Homotopy Batalin-Vilkovisky algebras

Bruno VALLETTE (Université de Nice Sophia-Antipolis/MPIM)

Seminar on Algebra, Geometry and Physics (MPIM, 14/09/09)

Joint work with Imma Gálvez and Andy Tonks

Overview

- 1 Homotopy algebras and operads
- Definition of homotopy BV-algebra
- 3 Homotopy and deformation theory of algebras

Overview

- 1 Homotopy algebras and operads
- 2 Definition of homotopy BV-algebra
- 3 Homotopy and deformation theory of algebras

Associative algebras and homotopy [Stasheff 63]

$$X, Y$$
 homotopy equivalent topological spaces: $X \sim Y$ $X \times X \xrightarrow{\mu} X$ associative product $\xrightarrow{\operatorname{transfer}} Y \times Y \xrightarrow{\nu} Y$ but ν associative up to homotopy

⇒ "The disadvantage of topological groups and monoids is that they do not live in homotopy theory" [Mac Lane's seminar at the University of Chicago 1967]

Homotopy associative algebras [Stasheff 63]

Let (A, d_A) be a dg module. We consider $Hom(A^{\otimes n}, A)$ with derivative $\partial(f) := d_A \circ f - (-1)^{|f|} f \circ d_{A \otimes n}$

Definition (Homotopy associative algebra or A_{∞} -algebra)

Family of operations $\{\mu_n: A^{\otimes n} \to A\}_{n\geq 2}$, degree $|\mu_n| = n-2$, such that

$$\sum_{\substack{2 \le k \le n-1 \\ 1 \le i \le k}} \pm \mu_k \circ \left(\mathrm{id}^{\otimes (i-1)} \otimes \mu_{n-k+1} \otimes \mathrm{id}^{\otimes (k-i)} \right) = \partial(\mu_n)$$

in $\operatorname{Hom}(A^{\otimes n}, A)$ for all $n \geq 2$.

Example: $\mu_2 \circ (\mu_2 \otimes id) - \mu_2 \circ (id \otimes \mu_2) = \partial(\mu_3)$ The left hand sight relation holds up to the homotopy μ_n .

 \triangleright Associative algebra = A_{∞} -algebra with $\mu_n = 0$, $n \ge 3$.

Homotopy theory for A_{∞} -algebras

Definition (A_{∞} -morphism between A_{∞} -algebras)

Family of maps $\{f_n: A^{\otimes n} \to B\}_{n \geq 1}$, of degree $|f_n| = n - 1$, satisfying some condition. **Notation** $f_{\bullet}: A \to B$

Proposition

 $(A_{\infty} - algebras, A_{\infty} - morphisms)$ forms a category.

 \triangleright Notion of A_{∞} -homotopy relation \sim between A_{∞} -morphisms.

 \Longrightarrow Abstract homotopy theory for A_{∞} -algebras

Definition (A_{∞} -homotopy equivalence)

 $f_{\bullet}: A \to B$, A_{∞} -morphism such that

 $\exists \ g_{ullet}: B o A, \ A_{\infty}$ -morphism satisfying

 $f \circ g \sim \mathrm{id}_B$ and $g \circ f \sim \mathrm{id}_A$: A_∞ -homotopy equivalence

Homotopy invariant property for A_{∞} -algebras

Let $(V, d_V) \xrightarrow{f} (W, d_W)$ be a chain homotopy equivalence.

Theorem (...)

Any A_{∞} -algebra structure on W transfers to an A_{∞} -algebra structure on V such that

- f extends to an A_{∞} -morphisms with $f_1 = f$, which is a A_{∞} -homotopy equivalence.
- ▷ Explicit formula based on planar trees [Kontsevich-Soibelman]

Application:
$$V = H(A) \rightarrow A = W$$

transferred A_{∞} -operations on H(A) = Massey products

Example: Associative algebra $A = (C^{\bullet}(X), \cup)$ of singular cochain complex of a space X. \Longrightarrow the original Massey product.

