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Abstract. This paper is the follow-up of [39].

Introduction

In Section 1, we give another, more geometric, interpretation of the Ly-algebra struc-
ture on the homotopy convolution properad introduced in [39], Section 4.5. In Section 2, we
define the deformation theory of morphisms of properads following Quillen’s method. It is
identified with a homotopy convolution properad, so it carries a natural Ly-algebra struc-
ture in general and a strict Lie algebra structure only in the Koszul case. Using explicit reso-
lutions of properads, one can make the associated chain complexes explicit. Section 3 is de-
voted to examples. For instance, we show that for any minimal resolution of the properad
encoding associative bialgebras, the deformation complex is isomorphic to Gerstenhaber-
Schack bicomplex. As a corollary, this proves the existence of an Ly-algebra structure
on the Gerstenhaber-Schack bicomplex associated to the deformations of associative bial-
gebras. In the appendix, we endow the category of dg properads with a model category
structure.
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1. LT-algebras, dg manifolds, dg a‰ne schemes and morphisms of prop(erad)s

1.1. LT-algebras, dg manifolds and dg a‰ne schemes. Structure of an Ly-algebra on
a Z-graded vector space g is, by definition, a degree �1 coderivation, Q :pf1sg !pf1sg,
of the free cocommutative coalgebra without counit,

pf1sg :¼
L
nf1

pnðsgÞHp�sg :¼
L
nf0

pnðsgÞ;

which satisfies the condition Q2 ¼ 0. It is often very helpful to use geometric intuition and
language when working with Ly-algebras. Let us view the vector space sg as a formal
graded manifold (so that a choice of a basis in g provides us with natural smooth coordi-
nates on sg). If g is finite-dimensional, then the structure ring, Osg, of formal smooth func-
tions on the formal manifold sg is equal to the completed graded commutative algebracp�p�ðsgÞ� :¼

Q
nf0

pnðsgÞ� which is precisely the dual of the coalgebrap�sg. This dualization

sends the augmentation pf1sg of the latter into the ideal I :¼
Q
nf1

pnðsgÞ� of the distin-

guished point 0 A sg, while the coderivation Q into aa as a degree �1 derivation of Osg, i.e.
into a formal vector field (denoted by the same letter Q) on the manifold sg which vanishes
at the distinguished point (as QI H IÞ and satisfies the condition ½Q;Q� ¼ 2Q2 ¼ 0. Such
vector fields are often called homological.

In this geometric picture of Ly-algebra structures on g, the subclass of dg Lie al-
gebra structures gets represented by at most quadratic homological vector fields Q, that is
Q
�
ðsgÞ�

�
H ðsgÞ� lp2ðsgÞ�. Such a vector field has a well-defined value at an arbitrary

point sg A sg, not only at the distinguished point 0 A sg, i.e. it defines a smooth homological
vector field on sg viewed as an ordinary (non-formal) graded manifold. Given a particular
dg Lie algebra ðg; d; ½ ; �Þ, the associated homological vector field Q on sg has the value at a
point sg A sg given explicitly by

QðgÞ :¼ dgþ 1

2
½g; g�;ð1Þ

where we used a canonical identification of the tangent space Tg at sg A sg with g. One
checks

2 Merkulov and Vallette, Deformation theory of representations of prop(erad )s II

(AutoPDF V7 3/3/09 11:56) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1–52 2086_6182 (p. 2)



Q2ðgÞ ¼ Q dgþ 1

2
½g; g�

� �
¼ �d

�
QðgÞ

�
þ ½QðgÞ; g�

¼ �d dgþ 1

2
½g; g�

� �
þ dgþ 1

2
½g; g�; g

� �
¼ 0:

Notice that the zero locus of Q is the set of Maurer-Cartan elements in g.

A serious deficiency of the above geometric interpretation of Ly-algebras is the ne-
cessity to work with the dual objects ðOsg;QÞ which make sense only for finite dimensional
g. So we follow a suggestion of Kontsevich [23] and understand from now on a dg (smooth

formal ) manifold as a pair ðpf1X ;QÞ consisting of a cofree cocommutative algebra
on a Z-graded vector space X together with a degree �1 codi¤erential Q. Note that the
dual of pf1X is a well defined graded commutative algebra (without assumption on
finite-dimensionality of X ) and that the dual of Q is a well-defined derivation of the latter.
We identify from now on Q with its dual and call it a homological vector field on the dg
manifold1) X . This abuse of terminology is very helpful as it permits us to employ geomet-
ric intuition and use simple formulae of type (1) to define (in a mathematically rigorous
way!) codi¤erentials Q onpf1X . Such codi¤erentials, Q :pf1X !pf1X , are completely
determined by the associated compositions

Qproj :p
f1X �!Q pf1X �!proj X :

The restriction of Qproj top
nX Hpf1X is denoted by QðnÞ, nf 1.

Since we work with dual notions (coalgebras, coderivations), we will need the notion
of coideal, which is the categorical dual to the notion of ideal. Hence, a coideal I of a co-
algebra C is defined to be a quotient of C such that the kernel of the associated projection
C !! I is a subcoalgebra of C. For a complete study of this notion, we refer the reader to
Appendix B ‘‘Categorical Algebra’’ of [51]. This notion should not be confused with the
notion of coideal used in Hopf algebra theory. Since a Hopf is an algebra and a coalgebra
at the same time, a coideal in that sense is a submodule such that the induced quotient
carries again a bialgebra structure.

If I is a coideal of the coalgebra pf1X , we denote the associated sub-coalgebra of
pf1X by ðOI :¼ Inpf1X ;QÞ. The latter is defined by the push-out diagram in the category
of coalgebras

OI ���! pf1X???y ???y
0 ���! I :

1) A warning about shift of grading: according to our definitions, a homological vector field on a graded

vector space X is the same as an Ly-structure on s�1X .
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If the coideal I is preserved by Q (i.e. admits a codi¤erential such that the right vertical
arrow is a morphism of dg coalgebras), then the data ðOI ;QÞ is naturally a di¤erential
graded coalgebra which we often call a dg a‰ne scheme (cf. [3]). The coideal may not, in
general, be homogeneous so the ‘‘weight’’ gradation

L
n

pnX may not survive in OI . A ge-

neric dg a‰ne scheme by no means corresponds to an Ly-algebra but, as we shall see
below, some interesting examples (with non-trivial and non-homogeneous coideals) do.

A morphism of dg a‰ne schemes is, by definition, a morphism of the associated dg
coalgebras, ðI1npf1X1;Q1Þ ! ðI2npf1X2;Q2Þ.

1.2. Another geometric model for an LT-structure. One can interpret an Ly-
structure on a graded vector space g as a linear total degree 1 polyvector field on the dual
vector space g� viewed as a graded a‰ne manifold. Note that there is no need to employ
the degree shifting functors s and s�1 in this approach.

Indeed, let ð5�Tg� ; ½ ; �SÞ be the Schouten Lie algebra of polynomial polyvector
fields on the a‰ne manifold g�. A generic total degree 1 polynomial polyvector field,
n ¼ fnn A5nTg�gnf0, can be identified with a collection of its Taylor components with re-
spect to a‰ne coordinates on g�, i.e. with a collection of linear maps,

nm;n :p
mg� !5ng�; mf 0; nf 0;

of degree n� 2. If n is a linear polyvector field and lies in the Lie subalgebra5f1Tg� , then
only the Taylor components fn1;ngnf1 can be non-zero. Their duals, nn :¼ ðn1;nÞ�, is a col-
lection of linear maps, nn :5ng ! g, nf 1, of degree 2� n. It is easy to check the following

Proposition 1. The data fnngnf1 defines a structure of Ly-algebra on g if and only if

the linear polyvector field n on g� satisfies the equation ½n; n�S ¼ 0.

Corollary 2. There is a one-to-one correspondence between structures of Ly-algebra

on a finite-dimensional vector space g and linear degree one polyvector fields, n A5f1Tg� ,
satisfying the equation ½n; n�S ¼ 0.

Kontsevich’s formality morphism [23], F, associates to an arbitrary Maurer-Cartan
element in the Schouten Lie algebra n A5�Tg� a Maurer-Cartan element, FðnÞ, in the
Hochschild dg Lie algebra,

L
nf0

HompolyðOnn
g� ;Og� Þ½½�h��, of polydi¤erential operators on the

graded commutative algebra, Og� :¼p�g, of smooth functions on the a‰ne manifold g�. If
n is a linear polyvector field on g� satisfying the equation ½n; n�S ¼ 0, then one can set to zero
all contributions to the formality morphism F coming from graphs with closed directed
paths (wheels) [43] and the resulting element Fno-wheelsðnÞ A

L
nf0

HompolyðOnn
g� ;Og� Þ½½�h�� is

still Maurer-Cartan. It is easy to check that Fno-wheelsðnÞ has no summand with weight
n ¼ 0 and hence defines an Ay-structure onp�g which also makes sense for �h ¼ 1. More-
over, as Fno-wheelsðnÞ involves no wheels (and hence no associated traces of linear maps),
this Ay-structure makes sense for arbitrary (not necessarily finite-dimensional) Ly-algebra.

Definition. Let fnn :5ng ! ggnf1 be an Ly-structure on a graded vector space g.
The Ay-structure, Fno-wheelsðnÞ, on p�g obtained via Kontsevich’s ‘‘no-wheels’’ quantiza-
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tion of the associated linear polyvector field n is called the universal enveloping algebra of
the Ly-algebra.

In a recent interesting paper [4] Baranovsky also defined a universal enveloping for an
Ly-algebra g as a certain Ay-structure on the spacep�g. In his approach the Ay-structure
is constructed with the help of the homological perturbation and the natural homotopy
transfer of the canonical dg associative algebra structure on the cobar construction on the
dg coalgebrap�sg.

1.3. Maurer-Cartan elements in a filtered LT-algebra. A Ly-algebra

ðg;Q ¼ fQðnÞgnf1Þ

is called filtered if g admits a non-negative decreasing Hausdor¤ filtration,

g0 ¼ gM g1 M � � �M gi M � � � ;

such that the linear map QðnÞ :pnðsgÞ ! sg takes values in sgn for all nf n0 and some
n0 A N. In this case Q extends naturally to a coderivation of the cocommutative coalgebra,
pf1sĝg, with ĝg being the completion of g with respect to the topology induced by the filtra-
tion, and the equation

Q

�P
nf1

1

n!
gpn

�
¼ 0

for a degree zero element g A sĝg (i.e. for a degree �1 element in ĝg) makes sense. Its solutions
are called (generalized ) Maurer-Cartan elements (or, shortly, MC elements) in ðg;QÞ. Geo-
metrically, an MC element is a degree �1 element in ĝg at which the homological vector
field Q vanishes. From now on we do not distinguish between g and its completion ĝg.

To every MC element g in a filtered Ly-algebra ðg;QÞ there corresponds, by [36],
Theorem 2.6.1, a twisted Ly-algebra, ðg;QgÞ, with

QgðaÞ :¼ Q

�P
nf0

1

n!
gpn p a

�
for an arbitrary a Apf1sg. The geometric meaning of this twisted Ly-structure is simple
[36]: if a homological vector field Q vanishes at a degree 0 point g A sg, then applying to
Q a formal di¤eomorphism, fg, which is a translation sending g into the origin 0 (and
which is nothing but the unit shift, ead g, along the formal integral lines of the constant vec-
tor field �g) will give us a new formal vector field, Qg :¼ dfgðQÞ, which is homological and
vanishes at the distinguished point; thus Qg defines an Ly-structure on the underlying space
g. In fact, we can apply this ‘‘translation di¤eomorphism’’ trick to arbitrary (i.e. not neces-
sarily MC) elements g of degree 0 in sg and get homological vector fields, Qg :¼ dfgðQÞ,
which do not vanish at 0 and hence define generalized Ly-structures on g with ‘‘zero
term’’ Q

ð0Þ
g 3 0.

1.4. Extended morphisms of dg props as a dg a‰ne scheme. Let ðP; qPÞ and ðE; qEÞ
be dg prop(erad)s with di¤erentials qP and qE of degree �1. Let HomS

� ðP;EÞ denote the
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graded vector space of all possible morphismsP ! E in category of Z-graded S-bimodules,
and let MorðP;EÞ denote the set of all possible morphisms P ! E in category of prop(er-
ad)s (note that we do not assume that elements of HomS

� ðP;EÞ or MorðP;EÞ respect di¤er-
entials). It is clear that

MorðP;EÞ ¼
�
g A HomZðP;EÞ j g � mPðPnð1;1Þ PÞ ¼ mE

�
gðPÞnð1;1Þ gðPÞ

�
and jgj ¼ 0

	
:

We need a Z-graded extension of this set,

MorZðP;EÞ :¼
�
g A HomZðP;EÞ j g � mPðPnð1;1ÞPÞ ¼ mE

�
gðPÞnð1;1Þ gðPÞ

�	
;ð2Þ

which we define by the same algebraic equations but dropping the assumption on the de-
gree and homogeneity of g.

Lemma 3. The vector space HomS
� ðP;EÞ is naturally a dg manifold.

Proof. We define a degree �1 coderivation of the free cocommutative coalgebra,
pf1 HomS

� ðP;EÞ by setting (in the dual picture, cf. §1.1)

QðgÞ :¼ qE � g� ð�1Þgg � qPð3Þ

for an arbitrary g A HomS
� ðP;EÞ. As

Q2ðgÞ ¼ Q
�
qE � g� ð�1Þgg � qP

�
¼ �qE �QðgÞ � ð�1ÞgQðgÞ � qP

¼ �ð�1ÞgqE � g � qP þ ð�1ÞgqE � g � qP

¼ 0;

Q is a linear homological field on HomS
� ðP;EÞ. (By the way, the zero locus of Q is a linear

subspace of HomS
� ðP;EÞ describing morphisms of complexes.) r

Proposition 4. The set MorZðP;EÞ is naturally a dg a‰ne scheme.

