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Rational homotopy theory”

By DANIEL QUILLEN
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Rational homotopy theory is the study of the rational homotopy category,
that is the category obtained from the category of 1-connected pointed spaces
by localizing with respect to the family of those maps which are isomorphisms
modulo the class in the sense of Serre of torsion abelian groups. As the
homotopy groups of spheres modulo torsion are so simple, it is reasonable to
expect that there is an algebraic model for rational homotopy theory which is
much simpler than either of Kan’s models of simplicial sets or simplicial
groups. This is what is constructed in the present paper. We prove that
rational homotopy theory is equivalent to the homotopy theory of reduced
differential graded Lie algebras over Q and also to the homotopy theory of
2-reduced differential graded cocommutative coalgebras over Q.

In Part I we exhibit a chain of several categories connected by pairs of
adjoint functors joining the category &, of 1-connected pointed spaces with

* This research was supported by NSF GP-6959 and the Alfred P. Sloan Foundation.
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the categories (DGL), and (DGC), of reduced differential graded Lie algebras
and 2-reduced differential graded cocommutative coalgebras over Q respec-
tively. We prove that these functors induce an equivalence of the rational
homotopy category Ho,J', with both of the categories Ho(DGL), and Ho(DGC),
obtained by localizing with respect to the maps which induce isomorphisms
on homology. Moreover these equivalences have the property that the graded
Lie algebra 7, _(X) ®, Q under Whitehead product and the homology co-
algebra H, (X, Q) of a space X are canonically isomorphic to the homology of
the corresponding differential graded Lie algebra and coalgebra respectively.
An immediate corollary is that every reduced graded Lie algebra (resp. 2-
reduced graded coalgebra) over Q occurs as the rational homotopy Lie algebra
(resp. homology coalgebra) of some simply-connected space. This answers a
question which is due, we believe, to Hopf.

Part I raises some interesting questions such as how to calculate the maps
in the category Ho(DGL), say from one DG Lie algebra to another, and also
whether or not there is any relation between fibrations of spaces and exact
sequence of DG Lie algebras. In order to answer these questions, we intro-
duced in [21] an axiomatization of homotopy theory based on the notion of a
model category, which is short for a “category of models for a homotopy
theory”. A model category is a category endowed with three families of maps
called fibrations, cofibrations, and weak equivalences satisfying certain
axioms. To a model category C is associated a homotopy category Ho C, ob-
tained by localizing with respect to the family of weak equivalences, and
extra structure on Ho € such as the suspension and loop functors and the
families of fibration and cofibration sequences. The homotopy category to-
gether with this structure is called the homotopy theory of the model category
C. InPart II we show that rational homotopy theory occurs as the homotopy
theory of a closed model category, that all of the algebraic categories such as
(pGL), and (DGC), occurring in the proof of Theorem I are closed model cate-
gories in a natural way, and that the various adjoint functors induce equiv-
alences of homotopy theories. Combining this result with Theorem I, we
obtain a solution to the problem raised by Thom [29] of constructing a com-
mutative cochain functor from the category of simply-connected pointed
spaces to the category of (anti-) commutative DG algebras over Q, giving the

rational cohomology algebra and having the right properties with respect to
fibrations.

Part II contains a number of results of independent interest. In § 2 we

show how the Serre mod ¢ homotopy theory [27], where C is the class of S-
torsion abelian groups and S is a multiplicative system in Z, can be realized
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as the homotopy theory of a suitable closed model category of simplicial sets.
In § 3 we construct another model category for the same homotopy theory out
of simplicial groups. In proving the axioms it was necessary to prove the
excision property for the homology functor on the category of simplicial
groups (II, 3.12).

The category of reduced simplicial sets, with cofibrations defined to be
injective maps and with weak equivalences defined to be maps which become
homotopy equivalences after the geometric realization functor is applied,
turned out to be a closed model category in which it is not true that the base
extension of a weak equivalence by a fibration is a weak equivalence. This is
reflected in the fact that there exist fibrations with the property that the
fiber is not equivalent to the fiber of any weakly equivalent fibration of Kan
complexes (II, 2.9). Since the base of such a fibration is never a Kan complex,
it does not contribute fibration sequences to the associated homotopy theory.
Thus these pathological fibrations are a curiosity forced upon us by the model
category axioms. The same phenomenon occurs with DG coalgebras, but not
with any of the group-like categories considered here.

In Part II, § 6, we give some applications of the theorems of this paper.
In particular we use the DG Lie algebra and pG coalgebra models to derive
certain spectral sequences (II, 6.6-6.9) for rational homotopy theory. Of
special interest is an unstable rational version (II, 6.9) of the reverse Adams
spectral sequence studied in [5]. This raises the question of whether such a
spectral sequence holds in general.

In addition to Part I and II, the paper contains two appendices. Appendix
A contains the theory of complete Hopf algebras, which is the natural Hopf
algebra framework for treating the Malcev completion [18] as well as groups
defined by means of the Campbell-Hausdorff formula [17]. Appendix B con-
tains an exposition of some results of DG mathematics in a form particularly
suited for our purposes. The main result is that the generalization to pG Lie
algebras of the procedure for calculating the homology of a Lie algebra pro-
vides a functor € from pG Lie algebras to DG coalgebras whose adjoint £ is
the primitive Lie algebra of the cobar construction, and that the pair £, €
have the same properties of the functors G, W of Kan.

Finally we would like to acknowledge the influence on this work of many
conversations with Daniel Kan and E.B. Curtis; our debt to their work will
be abundantly clear to anyone who reads the proof of Theorem I.
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PART I

1. Statement of Theorem I

If Cis a category and S is a family of morphisms of €, then the localiza-
tion [9, Ch. I]; [21, Ch. I, 1.11] of € with respect to S is a pair consisting of a
category S—'C and a functor v:C—S~'C which carries the maps in S into iso-
morphisms in S ~*€ and which is universal with this property. In general there
is a minor set-theoretic difficulty with the existence of S—'C which may be
avoided by use of a suitable set theory with universes. We shall therefore
ignore this difficulty and assume the existence of S—!C; for the cases we need
this can be verified (see Part II, 1.3a).

Let J, be the category of (r — 1)-connected pointed topological spaces
and continuous basepoint preserving maps. (The reason for the notation 7,
is to save space in Part II. The subscript » should be read “begins in dimen-
sion r.”) We recall the following theorem of Serre [27].

PRroPOSITION 1.1. The following assertiomns are equivalent for a map
[ X—>YimT,

(1) 7 () Rz Q: 7 (X)) R, Q— 7 (V) Q7 Q s an isomorphism.

(ii) H.(f, Q): H.(X, Q — H (X, Q) ts an isomorphism.

A map satisfying these conditions will be called a rational homotopy
equivalence. The localization of J, with respect to the family of rational
homotopy equivalences will be denoted Hoq I, and called the rational homo-
topy category. The study of this category is what Serre calls homotopy
theory modulo the class of torsion abelian groups.

The objects of Hoq I, are the same as those of &, namely 1-connected
pointed spaces, however the morphisms are different. If f: X — Y is a mapin
J,, then f determines the map 7(f): X — Y in HoyJ,. If f,9: X— Y are
homotopic, then v(f) = ¥(g). In effect consider the maps

%0 .
X 3ZXANI—X
11
where [ is the unit interval X A I = X x I/{z,} x Iand 7,(x) = (%,5),7 =0,1
and 7(x,t) = 2. As 7 is a homotopy equivalence ¥(7) is an isomorphism so
Y(i)Y(7) = idy = 7(2,)Y(7) = 7(%) = 7(¢,). Therefore if h: X ANI—Y is a
homotopy from f to g, we have

() = 7(h)v(5) = Y(R)Y() = 7(9) ,
proving the assertion.
As usual in homotopy theory two maps inducing the same map on the
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functors 7,(-) ®,Q or H,(-, Q) do not give the same map in Hoy F,. It is
possible to show that the rational homotopy category is equivalent to the full
subcategory of the category of 1-connected pointed cw complexes and homo-
topy classes of basepoint-preserving maps, consisting of X for which 7, X is
a torsion-free divisible abelian group (see Part II, 6.1); however we shall not
need this here.

All vector spaces, algebras, tensor products, etc. in this paper are to be
understood as being over Q unless there is indication to the contrary. We
shall consider differential graded (DG) vector spaces V = @, V,, ¢ € Z, where
the differential is of degree —1 and where V, = 0 for ¢ < 0. By an element
2 of V we shall usually mean a homogeneous element whose degree will be
denoted deg x. Let (DG) and (G) be the categories of DG and graded vector
spaces where the morphisms are homogeneous of degree 0. The tensor product
V' & W and homology HV of DG vector spaces are defined as usual. There is
a canonical isomorphism T: V@ W —— W ® V called the interchange map
givenby T Q) = (-1 yQx if p = degz and ¢ = degy. In working
with DG objects we shall rigidly adhere to the standard sign rule: whenever
something of degree p is moved past something of degree ¢ the sign (—1)*
accrues.

A DG Lie algebra is a DG vector space L together with a map L Q L — L
denoted x @ v — |z, y] satisfying the antisymmetry and Jacobi identities with
signs thrown in according to the sign rule. A DG coalgebra is a DG vector
space C with a comultiplication map A:C— C ® C and an augmentation ¢: C —
Q[0] (Q[O] is the DG vector space with Q[0], = Q if ¢ = 0, and 0 if ¢ = 0) such
that A is coassociative, cocommutative (i.e., To A = A), and ¢ is a two-sided
counit for A. Let C = Kere. A DG Lie algebra L (resp. DG coalgebra C) will
be called r-reduced if L, = 0 (resp. C, = 0) for ¢ <r. We say reduced instead
of 1-reduced. We denote by (pDGL)(resp. (DGL),) and (DGC)(resp. (DGC),) the
categories of DG (resp. r-reduced DG) Lie algebras and DG (resp. r-reduced DG)
coalgebras with the obvious morphisms.

By virtue of the Kiinneth formula H(V Q W) = HV Q HW homology
gives functors H: (DGL) — (GL) and H: (DGC) — (GC). We define a weak equiv-
alence of DG objects to be a map f such that H, f is an isomorphism. The
localizations of (DGL), and (DGC), with respect to their families of weak equiv-
alences will be denoted Ho (DGL), and Ho (DGC), and called the homotopy cate-
gories of reduced DG Lie algebras and 2-reduced DG coalgebras respectively.

If X is an object of J,, then the (singular) homology of X with rational
coefficients H,(X, Q) is a 2-reduced graded coalgebra with comultiplication
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induced by the diagonal map X — X x X and the Kiinneth isomorphism. The
rational homotopy groups 7,X @, Q may be made into a graded Lie algebra
X in the following way. Let w7, X = 7,,X®, Q and let 7:7,,,X — 7, X be
given by 7o = * ® 1. The Whitehead product is a natural bilinear trans-
formation

7fp+1X X 7[0+1X—"" 7l',,+q+1X
a, B — [a’ 18]

so there is a unique bilinear operation which we again denoted by [, ] on #X
such that

[7.'0(, TB] = (_l)degaz.[av ,3] .

The anti-symmetry and Jacobi identities for the Whitehead product [10]
imply that #X is a graded Lie algebra.

By the definition of HoyJ, the functors Xi— H,(X,Q) and X—znX
from ¥, to (GC) and (GL) extend uniquely to functors H: Ho, &, — (GC) and
m:HoqJ;—— (GL) respectively. Letw: Ho (DGL),— (GL) and H: Ho (DGL),— (GC)
be the unique extensions of the functors L+ HL and C+— HC, respectively.
We can now state the main result of this paper.

THEOREM I. There exist equivalences of categories

¢
Hog 97, —— Ho (DGL), — Ho (DGC), .

Moreover there are isomorphisms of functors

X —w(nX) HX— HCMX)
Jrom Hog T, to (GL) and (GC) respectively.

COROLLARY. If L is a reduced graded Lie algebra, them L ~ nX for
some 1-connected pointed space X. If C isa 2-reduced graded coalgebra, then
C = H, (X, Q) for some 1-connected pointed space X.

Proor. Consider L as a pG Lie algebra with all differentials zero. By
the theorem there is a space X in J, with A X~ L hence X ~m\X~nL = L.
The second statement is proved similarly.

Remark. By duality one sees that if A = @,., 4, is a graded (anti-)
commutative algebra over Q with A, finite dimensional for each g and 4, = 0,
A, = Q, then A is isomorphic to the rational cohomology ring of a space in 7.
This answers affirmatively a conjecture which is originally due, we believe,
to Hopf.
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I S (sGp), —— (sCHA), (sLA), (DGL), == (DGC).
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FIGURE 1

How 1l _ G LQ LE LN* g
0q J; ——"5 Ho, S, — Ho, (sGp), —— Ho (scHA), = Ho (sLA), “—; Ho (DGL), — Ho (DGC),
(E: Sing)™ W ] ] N R )

FIGURE 2

2. Outline of the proof of Theorem I

The equivalence )\ will be the composition of several equivalences of
categories, each equivalence coming by localization from a pair of adjoint
functors. The categories and adjoint functors involved are indicated in Figure
1 and listed below. Upon localizing with respect to a suitable family of maps
in each category, we obtain Figure 2, where ~ and L are defined below. The
part of Theorem I about the equivalence of categories results from the fact
that each functor in Figure 2 is an equivalence of categories. Half of these
equivalences are treated in Theorem 2.1. For the others we prove a general
categorical result (2.3) whose hypotheses are verified for the remaining cases
in § 3 and § 4. Thus the equivalence of categories assertion of Theorem I is
proved by § 4. The assertions about the homotopy and homology functors are
proved in § 5 and § 6 respectively.

We consider the following categories.

T, : The category of 1-connected pointed spaces and basepoint pre-
serving continuous maps.
S, . The category of 2-reduced simplicial sets = full subcategory of

the category of simplicial sets consisting of K such that K, has a single ele-
ment for ¢ = 0,1.

(sGp), : The category of reduced simplicial groups = full subcategory of
the category of simplicial groups consisting of G such that G, = {e}.

(scHA),: The category of reduced simplicial complete Hopf algebras over
Q. For the definition of complete Hopf algebra see Appendix A. A simplicial
CHA R is called reduced if R, = Q.

(sLA), : The category of reduced simplicial Lie algebras over Q.

(DGL), : The category of reduced differential graded Lie algebras over Q.

(DGC), : The category of 2-reduced differential graded (cocommutative
coassociative) coalgebras over Q.

We also consider the following pairs of adjoint functors.

||, B, Sing: || is the geometric realization functor [19], [9, Ch. III]. Sing
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X is the singular complex of a space X; if K is a pointed simplicial set, then
E,K is the Eilenberg subcomplex consisting of those simplices of K whose 1-
skeleton is at the basepoint.

G, W : If K is a reduced simplicial set, GK is the simplicial group con-
structed by Kan [12] playing the role of the loop space of K. If G is a simplicial
group, WG is the simplicial set which acts as its “classifying space” [3], [4],
[12].

Q, g : If Gisagroupthen QG is the complete Hopf algebra (Appendix A)
obtained by completing the group ring QG by the powers of its augmentation
ideal. If Ris a cHA, then SR is its group of group-like elements. These
functors are extended dimension-wise to simplicial groups and simplicial CHA’s
and denoted by the same letters.

U,9 : If gisa Liealgebra over Q, ﬁg is the cHA obtained by completing
the universal enveloping algebra Ug by powers of its augmentation ideal. If
R is a cHA, then PR is its Lie algebra of primitive elements. These functors
are applied dimension-wise to simplicial objects.

N* N: If Lisasimplicial Lie algebra, its normalized chain complex NL
is a DGL with bracket defined by means of the Eilenberg-Zilber map & (8§ 4).
N* is the left adjoint of N and is constructed in § 4.

£,C : These functors are defined in Appendix B. If C is a DGC, then £C
is the Lie algebra of the primitive elements of the cobar construction of C.
CL is the obvious generalization to DG Lie algebras L of the pG homology co-
algebra of a Lie algebra [15].

From each of the above categories we construct the following localiza-
tions.

Hoy 7, = S™'T,, Hog §, = S~'S,, Hog (sGp), = S~'(sGp),
where in each case S is the family of rational homotopy equivalences, i.e.,
maps f such that 7, f @, Q is an isomorphism.

Ho (scHA), = S—'(scHA), where S is the set of maps f such that z,Sf (or
equivalently 7,2 (3.2)) is an isomorphism.

Ho (sLA), = S~'(sLA),, Ho (DGL), = S~(DGL),, Ho (DGC), = S~'(DGC),, where
in each case S is the set of weak equivalences, i.e., maps inducing isomor-
phisms on homotopy in the case of simplicial Lie algebras and homology in the
other cases.

The following notations will be used in this paper. If

F

=G

G
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is a pair of adjoint functors, then the upper arrow F' will always denote the
left adjoint functor and the canonical adjunction morphisms will be denoted

a: FG — idg, B:ide, — GF'.

If v,: C,— S;'C; are localizations ¢ = 1,2, and F': ¢, — C, is a functor carrying
S, into S,, then F induces a functor F': S;'C, — S;'C, such that F'vy, = v,F.
We can now take up the easy part of Figure 2.

THEOREM 2.1. Each of the adjoint functor pairs (||, E, Sing), (G, W) and
(£, ©) has the property that each functor carries the localizing family of its
source into the localizing family of its target, and the property that the ad-
Junction morphisms are in the localizing families. Consequently the ~ func-
tors of Figure 2 induced by these functors are equivalences of categories.

PRroOF. (||, E,Sing): From the definition of the homotopy groups given
by Kan [11], one sees that if K is a 1-connected pointed simplicial set satisfy-
ing the extension condition, then the inclusion E,K — K is a weak equivalence,
i.e., it induces isomorphisms on homotopy groups. Now Milnor [19]; [9, VII, 3]
has proved that K — Sing | K| is always a weak equivalence, hence combining
this with Kan’s formula 7 ,(X) = 7,(Sing X) one has 7 ,(X) = «,(E, Sing X).
The assertion of the theorem follows easily.

(G,W): Kan [12], [4] has proved that 7, K - 7,_.GK and that the maps

GW(G) — G and K — WGK are weak equivalences, yielding the result.
(£, ©): See Appendix B, 7.5.
The last assertion of the theorem is proved as follows. Suppose that

the adjoint functors are F' and G. Then for every object X of C,, o defines
an isomorphism

FGLX) = mFGCX) 2 v, x .
As X varies over Ob C,, this isomorphism gives an isomorphism of functors
FGv,— id v,, and hence by the following proposition an isomorphism FG—

id. Similarly 8 gives an isomorphism id — G ' and so F', (G are equivalences
of categories.

PROPOSITION 2.2. Let v:C— S™'C be a categorical localization, and let
F,G: S7'C— B be functors. Then

Hom (F, G) — Hom (F'v, G7) .

Proor. It follows immediately from the universal property of v that v
is an isomorphism on objects and that every map in S—'C is a finite composi-
tion of maps of the form v(g) or v(s)™*, where ¢g is a map in C and s is in S.
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Let us assume, as is customary, that € and S—'C have the same objects and
that v is the identity on objects. Then a natural transformation from F'v to
Gv is a collection of maps 6(X): F(X)— G(X) for all objects X such that
0F(f) = G(f)0 for all f of the form v(g) where g is a map in €. This formula
must also hold for f = v(s)~* and finite compositions, so therefore it is true for
all maps fin S—'C, showing that ¢ is a natural transformation from F to G,
and proving the proposition.

For the other pairs of adjoint functors we will not know that the functor
F carries S, into S,, so we shall need the following definition and proposition
to get the desired equivalence of categories.

Let C,, C, be categories, let S; be a family of maps in C;, and let v,: €, —
S:*C; be the corresponding localization functors. If F': C, — C, is a functor,
then by LF we shall mean a functor from S;'C, to S;'C, together with a
natural transformation e: (LF')v, — 7.F having the following universal prop-
erty: Given a functor G: S—'C,— S~'C, and a natural transformation »: Gv, —
7.F there is a unique natural transformation §: G — LF such that » = ¢(6*v)),
where 6*v,: Gv, — (LF)v, is the natural transformation given by (6*v)(X) =
6(7,.X). The pair (LF,¢) if it exists will be called the left derived functor of
F with respect to S, and S,. It is clear that if F' carries the maps of S, into
S,, then up to canonical isomorphism LF ~ F.

PROPOSITION 2.3. Suppose given localizations and adjoint functors

e, — G
G
[
S¢, S;C,
such that
(i) S, contains all isomorphisms of C.. If f, g are maps of C, such that
9f is defined, then if any two of the maps f, g, 9f are in S, so is the third.
(ii) A map fin C,is in S, if and only if Gfe S,.
(iii) There exists a functor R:C,— C, and a natural transformation
&: R—id such that for all X € Ob C, the maps &: RX — X and B: RX — GFRX
are in S,.
Then the left derived functor LF exists and is quasi-inverse to the

Ffunctor G: 8;'C, — SC, induced by G. In particular G and LF are equiva-
lences of categories.

Proor. If f: X — Y is in S, then by (i), (iii), and the diagram
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X <& Rrx-*,GgFRX

lf lR ‘tGFRf
Yy < RY -, GFRY

one sees that Rf and GFRf are in S,. Thus the functor v,FR:C, — S'C,
carries S, into isomorphisms and so by the definition of localization there is a
unique functor LF': S;'C, — S,'C, such that (LF')y, = 7.FR. Let e: (LF)y,—
7.F' be the natural transformation v,F(£): v,FR — 7, F. We claim that (LF, ¢)
is a left derived functor of F. Indeed given H: S;'C, — S,'C, and 7: Hv, —
v.F' consider the composition

Hyx 297, gy RX " v,FRX = (LF)7,X

for each X € ObC,. This composition is a natural transformation Hv,— (LF)v,
so by (2.2) it defines a natural transformation §: H — LF. It is easily seen
that ¢ satisfies e(0x7,) = » and is the unique natural transformation with this
property.

By (2.2) there are unique natural transformations &:id — G(LF) and
v: (LF)G — id given by the compositions

y, L R, GF = GLF),

(LF)Gv, = v,FRG —FE v 7 2, 4

By (iii) ¥(B) is an isomorphism, and so & is an 1somorphlsm of functors. In
order to show ¥ is an isomorphism we show that FRGY —> s FGY £, Y is
in S, or by (ii) that G carries this map into S,. However this follows from (i)
using the diagram

RGY —— GY

l N

A 15 \id
GFRGY - grey %9 gy

and the fact that the left 8 is in S, by (iii). Hence @, ¥ are isomorphisms,
LF and G are equivalences and the proposition is proved.

3. Application of Curtis’ convergence theorems
This section is devoted to proving the hypotheses of (2.3) for the adjoint
functor pairs Q, 9 and [7, P.
If G is a simplicial group, then its ¢™ homotopy group 7,G may be defined
either by the formula of Moore
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G = Ker {d,: N.G— N,_,G}
(8.1) ! Im {d,: N,;,G — N,G}
NG =N, Ker{d;: G, — G,_} N_G=G_, = {¢}
or by the formula of Kan [11] applied to G considered as a pointed simplicial
set with basepoint at the identity. The group law on ,G for ¢ > 1 is there-
fore independent of the group law of G and moreover is abelian.
If A is a simplicial complete Hopf algebra (scHA for short, see Appendix

A), then there is a canonical isomorphism of pointed simplicial sets given by
the exponential

exp: PA— GA ,

hence we have

PRrROPOSITION 3.2. If A ts a SCHA, then the exponential induces an iso-
morphism of homotopy groups 7, (PA) -, T,(SA) for ¢ = 1.

PA is a simplicial vector space over Q, hence so are its homotopy groups.
Therefore

COROLLARY 3.3. 7, (SA4) for ¢ =1 is a torsion-free uniquely divisible
abelian group and hence is a Q vector space.

The following comparison theorem is what started this paper. Free sim-
plicial algebraic objects are defined in [14]; see also the proof of 4.4.

THEOREM 3.4. If G is a connected free simplicial group, then the ad-
Junction map « induces an isomorphism
(@) ®, Q@ — 7(3QG) .
3.5. If g is a connected free simplical Lie algebra, then «a induces an
isomorphism
(g) — m(PTy) .
3.6. If R is a connected free simplicial augmented associative algebra
and R is the completion of R (A, 1.2), then there is an isomorphism
©(R) — m(R) .

The proof requires the following “convergence” or connectivity results
based on the work of Curtis.

THEOREM 3.7. Let G, g, and R be as in the preceding theorem, let I, be

the lower central series filtrations of G and g and let R be the augmentation
ideal of R. Then
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7,7, R, Q=0
TCQ(FTQ) =0
T(R") =0
for r > q.