 \triangleright Allow to reconstruct the homotopy class of A in Ho(A_{∞} -alg).

Other homotopy algebras

Other examples

- "Homotopy everything (commutative) algebras" or E_{∞} -algebras (C_{∞} -algebras, \mathbb{K} field of characteristic 0) [p-adic homotopy, Mandell]
- Homotopy Lie algebras or L_{∞} -algebras [Deformation-Quantization of Poisson manifold, Kontsevich]
- Gerstenhaber algebras up to homotopy or G_{∞} -algebras [Deligne conjecture, Getzler-Jones, Tamarkin-Tsygan, Ginot]

Homotopy theory for operads

Theorem (Getzler-Jones, Hinich, Berger-Moerdijk, Spitzweck)

There is a cofibrantly generated model category structure on dg operads transferred from that of dg modules.

an operad
$$\mathcal{P} \xleftarrow{\hspace{1cm}} \mathcal{P}_{\infty}$$
 : cofibrant replacement category of algebras \hookrightarrow category of *homotopy* algebras

Proposition (Boardmann-Vogt, Berger-Moerdijk)

Let \mathcal{P}_{∞} be a cofibrant dg operad. Under some assumptions, \mathcal{P}_{∞} -algebra structures transfer through weak equivalences.

▶ Homotopy invariant property for algebras over cofibrant operads.

Cofibrant operads

Definition (Quasi-free operad)

Quasi-free operad $(\mathcal{P}, d) := dg$ operad which is free $\mathcal{P} \cong \mathcal{F}(\mathcal{C})$ when forgetting the differential.

Proposition

```
\{\textit{projective modules}\} = \{\textit{direct summand of free modules}\} \\ \{\textit{cofibrant operads}\} = \{\textit{retract of quasi-free operads}\} \Longrightarrow \textit{free modules are projective} \Longrightarrow \textit{quasi-free operads are cofibrant}
```

$$\Longrightarrow$$
 Look for quasi-free resolutions: $(\mathcal{F}(\mathcal{C}), d) \xrightarrow{\sim} \mathcal{P}$

Quasi-free operads $(\mathcal{F}(\mathcal{C}), d)$

Data: generators $\mathcal C$ and differential d

Proposition

Since d is a derivation, it is characterized by its restriction $d_{|_{\mathcal{C}}}: \mathcal{C} \to \mathcal{F}(\mathcal{C})$.

 $d^2 = 0 \iff$ algebraic structure on $\mathcal C$ (homotopy cooperad) **Data:**

- the shape of C = underlying S-module
- $d \Longleftrightarrow$ algebraic structure on $\mathcal C$

Quasi-free resolution $(\mathcal{F}(\mathcal{C}), d) \xrightarrow{\sim} \mathcal{P}$: operadic syzygies

General problems

- How to make cofibrant replacements for operads explicit ?
 ⇒ Explicit definition of homotopy P-algebras
- ullet How to make the transferred \mathcal{P}_{∞} -algebra structure explicit ?
- How to define \mathcal{P}_{∞} -morphism "in general" ?
- ullet Describe the homotopy category of \mathcal{P}_{∞} -algebras
- ullet Define the deformation theory of \mathcal{P}_{∞} -algebras

Overview

- Homotopy algebras and operads
- Definition of homotopy BV-algebra
- 3 Homotopy and deformation theory of algebras

Gerstenhaber algebras

Let (A, d_A) be a dg module.

Definition (Gerstenhaber algebra)

- \triangleright symmetric product \bullet : $A \odot A \rightarrow A$, degree 0,
- \triangleright skew-symmetric bracket $[\ ,\]\ :\ A \land A \to A$, degree +1

such that

- ▶ associative,
- ▶ and [,] satisfy the Leibniz relation

$$[-\bullet -, -] = ([-, -] \bullet -).(23) + (-\bullet [-, -]),$$

Example: Hochschild cohomology HH(A, A) is a Gerstenhaber algebra.