Proof. Let I be the coideal in pf1 HomS
� ðP;EÞ cogenerated by the algebraic rela-

tions

g � mPðPnð1;1Þ PÞ � mE
�
gðPÞnð1;1Þ gðPÞ

�
;ð4Þ

on the ‘‘variable’’ g A HomS
� ðP;EÞ. The sub-coalgebra

OMorZðP;EÞ :¼ Inpf1 HomS
� ðP;EÞ

of pf1 HomS
� ðP;EÞ makes the set MorZðP;EÞ into a Z-graded a‰ne scheme. Next we

show that the homological vector field Q defined in Lemma 3 is tangent to MorZðP;EÞ.
Indeed, identifying Q and I with their duals (as in Subsection 1.1 and the proof of Lemma
3), we have
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Q
�
g � mPðPnð1;1ÞPÞ � mE

�
gðPÞnð1;1Þ gðPÞ

��
¼ QðgÞ � mPðPnð1;1ÞPÞ � mE

�
QðgÞðPÞnð1;1Þ gðPÞ

�
� ð�1ÞjgjmE

�
gðPÞnð1;1Þ QðgÞðPÞ

�
:

Consistency of qP and qE with mP and, respectively, mE implies

QðgÞ � mPðPnð1;1ÞPÞ ¼ qE � g � mPðPnð1;1Þ PÞ � ð�1Þgg � qP � mPðPnð1;1Þ PÞ

¼ qE � g � mPðPnð1;1Þ PÞ � ð�1Þgg � mP
�
qPðPÞnð1;1Þ P

�
� ð�1Þgg � mP

�
Pnð1;1Þ qPðPÞ

�
¼mod I qE � mE

�
gðPÞnð1;1Þ gðPÞ

�
� ð�1ÞgmE

�
g � qPðPÞnð1;1Þ gðPÞ

�
� mE

�
gðPÞnð1;1Þ g � qPðPÞ

�
¼mod I mE

�
QðgÞðPÞnð1;1Þ gðPÞ

�
þ ð�1ÞjgjmE

�
gðPÞnð1;1ÞQðgÞðPÞ

�
:

Thus QðIÞH I , and hence Q gives rise to a degree �1 codi¤erential on the coalgebra
OMorZðP;EÞ proving the claim. r

In the following theorem, we study the properties of the convolution Ly-algebra de-
fined in [39], Theorem 28.

Theorem 5. Let
�
P ¼ Fðs�1CÞ; qP

�
be a quasi-free prop(erad ) generated by an

S-bimodule s�1C (so that C is a homotopy coprop(erad )), and let ðE; qEÞ be an arbitrary dg
prop(erad ). Then:

(i) The graded vector space, HomS
� ðC;EÞ, is canonically an Ly-algebra.

(ii) The canonical Ly-structure in (i) is filtered and its MC elements are morphisms,
ðP; qPÞ ! ðE; qEÞ, of dg prop(erad )s.

(iii) If qPðs�1CÞHFðs�1CÞðe2Þ, where Fðs�1CÞðe2Þ
is the subspace of Fðs�1CÞ

spanned by decorated graphs with at most two vertices, then HomS
� ðC;EÞ is canonically a

dg Lie algebra.

Proof. (i) If P is free as a prop(erad), then extended morphisms from P
to Q are uniquely determined by their values on the generators s�1C so that
OMorZðP;EÞ ¼pf1 HomS

� ðs�1C;EÞ and the claim follows from the definition of Ly-
structure in §1.1.

(ii) The canonical Ly-structure on HomS
� ðC;EÞ is given by the restriction of the

homological vector field (3) on sHomS
� ðP;EÞ to the subspace HomS

� ðC;EÞ. This field is
a formal power series in coordinates on HomS

� ðC;EÞ and its part, QðnÞ, corresponding to
monomials of (polynomial) degree n is given precisely by

Qð1ÞðgÞ :¼ qE � g� ð�1Þgg � qð1ÞP and QðnÞðgÞ :¼ �ð�1Þgg � qðnÞP for n > 1;ð5Þ
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where q
ðnÞ
P is the composition2)

q
ðnÞ
P : s�1C �!qP Fðs�1CÞ �!proj Fðs�1CÞðnÞ:

Note that the first summand on the r.h.s. of (3) contributes only to Qð1Þ.

Define an exhaustive increasing filtration on the S-bimodule C by

C0 ¼ 0; Ci :¼ s
T
nfi

Ker q
ðnÞ
P for if 1;

and the associated decreasing filtration on HomS
� ðC;EÞ by

HomS
� ðC;EÞi :¼ fg A HomS

� ðC;EÞ j gðvÞ ¼ 0 Ev A Cig; if 0:

Then, for all nf 2 and any f1; . . . ; fn A HomS
� ðC;EÞ, equality (5) implies that the value of

the map QðnÞð f1; . . . ; fnÞ A s�1 HomS
� ðC;EÞ on arbitrary elements of CnHKer q

ðnÞ
P is equal

to zero, i.e.

QðnÞð f1; . . . ; fnÞ A HomS
� ðC;EÞn:

Which in turn implies the claim that the canonical Ly-structure on HomS
� ðC;EÞ is filtered

with respect to the constructed filtration. The claim about MC elements follows immedi-
ately from the definition (3) of the homological vector field.

(iii) As q
ðnÞ
P ¼ 0 for n > 2 we conclude using formula (5) that QðnÞ ¼ 0 for all n > 2.

r

A special case of the above theorem when both P and E are operads was proven ear-
lier by van der Laan [53] using di¤erent ideas.

The main point of our proof of Theorem 5 is an observation that, for a free
prop(erad) P ¼ Fðs�1CÞ, the set MorZðP;EÞ of extended morphisms from P to an arbi-
trary prop(erad) E, i.e. the set of solutions of equation (2), can be canonically identified
with the graded vector space sHomS

� ðC;EÞ. This simple fact makes the dg a‰ne scheme
MorZðP;EÞ into a dg smooth manifold and hence provides us with a canonical Ly-
structure on HomS

� ðC;EÞ. A similar phenomenon occurs for the set of extended mor-
phisms CoMorZðEc;PcÞ from an arbitrary coprop(erad) Ec to a cofree coprop(erad)
Pc :¼ FcðsEÞ, and hence the arguments very similar to the ones used in the proof of The-
orem 5 (and which we leave to the reader as an exercise) establish the following

Theorem 6. Let
�
Pc ¼ FcðsCÞ; dP

�
be a quasi-free coprop(erad ), that is C is a ho-

motopy prop(erad ), and let ðEc; dEÞ be an arbitrary dg coprop(erad ). Then:

(i) The graded vector space, HomS
� ðEc;CÞ, is canonically an Ly-algebra.

2) Note that for any di¤erential qP in a free properad Fðs�1CÞ the induced map q
ð1Þ
P : s�1C ! s�1C is also

a di¤erential.
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(ii) The canonical Ly-structure in (i) is filtered and its MC elements are morphisms,
ðEc; dEÞ ! ðPc; dPÞ, of dg coprop(erad )s.

(iii) If dP is quadratic, that is C is a usual prop(erad ), then HomS
� ðEc;CÞ is canonically

a dg Lie algebra.

For finite-dimensional Q and C, Theorems 5 and 6 are, of course, equivalent to each
other.

A morphism of Ly-algebras, ðg1;Q1Þ ! ðg2;Q2Þ, is, by definition [22], a morphism,
l :
�
p�ðsg1Þ;Q1

�
!
�
p�ðsg2Þ;Q2

�
, of the associated dg coalgebras. It is called a quasi-

isomorphism if the composition

sg1 !
i
p�ðsg1Þ !

l
p�ðsg2Þ !

p
sg2

induces an isomorphism Hðsg1;Q
ð1Þ
1 Þ ! Hðsg2;Q

ð1Þ
2 Þ of the associated homology groups

with respect to the linear (in cogenerators) parts of the codi¤erentials. Here i is a natural
inclusion and p a natural projection.

By analogy, a map f :
�
Fðs�1C1Þ; q1

�
!
�
Fðs�1C2Þ; q2

�
of quasi-free properads is

called a tangent quasi-isomorphism if the composition

s�1C1 !
i
Fðs�1C1Þ !

f
Fðs�1C2Þ !

p
s�1C2

induces an isomorphism of cohomology groups, Hðs�1C2; q
ð1Þ
2 Þ ! Hðs�1C2; q

ð1Þ
2 Þ.

If we assume that properads Fðs�1C1Þ and Fðs�1C2Þ are completed by the number
of vertices (see §5.4) and that their di¤erentials are bounded,

qiðs�1CiÞHFðs�1CiÞðeniÞ for some ni A N; i ¼ 1; 2;

then it is not hard to show (using filtrations by the number of vertices as in §5.4 and the
classical Comparison Theorem of spectral sequences) that any continuous tangent quasi-
isomorphism f :

�
Fðs�1C1Þ; q1

�
!
�
Fðs�1C2Þ; q2

�
is actually a quasi-isomorphism in the

ordinary sense.

Theorem 7. (i) Let
�
P1 :¼ Fðs�1C1Þ; q1

�
and

�
P2 :¼ Fðs�1C2Þ; q2

�
be quasi-free

prop(erad )s, ðE; qEÞ a dg prop(erad ), and
�
HomS

� ðC1;EÞ;Q1

�
and

�
HomS

� ðC1;EÞ;Q2

�
the

associated Ly-algebras. Then any morphism

f : ðP1; q1Þ ! ðP2; q2Þ

of dg prop(erad )s induces canonically an associated morphism

find :
�
HomS

� ðC2;EÞ;Q2

�
!
�
HomS

� ðC1;EÞ;Q1

�
of Ly-algebras. Moreover, if f is a tangent quasi-isomorphism of dg prop(erad )s, then find is

a quasi-isomorphism of Ly-algebras.
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(ii) Let
�
P :¼ Fðs�1CÞ; q

�
be a quasi-free prop(erad ), ðE1; qE1Þ and ðE2; qE2

Þ arbitrary
dg prop(erad )s, and

�
HomS

� ðC;E1Þ;Q1

�
and

�
HomS

� ðC;E2Þ;Q2

�
the associated Ly-algebras.

Then any morphism

c : ðE1; qE1Þ ! ðE2; qE2
Þ

of dg prop(erad )s induces canonically an associated morphism

cind :
�
HomS

� ðC;E1Þ;Q1

�
!
�
HomS

� ðC;E2Þ;Q2

�
of Ly-algebras. Moreover, if c is a quasi-isomorphism of dg prop(erad )s, then cind is a quasi-

isomorphism of Ly-algebras.

Proof. (i) The map f induces a degree 0 linear map,

HomS
� ðP2;EÞ ! HomS

� ðP1;EÞ;

g ! g � f:

Using definition (3) of the codi¤erentials Q1 and Q2, and the fact that f respects di¤eren-
tials q1 and q2, we obtain, for any g A HomS

� ðP2;EÞ,

Q1ðg � fÞ ¼ qE � g � f� ð�1Þgg � f � q1

¼ qE � g � f� ð�1Þgg � q2 � f

¼ Q2ðgÞ � f;

and hence conclude that f induces a morphism of dg coalgebras

find :
�
pf1 HomS

� ðP2;EÞ;Q2

�
!
�
pf1 HomS

� ðP1;EÞ;Q1

�
:

As

f � mP1
ðP1 nð1;1Þ P1Þ ¼ mP2

�
fðP1Þnð1;1Þ fðP1Þ

�
H mP2

ðP2 nð1;1Þ P2Þ

we have

g � f � mP1
ðP1 nð1;1Þ P1Þ � mE

�
g � fðP1Þnð1;1Þ g � fðP1Þ

�
H g � mP2

ðP2 nð1;1ÞP2Þ � mE
�
gðP2Þnð1;1Þ gðP1Þ

�
:

Thus the map find sends cogenerators (4) of the coideal I2 inp
f1 HomS

� ðP2;EÞ into cogen-
erators of the coideal I1 in pf1 HomS

� ðP1;EÞ, and hence gives rise to a morphism of dg
coalgebras

find : ðOMorZðP2;EÞ;Q2Þ ! ðOMorZðP1;EÞ;Q1Þ;

i.e. to a morphism of dg a‰ne schemes, find :
�
MorZðP2;EÞ;Q2

�
!
�
MorZðP1;EÞ;Q1

�
.

If the dg prop(erad)s P1 and P2 are quasi-free, then the above morphism of dg a‰ne
schemes is the same as a morphism of smooth dg manifolds, i.e. a morphism

find :
�
HomS

� ðC2;EÞ;Q2

�
!
�
HomS

� ðC1;EÞ;Q1

�
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of Ly-algebras. The last statement of Theorem 7 follows immediately from the formulae
(5) for n ¼ 1 and the Künneth formula completing the proof of Claim (i).

Claim (ii) is much easier than Claim (i): it follows directly from the formulae (5) for
n ¼ 1. r

1.5. Proofs via local coordinate computations. Calculations in local coordinates is a
powerful and useful tool in di¤erential geometry. In this section we show new proofs of
Lemma 3, Proposition 4 and Theorem 5 by explicitly describing all the notions and con-
structions of §1.4 in local coordinates and justifying thereby the geometric language we
used in that section. For simplicity, we show the proofs only for the case when ðP; qPÞ
and ðE; qEÞ are dg associative algebras, that is, dg properads concentrated in biarity ð1; 1Þ
(a generalization to arbitrary dg (prop)erads is straightforward); moreover, to simplify
Koszul signs in the formulae below we also assume that both P and E are free modules
over a graded commutative ring, R ¼

L
i AZ

Ri, with degree 0 generators feaga A I and, respec-

tively, feaga A J . Then multiplications and di¤erentials in P and E have the following coor-
dinate representations:

ea � eb ¼
P
c A I

mc
abec; ea � ab ¼

P
g A J

m
g
abeg;

qPea ¼
P
b A I

Db
aeb; qEea ¼

P
b A J

Db
a eb;

for some coe‰cients mc
ab; m

g
ab A R0 and Db

a ;D
b
a A R�1. Equations q2P ¼ q2E ¼ 0 as well as

equations for compatibility of di¤erentials with products are given in coordinates as fol-
lows: P

b A I
Db

aD
c
b ¼ 0;

P
b A J

Db
aD

g
b ¼ 0;ð6Þ

Dm
a m

c
mb þDm

b m
c
am ¼ mm

abD
c
m; Dn

am
g
nb þDn

bm
g
an ¼ mn

abD
g
n :ð7Þ

A generic homogeneous map of graded vector space g : P ! E of degree i A Z is uniquely
determined by its values on the generators

gðeaÞ ¼
P
a A J

gaaðiÞea

for some coe‰cients gaaðiÞ A Ri. We shall understand these coe‰cients as coordinates on the
flat manifold HomS

� ðP;EÞ.