Proor. As pointed out in [7, Remark 4.10], the argument of §4 of
that paper applies in great generality and not just for simplicial groups. By
virtue of this argument it suffices to prove (3.7) where G (resp. g, R) is the
free simplicial group (resp. Lie algebra, associative algebra) generated by the
simplicial set K which is a finite wedge of 1-spheres A(1)/A(1)’, where the
basepoint of K is set equal to the identity. Then R = T(QK), the tensor
algebra on the reduced chains on K, so by Kiinneth n(R") = @,.., T.(tQK),
and the connectivity assertion is clear. Also g = L(QK), where L is the free
Lie algebra functor, so U(g) = T(QK) = R. Now g is a retract of U(g)(B, 3.6)
in such a way that I',g is a retract of U(g)", so the connectivity assertion
for T',g follows from that of B”. One can also use the main result of [6].
Finally for G = FK we have by the main result of [7](for another proof,
see [24]) 7(T',G) = 0 for r sufficiently large. Also 7 (I',G/T,..G) Q Q =
7 (L(Gos ® Q)) = 0 for r > ¢ by what we have just proved for g. Thus by
descending induction on r we have 7(I',G) ® Q = 0 for ¢ > r, and the proof
of (3.7) is complete.

The proof of 3.4-3.6 will also require the following. Here N is the set of
integers =0.

PRrRoOPOSITION 3.8. Let {G",r€ N; p;: G" — G° r = s} be an inverse system

of simplicial groups such that p; is surjective. Then there is a canonical
exact sequence

0 — R'lim-inv, (7,+,(G")) — 7, (lim-inv, G") — lim-inv, (7,(G")) — 0

where R lim-inv is the functor of an inverse system of abelian groups given
by R! lim"invr (A,,.) = COkeI‘ {0: H:Ar —"H:Ar}y 0((ar)reN) = (ar - p:+lar+l)r5N'

Proor. Consider the maps
. . ) -] o oo
lim-inv ¢" — [I7°6¢" — 176"
where 7 is the natural inclusion and
0((9.)ren) = (907071 )ren -
0 is not a simplical group map, but it gives an isomorphism of the left coset

simplicial set of J[ G* by the subgroup lim-inv, G with J] G", since p;] is
surjective. Thus 6 is a principal bundle map and gives rise to a homotopy long
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exact sequence

2, T,(lim-inv G") — ] 7,(G") L 11, =(G") 2,

where 6,((a,),.x) = (@, — T(PI*)a,.,),.n. Taking into account the formula for
R'lim-inv, the proposition is proved.

PROOF OF (3.4). Write G instead of SQG, and let F,G be the filtration
of G induced by the canonical filtration of QG. The adjunction map a: G—G
carries I',G to F,G and so induces a map of Lie algebras

(3.9) erG®,Q— grG,

which we will now show is an isomorphism. First note that the logarithm
map yields an isomorphism gr G ~ gr PQG, and that the latter is by (A, 2.14)
P(gr QG) ~ P(gr QG). Thus we have to show that gr G ®, Q = P(gr QG)
which is proved for any group in [23]. Here however things are simpler be-
cause G is free, so gr QG is the tensor algebra on gr, QG and so P(gr QG) =
L(gr, QG). Also grG® Q = L(gr,G Q Q), so the isomorphism in question
follows from the canonical isomorphism gr, G Q Q = gr, QG.
Consider the diagram

— 7,(87, 6) ® Q — T,G/T,.6) ® @ — 7(GIT.6) @ Q —

|- l l

— r,er.6 — n6/F.G) — nGFG —

where the vertical maps are induced by «, where the tensor product is over
Z and the top row is exact since Q is flat over Z, and where the first vertical
arrow is an isomorphism by (3.9). By induction on r and the five lemma, «
induces the isomorphism

(3.10) 7,(G/T,G) @ Q — 1 (G/F,G) *

By (38.7) the inverse system on the left is eventually constant,
so R'lim-inv, ﬂ'q(é/FrGA) = 0. As G ~lim-invG/F.G, (3.8) shows that
lim-inv,7 (G/F.,G) ~ nq(G). So taking the inverse limit of the isomorphisms
(3.10), we have 7,(G) ® Q ~ 7,(G), which proves (3.4).

The proofs of (3.5) and (3.6) proceed by the same method, filtering so that
the associated graded algebras are isomorphic, and passing to the inverse
limit by means of (3.7) and (3.8). The details are omitted.

We can now prove the hypotheses of (2.3) for the pair Q, §. Recall that
we are localizing (sGp), (resp. (SCHA),) with respect to maps f such that
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(7tf) Q, Q (resp. ©,S5f) is an isomorphism. Hypothesis (i) is therefore obvious.
For (ii) we must show that if f: A — B is a map in (scHA),, then 78/ is an
isomorphism if and only if 78/ ®, Q is an isomorphism. But this is true by
(3.3), which implies that 78A =~ (7SA4) ®, Q and similarly for B. For (iii) we
may take R = GW and & = the adjunction map «. By Kan’s work (see proof
of 2.1) if Ge Ob (sGp),, &: RG — G is a weak equivalence and hence a rational
homotopy equivalence, so it remains to show that 8: RG —8QRG is a rational
homotopy equivalence. Now RG is free and connected so (3.4) shows that 8
induces the isomorphism §: 7(RG) ®, Q — m(SQRG) given by 0 ® q) =
q-m(B), using the Q module structure of 7(SQRG) afforded by (3.3). How-
ever since Q Q, Q = Q, ¢ is isomorphic to the map 7(8) Q id: 7(RG) KR, Q —
T(SQRG) ®, Q, and therefore 5: RG — SQRG is a rational homotopy equiva-
lence. We have therefore verified the hypotheses of (2.3), so it follows that
the functors LQ and & in Figure 2 are equivalences of categories.

Remark 3.11. It is perhaps worthwhile to note that, with the exception
of the last paragraph, the results of this section generalize immediately to
the case where Q is replaced by a field K of characteristic zero. In fact all
the equivalences of Figure 2 to the right of Ho (scHA), are valid where
algebra, Lie algebra, etc., are taken over K. However LK and € are no longer
equivalences, the reason being that K ®, K K only if K = Q.

We now verify the hypotheses of (2.3) for the pair U, P using some
results from the following section. Again (i) is trivial, while from (3.2) we
have that a map f: A— B in (SCHA), is such that 7Gf is an isomorphism if and
only if #®f is an isomorphism, proving (ii). For (iii) we shall take R =
N*ELCN and ¢ to be the composite of the adjunction maps N*£CN — N*N —
id. If g is a reduced simplicial Lie algebra, then Ng is a reduced pg Lie
algebra, so by the properties of £ and € (B, § 6, Th. 7.5), L£CNg is a free re-
duced DGL and a: CNg — Ng is a weak equivalence. By (4.5) B: LCNg —
NN*E£CNg is a weak equivalence; it is now straightforward to verify that
§: Rg—g is a weak equivalence. Moreover by (4.4) N*€CNg = Rg is a free
reduced simplicial Lie algebra, so 8: Rg—@ ﬁRg is a weak equivalence by (3.5).
Therefore & and R satisfy (iii), and the functors LU and @ of Figure 2 are
equivalences of categories.

4. DG and simplical Lie algebras

In this section we shall retain our previous notation. However the
results are valid with Q replaced by any field of characteristic zero.
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Let
N:(sV)— (DG)

be the normalization functor from the category of simplicial vector spaces to
the category of DG vector spaces. N is given by (8.1) so

(4.1) (V) = H(NV) .
By Dold-Puppe [8], N is an equivalence of categories. We shall denote the
inverse functor by N~'. Recall that a simplicial vector space V may be re-

garded as a chain complex with differential d = I(—1)‘d; and that then NV
is a subcomplex of V.

Let V, W be simplicial vector spaces, and let V @ W be their dimension-
wise tensor product. If xe V,andye W,let s Q ye(V® W),., be the ele-
ment given by the Eilenberg-Zilber formula

(4.2) rQy = E(M) &ty V)8, 8, B R S, + v Sy

where (g, v) runs over all p, ¢ shuffles, i.e., permutations (g,, -« -, ¢£,, Y, + + +,¥,)
of {0, .-+, »p+ ¢ —1}such that ¢, < --- < pg,andy, < .-+ <y, and where
(¢, v) is the sign of the permutation. The following properties of & are well
known.

(1) deQ®y) =deQy + (=12 Qdy

(1)) 2QUR2D =Ry Q=

dgii) If T:vQ W—~>W®V is given by TxQ®y) =y Xz, then
TeQy) = (—1)"yQuif degax = pand degy = q.

(iv) If xe N,V and ye N, W, then s @ y € N,.,(V ® W) and the map of
chain complexes

NVQNW)— N(VRW)
r,y——r QY

is a chain homotopy equivalence (Eilenberg-Zilber theorem).

Let g be a simplicial Lie algebra and if zeg,, y g, define [[x, y]] € g,
to be the image of x @ ¥ under the bracket map g ® g —g. It follows easily

from (i)-(iv) that g together with d and [[, ]] is a DG Lie algebra and that Ng
is a sub-DG Lie algebra. We thus obtain a functor

4.3) N: (sLA) — (DGL) .

Similarly & defines the structure of a (commutative) pG algebra on NE
if R is a simplicial (commutative) algebra.
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PROPOSITION 4.4. The functor N (4.3) has a left adjoint N*. N* carries
free DG Lie algebras into free simplical Lie algebras.

Proor. If mis a DG Lie algebra, then considering it as a DG vector space,
we may form the simplicial vector space N—'m and the simplicial Lie algebra
LN~'m, where L is the free Lie algebra functor applied dimension-wise. If
zem (recall that we only consider homogeneous elements), then we let
N-'ze N7'mc LN~'m be the element corresponding to x under the identifi-
cation of m with NN-'mc N—'m. It is clear that if g is a simplicial Lie
algebra, then there is a one-to-one correspondence between DG vector space
maps @:m — Ng and simplicial Lie algebra maps 6: LN~m — g such that
O(N~'x) = p(x) for all xem. Let

N*m = LN~m/I ,

where I is the smallest simplicial ideal of LN—'m containing the elements
[[N~'%, N-'y]] - N[, y] for &, y e m. Then 6 induces a map N*m — g if and
only if ¢ is a Lie homomorphism. Hence there is a one-to-one correspondence
between DG Lie algebra maps @: m— Ng and simplicial Lie algebra maps
0: N*m—g and so N* is a left adjoint functor to N. Note that the adjunction
map B: m— NN*m is given by x— N~z + I,

We recall that a map f: X — Y of simplicial objects over a category of
universal algebras, in particular Lie algebras, is said to be free [14] if there
are subsets X, C Y, for each ¢ such that £ = | I, is stable under the de-
generacy operators of Y and such that Y, is the direct sum of X, and the
free algebra generated by the set Z,, f,: X, — Y, being the inclusion of a
summand. It may be shown that the class of free maps is closed under direct
sums, cobase extension and sequential composition (i.e., if X, —» X, — --- are
all free then X, — dir lim X; is free). Of course X is free if the map ¢ — X is
free where ¢ is the initial object.

Now let m be a free ng Lie algebra by which we mean that as a graded
Lie algebra m is isomorphic to L(V) where V is a graded vector space and
where L’ is the free graded Lie algebra functor (B, § 2). Define m™® to be the
subalgebra of m generated by V,,7 < k. Then m® is a sub-pDG Lie algebra of
m called the k skeleton. Let ¢;j € .J be a basis of V,; we wish to show that
the k-skeleton of m is obtained from the k& — 1 skeleton by attaching the e;.
Let S(k — 1)(resp. D(k)) be the DG vector space generated by an element y,_,
of degree k — 1 with dy,_, = 0 (resp. by an element y,_, of degree k — 1 and an
element x, of degree k with dz, = y,_, and dy,_, = 0) and let S(k—1) = D(k)
be the obvious inclusion. Then there is a cocartesian diagram
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V., L(S(k —1)) = V, L(D(k))

J b

m(k—l) [ > m(k)

in (DGL) where Y denotes direct sum, where a (resp. b) restricted to the j=*
factor of the direct sum is given by ay,_, = de; (resp. bz, = e;, by,_, = de;).

Since N* is a left adjoint functor it will commute with direct sums, co-
base extension, etc., so N*m will be free if we know that N*L‘S(k — 1) —
N*L*D(k) is free. Let A = A(k — 1)/A(k — 1)" (standard k& — 1 simplex with
boundary collapsed to a point), let B = A(k)/V(k, 0) (standard % simplex with
all faces but the last collapsed to a point) and let A — B be the map induced
by the inclusion of the last face. If X is a pointed simplicial set let Q(X) be
the simplicial vector space generated by X with basepoint identified with 0.
Then it is easy to see that N='S(k — 1) — N—'D(k) is isomorphic to QA — QB.
Since N*L* =~ LN, the map N*L°S(k — 1) - N*L*D(k) is isomorphic to
LQA — LQB. But the latter is clearly free, the subsets %, = LQB, being
given by the elements of B, which are not in A,. Therefore we have shown
that N*m is free and the proof of the proposition is complete.

PROPOSITION 4.5. Let V be a DG vector space and define maps of graded
Lie algebras

LYHV) - H(L'V) = n(LN-V)

as follows. a is the unique graded Lie algebra map extending the map
induced on homology by the inclusion of V in L°V. As NLN~V is a DG
Lie algebra, the map V— NLN—'V given by x — N~'x extends to a map of
DG Lie algebras L’V — NLN~'V, and b is the induced map on homology.
Then the maps a and b are isomorphisms.

Proor. Consider the diagram

LYHV) —* HL'V) ——— 2(LN-'V)

i”p H(i)”H(p) n(i)”ﬂ(P)
’ bl

T(HV) ——— H(T°V) ———— n(TN-'V)

where T (resp. T') is the tensor algebra functor from DG (resp. simplicial)
vector spaces to DG (resp. simplicial) algebras, where a’, b’ are defined simi-
larly to a and b, where ¢ is the inclusion of a DG or simplicial Lie algebra into
its universal enveloping algebra, and where p is the canonical retraction
(B, 2.2) of the tensor algebra onto the free Lie algebra given by
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0@® - Ra,) = %{xl,[---,xnn :

o’ and b’ are isomorphisms by Kiinneth and Eilenberg-Zilber, hence a’ and b’
being retracts of isomorphisms are also isomorphisms, q.e.d.

THEOREM 4.6. If m isa free reduced DG Lie algebra, then B: m— NN *in
18 @ weak equivalence.

Proor. Let I',N*m be the lower central series filtration of N*nt. As
[[,N*m, I ,N*m]c T, ,N*m, it follows that [[NT,N*m, NI ,N*m]|c
NT,,,N*m and hence that SI'YmcC NT,N*m, where I'? is the lower central
series filtration in the graded sense for m. Consequently there is an
induced map gr 8: gr (m)— N gr(N *m), where we have used that Nis exact. By
(4.4) N*m is free so gr (N * m) =~ L(N *my),,; similarly gr m = L‘(in,,). But gr 58,
induces an isomorphism m,, —— N(N *m),,; to see this, note that the canon-
ical maps m — m,, and m — N(N *m),, are both universal for pG Lie algebra
maps from m to abelian DG Lie algebras, and hence are isomorphic. Thus gr 8
is of the form L*V — NLN~-'V which by (4.5) is a weak equivalence. By the
five lemma and induction, one sees that

H,(m/T",m) — 7, (N*m/T,N*m) .

For large enough r, (I',m), = 0 as m is reduced, and 7 (I, N *mt) = 0 by (3.5) so
H,(m) = 7, (N*m) and the theorem is proved.

It is now possible to check that the hypotheses of (2.3) hold for the
functors N* ond N. Hypothesis (i) is trivial and (ii) follows from (4.1). For
(iii) we take R = £C and & = the adjunction map «. By (B, 7.5) & is always a
weak equivalence and the formulas for £ and € show that £Cm is free and
reduced if m is reduced. Thus by the above theorem g: Rm — NN*Rm is a
weak equivalence and (iii) holds. Therefore by (2.3) we have that the func-
tors N and LN* in Figure 2 are equivalences of categories.

Remark. One may show by essentially the same arguments used above
that the normalization functor from the category of reduced simplicial commut-
ative algebras to the category of reduced DG commutative algebras induces
an equivalence of the corresponding homotopy categories. The filtration I', is
replaced by the powers I" of the argumentation ideal which become higher
connected with » by the same argument as (3.6)(see also [25]). Again the
really key point is the fact that the symmetric algebra SV is a retract of TV
and this uses essentially the fact that Q has characteristic zero.
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5. The Whitehead product

In this section we prove the part of Theorem I relating the rational
homotopy Lie algebra of a space with the homology of the associated DG Lie
algebra.

Let X be a 1-connected pointed space and let o be the composition
H
(X)) = 7,(0X) 2 H(QX, Z)

where 0 is the boundary operator for the path space fibration QX — EX — X,

and where H is the Hurewicz homom\orphism. Samelson [26] has proved the
formula

plu, v] = (=1)[pu, pv] if p=degu,
where the bracket on the left is the Whitehead product and on the right is
the bracket associated to the Pontrjagin product on H,(QX,Z). Milnor-
Moore [20, appendix] show that H induces an isomorphism of 7(QX) ® Q with

the primitive Lie algebra of the Hopf algebra H,(QX, Q). Combining these
results with the definition of #X given in § 1 we have

PROPOSITION 5.1. There is a canonical graded Lie algebra isomorphism
2(X) — Im {1(QX) ®, Q — H,(2X, Q)} = PH,(QX, Q).

PROPOSITION 5.2. If K is a 2-reduced simplicial set, then there is a
natural commutative diagram

2(GK) - 7(ZGK)

|= ¢|=

Q| K|) -5 Ho | K|, Z)

where h is the simplicial Hurewicz homomorphism and { is an isomorphism
of algebras for the Q product in w(ZGK) and the Pontrjagin product in
H,(Q| K|, Z).

PrOOF. Werecall that if K is a Kan complex with basepoint , then the
Hurewicz homomorphism A: 7(K)—w(ZK) on the simplicial level is the map on
homotopy induced by x+— a — sy(x) if degx = n. It is easily seen that & is

compatible with the topological Hurewicz homomorphism in the sense that
the diagram

nX) - H(X,Z)

e |

7(Sing X) — 7(Z Sing X)
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is commutative, where 6 is the isomorphism induced by the map which sends
a map u: A(q)/A(g)" — Sing X into the composition S? —2 | A(q)/A(q)* Il—u'>
| Sing X | X , where 7 is any orientation-preserving homotopy equivalence.

Using this compatibility, the proposition reduces to showing that there is a
natural commutative diagram

2(GK) —~  rZGK)

= c|=

7(Sing O | K |) — 7(Z Sing 0 | K )

where { is an algebra isomorphism for the & products coming from the maps
t:GK X GK—GKandv: Q| K| x Q| K|— Q| K| furnished by group multi-
plication and composition of paths. Therefore all we have to do is define in a
natural way a homotopy equivalence of SingQ |K| and GK which up to
homotopy is compatible with g and v.

At this point we remark that EX is the space of paths in X ending at
the basepoint, and that the map EX — X sends a path into its initial point.
Then composition defines a right action of QX on EX. Let GK—K x.GK—K
be the universal principal GK bundle so that K x.GK is acyclic. The geo-
metric realization functor carries this fibration into a principal fibration with
topological group | GK | (at least in the category of Kelley spaces which is
sufficient for our purposes [9, Ch. III]). Hence there is a commutative diagram

Q|K|— E|K| —|K|

L Lo

|GK| — | K x.GK|— | K|

where ¢ exists by the covering homotopy theorem using the contractibility of
E| K|, and where p is induced by ¢. As |K x.GK| is contractible, ¢ and
hence p is a homotopy equivalence. Since we have arranged groups to act to
the right for principal bundles, it 1s fairly easy to see that p is a map of H-
spaces up to homotopy, so taking a homotopy inverse of p we obtain a homo-
topy equivalence GK — Sing Q | K |, which up to homotopy is compatible with
t and v. This completes the proof of the proposition.

PROPOSITION 5.3. If A is a simplicial CHA, let i: PA— A be the inclu-
sion map, and let j: SA — A be the map jo = 0 — 1. Then the diagram
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XD, r,(84)

ch(g)A) _

N
HONEIE)
T A
18 commutative for ¢ > 0. Moreover () is injective.

Proor. m(7) is injective because there is a canonical retraction of a CHA
onto its primitive subspace (A, 2.16). To show the diagram commutative, we
must show that if an element of 7, (PA) is represented by x € (NPA),, then x
and e — 1 differ by a boundary in NA. Let S’ = A(q)/A(q)", let o be the
canonical ¢g-simplex of S¢ and let QS? be the reduced chains on S¢. Then
there is a unique map of scHA’s 7QS* = ﬁLQS ?— A which sends ¢ to . By
naturality we may assume A = TQS’ and = = ¢. But by (3.6) 7(7QS?) =
7(TQS?), which by Kiinneth is a tensor algebra on the class of ¢. In partic-
ular one sees that if I is the augmentation ideal of TQS?, then x,I* = 0.
Therefore (e’ — 1) — g € (I?), is a boundary and the proposition is proved.

Combining these propositions we have the following isomorphism of funec-
tors from §, to (GL):

(| K|) = Im{nm(Q | K|) ® Q=—— H,(Q| K|, Q)} (56.1)
~ Im {7(GK) ® Q — 7(QGK)} (5.2)
~ Im {n(@QGK) EiCR n(QGK)} (3.4), (3.6)
~ 1(PQGK) (5.3)

~ H(N9QGK) .
Therefore if \ is the composition J\NIQ’(LQ)CNJ(E’2 Sing)~, we have a canonical iso-
morphism of functors #X ~ )\ X from HoyJ’, to (GL) as asserted in Theorem I.

6. The coproduct on homology

In this section we prove the part of Theorem I relating the rational
homology coalgebra of a space X with the homology of the DG coalgebra
associated to X by the equivalences in Figure 2. The method is to obtain a
formula (6.5) for the rational homology coalgebra of a reduced simplicial set
K in terms of QGK.

We begin by reviewing properties of the adjoint functors G and W be-
tween the categories &, of reduced simplicial sets and (sGp) the category of
simplicial groups (see [12], [4]). We adhere to the convention adopted in
Appendix B that a group acts to the right of a principal bundle; this causes
only minor differences in the formulas used here with those of [12] and [4].

If ¢: E — K is principal fibration of simplicial sets with simplicial group
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G and K is reduced, then a lifting function p: K — E is by definition a section
of ¢ which commutes with all degeneracy operators and with all faces but d,.

Defining 7: K, - G,_,, ¢ > 0 by d,0x = (od.x)Tx, one sees that 7 satisfies the
formulas

8T = TS; 4, 1 =0
6.1) s« = the identity in G, if xe K,
d,T = td;y, 1>0

td.x = (zdx)(d,cx) .

Such a map 7z: K — G will be called a twisting function and (K, G) will
denote the set of twisting functions from K to G. J(K, G) is a functor con-
travariant in K € Ob §, and covariant in G € Ob (sGp) and the functors G: §, —
(sGp) and W: (sGp) — S, are defined so that there are natural isomorphisms

(6.2) Homg (K, WG) ~ (K, G) = Hom,, (GK, G) .

If 7: K—(@ is a twisting function and K is a Kan complex, then 7 induces
a homomorphism n,K — 7,_,G which will be denoted by #. If z arises from a
principal G bundle E — K with a lifting function, then 7 ~ 0: 7, K — 7,_,G,
the boundary operator in the homotopy long exact sequence.

If A, B are simplicial abelian groups, and A is reduced, then by a twisting
homomorphism t: A — B we mean a twisting function such that z: A,— B,_,
is a group homomorphism. For example if z: K — G is a twisting function,
then 7 induces a twisting homomorphism 7’: QK — G., ®zQ = I/I*, where QK
is the free simplicial Q module generated by K with basepoint set equal to 0,
and where [ is the augmentation ideal of QG.

PROPOSITION 6.3. Let t: K— GK be the canonical twisting function com-
ing from (6.2). Then the twisting homomorphism t': QK — I/I* induces an
isomorphism ' 7, (QK) — w,_(I/T?) for n > 0.

Proor. If A is a reduced simplicial abelian group, then there is a canon-

ical exact sequence
6

0 QA EA A 0

defined as follows. (EA), = A, andd;a =d;.,a,s,d = s;,, a whereif a e A,.,,
then @ is the corresponding element of (EA),. 6: EA— A is given by 6a = d,a
and QA = Kerd. Note that if p: A — EA is given by pa = (s,@)~, then p is a
lifting function and the associated twisting homomorphism is given by 7,0 =
(@ — sidya)”. As EA is contractible 7,: 7,4 —— 7, QA for n > 0. Taking A
to be QK we have the commutative diagram
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QQK ——— III*
(4

where (@) = 7’a is an isomorphism. In effect (GK ), is the free group gen-
erated by the elements 7o and (QQK), is the free Q module generated by the
elements & as « runs over the set K,,, — s,K,. Therefore as ¢ and 7, induce
isomorphisms on homotopy so does z’, and the proposition follows.