Questions:

- Define the notion of Gerstenhaber algebra up to homotopy
- Extend the operations defined by Gerstenhaber on CH(A,A), which induce the Gerstenhaber algebra on HH(A,A), to a
 Gerstenhaber algebra up to homotopy. [=Deligne conjecture]
 =Question dual to that of Massey products.

Gerstenhaber operad

Let \mathcal{G} be the operad of Gerstenhaber algebras. **Presentation:**

$$\mathcal{G} = \mathcal{F} \left(\begin{array}{c} \bullet \\ | \end{array}, \begin{array}{c} | \\ | \end{array} \right) / (R) = \text{Free operad/ideal generated by R}$$

$$R = \{ \text{Assoc}(\bullet), \text{Jacobi}([\;,\;]), \text{Leibniz}(\bullet,[\;,\;]) \}$$

Quadratic presentation:

Quadratic := R writes with 2-vertices trees

Koszul duality theory

Dual notion of operad : cooperad [reverse the arrows] **Example:** a coalgebra is a cooperad concentrated in arity 1.

Theorem (Ginzburg-Kapranov, Getzler-Jones)

There exist adjoint functors

$$B$$
 : { $dg \ operads$ } \leftrightharpoons { $dg \ cooperads$ } : Ω

called bar and cobar constructions

Quadratic operad $\mathcal{P} \xrightarrow{\mathsf{Koszul\ dual\ cooperad}} \mathsf{cooperad\ } \mathcal{P}^{\mathsf{i}}$ with $\mathcal{P}_{\infty} := \Omega \mathcal{P}^{\mathsf{i}} = \mathcal{F}(s^{-1}\bar{\mathcal{P}}^{\mathsf{i}}) \to \mathcal{P}$ morphism of dg operads

Definition (Koszul operad)

 \mathcal{P} Koszul if $\mathcal{P}_{\infty} = \Omega \mathcal{P}^{\text{i}} \xrightarrow{\sim} \mathcal{P}$ quasi-isomorphism: cofibrant replacement

Applied Koszul duality theory

ullet Computation of \mathcal{P}^{i}

Proposition (Ginzburg-Kapranov, Getzler-Jones)

Let $\mathcal{P} = \mathcal{F}(V)/(R)$ be a quadratic operad with $\dim(V) < +\infty$. The linear dual \mathcal{P}^{i^*} is a quadratic operad and the suspension of $\mathcal{P}^{i^*} \cong \mathcal{P}^! := \mathcal{F}(V^* \otimes \operatorname{sgn})/(R^{\perp})$.

Example: $\mathcal{G}^! = \mathcal{G}$: Koszul auto-dual operad **Method:** Compute $\mathcal{P}^!$ and its operadic structure with this formula, then dualize everything to get $\mathcal{P}^!$ and its cooperadic structure.

ullet Methods to prove that ${\mathcal P}$ is Koszul

Proposition (Getzler-Jones, Markl)

The Gerstenhaber operad G is Koszul.

Homotopy Gerstenhaber algebras or G_{∞} -algebras

$$\mathcal{G} = \mathcal{G}^! = \mathcal{C}\textit{om} \circ \mathcal{L}\textit{ie}^1$$

Proposition (Ree 58)

$$\mathcal{L}ie(A) \cong \bigoplus_{n} A^{\otimes n} / Shuffles =: \bigoplus_{n} \overline{A^{\otimes n}}$$

Definition-Proposition (Homotopy Gerstenhaber algebra)

$$m_{\rho_1,\ldots,\rho_n}\colon \overline{A^{\otimes \rho_1}} \wedge \cdots \wedge \overline{A^{\otimes \rho_n}} \longrightarrow A, \qquad n, \ \rho_1,\ldots,\rho_n \geq 1,$$

such that

$$\sum \pm \, m_{t,p_{j_1},\ldots,p_{j_{n-r}}} \bigl(\sum m_{q_1,\ldots,q_r}^{p_{i_1},\ldots,p_{i_r}} \bigl(a_{i_1} \wedge \cdots \wedge a_{i_r} \bigr) \wedge a_{j_1} \wedge \cdots \wedge a_{j_{n-r}} \bigr) = 0.$$

Applied G_{∞} -algebras

Proposition (Getzler-Jones)

Let \mathcal{P} be a Koszul operad. A \mathcal{P}_{∞} -algebra structure on $A \iff$ a square-zero coderivation on the cofree \mathcal{P}^i -coalgebra $\mathcal{P}^i(A)$.