Consider now a completed free graded commutative algebra, R½½gaaðiÞ��, generated by

formal variables gaaðiÞ to which we assign degree i. This algebra is precisely the algebra of

smooth functions OHomS
� ðP;EÞ on the manifold HomS

� ðP;EÞ. Let us consider a degree �1
vector field (that is, a derivation of OHomS

� ðP;EÞ)

Q ¼
� P

a;b;a; i

Da
bg

b
aðiÞ �

P
a;b;a; i

ð�1Þ iDb
ag

a
bðiÞ

�
q

qga
aðiÞ

;
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on HomS
� ðP;EÞ. In view of (6), we have

½Q;Q� ¼ 2

� P
a;b; g;a; i

�Da
bD

b
g g

g
aðiÞ �

P
a;b;a;b; i

ð�1Þ iDb
aD

a
bg

b
bðiÞ

�
q

qga
aðiÞ

þ 2

�
�

P
a;a;b; c; i

ð�1Þ iDa
bD

b
ag

b
bðiÞ �

P
a;b; g;a; i

Db
aD

c
bg

a
cðiÞ

�
q

qga
aðiÞ

¼ 0;

proving thereby Lemma 3 which claims that
�
HomS

� ðP;EÞ;Q
�
is a dg manifold.

The space of extended morphisms of associative R-algebras MorZðP;EÞ is, by its def-
inition, a (singular, in general) subspace of the manifold HomS

� ðP;EÞ given explicitly by
the equations

MorZðP;EÞ :¼


gaaðiÞ A HomS

� ðP;EÞ :
P
c A I

mc
abg

a
cðiÞ �

P
b; g A J
jþk¼i

ma
bgg

b
að jÞg

g
bðkÞ ¼ 0

�
:

Let I be an ideal in OHomS
� ðP;EÞ ¼ K½½gaaðiÞ�� generated by the functions
P

c A I
mc
abg

a
cðiÞ �

P
b; g A J
jþk¼i

ma
bgg

b
aðjÞg

g
bðkÞ

�
:

Then the structure sheaf OMorZðP;EÞ of the scheme MorZðP;EÞ is given, by definition, by the
quotient algebra OHomS

� ðP;EÞ=I (which, in general, is not freely generated, i.e. is not smooth).

We claim that the vector field Q on HomS
� ðP;EÞ ia tangent to the subspace MorZðP;EÞ.

Indeed, in view of (7), we have

Q

�P
c A I

mc
abg

a
cðiÞ �

P
b; g A J
jþk¼i

ma
bgg

b
að jÞg

g
bðkÞ

�
¼
P
s A J

Da
s

�P
c A I

mc
abg

s
cðiÞ �

P
bg A J
jþk¼i

ms
bgg

b
að jÞg

g
bðkÞ

�

� ð�1Þ i
P
e AE

Dm
a

�P
c A I

mc
mbg

s
cðiÞ �

P
bg A J
jþk¼i

ms
bgg

b
mð jÞg

g
bðkÞ

�

� ð�1Þ i
P
e AE

Dm
b

�P
c A I

mc
amg

s
cðiÞ �

P
bg A J
jþk¼i

ms
bgg

b
að jÞg

g
mðkÞ

�
:

Thus QðIÞH I so that Q makes OMorZðP;EÞ into a di¤erential graded algebra proving there-
by Proposition 4.

To prove Theorem 5 we have to assume from now on that P is a free algebra,n�V ,
generated by some free R-module V . Let feAgA AK stand for a set of generators of V so that
the basis feag we used above can be identified with the set

feaga A I ¼ feA; eA1A2
:¼ eA1

n eA2
; eA1A2A3

¼ eA1
n eA2

n eA3
; . . .gA� AK

:
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The di¤erential qP is now completely determined by its values on the generators feAg,

qPeA ¼
P
kf1

P
A1;...;Ak AK

DA1...Ak

A eA1...Ak
;

for some coe‰cients DA1...Ak

A A R�1. On the other hand, the R-algebra of smooth formal
functions on the manifold HomS

� ðP;EÞ gets the following explicit representation:

OHomS
� ðP;EÞ ¼ R½½gaAðiÞ; gaA1A2ðiÞ; g

a
A1A2A3ðiÞ; . . .��:

The key point is that the system of equations defining the subspace

MorZðP;EÞHHomS
� ðP;EÞ

can now be easily solved,

gaA1A2ðiÞ ¼
P

b1;b2 A J
i1þi2¼i

ma
b1b2

g
b1
A1ði1Þg

b2
A2ði2Þ;

gaA1A2A3ðiÞ ¼
P

b�; g A J
i1þi2þi3¼i

ma
b1g

m
g
b2b3

g
b1
A1ði1Þg

b2
A2ði2Þg

b3
A3ði3Þ;

. . .

in terms of the independent variables gaAðiÞ. Thus MorZðP;EÞ is itself a smooth formal man-
ifold with the structure sheaf OMorZðP;EÞ FR½½gaAðiÞ��. The vector field Q on the manifold
HomS

� ðP;EÞ restricts to a smooth degree �1 homological vector field on the subspace
MorZðP;EÞHHomS

� ðP;EÞ which is given explicitly as follows:

QjMorZðP;EÞ ¼
� P

a;b;a; i

Da
bg

b
AðiÞ �

P
A;A�;a; i

ð�1Þ iDA1...Ak

A gaA1...AkðiÞ

�
q

qga
AðiÞ

where, for kf 2,

gaA1A2...AkðiÞ ¼
P

b�; g� A J
i1þ���þik¼i

ma
b1g1

m
g1
b2g2

. . . m
gk�2

bk�1bk
g
b1
A1ði1Þg

b2
A2ði2Þ . . . g

bk
AkðikÞ:

Thus MorZðP;EÞ ¼ HomZðV ;EÞ is canonically a dg manifold, i.e. sHomZðV ;EÞ is can-
onically an Ly-algebra, and Theorem 5(i) is proved. Theorem 5(ii) follows from the above
explicit expression for the homological vector field QjMorZðP;EÞ as its zero set is precisely the
set of morphisms P ! E which commute with the di¤erentials. Finally, if the di¤erential
qP is at most quadratic in generators, then DA1...Ak

A ¼ 0 for kf 3 and hence QjMorZðP;EÞ is
evidently at most quadratic homological vector field so that Theorem 5(iii) is also done.

In a similar purely geometric way one can prove a new Theorem 7. We leave the de-
tails as an exercise to the interested reader.

1.6. Enlarged category of dg prop(erad)s. For any dg prop(erad)s ðP1; q1Þ, ðP2; q2Þ
and ðP3; q3Þ, the natural composition map

HomS
� ðP2;P3ÞnHomS

� ðP1;P2Þ ! HomS
� ðP1;P3Þ;

g2 n g1 ! g2 � g1
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respects the relations (4) and hence induces a map of coalgebras (cf. the proof of Theorem
7(i))

� : OMorZðP2;P3Þ nOMorZðP1;P2Þ ! OMorZðP1;QÞ:

Proposition 8. The map � respects the codi¤erentials (3), i.e. induces a morphism of

dg a‰ne schemes,�
MorZðP2;P3Þ;Q23

�
�
�
MorZðP1;P2Þ;Q12

�
!
�
MorZðP1;P3Þ;Q13

�
:

Proof. We have, for any g1 A HomS
� ðP1;P2Þ and g2 A HomS

� ðP2;P3Þ,

Q13ðg2 � g1Þ ¼by ð3Þ
q3 � g2 � g1 � ð�1Þg1þg2g2 � g1 � q1

¼ q3 � g2 � g1 � ð�1Þg2g2 � q2 � g1

þ ð�1Þg2 � q2 � g1 � ð�1Þg1þg2g2 � g1 � q1

¼ Q23ðg2Þ � g1 þ ð�1Þg2g2 �Q12ðg1Þ: r

As the composition � is obviously associative, we end up with the following canonical
enlargement of the category of dg prop(erad)s.

Corollary 9. The data

Objects :¼ dg propðeradÞs;

HomðP1;P2Þ :¼ the dg a‰ne scheme
�
MorZðP1;P2Þ;Q12

�
is a category. Moreover, the composition

� : HomðP2;P3Þ � HomðP1;P2Þ ! HomðP1;P3Þ

is a morphism of dg a‰ne schemes.

Note that if P1 is quasi-free then, by Theorem 5, HomðP1;P2Þ is precisely the filtered
Ly-algebra whose Maurer-Cartan elements are ordinary morphisms of dg prop(erad)s
from P1 to P2. Note also that if f : P1 ! P2 is an ordinary morphism of quasi-free dg
prop(erad)s, then the composition map

� : HomðP2;P3Þ � f ! HomðP1;P3Þ

is precisely the Ly-morphism of Theorem 7(i).

1.7. Families of natural LT-structures on
L

P. It was shown in [39], Section 4.5,
that for any homotopy properad P the associated direct sum

L
P :¼

L
m;n

Pðm; nÞ has a nat-

ural structure of Ly-algebra which encodes all possible compositions in P. In this section
we show a new proof of this result which is independent of [39], Section 4.5, and the earlier
works [20], [53] which treated the special case of operads. The present approach is based on
certain universal properties of the properad of Frobenius algebras (and its non-commutative
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versions) and Theorem 5; it provides a conceptual explanation of the phenomenon in terms
of convolution properads.

Theorem 10. Let P ¼ fPðm; nÞg be a homotopy prop(erad ). Then:

(i)
L
m;n

Pðm; nÞ is canonically an Ly-algebra.

(ii)
L
m;n

Pðm; nÞSm is canonically an Ly-algebra.

(iii)
L
m;n

Pðm; nÞSn is canonically an Ly-algebra.

(iv)
L
m;n

Pðm; nÞSm�Sn is canonically an Ly-algebra.

(v) There is a natural commutative diagram of Ly-morphismsL
m;n

Pðm; nÞSm

L
m;n

Pðm; nÞ
L
m;n

Pðm; nÞSm�Sn

L
m;n

Pðm; nÞSn :

������! ������!
������! ������!

Finally, if P is a dg properad, then all the above data are dg Lie algebras and morphisms of

dg Lie algebras.

Proof. Recall that the prop(erad) of Frobenius algebras can be defined as a quotient

Frob :¼ FhVi=ðRÞ

of the free prop(erad) FðVÞ, generated by the S-bimodule V ¼ fVðm; nÞg,

Vðm; nÞ :¼

Id2 n Id1 1 span

* +
if m ¼ 2; n ¼ 1;

Id1 n Id2 1 span

* +
if m ¼ 1; n ¼ 2;

0 otherwise

8>>>>>>>><>>>>>>>>:
modulo the ideal generated by relations
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Here Idn stands for the trivial one dimensional representation of the group Sn. It is clear
that Frobðm; nÞ ¼ Idm n Idn and the compositions in Frob are determined by the canoni-
cal isomorphism KnK ! K (thus Frob is a prop(erad)ic analogue of Com in the theory
of operads). The dual space, Frob�, is naturally a coprop(erad)3). Homotopy prop(erad)
structure on P is the same as a di¤erential, dP, in the free coprop(erad) FcðsPÞ. Theorem
6(i) applied to the coprop(erad)s Frob� and

�
FcðsPÞ; dP

�
, asserts that the vector space

HomS
� ðFrob�;PÞ ¼

L
m;n

ðIdmn IdnÞnSm�Sn
Pðm; nÞ ¼

L
m;n

Pðm; nÞSm�Sn

is canonically an Ly-algebra. Hence the claim (iv).

Let us next define a non-commutative analogue of Frob as a quotient,

Frobþþ :¼ FðVÞ=ðRÞ

of the free prop(erad) FðVÞ, generated by the S-bimodule V ¼ fVðm; nÞg,

Vðm; nÞ :¼

K½S2�n Id1 1 span

* +
if m ¼ 2; n ¼ 1;

Id1 nK½S2�1 span

* +
if m ¼ 1; n ¼ 2;

0 otherwise

8>>>>>>>><>>>>>>>>:
modulo the ideal generated by relations

It is clear that Frobþþðm; nÞ ¼ K½Sm�nK½Sn�. Analogously one defines two other versions
of Frob,

Frobþ ¼ fFrobþðm; nÞ ¼ Idm nK½Sn�g and Frobþ ¼ fFrobþðm; nÞ ¼ K½Sm�n Idng;

with comultiplication (resp. multiplication) commutative but multiplication (resp. comulti-
plication) noncommutative. Then applying again Theorem 6(i) or [39], Theorem 27, to Q
being ðFrobþþÞ

�, ðFrobþÞ� or ðFrobþÞ� and D being FcðsPÞ we conclude that the vector
spaces

3) In fact,Frob� is a completed coproperad with respect to the topology induced by the number of vertices.

The formulae for the composite coproduct in infinite. But since we ‘dualize’ it by considering the convolution ho-

motopy properad HomSðFrob�;�Þ it does not matter.
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HomS
�
�
ðFrobþþÞ

�;P
�
¼
L
m;n

Pðm; nÞ;

HomS
�
�
ðFrobþÞ�;P

�
¼
L
m;n

Pðm; nÞSm ;

HomS
�
�
ðFrobþÞ�;P

�
¼
L
m;n

Pðm; nÞSn

admit canonically Ly-structures proving thereby claim (i)–(iii).

