

WORKSHEET 4

SIMPLICIAL SETS

Exercise 1 （Simplicial approximation）．
（1）Show that every CW complex X is homotopy equivalent to the geometric realization simpli－ cial complex \mathfrak{X} ．
（2）Show that every topological space X admits a weakly homotopy equivalent simplicial com－ plex \mathfrak{X} ．

Exercise 2 （From Δ－complexes to simplicial sets）．
Let $\Phi: \bar{\Delta} \mapsto \Delta$ be the embedding of the reduced simplicial category in the simplicial category．
（1）Describe the pullback functor $\left(\Phi^{\mathrm{op}}\right)^{*}:$ sSet $\rightarrow \Delta \mathrm{Cx}$ from the category of simplicial sets to the category of Δ－complexes，defined by $\left(\Phi^{\mathrm{op}}\right)^{*}(\mathfrak{X}):=\mathfrak{X} \circ \Phi^{\mathrm{op}}$ ，for any $\mathfrak{X}: \Delta^{\mathrm{op}} \rightarrow$ Set．
（2）Is the geometric realisation $|\mathfrak{X}|$ of a simplicial set \mathfrak{X} in continuous bijection with the geometric realisation $\left|\left(\Phi^{\mathrm{op}}\right)^{*}(\mathfrak{X})\right|_{\Delta}$ of its associated Δ－complex．
（3）Show that the functor $\left(\Phi^{\mathrm{op}}\right)^{*}$ admits a left adjoint functor L given by

$$
(\mathrm{L} \mathfrak{X})_{n}=\left\{(\varphi, x) \mid \varphi:[n] \rightarrow[m] \text { non-decreasing, } x \in X_{m}\right\},
$$

where the faces are given by $d_{i}(\varphi, x):=\left(\varphi \delta_{i}, x\right)$ ，if $\varphi \delta_{i}$ is surjective，otherwise $\varphi \delta_{i}$ can be written in a unique way $\delta_{j} \psi$ with ψ surjective and then $d_{i}(\varphi, x)=\left(\psi, d_{j}(x)\right)$ ．The degeneracies are given by $s_{i}(\varphi, x):=\left(\varphi \sigma_{i}, x\right)$ ．
（4）Describe the image under L of the following Δ－complex \mathfrak{X} ，which is a model for the circle with two cells：

$$
X_{0}=\{0\}, \quad X_{1}=\{01\}, \quad X_{2}=X_{3}=\cdots=\emptyset \quad \text { with } \quad d_{0}(01)=d_{1}(01)=0 .
$$

（5）Let \mathfrak{X} be a Δ－complex．Show that its geometrical realisation is in continuous bijection with the geometrical realisation of the associated simplicial set，i．e．

$$
|\mathfrak{X}|_{\Delta} \cong|\mathrm{L} \mathfrak{X}| .
$$

Exercise 3 （ n－skeleton）．We consider the full sub－category Δ_{n} of the simplex category Δ made up of only the objects［0］，．．．，［n］；we denote this embedding of categories by $\Upsilon: \Delta_{n} \mapsto \Delta$ ．Presheaves $\Delta_{n}^{\mathrm{op}} \rightarrow$ Set over the category Δ_{n} are called n－truncated simplicial sets；we denote their category by Δ_{n} Set．
（1）Describe the pullback functor $\left(\Upsilon^{\circ \mathrm{op}}\right)^{*}: \mathrm{sSet} \rightarrow \Delta_{n}$ Set from the category of simplicial sets to the category of n－truncated simplicial sets．
（2）Show that the functor $\left(\Upsilon^{\circ \mathrm{op}}\right)^{*}$ admits a left adjoint functor L given by（L⿹弋工二 ${ }_{m}=X_{m}$ ，for $m \leqslant n$ and

$$
(\mathrm{L} \mathfrak{X})_{m}=\left\{(\varphi, x) \mid \varphi:[m] \rightarrow[n] \text { non-decreasing, } x \in X_{n}\right\}, \text { for } m>n .
$$