Application: \mathcal{G}_{∞} -algebra structures on $A \iff$ square-zero derivations on the cofree Gerstenhaber coalgebra $\mathcal{G}^*(sA)$.

Theorem (Tamarkin-Deligne Conjecture)

There is a \mathcal{G}_{∞} -algebra structure on Hochschild cochain complex CH(A,A) which lifts the Gerstenhaber algebra structure on HH(A,A).

Batalin-Vilkovisky algebras or BV-algebras

Definition (Batalin-Vilkovisky algebra)

A Gerstenhaber algebra $(A, \bullet, [,])$ with \triangleright unary operator

 $\Delta : A \rightarrow A$, degree +1

such that

 $\rhd \Delta^2 = 0, \, \rhd \, [\; , \;] =$ obstruction to Δ being a derivation with respect to \bullet

$$[\,\text{-},\text{-}\,] \ = \ \Delta \circ (\text{-} \bullet \text{-}) \ - \ (\Delta(\text{-}) \bullet \text{-}) \ - \ (\text{-} \bullet \Delta(\text{-})),$$

 \Downarrow

 $\rhd \Delta$ derivation with respect to [,]

$$\Delta([-,-]) = [\Delta(-),-] + [-,\Delta(-)]$$

BV-operad

Problem: The operad BV is not quadratic

$$[-,-] = \Delta \circ (- \bullet -) - (\Delta(-) \bullet -) - (- \bullet \Delta(-)) \text{ writes}$$

$$[-,-] = \Delta \circ (- \bullet -) - (\Delta(-) \bullet -) - (- \bullet \Delta(-)) \text{ writes}$$

Quadratic Batalin-Vilkovisky algebras or qBV-algebras

Definition (quadratic Batalin-Vilkovisky algebra)

A Gerstenhaber algebra $(A, \bullet, [,])$ with \triangleright unary operator

 Δ : $A \rightarrow A$, degree +1 such that

 \rhd $\Delta^2=$ 0, \rhd Δ derivation with respect to •

$$\Delta \circ ({\mathord{\text{-}}} \bullet {\mathord{\text{-}}}) \ - \ (\Delta({\mathord{\text{-}}}) \bullet {\mathord{\text{-}}}) \ - \ ({\mathord{\text{-}}} \bullet \Delta({\mathord{\text{-}}})) = 0,$$

does not imply any more

$$ightharpoonup \Delta$$
 derivation with respect to $[\ ,\]$
 $\Delta([\ -,-\]) = [\Delta(\ -),-\] + [\ -,\Delta(\ -)]$

The operad qBV is quadratic by definition.

qBV-operad and Homotopy quadratic BV-algebras

Proposition

The operad qBV is Koszul. \Longrightarrow qBV $_{\infty}:=\Omega$ qBV $^{i} \xrightarrow{\sim}$ qBV quasi-free resolution

Lemma

$$qBV^! \cong \mathbb{K}[\delta] \otimes Com \circ \mathcal{L}ie^1 = \mathbb{K}[\delta] \otimes \mathcal{G}^!, \quad |\delta| = 2$$

Definition-Proposition (Homotopy qBV-algebra)

$$m_{p_1,\ldots,p_n}^d: \overline{A^{\otimes p_1}} \wedge \cdots \wedge \overline{A^{\otimes p_n}} \longrightarrow A, \qquad n, p_1,\ldots,p_n \geq 1, d \geq 0$$

such that

$$\sum \pm m_{t,p_{j_1},\ldots,p_{j_{n-r}}}^{\mathbf{d}}(\sum m_{q_1,\ldots,q_r}^{\mathbf{d}',p_{i_1},\ldots,p_{i_r}}(a_{i_1}\wedge\cdots\wedge a_{i_r})\wedge a_{j_1}\wedge\cdots\wedge a_{j_{n-r}})=0.$$