Finally, the natural commutative diagram of morphisms of properads,

Frobþ

Frob Frobþþ

Frobþ

�����! �����!�����! �����!
proves claim (v). r

The prop(erad) Frobþþ was designed so that it is generated as an S-module by arbi-
trary ðm; nÞ-corollas, and the comultiplication Dð1;1Þ in its dual, ðFrobþþÞ

� splits such a co-
rolla into all possible two vertex ðm; nÞ-graphs. Hence the Ly-structure claimed in Theorem
10 is exactly the same as in [39], Theorem 25.

The Ly structures on the direct sum
L

P and its subspaces of invariants constructed
in the proof of Theorem 10 are the most natural ones to consider as they involve all possi-
ble compositions in P. However, they are by no means unique in the case of prop(erad)s (as
opposite to the case of operads). For example, the part of prop(erad) compositions which

correspond to so called
1

2
-propic graphs or dioperadic graphs, that is graphs of genus 0 (see

pictures (8) below), also combine into an Ly-structure on
L

P (and its subspaces of invari-
ants) as the following argument shows.

For a prop(erad) P ¼ fPðm; nÞg we denote by Py ¼ fPyðm; nÞg the associated ‘‘flow
reversed’’ prop(erad) with Pyðm; nÞ :¼ Pðn;mÞ. Let Ass be the operad of associative alge-
bras and define the properad, Assy �Ass ¼ fAssy �Assðm; nÞg by setting

Assy �Assðm; nÞ :¼ AssyðmÞnAssðnÞFK½Sm�nK½Sn�

and defining the compositions mð1;1Þ to be non-zero only on decorated graphs of the form

ð8Þ
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on which it is equal to the operadic compositions in Ass. The properad Assy �Ass corre-

sponds to the
1

2
-prop U

properad
1
2
-prop

ðFrobþþÞ.

Let Com be the properad of commutative algebras, and define the properads
Comy �Ass, Assy � Com, and Comy � Com by analogy to Assy �Ass. Similarly, they corre-

spond to the
1

2
-props U

properad
1
2
-prop

ðFrobþÞ, Uproperad
1
2
-prop

ðFrobþÞ and U
properad
1
2
-prop

ðFrobÞ. Applying

Theorem 6(i) to Q being coproperads ðAssy �AssÞ�, ðAssy � ComÞ�, ðComy �AssÞ�, or
ðComy � ComÞ�, we conclude that the vector spaces,L

m;n
Pðm; nÞ;

L
m;n

Pðm; nÞSm ;
L
m;n

Pðm; nÞSn ;
L
m;n

Pðm; nÞSm�Sn ;

admit canonically Ly-structures encoding
1

2
-prop compositions of the form (8). The natural

morphism of operads,

Ass ! Com;

implies that these Ly-structures are related to each other via the same commutative
diagram of Ly morphisms as in Theorem 10(v). In the case of operads the constructed
Ly-structures are exactly the same as in Theorem 10 but for prop(erad)s they are di¤erent.

2. Deformation theory of morphisms of prop(erad)s

In this section, we define the deformation theory of morphisms of prop(erad)s. We
follow the conceptual method proposed by Quillen in [41], [42].

2.1. Basic definition. Let ðP; dPÞ !
j ðQ; dQÞ be a morphism of dg prop(erad)s. We

would like to define a chain complex with which we could study the deformation theory
of this map. Following Quillen [42], the conceptual method is to take the total right derived
functor of the functor Der of derivations from the category of prop(erad)s above Q (see also
[29], [53]). That is, we consider a cofibrant replacement ðR; qÞ of P is the category of dg
prop(erad)s

R ���!e P???yj

Q:

������!g

Recall that Q has an infinitesimal P-bimodule (respectively infinitesimal R-bimodule) struc-
ture given by j (respectively g).

Lemma 11. Let ðR; qÞ be a resolution of P and let f be a homogeneous derivation of

degree n in DernðR;QÞ, the derivative Dð f Þ ¼ dQ � f � ð�1Þj f jf � q is a derivation of degree

n� 1 of Dern�1ðR;QÞ.

Proof. The degree of Dð f Þ is n� 1. It remains to show that it is a derivation. For
every pair r1 and r2 of homogeneous elements of R, Dð f Þ

�
mRðr1 nð1;1Þ r2Þ

�
is equal to
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Dð f Þ
�
mRðr1nð1;1Þ r2Þ

�
¼
�
dQ � f � ð�1Þnf � q

��
mRðr1 nð1;1Þ r2Þ

�
¼ dQ

�
mQ
�
f ðr1Þnð1;1Þ gðr2Þ þ ð�1Þnjr1jgðr1Þnð1;1Þ f ðr2Þ

��
� ð�1Þnf

�
mR
�
qðr1Þnð1;1Þ r2 þ ð�1Þjr1jr1 nð1;1Þ qðr2Þ

��
¼ mQ

�
ðdQ � f Þðr1Þnð1;1Þ gðr2Þ þ ð�1Þnþjr1jf ðr1Þnð1;1Þ ðdQ � gÞðr2Þ

þ ð�1Þnjr1jðdQ � gÞðr1Þnð1;1Þ f ðr2Þ

þ ð�1Þjr1jðn�1Þgðr1Þnð1;1Þ ðdQ � f Þðr2Þ
�

� ð�1ÞnmQ
�
ð f � qÞðr1Þnð1;1Þ gðr2Þ

þ ð�1Þnðjr1j�1Þðg � qÞðr1Þnð1;1Þ f ðr2Þ

þ ð�1Þjr1jf ðr1Þnð1;1Þ ðg � qÞðr2Þ

þ ð�1Þðn�1Þjr1jgðr1Þnð1;1Þ ð f � qÞðr2Þ
�
:

Since g is morphism of dg prop(erad)s, it commutes with the di¤erentials, that is
g � q ¼ dQ � g. This gives

Dð f Þ
�
mRðr1 nð1;1Þ r2Þ

�
¼ mQ

�
ðdQ � f Þðr1Þnð1;1Þ gðr2Þ � ð�1Þnð f � qÞðr1Þnð1;1Þ gðr2Þ

þ ð�1Þjr1jðn�1Þ�gðr1Þnð1;1Þ ðdQ � f Þðr2Þ

� ð�1Þngðr1Þnð1;1Þ ð f � qÞðr2Þ
��

¼ mQ
�
Dð f Þðr1Þnð1;1Þ gðr2Þ þ ð�1Þjr1jðn�1Þgðr1Þnð1;1Þ Dð f Þðr2Þ

�
: r

In other words, the space of derivations DerðR;QÞ is a sub-dg-module of the space
of morphisms HomSðR;QÞ. We define the deformation complex of the morphism j by
C�ðjÞ :¼

�
Der�ðR;QÞ;D

�
. By Theorem 41 and Theorem 42, there always exists a quasi-

free cofibrant resolutions. For instance, we can consider the bar-cobar resolution by [39],
Theorem 19. This will produce an explicit but huge complex which is di‰cult to compute.
Instead of that, we will work with the chain complex obtained from a minimal model of P
when it exists. Its size is much smaller but its di¤erential can be not so easy to make ex-
plicit. In this sequel, our main example be the deformation theory of representations of P
of the form Q ¼ EndX , that is P-gebras.

2.2. Deformation theory of representations of prop(erad)s. Let ðP; dPÞ be a dg
prop(erad), let ðX ; dX Þ an arbitrary dg P-gebra and let

�
Py :¼ WðCÞ; q

�
be a cofibrant

quasi-free resolution of P and

WðCÞ ���!e P???yj

EndX :

������!g

Definition (deformation complex). We define the deformation complex of the P-

gebra structure of X by C�ðP;XÞ :¼
�
Der�

�
WðCÞ;EndX

�
;D
�
.
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Theorem 12. The deformation complex
�
Der�

�
WðCÞ;Q

�
;D
�

is isomorphic to

HomS
� ðC;QÞ with D ¼ Qg for g ¼ j � ejC.

Proof. [39], Lemma 14 proves the identification between the two spaces. Since g
is a morphism of dg prop(erad)s from a quasi-free prop(erad), it is a solution of the
Maurer-Cartan equation QðgÞ ¼ 0 in the convolution Ly-algebra HomS

� ðC;QÞ by Theo-
rem 5. Let f be an element of HomS

n ðC;QÞ. Following [39], Lemma 14, we denote by
qf the unique derivation of Dern

�
WðCÞ;Q

�
induced by f . We have to show that

Dðqf Þs�1C ¼ Qgð f Þ. For an element s�1c A s�1C, we use the Sweedler type notation for
qðs�1cÞ ¼

P
G

Gðs�1c1; . . . ; s
�1cnÞ. By [39], Lemma 14, we have

qf
�
Gðs�1c1; . . . ; s

�1cnÞ
�

¼
Pn
i¼1

ð�1Þnðjc1jþ���þjci�1jþi�1Þ

� mQ
�
G
�
gðs�1c1Þ; . . . ; gðs�1ci�1Þ; f ðs�1ciÞ; gðs�1ciþ1Þ; . . . ; gðs�1cnÞ

��
:

Therefore, Dðqf Þs�1C is equal to

Dðqf Þðs�1cÞ ¼
�
dQ � qf � ð�1Þnqf � q

�
ðs�1cÞ ¼ dQ

�
f ðs�1cÞ

�
� ð�1Þn

P
G

Pn
i¼1

ð�1Þnðjc1jþ���þjci�1jþi�1Þ

� mQ
�
G
�
gðs�1c1Þ; . . . ; gðs�1ci�1Þ; f ðs�1ciÞ; gðs�1ciþ1Þ; . . . ; gðs�1cnÞ

��
¼ Qgð f Þ: r

In order words, the deformation complex is equal to the convolution Ly-algebra
HomS

� ðC;QÞ twisted by the Maurer-Cartan element g.

Remark. It is natural to consider the augmentation of this chain complex by
HomSðI ;QÞ, that is HomS

� ðC;QÞ.

In summary, by Theorem 5 the vector space HomS
� ðC;QÞ has a canonical filtered Ly-

structure, Q whose Maurer-Cartan elements are morphisms of dg prop(erad)s, Py ! Q,
that is representations of Py in Q. Then let g be one of these morphisms, and let Qg be
the associated twisting of the canonical Ly-algebra by g (see §1.3). This defines the defor-
mation complex of g.

Definition (deformation complex). The deformation complex of a morphism of
prop(erad)s g : Py ! Q is the twisted Ly-algebra

�
HomS

� ðC;QÞ;Qg
�
.

This definition extends to the case of prop(erad)s the deformation complex of alge-
bras over operads introduced in [25], [53].

With the results on the model category structure on prop(erad)s (see Appendix), we
can now prove the independence of this construction in the homotopy category of homo-
topy prop(erad)s and homotopy Lie algebras.
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Theorem 13. Let WðC1Þ and WðC2Þ be two quasi-free cofibrant resolutions of a dg
prop(erad ) P. For any dg prop(erad ) Q, the homotopy convolution prop(erad )s HomðC1;QÞ
and HomðC2;QÞ are linked by two quasi-isomorphisms of homotopy prop(erad )s

HomðC1;QÞ S HomðC2;QÞ;

and the natural maps �
HomS

� ðC1;QÞ;Qg1
�
S
�
HomS

� ðC2;QÞ;Qg2
�

are a quasi-isomorphism of homotopy Lie algebras.

Proof. We apply the left lifting property in the model category of dg prop(erad)s to
the following diagram :

0 ���! WðC1Þ???y ���!! @
WðC2Þ ���!@! P;

::::
::::
::::
::::
:b :::::::::::::::::b

to get the two dotted quasi-isomorphisms of prop(erad)s. By Proposition 43, they induce
quasi-isomorphisms of the level of the homotopy coprop(erad)s C1 S C2. We conclude by
[39], Theorem 33 and Corollary 35. r

The homology groups

H g
� ðQÞ :¼ H�

�
HomSðC;QÞ;Qg

1

�
are independent of the choice of a cofibrant quasi-free resolution of P and are called ho-

mology groups of the Py-representation Q. In the case where Q ¼ EndX , they are called
the homology groups of the Py-gebra ðX ; gÞ.

Proposition 14. The Maurer-Cartan elements G of Qg are in one-to-one correspon-

dence with those Py-structures on X ,

r : ðPy; qÞ ! ðEndX ; dÞ;

whose restrictions to the generating space s�1C of Py are equal precisely to the sum gþ G.

This proposition justifies the name ‘deformation complex’ because the Ly-algebra
Qg controls the deformations of g in the class of homotopy P-structures. When applied to
Q ¼ EndX and g : Py ! EndX , this defines the deformation complex of the Py-gebra
structure g on X . (Some author call this the ‘‘cohomology of X with coe‰cients into itself ’’
but we are reluctant to make this choice and prefer to view it as a deformation complex.)
This definition applies to any homotopy algebra over an operad (associative algebras,
Lie algebras, commutative algebras, preLie algebras, Poisson or Gerstenhaber algebras,
etc. . . .) as well as to any homotopy (bial)gebra over a properad (Lie bialgebras, associative
bialgebras, etc. . . .) in order to give, for the first time, a cohomology theory for homotopy
P-(bial)gebras.
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2.3. Koszul case and cohomology operations. In [39], Theorem 39, we have seen that
a properad P is Koszul if and only if it admits a quadratic model WðP ¡Þ !@ P, where P ¡

the Koszul dual (strict) coproperad. In this case, by Theorem 12, the deformation complex
of a Py-gebra HomSðP ¡;EndX Þ is dg Lie algebra where the boundary map is equal to the
twisted di¤erential Dð f Þ ¼ dð f Þ þ ½g; f �.

The first definition of this kind of preLie operation appeared in the seminal paper of
M. Gerstenhaber [12] in the case of the cohomology of associative algebras. In the case
treated by M. Gerstenhaber, the cooperad C is the Koszul dual cooperad As ¡ of the operad
As coding associative algebras and the operad P is the endomorphism operad EndA. The
induced Lie bracket is the intrinsic Lie bracket of Stashe¤ [45]. It is equal to the Lie bracket
of Gerstenhaber [12] on Hochschild cochain complex of associative algebras, the Lie
bracket of Nijenhuis-Richardson [40] on Chevalley-Eilenberg cochain complex of Lie alge-
bras and the Lie bracket of Stashe¤ on Harrison cochain complex of commutative alge-
bras. It is proven by Balavoine in [2] that the deformation complex of algebras over any
Koszul operad admits a Lie structure. This statement was made more precise by Markl,
Shnider and Stashe¤ in [33], Section 3.9, Part II, where they proves that this Lie bracket
comes from a preLie product. This result on the level of operads was proved using the
space of coderivations of the cofree P ¡-coalgebra, which is shown to be a preLie algebra.
Such a method is impossible to generalize to prop(erad)s simply because there exists no no-
tion of (co)free gebra.