PROPOSITION 6.4. Let A, A’ and B be simplicial abelian groups with
A reduced, and let 7: A— A" be a twisting homomorphism. Then
TQRdArAQXB— A QRB and d,Q7: BRQQA—BR A’ are twisting homo-
morphisms and we have the formulas

(Tt @ d)(a@Qb) = Ta @b
(do®r)(b@a):(—1)”b@m 1fdegb =7p.

Proor. The fact that d, @ 7 is a twisting function is straightforward.
On the other hand if b€ B, and a € A, then with the notation of (4.2)

dR)ORQa) = E(W) e(tt, V)des,, + -+ 8,0 @ T8y, -0 - 80

v1=0

By (6.1) zs,, + -+ 8,0 = 0if ¢, = 0 and Suy—1 *** SuaTa if g, > 0, so
(do ® T)(b @ CL) = E(#,,,) 6(#; D)S»q—q e 8,,2_11) ® S;lp—-1 e 8#1_10;
v1=0
=(-1)b@va.

The proof of the formula for 7 ® d, is similar, q.e.d.

We shall denote the map on homotopy (d,®Q7)™: 7,(A® B) —»7,_(A X B
by 1 @ 7 and similarly denote (7 @ d,)~ by #® 1. Then from the proposition
we have

CRNaR®P =7taQB
IXNBERa)=(-1)BRTa
if aem,A,Bern,B, where aQ B e ,,,(AQ B) is the class represented by a®b
if a represents « and b represents 8. Similarly if z,: A — A’ and 7,: B— B’
are twisting homomorphisms %, ® 7,:7,(A ® B) — 7,_,(A’ ® B’) is the
homomorphism induced by a @ b+— 7,da ® d,z,b so that (7, ® %)@ ® B) =
(—1)rTa Q@ 7.8 if dega = p.

PROPOSITION 6.5. Let 7: K — G be a twisting function, let I = QG be the

augmentation ideal of QG, and let t': QK — I/I* be the twisting homomor-
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phism given by v'x = (x — 1) + I* if x ¢ K. Then the following diagram is
commutative

7. (QK) —= > T, (1))

(6.6) 17TnA - - la
QK ® QK) — 2 7, (I @ IIT%) —2 7, (") ,
where A 1s the map induced by the diagonal K— K x K, m s induced by the

multiplication in gr QG, and where 6 is the boundary homomorphism for
the exact sequence

0 I I I/I? >0 .

ProOOF. Leta e 7,(QK) berepresented by an element z =Y a2 € N(QK).,,
where x runs over the elements of K, different from s7(x)(x = basepoint of
K) and the a, are rational numbers. By definition the elements of K,_,
different from sy~'(x) form a basis for (QK),_,, so d,;z = >a.d;x =0 for
J =z 0 implies that for any y # s{~'(x), the sum of the a, with d,x = y is zero.
Consequently
(6.7) 2 a(td;x —1) =0 inT, 7>0.

The image of a in 7, _,(I*/I°) obtained by going on the lower path of (6.6)
is represented by
(6.8) > a(T'dx)(dT'x) .

To calculate the image by the upper path note that

o =) a,(tx — 1) + I*e (I/I},_,
is by (6.7) an element of N(I/I*®),_, congruent mod I® to z’z. Thus d,w repre-
sents 07’a. By (6.1) we have

dw = Y a[(tda)(zdx) — 1] + I* .
Using the identity
'y —1l=—@ -1+ @wW—-1)+ (x—1?2— (x — 1)(y — 1) mod I*
in any group algebra and (6.7) we have
dw = ) a,[(tT'd2) — (T'dx)(T'dx)] + I*
= — Y a,(T'dx)d,c'x) + I*

since 7'd,x = 7'dx + d,v’x. This is the negative of (6.8) so the proposition is
proved.
We shall need the following Whitehead-type theorem for simplicial cHA’s.



230 DANIEL QUILLEN

Recall that a cHA is said to be free (A, 2.11) if it is isomorphic to the com-
pleted universal enveloping algebra of a free Lie algebra.

PROPOSITION 6.9. Let ¢p: A— B be a map of reduced simplicial CHA’S
which are both free in every dimension. Then the following assertions are
equivalent:

(1) gr, o is a weak equivalence

(ii) Po is a weak equivalence.

Proor. Consider the spectral sequence of homotopy groups which arises
from the filtration on A4 induced by the standard filtration on A. Thisis a

decreasing filtration so if we index correctly we get a homological type
spectral sequence

Ezll = n.erq(grq g)A) = n-erq(g)A) dr: E;r -

P—1,q+r—1 *

Using the fact that A is dimension-wise free, that A is reduced, and (4.5) one
sees that this spectral sequence lies in the quadrant ¢ > 0, p = 0. Hence the
inverse system 7,(PA/F,PA) is eventually constant and so by (3.8) the
spectral sequence is convergent.

Consider the map E;,(p) induced by @ from this spectral sequence to the
similar one for B. As E*p) = n(Lgr, p) = L°(m(gr, )), one sees that if gr, ¢
is a weak equivalence, then so must $¢ by the convergence of the spectral
sequence. For the converse, note that if E?(p) is an isomorphism for p < k,
then so is E(p) for p < k and all q. Consequently by Zeeman’s comparison
theorem for spectral sequences, if P is a weak equivalence, E? () must be
an isomorphism for all p and q and therefore gr, ¢ is a weak equivalence, g.e.d.

We are now in a position to prove the principal result of this section. Let
A be a reduced scHA which is free in each dimension, and let I be the aug-
mentation ideal of A. Define

=0
(6.10) H,(A) = 7? e Z> o

and let o: Hq(A)—:—»nq_,(I/IZ) be 0 for ¢ = 0 and the identity for ¢ > 0.
Define a comultiplication A on H,(A) by requiring the diagram

H,(A) — T i(I)17)
(6.11) lA 1(9
vo HiA) @ H, (A) 728 @15 7 (1) @ s (I/]Y) — 7, (TT)

to be commutative where (as usual because o is of degree —1)(c R o)(uQv) =
(=1)?(cu @ ov) if p = degu, where m is induced by the isomorphism
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I/I*Q I/I* — I*/I* (since A is free in each dimension) given by multiplication,
and where 0 is the boundary operator for the exact sequence 0— I*/I°*—I/I°*—
I/I* — 0. It will be shown that A is coassociative and cocommutative in the
proof of the following.

THEOREM 6.12. The functor A+ H,(A) just defined on the full sub-
category of (SCHA) consisting of dimension-wise free A extends uniquely up
to canonical isomorphism to a functor

H: Ho (scHA), — (GC) .
Moreover if H: Hoy &, — (GC) 1is the extension of the rational homology co-
algebra functor K— H,(K, Q) then there is an isomorphism of fumctors
H =~ H(LQ)G.

Proor. We recall that H,.(K, Q) = 7,(QK) with the comultiplication
defined to be the composition

7,(QK) ™2 7,(QK ® QK) £ @1, 7(QK) ® 7,(QK) ,

where Av=2 @« for « € K, and where & is the (Kiinneth) isomorphism induced
by the & operation. By (6.3) we have a canonical isomorphism

H,(K, Q) ~ 7,(QK) —— 7, _(I/I) == H,(QGK) forn > 0.
By (6.5) and (6.11) we therefore have a canonical isomorphism of functors
from §, to (Gc)
H.(K, Q) = H,(QGK) .

This formula shows that H,(A) is cocommutative and coassociative if A4 is of
the form QGK for some K. However given a dimension-wise free scHA B,
there is an adjunction map ¢: A — B, where 4 = QGWSB, which by (3.4)
induces an isomorphism for the functor § and hence also for 9 by (3.2). Thus
by (6.9), grp is a weak equivalence so H*(A);»H*(B) as graded co-
algebras. Thus H,(B) is an object of (Gc) for any reduced dimension-wise
free sCHA B.

H: Ho (sCHA), — (GC) is unique up to canonical isomorphism because for
any B e Ob (scHA), we must have

H(YB) =~ H(vQGWSB) ~ H,(QGWSB) ~ H,(WSB, Q) .

However by the universal property of v we can use these isomorphisms to
define H. It is then clear that

H(LQ)G("K) = HWQRGK) ~ H (WSQRGK, Q) ~ H,(K, Q) = HOK) ,
and hence by (2.2) that H(LQ)G ~ H, proving the theorem.



232 DANIEL QUILLEN

PROPOSITION 6.13. There is a canonical tsomorphism of functors from
(DGC), to (GC)

H,(C)~ H,(UN*£C) .

Proor. If m is a free reduced DGL we may define a graded coalgebra
H,(m) by imitating the definition of H,(A), namely H,(m) = H,_,(gr, U’(m))
with A induced by

d: H,(gr, U?(m)) — H,(gr, U*(m))
via a diagram of the form (6.11). Similarly if g is a free reduced sLA we may
define H,(g) =~ 7,_,(gr, U(g)), etc. Itis clear that there is a canonical coalgebra
isomorphism
(6.14) H,(9) = H,(U()) -

Let B’: U¢(m)— NU(N *m) be the obvious extension of 8: m— NN *m and
filter NU(Nm) by N applied to the powers of the augmentation ideal. Then
B’ is a map of filtered DG algebras. Moreover as in the proof of (4.6) one sees
that gr 8’ is a weak equivalence. Therefore gr, 8’ induces a coalgebra iso-
morphism
(6.15) H,(m) — H,(N*m) .

Finally let C e (pGc),, let 7: C — £C be the canonical twisting function,
(B, 6.1) so that

(6.16) dt +td + m(z Qr)A =0,
where m denotes multiplication in U(£C). It is an easy consequence of this
formula and the multiplicative isomorphism U(£C) = T(QC) that ¢ induces
as isomorphism

H,(C) — H,_(gr, U*(£C)) = H,(£C) .
Moreover comparing (6.16) and the diagram (6.11) which has been used to
define A on H,(£C), one sees 7 induces a canonical coalgebra isomorphism
(6.17) H.(C) = H.(LC) .

Combining (6.14), (6.15), and (6.17) the proposition is proved.
The part of Theorem I about homology coalgebras can now be proved.
The isomorphism

H,(X, Q) = H.(Sing X, Q) = H,(E;Sing X, Q)

shows that the H functors on Hoq, I, and Hog, &, are isomorphic with respect
to the equivalences of Figure 2. Theorem 6.12 shows that the H functors on
Hoq §, and Ho (scHA), are isomorphic, while (6.13) shows that the H functors
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on Ho (scHA), and Ho (DGC), are isomorphic. Thus the H functors on Hoq I,
and Ho (DGC), are isomorphic (in fact canonically isomorphie). The proof of
Theorem I is now complete.

ParT I1.

The purpose of this part is to improve the equivalence of categories of
Theorem I to an equivalence of homotopy theories. We use the axiomatization
of homotopy theory presented in [21], which will be denoted [HA] in the follow-
ing. A review of the basic definitions and theorems of [HA] is given in § 1.
Theorem II is proved in §§ 2-5. Some applications are presented in § 6.

All diagrams are commutative unless otherwise stated.

1. Closed model categories and statement of Theorem II

We begin by reviewing some of the definitions and theorems of [HA, Ch. I].

Definition. A closed model category is a category C endowed with three
distinguished families of maps called cofibrations, fibrations, and weak equiv-
alences satisfying the axioms CM1-CM5 below.

CML1. C is closed under finite projective and inductive limits.

CM2. If fand g are maps such that gf is defined, then if two of f, g, and
gf are weak equivalences, so is the third.

Recall that the maps in C form the objects of a category AC having
commutative squares for morphisms. We say that a map fin C is a retract
of g if there are morphisms ¢: f— g and +: ¢ — f in QC such that ¢ = id,.

CM3. If fis a retract of g and ¢ is a fibration, cofibration, or weak equiv-
alence, so is f.

A map which is both a fibration (resp. cofibration) and weak equivalence
will be called a trivial fibration (resp. trivial cofibration).

CM4. (Lifting). Given a solid arrow diagram

A— X

g
) i s
B—Y
the dotted arrow exists in either of the following situations:
(i) < is a cofibration and p is a trivial fibration,
(ii) < is a trivial cofibration and p is a fibration.
CM5. (Factorization). Any map f may be factored in two ways
(1) f = pt where 1 is a cofibration and p is a trivial fibration,
(ii) f = pi where 7 is a trivial cofibration and p is a fibration.
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We say that a map ¢: A — B in a category has the left lifting property
(LLP) with respect to another map p: X — Y and p is said to have the right
lifting property (RLP) with respect to ¢ if the dotted arrow exists in any
diagram of the form (x).

Suppose now that C is a closed model category.

PROPOSITION 1.1. The cofibrations (resp. trivial cofibrations) are pre-
cisely those maps having the LLP with respect to all trivial fibrations (resp.
Jibrations.) The fibrations (resp. trivial fibrations) are precisely those maps
having the RLP with respect to all trivial cofibrations (resp. cofibrations).

PRrRoOF. CM4 says that a cofibration has the LLP with respect to any
trivial fibration. Conversely if f has the LLP with respect to all trivial fibra-
tions, and if f = p1 is as in CM5(i), then f has the LLP with respect to p, so f
is a retract of ¢ and therefore f is a cofibration by CM3. The other possi-
bilities are similar, q.e.d.

COROLLARY 1.2. The class of fibrations (resp. trivial fibrations) is closed
under composition and base change and contains all isomorphisms. The
class of cofibrations (resp. trivial cofibrations) is closed under composition
and cobase change and contains all isomorphisms.

An object X of C is called cofibrant if the map ¢ — X (¢ = initial object
of C which exists by CM1) is a cofibration and fibrant if X — e (e = final object)
is a fibration. If A\ A4,in;: A— AV A,1 = 1,2, is the direct sum of two
copies of A, we define a cylinder object for A to be an object A, together with
maps 0;: A— A;,©=0,1, and 0: A, — A such thato, + 0: AV A— A, isa
cofibration, o is a weak equivalence and 06, = id,, + = 0,1. Here 9, + 8, denotes
the unique map with (9, + 9,)in; = 0,_,. If f, g Hom (A, B), a left homotopy
from f to g is defined to be a map h: A, — B, where A, is a cyclinder object for
A, such that ko, = fand ho, = g. f is said to be left homotopic to g if such a
left homotopy exists. When A is cofibrant, “is left homotopic to” is an equiv-
alence relation (Lemma 4, § 1, loc. ¢it.) on Hom (A4, B). The notions of path
object and right homotopy are defined in a dual manner. If A is cofibrant and
B is fibrant, then the left and right homotopy relations on Hom (A4, B) coincide
and we denote the set of equivalence classes by [A4, B]. We let zC,, denote the
category whose objects are the objects of C which are both fibrant, and cofibrant
with Hom,, . (4, B) = [A4, B], and with composition induced from that of €.

The homotopy category HoC of a closed model category € is defined to be
the localization of € with respect to the class of weak equivalences. The
canonical functor v: ¢ — Ho € induces a functor ¥: #C,; — Ho €, and we have
the following result (Theorem 1, § 1 and Prop. 1, § 5 loc. cit.).
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THEOREM 1.3. (a) Ho C exists.
(b) ¥:7C,; — Ho C is an equivalence of categories.
(¢) If A is cofibrant and B is fibrant, then

v: [A, B] —> Homye (YA, YB) .

(d) v(f) ts an isomorphism if and only if f is a weak equivalence.

If the closed model category C is pointed, i.e., initial object ~ final object,
then in §§ 2-3 loc. cit., we constructed loop and suspension functors and
families of fibration and cofibration sequences in the category Ho €. Such
extra structure on the homotopy category is part of the homotopy theory of
C. For the purposes of the present paper we shall define the homotopy theory
of C to be the category Ho C together with the extra structure of loop and
suspension functors and the families of fibrations and cofibration sequences.

Then we have the following criterion for an equivalence of homotopy theories
(8 4, loc. cit.).

THEOREM 1.4. Let C, and C, be closed model categories and let

F
G =G
G

be a pair of adjoint functors (upper arrow always the left adjoint functor)
such that

(i) F carries cofibrations in C, into cofibrations in C, and G carries
fibrations in C, into fibrations in C,.

(ii) If f: A— B is a weak equivalence in C, and A and B are cofibrant,
then F(f) s a weak equivalence in C,.

(iii) If g: X — Y s a weak equivalence in C, and X and Y are fibrant,
then G(g) is a weak equivalence in C,.

(iv) If A s a cofibrant object in C, and X s a fibrant object in C,, then
a map f: A— GX is a weak equivalence if and only tf the corresponding
map f*: FA— X is a weak equivalence.

Then the derived functors (I, § 2, 2.3),

LF
HoC, ——HoC,
RG

are equivalences of categories. Moreover if C, and C, are pointed, then this
equivalence preserves the loop and suspension functors and the families of
fibration and cofibration sequences.

THEOREM II. On each of the categories S,, (SGp),, (SCHA),, (SLA),, (DGL),,
and (DGC), it 18 possible to define closed model category structures in such a
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way that

(a) the families of weak equivalences are precisely as defined in Part
I §2,

(b) theadjoint functors in Figure 1, Part 1, § 2, satisfy the conditions
of 1.4. Therefore the functors of Figure 2 to the right of Hoq &, are equiv-
alences of homotopy theories.

This will be proved in §§ 2-5. The precise definitions of cofibrations, etc.
for each of the categories will be given as they are treated; let us point out
here that they are the natural ones.

It is unfortunate that the category &, of simply-connected spaces does
not satisfy the axioms for the trivial reason that it is not closed under finite
limits. However with suitable definitions the remaining axioms hold. This
will be discussed in § 6.

2. Serre theory for simplicial sets

Let S be a multiplicative system in Z. An abelian group A will be called
S-divisible, S-torsion, S-torsion-free, or S-uniquely-divisible if the canonical
map A—S~'A is surjective, zero, injective, or bijective, respectively. In this
section we construct a closed model category consisting of simplicial sets
whose associated homotopy theory will be Serre mod € theory [27] where € is
the class of S-torsion abelian groups.

Let & be the category of simplicial sets. It is a closed model category
[HA, Ch. II, § 3] where the cofibrations are the maps which are injective (in
each dimension), where the fibrations are the fiber maps in the sense of Kan,
and where the weak equivalences are the maps which are carried into homo-
topy equivalences by the geometric realization functor. The same is true for
the category &, of pointed simplicial sets. If X is a pointed simplicial set, we
define its ¢ homotopy group (set if ¢ = 0) 7,X to be the g™ homotopy group
of its geometric realization or equivalently (see [13]) the Kan homotopy group
7, Y where Y is a Kan complex and there is a weak equivalence X — Y.
Using the equivalence of the homotopy theories of spaces and simplicial sets
[19], [13], we have the following result of Serre.

PROPOSITION 2.1. Let f: X — Y be a map of 1-connected pointed simpli-
ctal sets. The following are equivalent:

(i) S™'r,f: S™'r, X — S~'1, Y

(ii) S™H,f:S"'H,X — S—'H,Y

(dii) f* HXY, A) — H *(X, A) for all S-unmiquely-divisible abelian
groups A.
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A map satisfying these conditions will be called an S-equivalence. Let r
be an integer >1. A simplical set X will be called r-reduced if its (r — 1)-
skeleton is reduced to a point. Let &, be the full subcategory of & consisting
of the r-reduced simplicial sets.

Suppose 7, S given, and that S = {1} if » =1. Let S(r, S) be the following
candidate for a closed model category: S(r, S) is the category S, and its weak
equivalences and cofibrations are the S-equivalences and injective maps in §,.
The fibrations in &(r, S) are (as they must by 1.1) those maps in §, with the
RLP with respect to the injective S-equivalences in §,.

THEOREM 2.2. &(r, S) s a closed model category.

Proor. The axioms CM1, CM2, CM3, and CM4 (ii) are clear. To prove
CM5 (i), let f: X — Y be a map in &, and let X -2 Z-2. Y be a factoriza-
tion of fin & where 7 is a cofibration and p is a trivial fibration. Give Z the
basepoint i(x,) where z, is the basepoint of X, let E,.Z be the Eilenberg sub-
complex of Z consisting of .,those simplices of Z with their (» — 1)-skeleton at
the basepoint, and let X LN E.Z 7, Y be the maps induced by ¢z and p. It
is clear that 4’ is a cofibration in §(r, S). It is also easily seen that p’ has the
RLP with respect to A(q)' =— A(Q) ¢ = 0, hence p’ is a map in §, which is a
trivial fibration in & and a fortiort in S(r, S), proving CMS5 (i). Notice also
that if f is a trivial fibration in §(, S), then applying CM2 to f = p'7’ we find
that ¢’ is an S-equivalence, whence ¢’ has the LLP with respect to f, f is a
retract of p’, and so f is a trivial fibration in §. Hence f has the RLP with
respect to cofibrations, which is CM4 (i). We have thus proved CM4 and CM5 (i)
as well as the following.

PROPOSITION 2.3. The trivial fibrations in S(r, S) are precisely those
maps in S, which are trivial fibrations in S.

The proof of CMS5 (ii) is in two steps the first of which is the case where
S—'z,f is surjective. This uses the theory of minimal fibrations [3].

PROPOSITION 2.4. The following conditions are equivalent for map f in
S,:

(i) fisa fibration in S(r, S) and S~'x,f is surjective

(ii) f1s a fibration in & and w, Ker f is S-uniquely-divisible (Ker f =
fiber of f).

Proor. (ii) = (i). First note that =, f is surjective because of the exact
homotopy sequence for f and the fact that Ker f is r-reduced. If S = {1}, the
result is clear, so we may assume r = 2. By the theory of minimal fibrations,
f may be factored, f = pq, where ¢ is a trivial fibration and p: X— Y is a
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minimal fibration. p in turn may be factored into its Postnikov system

—_— XX e X, =Y

X =lim_X,
where p, is a minimal fibration with fiber K(4, n), A = n, Ker »p ~ =, Ker f.
Let
Pp(A, n): L(A, n) — K(A,n + 1)

be the fibration which represents the following morphism of functors on §:

. __ [normalized n-cochains on X
Cr(X, 4) = {With values in A }

15 lcoboundary

nt1 __ [normalized n-cocycles on X
ZmiX, 4) = {With values in A }

Then if Z is 1-connected, we have
H"(Z,A) = [Z, K(A,n + 1)]
(1) -, {isomorphism classes of minimal } ,
fibrations with base Z and fiber K(4, n)
where the last isomorphism is given by sending a map u to the induced fibra-
tion u*p(A, n). It is clear that each X, is r-reduced hence 1-connected since
r = 2, and hence p, is induced from ¢(A, n) where A is S-uniquely-divisible.
To show that f has the RLP with respect to trivial fibrations in §(r, S), it
suffices to show that ¢(A, n) does. Butif h: U — V is an injective S-equiv-

alence, h*: C*(V, A) — C*(U, A) is a surjective weak equivalence of cochain
complexes, hence

CHV, A) 0 OMU, A) X gussig,n Z7H(V, A)

is surjective, and so @(A, ») has the RLP with respect to # by the definition
of . This proves (i). To finish the proof of 2.4 we need

LEMMA 2.5. If fis a map in S, such that S~'w, f is surjective, then f =
Pt where 1 is a trivial cofibration in S(r, S) and where p satisfies (ii) of 2.4.
ProOF OF LEMMA. It suffices to factor f = pi in S, where ¢ is an S-

equivalence and p satisfies (ii), for then if we write ¢ = qj using CM5 (i), j is
a trivial cofibration in $(r, S) by CM2 and so f = (pq)j is the factorization
required for the lemma.

Factor f = pt in S where 7 is a weak equivalence and p: X — Y is a mini-
mal fibration with fiber F. If S = {1} then 7,p = =, f is surjective so 7, F' = 0
for ¢ <r. As pis minimal, F is r-reduced and so X, which is a twisted carte-
sian product of Y and F, is r-reduced. Then f = pi is a factorization of f in
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S, where ¢ is a weak equivalence and p satisfies (ii), and we are done. If S =
{1}, then » = 2 and we construct by induction a ladder diagram

Pn

— Xn—) Xn—l_’"'—_”Xr-—l——’Y

(2) 1:'” jjn_l ljr_l ]|

— W, W — e — W, ==Y

where the first row is the Postnikov system of p, where 7, is an S-equivalence,
and where ¢, is a minimal fibration with fiber K(S—'x,F, n). Forn =r — 1,
we have exact sequences

P
y 1, X ——- .Y T, —0
Trpr—1
0—> 7, X, , —2 n,.Y T, F— 0
T —1
X, —2 Y q=r.