Applied Homotopy quadratic BV-algebras

$$\mathcal{G}$$
-alg $\mapsto qBV$ -alg \mathcal{G}_{∞} -alg $\mapsto qBV_{\infty}$ -alg

Proposition ("Extended Deligne conjecture")

A associative algebra with a unit 1

$$\Delta : f \in \operatorname{Hom}(A^{\otimes n}, A) \mapsto \sum_{i=1}^{n} f \circ \left(id^{\otimes (i-1)} \otimes 1 \otimes id^{\otimes (n-i)} \right)$$
$$\in \operatorname{Hom}(A^{\otimes n-1}, A)$$

defines a qBV-algebra structure on HH(A, A), which extends the Gerstenhaber algebra structure.

It lifts to a homotopy qBV-algebra structure on CH(A, A).

Idea: Add a suitable inner differential $d_1: qBV^i \to qBV^i$ and consider $\Omega(qBV^i, d_1) \xrightarrow{? \sim ?} BV$.

Koszul duality theory revisited

Let $\mathcal{P} = \mathcal{F}(V)/(R)$ be a quadratic and linear presentation. Let $q: \mathcal{F}(V) \twoheadrightarrow \mathcal{F}(V)^{(2)}$ the quadratic projection and $q\mathcal{P} := F(V)/(qR)$, the quadratic analogue of \mathcal{P} .

Definition (Quadratic-Linear Koszul operad)

 $\mathcal{P} = \mathcal{F}(V)/(R)$ is a Koszul operad if

- $R \cap V = \{0\} \iff V$ is "minimal"
- $(R \otimes V + V \otimes R) \cap \mathcal{F}(V)^{(2)} \subset R \cap \mathcal{F}(V)^{(2)} \iff R$ is "maximal"
- qP is Koszul

R maximal corresponds to ψ in the example of BV. Quadratic Koszul operad are also Koszul in the above definition.

The inner differential

Lemma

- $R \cap V = \{0\} \Longrightarrow R = Graph(\varphi : qR \rightarrow V)$.
- $(R \otimes V + V \otimes R) \cap \mathcal{F}(V)^{(2)} \subset R \cap \mathcal{F}(V)^{(2)} \iff \varphi \text{ induces a square-zero coderivation } d_{\varphi} \text{ on } q\mathcal{P}^i.$

Proof.

 $q\mathcal{P}^{\scriptscriptstyle{\dag}} \rightarrowtail \mathcal{F}^c(sV)$ $\exists !$ coderivation on $\mathcal{F}^c(sV)$ which extends

$$\mathcal{F}^c(sV) \twoheadrightarrow s^2 qR \xrightarrow{s^{-1}\varphi} sV$$

It squares to 0 and descents to $q\mathcal{P}^{\dagger}$ iff $(R \otimes V + V \otimes R) \cap \mathcal{F}(V)^{(2)} \subset R \cap \mathcal{F}(V)^{(2)}$

Cofibrant resolutions for Koszul operads

Definition (Koszul dual dg cooperad)

$$\mathcal{P}^{\mathsf{i}} := (q\mathcal{P}^{\mathsf{i}}, d_{\varphi})$$

$\mathsf{Theorem}$

When \mathcal{P} is a quadratic-linear Koszul operad, then

$$\mathcal{P}_{\infty} := \Omega \, \mathcal{P}^i \xrightarrow{\sim} \mathcal{P}$$

Theorem

The operad BV is Koszul

$$\implies BV_{\infty} := \Omega BV^i = \Omega(qBV^i, d_{\varphi}) \xrightarrow{\sim} BV$$

Homotopy Batalin-Vilkovisky algebras

$$qBV^!\cong \mathbb{K}[\delta]\otimes \mathcal{C}om\circ \mathcal{L}ie^1=\mathbb{K}[\delta]\otimes \mathcal{G}^!$$

Proposition

 $d_{\varphi}(\delta^d \otimes L_1 \odot \cdots \odot L_t) = \sum_{i=1}^t \pm \delta^{d-1} \otimes L_1 \odot \cdots \odot L'_i \odot L''_i \odot \cdots \odot L_t$, where $L'_i \odot L''_i = \text{image of } L_i \text{ under the decomposition map of the cooperad \mathcal{L}ie}^{1*}$.