As explained here, one has to work with convolution prop(erad) to prove a similar
result. Actually, this method gives a stronger statement.

Theorem 15. Let P be a Koszul properad and let j : P ! Q be a morphism of proper-

ads, the deformation complex of j is an LR-algebra.

In the non-symmetric case, when P and Q are non-symmetric properads, the deforma-

tion complex is a non-symmetric properad.

Proof. It is a direct consequence of the definition of the deformation complex and
Theorem 13 of [39]. In the non-symmetric case, the deformation complex is directly a
non-symmetric convolution properad, since it is not restricted to invariant elements. r

This result provides higher braces or LR-operations (see [39], Section 2.4). Recall that
non-symmetric braces play a fundamental role in the proof of Deligne’s conjecture for as-
sociative algebras (see [47], [54], [25], [35], [5]) and in the extension of it to other kind of
algebras (see [51], Section 5.5). From this rich structure, we derive a Lie-admissible bracket
and then a Lie bracket which can be used to study the deformations of X . We expect the
LR-operations to be used in the future for a better understanding of deformation theory (in
the context of a Deligne conjecture for associative bialgebras and Gerstenhaber-Schack bi-
complex, for instance).

Notice that this Lie bracket was found by hand in one example of gebras over a prop-
erad before this general theory. The properad of Lie bialgebras is Koszul. Therefore, on the
deformation (bi)complex of Lie bialgebras, there is a Lie bracket. The construction of this
Lie bracket was given by Kosmann-Schwarzbach in [24]. (See also Ciccoli-Guerra [8] for
the interpretation of this bicomplex in terms of deformations.)
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2.4. Definition à la Quillen. In the previous sections, we defined the deformation
complex of representations of a prop(erad) P that admits a quasi-free model and proved
the independence of this definition in the categories of homotopy prop(erad)s (and homo-
topy Lie algebras). In this section, we generalize the definition of the deformation theory of
a morphism of commutative rings due to Quillen [42] to the case of prop(erad)s. (See
L. Illusie [19] for a generalization in the context of topoi and schemes.) Hence, it defines a
(relative) deformation complex for representations of any prop(erad). It also gives rise to
the cotangent complex associated to any morphism of prop(erad)s.

Since a commutative algebra is an associative algebra, an associative algebra an
operad and an operad a prop(erad), this generalization of Quillen theory can be seen as a
way to extend results of (commutative) algebraic geometry to non-commutative non-linear
geometry. It is non-linear because the monoidal productn defining prop(erad)s is neither
linear on the left nor on the right, contrary to the tensor productn of vector spaces.

Let I be a ‘ground’ prop(erad) (to recover the previous section, consider I ¼ I , the
unit of the monoidal category of S-bimodules). We look at prop(erad)sP underI,I ! P.
And for such a prop(erad) P, we consider the category of prop(erad)s over P, that is

X???y f

I ���! P:
�����!u

We denote this category by PropðeradÞ=P. Let M be an infinitesimal bimodule over P (see
[39], Section 3.1). The infinitesimal P-bimodule M is also an infinitesimal bimodule over
any prop(erad) X over P, by pulling back along X ! P. Hence, we can consider the space
of I-derivations from X to M, that is derivations from X to M which vanish on I. We
denoted this space by DerIðX;MÞ.

We aim now to represent this bifunctor on the left and on the right. To repre-
sent it on the left, we introduce the square-zero (or infinitesimal ) extension of P by

M : PyM :¼ PlM with the following structure of prop(erad) over P. The monoidal
product ðPlMÞn ðPlMÞ is equal to

PnPlPn ðPl M|{z}
1

Þl ðPl M|{z}
1

ÞnPlM;

where M is the sub-S-bimodule of ðPlMÞn ðPlMÞ composed by at least two ele-
ments from M. On the first component PnP, the product of PyM is defined by the
product of P. On the second component, it is defined by the left action of P on M. On
the third one, it is defined by the right action of P on M. Finally, the product on M is
null.

Lemma 16. For any prop(erad ) P and any infinitesimal P-bimodule M, the infinites-
imal extension PyM is a prop(erad ).

Proof. The definition of infinitesimal P-bimodule directly implies the associativity
of the prop(erad)ic composition of PyM. r
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The purpose of this definition is in the following result, which states that infinitesimal
P-bimodules are abelian group objects in the category of prop(erad)s over P.

Proposition 17. There is a natural bijection

HomPropðeradÞ=PðX;PyMÞGDerIðX;MÞ;

where DerIðX;MÞ is the space of I-derivations from X to M.

Proof. Let us denote by f : X ! P any morphism X ! PyM ¼ PlM. The
category of prop(erad)s over P is the sum of f with its component on M, which we denote
by D. Finally, f lD : X ! PyM is a morphism of prop(erad)s if and only if D is a der-
ivation X ! M. r

To represent the space of derivations on the right, we introduce the module of Kähler

di¤erentials of a prop(erad ). It is a quotient of the free infinitesimal X-bimodule over I on
X by suitable relations. We recall from [52], Section 2.5, that the relative composition prod-
uct is defined by the following coequalizer

MnPnN ���!���!Mnl

rnN
MnN ���!! MnPN;

where l is the left action of P on N, PnN ! N and r the right action of P on M,
MnP ! M.

Let f : P ! Q be a morphism of prop(erad)s. There is a natural functor from the cat-
egory of infinitesimal Q-bimodules to the category of infinitesimal P-bimodules by pulling
back along f . We denote it by f � : Inf :Q-biMod ! Inf :P-biMod.

Proposition 18. The functor f � : Inf :Q-biMod ! Inf :P-biMod admits a left adjoint

f! : Inf :P-biMod (+ Inf :Q-biMod : f �;

which is explicitly given by f!ðMÞ ¼ QnP M|{z}
1

nP Q, for any infinitesimal P-bimodule M.

The S-bimodule QnP M|{z}
1

nP Q is the coequalizer

ðQnPÞn M|{z}
1

n ðPnQÞ ����������!����������!rQnMnlQ

Qnðl�ðPnrÞÞnQ
Qn M|{z}

1

nQ !! QnP M|{z}
1

nP Q;

where the notation Qn M|{z}
1

nQ stands for 3-levels graphs with only one element of M

labelling a vertex on the second level and such that every element of Q on the first and third

level have a common internal edge with this element of M. (The action of P on Q is given by

the morphism f .)

Proof. We have the natural bijection

HomInf :Q-biModðQnP M|{z}
1

nP Q;NÞGHomInf :P-biMod

�
M; f �ðNÞ

�
:
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Let F : QnP M|{z}
1

nP Q ! N be a morphism of infinitesimal Q-bimodules. It is character-

ized by the image of the projection of the element of I n M|{z}
1

n I in QnP M|{z}
1

nP Q. Let

us call j : M ! N this map. It is then easy to see that j is a morphism of infinitesimal
P-bimodules. r

Example. If we apply the preceding proposition to the unit u : I ! P of a
prop(erad) P, the functor u� : Inf :P-biMod ! S-biMod is the classical forgetful functor.
Hence u!ðMÞ ¼ Pn M|{z}

1

nP is the free infinitesimal P-bimodule associated to any
S-bimodule M.

Definition (module of Kähler di¤erentials). Let us denote by u : I ! X. The module
of Kähler di¤erentials of a prop(erad) X over I is the quotient of the free infinitesimal
X-bimodule over the infinitesimal I-bimodule u�ðXÞ, that is

u!
�
u�ðXÞ

�
¼ XnI u�ðXÞ|fflffl{zfflffl}

1

nI X;

by the relations

p
�
I n mXðx1 nð1;1Þ x2Þn I � I n x1nð1;1Þ x2 � ð�1Þjx1jx1 nð1;1Þ x2 n I

�
;

where p is the canonical projection of Xn X|{z}
1

nX on the coequalizer

XnI u�ðXÞ|fflffl{zfflffl}
1

nI X:

We denote it by WX=I.

We define the universal derivation D : X ! WX=I by DðxÞ equal to the class of
I n xn I in WX=I. Like in the case of commutative algebras (see J.-L. Loday [27], Section
1.3) or associative algebras (see [9], [21], [27], the module of Kähler di¤erentials represents
the derivations.

Proposition 19. There is a natural bijection

DerIðX;MÞGHomInf :X-biModðWX=I;MÞ:

Proof. Let d be a derivation in DerIðX;MÞ. There is a unique morphism of infini-
tesimal X-bimodules y : WX=I ! M such that the following diagram commutes:

X ���!D WX=I�
�
�
X

y

M:

�������!d

The image of the class of I n xn I in WX=I under y is defined by dðxÞ. It extends freely
to the infinitesimal X-bimodule XnI u�ðXÞ|fflffl{zfflffl}

1

nI X and then passes to the quotient

thanks to the Leibniz relation verified by d. r
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The module of Kähler di¤erentials of an associative algebra is the non-commutative
analog of classical di¤erential forms (see A. Connes [9]). Since operads and prop(erad)s can
also be used to encode geometry (see [37], [38]), the module of Kähler di¤erentials for
prop(erad)s seems a promising tool to study non-linear properties in non-commutative
geometry.

Theorem 20. For any infinitesimal P-bimodule M, the following adjunction holds:

HomPropðeradÞ=PðX;PyMÞGDerIðX;MÞGHomInf :P-biModðPnX WX=I|fflffl{zfflffl}
1

nX P;MÞ:

Proof. It is a direct corollary of Proposition 17 and Proposition 19. The last natural
bijection

HomInf :X-biMod

�
WX=I; f

�ðMÞ
�
GHomInf :P-biMod

�
f!ðWX=IÞ;N

�
is provided by Proposition 18 applied to the morphism f : X ! P. r

In other words, the following functors form a pair of adjoint functors

Pn� W�=I|fflffl{zfflffl}
1

n� P : PropðeradÞ=P Ð Inf :P-biMod : Py�:

The model category structure on prop(erad)s induces a model category structure on
PropðeradÞ=P.

Lemma 21. The category of infinitesimal P-bimodules is endowed with a cofibrantly

generated model category structure.

Proof. We use the same arguments as in Appendix A, that is the Transfer Theorem
32 along the free infinitesimal P-bimodule functor h! : S-biMod ! Inf :P-biMod. The for-
getful functor h� creates limits and colimits which proves (1) and (2). A relative h!ðJÞ-cell

complex has the form A0 ! A0 lPn

�L
if0

Dki
mi ;ni

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1

nP, which is a quasi-isomorphism of

dg S-bimodules since the right-hand term Pn

�L
if0

Dki
mi;ni

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1

nP is acyclic. r

Proposition 22. The pair of adjoint functors

Pn� W�=I|fflffl{zfflffl}
1

n�P : PropðeradÞ=P Ð Inf :P-biMod : Py�

forms a Quillen adjunction.

Proof. By [17], Lemma 1.3.4, it is enough to prove that the right adjoint Py�
preserves fibrations and acyclic fibrations. Let f : M !! M 0 be a fibration (resp. acyclic
fibration) between two infinitesimal P-bimodules, that is f is degreewise surjective
(resp. and a quasi-isomorphism). Since Py ð f Þ is the morphism of properads on
IdP l f : PlM ! PlM 0, it is degreewise surjective (resp. and a quasi-isomorphism),
which concludes the proof. r
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Therefore, we can derive them in the associated homotopy categories.

This proves that the homology of DerIðR;MÞ is independent of the choice of the
cofibrant resolution of P because it is well defined in the homotopy category of prop(erad)s
over P and in the homotopy category infinitesimal P-bimodules.

HomHoðPropðeradÞ=PÞðX;PyMÞGDerIðX;MÞ

GHomHoðInf :P-biModÞðPnX WX=I|fflffl{zfflffl}
1

nX P;MÞ:

Definition (cotangent complex). The cotangent complex of P is the total left derived
functor of the right adjoint, that is

LP=I :¼ PnR WR=I|fflffl{zfflffl}
1

nR P;

for R a cofibrant resolution of P.

Since on the homology of the cotangent complex, in the classical case of commu-
tative rings, one can read the properties of the morphism I ! P (smooth, locally com-
plete intersection, etc. . . .), we expect to be able to read such properties on the generalized
version defined here. In the same way, transitivity and flat base change theorems should be
proved for this cotangent complex but it is not our aim here and will be studied in a future
work.

Remark. This section is written in the category of dg-prop(erad)s since we work in
this paper over a field of characteristic 0. Therefore, to explicit the cotangent complex and
the (co)homology of prop(erad)s, we have to use cofibrant resolutions in the category of dg
prop(erad)s, for instance quasi-free resolutions (Koszul or homotopy Koszul). One can ex-
tend this section and the Appendix when the characteristic of the ground ring is not 0. In
this case, one has to use simplicial resolutions like in M. André [1] and D. Quillen [42].

3. Examples of deformation theories

In this section, we show that the conceptual deformation theory defined here coin-
cides to well known theories in the case of associative algebras, Lie algebras, commutative
algebras, Poisson algebras. As a corollary, we get classical Lie brackets on these cohomol-
ogy theory as well as classical Lie brackets in di¤erential geometry. More surprisingly, we
make deformation theory explicit in the case of associative bialgebras and show that it cor-
responds to Gerstenhaber-Schack type bicomplex.