By hypothesis S—'z,p ~ S-'z,f is surjective so p,_, is an S-equivalence and
we may take W,._, =Y, q,_, = id,, and j,_, = p,_,. Assuming W,_, has been
obtained, let A = 7, F, let u: X,_, — K(A, n + 1) be a classifying map for p,
(i.e., p, ~ u*p(A, n)), and let p: K(A, n + 1) — K(S~A, n + 1) be induced by
the coefficient homomorphism A — S—'A. By the induction hypothesis j,_, is
an S-equivalence so by (1) with Z = W,_, and A replaced by S—A, there is a
map v: W,_, — K(S™*A,n + 1) such that vj,_, is homotopic to pu. Let
q..W,— W,_, be the pull-back v*¢(S—4, n). Then

Jnila = (Via)*P(ST'A, m) = (0u)*p(ST'A4, n) ,

hence there is a map 7, of fibrations

K(A, n) -2 K(S—A, n)

L,

x, = w,

I Jo

X, 3 w,.
The homotopy exact sequence and five lemma show that j, is an S-equiv-
alence, which completes the inductive construction of (2).
Let W=1lm_W,,j=1lim_j,: X—W, and ¢ =lim_q,_, ---q,: W—Y.
It is clear that ¢ is a map in S, satisfying (ii); j is a map from the fibration p
to the fibration ¢ which induces S-equivalences on the base and fibers. Hence
J is an S-equivalence. Thus f = q(j7) is the factorization of f required to
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finish the proof of the lemma.

(i) = (ii). If f satisfies (i), write f = p7 as in the lemma. Then ¢ has the
LLP with respect to f by the definition of fibration, so f is a retract of p and
f satisfies (ii). This completes the proof of Proposition 2.4.

COROLLARY 2.6. The fibrant objects of S(r, S) are the r-reduced Kan
complexes whose homotopy groups are S-uniquely-divisible.

LEMMA 2.7. If f is a map in S,, then f = jg where j is an injective
fibration in S(r, S) and where S—'7,.g s surjective.

ProorF. We only treat the case » = 2; the case » = 1 requires only minor
modifications. The Hurewicz theorem asserts that 7,X — H,X for any 7r-
reduced simplicial set, hence
(3) Hom 5 (X, K(A, r)) = Hom,, (7, X, A) .

Givenamap f: X — Y in §, let f = 7.(f)f, be the factorization given by the
diagram
X

yr > K(Im S-1z,f, r)
f N
(4) )
J1(f) P
Y * K(S-'7,Y, 1)

where the square is cartesian and where «, 8, and o correspond under the
bijection (3) to the obvious maps #,Y— S 'n,Y,7,X —ImS-'n.f, and
Im S—'zn, f = S~'z,Y respectively. For U in S, we have
Hom 5 (U, K(4A, r)) = Z"(U, 4) = H"(U, 4),
from which one sees that o has the RLP with respect to any weak equivalence
in §(r, S) in addition to being injective. Moreover if 7,(f) is an isomorphism,
then we have a diagram
S-'n,Y —> Im S—'n,. f

| f
id
S'zr,Y — S7'n,Y
which shows that S—'z,f is surjective. Now define by transfinite induction
a factorization f = j.(f)f. for each ordinal number « by
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Jari(f) = 1) 5:(fo)
f at1 — (f a)l
Js(f) = lim-inv,cs Jo(f)
fs = lim-inv,; f,
Clearly 7.(f) is an injective fibration in §(r, S) for each «, and since the sub-
objects of Y form a set, we have j,(f,) is an isomorphism for « sufficiently
large, so Im Sz, f, is surjective. This proves the lemma.
To prove axiom CMS5 (ii), let f be a map in §,, write f = jg as in Lemma
2.7 and write g = pi as in Lemma 2.5. By Proposition 2.4, p is a fibration and

so f = (jp)t is a factorization of f as required by CM5 (ii). This completes the
proof of Theorem 2.2.

if B is a limit ordinal .

PROPOSITION 2.8. The homotopy category Ho S(r, S) is equivalent to the
category whose objects are those r-reduced Kan complexes with S-uniquely-
divisible homotopy groups and whose morphisms are simplicial homotopy
classes of simplicial set maps.

Proor. Every object of S(r, S) is cofibrant, hence the cofibrant and
fibrant objects of S(r, S) are the r-reduced Kan complexes with S-uniquely-
divisible homotopy groups. If Y is an r-reduced Kan complex, let Y*® be
the “path-space” complex of Y, let j,: Y*® — Y ¢ = 0,1, be the endpoint maps,
and let s: Y — Y*® be the map induced by the unique map A(1)—A(0). Then
s is a trivial cofibration and (j,,7,): Y*® — Y x Y is a fibration. As Y*® is
an (r — 1)-connected Kan complex, the inclusion E,Y*" — Y*® is a weak
equivalence. Hence the map s: Y — E,Y*" is a weak equivalence. Clearly

(40, 32): B, Y0 —> ¥ X ¥

is a fibration in S,, so E,Y*® together with s, j,, 7, is a path object Y, for ¥
in S,. It follows that two simplicially homotopic maps from any X to Y in S,
are right homotopic. But it is a general fact for a closed model category that
if £ and g are two maps from a cofibrant object X to a fibrant object ¥ and
if Y7 is a path object for Y, then f and g are left (or right, it makes no dif-
ference) homotopic if and only if thereis an h: X— Y with joh = fand jh =g
[HA, I, 1, Lemma 5 (ii)]. Consequently [X, Y| = simplicial homotopy classes of

maps from X to Y if Y is fibrant in S(r, S). The proposition follows from 1.3
(b).

Remark 2.9. The category (1, {1}) is an example of a closed model cate-
gory in which it is not true that the base extension of a weak equivalence by
a fibration is a weak equivalence. For example, let K be the reduced sim-
plicial set which is the following quotient of A(2)
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. // c\\b ?,ll vqrtices
y N identified

and let f: K— K(Z,1) be given by the normalized 1-cocycle f(a) =1 and
f(b) =0. If L is the subcomplex isomorphic to A(1)/A*(1) generated by b, then
the following square is cartesian

L2 o
| J»
5

K—> K(Z,1).

Moreover f is a weak equivalence, p is a fibration, and f’ is not a weak
equivalence.

Remark 2.10. Proposition 2.4 shows that the fibrations in §(r, S) which
are surjective look pretty much like fibrations ought to. On the other hand
there are fibrations such as the inclusion * = K in §(1, {1}) of Remark 2.9
which do not resemble ordinary fibrations at all. The following proposition
shows that fibrations f: X — Y in §(r, S) when Y is a Kan complex are more
reasonable.

PROPOSITION 2.11. Let f: X — Y be a map in S,. Then f is a fibration
in S(r, S) and Y is a Kan complex if and only if f has the following prop-
erties:

(1) m.(Kerf) is S-uniquely-divisible

(ii) Coker r, f is S-torsion-free

(iii) f: X— fX is a fibration in &

(iv) Y — K (Coker 7, f, r) is a fibration in & with fiber fX.

PRroOF. Suppose f satisfies (i)-(iv). By (iv) Y is a Kan complex. By 2.4,
(i) and (iii) imply that X — fX is a fibration in §(r, S). Let A = Cokerx, f.
Then there is a diagram

fX— * SN *

L l

Y — KA, ry—> K(S7A4, )
in which the first square is cartesian by (iv) and the second is cartesian by
(ii). As the last vertical map is a fibration in §(», S), so is fX — Y, hence also
f by composition.
Suppose f is a fibration in §(r, S) where Y is a Kan complex. Let B be
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the quotient of Coker 7, f by its S-torsion subgroup. As Y is a Kan complex
the canonical map Y — K(x,Y,r) is a fibration in &, and hence so is the
composite map Y — K(x,Y, r) — K(B, r) which we will denote by w. Let
J: Z— Y be the inclusion of the fiber of «, and let g: X — Z be the unique
map with jg = f. As fis a fibration in §(r, S) and j is injective, one sees
easily that g is also a fibration in §(r, S). By definition of B and u, S~'7.g is
surjective, so by 2.4, ¢ is a fibration in §. Thus g is surjective, so fX = Z =
Ker u and g = the map f: X — fX, proving (iii). Also 7 (Ker f) = 7.(Ker g)
is S-uniquely-divisible, proving (i). Finally 7,X maps into 7, fX which in turn
maps onto Ker {r,u: w,Y — A}, showing that A = Coker 7, f and proving (ii)
as well as (iv). Thus the proof of the proposition is complete.

When S = {1} there is a simpler characterization of fibrations in &, with
a Kan complex for the base. By V(n, k) denote the subcomplex of the standard
n-simplex A(n) which is the union of all the faces but the k*; recall that a
map in S is a fibration if and only if it has the RLP with respect to the inclu-
sion map V(n, k) — A(n) for 0 < k < n > 0.

Condition (ii) of the following is therefore a reasonable criterion for a
fibration in §,; however the Example 2.9 can be used to show that the hypoth-
esis that Y is a Kan complex is essential.

PROPOSITION 2.12. Let f: X — Y be a map in S, where Y is a Kan com-
plex. The following conditions are equivalent.

(i) f1isa fibration in S,,

(ii) f has the RLP with respect to the inclusion V(n, k) — A(n) for 0 <
E<n>r,

(iii) the camonical map X —Y X gz v,n K(7, X, r) is a fibration in S.

Proor. (iii) = (i). fis the composition

X — Y X gepom K@, X, 1) 25 Y.

The first map is a fibration in §, by (iii) using 2.4, while the second is a base
extension of K(7,X, r) — K(x, Y, r) which is also a fibration in §,. Thus fis
a fibration in §,.

(i) = (ii). If K is a simplicial set, let K|,, be the r-reduced simplicial set
obtained by shrinking the (» — 1)-skeleton of K to a point. Clearlyif LeObS,

Homg,. (K(r)y L) = HomS (Ky L) ’

so to prove (ii) we must show that f has the RLP with respect to the map
Vin, k), — A(n),,. But for » > n, this map is a weak equivalence since then
V(n,k) contains the (r — 1)-skeleton of A(n). Thus this map is a trivial co-
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fibration in §, and f has the RLP with respect to it.

(ii) = (iii). First note that X is a Kan complex. In effect given
a:Vn, k) — X, if n < r, then «a is the “zero” map hence a extends to A(n)
trivially; if » > r, then as Y is a Kan complex we may extend fa to 8: A(n) —
X, and then use (ii) to obtain an extension A(n) — X of «a. Let ¢,: X —
K(m,X,r) be the canonical map; to prove (iii) we must construct the dotted
arrow 7 in any diagram of the form

a

Vn, k’)

X
(2.13) lq/ ///// - l(f’ SX)
Am) —C2 ¥ g KX, )

for0<k<n>0. If n<r, we may take vy =0. If n > r, we can by (ii) choose
v so that v¢ = aw and fv = 8. We assert that ¢, = 2. In effect ¢,v and z are
two maps A(n) — K(m,.X, r) hence may be identified with r-cocycles of A(n)
with values in 7,X. These cocycles coincide on V(n, k), hence must be equal;
for n > r + 1 this is trivial since then V(n, k) contains A(n)’, but even for
n =1+ 1 it is true, because these cocycles coincide on all but one of the faces
of A(n), and therefore on all by the cocycle formula.

If » = », then the map « is necessarily zero, and the map (8, z) is equiv-
alent to an r-simplex y in Y and an element ¢ of 7,X such that (7, f)(c) is the
homotopy class of y. As X is a Kan complex ¢ is represented an element x of
X,; then fx and y represent the same element of 7,Y, so there exists an ele-
ment ze Y,,, with dz=y,dz = fx, and d;z = for 1 <j<r + 1. Let
& A(r +1) — Y be the map which sends the canonical » + 1 simplex o,,,
to 2z, and let n: V(r + 1,0) - X be given by 7(d,0) =, n(d;0) = * for
1<j<7r+1. fy = &restricted to V(r + 1, 0), so by hypothesis (ii) there is
a map {: A(r + 1) — X compatible with & and 7. Thus letting " = d,{(0,+.),
we have that fo’ = y and 2’ represents c. Therefore we obtain the desired
dotted arrow < in (2.13) by letting v be the map sending the canonical simplex
to «’. The proof of the proposition is therefore complete.

3. Serre theory for simplicial groups

If G is a simplicial group, let N,G and 7,G be the normalized complex
and homotopy groups of G in the sense of Moore. The category $ of sim-
plicial groups is a closed model category, where the weak equivalences are
the maps inducing isomorphisms on homotopy groups, where the fibrations
are the maps f for which N, f is surjective for ¢ > 0, and where the cofibra-
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tions are the maps which are retracts of free simplicial group maps [HA, Ch.
11, § 3].
Let
G
=9

w
be the pair of adjoint functors defined by Kan [12]. Then G preserves cofibra-
tions, W preserves fibrations, both G and W preserve weak equivalences, and
both adjunction morphisms X — WGX, GWH — H are weak equivalences.
It follows from 1.4 that the homotopy theories of $, and S are equivalent.

A simplicial group is said to be connected if 7,G = 0. A map f:G — H of
connected simplicial groups will be called an S-equivalence if S—'x, f is an iso-
morphism. Let S, be the full subcategory of § consisting of the »-reduced
simplicial groups (i.e., reduced to the identity in dimensions <7r), and let
S(r, S) r > 0 be the following candidate for a closed model category: the cate-
gory G, with cofibrations and weak equivalences defined to be those maps in
S, which are cofibrations and S-equivalences respectively in 9, and with fibra-
tions defined to be those maps in 8, with the RLP with respect to the maps
which are both cofibrations and weak equivalences in 9(r, S).

THEOREM 3.1. S(r, S) is a closed model category. The adjoint fumnc-
tors

G
S(r+1,8) =98(r, S)
174

establish an equivalence of the associated homotopy theories.
The proof of the theorem uses the following proposition whose proof is
deferred to the end of this section.

ProposITION 3.2, Let
H-¢G
lr
e
be a co-cartesian square in S where either i or f is a cofibration. If fis a

weak equivalence, sois f'. If f is an S-equivalence and G is connected, then
[’ is an S-equivalence.

PROOF OF THE THEOREM. The axioms CM1, CM2, CM3, and CM4 (ii) are
clear. To prove CM4 (i), first note that if H is a simplicial group then the
adjunction map GWH — H is surjective. This is because of the diagram
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T

(WH), — H,_,
/
T/ y
l /
v
(GWH),_,

where 7 and 7’ are the canonical twisting functions, and the fact that ¢ is
the projection, (WH), = H, X +-- X H, ,— H,_,. Any surjective map in §
is a fibration, hence G WH — H is a trivial fibration in 8. Now given f: G —H
in 8, let WG — X — WH be a cofibration-trivial fibration factorization

of Wf in S(» + 1, S). Then u is injective and v is a surjective weak equiv-
alence, so we obtain a diagram

GWG cof. y OX surj. w. eq. GWH

iw. eq. li’ lsurj. w. eq.
cof.

G — 7 » H
i P

where Z is defined so the first square is co-cartesian. By 3.2, ¢’ is a weak
equivalence, so p is also. Thus we have shown that f = pi in 8,, where 1 is
a cofibration and p is a trivial fibration in 8 and a fortior: in 8(r, S), prov-
ing CM5 (i). But if f is a trivial fibration in 8(r, S), then writing f = pt as
above we have that ¢ is a trivial cofibration in §(r, S) by CM2, whence ¢ has
the LLP with respect to f and f is a retract of p. This proves that f has the

RLP with respect to the cofibrations in S(r, S), which is CM4 (i), as well as
the following

PROPOSITION 3.3. The trivial fibrations in S(r, S) are those maps in S,
which are surjective weak equivalences.
It remains to prove CMS5 (ii).

PROPOSITION 3.4. The following assertions are equivalent for a map f
mS,.

(1) fisa fibration in S(r, S),

(i) N,f is surjective for q > r, w, Ker f is S-umiquely-divisible and
Coker «, f is S-torsion-free.

LEMMA 3.5. Any map f in S, may be factored f = pi where i is a trivial
cofibration in S(r, S) and where p satisfies condition (ii) of 3.4.

PROOF OF 3.5. Let f: H — G and suppose first that S 'z, f is surjective.
Let WH —— K — WG be a trivial cofibration-fibration factorization of Wr
in 5(r + 1, S). Then u is an injective S-equivalence and v is a fibration in §
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whose fiber has S-uniquely-divisible homotopy groups (2.4). We claim that
Gv is surjective and 7, Ker Gv is S-uniquely-divisible. The surjectivity is
clear since v is a fibration, and the rest follows by applying the five lemma to

the map of fibrations
v

Kerv — K — WG
| |

W Ker Gv — WGK ———— WG WG

to show that =, Ker Gv = 7,,,(W Ker Gv) = .., Ker v. Thus if we form the
diagram

GWwH—t ., ek &, aWa
lw, eq. i’l lsurj. w. eq.
H : Z > G
3 D

so that the first square is co-cartesian, i’ is a weak equivalence by 3.2, p is sur-
Jective, and , Ker p =~ m, Ker Gv is S-uniquely-divisible. Also ¢ is an S-equiv-
alence and a cofibration, so f = p1 is the factorization required in the lemma.

In case S~'m,f is not surjective, let A be the subgroup of 7,G consisting
of those elements « for which sa € Im 7, f for some s € S and form the diagram

\ K(A, ")
(1)

K(x, G, 7)

where the square is cartesian and « and B are the obvious maps. As « is
surjective and 7, Ker «=0, the same is true for a’, so the homotopy exact

sequences of & and o’ yield that 7,G’ — A, and that S—'x,g is surjective.
We may then factor g = p¢ as above. We note that N,j is an isomorphism
for ¢ > r and that N,p is surjective for all g since p is. Thus p’ = jp has N,p’
surjective for ¢ > » and x, Ker p’ = &, Ker p is S-uniquely-divisible and
Coker m,p’ = Coker 7,5 = (7,G)/A is S-torsion-free. Thus f = p’i is the fac-
torization of f required in the lemma.

ProoF oF 3.4. (i) = (ii). Let f be a fibration in 8(», S) and write f = pi
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as in 3.5. Then ¢ has the LLP with respect to f, so f is a retract of » and so
f satisfies (ii).

(ii)=(i). Let f = jg be the factorization of f given by diagram (1). Then
A =1Im =r, f, since Cokerr,f is S-torsion-free, so m,g is surjective. Also
N,g = (N,j)(N,9) = N,f is surjective for ¢ > r, which together with the
surjectivity of m,g implies that N,g is surjective. Consequently ¢ is surjec-
tive with =, Ker ¢ ~ 7, Ker f S-uniquely-divisible, so Wy is a surjective fibra-
tion in § with 7, Ker Wg S-uniquely-divisible, and so Wg is a fibration in
S(r +1,8) by 2.4, W carries the cartesian square in (1) into the first square
in the diagram

WG — KA, r+1) — K(S—'4,r + 1)

le r]' r] u
WG — K(x,G,r + 1) — K(S~'7,G, r + 1)

and the second square is also cartesian since (7,G)/A4 is S-torsion-free. We
have seen that the map labelled % is a fibration in S(» + 1, S), hence Wj is
also. Therefore Wf = (Wj)(Wy) is a fibration in S(» + 1, S), and so f has
the RLP with respect to any map GK — GL where K — L is an injective S-
equivalence in §,,,. Let i: H — G be a trivial cofibration in 8(r, S) and con-
sider the diagram

o

GWH

where ¢ is a weak equivalence by 3.2, hence ¢” is a trivial fibration since ¢’
is; thus < has the LLP with respect to ¢ and ¢ is a retract <”. But we have
just seen that ¢’ has the LLP with respect to f, hence so does ¢”” and ¢. Thus
fis a fibration in §(», S) and the proof of Proposition 3.4 is complete.

Combining 3.4 and 3.5 we find that S(r, S) satisfies CM5 (ii) which com-
pletes the proof that it is a closed model category. That G and W induce an
equivalence between the homotopy theories of S(r, S) and S(» + 1, S) follows
in a straightforward manner from 1.4. Thus Theorem 3.1 is proved.

ProPOSITION 3.6. The fibrant objects of S(r,S) are those r-reduced
stmplicial groups whose homotopy groups are S-uniquely-divisible. The



RATIONAL HOMOTOPY THEORY 249

cofibrant objects are the r-reduced simplicial groups which are free.
HoS(r, S) is equivalent to the category whose objects are r-reduced
free simplicial groups with uniquely S-divisible homotopy groups and
whose morphisms are simplicial homotopy classes of maps of simplicial
groups.

ProoF. The first statement results from 3.4, while the second results
from the fact that any simplicial subgroup of a free simplicial group is free.
The last statement is proved as 2.8 was.

The rest of this section is devoted to the proof of 3.2 and some related
results.

If G is a simplicial group and M is a simplicial G module, we let H (G, M)
be the (group) homology of G with values in M [HA, Ch. II, § 6].

There are canonical isomorphisms

H,(G, M) =72 Q¢ P) = 7,(Q Qs M)

where P (resp. Q) is any simplicial G module endowed with a weak equivalence
P— M (resp. @ —Z) which is flat over ZG in each dimension. Here Z denotes
the constant simplicial abelian group which is the integers in each dimension
with trivial G action. If A is a 7,G module and we also denote by A the sim-
plicial G module which is 4 in each dimension with G action induced by the 7,G
action in the obvious way, then we may take @ = ZWG and we have

H,(G, A) = t(ZWG Q; A) = H(WG, A) ,

where the last group is the homology of WG with values in the local coefficient
system coming from A.

ProPOSITION 3.7. A map f: H—G of simplicial groups is a weak equiv-
alence if and only if w,f: n,H — 7,G 1s an isomorphism and

H.(f,A): H,(H, A)— H,(G, 4)
18 an isomorphism for all G modules A (in fact A = Zn,G is all that is
required).

PROOF. f is a weak equivalence if and only if Wf is a weak equivalence
which by [HA, Ch. II, § 8, Prop. 4 (vi)] is true if and only if =, Wf = n,f is an
isomorphism and H *(Wf, A) is an isomorphism for all local coefficient systems
A on WG. But there are universal coefficient spectral sequences

Ep = Exty. . (H(WG, Zn,G), A) = H** (WG, A)
E2, = Tor2~¢ (H(WG, Zn,G), A) — H,., (WG, A)

which permit us to conclude H*(Wf, A) is an isomorphism for all 4 if and



250 DANIEL QUILLEN

only if H,(Wf, A) is an isomorphism for all A4, in fact only for A = Zz,G,
q.e.d.

LEMMA 3.8. Let H be a group and let G be the free product of H and
the free group with generators o;,1€ I. Let IH and IG be the augmentation
ideals of the group rings ZH and ZG. Then the map

D.:2G P LG Qzy IH — IG
(@) +a@e+——3 a;(0; — 1) + ax
18 an isomorphism of left ZG modules.

Proor. Reecall that if M is a G module, then a derivation D: G — M is a
set map such that D(g,9,) = Dg, + ¢9,Dg,, and that such derivations correspond
in one-to-one fashion to left ZG module homomorphisms 6: IG — M wvia the
formula Dg = 6(9 — 1). Also such derivations D correspond one-to-one to
homomorphisms s: G — M x .G such that pr,-s = id via the formula sg =
(Dg, g), where M x .G is the semi-direct product. Using the latter interpre-
tation and the hypothesis on G, we see that derivations D correspond to
derivations D’: H — M and elements z;€ M i€ I via the formula D' = D|H,
z; = Do;. Hence

Hom, (IG, M) = Der (G, M)
~ M’ x Hom, (IH, M)
~ Hom; (B;ZG @ 2ZG Q4 IH, M)
which proves the lemma.
The lemma implies that IG/ZG-IH is a free left ZG module with basis

o; — 1. Changing ¢; to o;! and applying the canonical anti-automorphism of
ZG we find

COROLLARY 3.9. If H and G are as in 3.8, then IG/IH-ZG is a free right
ZG module with basis ¢, —1, 1€ 1.

ProoOF OF 3.2. The case where f is both a cofibration and weak equiv-
alence follows from the fact that S is a closed model category (1.1). The hard
part is to show that the cobase extension f’ of a weak equivalence f by a
cofibration 7 is again a weak equivalence. We use the criterion 3.7. The
functor 7,: § — (groups) is right exact since it is left adjoint to the constant
simplicial group functor. Thus 7, f’ is the cobase extension of 7, f, and so 7, f’
is an isomorphism.

To show that 7’ induces an isomorphism on homology with twisted co-
efficients, let A be a 7,G = 7,G’ module and choose a free simplicial G (resp. G’)
module P (resp. P’) with a trivial fibration P— A (resp. P’ — A). Then P’'—
A is trivial fibration of G modules so lifting in
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00— P’

||

P—s A
we obtain a map P — P’ over A which is a di-homomorphism for f’: G — G'.
Tensoring

0— IG/IH-ZG —> ZG/IH-2ZG — Z — 0
with P and doing similarly with primes, we obtain a map of exact sequences

0— N®:P — (HIH-ZO)QsP — Z®sP —0

(2) lu Juz 1u3
0— N' Qs P —> (ZG'/IH' - ZG") Qe P! — Z R4 P' — 0
where N = IG/IH-ZG and N’ is similar. By definition
T(us) = Hy(f', A): HW(G, A) — H,(G', A4) .