Definition-Proposition (BV_{∞} -algebra)

$$m_{p_{1},...,p_{n}}^{d} : \overline{A^{\otimes p_{1}}} \wedge \cdots \wedge \overline{A^{\otimes p_{n}}} \longrightarrow A, \qquad n, \ p_{1},...,p_{n} \geq 1, \ d \geq 0$$
s.t.
$$\sum \pm m_{t,p_{j_{1}},...,p_{j_{n-r}}}^{d} \left(\sum m_{q_{1},...,q_{r}}^{d',p_{i_{1}},...,p_{i_{r}}} (a_{i_{1}} \wedge \cdots \wedge a_{i_{r}}) \wedge a_{j_{1}} \wedge \cdots \wedge a_{j_{n-r}} \right)$$

$$+ \sum \pm m_{p_{1},...,p',p_{r}-p',...,p_{n}}^{d-1} (a_{1} \wedge \cdots \wedge \overline{a_{p'}} \wedge \overline{a_{p_{r}-p'}} \wedge \cdots \wedge a_{n}) = 0$$

Applied Homotopy Batalin-Vilkovisky algebras

$$\mathcal{G}$$
-alg $\mapsto BV$ -alg \mathcal{G}_{∞} -alg $\mapsto BV_{\infty}$ -alg

Theorem (Ginzburg, Tradler, Menichi)

A: Frobenius algebra algebra Hochschild cohomology HH(A, A) is a BV-algebra

Theorem (Cyclic Deligne conjecture)

This structure lifts to a BV_{∞} -algebra structure on CH(A,A), such that the first operations are the Gerstenhaber operations and the operator Δ .

Comparison with the other definitions

Proposition

A homotopy commutative Batalin-Vilkovisky algebra [Kravchenko] is a homotopy Batalin-Vilkovisky algebra such that all the operations vanish except m_2^d and the $m_{1,...,1}^d$.

Proposition

A homotopy Batalin-Vilkovisky algebra in this sense is a particular example of a homotopy BV-algebra in the sense of [Tamarkin-Tsygan].

This notion also differs from that of Beilinson-Drinfeld in the context of chiral algebras.

PBW isomorphism

The free operad $\mathcal{F}(V)$ filtered $\Longrightarrow \mathcal{P} = \mathcal{F}(V)/(R)$ filtered. There is a morphism of operads $q\mathcal{P} \to \operatorname{gr}\mathcal{P}$.

Theorem (PBW isomorphism)

For any Koszul operad P, we have an isomorphism of operads

$$q\mathcal{P} \cong gr\mathcal{P}$$

Applications:

- $qBV \cong \operatorname{gr} BV \ (\cong BV \text{ as an } \mathbb{S}-\operatorname{module}).$
- Provides a small chain complex to compute $H^{BV}_{\bullet}(A)$.

Relation with the framed little disk operad

fD:=framed little disk operad

Proposition (Getzler 94)

$$H_{\bullet}(fD) \cong BV$$
,

Getzler When S^1 acts on X, $H_{\bullet}(\Omega^2 X)$ carries a BV-algebra S.-W. fD detects spaces of type $\Omega^2 X$, with S^1 acting on X.

Theorem

When S^1 acts on X, $C_{\bullet}(\Omega^2 X)$ carries a BV_{∞} -algebra structure which induces the BV-algebra structure on $H_{\bullet}(\Omega^2 X)$ (Pontryagin product and Browder bracket).