3.1. Associative algebras. If P is the properad Ass of associative algebras, it is gen-
erated by a non-symmetric operad still denoted by Ass. This operad is Koszul that is, its
minimal resolution exists and is generated by the (strict) cooperad Ass ¡ with

Ass ¡ðm; nÞ ¼ sn�2K½S1�nK½Sn� for m ¼ 1; nf 2

0 otherwise:
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We represent the generating element of Assð1; nÞ by a corolla . The partial copro-
duct of this cooperad is given by the formula

Dð1;1Þ

0@ 1A¼
Pn�1

k¼0

Pn�k

l¼1

ð�1Þðl�1Þðn�k�lÞ :

Proposition 23. Let Ass !j Q be a map of (non-symmetric) operads. The deformation

complex of this map is isomorphism to Q up to the following shift of degree

C j
� ðAss;QÞðnÞ ¼ s�1 HomS

� ðAss ¡;QÞðnÞ ¼ s�nQ�ðnÞ:

The boundary map is given by

DðqÞ ¼ dðqÞ þ mQ
�
jðnÞ; I ; q

�
þ
Pn
i¼1

ð�1Þ imQ
�
q; I ; . . . ; I ; jðnÞ|{z}

i

; I ; . . . ; I
�

þ ð�1Þnþ1mQ
�
jðnÞ; q; I

�
;

for q A QðnÞ if we denote by n the generating binary operation of Assð2Þ.

Proof. There is a one-to-one correspondence between Sn-equivariant maps from
Ass ¡ðnÞ to QðnÞ and elements of QðnÞ. Let us denote by fq the unique map determined by
q A QðnÞ. Since Ass ¡ is a cooperad and Q is an operad, the convolution operad HomðAss ¡;QÞ
is preLie algebra with product denoted ? (see [39], Section 2). By Theorem 12 and Sec-

tion 2.3, we have Dð fqÞ ¼ dð fqÞ þ g ? fq � ð�1Þj fqjfq ? g. Since fq vanishes on Ass ¡ðmÞ for
m3 n and since g vanishes on Ass ¡ðmÞ for m3 2, the only non-vanishing component of
g ? fq ¼ mQ � ðgnð1;1Þ fqÞ � Dð1;1Þ is

�mQ
�
jðnÞ; I ; q

�
þ ð�1ÞnmQ

�
jðnÞ; q; I

�
on HomS

� ðAss ¡;QÞ:

And the only non-vanishing component of fq ? g ¼ mQ � ð fq nð1;1Þ gÞ � Dð1;1Þ is

Pn
i¼1

ð�1Þ iþ1mQ
�
q; I ; . . . ; I ; jðnÞ|{z}

i

; I ; . . . ; I
�

on HomS
� ðAss ¡;QÞ;

which concludes the proof. r

This deformation complex appears in many places in the literature under di¤erent
names. When Q ¼ EndX with X an associative algebra, it is the Hochschild (co)chain com-
plex of X (with coe‰cient in X ): s�1 HomðV ;EndX Þ ¼

L
nf2

s1�n HomðXnn;XÞ. The induced

Ly-algebra, Q on it is strict since the operad Ass is Koszul. It is precisely the Gerstenhaber
Lie algebra [12] and Qg is the Hochschild dg Lie algebra controlling deformations of a par-
ticular associative algebra structure g : Ass ! EndX on a vector space X .
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In the work of McClure-Smith on Deligne’s conjecture [35], an operad Q with a mor-
phism of operads Ass ! Q is called a multiplicative operad. The simplicial complex that
they define on such an operad is exactly the deformation complex of this map. For the op-
erad Q ¼ Poisson, this complex is related to the homology of long knots (see [49]). More
generally, Maxim Kontsevich proposed the conjecture that the deformation complex of
Ass ! EndX is a d þ 1-algebra when X is a d-algebra in [22]. This conjecture was proved
by Tamarkin in [48], see also Hu, Kriz and Voronov [18]. In this context, this chain com-
plex is often called the Hochschild complex of Q.

Since this (co)chain complex comes from the general theory of (co)homology of
Quillen, it would be better to call its (co)homology the cohomology of Ass with coe‰cients

in Q or the chain complex, the deformation complex of the map j.

Analogously one recovers other classical examples—Harrison complex/cohomology
and Chevalley-Eilenberg complex/cohomology—from the operads of commutative alge-
bras and, respectively, Lie algebras.

3.2. Poisson structures. A Lie 1-bialgebra is, by definition, a graded vector space V
together with two linear maps

d : V !52V ;

a !
P

a15a2;

½�� :p2V ! V ;

an b ! ð�1Þjaj½a � b�;

of degrees 0 and �1 respectively which satisfy the identities

(i) ðdn IdÞdaþ tðdn IdÞdaþ t2ðdn IdÞda ¼ 0, where t is the cyclic permutation
(123) represented naturally on V nV nV (co-Jacobi identity);

(ii) ½½a � b� � c� ¼ ½a � ½b � c�� þ ð�1Þjbj jajþjbjþjaj½b � ½a � c�� (Jacobi identity);

(iii)

d½a � b� ¼
P

a15½a2 � b� � ð�1Þja1j ja2ja25½a1 � b� þ ½a � b1�5b2 � ð�1Þjb1j jb2j½a � b2�5b1

(Leibniz type identity).

This notion of Lie 1-bialgebras is similar to the well-known notion of Lie bi-
algebras except that in the latter case both operations, Lie and co-Lie brackets, have
degree 0.

Let LieBi be the properad whose representations are Lie 1-bialgebras. It is Koszul
contractible, that is its minimal resolution ðLieBiy; dÞ exists and is generated by the
S-bimodule V ¼ fVðm; nÞgm;nf1;mþnf3 with

Vðm; nÞ :¼ sm�2 sgnmn 1n ¼ span

* +
;
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where sgnm stands for the sign representation of Sm and 1n for the trivial representation of
Sn. The di¤erential is given on generators by [38]

¼
P

I1tI2¼ð1;...;mÞ
J1tJ2¼ð1;...;nÞ
jI1jf0; jI2jf1
jJ1jf1; jJ2jf0

ð�1ÞsðI1tI2ÞþjI1j jI2j

where sðI1 t I2Þ is the sign of the shu¿e I1 t I2 ¼ ð1; . . . ;mÞ.

Hence, for an arbitrary dg vector space X ,

s�1 HomðV ;EndX Þ ¼
L

m;nf1

s1�m5m X npnX F5�TX ;

where 5�TX is the vector space of formal germs of polyvector fields at 0 A X when we
view X as a formal graded manifold. It is not hard to show using the above explicit
formula for the di¤erential d that the canonically induced, in accordance with Theorem
5(i), Ly-structure on s�1 HomðV ;EndX Þ is precisely the classical Schouten Lie algebra
structure on polyvector fields. Thus our theory applied to Lie 1-bialgebras reproduces
deformation theory of Poisson structures, and LieBi-homology is precisely Poisson ho-
mology.

In a similar way one can check that our construction of Ly-algebras applied to the
minimal resolution of so called pre-Lie2-algebras [37] gives rise to another classical geomet-
ric object—the Frölicher-Nijenhuis Lie brackets on the sheaf TX nW�

X of tangent vector
bundle valued di¤erential forms. Thus the associated deformation theory describes defor-
mations of integrable Nijenhuis structures.

3.3. Associative bialgebras. In this section, we make explicit the deformation theory
of representation of the properad AssBi of associative bialgebras. As this example has
never been rigorously treated in the literature before, we show full details here.

As the properad AssBi is homotopy Koszul (see [39], Section 5.4) it admits a mini-
mal resolution AssBiy ¼

�
FðCÞ; q

�
which is generated by a relatively small S-bimodule

C ¼ fCðm; nÞgm;nf1;mþnf3,

Cðm; nÞ :¼ smþn�3K½Sm�nK½Sn� ¼ span

* +
:

The di¤erential q in AssBiy is neither quadratic nor of genus 0. The derivation q on
FðCÞ is equivalent to a structure of homotopy coproperad on s�1C. The values of q
on ð1; nÞ- and ðm; 1Þ-corollas are given, of course, by the well-known Ay-formulae,
while
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¼
Pn�2

k¼0

Pn�k

l¼2

ð�1Þkþlðn�k�lÞþ1

�
Py
k¼2

P
r1þ���þrk¼n

ð�1Þs

where

s ¼ ðk � 1Þðr1 � 1Þ þ ðk � 2Þðr2 � 1Þ þ � � � þ 1ðrk � 1Þ;

DSU is the Saneblidze-Umble diagonal, and the horizontal line means fraction composition
from [31]. The meaning of this part of the di¤erential is clear: it describes Ay-morphisms
between an Ay-structure on X and the associated Saneblidze-Umble diagonal Ay-structure
on X nX . Explicitly, this formula is obtained by first considering the quasi-free resolution
of the 2-colored operad coding two associative algebras and a morphism between them.
While the resolution of the associative operad is given by the associahedra, this resolution
is given by the multiplihedra. This resolution gives the relaxed notion of Ay-algebra and
morphism of Ay-algebras at the same time. Then, to get the formula above, we applied
this resolution to the Ay-algebra X and to X nX with the Ay-algebra structure induced
by the Saneblidze-Umble diagonal.

The values of q on corollas of the form

describe a homotopy between two natural Ay-morphisms from X to X nX nX , values
on corollas with 4 output legs—homotopies between homotopies etc. We conjecture
that ðAssBiy; qÞ is a one coloured version of a certain N-coloured properad describ-
ing Ay-algebras, morphisms of Ay-algebras, homotopies between morphisms of Ay-
algebras, homotopies of homotopies etc., and we hope to describe it in a future pub-
lication.

It was proven in [31], [34] that there exists a minimal model ðAssBiy; qÞ such that the
di¤erential preserves Kontsevich’s path grading of AssBiy and has the form q ¼ q0 þ qpert,

where q0 describes the minimal resolution
1

2
AssBy of the prop of

1

2
-bialgebras (these facts

follow also immediately from [39], Corollary 42). The perturbation part qpert is a linear
combination of so called fractions and their compositions. We shall assume from now on
that q has all these properties. By checking genus of these fractions (or by referring to our
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proof of homotopy Koszulness of AssBi in [39], Section 5.4) one can easily obtain the fol-
lowing useful (for our purposes)

Fact 24. The di¤erential q0 is precisely the quadratic part of q, i.e. it is equal to the

composition,

q0 : C �!q FðCÞ �!proj FðCÞð2Þ:

Let Q be a dg properad. By Theorem 5, the vector space,

s�1 HomSðC;QÞ ¼
L

n;mf1
mþnf3

s2�m�nQðm; nÞ ¼: gGSðQÞ;

has a canonical homotopy non-symmetric properad and Ly-structure Q, whose Maurer-
Cartan elements are morphisms of properads FðCÞ ! Q.

If g : AssBi ! Q is a representation of AssBi, or more generally of

AssBiy : AssBiy ! Q;

then, by Definition 2.2, there exists an associated twisted Ly-structure Qg ¼ fQg
ngnf1 on

gGSðQÞ which controls deformations of g in the class of representations of AssBiy. An
explicit formula for the di¤erential q would induce an explicit Ly-structure. Once again,
our main example of this deformation theory is given by Q ¼ EndX . In this case, the
complex above is the deformation complex of associative bialgebra, or more generally of
AssBiy-gebra, structure on X .

When X is an associative bialgebra, Gerstenhaber and Schack defined in [13] a bi-
complex whose homology has nice properties with respect to the deformations of the asso-
ciative bialgebra structure (see also [26]). Let us first extend this definition to any properad
Q and not only EndX .

Definition. Let g : AssBi ! Q be a representation of AssBi. We define the
Gerstenhaber-Schack bicomplex of g by Cm;n :¼ Qðm; nÞ and the di¤erentials by

dh :¼
Pn�2

i¼0

ð�1Þ iþ1 þ

þ ð�1Þnþ1 ;
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dv :¼
Pn�2

i¼0

ð�1Þ iþ1 þ

þ ð�1Þmþ1

where the general ðm; nÞ-corollas have to be understood as elements of Qðm; nÞ. The binary
corollas are the image under g of the generating product and coproduct of AssBi. Finally,
this pictures represent the composition of all these elements in Q.

Let us compare these with the Gerstenhaber-Schack di¤erential, dGS, in the bicom-
plex C

m;n
GS :¼ HomðXnn;XnmÞ which is defined by [13]

dGS ¼ dh þ dv;

with dh : HomðXnn;XnmÞ ! HomðXnnþ1;XnmÞ given on an arbitrary

f A HomðXnn;XnmÞ

by

ðdh f Þða0; a1; . . . ; anÞ :¼ Dmða0Þj f ða1; a2; . . . ; anÞ �
Pn�1

i¼0

ð�1Þ if ða1; . . . ; aiaiþ1; . . . ; anÞ

þ ð�1Þnþ1
f ða1; a2; . . . ; anÞjDmðanÞ Eai A X :

Here the multiplication in X is denoted by juxtaposition, the induced multiplication in the
algebra Xnm by j, the comultiplication in X by D, and

Dn : ðDn Idnm�2Þ � ðDn Idnm�3Þ � � � � � D : X ! Xnm:

The expression for dv is an obvious ‘‘dual’’ analogue of dh. Now let us represent dh in
graphical terms by associating the graphs

to comultiplication and, respectively, multiplication while the corolla

33Merkulov and Vallette, Deformation theory of representations of prop(erad )s II

(AutoPDF V7 3/3/09 11:56) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1–52 2086_6182 (p. 33)



to f . Then the r.h.s of the formula for dh reads

�
Pn�1

i¼0

ð�1Þ i þ ð�1Þnþ1

which are precisely the first three summands in the previous definition. The other three
terms correspond to dv. Therefore, when Q ¼ EndX and g : AssBi ! EndX is an associa-
tive bialgebra structure on X , the preceding bicomplex is exactly Gerstenhaber-Schack bi-
complex [13].

However, even without an explicit minimal model of AssBi, we can show the follow-
ing general result.

Theorem 25. Let ðAssBiy; qÞ !p AssBi, be a minimal model of the properad of bial-

gebras and g : AssBi ! Q an arbitrary representation of AssBi. Then the di¤erential

Q
g
1 ¼ Q � egp

associated to this minimal model in the twisted Ly-structure Qg on gGS, is isomorphic to the

Gerstenhaber-Schack di¤erential. Hence the deformation complex of representation of AssBi

is isomorphic to the Gerstenhaber-Schack bicomplex.