U, may be rewritten Z®, P— Z ®,. P’ which, since P is also a free H module
resolution of A, shows that

Ty (Uy) = H,(f, A): H,(H, A) — H.(H' A).

We now show that u, is a weak equivalence. If 7 happens to be a free map
of simplicial groups, then applying 8.8 dimension-wise, we see that N =
IG/IH-ZG is a free simplicial right ZG module. In general 7 is a retract of a
free map so in any case N is a (dimension-wise) flat right simplicial ZG
module. But tensoring with a flat simplicial module preserves weak equiva-
lences (this follows from [HA, Ch.II, § 6, Th. 6 (a) + (b)]), hence N ®; P —
N @ A is a weak equivalence. A similar assertion holds with primes so #, is
weakly equivalent to the map N®; A — N’ ® A. But this map is an iso-
morphism. In effect we need only look at a fixed dimension in which case we
may assume G (resp. G') is the free product of H (resp. H’) and the free group
with generators o;, whence by 3.9 N (resp. N') is the free right ZG (resp.
ZG') module with basis 0; — 1. Thus «, is a weak equivalence. By assumption
fis a weak equivalence, so u, is a weak equivalence, and so by (2) and the
five lemma, u, is a weak equivalence. Therefore 7, u, = H,(f’, 4) is an iso-
morphism, which completes the proof that f’ is a weak equivalence.

Before proving the part of 3.2 about S-equivalence we give a consequence

of what has been proved so far. If G is a simplicial group, we let H,(G) =
H. (G, Z).

ProPOSITION 8.10. If i: H— G is a cofibration with cofiber G//H, then
there is an exact sequence
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co+ T((GI/H)w) — H(H) — H(G) — T, ((G/[H)as) - +-
which is natural in <.

Proor. This long exact sequence is the long exact homotopy sequence
of the first row of (2) when A = Z, in which case N ®, P is weakly equivalent
to IG/IH-7ZG Q¢ Z = (G//H),,. Thelast isomorphism comes from the fact that
both sides represent the functors “derivations of G vanishing on H with
values in a G module with trivial action”. The naturality of the sequence fol-
lows from the fact that the choices of P, P’, and the map P — P’ are unique
up to simplicial homotopy.

COROLLARY 3.11. If G is a free simplicial group
Z q=20
To(Gap) q>0.

COROLLARY 3.12. If i©: H— G s a cofibration with cofiber G//H, then
there is an exact sequence

o+ H(H) — H(G) — H(G//H) — H,_(H);---

natural in 1.

To prove a map f of connected groups is an S-equivalence, it suffices to
show that S—H,(f) is an isomorphism by virtue of the formulas 7,G =
T, (WG), H(G) = H,(WG), and 2.1. The rest of 3.2 results then from ap-

plying the exact sequences of 3.10 to 7 and 7', and using the fact ¢+ and ¢’ have
the same cofiber.

H(G) = {

Remark 3.13. 3.11 is a formula of Kan and immediately implies 3.12 in
the case that H is free. If we define H,(G, H) to be the relative homology
H, (WG, WH) when H is a sub-simplicial group of G, then 3.12 implies (after
analyzing the nature of the maps) that

H/(G, H)—> H,(G//H, {¢})

when H<=— G is a cofibration. Thus we have proved the excision axiom for
homology of simplicial groups.

4. (s@), as a closed model category

Let @ be a category closed under finite limits and having sufficiently many
projective objects (Appendix A, Introduction). The natural way of trying to
define the structure of a closed model category on (s@) is to define a map
f: X — Y to be a fibration (resp. weak equivalence), if for every projective
object P of @, the induced map of simplicial sets Hom (P, X) —»Hom (P, Y) is
a fibration (resp. weak equivalence) in §. In [HA, Ch.II, § 4, Th. 4] it was
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shown that in this way (s(®?) became a closed model category provided at least
one of the following conditions was satisfied.

() For every projective object P of (t and X € Ob (s@) Hom (P, X) is a
Kan complex. (This holds if every object of @ is an effective quotient of a
cogroup object by [HA, II, 4, Prop. 1].

(*x) @ is closed under arbitrary limits and has a set of small projective
generators.

Suppose that (t is a pointed category, and let (s®), be the category of r-
reduced simplicial objects over @, that is, the full subcategory of (s®) consist-
ing of simplicial objects isomorphic to the initial-final object in dimensions
<r. Weare going to prove (s®), is a closed model category under hypothesis
(*). We do not know if this remains true with hypothesis (+*) and in fact to
prove it when (@ is the category of pointed sets (§ 2), we used special features
of simplicial sets (cohomology and Eilenberg-MacLane complexes).

THEOREM 4.1. Let ( be a category closed under finite limits and having
suffictently many projective objects. Assume condition (x) holds, and call a
map f: X— Y wn (sQ), a fibration (resp. weak equivalence) if and only if
for any pi‘ojective object P of @, the induced map Hom (P, X)— Hom (P, Y)
1s a fibration (resp. weak equivalence) in S,. Also define f to be a cofibration
1f and only if it has the LLP with respect to all trivial fibrations. Then
(sQ), s a closed model category.

Proor. The axioms CM1, 2,3, and 4(i) are trivial.

CM5 (i). By 2.3 a map in (sQ), is a trivial fibration in (s®), if and only if
it is a trivial fibration in (s@). Consider the method used in [HA, II, 4, Prop. 3]
to factor f: X — Y into a cofibration i: X — Y followed by a trivial fibration
p: Z— Y in (s@). ¢ and p were obtained as the inductive limit of maps X — Z*
and Z"— Y, where Z" is obtained by attaching a “projective n-cell” P, ® A(n)
to Z™' via a map P, ®Q A(n)* where P, is some projective object of @, and
where Hom (Q, Z") — Hom (Q, Y) has the RLP with respect to A(k)' — A(k)
for k < » and any projective object Q. If Y is r-reduced, then we may take
P, = = for m < » in which case Z", and hence Z is r-reduced. 7 is a cofibra-
tion in (s@), a fortior: a cofibration in (s@®),, and p is a trivial fibration in (s®),,
proving CM5 (i). Note that if f is a cofibration in (s@®),, then f has the LLP
with respect to p; hence f is a retract of 7 and is therefore a cofibration in
(s@). Thus we have proved

PROPOSITION 4.2. A map in (sQ), is a cofibration, trivial fibration, or
weak equivalence if and only if it is so as a map in (s@).

CM5 (ii). If Z is a simplicial object over (1, define its »® “Eilenberg
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subcomplex” by (¥,.Z), = N . Ker{p*: Z, — Z,_}, where ¢ runs over all injec-
tive monotone maps from [ — 1] to [#n]. We then have the formulas

Hom ), (Y, E,Z) = Hom,,q, (Y, Z)
Hom (P, E,Z) ~ E, Hom (P, Z)

for any Y e Ob(s®), and projective object P of @. Given a map f: X — Y in
(s@),, factor f into a trivial cofibration ¢: X — Z followed by a fibration
p': Z— Yin (s®), and let i: X — E.Z, p: E,Z — X be the induced maps. Using
the above formulas it is easy to see that Hom (P, p) has the RLP for trivial
cofibrations in §,; hence p is a fibration in (s®),. For a pointed (r — 1)-con-
nected Kan complex K, the map E,K — K is a weak equivalence. By hypoth-
esis (x) Hom (P, Z) is a Kan complex, so the map E,Z —Z is a weak
equivalence. Therefore 7 is a weak equivalence so if we write ¢ = ¢j using
CM5 (i), in (s@),, we have f = (pq)j where j is a trivial cofibration and pq is
a fibration in (s@®),, proving CMS5 (ii).

CM4 (ii). We have to show that a trivial cofibration i: A — B in (s®), has
the LLP with respect to a fibration p: X — Y. By 4.2, 7 is a trivial cofibration
in (s(@) and by hypothesis (x) every object of (s@) is fibrant. By [HA, II, 2.5]
i is a strong deformation retract map, i.e., there exist maps »: B— 4 and
h: B — B*® such that r¢ =id,, j,h = id,, j,h = ir, and ki = i*Vs. Here B*® is
the path object of B [HA, II, § 1] and s: B — B*® (resp. j,: B*® - B¢ = 0,1)
is induced by the unique map A(1) — A(0) (resp. the e™ vertex map A(0) —
A(1)). Given a: A— X and B: B— Y such that pa = Bi consider the diagram
of solid arrows

4.3)

A0 L g xew)
| -
(4.4) iz o l<jo, P
Al1)
g X % BAY)

Assuming for the moment that the right hand vertical arrow is a trivial
fibration, it follows that the dotted arrow k exists; setting v = j,k: B— X we
have that py = 8 and v¢ = &, which proves CM4 (ii). To show that (j,, p*")
is a trivial fibration, we may apply the functor Hom (P, -) and use formulas
4.3 to reduce to the case of §,. We must therefore show that if p: X — Y is
a fibration in §,, then the arrow (j,, »*') in 4.4 has the RLP with respect to
A(n)*— A(n) for all n = 0. For n < r this is trivial, and for n > » A(n)* con-
tains the (» — 1)-skeleton of A(n), so it suffices to show that
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(j(‘,y phll): XA(L X X . Y_\(])

has the RLP with respect to A(n)' — A(n) for n = ». This is equivalent to
showing that p has the RLP with respect to the injection

A() X AV s xio A(m) X {0} —— A(n) X A(1)
for # = ». Denoting this injection by L — K, as p is a fibration in S,, it suf-
fices to show that L/L'"~" — K/K™" is a trivial cofibration. But this is clear
since for m = », L contains the (r — 1)-skeleton K"~ of K. The proof of
Theorem 4.1 is now complete.

COROLLARY 4.5. The homotopy category Ho (s(), is equivalent to the
category whose objects are the r-reduced cofibrant simplicial objects over (1
and whose morphisms are simplicial homotopy classes of maps in (sQ).

The proof is the same as that of 2.8.

Remark 4.6. If (¢ is closed under arbitrary limits and has a small projective
generator U, then in the construction of the factorization f = p7 for CM5 (i)
we could have taken P, to be a direct sum of copies of U. Thus the map
1: X -+ Z is free|14] in the sense that it is the limit of maps X — Z" where
Z™' = X and Z" is obtained by “attaching n-cells”, i.e., copies of U & A(n),
to Z* ' wia maps UR A(n)' — Z"~'. Thus every cofibration in (s(), is a retract
of a free map with all cells of dimension =7 and conversely.

By Appendix A, 2.24, the category (CHA) is closed under limits and hasa
projective generator which is also a co-Lie algebra object. Therefore we may
apply 4.1 to deduce

THEOREM 4.7. The category (SCHA), of r-reduced simplicial complete
Hopf algebras is a closed model category where a map is a fibration (resp.
weak equivalence) if and only if Pf is a fibration (resp. weak equivalence)
of simplicial vector spaces and where a map is a cofibration if and only if
it 1s a retract of a free map. The homotopy category Ho (SCHA), is equiva-
lent to the cateyory whose objects are free simplicial CHA’s with all cells of
dimension =r and whose maps are simplicial homotopy classes of maps in
(SCHA).

' We leave to the reader to formulate a similar theorem for (sLA),.

THEOREM 4.8. The adjoint functors Q and § establish an equivalence
of the homotopy theory of (SCHA), with the rational homotopy theory of(SGp),.
U and & establish an equivalence of the homotopy theories of (SCHA), and
(SLA),.

Proor. Itisonly a matter of checking the hypotheses of 1.4, One shows
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that § preserves fibrations using 3.4. The other hypotheses follows from
Theorems 3.4 and 3.5 of Part 1.

3. (DGL), and (DGC),-, as closed model categories
Let r be an integer >1.

THEOREM 5.1. Define a map in (DGL), to be a weak equivalence if it
1nduces 1somorphisms on homology, a fibration if it is surjective in degrees
>r, and a cofibration if it has the LLP with respect to all trivial fibrations.
Then (DGL), ts a closed model category.

THEOREM 5.2. Define a map in (DGC),-, to be a weak equivalence if it
mduces isomorphisms on homology, a cofibration if it is imjective, and a
fibration tf it has the RLP with respect to all trivial cofibrations. Then
(DGC),., 18 a closed model category.

THEOREM 5.3. The adjoint functors £ and C establish an equivalence of
the homotopy theories of (DGL), and (DGC),,.

THEOREM 5.4. The adjoint functors N* and N establish an equivalence
of the homotopy theories of (SLA), and (DGL),.

ProoOF oF 5.1. The axioms CM1, 2, 3, and 4 (i) are clear. To prove CM5, let.
S(q) (resp. D(q)) be the DG vector space having a basis over Q consisting of an
element o, of degree ¢ with do, = 0 (resp. elements o, ,, 7, of degrees ¢ — 1 and
q withdr, = 0,_,,do,_, = 0). S(q) and D(q) play the role of the g-sphere and.
q-disk; let i: S(¢ —1) — D(q) be the obvious inclusion. Let us call a map f: nt—n
in (DGL) free if as graded Lie algebras n is isomorphic to the direct sum of m
and a free Lie algebra L(V) in such a way that f is isomorphic to the inclu-
sion. Defining the n-skeleton n™ of f to be the graded sub-Lie-algebra of n
generated by f(m) and the elements of V of degree <nu, one sees that n™ is.
obtained from 1u'"~" by attaching n-cells, that is copies of LD(n) via attach-
ing maps LS(n — 1) »n"", As LS(n — 1) — LD(n) n > r and 0 — LS(r) are
clearly cofibrations in (DGL),, it follows that any free map in (DGL), is a co-
fibration. Now by imitating the procedure of attaching cells to kill homotopy
groups, one may factor any map f in (DGL), into f = pi, where ¢ is free and p-
is a trivial fibration. Therefore we have proved CMS5 (i). Moreover if f is.

already a cofibration, then f has the LLP with respect to p, so f is a retract.
of 7+ and we have proved the following.

PROPOSITION 5.5. A map in (DGL), is a cofibration if and only if it is a
retract of a free map.

Remark. One may show that a sub-graded-Lie algebra of a free reduced
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graded Lie algebra is again free. It follows that the cofibrations in (DGL), are
the free maps, but we shall not need this.

To prove CM5 (ii), note that given f:m--1u, we may let V" be a huge direct
sum of copies of D(n) for various » > » and obtain a map p: m\/ L(V) — 1,
which is surjective in degrees >r and hence is a fibration. If ©:m—m\V L(V)

is the injection of a factor, then 1 is free and also 7 is a weak equivalence,
since

H(m\/ L(V)) =~ Hm) vV H(LV) =~ H(m) V L(HV) = Hu .
Thus f = pt is the factorization required for CM5 (ii). Finally note that 0 —
D(n) for n > » has the LLP with respect to fibrations and hence so does ¢. If
f is a trivial cofibration, then p a is trivial fibration, so f has the LLP with

respect to p; hence f is a retract of 7 and f has the LLP with respect to fibra-
tions. This proves CM4 (ii) and completes the proof of 5.1.

LEMMA 5.6. Let p: m— 1t be a surjective map in (DGL), and let

pr:
Z _m Cm

[ e

Y-—— Cn

be a cartesian square in (DGC),.,. Then if & is a weak equivalence, so is pr,.

ProOF. Let abe the kernel of p, and let ¢q: m—a be a graded vector space
retraction of m onto a. Then recalling (B, § 6) that as coalgebras Cg = S(Zg),
we see that p and ¢ induce an isomorphism 6: C(in) 5 (M) ® C(a). This
shows that B, 7.1 can be applied to the maps Ca —Cm—Cn to give a spectral
sequence of coalgebras

E: = HCn Q@ HL() — H,.Cm).
Recalling that  is the 'direct product in the category of coalgebras, the

isomorphism 6 induces an isomorphism Z —— Y ® C(a); so there is also by
B, 7.1, a spectral sequence

Ezq = HpY® qu(a) = Hp+q(Z)

as well as a map of this spectral sequence to the other one induced by ¢ and
pr,. As the map is an isomorphism on E?, it is also an isomorphism on the
abutment, so pr, is a weak equivalence and the lemma is proved.

PROOF OF 5.2. The axioms CM1, 2, 3, and 4 (ii) are clear.

CM5 (i). Givena map f: X — Y in (DGC),., use CM5 (i) for (DGL), to write
Lf = pi, where 7: £X — m is a cofibration (hence injective by 5.5) and where
p:m— LY is a trivial fibration hence surjective. Letting n=£Y and ¢ = the
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adjunction map Y —CLY, form the square of Lemma 5.6, and let j: X — Z be
be the unique map with pr,j = f and pr,j = the map X — Cur adjoint to <.
As r =1, £ and Cp are weak equivalences (B, 7.5) and by the lemma so is pr,.
Thus pr, is a weak equivalence. As £ carries cofibrations into cofibrations it
follows that ¢(p) hence also pr, has the RLP with respect to all cofibrations;
in particular pr, is a fibration in (DGC),.,. J is injective because pr.j is the
composition of the injections X —CLX— Cny; thus j is a cofibration in (DGC),,.
Therefore f = (pr,)j is the factorization required for CM5 (i). Moreover if f
is already a trivial fibration, then j is a trivial cofibration by CM2; thus j has
LLP with respect to f, so f is a retract of pr, and therefore f has the rRLP with
respect to all cofibrations. This proves CM4 (i).

CM5 (ii). As in the proof of this axiom for &, we first consider the case
where f: X—Y is such that H, ,f~ H,Lf is surjective. Then H Lf is surjec-
tive so if we use CM5 (ii) for (DGL), to write £f = pi, where ¢ is a trivial
cofibration and p is a fibration, then p is surjective. Defining j: X —Z, pr;: Z —
Y, zand pr., as above, we have that pr, is a fibration in (DGC), .,. By thelemma
pr, is a weak equivalence; as i: £X — m is a weak equivalence so is pr,j: X —
Cm. Therefore j is a trivial cofibration and f=(pr,)j is the factorization
required for CM5 (ii).

In case H, .f is not surjective, we construct a factorization f - jy, where
j is an injective fibration and H,..g is surjective, by following the proof of
2.7. If V is a vector space, let V|[r] be the abelian DG Lie algebra having V'
in dimension r and zero elsewhere, and let K(V, r + 1) = ¢ V(r). Define the
factorization f = 7.(f)f. by the diagram

X P
J1
f y! K(Im H,2f, r +1)
Ji(f) p
[2¢
Y KH, LY, r +1)

where the square is cartesian, where « is adjoint to the canonical map LY —
H,(LY)[r], where 8 is adjoint to the map

LX — H(LX)|r| — (Im H,Lf)|r],
and where o is the inclusion. It is clear that p is a fibration in (DGC),.,,
hence so is 7,(f). Repeating this process as in 2.7 one obtains the required
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factorization f = jg; as g may be factored according to the first part of the
proof, we have proved CM5 (ii) and the proof of Theorem 5.2 is complete.

Theorems 5.3 and 5.4 are now proved by verifying the hypotheses of 1.4
using results of Appendix B, 4.4 and 4.6. The proof of Theorem II is now
complete.

6. Applications

In this section we connect the preceding homotopy theories of algebraic
objects with the rational homotopy theory of 1-connected pointed topological
spaces, and use the algebraic models to derive results about rational homotopy
theory. )

It is unfortunate that the category &, of ( — 1)-connected topological
spaces is not closed under finite limits, for this prevents us from making 7,
. into a closed model category for trivial reasons. However if », S are as in § 2,
let us make the natural definitions and define 5(r, S) to be the category T,
with the following three distinguished classes of maps.

Cofibrations. These are maps f: X — Y which are cofibrations as maps
of topological spaces in the sense of [HA, II, § 3] i.e., f is a retract of a se-
quential composition of cw maps (see proof of Lemma 3, loc. cit.).

Weak equivalences. These are the S-equivalences, i.e., maps inducing
isomorphisms for the functor S—'z,.

Fibrations. These are Serre fibrations such that the fiber has S-uniquely-
divisible homotopy groups.

THEOREM 6.1. (a) With these definitions J(r, S) satisfies all of the
axtoms for a closed model category except CM1.

(b) IfHodJ (r,S) is the localization of T(r,S) with respect to the family
of weak equivalences, then Ho J(r, S) is equivalent to the category whose
objects are pointed (r — 1)-connected CW complexes with S-uniquely-divisible
homotopy groups, and whose morphisms are homotopy classes of basepoint-
Preserving maps.

(¢) It is possible to define suspension and loop functors and families
of fibration and cofibration sequences on the category Ho S (r, S) by using the
fibrations and cofibrations in I (r, S) just as in [HA, I, § 2-3].

(d) The functors | -| and E, Sing induce an equivalence of the homotopy
theory of I (r, S) with the homotopy theory of S(r, S) as defined in § 2.

Proor. The proof of (a) is formally similar to that of 3.1, using the
functors | - | and E, Sing instead of G and W. The only point is to show the
analogue of 3.2, that the cobase extension of an S-equivalence by a cofibra-
tion is again an S-equivalence. But any cofibration is a retract of a sequential
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composition of cw maps. One therefore is reduced to the case where the co-
fibration is the map obtained by attaching a single cell, in which case the proof
is achieved by using the long exact sequence for homology and the five lemma.

For (b), observe that since the adjunction maps for the functors | - | and
E, Sing are always weak equivalences, they induce an equivalence of the
categories Ho I’ (r, S) and Ho S(r, S), and that the latter is by 2.8 and Milnor’s
theorem [19] equivalent to the category of cw complexes with S-uniquely-
divisible homotopy groups and homotopy classes of maps. (c) is a matter of
checking that the axiom CM1 enters into the construction of the suspension
and loop functors and fibrations and cofibration sequences only in allowing one
to form the fiber, pull-back, ete. of various maps. For the suspension functor
and cofibration sequences there is no problem because one has only to work
with cofibrant objects which have non-degenerate basepoints. For fibrations
the problem comes from the fact that the fiber of a map in &, is the (r — 1)-
connected covering of the real fiber which need not exist. However one may
always replace a fibration of spaces by a weakly equivalent map which is the
geometric realization of a fibration f of simplicial sets [22]. If F is the fiber
of f, then | E,F'| can be used for the fiber of | f | in /., and one may check
that the construction of the loop functor and the family of fibration sequences
on Ho ¥ (r, S) still goes through. Finally (d) is proved by the same method as
1.4 (see proof of [HA, I, § 4, Th. 3]), using the fact that E, Sing preserves fi-
brations and | - | preserves cofibrations, g.e.d.

Taking r=2 and S =Z — {0}, and combining the above with Theorem II we
have

COROLLARY 6.2. The adjoint fumctors of Figure 1, Part 1, § 2, induce
an equivalence of rational homotopy theory, defined to be the homotopy theory
of T (2, Z— {0}) constructed above, with the homotopy theories of reduced DG
Lie algebras and 2-reduced DG coalgebras over Q.

Remark 6.3. We claim now to have solved the problem raised by Thom
in [29]. Suppose that F'— E — B is a fibration of 1-connected pointed spaces.
The problem after translating from cohomology into homology, is to associate
DG cocommutative coalgebras to F, E, and B in such a way that the Hirsch
method for calculating the differentials in the homology spectral sequence
can be applied. But this fibration defines a fibration sequence in rational
homotopy theory which is equivalent by 6.2 to that of (DGL),; hence this fibra-
tion sequence corresponds to one in Ho (DGL), coming from an exact sequence
of reduced pG Lie algebras

0 > f e b >0 .
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However Cf, Ce, Cb correspond under the equivalence of Theorem I to F', E, and
B respectively, and Hirsch’s methods apply to the homology spectral sequence
of the maps C€f — Ce — b (in fact this is how the spectral sequence B, 7.1 is
derived).

Remark 6.4. We indicate briefly how 6.2 may be used to give an alter-
native proof of the results of Part I, §§ 5-6, namely that the equivalences A
and C of Theorem I are compatible with the homotopy Lie algebra and the
homology coalgebra functor. The first thing to show is that if V is a vector
space and V[n] denotes the DG vector space which is V in dimension » and
zero elsewhere, then there are canonical isomorphisms

[LV][n], g] = Hom (V, H,g) g e Ob (DGL),
[C,€V[n — 1]] = Hom (H,C, V) C e Ob (DGC),

where Hom is maps of vector spaces, and where [ , ] denotes homotopy classes
of maps as defined in § 1, which by 1.3 is the same as maps in the homotopy
category. Next one observes that there is an isomorphism of functors

0, 7,(X)®Q = H,..(AX)
from !f, to vector spaces given by the chain of isomorphisms

T.X)®Q=7,(K) R Q = 7, (GK) R Q
~ 7, (SQGK) = 7, (PQGK) = 7,_(NPQGK) ,

where we have put K = E, Sing X.