Formality of the framed little disk operad

Theorem (Giansiracusa-Salvatore-Severa 09)

The framed little disk operad is formal: $C_{\bullet}(fD) \stackrel{\sim}{\longleftarrow} \cdots \stackrel{\sim}{\longrightarrow} H_{\bullet}(fD)$.

$$BV_{\infty}$$
 cofibrant \Rightarrow $C_{\bullet}(fD)$
 \uparrow^{\bullet}
 \uparrow^{\sim}
 \vdots
 \downarrow^{\sim}
 $BV_{\infty} \xrightarrow{\sim} BV \cong H_{\bullet}(fD)$

Relation with TCFT

a Topological Conformal Field Theory := algebra over the prop(erad) $C_{\bullet}(\mathcal{R})$ of Riemann surfaces R:= suboperad of \mathcal{R} composed by Riemann spheres with one output (holomorphic disk).

Theorem

∃ quasi-isomorphisms of dg operads

Relation with TCFT

Theorem

Any TCFT (Topological Conformal Field Theory) carries a homotopy BV-algebra structure which lifts the BV-algebra structure of Getzler on its homology.

 \Rightarrow Purely algebraic description of part of a TCFT structure

Overview

- Homotopy algebras and operads
- 2 Definition of homotopy BV-algebra
- 3 Homotopy and deformation theory of algebras

Operads and props

Operations	+	Y	×
Composition			
Monoidal category	(Vect, \otimes)	$(\mathbb{S}\text{-}\mathrm{Mod},\circ)$	$(\mathbb{S}\text{-}\mathrm{biMod},\boxtimes_c)$
Monoid	$R \otimes R \rightarrow R$ Associative Algebra	$\mathcal{P} \circ \mathcal{P} { ightarrow} \mathcal{P}$ Operad	$\mathcal{P} \boxtimes_{c} \mathcal{P} \rightarrow \mathcal{P}$ $ Properad$
Modules	Modules	Algebras	Bialgebras
Examples		Associative, Lie, Gerstenhaber algebras	bialgebras, Lie bialgebras
Free monoid	Ladders (Tensor module)	Trees	Connected graphs

Properads → prop (not a monoid, but a 2-monoid!)

 \Longrightarrow homological constructions much difficult.

General theory

Generalized Koszul duality theory

- includes unary operations [V. Ph.D. Thesis]
- ullet no restriction on the homological degree of ${\cal P}$
- works for properads, i.e. operations with several outputs

Homotopy theory for \mathcal{P}_{∞} -algebras

When \mathcal{P} is a Koszul operad

- ullet Define the notion of \mathcal{P}_{∞} -morphism and \mathcal{P}_{∞} -homotopy
- Category of \mathcal{P}_{∞} -algebras = Category of fibrant objects of \mathcal{P}^{i} -coalgebras \Longrightarrow understand the homotopy category $\text{Ho}(\mathcal{P}_{\infty}\text{-alg})$

Example: BV_{∞} -algebras

Deformation theory

 \mathcal{P} be a Koszul properad and (A, d) dg module

Proposition (Deligne philosophy on deformation theory)

 \exists dg Lie algebra $(\mathfrak{g}_{\mathcal{P}_{\infty}} := \operatorname{Hom}_{\mathbb{S}}(\mathcal{P}^i, \operatorname{End}_A), [\ ,\], \partial)$ such that Maurer-Cartan elements $\iff \mathcal{P}_{\infty}$ -algebra structures on A

Definition (Cohomology of \mathcal{P}_{∞} -algebras=tangent homology)

Given a \mathcal{P}_{∞} -algebra structure $\alpha \in \mathsf{MC}(\mathfrak{g})$ twisted dg Lie algebra $\mathfrak{g}_{\mathcal{P}_{\infty}}^{\alpha} := (\mathfrak{g}, [\ ,\], \frac{\partial}{\partial} + [-,\ \alpha])$

 $H(\mathfrak{g}^{\alpha})$ = Obstructions to deformations of \mathcal{P}_{∞} -algebra structures

Proposition

 $\mathfrak{g}_{BV_{\infty}}\cong\mathfrak{g}_{\mathcal{G}_{\infty}}\otimes\mathbb{K}[[\delta]]$ isomorphism of Lie algebras

Obstruction theory

In general g is triangulated [Sullivan]

Proposition

When \mathcal{P} is a Koszul operad, \mathfrak{g} and \mathfrak{g}^{α} are graded by an extra weight. \Longrightarrow the Maurer-Cartan equation splits with respect to this weight.

