices of the trees were at least trivalent (one output and at least two inputs).
But when the operads have unary operations (on top of the identity), and/or 0-ary
operations, then one needs to allow vertices with one input and/or vertices without
any input. Here are examples:

A ladder:
•
•
•

others:
•

���
???

•
•

???

•

�������
??? •

•

??????? ���

•
???

• •
���

???

•

??????
������

The trees whose vertices have at least one input at each vertex are sometimes
called reduced trees. We still denote the set of reduced trees with n-leaves by PTn
when there is no ambiguity.

C.3.2. Nonplanar trees. Ignoring the planarity we get the notion of non-
planar rooted trees or simply rooted trees. In this case, in order to keep track of the
structure of the tree, one often needs to “enumerate” the inputs of a given vertex
by giving a bijection between the set of inputs and the set {1, . . . , k}, where k is
the number of inputs.

It should be noted that the number of rooted trees (planar or not) with a fixed
number of leaves is finite when the valence is greater than or equal to 3. However
this is no more true when the valence is greater than or equal to 2 (resp. 1). For
instance there is a numerable number of ladders (one leaf).

We denote the set of nonplanar trees with n leaves by Tn. Restriction to trees
which are at least trivalent (resp. bivalent, resp. univalent) should be either said or
clear from the context.

C.4. Graphs

We give a formal definition of graphs. The definition of trees is a particular
case.

C.4.1. Graphs. A finite graph Γ is determined by two finite sets: the set of
vertices vert(Γ), the set of flags (or half-edges) flag(Γ) and two maps s : flag(Γ)→
vert(Γ) and σ : flag(Γ)→ flag(Γ) such that σ2 = id.

An element u ∈ flag(Γ) which is stable under σ, that is σ(u) = u, is called
an outer edge. A geometric realization of the graph Γ is obtained as follows. For
each element x ∈ vert(Γ) we take a point, for each element u ∈ flag(Γ) we take
an interval [0, 1]. Then we identify the point 0 of u with the point s(u) and we
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identify the point 1 of u with the point 1 of σ(u) (observe that if u is stable this
identification has no effect). The geometric realization of Γ is a 1-CW-complex.

For instance, if vert(Γ) = {x, y},flag(Γ) = {a, b, c, d, e, f} and, s, σ are given by

− a b c d e
s(−) x x x y y
σ(−) a b d c e

then the geometric realization of Γ is

????

• •����

There are obvious notions of outer edges (made of only one flag) and internal
edges (made of two flags). A graph is said to be connected whenever its geometric
realization is connected. A morphism of graphs Γ → Γ′ consists of a pair of maps
vert(Γ)→ vert(Γ′) and flag(Γ)→ flag(Γ′) which commutes to the structure maps
s, s′ and σ, σ′ respectively.

By definition a tree (or abstract tree or nonplanar tree) is a connected graph
whose geometric realization has no cycle (acyclic cell complex). A rooted tree is
a tree with a preferred outer edge which is called the root. In this case the other
outer edges are called the leaves. A rooted tree can be oriented. We choose to put
the leaves on top and the root at the bottom (like in nature). This orientation,
from top to bottom, permits us to define the set of inputs of a given vertex and the
output of this vertex, as flags of this vertex. The union of two (different) flags at 1
is called an edge (or sometimes internal edge).

If we put a total order on each set of inputs, then we get the aforementioned
notion of planar tree.

Notice that an isomorphism of trees is made up of two bijections between the
set of vertices and the set of flags respectively. When a tree admits no vertex
without incoming edges (leaves or internal edges), then any of its automorphisms
is completely characterized by the bijection of its leaves.

Given a set X and a bijection of the set of leaves with X, we have a “tree
labeled by X”. The set of isomorphism classes of trees labeled by X is denoted by
RT (X).

C.4.2. Graph complexes. A graph complex is a chain complex whose mod-
ule of chains is spanned by some graphs (with no outer edges) and the boundary
map is obtained via the contraction of edges (one at a time). Though several clas-
sical chain complexes were recognized lately as being examples of graph complexes,
the very first example appeared in the work of Kontsevich [Kon93] (see example
3 below).

Example 1: The Hochschild complex. Let A be an associative algebra
and consider the space of “ladders” whose vertices are decorated by elements of A:

a1 a2 an−1 an

• • · · · • •
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So the space of n-chains is A⊗n. The contraction of the ith edge gives a new
ladder whose ith vertex is decorated by the product aiai+1. The boundary map b′

is the alternating sum of these contractions, cf. 9.1.11

Example 2: The cochain complex of the Stasheff polytope. Let n
be an integer and let Ck be the space spanned by the planar rooted trees with
n+ 2 leaves and n+ 1− k vertices (0 ≤ k ≤ n). Contracting an internal edge gives
an element in Ck+1. The sum over all the internal edges (with ad hoc signs, see
below for the treatment of the signs) gives rise to a boundary map, so, to a cochain
complex which can be identified with the cochain complex of the Stasheff polytope:

d

(
�� ����

????

)
=

����

???? , d

(
??����

????

)
= −

����

???? .

Example 3: Kontsevich graph complex for Com. Consider the space
spanned by the connected graphs (no outer edges) with n edges. Let Cn be the
quotient by the graphs which have at least one loop. Contracting an edge of such
a graph gives an element in Cn−1 (possibly 0 if a loop has been created in the
process). The sum over all the edges (with appropriate signs) of these contractions,
gives rise to a boundary map, and so to a chain complex. This is Kontsevich’s
original graph complex [Kon93] appearing in a computation of homology groups
related to the operad Com.

Handling signs in graph complexes. Here is an efficient way to handle the
signs in graph complexes. First, we consider the space of graphs with an orientation
of each edge and a labelling of the vertices by the integers {1, 2, . . . , k} where k is
the number of vertices. Then we mod out by the following equivalence relation:

– reversing an arrow changes the sign in front of the element,
– exchanging the labellings i and i+ 1 changes the sign in front of the element.
Let Γ be such a graph and let e be an internal edge whose end (resp. source)

vertex is labelled by the integer j (resp. i). One can always suppose that i < j.
The boundary map is

d(Γ) =
∑
e

(−1)jΓ/e

where Γ/e is the graph obtained by contracting e, keeping the label i, deleting the
label j and normalize the labels (each label u is replaced by u− 1 for u > j). It is
a good exercise to check that d2 = 0, see for instance [Bur10].
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operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 105–110. 412,
422

[Cha01b] Frédéric Chapoton, Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation,

C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 8, 681–684. 143
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[GH00] P.G. Goerss and M.J. Hopkins, André-Quillen (co)-homology for simplicial algebras
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