The work of Part I, § 5, went into showing that the collection 6 = {4,}
gave a Lie algebra isomorphism. However to prove the existence of a func-
torial Lie algebra isomorphism of 7,(X) ® Q with H,(\X), it is possible to
use Hilton's theorem on homotopy operations [10] to show that for some
choice of non-zero rational numbers ¢, the collection

Cnen: n-n(X) ® Q = Hn——l()\’X)

is a Lie algebra isomorphism.

When the Lie structure is taken care of, one may take care of the co-
algebra structure as follows. First one uses the isomorphism x,(X )R Q=
H, (M X) to establish an isomorphism in Ho (DGL), of NK(V, n) with V[n — 1],
where K(V,n) is the appropriate Eilenberg-MacLane space, and where
V[n — 1] is regarded as an abelian DG Lie algebra. It follows that there are
canonical isomorphisms
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H"X,V) =X, K(V,n)] = [AX, V[n — 1]]
~ [O\X, CV[n — 1]] = Hom (H,(@\X), V),

and hence a canonical isomorphism H,(\ X, Q) =~ Hn(@xX ) of vector spaces.
To prove this isomorphism is compatible with comultiplication, it suffices to
show that @\ carries the cup product map p: K(Q, p) X K(Q, q) — K(Q, p + q)
into the corresponding map z¢:CQ[p — 1] x CQ[g — 1] —€Q[p + q — 1] deduced
from the comultiplication on coalgebras. The point is that g« can be charac-
terized in terms of the Whitehead product using a Toda bracket. In effect
if «,: S? — K(Q, p) is the canonical map giving the orientation of S», if 8 is
the composition of the inclusion S” v §*— S”» x S* with «, x «,, and if
[ty 2] SPH97' —— S” v S7 is the Whitehead product of the inclusions 7,: S” —
S?\/ 8* and 1,: S*— S” \/ S¢, then the Toda bracket {[%,, 1,], 8, ¢> = «,., with
zero indeterminacy. A similar characterization holds for /¢ in terms of the
bracket operation for DG Lie algebras. 6.2 implies that G\ will preserve Toda
brackets since they are determined by the fibration and cofibration sequences.
|HA, I, § 3]. Since A carries Whitehead product into Lie product, it follows
that G\ carries £ into ¢,

Remark 6.5. The possibility of viewing rational homotopy theory in
terms of both DG Lie algebras and DG coalgebras allows one to give a per-
fectly Eckmann-Hilton dual treatment for rational homotopy theory. We
illustrate this by means of four spectral sequences. Here X and Y are 1-con-
nected pointed spaces, 7¢QX) = 7.(QX)® Q with Lie algebra structure
given by Samelson product, and H, X = H, (X, Q).

6.6 (Serre). If p: X — Y 1is a fibration with fiber F and 7,p is surjec-
tive, then there is a coalgebra spectral sequence

E*=H,YQH,F— H,X.

6.7. If ©: Y — X is a cofibration, then there is a Lie algebra spectral
sequence

E* = 13QX) V tHUX/Y)) — 1Y X) .
6.8 (Curtis |7]). There is a Lie algebra spectral sequence
E' = L(QH, X)) — 7Y0X) .
6.9. There is a coalgebra spectral sequence
E' = S(7%(X)) — H,X .

PROOFs. 6.6. Realize the fibration as an exact sequence of DG Lie
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algebras, apply ¢, and use B, 7.1 (see 6.3).
6.8. Take the spectral sequence associated to the lower central series
filtration of \ X.

6.9. Take the spectral sequence associated to the primitive filtration of
CAX.

6.7. We may realize 7 as a cofibration 7: g’ — g of free reduced pG Lie
algebras. If g” is the cofibre of ¢, then as graded Lie algebras we may iden-
tify g with the direct sum ¢’ \/ g¢”. Define a filtration of g by letting F,g be
the p-skeleton of ¢ with respect to g’, that is the subalgebra generated by g’
and g; for ¢ < p. Then this filtration gives rise to a spectral sequence of Lie
algebras. Note that

E'=@Fg/F,.g—3g" Vg .
To calculate the differentials, let d, d’, d”” be the differentials of g, ¢’, and g"*
respectively and identify g with ¢’ \/ ¢’. Then d is uniquely determined by
its restriction to g’, which is d’, and its restriction to g’ which is a derivation
d:g" —g” V¢ such that (d —d")g, C F',_,3. From this one calculates that d’
is 0 on g” and d’ on ¢’ so that ' = g” \v Hg', and that d' is d” on g”" and 0 on
Hg’ so that

E* = Hy" Vv Hy =~ n¥UX/Y)) Vv 7¥¢QX) .
This proves 6.7.

Remark 6.10. The spectral sequence 6.7 seems to be related to the one
derived by Artin and Mazur in |2]. Note also that when X = Y \V Z then we
have

YUY V C)) = 7¥QY) Vv 7¥QC)
showing that Hilton-Milnor formula holds for rational homotopy groups even
if Y and C are not suspensions.

The spectral sequence 6.9 may be rewritten

E' = H,(K(z(X)), Q) =— H.(X, Q)

where K(7(X)) is the product of the Eilenberg-MacLane spaces K(7,(X), q).
We pose the question of whether such a spectral sequence holds with Q re-
placed by an arbitrary coefficient group A. In the stable range there does |5].

Final remark 6.11. Combining Theorem I, and Theorems 1.3 and 5.1 of
Part II, we obtain the following simple description of the rational homotopy
category. It is equivalent to the category with

Objects: free reduced DG Lie algebras over Q
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Morphisms: homotopy classes of maps of DG Lie algebras, where two
maps f, g — 3 mare said to be homotopic if and only if there exists a diagram
of DG Lie algebras

g ———-g
/
id+idl /3{+30 lh
/

gVvg———m
4 9 f+g
where ¢ is a weak equivalence.

APPENDIX A. COMPLETE HOPF ALGEBRAS

This appendix is an exposition of the results on complete Hopf algebras
used in this paper. Complete Hopf algebras provide the Hopf algebra frame-
work for handling the Malcev completion [18] of a nilpotent group as well as
groups defined by the Campbell-Hausdorff formula [17, Ch. II]. In fact it was
the proof of the Campbell-Hausdorff formula [28, LA 4.13] that led to the
definition of complete Hopf algebras.

Most of the work of this appendix goes into proving that the category
(cHA) of complete Hopf algebras is closed under limits and has a projective
generator, a result needed in Part II. We review the meanings of these terms.
Following Grothendieck, we call a map f: X — Y in a category an effective
epimorphism if for any object T, composition with f is a bijection of
Hom (Y, T') with the subset of Hom (X, T') consisting of all maps ¢ with the
following property. Given two maps %, v € Hom (Z, X) such that fu = fo,
then pu = pv. We call an object P projective if Hom (P, X) — Hom (P, Y) is
surjective for any effective epimorphism X — Y, and we say that P is small
if the functor X:— Hom (P, X) commutes with filtered inductive limits.
Finally a set 91 of objects is called a set of generators if for any object X
there is an effective epimorphism @ — X where Q is a direct sum of members
of 91l. By a theorem of Lawvere [16] a category closed under limits and hav-
ing a small projective generator is a category of universal algebras and con-
versely. Therefore although (cCHA) is not a category of universal algebras, it
is not far from being one.

The terminology of this appendix is the same as that of Part I with the
exception that as we are not in the DG setting, a graded Lie algebra is a Lie
algebra in the usual sense without the signs.
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Al. Complete augmented algebras

Let K be a field. All modules, tensor products and algebras in this section
are to be understood as being over K unless there is mention to the contrary.
The augmentation ideal of an augmented algebra R will be denoted R.

By a filtration of an algebra R we mean a decreasing sequence R =
F.ROFR> ... of subspaces such that 1¢ F,R and F,R-F,RC F,. R.
Then each F,R is a two-sided ideal in R and gr R = @, F.R/F,..R has a
natural structure as a graded algebra. By a complete augmented algebra we
mean an augmented algebra R endowed with a filtration {F',R} such that

(a) FR=R

(b) gr R is generated as an algebra by gr.R

(e¢) R = lim-inv (R/F,R).

The class of complete augmented algebras forms a category (CAA), where
a map f: R — R’ is a map of augmented algebras such that f(F,R) c F,R’.

Condition (b) is easily seen to be equivalent to

(1.1 R+ F.R=F,R ifr=mn
or equivalently that F,R is the closure of R" for the topology defined by the
filtration.

Ezxamples 1.2, If B is an augmented algebra, then B = lim-inv B/B" is
a complete augmented algebra with F,B = Ker {B— B/B"}. Condition (b) fol-
lows from the formula

(1.3) gr B = grB = @ B*/B*+ .
It is clear that the functor B — B is left adjoint to the functor (CAA) — (AA)
which forgets the filtration.

1.4. If Jis an ideal in a complete augmented algebra R such that Jc R
and J is closed for the topology defined by the filtration, then R/.J is a com-
plete augmented algebra with F,(R/J) = (F,R + J)/J. Condition (b) follows
from the formula
(1.5) gr R/J = gr Rjgr J
where J is given the induced filtration. As for (c), first note that R/J is sepa-
rated since J is closed, i.e., J = M) (F,R + J). On the other hand, if v, is a
sequence in R/J with y, — y,_, € F,(R/J), then y, — y,_, = x, + J with
x,e F,R, sox =) x, converges in R and

(.’U =+ J) — Y. = Ek<n T + Je Fw+1(R/J) .
Thus y, converges to 2 + J, and R/J is complete.

PRrROPOSITION 1.6. The following conditions are equivalent for a map
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f:R-> R in (CAA).
(i) gr,.fis surjective,
(ii) f s surjective,
(iii) finduces an isomorphism R/Ker f —> R where R/Ker fisas in 1.4.

ProOF. If f is surjective, then f: R — R’ is surjective and so gr, f is
surjective. If gr, fis surjective, then gr f is surjective by condition (b), and
so f is surjective by completeness. It is clear that (iii) implies (ii). For the
converse, note that Ker f = J is closed since f is continuous, so R/J is defined
by 1.5. Since the map R/J — R’ is an isomorphism of augmented rings, we
have only to show that the filtrations are the same. But F,R — F,R’ is
surjective since the associated graded map is surjective (use (b)). Thus

F.R = F,RIF.RNJ~F,R + JJJ~F.(RJ), q.e.d.

If I is a set, then the algebra P = K{(X,>);., of formal power series in
the non-commuting indeterminates X, is a complete augmented algebra be-
cause it is the completion of the polynomials in the X,;. If R is a complete
augmented algebra and «;, ie I, is a family of elements of R such that
x;+ F,R is a basis for gr, R, then the unique homomorphism P—R which sends
X, to x,is surjective by 1.6. Thus

COROLLARY 1.7. Any complete augmented algebra R is the quotient of a
(non-commutative) power series ring P by a closed ideal. Moreover P may

be chosen so that gr, P — g1, R.

PROPOSITION 1.8. The effective epimorphisms in (CAA) are the maps
satisfying the conditions of 1.6.

ProoF. The map n: R — R/J is an effective epimorphism because a map
f: R— R’ factors through 7 if and only if f(J) = 0, and because any element
of J is the image of X under a map K{ X)) — R. Conversely any map f
factors R —— R/Ker f g, R', where g is injective and hence a mono-
morphism. If fis an effective epimorphism, one sees easily that g is an iso-
morphism, and so f is surjective.

COROLLARY 1.9. The following conditions are equivalent for a complete
augmented algebra R.

(1) R is a projective object of (CAA),

(ii) R is isomorphic to a non-commutative power series ring,

(iii) The natural map T(gr, R)—gr R is an isomorphism, where T is the
tensor algebra functor.

PROOF. (ii) = (i). There is a one-to-one correspondence between maps
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u: KX D)., — Y and families of elements y; ¢ Y given by (X)) = y,. If
v: X — Y is an effective eqimorphism, then X — Y is surjective by 1.8, so
there are elements x; € X with vx; = y,. Thus if w: KX, >>— X is given by
wX; = x;, then vw = u, proving (i).

(ii) = (iii). If P is a power series ring, then P = TV " where V is the
vector space having the indeterminates of P for its basis. Hence gr P =
grTV = TV is the tensor algebra on gr, V. Conversely given R satisfying (iii)
choose a surjection f: P— R as in 1.7 such that gr,P— gr, R. Then gr f is
an isomorphism, so f is an isomorphism by completeness.

(i) = (iii). Given a projective R, choose a surjection f: P — R with gr, f
an isomorphism. By 1.8, fis an effective epimorphism, so f has a section s.
Hence gr f has a section grs. But also (gr s)(gr f) = id, since this is true in
dimension 1 and gr P is generated by gr, P. Hence gr R ~ gr P is a tensor
algebra, q.e.d.

PRroOPOSITION 1.10. The category (CAA) is closed under arbitrary limits
and KXY is a projective generator.

ProoF. The second assertion is clear from 1.7-1.9. To prove the first, it
suffices to show (cAA) closed under sums, cokernels, products, and kernels.

Sums. If R, is a family write R, = P,/J; where P, is a power series ring
and J; is a closed ideal. Then the direct sum P = VY P; exists and is a power
series ring whose set of indeterminates is the disjoint union of the set of
indeterminates of the P;. Let J be the closed ideal in P generated by Y, in.(J).
Then ¢n; induces a map u;: R, — P/J, and the family {u,} is easily seen to make
P/J a direct sum of the X;. ‘

Cokernels. If f, g: R =3 R’ are two maps, let J be the closed ideal in R’
generated by (f — g)R. Then n: R’ — R'/J is a cokernel for f, g.

Kernels. If f,g: R = R’ are two maps, let P be the power series ring with
one indeterminate for each element of Ker(f, g), and let u: P— R be the
obvious map. We claim that the induced map u’: P/Ker v — R is a kernel for
f,9. Clearly fu’ = gu'. If v: X — R satisfies fv = gv, then writing X = P’/J"’,
there is a map w: P’ — P such that 7w = 7’ and w induces a map w': X —
P/Ker  such that v = w'w’. W' is unique because %’ is a monomorphism, so
%' = Ker (f, 9).

The existence of products is similar and left to the reader, g.e.d.

Remark. If gr, R is finite dimensional, then F,R = R". In effect R is a

quotient of a power series ring P = KX, -+, X,>> by a closed ideal and
F.R is a quotient of F',P so one is reduced to the case R = P. But then if
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X)eF,P,ie., (X)= Emzn a, X, (here « runs over finite sequences
(%1, =+ +, 1,) of elements of {1, -+, n}, |a| = rand X, = X; --- X, ), we have

fAX) = E"l”n (E@ aﬂilminXﬁ)Xil e Xy

so f(X) e P*. Thus the category of “finite type” complete augmented algebras
is a full subcategory of the category of augmented algebras.

1.11. By a filtration (N-sequence in the terminology of Lazard [17]) of a
group G (resp. Lie algebra g), we mean a decreasing sequence of subgroups
G=FG>DFG>:.-- (resp. subspaces g = Fg>Fg>-.--) such that
(F,G,F,G)C F,.,G (resp. [F,g, Fg] C F,.,8). Then grG (resp. grg) has a
canonical structure of graded Lie ring (resp. Lie algebra over K) where bracket
is induced by commutator [28, LA, Ch. II].

If R is a complete augmented algebra let G, R be the group 1 + R under
multiplication and let G.R be the Lie algebra R with [z, y] = xy — yx. Then
there are adjoint functors

A~ A

K U
(1.12) (9ps) = (cAA) G: (LA)

where G — KG (resp. g — Ug) is the group ring (resp. universal enveloping
algebra) functor and where ~ is completion (1.2).

Letting F,(G,R) =1 + F,R and F,(G.R) = F,R, we obtain filtrations of
G, R and G,R such that
(1.13) grG,R — gr G.R

as Lie algebras over Z(cf.[28]). In particular gr G,R has a Lie algebra
structure over K. This isomorphism is induced by = +— 1 + x, but it is also
induced by «+— f(x) where f(X)e K{X)) is any power series with
f(X) =1+ Xmod X2 In particular if K is of characteristic zero, we may
take the exponential series

e =3 o~ at/n!
which induces a map of sets
exp: G.R — G.R

which is bijective since the inverse is given by the logarithmic series. We
have

(1.14) e‘e! = et if [z,y] =0,

but in general only the Campbell-Hausdorff formula.
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Complete tensor product. If V = F,V D F,V > ... is a filtered vector
space, let p,: F,,V — gr, V be the canonical surjection. If W isanother filter-
ed vector space, then we filter V' ® W by

F VW)=, . FVOF,WcCcVQRW,

where we identify F,V Q F; W with its image under the map F;VQ F; W —
V & W, which is injective since K is a field. There is a canonical isomorphism
of graded vector spaces

erVerW—gr(VQ W)

given by 0,4 @ 0,y > 0,+4(* @ ¥)- R

If V and W are complete, we let V & W be the completion of V QW with
respect to this filtration and denote the image of ©® v under the mapV QW —
vV ® W (whieh is injective) by « ® y. Then there is an isomorphism

(1.15) ng®ng~—~—+gr(V®W)

given by 0,2 @ 0y — 0,+o(x @ ¥).
ASF,(VRIW)CF.VRW+VRF,WCF(VQW)
V& W = lim-inv, (V, @ W.)

where V, =V/F,V,etec. If V'V and W’ < W are closed subspaces endowed
with induced filtrations then by passing to the inverse limit in the exact
sequence of surjective inverse systems

0—V, W, — V., QW BV.QW,— V,QW,
— VIV, Q(W/W'),—> 0,

one sees the validity of the formulas

(VIVYQ (WIW) = (VRW)VRW +V' QW
(VRWHIN(V'QW)=V'QW'.

If R and R’ are complete augmented algebras, then F,(R Q R’) is a filtra-
tionof RQ R so R ® R’ is an augmented algebra. By (1.15) we have
(1.17) gTRQerR ~gr(RQ R
which is an isomorphism of graded rings. From this we see gr (R ® R) is
generated by gr, and so R ® R’ is a complete augmented algebra. The follow-
ing properties of the complete tensor product R ® R’ are immediate.

Universal mapping property. Given maps u: R— S and v: R’ — S in (CAA)
such that [uxz,vy] = 0 for all xe R and ye R’, there is a unique map
w: R ® R’ — S such that w(x ® 1) = w2 and w(l ® Y) = vy.

~ A A P
(1.18) AR B= AR B if A, B are augmented algebras.

(1.16)
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(1.19) (R/J) & (R')J) = ROR)REJ' +JQ R’ if J and J' are closed
ideals of R and R’, respectively.

A2. Complete Hopf algebras
A complete Hopf algebra is a complete augmented algebra A endowed
with a “diagonal” A: 4A— A ® A, which is a map of complete augmented
algebras and which is coassociative, cocommutative, and has the augmentation
map A— K as a counit. With the evident definition of morphisms the complete
Hopf algebras form a category (CHA).

Examples. 2.1. If Aisa (coassociative, cocommutative, as always) Hopf
algebra, then A4 (1.2) is a cHA with diagonal AA—(A @\A)A:/fz@fi (1.18).
In particular if G is a group and g is a Lie algebra, then KG and Ug are CHA’s.

2.2. If Ais a cha and J is a closed Hopf ideal of A in the sense that
AJC A ® J+J @ A, then the complete augmented algebra A/J (1.4) is a CHA
with A induced by that of A using (1.19).

2.3. If Aand A’ are CHA’s then so is A &) A’ in the obvious way. More-
over if pri: AR A — A and pry: A & A’ — A’ are the maps induced by the
augmentations of A’ and A respectively then A@ A’ with pr, and pr, is the
direct product of A and A’ in the category (CHA).

If Ais a cHA, we set

PA={wecd|Ae=2R1+1&x}

(2.4) GA={wzel+A|lac=c&a}.

PA, the set of primitive elements of A, is a Lie subalgebra of G,A, and 84,
the set of group-like elements, is a subgroup of G,A4 (1.12). Letting K and
U be the completed group and universal enveloping algebra functors with
CHA structure as in (2.1), it is straightforward to verify the following.

PROPOSITION 2.5. There are adjoint functors

bie i
(gps) ? (CHA) % (LA) .

For the rest of this section we suppose that K has characteristic zero.
Then the exponential series ¢ is defined.

PROPOSITON 2.6. © € PA — e” € GA.

PROOF. 1€ PA — Ax =2 ® 1+1 ® @ = ' = @RI — gabl, gibs
= (@RDAR ¢) = e* Q e* (using 1.14) — ¢* € GA.
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It follows that the exponential and logarithm functions give a canonical
isomorphism of sets

(2.7) exp: PA ~ GA
satisfying (1.14). The following is immediate from (1.13).

PROPOSITION 2.8. Let F,SA={rxecSA|x —1cF,A} and F,PA=
PANF,A. Then {F,SA} and {F,PA} are filtrations (1.11) of SA and PA
respectively. Moreover the exponential induces an tsomorphism

2.9) grPA - gr A

of Lie rings and defines a K-module structure on gr SA compatible with its
bracket. Finally

(2.10) A ~ lim-inv (PA/F,PA), SA ~ lim-inv (S4/F,SA4) .

Example 2.11. Let S be a set, let F'S be the free group generated by S,
and let LKS be the free Lie algebra generated by S. Then by the iso-
morphism of functors (2.7) and by (2.5), there are CHA isomorphisms

® [
KFS = KX )),.s —— ULKS
where K{(X,>> is the non-commutative power series ring with A defined so
that the X, are primitive, and where ¢ and 6 are determined by the for-
mulas p(s) = e*s,0(s) = X, for se S. Now ULKS = TKS where T = tensor
algebra, so 9P( ﬁLKS) = II,_, L.(KS), from which one deduces that

gr S(KFS) ~ gr PULKS ~ L(KS) .

The cHA KX, )),.s will be called the free CHA generated by the set S.

The functor gr is compatible with tensor products (1.17), so if A is a CHA,
then gr A is a graded Hopf algebra. gr A is primitively generated because it
is generated by gr, A which consists only of primitive elements for dimensional
reasons. By Milnor-Moore there is a Hopf algebra isomorphism.

(2.12) UQPgrAd) —>grA.

ProrosITION 2.13. If A is a CHA, then the Lie algebra &P gr A is gen-
erated by gr, A.

PROOF. The canonical map UL(gr, A) — T(gr, A) — U(P gr A) is sur-
jective. By the Poincaré-Birkhoff-Witt theorem, any Lie algebra g is canon-
ically a retract of U(g), so if ¢ is a map of Lie algebras and Ugp is surjective,
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then ¢ is surjective. Thus L(gr, A) — < gr A is surjective, proving the propo-
sition.
THEOREM 2.14. The canonical map gr PA — P gr A is an isomorphism.
ProOF. The map is injective since PA has the filtration induced from
that of A. By (2.13) it suffices to show that $A — gr, A is surjective; in other

words the theorem asserts that any cHA has many primitive and hence many
group-like elements.

Let S2A c A® A be the symmetric tensors, i.e., the image of the projec-
tion operator x @ y—1/2(x ® y+y @ x). This projection operator preserves
filtration, so if S®A is given the induced filtration, gr S®*A = S*gr A). The
maps

A2 5 A2, g
0x = Ax — x@l — 1®w
3z ®y) =02 @y — o Qdy
are compatible with filtrations, satisfy 6,6, = 0, and are carried by gr into
maps

_ 4 5 _
(2.15) gr A — S¥gr A) — (gr A)®*
given by similar formulas.
LEMMA. The sequence (2.15) is exact.

Proor. The maps 6} use only the coalgebra structure of gr A which by
(2.12) and the Poincaré-Birkhoff-Witt theorem is coalgebra-isomorphic to
S(P gr A). Hence we may replace gr A by a commutative polynomial ring
Q = K[X,];.; whose coalgebra structure is given by the formula

AX“ = Eﬁ+T=a Xﬂ ® Xr ’
where we use standard multi-index notation with X, = (a!)~*X*“. Suppose
&= Ea,ﬁ>0 aaﬂXa ® Xﬂ € Szé and
6;2 = Ep,a,:‘>0 (aP'H’J - ap,a+r)Xp ® Xa ® Xz' =0 .

Then a,.,. = @,,,+- if p,0,7 > 0, from which one sees that a., = a,., if
a+pB=a+p and |a|+|B|=3. Letu =3 . bX, where b, = a, if
a -+ B =vand «, 8 > 0. Then

e =T, 0X ®X =4 L%, 0, X0,

since a,; = ag,. Thus z € Im d}, proving the lemma.
To prove the theorem, we must show that the map grPA —PgrAdis
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surjective. Given u €< gr, A we construct by induction on # a sequence z,
in F,A such that 6,2, € F,S*A. Start by choosing «, € F,A with p,x, = . If
«, has been obtained, then d6(0,0,x,) = 0,0.0,& = 0, so there is by the exactness
of (2.15) an element y € F', A with p,6,y = 0;0,y = 0.0,x,. Wesetw, ., =z, —y.
As x,,, — x,€ F,A the sequence 2, is Cauchy and converges to an element
xe F,A. Then é,x =0 soxcPA and p,x = 4, which finishes the proof of the
theorem.