Theorem (Generalized Lian-Zuckerman conjecture)

For any topological vertex algebra A with \mathbb{N} -graded conformal weight there exists an explicit BV_{∞} -algebra structure on A which extends Lian-Zuckerman operations on A and which lifts the BV-algebra structure on H(A).

Relative obstruction theory

Let α be a \mathcal{G}_{∞} -algebra structure on A.

Theorem

The obstructions to lift α to a BV $_{\infty}$ -algebra structure live in

$$H_{-2n}(\mathfrak{g}_{\mathcal{G}_{\infty}}), n \geq 1$$

negative 2-periodic cohomology of the \mathcal{G}_{∞} -algebra A

Transfer theorem: the theory

Theorem (Merkulov-V.)

There is a cofibrantly generated model category structure on dg properads transferred from that of dg modules.

Remark: There is NO model category structure on algebras over a properad which is not an operad (no coproduct).

Homotopy equivalence:

$$h' \bigcirc (V, d_V) \xrightarrow{i} (W, d_W) \bigcirc h$$

$$\mathrm{Id}_W - ip = d_W h + h d_W, \quad \mathrm{Id}_V - pi = d_V h' + h' d_V$$

Theorem

Any \mathcal{P}_{∞} -algebra structure on W transfers to V.

Transfer theorem: Explicit formulae

Lemma (Van der Laan, V.)

 \exists homotopy morphism of properads between End_W and End_V $\iff \Phi: B(\operatorname{End}_W) \to B(\operatorname{End}_V)$: morphism of dg coproperads

\mathcal{P}_{∞} -algebra structures

 $\operatorname{Hom}_{dg\ properad}(\Omega(\mathcal{P}^{i}),\operatorname{End}_{W})\cong \operatorname{Hom}_{dg\ coproperad}(\mathcal{P}^{i},\mathcal{B}(\operatorname{End}_{W}))$

Transfer:

$$i \longrightarrow B(\operatorname{End}_W)$$

$$\downarrow \Phi$$

$$B(\operatorname{End}_V)$$

Let $\alpha: \mathcal{P}^i \to \mathcal{B}(\operatorname{End}_W)$ be a \mathcal{P}_{∞} -algebra structure on W.

$\mathsf{Theorem}$

Explicit formula for a transferred \mathcal{P}_{∞} -algebra structure on V:

$$\mathcal{P}^i \xrightarrow{\alpha} B(\operatorname{End}_W) \xrightarrow{\Phi} B(\operatorname{End}_V)$$

Applications:

 $V = H(A) \rightarrow A = W$, explicit formulae for Massey products

- P = Ass: conceptual explanation for Kontsevich-Soibelman formulae
- P = InvBiLie: Cieliebak-Fukaya-Latschev formulae (Symplectic field theory, Floer homology and String topology)
- $\mathcal{P} = BV$: Massey products for BV and BV_{∞} -algebras.
- Works in general (even in a non-Koszul case)

References

- A Koszul duality for props, Trans. Amer. Math. Soc. 359 (2007), 4865-4943.
- Deformation theory of representations of prop(erad)s I and II, with Sergei Merkulov to appear in Journal für die reine und angewandte Mathematik (Crelle's Journal).
- Homotopy Batalin-Vilkovisky algebras, with Imma Gálvez-Carrillo and Andy Tonks, preprint (Arxiv).
- Transfer of homotopy structures, in preparation.
- Propérades en algèbre, topologie, géométrie et physique mathématique, Habilitation à diriger des recherches (June 2009).

Available at: http://math.unice.fr/~brunov/