Proof. Let
�
AssBiy ¼ FðCÞ; q

�
be a minimal model of the properad of bialgebras,

and let I be the ideal in FðCÞ generated by graphs in FðCÞðf2Þ with at least two non-
binary (i.e. neither nor ) vertices, and let

B :¼ AssBiy

ðI ; qIÞ

be the associated quotient dg properad. The induced di¤erential in B we denote by qind. It is
precisely this quotient part qind of the total di¤erential q which completely determines the
Ly-di¤erential di¤erential Qg

1. Thus our plan is the following: in the next lemma we present
an explicit, up to an automorphism, form of the di¤erential qind (despite the fact that q is not
explicit !) and thereafter compare the resulting Q

g
1 with the Gerstenhaber-Schack definition.

The major step in the proof is the following lemma (in its formulation we use fraction
notations again).

Lemma 26. (i) The derivation d of B given on generators by

ð9Þ

ð10Þ
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and, for all other generators with mþ nf 4, by

¼
Pn�2

i¼0

ð�1Þ iþ1 þð11Þ

þ ð�1Þnþ1

þ
Pn�2

i¼0

ð�1Þ iþ1 þ

þ ð�1Þmþ1

is a di¤erential.

(ii) The dg properads ðB; qindÞ and ðB; dÞ are isomorphic.

Proof. (i) It is easy to see that among for 2-vertex connected binary graphs4) at-
tached to any other graph in B the bialgebra relations

hold. Using this fact it is an easy and straightforward calculation to check that d 2 ¼ 0. We
omit the details. (In fact we shall show below that d is essentially a graph encoding of the
Gerstenhaber-Schack di¤erential dGS so this calculation is essentially identical to the one
which establishes d 2

GS ¼ 0.)

(ii) We begin our proof of Lemma 26(ii) with the following

4) Equivalence classes of graphs in B we call simply graphs for shortness.
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Claim 1. The natural projection p : ðB; dÞ ! AssBi is a quasi-isomorphism.

Indeed, the dg properad ðB; dÞ has a natural increasing and bounded above filtra-
tion5) fF�pBgpf0 with F�pB being the span of equivalence classes of graphs which admit a

representative in AssBi
ðfpÞ
y . As the di¤erential d is connected and preserves the induced

path gradation, the associated spectral sequence ðEr; drÞ converges to H�ðB; dÞ. The 0th
term ðE0; d0Þ has the di¤erential given on generators by

ð12Þ

and, for all other generators with mþ nf 4,

¼
Pn�2

i¼0

ð�1Þ i þ
Pn�2

i¼0

ð�1Þ i :ð13Þ

We want to compute homology E1 ¼ H�ðE0; d0Þ of this complex and show that
E1 FAssBi. For this purpose consider a 3-step filtration 0HF�2 HF�1 HF0 ¼ E0 of the
complex ðE0; d0Þ with

F�1 :¼ span
D E

; F�2 :¼ span
D E

;

and let ðEr; qrÞ be the associated spectral sequence. The di¤erential q0 is zero on the gener-
ators of F�1 and is equal to d0 on all the other generators. Thus, modulo shifts of gradings,
actions of finite groups and tensor products by trivial (i.e. with zero di¤erential) complexes,
the complex ðE0; q0Þ is isomorphic to the tensor product of two isomorphic operadic com-
plexes (one with ‘‘time’’ flow reversed upside down relative to another) which were studied
in [32], page 40, and which have the di¤erential (in notations of that paper) given by

d1 ¼
Pn�2

i¼0

ð�1Þ iþ1 :

It is shown in [32] that the cohomology of this complex is concentrated in degree 0 and is
isomorphic to the operad of associative algebras. In our context this result immediately im-
plies that ðE1; q1Þ is isomorphic to F�1 with the di¤erential q1 given on generators by (12).
Its cohomology is obviously concentrated in degree 0 (and is equal, in fact, to the properad
1

2
B of infinitesimal bialgebras). HenceH�ðB; dÞ is concentrated in degree 0 proving Claim 1.

5) One might prove Claim 1 using another filtration of B by the number of vertices and Fact 24 provided

one assumes (without any losses) that B is completed with respect to this filtration.
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Claim 2. The natural projection p : ðB; qindÞ ! AssBi is a quasi-isomorphism.

Indeed, the defined above filtration fF�pBgpf0 by the number of vertices is also com-
patible with the di¤erential qind. Let ðEr; drÞ be the associated spectral sequence. Its first
nontrivial term, ðE1; d1Þ is, by Fact 24, isomorphic to the complex ðE1; d1Þ above. Hence
we can apply the same reasoning as in the proof of Claim 1.

Claim 3. There exits a morphism of dg properads F making the diagram

ðB; dÞ???yp

ðAssBiy; qÞ ���!
p

ðAssBi; 0Þ
��������

!
F

commutative.

Since AssBi is a properad concentrated in degree 0, the map p is surjective. Since p is
a quasi-isomorphism by Claim 2, it is an acyclic fibration in the model category of proper-
ads (see Appendix A). By Corollary 40, AssBiy is a cofibrant properad. Finally, the mor-
phism F is given by the left lifting property in the model category of properads. Hence, the
existence of F is clear but we need to make it more precise. We construct it as follows and
refine it in Claim 4.

As AssBiy ¼ FðCÞ is a free properad, a morphism F is completely determined by
its values on the generating ðm; nÞ-corollas which span the vector space C, and one can con-
struct F by a simple induction6) on the degree r :¼ mþ n� 3f 0 of such corollas. For
r ¼ 0 we set F to be identity, i.e.

F

 !
¼ ; F

 !
¼ :

Assume we constructed values of F on all corollas of degree reN. Let e be a generating
corolla of non-zero weight r ¼ N þ 1. Note that de is a linear combination of graphs whose
vertices are decorated by corollas of weighteN (as di¤erential d has degee �1). Then, by
induction, FðdeÞ is a well-defined element in B. As pðeÞ ¼ 0, the element

FðdeÞ

is a closed element in B which projects under p to zero. By Claim 1, the surjection p is a
quasi-isomorphism. Hence this element is exact and there exists e A B such that

de ¼ FðdeÞ:

We set FðeÞ :¼ e completing thereby inductive construction of F.

6) This induction is a straightforward analogue of the Whitehead lifting trick in the theory of CW -

complexes in algebraic topology.

37Merkulov and Vallette, Deformation theory of representations of prop(erad )s II

(AutoPDF V7 3/3/09 11:56) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1–52 2086_6182 (p. 37)



Claim 4. A morphism F can be chosen so that

F

0B@
1CA¼ þ terms withf 2 number of vertices:

Indeed, the di¤erential d in B has the form

d ¼ d1 þ drest;

where d1 is the quadratic di¤erential in B defined by (13) and the part dpart corresponds to
graphs lying in F�3B. We shall prove Claim 4 by induction on the degree r ¼ mþ n� 3 of
the generating ðm; nÞ-corollas in AssBiy (cf. [31], proof of Theorem 43). For r ¼ 0 the
claim is true. Assume we have already constructed F such that the claim is true for values
of F on corollas with non-zero degreeeN and consider a generating corolla e of degree
N þ 1. The value e :¼ FðeÞ is a solution of the equation

d1eþ dreste ¼ Fðq0eÞ þFðqperteÞ:ð14Þ

Let p1 and p2 denote projections in B to the subspaces spanned by equivalence classes of
graphs with 1 and, respectively, 2 vertices. Then equation (14) implies,

p2 � d1ðeÞ ¼ d1 � p1ðeÞ ¼ p2 �Fðq0eÞ;

as both dreste and FðqperteÞ are spanned by graphs lying in F�3B. Using now the explicit
form for the di¤erential q0 (given, e.g., by [31], formula (14)) and the induction assumption
we immediately conclude that

p1ðeÞ ¼

completing the proof of Claim 4.

Claim 5. The morphism F induces a dg isomorphism ðB; qindÞ ! ðB; dÞ.

Indeed, F sends the ideal I to zero. Since F respects di¤erentials, it sends the ideal
ðI ; qIÞ to zero as well and hence induces, by Claims 3 and 4, a required isomorphism. This
completes proof of Lemma 26. r

Now we continue with the proof of Theorem 25. The di¤erential Qg
1 in the graded

vector space gGSðQÞ ¼
L
m;n

s2�m�nQ is completely determined by the quotient di¤erential

qind of the full di¤erential q in AssBiy. By Lemma 26, this quotient di¤erential is given, up
to automorphims, by formulae (9)–(11). The proof of the Theorem 25 is completed. r

As a direct corollary, we have
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Corollary 27. The Gerstenhaber-Schack bicomplex of an associative bialgebra X is a

homotopy non-symmetric properad and a twisted Ly-algebra whose Maurer-Cartan elements

are deformations of the first structure.

The homotopy non-symmetric properad structure induces, on this chain complex,
(homotopy) LR-operations which play the same role as the non-symmetric braces for
Hochschild cochain complex. They are expected to be used in the proof of a Deligne con-
jecture for associative bialgebras.

3.4. Twisted LT-algebras and dg prop(erad)s. For any quasi-free prop(erad)�
Py ¼ Fðs�1CÞ; qP

�
and any prop(erad) Q there exists, in accordance with Theorem 5,

a canonical Ly-structure Q on the graded vector space s�1 HomS
� ðC;QÞ whose Maurer-

Cartan elements are in one-to-one correspondence with representation of Py in Q. If g is
any particular representation of Py, then the associated twisted Ly-algebra Qg describes
deformation theory of g within the class of representation of Py (see §7.2). Remarkably,
there always exists a quasi-free prop(erad ) ðPð2Þ

y ; qÞ whose representations in Q are in one-

to-one correspondence with pairs ðg;GÞ where g is a representation of Py on Q and G is an

MC element in Qg. Thus the dg prop(erad) Pð2Þ
y gives a complete description of the defor-

mation theory of a generic representation of Py. In fact, this constructions can be obvi-
ously iterated giving rise to quasi-free prop(erad)s Pð3Þ

y , Pð4Þ
y etc.

By definition, Pð2Þ
y is a free prop(erad) on the S-bimodule s�1Cl s�1C but the di¤er-

ential q in Pð2Þ
y is not a direct sum qP l qP of di¤erentials in Py. We illustrate the above

claim in the case of P ¼ Ass, the operad of associative algebras, before giving the general
definition.

Let Ass
ð2Þ
y be a quasi-free operad generated by an S-module

sn�2K½Sn�l sn�2K½Sn�F span

0B@
1CA
s ASn

and equipped with a di¤erential given on generators by

q

0@ 1A ¼
Pn�1

k¼0

Pn�k

l¼1

ð�1Þðl�1Þðn�k�lÞ ;

q

0@ 1A ¼
Pn�1

k¼0

Pn�k

l¼1

ð�1Þðl�1Þðn�k�lÞ

0BBB@

þ þ

1CCCA:
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Proposition 28. There is a one-to-one correspondence between representations of the

dg operad Ass
ð2Þ
y in an operad Q and degree �1 elements g and G in the deformation complex

(Hochschild complex)
L
nf2

s1�nQðnÞ such that

½d þ g; d þ g�G ¼ 0;

½d þ g;G�G þ 1

2
½G;G�G ¼ 0;

where ½ ; �G stands for the Gerstenhaber brackets.

Proof is obvious and hence is omitted. The data ðd; gÞ describes a representation of
Assy on Q, and the data G describes a deformation of this representation.

In general, Pð2Þ
y is the prop(erad) given by Fðs�1C� l s�1CDÞ. We denote by

qPðcÞ ¼
P

Gðc1; . . . ; cnÞ the image under the di¤erential qP of an element c of s�1C, with
c1; . . . ; cn A C. The di¤erential q of Pð2Þ

y is defined by

qðc�Þ :¼
P

Gðc�1; . . . ; c�nÞ for c� A s�1C�;

qðcDÞ :¼
P

Gðci1 ; . . . ; cinn Þ for cD A s�1CD;

where the i1; . . . ; in are in f�;Dg with at least one equal toD. It is easy to see that q2 ¼ 0.

Proof. The formula for qðc�Þ gives the first relation. With the formula for qðcDÞ, it
gives the second one. r

Proposition 29. There is a one-to-one correspondence between representations of the

dg prop(erad ) Pð2Þ
y in an prop(erad ) Q and degree �1 elements g and G in the deformation

complex s�1 HomS
� ðC;QÞ such that

QðgÞ ¼ 0;

QgðGÞ ¼ Qðgþ GÞ ¼ 0;

where Q stands for the Ly-algebra structure.

In the following proposition, we interpret Ass
ð2Þ
y as the Koszul resolution of a new

operad, denoted by Assð2Þ.

Proposition 30. The dg operad ðAss
ð2Þ
y ; qÞ is a quadratic resolution of a quadratic op-

erad Assð2Þ defined as the quotient of the free operad on the S-module

AðnÞ :¼
K½S2�lK½S2� ¼ span

0@ 1A
s AS2

for n ¼ 2;

0 otherwise;

8>>><>>>:
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modulo the ideal generated by relations,

¼ 0 Es A S3;

and

¼ 0 Es A S3:

Proof. Let F�pðAss
ð2Þ
y Þ be the subspace of Ass

ð2Þ
y spanned by trees with at least p

internal edges between one vertex labelled by � and the other one labelled by D. This
defines an increasing filtration which is bounded on Ass

ð2Þ
y ðnÞ for each n. Therefore it

converges to the homology of Ass
ð2Þ
y ðnÞ by the Classical Convergence Theorem 5.5.1 of

[55]. The first term E0
pq is equal to the subspace of Ass

ð2Þ
y spanned by trees with exactly

p internal edges between one vertex labelled by � and the other one labelled by D. And
the di¤erential d 0 is equal to the sum of the di¤erentials qAss�y þ qAssDy , that is it splits � and
D vertices into pure � and D trees. Hence ðE0; d 0Þ is the coproduct Ass�y4AssDy (see Sec-
tion A.3) of two resolutions ofAss, which is acyclic. Finally, we have E1

pq ¼ 0 for pþ q3 0
and

L
pf0

E1
�pp ¼ Ass�4AssD. The spectral sequence collapses and the homology of Ass

ð2Þ
y is

concentrated in degree 0. Another presentation of this homology group is given by the quo-
tient of the free operad on degree 0 elements, namely the two binary products � andD, by

ideal generated by the image under q of the degree 1 elements of Ass
ð2Þ
y . r

In other words, the operad Assð2Þ is Koszul. A representation of Assð2Þ in a vector
space X is equivalent to a pair of linear maps m : X nX ! X and n : X nX ! X such
that both ðX ; mÞ and ðX ; mþ nÞ are associative algebras. As a corollary, we get the follow-
ing isomorphism of S-modules Assð2Þ GAss4Ass.