If W is a complete filtered vector space, let S*W be the image of the
symmetrization operator ¢ on W® cee ® W, n times. o preserves filtration
and by (1.15) gr S*W ~ S"(gr W). Define SW = H‘:ﬁ” W. If Aisacomplete
Hopf algebra, define e: S?A — A by requiring e to be linear, continuous, and
such that e(o(x, ® ces ® ®,) = M)y w, e %, , where o runs over the
symmetric group of degree n and the x,€ PA. Passing to gr’s we get the
composition S(gr PA) — S(P gr A) — gr A which is an isomorphism by (1.14),
the Poincaré-Birkhoff-Witt theorem for & gr A, and (2.12). Thus by complete-
ness we have the following Poincaré-Birkhoff-Witt theorem for cHA'’s.

COROLLARY 2.16. ¢: SPA — A is an isomorphism of vector spaces. In
particular PA 1s canonically a vector space retract of A.

COROLLARY 2.17. The following conditions are equivalent for a map
f:A— A’ of complete Hopf algebras.

(i) gr, f is surjective,

(ii) F,9f: F,9A— F,PA’ is surjective for all n,

(iii) 9Pf is surjective,

(i) F,Sf is surjective for all n,

(i)’ Gf is surjective,

(iv) f induces an isomorphism A/Ker f—— A’
where A/Ker f is the complete Hopf algebra described in (2.2).

ProoF. (i) = (iv) follows easily from (1.6); (ii) = (ii)’ is because of the
exponential isomorphism (2.7), and similarly for (iii) = (iii)’; (ii) = (iii) is
trivial; (iii)= (i) because gr, A = PA/F,? A by the theorem; (i) = (ii). By (2.13)
and (2.14), L(gr, A) - P gr A ~ gr PA is surjective. Hence gr, f surjective —
gr @f surjective = F',Pf surjective for all n, q.e.d.

COROLLARY 2.18. f is an isomorphism if and only if Pf is.

Proor. If 9f is an isomorphism, then it is injective and so also is F,97.
By (2.17) F,9f is also surjective so F,9f is an isomorphism for all n. Thus
er Pf = P(gr f) is an isomorphism so gr f is an isomorphism (2.12) and f is an
isomorphism.
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ProPoOSITION 2.19. The effective epimorphisms in (CHA) are the maps
satisfying the equivalent conditions of (2.17).

Proor. Any map f factors into A N A/Ker f Y, A" where g is injec-
tive and hence a monomorphism in (cHA). If f is an effective epimorphism,
then ¢ must be an isomorphism so f satisfies (2.17 (iv)).

Conversely given f, let J be the closed ideal generated by Ker 9f. Jis a
closed Hopf ideal and the map f factors into 4 =, AlJ 9, A'. misan effec-
tive epimorphism, because a map u: A — B factors through 7 if and only if
u(Ker 2f) = 0 and because each element of P4 is the image of X under a map
P— A, where P = KX, AX = X&® 1 + 1&® X. By (2.17) Pr is surjective
and by the definition of J, Ker Pf < Ker P7. Thus Ker f = Ker P7 and Py is
injective. Now if f satisfies the conditions of (2.17) so that @f and hence Pg
is surjective, then Pg is an isomorphism. Thus ¢ is an isomorphism by (2.18)
and so f ~ « is an effective epimorphism which finishes the proof of (2.19).
We also have proved that Ker f = J = closed ideal generated by Ker f when
[ is surjective. ,

If we factor a general map f into A N A/Ker f %, A, then by what
we have just showed, Ker = = closed ideal generated by Ker 7. But g hence
also Pg is injective, so Ker f = Ker = and Ker @f = Ker P, and we obtain
the following

ProPOSITION 2.20. If f is any map of complete Hopf algebras, then Ker f
18 the closed ideal generated by Ker Pf.

COROLLARY 2.21. f 1is injective if and only if Pf is injective.

PROPOSITION 2.22. Any complete Hopf algebra A is isomorphic to the
quotient of a free complete Hopf algebra P by a closed Hopf ideal. Moreover
we may assume gr, P = gr, A in which case P is unique over A up to non-
canonical isomorphism.

ProoF. Choose a basis for gr, A and lift it to elements x, € PA 1€ I by
(2.14). Then there is a unique map u: P— V with w(X;) = ;. gr,u is an
isomorphism, so by 2.17, A is isomorphic to A/Ker u. If v: P’ — A is a sur-
jective map, then by 2.17, Pu is surjective, so lifting each «; to an element of
P’ we obtain a map w: P — P’ such that vw = w. If gr, v is an isomorphism
and P’ is free, then gr, w is an isomorphism so gr w = T(gr, w) is an isomor-
phism and w is an isomorphism, g.e.d.

From similar arguments one proves

COROLLARY 2.23. The following conditions are equivalent for a complete
Hopf algebra A.
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(i) A is a projective object of (CHA),

(ii) T(gr, A) S grA,

(iii) L(gr, A) — gr PA,

(iv) A 1is isomorphic to a complete Hopf algebra P.

PROPOSITION 2.24. The category (CHA) is closed under arbitrary limits
and has KKX>>, AX = X®1+ 1Q X as a projective generator.
The proof is similar to (1.10).

A3. The relation between complete Hopf algebras and Malcev groups

Throughout this section K = Q, although those statements concerning only
CHA’s and Lie algebras are valid for an arbitrary field of characteristic zero.

Definition 3.1. By a Malcev group we mean a group G endowed with a
filtration (1.11) G = F,.G D F,G D - -- such that

(i) the associated graded Lie ring gr G is a uniquely divisible abelian
group, hence gr G is a Lie algebra over Q.

(ii) gr G is generated as a Lie algebra by gr, G.

(iii) G = lim-inv, (G/F,G).

Similarly a Malcev Lie algebra is a Lie algebra g with a filtration such that
gr g is generated by gr, g and such that g is complete for the topology defined
by the filtration. With the evident notion of morphisms, we obtain categories
(MGp) and (MLA) respectively.

The category of Malcev groups is the full subcategory of Lazard’s cate-
gory of R-groups [17] consisting of those R-groups for which the closures of
the terms of the lower central series form a basis for the neighborhoods of
the identity (this follows from (3.5)).

Example 3.2. If A is a cHA, endow 9A with the filtration induced by
F,A. Then there are Lie algebra isomorphisms gr 84 ~ gr PA ~ P gr A ((2.8),

(2.14)) and & gr A is generated by gr, 4 (2.13). Thus 94 is a Malcev group.
Similarly A with the induced filtration is a Malcev Lie algebra.

THEOREM 3.3. The functors

S P
(MGp) «—— (CHA) —— (MLA)

are equivalences of categories.

The proof will occupy the rest of the section. It will be convenient on
several occasions to refer to the following situation. Let H be a group en-
dowed with a filtration, let 7: H' — H be a group map, and consider the dia-
grams
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l1—T1,H'T,,H — H'Il, H — H'Il,H —1
(3.4) lgrm J ljmﬂ ljm

l1— F,H/F, . .H— H/F,.,.H — H/F,H —1

induced by j depending on m. Typical diagram chasing arguments (e.g.,
serpent lemma) will then be applied. For example if grj is surjective and j,,
is an isomorphism for m large, it follows by descending induction on m that
Jm 18 an isomorphism for all m.

ProprosITION 3.5. If G s a Malcev group, then
Tr,G)-FG = F.G fors=nr,
In particuloar of F,G = {1} for some s, then T',G = F.G for all r.

- Proor. We apply the situation of diagram (3.4) where H' = H = G/F .G,
j=the identity, and where F,H = F,G-F,G/F,G. Then grj is surjective by
(3.1)(ii) and j = j,, is an isomorphism for m > s; thus j,, is an isomorphism for
all m and the proposition is proved.

The key technical point in the proof of Theorem 3.3 is the following
variant of Ado’s theorem.

PROPOSITION 3.6. (a) If G is a nilpotent group with mo mon-identity
elements of finite order, then the camonical map G — QG/QG™ is injective
for n > the class of G, and conversely.

(b) If g is a nilpotent Lie algebra, then the canonical map g— Ug/Ug™
18 tnjective for n> the class of G, and conversely.

Proor. The converse statements are trivial. (b): We may assume g
finitely generated, in which case the Lie algebra gr g associated to the lower
central series filtration of g is finite dimensional, and so g is finite dimensional.
By Ado’s theorem g has a faithful finite dimensional representation V whose
composition quotients are trivial g modules. Let F be a flag in V stable under
g, and let R be the augmented algebra of endomorphisms of V' which preserve
F and which induce the same scalar on each of the quotients of . Then the
g action on V defines an augmented algebra map Ug/Ug” — R where n =
dim V'; as g acts faithfully on V, the map g — Ug/Ug" is injective. It remains
to show this holds for all n>> class of g. Let gr’ g be the Lie algebra associated
to the filtration F,g = gN Ug’" so that we have maps grg— gr's=— P gr Ug.
Now we have seen (2.13) that P gr U(g) is generated as a Lie algebra by gr, g,
hence these maps are surjective. To say g has class » means that gr,g = 0
for ¢ >r; hence gr,g = 0 for ¢ > ». As we have shown that F,g = 0 for n
sufficiently large, it follows that F', g = 0 for n > », proving (b).
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(a): By the same arguments used for (b), one reduces to the case where
G is finitely generated and to proving that G has a faithful finite dimensional
representation V' with trivial composition quotients. The only difference is
that now gr,G ®, Q — gr,G ®, Q is surjective, whence for ¢> class of G,
one may show by descending induction on ¢q that F,G is a torsion group and
hence the identity subgroup by the hypotheses on G. To construct V we
proceed as in Ado’s theorem. Since G is finitely generated and nilpotent,
there is a chain {G,} of normal subgroups in G such that the associated quo-
tients are cyclic with trivial G action; we prove the existence of V by induc-
tion on the length of this chain. Thus there is an exact sequence

T

1 G, G C 1

where C is cyclic and where the induction hypothesis applies to G,, so that the
canonical map p: G, — QG,/QG; is injective for some n. Write R for the
target of p, let « be an element of G such that wa generates C, and let 6 denote
both the automorphism y — ayx~' of G, and its obvious extension to R. The
images of the subgroups G, in gr, QG, generate a chain of subspaces on which
G acts trivially; combining this with the QG,-adic filtration, one sees that R
has a flag F' stable under the left multiplication representation ) of G, and the
conjugation action of G such that the associated quotients have trivial action.
Consequently both 4 and M(G,) are contained in the group 7T of endomorphisms
of R leaving F' stable and inducing the identity on the quotients of F'.

If C is infinite cyclic, then we may define an action ¢ of G on R by the
formula p(yx’) = My)6* if y € G,. It is readily checked that ¢ is well-defined;
as p(G)C T, R becomes a representation of G faithful on G, with trivial com-
position quotients. Taking the direct sum of R and a faithful representation
of C with trivial composition quotients, we obtain the desired V. On the
other hand if C is cyclic of order k& > 0, let % be the unique element of 1 + R
such that u* = p(x*), and define ¢ by p(y2’) = o(y)u' if y € G,. It is readily
verified that »: G — 1 + R is a well-defined function; to show that it is a
homomorphism one needs the formula 6(a) = uau=" for a € R. However a— fa
and a—uau" are elements of T with the same k™ power, and as T is uniquely
divisible, they coincide. Composing ¢ with left multiplication we get a faith-
ful action of G on R and R is the desired V. This completes the proof of (a)
and the proposition.

COROLLARY 3.7. Let G be a nilpotent group. The following conditions
are equivalent.

(i) G s uniquely divisible (x — x™ 1s bijective for n # 0).
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(ii) gr G s a Lie algebra over Q.
(ili) G ts a Malcev group with F,.G = T,G.
(iv) G —8QG.
Moreover if these conditions hold,
={weG|z — 1eQGF} = F.8QG
and gr G = gr 8QG = 9 gr QG.

PrOOF. (iv) = (i) and (ii) < (iii) are trivial.

Assume G uniquely divisible, let G = 8QG with its canonical filtration
(3.2), and let j: G — G be the canonical map, and consider the diagram (3.4).
grj.grG —gr G is surjective because the latter is generated by gr, G (2.13)
and because G uniquely divisible implies gr, G — (g1, G) Q Q = gr, G is surjec-
tive. By induction j,: G/T,.G — G‘/Fm@ is surjective for all m. For m> the
class of G, gr,,,@ =0, so F,,,G' =0 and j: G—G is surjective. By (3.6)(a)
j“lFmG =0, 50 j: G — G is an isomorphism, proving (iv). Now by descending
induection in the diagram gr,, 7 and j,, are isomorphisms, proving the “more-
over” assertion of the corollary and the implication (iv) = (iii). Finally sup-
pose (ii) holds. Then G has no non-identity elements of finite order so j: G — G
is injective by (3.6)(a), and gr,G is divisible so grG — gr G is surjective. We
have just seen how these two facts imply (iv), so the corollary is proved.

COROLLARY 3.8. If G is a nilpotent group, let G = QQG and let 7: G — G
be the canonical map. Then '

(1) j is universal for maps of G into nilpotent uniquely divisible
groups.

(2) j s characterized up to canonical isomorphism by the following
properties

(a) G is nilpotent and uniquely divisible.
(b) Kerj = the torsion subgroup of G.
(c) xe@=>x”elmjfor some n = 0.

PrOOF. (1) is immediate from (3.7). For (2) suppose j has properties (a),
(b), (c) and that k: G — H is another map with these properties. Then by (1)
there is a map G — H which one easily sees has propertles (b) and (c) and
therefore is an isomorphism by the unique divisibility of G and H. Hence k
is isomorphic to j. It remains to show that j has properties (b) and (¢). For
(b) let G’ be the quotient of G by its subgroup of elements of finite order (it
is a subgroup since G is nilpotent). Then by (1) G = @’, while by (3.6)(a)
G’ = (', hence Ker j = torsion subgroup of G. For (c) we show by induction
on m, that j,.: G/T,.G — @/Fm@ has property (c) using the diagram (3.4).

Assume j,, has property (c) and let x¢ @/Fm+1@, so that there is a
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yeG/l,.,G and uegr, G with %-7,,(y) = «* for some k = 0. Since
eré)®Q— grG is surjective, there is a v e gr, G with Jmri(v) = u? for
some p #= 0. As % is in the center of @/Fmﬂ@, we have that a*» = j,. . (vy?),
showing that j,., has property (c). Thus by induction, j has property (c)
and the proof of the corollary is complete.

COROLLARY 3.9. If gis a nilpotent Lie algebra, then g - g’ﬁg. More-
over T',g = gNUg" = F,9Ug and grg =~ gr PUs =~ P gr Ug.
The proof is similar to that of (3.7) but easier.

Remarks. 3.10. j: G —G = 8QG is by (3.8) the Malcev completion of G
in the sense of [18], [17].

3.11. The second assertion of (3.9) is valid even if g is not nilpotent. For a
discussion of what happens in the group case and in particular a proof of the
isomorphism (gr G) ® Q — P gr QG in general see [23].

PRrROOF OF (3.3). Let us call a Malcev group G (resp. Malcev Lie algebra
g, resp. complete Hopf algebra A) nilpotent if F,G (resp. F,g, resp. F,PA) is
zero for some r. It follows from (3.7) and (3.9) that the categories of nilpotent
Malcev groups (nMGp) and Lie algebras (nMLA) are isomorphic to the cate-
gories of nilpotent uniquely divisible groups and nilpotent Lie algebras respec-
tively. Moreover the functors

(3.12) (NMGD) —— (NCHA) ——> (NMLA)

are equivalences of categories, the quasi-inverse functors being @ and U
respectively. Indeed G — SQG by (3.7) and to show that QQ«A -~ A it suf-
fices by (2.7) and (2.18) to show that 8Q8A — GA; but this follows from
(3.7), since the composition 94 — SQ8A — GA is the identity. The case of
Lie algebras is similar. Finally the fact that (3.12) are equivalences implies
Theorem 3.3, because a Malcev group G (resp. CHA A) may be identified with
the inverse system {G/F,G}(resp. A/A-F,PA) in (nMGp) (resp. in (nCHA),
q.e.d.

APPENDIX B. DG LIE ALGEBRAS AND COALGEBRAS

In this section we give an exposition of the results on DG Lie algebras
and coalgebras that are used in the rest of the paper, in particular the func-
tors £ and €. Although the results are presumably well known, we have
included proofs (in outline at least) because existing treatments do not direct-
ly apply (e.g., in the basic reference [20] only Lie algebras with faithful re-
presentation are considered), and because several technical lemmas required
for the proofs are needed elsewhere in the paper.
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1. Notation

We work over a field K of characteristic zero fixed once and for all. Ex-
cept in the last section DG objects may be infinite in both directions. The
differential is always of degree —1. DG algebras are always associative with
unit (a Lie algebra is not an algebra), and DG coalgebras are coassociative with
counit and unless otherwise stated cocommutative. Here cocommutative
means TA = A, where T:V R W —> W®V is the isomorphism T(v ® w) =
(=Dw @ v, if p = degv and ¢ = deg w. When defining maps we shall give
formulas involving elements with ambiguous signs which have to be filled in
by the standard sign rule. The upper sign is always the one if all elements
are of even degree, e.g., [z, y] = vy F yz.

The r-fold suspension T"V(r € Z) of a DG vector space V is defined to be
3" @V, where X" is the DG vector space with (£7), = 0if ¢ = » and ("), =
the one dimensional vector space over K with basis element ¢.. We write X"x
instead of e, @ x so that dXx = (—1)"Z"dx. A map of degree r from V to W
isamap X'V — W and may be identified with a collection f = {f,: V,— W,,,}
such that df = (—1)"fd.

A wealk equivalence is a map inducing isomorphisms on homology.

2. The homology of certain functors

If V is a DG vector space, let T(V'), S(V), and L(V') be the tensor algebra
of, symmetric algebra of, and free Lie algebra generated by V respectively.
The functors T, S, and L are left adjoint to the underlying DG vector space
functor to (DG) from the categories of DG algebras, DG commutative algebras,
DG Lie algebras, respectively, and so there are natural (DG) maps V — T(V),
ete. These give rise to maps H(V) — (H(T(V)), etc., and, as the homology
of a DG algebra, ete. is a graded algebra, etc. to natural graded algebra maps
T(H(V))— H(T(V)), etc.

If L is a DG Lie algebra, let U(L) be its universal enveloping algebra. U
is the left adjoint of the underlying Lie algebra functor from DG algebras to
DG Lie algebras. U(L) is a DG cocommutative Hopf algebra and there is a
natural map U(H(L)) — H(U(L)) of graded Hopf algebras.

PROPOSITION 2.1. If V is a DG vector space then the natural maps
T(H(V)) — H(T(V)) of graded algebras
S(H(V)) — H(S(V)) of graded commutative algebras
L(H(V)) — H(L(V)) of graded Lie algebras
are isomorphisms. If L is a DG Lie algebra, then the natural map

U(H(L)) — H(U(L))
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of graded cocommutative Hopf algebras is an isomorphism.

ProoF. The assertion for T(V) follows from the Kiinneth theorem. We
note that S(V)) = @, S,(V) where S,(V) is the quotient of V¢ by the action
of the symmetric group X(n), where X(n) permutes the factors of V®*, As the
characteristic of K is zero, the symmetrization operator (n!)~ > 0,0€X(n)
is defined on V®" and defines a section of the map V®"— S,(V), allowing
one to identify S,(V) with the image of the symmetrization operator. As
homology is compatible with direct sums, and the Kiinneth isomorphism
is compatible with the interchange map, one sees that both S.(H(V))
and H(S,(V)) are the quotients of H(V®") ~ (H(V))%" by X(n). Hence
S.(H(V)) — H(S,(V)) and the assertion for S(V) is proved.

The universal enveloping algebra of L(V) is clearly T(V). Assume for
the moment the following

LEMMA 2.2. The map p: T(V) — L(V) given by

1
;[xly [xzv e [xn—ly xn] b ']] n > 0

0@ - Qu,) =

0 n=20

s a left inverse for the map L(V)— T(V). In particular L(V)— T(V) is
njective.

Regarding L(V) as a sub-DG Lie algebra of T(V) by the lemma, we see
that o is a projection onto L(V). But the formula for p is preserved by the
Kinneth isomorphism, hence L(H(V)) and H(L(V)) are both the images of 0
on T(H(V)), so the assertion of the proposition for L(V') is proved.

To finish the proof of the proposition we need another fact.

THEOREM 2.3 (Poincaré-Birkhoff-Witt). Let L be a DG Lie algebra and let
1: L — U(L) be the natural map. Let

e: S(L)y — U(L)

be given by e(@, -+ w,) = 1nl 3 . =~ +i(®,) - i(2,). Then e is an iso-
morphism of DG coalgebras.
It is clear that the following square is commutative

S(H(L)) —— U(H(L))

| w |

H(S(L)) =~ H(U(L))

and so the assertion for the functor U follows from the assertion for S.
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Proposition 1 is therefore proved except for the lemmas.

PROOF OF LEMMA 2.2. L(V) = @7, L,(V) where L,(V) is spanned by
order brackets of elements of V. Hence L,(V) =7V and [L.(V), L(V)] S
L,..(V). Consequently the endomorphism of L(V) given by Dx = nx if
x e L,(V)is a derivation, and we can form the semi-direct product L(V') @ KD
with bracket

[« + aD,y + bD] =[x, y] + aDy — bDx ifx,ye L(V),a,be K.

Then L(V) @ KD is a L(V) module and hence a U(L(V)) = T(V) module.
The map T(V) — L(V) @ KD induced by u — uD is given by

x1® ®xnl-—>[x1, 0 [me]] = [xu tee [xn——lyxn] "']
if n > 0and a; eV, whereas z+— Dz = nz if ze L, (V). Hence o(z) =z if
ze€ L(V) and the lemma is proved.
The proof of the PBW theorem will be given in the next section.

3. Connected DG coalgebras and the proof of
the Poincare-Birkhoff-Witt theorem
Let C be a DG coalgebra with comultiplication A: C — C ® C and counit

e: C — K. C will be called connected if there is an element 1,€ C such that
Al, = 1, ® 1., (1) = 1, the unit of K and if C = U7, F.C, where F,C is
the filtration of C defined recursively by the formulas

FC =K1,

FC={&keClaz—2R1l, -1, QeecF,_ CRQF, C}.
This definition of connected coalgebras differs from that in [20], however if
C is connected in the sense of [20], that is C, = K and C, = 0 for all » < 0 or
all » >0, then C is connected in our sense. Let P(C) ={reC|Ax =

1, + * ® 1.} be the pG subspace of primitive elements of C, so that
FC =K1, 2C).

PROPOSITION 3.1. If C’is a sub DG coalgebra of a connected DG coalgebra
C, then C’ is connected, F,C' = F,CNC' and P(C") =P(C)NC". A quotient
of a conmected DG coalgebra is connected and the tensor product of connected

DG coalgebras is connected.

PROPOSITION 3.2. If 6:C— C' is a map of DG coalgebras, and if C s
connected, then 0 is injective if and only if 0 restricted to P(C) is injective.

PROOF. We first show that 1,eC’. Since 2 ® 1 = (id Q ¢)Ax for all
xeC’,e: C'— K is surjective and there is an € C with e(x) = 1. AsCis
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connected, there is an 7 such that x ¢ F.C, and we may assume x chosen so
that  is minimal. If » > 0,

Rl =([dRe)Ar =R 1+ 1, Q1+ 2 QRex!) inC'QK,
where @}, 2}’ € F',_,C'. Hence T = — }_ e(w!)x; e C’' N F,_,C has ¢() = 1, and
hence by minimality of »,» = 0 and so x = 1, and 1, € C’. A straightforward
induction shows that F,C’' = C’'N F,C where we take 1,, = 1, hence J F',C’' =
C’ and C' is connected. This proves the first assertion of Proposition 3.1 and
the other assertions are trivial.

Proposition 3.2 is proved by inductively showing that 6 is injective on
F'.C hence also on all of C since C is connected.

Remark. It follows from the first assertion of Proposition 3.1 that the
element 1, is uniquely characterized by the formulas Al, =1,® 1, and
el;, = 1. We shall abbreviate 1, by 1 from now on.

Examples 3.3. Let A: T(V)— T(V) R T(V) be given by

A(’Ul®...®vn)
= @?:o VR RV R o+ R, E P, V®r® YV &=

where the empty tensor product is to be interpreted as 1€ V® = K, Let
e: T(V) — K be the projection onto V®°, Then A and ¢ define a non-commu-
tative coalgebra structure on T(V). (Warning: this is not the coalgebra
structure obtained by regarding T(V') as the universal enveloping algebra of
L(V).) It is easily shown that F.T(V) = @.<. V® whence T(V) is con-
nected.

