

7 JANVIER 2021

INSTRUCTIONS. The presentation and the quality of the redaction, *the clarity and the precision of the exposition* will play an important part in the evaluation of the copy. Any answer given without justification will receive no point. Only handwritten notes and paper documents are allowed.

____ 🖾 ____

Exercice 1 (Fiber and loop space).

(1) Let (X, x_0) be a pointed topological space. Show that the map

 $\operatorname{Path}(X) \coloneqq \left\{ \varphi : I \to X \mid \varphi(0) = x_0 \right\} \to X \,, \quad \varphi \mapsto \varphi(1)$

is a fibration with Path(X) contractible.

(2) Let $F \to E \to B$ be a fibration where (B, b_0) is a pointed path connected topological space, where $F := p^{-1}(b_0)$ is the fiber, and where E is contractible. Show that there exists a weak homotopy equivalence $F \xrightarrow{\sim} \Omega B$.

HINT: We will admit the functoriality of the long exact sequence associated to a fibration.

(3) Show that $\Omega \mathbb{P}^{\infty} \mathbb{C}$ is homotopy equivalent to S^1 .

HINT: One can use Moore's theorem which asserts that the loop space of any CW-complex is homotopy equivalent to a CW-complex.

(4) Compute the homotopy groups of $\mathbb{P}^{\infty}\mathbb{C}$.

_____ 🏟 _____

Exercice 2 (Fibrant resolution).

To any poset (P, \leq) , one associates the simplicial complex

$$\Delta(P, \leq) \coloneqq (P, \{\lambda_0 < \cdots < \lambda_k\})$$

made up of chains $\lambda_0 < \cdots < \lambda_k$ of elements of *P*, for any $k \ge 0$.

(1) For any $n \ge 0$, we consider the totally ordered set $[n] := (\{0, \ldots, n\}, \le)$. What is the simplicial complex $\Delta([n])$?

To any simplicial complex (V, \mathfrak{X}) , one associates a simplicial set bary (V, \mathfrak{X}) whose k-simplicies

$$\operatorname{bary}(V,\mathfrak{X})_k \coloneqq \{F_0 \subseteq \cdots \subseteq F_k\}$$

are the chains of faces $F_i \in \mathfrak{X}$ and whose face and degeneracy maps are giving by

$$d_i(F_0 \subseteq \cdots \subseteq F_k) \coloneqq (F_0 \subseteq \cdots \subseteq F_{i-1} \subseteq F_{i+1} \subseteq \cdots \subseteq F_k) \quad \text{and} \\ s_i(F_0 \subseteq \cdots \subseteq F_k) \coloneqq (F_0 \subseteq \cdots \subseteq F_i \subseteq F_i \subseteq \cdots \subseteq F_k) \;.$$

For any $n \ge 0$, we consider the image of [n] by the composite of these two constructions :

$$\operatorname{sd} \Delta^n := \operatorname{bary}(\Delta([n]))$$

(2) Describe the simplicial set $\operatorname{sd} \Delta^n$, for $n \ge 0$, and represent graphically its geometric realisation $|\operatorname{sd} \Delta^2|$ with its cellular structure.

(3) Show that the maps $\delta_i \colon [n-1] \to [n]$ and $\sigma_i \colon [n+1] \to [n]$ defined by

$$\delta_i(j) := \left\{ \begin{array}{ll} j & \text{for} \quad j < i \,, \\ j+1 & \text{for} \quad j \geqslant i \,, \end{array} \right. \quad \text{and} \quad \sigma_i(j) = \left\{ \begin{array}{ll} j & \text{for} \quad j \leqslant i \,, \\ j-1 & \text{for} \quad j > i \,, \end{array} \right.$$

induce a cosimplicial simplicial set structure on the simplicial sets sd Δ^n , for $n \ge 0$, under the formula

$$\bar{\delta}_i(F_0 \subseteq \cdots \subseteq F_k) = (\delta_i(F_0) \subseteq \cdots \subseteq \delta_i(F_k)) \text{ and } \bar{\sigma}_i(F_0 \subseteq \cdots \subseteq F_k) = (\sigma_i(F_0) \subseteq \cdots \subseteq \sigma_i(F_k))$$

