

WORKSHEET 2

HOMOTOPY THEORY OF TOPOLOGICAL SPACES II

Exercise 1 (Homotopy invariance).
(1) Is the property of being a cofibration a homotopy invariant notion: if $i: A \mapsto X$ is a cofibration and if $j: A \rightarrow X$ a map homotopy equivalent to i, is j a cofibration?
(2) Is the property of being a fibration a homotopy invariant notion: if $p: E \rightarrow B$ is a fibration and if $q: E \rightarrow B$ a map homotopy equivalent to p, is q a fibration?

Exercise 2 (Fibrations and cofibrations).
(1) Show that cofibrations are stable under composition: if $i: A \mapsto B$ and $j: B \mapsto C$ are two cofibrations then $j i: A \mapsto C$ is a cofibration.
(2) Show that cofibrations are stable under coproduct: if $i: A \mapsto X$ and $j: B \mapsto Y$ are two cofibrations then $i \sqcup j: A \sqcup B \mapsto X \sqcup Y$ is a cofibration.
(3) Show that cofibrations are stable under pushout: if $i: A \mapsto X$ is a cofibration then

the map $j: B \mapsto X \sqcup_{f} B$ is a cofibration.
(4) Show the map $E \rightarrow\{*\}$ is a fibration.
(5) Show that fibrations are stable under composition: if $p: C \rightarrow D$ and $q: D \rightarrow E$ are two fibrations then $q p: C \rightarrow E$ is a fibration.
(6) Show that fibrations are stable under product: if $p: D \rightarrow A$ and $q: E \rightarrow B$ are two fibrations then $p \times q: D \times E \rightarrow A \times B$ is a fibration.
(7) Show that fibrations are stable under pullback: if $p: E \rightarrow B$ is a fibration then

the $\operatorname{map} q: X \underset{f}{\times} E \rightarrow X$ is a fibration.

Exercise 3 (Uniqueness of factorisation). We work in the category Top ${ }^{A}$ of maps under A : its objects are maps $i: A \rightarrow X$ with domain A and its morphisms between two maps $i: A \rightarrow X$ and $j: A \rightarrow Y$ are maps $f: X \rightarrow Y$, such that $f i=j$:

A homotopy $H: X \times I \rightarrow Y$ under A between two such maps $f \sim g$ is a homotopy such that every $\operatorname{map} H(-, t)$ lives in $\operatorname{Top}^{A}(i, j)$, for $t \in I$, i.e. $H(-, t) i=j$. This induces an equivalence relation called homotopy equivalence under A. We will admit the following (seminal) theorem.
Theorem. Let $i: A \rightarrow X$ and $j: A \rightarrow Y$ be two cofibrations and let $f: X \rightarrow Y$ such that fi=j. If f is a homotopy equivalence, then f is a homotopy equivalence under A.
(1) Show that if a map is a cofibration and a homotopy equivalence, then it is a deformation retract.
(2) Show the following uniqueness statement for the factorisation of a map into the composite of a cofibration with a homotopy equivalence: let

$$
X \gg j
$$

be two such factorisations, then there exists a homotopy equivalence $k: Z \xrightarrow{\sim} Z^{\prime}$ such that the following is commutative on the left-hand side and homotopy commutative on the right-hand side

Exercise 4 (Fibrations). Let $p: E \rightarrow B$ be a fibration with B path connected.
(1) Show that p is surjective.
(2) Show that two fibers $p^{-1}(b)$ and $p^{-1}\left(b^{\prime}\right)$, for $b, b^{\prime} \in B$, are homotopy equivalent.

Exercise 5 (Hopf fibration).
(1) Show that there exists a fiber bundle of the form $S^{1} \longrightarrow S^{2 n+1} \longrightarrow \mathbb{P}^{n} \mathbb{C}$.
(2) What can you say about the homotopy groups $\pi_{n}\left(\mathbb{P}^{n} \mathbb{C}\right)$, for $n \geqslant 0$, of the complex projective spaces?
(3) Compute $\pi_{2}\left(S^{2}\right)$ and prove that $\pi_{n}\left(S^{3}\right) \cong \pi_{n}\left(S^{2}\right)$, for $n \geqslant 3$.

Exercise 6 (Real projective spaces).
(1) What can you say about $\pi_{n}\left(\mathbb{P}^{1} \mathbb{R}\right)$, for $n \geqslant 0$?
(2) Show that the embedding $\mathbb{P}^{k} \mathbb{R} \hookrightarrow \mathbb{P}^{n} \mathbb{R}$ does not admit a retraction when $0<k<n$.
(3) Let $d \geqslant 2$. Compute the homotopy groups $\pi_{n}\left(\mathbb{P}^{d} \mathbb{R}\right)$ for $0 \leqslant n \leqslant d$.
(4) What can you say about $\pi_{n}\left(\mathbb{P}^{d} \mathbb{R}\right)$, for $n \geqslant d+1$?

Figure 1. The first homotopy groups of spheres

$\pi_{i}\left(S^{n}\right)$													
		1		3		5	6	7	8	9	10	11	12
n	1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0
\downarrow	2		\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{12}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{15}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
	3		0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{12}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{15}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
	4		0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z} \times \mathbb{Z}_{12}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{24} \times \mathbb{Z}_{3}$	\mathbb{Z}_{15}	\mathbb{Z}_{2}
	5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{30}
	6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	0	\mathbb{Z}	\mathbb{Z}_{2}
	7	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	0	0
	8	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{24}	0

Figure 2. Examples of tables in stable homotopy theory

《 Bruno Vallette: vallette@math.univ-paris13.fr.
四 Web page: www.math. univ-paris13.fr/~vallette/.