Let A:S(V)—S(V)R® S(V) be the algebra map given by Av =
v®1+1&®vand let e: S(V) — K be the projection onto S,V = K. Then A
and ¢ define a commutative coalgebra structure on S(V), and a straight-
forward calculation using shuffle permutations shows that the map N: S(V)—
T(V) given by

(3.4) Nw o 0) =3 0 TV @V @ o+ @ Vi
is an injective map of DG coalgebras. From Proposition 3.1 we conclude that
F.S(V) = @.<, S.(V) whence S(V) is connected. In particular PS(V) = V.
PROOF OF THE PBW THEOREM. ¢ is clearly a DG map hence we may ignore
differentials. A calculation with shuffle permutations shows that ¢ is a map
of graded coalgebras. Furthermore ¢ is surjective because if we define a fil-
tration on U(L) by F,U(L) = the subspace of U(L) spanned by products
() -+ 7(x,) with ;e L, n < r, then by induction on », we have F,U(L) =
¢ (@.<, S.(L)). It remains to show that e is injective. By Proposition 3.2, it
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suffices to show that e restricted to S(L) = L is injective, or equivalently,
to show that the canonical map ¢: L — U(L) is injective. By Lemma 2.2 this
is true if L is free, that is, of the form L(V') for some graded vector space V,
consequently e is an isomorphism if L is free.

Given an arbitrary graded Lie algebra L we construct a diagram of
graded Lie algebras

So
d

1-11 /__._.2_\__) LO '_ﬁ_) L
di

where ds, = d;s, = id, pd, = pd,, and L,, L, are free, which is exact in the
sense that o is a cokernel of the pair d,, d, in the category of graded Lie
algebras. This may be done by choosing a surjection ©: L, — L where L, is
free, and then factoring L, SN L, %, L, into L, > L, (do, L, x . L,
where L, is obtained by adding more generators to L, so that (d,, d,) is sur-
jective. Consider the commutative diagram

S(do)
S(L) —— S(L) —>? ., s(L)
S(dy)

{ e L e e
U(lLl) I, U(lLO) ve U(lL)

As Sis a left adjoint functor, S(p) is a cokernel for S(d,), S(d,) in the category
of commutative graded algebras. Furthermore S(d,) is surjective, because of
S(s,), hence S(d,) Ker S(d,) is an ideal in S(L,). It is easily seen that the
natural map S(L,) — S(L,)/S(d,) Ker S(d,) is also a cokernel for S(d,), S(d,),
hence S(L,)/S(d,) Ker S(d,) ~ S(L), and so the top row of the above diagram
is exact in the category of graded vector spaces. Similar arguments show the
same for the bottom row. As ¢ is an isomorphism for L, and L, since they
are free, the five lemma shows that e is an isomorphism for L, q.e.d.

COROLLARY 3.5. U(L) s connected as a coalgebra and L 5 QU(L).

COROLLARY 3.6. There is a canonical map of DG vector spaces r: U(L) —
L which is left inverse to the inclusion 1: L — U(L) and which ts functorial
as L varies over the category of DG Lie algebras.

Remarks 3.7. This map r is the composition U(L) = S(L) LN L, where
j is the projection onto the tensors of degree 1. If L is free, r is not the same
as the map p of 2.2,
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3.8. A curious consequence of the above proof is that e: S(L) — U(L)
for any pDG Lie algebra L over a ring K containing Q. In effect the reduction
to the case where L is free did not use that K is a field, and the free case
follows by base extension from Q. Consequently all examples of a Lie algebra
g over a ring such that g — U(g) is not injective must occur in characteristic p.

3.9. In the case of ordinary finite dimensional Lie algebras over R, the
map e: S(L) — U(L) has the following agreeable interpretation. If G is a Lie
group with Lie algebra L, then composition with the exponential map
exp: L — @G yields a map from the ring of formal functions on G at the identity
to the ring of formal functions on L at 0, that is, a homomorphism
(exp)*: U(L)* — S(L)* where * denotes dual. (exp)* is just the transpose of e.

4. A universal coalgebra property of T(V) and S(V)
and the theorem of Cartier, Milnor, and Moore
Let N:S(V)—T(V) be the DG coalgebra map 3.4. Let 7: T(V)— V and
7: S(V) — V denote the projection onto the tensors of degree 1.

ProPOSITION 4.1. If C is a connected DG coalgebra, then the map 6 — 30
18 a bijection from the set of DG coalgebra maps 6: C— T(V') to the set of DG
vector space maps u: C — V such that w(l) = 0.

If C is a connected co-commutative DG coalgebra, then the same is true
for DG coalgebra maps C — S(V).

Proor. Let A™:C — C®" be the composition C — C®* — ... — C®" where
the map C® — C®"* ig any map of the form (id)®? ® A ® (id)®"—*—", Since
C is coassociative this composition is independent of any of these choices, and
we have the formula

(4.2) (Atp) ® A(q))A = AlP+atd)
In particularif Ac =2 @1+ 1R 2 + D o) Q &,

ANy = (A(’r—ﬂ ® ld)Ax = Alr-bg ® 1 + 197 ®.’I) + Ej A(r—-l)xlj ® .’I);-' ,
and so by induction on r we conclude that if e F.C, then A"z is a linear
combination of terms of the form xz, Q) .- Q x, where x; = 1 for some j. If
u: C — V is a DG map with u(1) = 0 then u®"A»Yx =0 if xe F,_,C, hence
since C = U F.C, the map 0: C — T(V) given by
(4.3) O =3~ u® A"y
is well-defined. It is clear that ¢ is a DG map and a computation using (4.2)
shows that (§ @ 8)A = Af. Hence 4 is a DG coalgebra map such that j6 = u.

It is not hard to show that (4.3) holds for any DG coalgebra map 6: C — T(V),
where u = 76, and so the first statement of Proposition 4.1 is proved.
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If C is co-commutative, then the image of @ is contained in the symmetric
tensors in T(V'), which is the image of N: S(V) — T(V). As N is injective @
factors uniquely & = N@ where §: C — S(V) is a DG coalgebra map, and the
second statement of Proposition 4.1 follows from the first, q.e.d.

Let M be a pa comodule under the cocommutative DG coalgebra C, and
let Ay M- MQC,As: C—CQ C be the comodule structure and coalgebra
structure maps of M and C respectively. By a coderivation from M to C, we
mean a DG map 6: M — C such that A0 = (1 + T)(0 ® 1)A, where T is the
interchange map (see § 1). A degree r coderivation from M to C is a degree
r map 0: M — C of DG vector spaces such that the honest bG map Z'M — C
associated to & is a coderivation from "M to C. If we form the semi-direct
product coalgebra M @ C with comultiplication

Ayge(m D ¢)
=0 DAMBTAMPACe MOIM)BMRSC)DICRIMDBICRC)
=MBC)QWMDC),
then a coderivation 6 from M to C may be identified with a pc coalgebra map
M@ C —L- C such that i = id, where i: C — M@ C is given by i(c) = 0P c.
As M @ C is connected if C is, we obtain from Proposition 4.1 the following
COROLLARY 4.4. If M is a DG comodule under the DG coalgebra S(V),
then there is a ome-to-ome correspondence between degree r coderivations
8: M— S(V) and degree r maps v: M —V of DG vector spaces given by v =7jo.
We say that a DG Hopf algebra U is co-commutative or connected if as a
coalgebra U is co-commutative or connected. If U is a DG Hopf algebra, then

QU is a sub-pG Lie algebra of the underlying DG Lie algebra of the algebra
structure of U.

THEOREM 4.5. The functor L U(L) is an equivalence between the cate-
gory of DG Lie algebras and the category of DG co-commutative conmected
Hopf algebras, the quasi-inverse functor being U — PU.

ProoF. By the corollary to the PBW theorem we have that PU(L) = L so
it remains to show that UP(U) — U, if U is cocommutative and connected.
We may ignore the differentials. By 3.2 and 3.5, the natural map UP(U) —

U is injective and hence there is a graded vector space map a: U — P(U) such
that the composition

S(P(U)) — UP(U) = U =5 P(U)

is the map j: S(P(U)) — P(U). By Proposition 4.1 there is unique graded co-
algebra map U -2, S(P(U)) such that j6 = a. 6 is injective by Proposition
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3.2 and the composition
S(P(U)) = UP(U) = U =L S(9(U))
is the identity so UP(U) — U, q.e.d.

S. Principal DG coalgebra bundles and twisting functions

We retain the notation and conventions of the preceding sections with
the exception that from now on all DG coalgebras will be assumed to be co-
commutative and connected. By virtue of 3.1, the operations that we per-
form will not lead us out of this category. In particular a pG Hopf algebra
will be of the form U(L) by the Cartier-Milnor-Moore theorem.

By a (right) action of a pG Lie algebra L on a DG coalgebra E we mean
a right U(L) module structure on E such that the module structure map
m: E Q@ U(L) — E is a map of DG coalgebras. By a principal L bundle with
base C we mean a triple (E, m, 7) where m is an action of L on F and n: £ — C
is a map of DG coalgebras such that 7(e-u) = 7(e)-e(u) satisfying the follow-
ing “local triviality” condition: there exists a graded coalgebra map p: C — E
with o = id,, which is not necessarily compatible with the differentials of C
and E, such that the map ¢: C Q U(L) — E given by o(c ® u) = p(c)-u is an
isomorphism of graded coalgebras, and right U(L) modules. Such a map o
_ will be called a local cross-section.

Example. Let m denote the natural L action on the DG coalgebra
CQ®U(L), and let 7 be given by 7(c @ u) = c¢-e(u). Then (C ® U(L), m, r)
is a principal U(L) bundle with base C and any other isomorphic to this one
is said to be trivial. It is clear that a principal bundle (E, m, x) is trivial if
and only if there exists a local cross section p: C — E such that d 0 = pd,.

A twisting function from a DG coalgebra C to a DG Lie algebra L is a
linear map 7: C — L of degree —1 such that

1) =0
(6.1 dLr+rdc+%[,]o(z-®r)oA=0.
This last equation may be written
6.2 d,ze + 7doe + L T, (—1*eect, cef] = 0

if Ac =3, ciQci. The following proposition determines the structure of
principal bundles in terms of twisting functions.

PROPOSITION 5.3. Let C be a DG coalgebra and let L be a DG Lie algebra.
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(1) If (E,m,r) is a principal L bundle with base C and 0: C— E is a
local cross-section, then there is a unique twisting function t: C — L such
that the differential of E is given by

(5.4) di(po-u) = (dge)-u + (—1)50c-dy,u
(5.5) dppe = p(doe) + 35, (—1)*ssioc-ef .

(2) The mapping (E, m,w, 0)— t defined by (1) yields a bijection from
the set of isomorphism classes of principal L bundles with base C and given
local cross section to the set of twisting functions from C to L.

PRrOOF OF (1). Let n’: E — U(L) be given by 7’(oc-u) = e(c)u and recall
that 7: E — C is given by 7(oc-u) = c-&(u). Then

(5.6) id; = m(zx Q ©')Agp .
If D: C—C is coderivation of arbitrary degree of the coalgebra E, i.e.,
(5.7 A;D=DXR1+1RQD)A,,

then by combining (5.6) and (5.7) we have
(5.8) D=mzDR7n + tQn'D)Ag.
Setting 7 = n'd0: C— U(L), and taking D = d, in (5.8) we obtain the formula
dpo = mad; @' + 1@ D)0 ® P)Ac
= pd; + m(0 Q T)Ac

which is the same as (5.5). If ce C and A.c = Y, ¢} @ ¢/, then we have the
formulas

Appyte = (T QTN Q1+ 1Qdp)(e® A =7¢®1 + 1 Te
(5.9) wdipe = w'dy(odee + 3 (—1)ioc)-Te)
= tdee + ) (—1)eecize]-re) + dypTe .

The first formula shows that Im7c L. By virtue of d3 = 0 and the co-
commutativity of C, the second shows that  is a twisting function. We note
that (5.4) follows from the fact that E in a G U(L) module. Finally 7 is
unique, since (5.5) implies that ¢ = 7'd0; hence the proof of (1) is complete.

PROOF OF (2). The injectivity of the map (E, m, x, p) — 7 is clear, since
up to isomorphism we may assume that E is the coalgebra C @ U(L), m is the
natural U(L) module structure on E, 7 is given by 7(c @ u) = c-&(u), and o
is given by p(c) = ¢ @ 1. Then the only thing needed to determine the iso-
morphism class of the principal bundle with local cross section is the differ-
ential of £, which is determined by ¢ via (5.4) and (5.5). It therefore suffices
to show that for any twisting function 7, the endomorphism of C Q U(L)
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given by (5.4) and (5.5) completes C ® U(L), m, w, and o and to a principal
bundle. In other words we must show

(i) djzis a degree —1 coderivation of E,

(ii) d% =0,

(iii) dj is compatible with the U(L) module structure on E, and

(iv) wd; = d,m.
(iii) and (iv) are easy; assuming (i) we shall prove (ii). First note that
di = 4[dg, dz] is a degree —2 coderivation of E, so by (5.8) it is determined
by nd% and n'd%. However wd% = diw = 0 by (iv). Since the proof (5.9) uses
only (i) and (iii), we see that (5.9) holds, and 7’d%0 = 0 because 7 is a twisting
function. But by (iii) d%(pc-u) = dyoc-u + pe-dyu = dioc-u and hence
n'd% = 0. Thus d% = 0 and so (ii) is proved.

It remains to show (i). But the following formulas may be verified rather
easily from (5.4).

dr @@L+ 1R dp)Ag(oc-u) = (d: @1+ 1Q dp)Azoc-Ayu
+ (=1)*5Az0c-(dy @1 + 1 Q dy)Ayu
Ardg(oc-u) = Apdgpc-Apu + (—1)*°Agoc-Aydyu
where - is also used to denote the natural action of U(L) ® U(L) on E R E.
As the last terms of these expressions are equal since d, is a coderivation of
U(L), it suffices in order to show that d, is a coderivation, to show that

(d:R®R1+ 1R dr)Az0c = Agdgoc. With patience the following formulas may
be deduced from (5.5).

d: Q@1+ 1R d)Ax0
=@V RL+1Qd)A; + (M )R TR (A Q 1A,
+ QML PeR TR A)A]
Agdgp
=[8z0d; + (M QPP QTR AR T)A: Q@ 1A
+ (EQmMIAQ PR 7)A R L)A,],
where T: C® C — C Q@ C is the interchange map. As A, is cocommutative
and co-associative, and as d, is a coderivation of C, we see that these expres-

sions are equal. Consequently d, is a coderivation, (2) is proved, and the
proof of Proposition 5.3 is complete.

6. Universal twisting functions

Let J(C, L) be the set of twisting functions from the DG coalgebra C to
the DG Lie algebra L. J(C, L) is a bifunctor covariant in L and contra-
variant in C. If 7€ J(C, L), we let E(C, L, 7) denote the principal L bundle
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with base C and local cross-section p (unique up to isomorphism by 5.3) whose
differential is given by (5.4) and (5.5).

A DG coalgebra C will be called acyclic if the augmentation C — K is a
homology isomorphism.

PROPOSITION 6.1. If C is a DG coalgebra, then the functor L — J(C, L)
is represented by a universal twisting function v, : C— £(C). Furthermore
E(C, £(C), t,) is acyclic.

PROPOSITION 6.2. If L isa DG Lie algebra, then the functor Cr+— J(C, L)
1s represented by a universal twisting function t,: C(L) — L. Furthermore
E(C(L), L, t;) is acyclic.

ProoF. Let C = Ker{e: C — K} and let Q = =~ (see § 1), so that QC is
the (—1)-fold suspension of the DG vector space C. Let L(QC) be the free
Lie algebra generated by QC and let z,: C — L(QC) be given by 7.2 = Qnz,

“where 7: C — C is the natural projection. Finally let £(C) be the pc Lie
algebra which as a graded Lie algebra is L(QC), but whose differential is
given by

(6.3) doTot = —Tedo® — %El (—1)tes=i[catl, Ta}'] .

This formula gives de, on QC; it may then be extended uniquely to all of
L(QC) as a degree —1 derivation. Assuming d%, = 0 for the moment, we
shall show that z,: C — £(C) is a universal twisting function with source C.
First of all 7, is a twisting function by (6.3). If z: C — L is an arbitrary
twisting function, then as 7(1) = 0 and L(QC) is a free Lie algebra, there is
a unique homomorphism ¢: L(QC) — L such that 6z, = . Now 6de,, and d 0
are degree —1 derivations of L(QC) with values in L considered as an L(QC)
module via 0; as 7, and 7 are twisting functions 0de, = d.0 on QC, hence
identically. Thus #: £(C) — L is a map of DG Lie algebras such that 67, = 7;
as 6 is determined by z, we see that 7, has the desired universal property.
The universal enveloping algebra of L(QC) is T(QC), and the extension
of de, to T(QC) is the degree —1 derivation given by the formula
(6.4) dyoonTo® = —Toldot — Ei (—1)*eica).Ta) |
by virtue of the cocommutativity of C. Consequently U(£(C)) is the cobar
construction [1] of the DG coalgebra C. Hence d? () = 0, by coassociativity
of C and so d%, = 0 as claimed above. Furthermore E(C, £(C), t,) is the co-
algebra C® T(QC) with differential given by 5.4, 5.5, and 6.4. Thus
E(C, £(C), 7,) is the “total space” coalgebra for the cobar construction and is
acyclic. In fact a contracting homotopy s is given by
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s(ox) =0
S(OT Ty » o Tpx,) = (— 1)%8°e(X) X, TpXy + » » T, g=1.

This concludes the proof of Proposition 6.1.

Let ZL # L be the pG Lie algebra constructed from the pG Lie algebra L
in the following way. As a graded vector space L # L = SL P L, where the
elements of XL are written Zx, and the elements of L are written 6z if « is
an element of L. The bracket and differential of L are given by the formulas

[Zx,Zy] =0 dZfx = 0x — Zdx
(6.5) [Zx, 0y] = 2|z, y] dix = Odx

[0, Oy] = Olx, y]
ZL % L has homology zero, since if h is given by hfx = Iz, hZx = 0, then
dh + hd = id. By Proposition 2.1, U(ZL % L) is acyclic.

Let 6: U(L) — U(ZL # L) be the Hopf algebra extension of the injection
of L into ZL # L given by « +— 6x. Then 6 is a bG Hopf algebra map and the
right U(L) module structure on U(ZL # L) determined by 6 is an action of L
on U(ZL ¢ L). Let C(L) = UZL % L) @y, K be the “orbit” pG coalgebra of
this action, and let 7: U(ZL # L) — C(L) be the natural surjection. By the pBW
theorem we have a coalgebra isomorphism S(ZL) ® U(L) — UL # L) given
by ¢c@w +— ic-u, where i: S(EL) — U(ZL % L) is the Hopf algebra map which
extends the inclusion L =—— XL # L. (Note that 7 is not compatible with dif-
ferentials.) Consequently 7i: S(ZL) — C(L) is a graded coalgebra isomorphism
and the coalgebra map

o: i(wi)™ C(L) — U(ZL § L)

is a local cross-section for the action. Therefore U(ZL # L) with this L action,
w, and p is a principal L bundle with base C(L). Proposition 5.3 shows that
the differential of U(ZL # L) may be calculated by 5.4 and 5.5 in terms of a
twisting funection 7,:C(L) — L which we shall now determine.
Let n’: U(ZL ¢ L) — U(L) be the Hopf algebra map given by Zzi— 0,
0x — x. Then 5.5 implies 7, = 7'd 0, so
T (Zw, +o - Zwp) = @' 31 +Ew, - (Ov; — Zda,) - -+ T,
0 q>1
x, q=1

Consequently z,: C(L) — L is the composition

(mi)~!

07 PELANG 75} SN ) LN

We can now show that 7, has the desired universal property. In order to
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simplify the notation a bit we shall identify the coalgebras S(XL) and C(L)
via the map 77 in what follows. In particular 7, = Qj by the preceding calcu-
lation. Let 7: C — L be an arbitrary twisting function. By 4.1, there is a
unique graded coalgebra map 6: C — S(XL) such that 6z = z,. Now 60d, and
de)0 are two degree —1 coderivations to (L) from C, which is an S(ZL)
comodule via 6. But j0d, = jde,0, since = and 7, are twisting functions,
hence 0d, = d,,0, by 4.4, so 0 is a DG coalgebra map from € to C(L) such that
0t = 7,. As 0 is determined by 7, this proves that z, is a universal twisting
function with target L. Finally E(C(L), L,z;) = U(ZL # L) is acyclic, and so
the proof of Proposition 6.2 is achieved.

Remarks 6.6. £(C) is the DG Lie algebra of primitive elements in the
cobar construction of C.

6.7. If g is an ordinary Lie algebra over K, and L is the differential
graded Lie algebra which is g in dimension zero and zero in other dimensions,
then C(L), = A?g and the differential on C(L) is the standard one for comput-
ing Lie algebra homology. This may be seen by noting that in the case at
hand 6.5 is the well-known formulas [i(x), i(y)] = [d, 6(x)] = 0, [d, i(x)] = O(x),
[0, i(y)] = ([, y]), ete. Therefore the functor € is the natural generalization
to DG Lie algebras of the standard complex for calculating the homology of a
Lie algebra [15].

7. Application of the comparison theorems for spectral sequences

In this section we shall only consider DG objects which are zero in nega-
tive dimensions. Recall that a DG coalgebra C (resp. b Lie algebra L) is
r-reduced if C, = 0 (resp. L, = 0) for ¢ < r, that reduced = 1-reduced, and that
(DGC), (resp. (DGL),) are the categories of r-reduced DG coalgebras (resp. Lie
algebras).

PROPOSITION 7.1. Given maps of DG coalgebras

(1.2) crt, o=, o
such that

(a) C is“locally” the product of C* and C’ in the sense that there exists
a coalgebra map p: C — C/ such that pi = id and such that (t Q p)A: C —
C*Q® C”’ is a coalgebra isomorphism,

(b) C,C’ are reduced and C* is 2-reduced. Then there is a coalgebra
spectral sequence

B, = H,(C") Q H,(C?) == H,.,(C)

independent of the choice of @ and functorial in the diagram (7.2).
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ProoF. Let F,C® = @.,<, C;} and let F,C be the inverse image F,C®
under 7 of F,C*® in the DG coalgebra sense, i.e., the cotensor product of F,C®
and C over C*. We calculate the spectral sequence associated to this filtration
of C. 4 induces an isomorphism 6:C’— F,C of DG coalgebras. Then
((gr m) @ 6~")A is a canonical map

(7.3) E°=grC—C'®C’
of coalgebras, which is an isomorphism by (a). To calculate the differentials
we use the isomorphism (7 @ @)A of (a) to identify C with C* ® C/ as co-
algebras, in which case we have

{(TRP)AN R Y) =Ry ifeeCt,yeC’.
Denoting the differentials of C*, C’, C by d’, d’, d respectively, using this
formula and the fact that d is a coderivation for A, one calculates the formula

de@y) =drsQ@y + 2, (—1)**"w. @ od (¢! Q v) ,

where Az =} #}@«}’. If deg ] < deg x, then since C} = 0, deg v} < deg v —2.
Consequently if degx = p

der@y) —d'zQy — (-1’2 Qdye F,..C,
from which one calculates that E, ~ C} ® H(C”) and EZ, =~ H,(C*)Q H,(C”).

These isomorphisms are induced by (7.3) which was independent of ¢, and so
the proposition is proved.

COROLLARY 7.4. Let L be reduced and C 2-reduced, and let (E, m, ) be

a principal L bundle with base C. Then there is a coalgebra spectral
sequence

E; =HCQRHUL— H,,E.
Proor. Apply the proposition to
UL)—E-">C
where i(u) = 1;-u. If o is a local cross-section, then by means of the coalgebra

isomorphism C @ U(L) — E given by ¢ ® u > pc-u, one may define the map
@: E — U(L) needed for a) by

@(pc-u) = ele)u . q.e.d.
THEOREM 7.5. The adjoint functors
I

(DGL), ‘T,— (DGC),

carry weak equivalences into weak equivalences. Moreover the adjunction
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maps a: LCL — L and £: C — CLC are always weak equivalences.

Proor. Let f:L — L' be a weak equivalence and consider the map of
spectral sequences

H,CL® H,UL — H,.,ECL, L,t,)

l l

HCL' ® HUL — H,,,ECL, L', t,)

By 2.1 and 6.2 the map is an isomorphism on the “fiber” and “total space” so by
the comparison theorems [30] for spectral sequences H,Cf is an isomorphism.
Similarly by considering the map of spectral sequences induced by the map
of principal bundles E(CL, £CL, t-,) — E(CL, L, ;) coming from a: £CL — L,
one sees that a is a weak equivalence. The other assertions of the theorem
are proved the same way.
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