（3）Show that $\mathrm{L}\left(\Upsilon^{\text {op }}\right)^{*}(\mathfrak{X}) \cong \operatorname{sk}_{n} \mathfrak{X}$ for every simplicial set \mathfrak{X} ．
（4）Describe the unity of this adjunction．
(5) Using the identification of Question (3), show that the counit of adjunction amounts to the following inclusion of simplicial sets

$$
\operatorname{L\Upsilon }^{*}(\mathfrak{X}) \cong \operatorname{sk}_{n} \mathfrak{X} \mapsto \mathfrak{X} .
$$

(6) Conclude that the restriction of this adjunction to the full sub-category of simplicial sets of dimension less than n is an equivalence of categories.

Exercise 4 ((Co)limits).
(1) Show that the category sSet of simplicial sets admit all limits and all colimits.

Hint: Consider first the point-wise set-theoretical limits and colimits.
(2) Describe the initial simplicial set, the terminal simplicial set, the coproduct of simplicial sets, and the product of simplicial sets.
(3) Show that the n-skeleton of a simplicial set can be written as a pushout of the following type:

(4) Show that the boundary $\partial \Delta^{n}$ of the standard n-simplex can be written as a coequalizer of the following type:

$$
\coprod_{0 \leqslant i<j \leqslant n} \Delta^{n-2} \longrightarrow \coprod_{0 \leqslant l \leqslant n} \Delta^{n-1} \longrightarrow \partial \Delta^{n} .
$$

(5) Show that the k-th horn Λ_{k}^{n} can be written as a coequalizer of the following type:

$$
\coprod_{0 \leqslant i<j \leqslant n} \Delta^{n-2} \longrightarrow \coprod_{\substack{0 \leqslant l \leqslant n \\ l \neq k}} \Delta^{n-1} \longrightarrow \Lambda_{k}^{n}
$$

(6) Why the above question shows that the geometrical k-th horn $\left|\Lambda_{k}^{n}\right|$ can be written as a coequalizer of the following type:

$$
\coprod_{0 \leqslant i<j \leqslant n}\left|\Delta^{n-2}\right| \longrightarrow \coprod_{\substack{0 \leqslant l \leq n \\ l \neq k}}\left|\Delta^{n-1}\right| \longrightarrow\left|\Lambda_{k}^{n}\right| ?
$$

Exercise 5 (Prismatic decomposition).
The product $\mathfrak{X} \times \mathfrak{Y}$) of two simplicial sets \mathfrak{X} et \mathfrak{V}) is defined by

$$
(\mathfrak{X} \times \mathfrak{Y})_{n}:=X_{n} \times Y_{n}
$$

endowed by the faces $d_{i}^{\mathfrak{X}} \times d_{i}^{\mathfrak{Y}}$ and degeneracies $s_{i}^{\mathfrak{x}} \times s_{i}^{\mathfrak{Y}}$.
(1) Describe the simplicial set $\Delta^{1} \times \Delta^{1}$, notably its non-degenerate simplicies, and its geometric realisation $\left|\Delta^{1} \times \Delta^{1}\right|$.
(2) Describe the non-degenerate simplicies of the simplicial set $\Delta^{p} \times \Delta^{q}$ and insist on the case of the non-degenerate $p+q$ simplicies. Show that $\left|\Delta^{p} \times \Delta^{q}\right| \cong\left|\Delta^{p}\right| \times\left|\Delta^{q}\right|$.
(3) Describe the simplicial set $\Delta^{p} \times \Delta^{1}$ and draw the associate triangulation of $\left|\Delta^{2} \times \Delta^{1}\right|$.

Bruno Vallette: vallette@math.univ-paris13.fr.
喂 Web page: www.math.univ-paris13.fr/~vallette/.