- (4) We denote this cosimplicial simplicial set by sd Δ[•]: Δ → sSet. Show that this functor extends to an endofunctor sd: sSet → sSet via Yoneda's embedding and that it admits a right adjoint Ex: sSet → sSet given by Ex X := Hom_{sSet}(sd Δ[•], X).
- (5) Describe the simplicial set sd $(\Delta^2/\partial\Delta^2)$ and represent graphically its geometric realisation $|sd (\Delta^2/\partial\Delta^2)|$ with its cellular structure. Does sd $(\Delta^2/\partial\Delta^2)$ give a triangulation of the sphere?
- (6) Represent graphically the geometric realisation $|sd^2 (\Delta^2)|$ and $|sd^2 (\Delta^2/\partial \Delta^2)|$ with their cellular structures. Does $sd^2 (\Delta^2/\partial \Delta^2)$ give a triangulation of the sphere ?
- (7) Describe the *n*-simplicies of Ex X in terms of the *n*-simplicies of X.
 INDICATION : One could write the simplicial set sd Δⁿ like a coequalizer of the form

$$\bigsqcup_{?} \Delta^{n-1} \xrightarrow{?} \bigsqcup_{\omega \in \mathbb{S}_{[n]}} \Delta^n \longrightarrow \mathrm{sd}\, \Delta^n$$

where $\mathbb{S}_{[n]} \cong \mathbb{S}_{n+1}$ is the set of bijections of [n].

(8) For any $n \ge 0$, we consider the morphism $\varepsilon_n : \operatorname{sd} \Delta^n \to \Delta^n$ of simplicial sets defined by

$$\varepsilon_n (F_0 \subseteq \cdots \subseteq F_k) \coloneqq (\max F_0 \leqslant \cdots \leqslant \max F_k).$$

Show that this is a simplicial homotopy equivalence.

We denote by ε_{\bullet} : sd $\Delta^{\bullet} \to \Delta^{\bullet}$ the induced morphism of cosimplicial simplicial sets. Pulling back with this latter one, we get a natural transformation of functors η : id_{sSet} \to Ex :

$$\eta_{\mathfrak{X}} \coloneqq (\varepsilon_{\bullet})^{*} \quad : \quad \mathfrak{X} \cong \operatorname{Hom}_{\mathsf{sSet}}(\Delta^{\bullet}, \mathfrak{X}) \quad \to \quad \operatorname{Hom}_{\mathsf{sSet}}(\operatorname{sd} \Delta^{\bullet}, \mathfrak{X}) = \operatorname{Ex} \mathfrak{X}$$

(9) Show that, for any simplicial set \mathfrak{X} and for any morphism $\lambda \colon \Lambda_k^n \to \operatorname{Ex} \mathfrak{X}$, there exists a morphism $\Delta^n \to \operatorname{Ex}^2 \mathfrak{X}$ of simplicial sets making commutative the following diagram

$$\begin{array}{ccc} \Lambda^n_k & \stackrel{\lambda}{\longrightarrow} \operatorname{Ex} \mathfrak{X} \\ & & & \downarrow \\ & & & \downarrow \\ \Lambda^n & \stackrel{-\cdots \to}{\longrightarrow} \operatorname{Ex}^2 \mathfrak{X} \end{array}.$$

HINT : One can admit that there exists a morphism of simplicial sets $\operatorname{sd} \Delta^n \to \operatorname{Ex} \operatorname{sd} \Lambda^n_k$ factorizing the morphism $\eta_{\operatorname{sd} \Lambda^n_k}$ in the following way

$$\begin{array}{c} \operatorname{sd}\Lambda_k^n & \xrightarrow{\eta_{\operatorname{sd}\Lambda_k^n}} & \operatorname{Ex}\operatorname{sd}\Lambda_k^n \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

(10) We consider

$$\operatorname{Ex}^{\infty} \mathfrak{X} \coloneqq \operatorname{colim} \left(\mathfrak{X} \xrightarrow{\eta_{\mathfrak{X}}} \operatorname{Ex} \mathfrak{X} \xrightarrow{\eta_{\operatorname{Ex}} \mathfrak{X}} \operatorname{Ex}^{2} \mathfrak{X} \xrightarrow{\eta_{\operatorname{Ex}}^{2} \mathfrak{X}} \cdots \right) \,.$$

Show that $Ex^{\infty} \mathfrak{X}$ is a Kan complex, for any simplicial set \mathfrak{X} .

- (11) [BONUS] Show the hint of Question (9).
- (12) [BONUS] Show that the canonical morphism $\theta: \mathfrak{X} \xrightarrow{\sim} \mathrm{Ex}^{\infty} \mathfrak{X}$ is a weak homotopy equivalence, for any simplicial set \mathfrak{X} , that is $\pi_n(|\theta|): \pi_n(|\mathfrak{X}|, x) \cong \pi_n(|\mathrm{Ex}^{\infty} \mathfrak{X}|, |f|(x))$ are isomorphisms, for $n \ge 1$ and $x \in |\mathfrak{X}|$, and a bijection for n = 0.