Remark. The example of Assð2Þ is also interesting from the viewpoint of Koszul op-
erad. It comes from a set theoretic operad. It is Koszul whereas the method of [50] cannot
be applied because Assð2Þ is not basic set, that is the composition of operations is not injec-
tive. The productD has an ‘‘absorbing’’ e¤ect.

In the same way, we define the operad Lieð2Þ by

Fð½ ; ��l ½ ; �DÞ=
�
Jac�� l ðJac�D þ JacD� þ JacDDÞ

�
;

where ½ ; �� and ½ ; �D stand for two skew-symmetric brackets and where Jacba stands for the
‘‘Jacobi’’ relation ½½X ;Y �a;Z�b þ ½½Y ;Z�a;X �b þ ½½Z;X �a;Y �b ¼ 0. This operad enjoys the
same properties with Lie as the non-symmetric operad Assð2Þ with Ass explained above.
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More generally, to any binary quadratic operad P (eventually non-symmetric) with its min-
imal model Py, we can associate an operad Pð2Þ such that Pð2Þ

y is its minimal model.

We summarize this result with the explicit form of Pð2Þ in terms of Manin products in
the following theorem. Let P ¼ FðVÞ=ðRÞ and Q ¼ FðWÞ=ðSÞ be two binary quadratic
non-symmetric operads. There exists a morphism of

c : FðVÞð3ÞnFðWÞð3Þ ! FðV nW Þð3Þ:

Manin’s black square product of P and Q is equal to PoQ :¼ FðV nW Þ=
�
cðRnSÞ

�
. In

the symmetric case, the definition is similar but the morphism c is more involved and re-
quires the use of signature representations (see [51] for more details).

Theorem 31. For any binary quadratic non-symmetric operad P which admits a

minimal model Py, the non-symmetric operad Pð2Þ
y is a minimal model (resolution) of

PoAssð2Þ, which is isomorphic, as a graded module, to P4P, where the coproduct has to

be taken in the category of non-symmetric operads.

For any binary quadratic operad P which admits a minimal model Py, the operad Pð2Þ
y

is a minimal model (resolution) of P �Lieð2Þwhich is isomorphic, as an S-module to P4P.

Proof. By the same argument as in Proposition 30 above, the homology of Pð2Þ
y is

concentrated in degree 0. If we denote the quadratic operad P by FðVÞ=ðRÞ, this non-
trivial homology group is equal to FðV�lVDÞ=ðR�

� lR�
D þRD

� þRD
DÞ, which is equal to

the black product of P with Lieð2Þ. r

Appendix A. Model category structure for prop(erad)s

In this appendix, we prove that the categories of props and properads have a cofi-
brantly generated model category structure. We make precise coproducts, pushouts, cofi-
brations and cofibrant objects. We refer the reader to the book [17] of M. Hovey for a com-
prehensive treatment of model categories. (In order to be self-contained in this appendix,
with we will not avoid the prefix dg here.)

Let us denote by dg Properads the category of dg properads and by dg Props the
category of dg props. It means either the category of reduced dg prop(erad)s (Pðm; nÞ ¼ 0
for n ¼ 0 or m ¼ 0) or the category of dg prop(erad)s over a field of characteristic 0. By
default, we work over unbounded chain complexes but the following proofs hold over
bounded chain complexes as well. We transfer the cofibrantly generated model category
structure of S-bimodules to the category of prop(erad)s via the free prop(erad) functor.

A.1. Model category structure on S-bimodules. The category of dg S-bimodules is
endowed with a cofibrantly generated model category structure coming from the cofi-
brantly generated model category structure on dg K-modules.

Recall from [17], Theorem 2.3.11, that the category of dg R-modules has a cofibrantly
generated model category structure for any ring R. Quasi-isomorphisms form the class of
weak equivalences and degreewise surjective maps form the class of fibrations. Let us make
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explicit the (generating) acyclic cofibrations. The model category of dg K-modules is cofi-
brantly generated by the acyclic cofibrations J k : 0 ! Dk, where Dk is the chain complex

� � � ! 0 ! K|{z}
k

!Id K|{z}
k�1

! 0 ! � � �

and by the cofibrations I k : Sk�1 ! Dk, where Sk�1 is the following chain complex

� � � ! 0 ! K|{z}
k�1

! 0 ! � � � :

For any m; n A N, the category of left Sm and right Sn-bimodules is the category of
dg modules over the group ring K½Sop

m � Sn�. By [17], Theorem 2.3.11, the preceding
theorem, it has a cofibrantly generated model category structure, where the generating acy-
clic cofibrations are the maps J k

m;n : 0 ! Dk
m;n, where Dk

m;n is the acyclic dg K½Sop
m � Sn�-

module

� � � ! 0 ! K½Sop
m � Sn�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k

!Id K½Sop
m � Sn�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�1

! 0 ! � � �

and where the generating cofibrations are the maps I km;n : S
k�1
m;n ! Dk

m;n, with Sk�1
m;n the fol-

lowing dg K½Sop
m � Sn�-module

� � � ! 0 ! K½Sop
m � Sn�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�1

! 0 ! � � � :

Since the category of dg S-bimodules is the product over ðm; nÞ A N2 of the model catego-
ries of left Sm and right dg Sn-bimodules, it is naturally endowed with a term-by-term cofi-
brantly generated model category structure. The set of generating acyclic cofibrations can
be chosen to be J ¼ f ~JJ k

m;n j k A Z;m; n A Ng, where ~JJ k
m;n is equal to J k

m;n : 0 ! Dk
m;n in arity

ðm; nÞ and 0 elsewhere. Similarly, the set of generating cofibrations can be chosen to be
I ¼ f~II km;n j k A Z;m; n A Ng, where ~II km;n is equal to I km;n : S

k�1
m;n ! Dk

m;n in arity ðm; nÞ and 0
elsewhere. Notice that the domains of elements of I or J are sequentially small with respect
to any map in the category of dg S-bimodules.

A.2. Transfer theorem. In the section, we recall the theorem of transfer, mainly due
to Quillen [41], Section II.4 (see also S. E. Crans [10], Theorem 3.3, and M. Hovey [17],
Proposition 2.1.19). We will use it to endow the category of dg prop(erad)s with a model
category structure.

Definition (relative I-cell complexes). For every class I of maps of a category, a rel-

ative I-cell complex is a sequential colimit of pushouts of maps of I.

Let us make explicit this type of morphisms. A relative I-cell complex is a map
A0 !

j
Ay which comes from a sequential colimit

A0 ���!ı0 A1 ���!ı1 � � � ���! An ���!ın Anþ1 ���!� � �???yj

Ay :¼ ColimN An

�����!

��������������!
��������������������!
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where each map An !
in

Anþ1 is defined by a pushoutW
a

Sa ���! An???yW
a

ja

???yinW
a

Ta ���! Anþ1

with ja A I . As usual, we denote the collection of relative I-cell complexes by I-cell.

Theorem 32 ([41], Section II.4, [10], Theorem 3.3, [17], Proposition 2.1.19). Let C be

a cofibrantly generated model category with I as the set of generating cofibrations and J as

the set of generating acyclic cofibrations. Let F : C Ð D : U be an adjunction, where F is the

left adjoint and U the right adjoint. Suppose that

(1) D has finite limits and colimits,

(2) the functor U preserves filtered colimits,

(3) the image under U of any relative FðJÞ-cell complex is a weak equivalence in C.

A map f in D is defined to be a weak equivalence (resp. fibration) if the associated map Uð f Þ
is a weak equivalence (resp. fibration) in C. The class of cofibrations in D is the class of maps

that verify the left lifting property (LLP) with respect to acyclic fibrations.

These three classes of maps provide the category D with a model category structure co-

fibrantly generated by FðIÞ as the the set of generating cofibrations and FðJÞ as the set of

generating acyclic cofibrations.

We also refer the reader to [6], Section 2.5, for the application of this theorem with
stronger and sometimes more convenient hypotheses. Remark that Transfer Theorem 32
was used (and rephrased) by V. Hinich in [15] to provide a model category structure to the
category of operads over unbounded chain complexes (see [15], Theorem 2.2.1, and the cor-
rected version of [16], Theorem 6.6.1). M. Spitzweck also applied this theorem to prove a
general result about model category structures on categories of algebras over a triple ([44],
Theorem 1).

A.3. Limits and colimits of prop(erad)s. In this section, we prove that the category
of prop(erad)s has all limits and finite colimits. We also make explicit the coproducts and
pushouts of prop(erad)s.

Proposition 33. The category of prop(erad )s has all limits.

Proof. We recall from D. Borisov and Y. I. Manin [7] that the free prop(erad) func-
tor induces a triple F : S-biMod ! S-biMod such that an algebra over it is a prop(erad).
Since the underlying category of S-bimodules has limits, the category of prop(erad)s has all
limits ([14], Section 1.5). r

To prove that the category of prop(erad)s has finite colimits, we first make explicit
coproducts and pushouts. This section is the generalization of [14], Section 1.5, from oper-
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ads to prop(erad)s. Once again, the situation is more subtle for prop(erad)s than for oper-
ads since it requires the notion of adjacent vertices of a graph (see [39], Section 4.2).

Let P and Q be two prop(erad)s. The coproduct of P and Q is given by a quotient of
the free prop(erad) on their sum FðPlQÞ. On this space, we define an equivalence rela-
tion by the following generating relation: if a graph g, with vertices indexed by elements of
P and Q has two adjacent vertices indexed elements of P (or Q), it is equivalent to the same
graph, where the two adjacent vertices are contracted and the new vertex is labelled by the
composition in P (or Q) of the two associated elements of P (or Q). The quotient of
FðPlQÞ by this relation is the coproduct of P and Q. We denote it by P4Q. This
S-bimodule has the following basis. It can be represented by the sum over (connected)
graphs with vertices indexed by elements of P and Q such that no adjacent pair of vertices
are labelled by the same kind of elements (see Figure 1).

Let P, Q and R be three prop(erad)s. Let f : P ! Q and g : P ! R be two mor-
phisms of prop(erad)s. Their pushout is isomorphic to the quotient of Q4R by the ideal
generated by f f ðpÞ � gðpÞ j p A Pg. (We refer to [51], Appendix B, for the notion of ideal
of a prop(erad). The notion of ideal generated by a sub-S-bimodule is also made explicit
there.) The pushout Q4P R is represented by labelled (connected) graphs as above but fur-
ther quotient by the following relation: if a vertex is labelled by an element of the form
f ðpÞ for p A P, it can be replaced by the same vertex labelled by the corresponding element
gðpÞ and vice-versa. When this operation generates two adjacent vertices indexed by ele-
ments of the same prop(erad), they are to be composed.

Proposition 34. The category of prop(erad )s has finite colimits.

Proof. This result can be proved with two methods.

First, recall that the free properad on an S-bimodule V is given by the sum on (con-
nected) graphs without level whose vertices are coherently labelled by elements of V (see
[52], Section 2.7). We denote it by

FðVÞ ¼
� L

g AGc

N
n ANðgÞ

V
�
jOutðnÞj; jInðnÞj

��
=A;

Figure 1. Element of the coproduct P4Q
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in [52], Theorem 2.3, whereNðgÞ is the set of vertices of a graph g. Since the tensor product
of dg S-bimodules preserves colimits, the functor

S-biMod ! S-biMod;

V 7!
N

n ANðgÞ
V
�
jOutðnÞj; jInðnÞj

�
;

associated to any graph g, preserves filtered colimits (see [14], Lemma 1.14). Then the triple
F : S-biMod ! S-biMod associated to the free prop(erad) functor preserves filtered coli-
mits. The argument of [14], page 16, proves that the category of prop(erad)s has filtered
colimits. Since it has pushouts and filtered colimits, it has finite colimits by [28], Chapter
IX.

We can also construct coequalizers in this category. Since it is an additive category, it
is enough to construct cokernels. Let f : P ! Q be a morphism of prop(erad)s. Its cokernel
is given by the quotient of Q with the ideal generated by the image of f . Since it has co-
products and coequalizers, this category has finite colimits by [28], Theorem 2.1, Chapter V .

r

A.4. Model category structure. In this section, we apply the Transfer Theorem 32 to
provide a cofibrantly generated model category structure on the category of prop(erad)s.

We consider the free prop(erad) adjunction F : dgS-biMod Ð dgPropðeradÞs : U .
We proved in A.1 that the category on the left-hand side is a cofibrantly generated model
category. We apply the Transfer Theorem 32 to this adjunction as follows. The generat-
ing acyclic cofibrations are FðJÞ ¼ fI ! FðDk

m;nÞg and the generating cofibrations are
FðIÞ ¼ fFðSk�1

m;n Þ ! FðDk
m;nÞg.

Lemma 35. A morphism of dg properads is a relative FðJÞ-cell complex if and only if

it is a mapP ! P4FðDÞ, where D ¼
L
df1

Di is an acyclic dg S-bimodule whose components

are free S-bimodules with each Di equal to a direct sum of dg S-bimodules Dk
m;n.

A morphism of dg properads is a relative FðIÞ-cell complex if and only if it is a map

P ! P4FðSÞ, where S is a dg S-bimodule, whose components are free S-bimodules, en-
dowed with an exhaustive filtration

S0 ¼ f0gHS1 HS2 H � � �HColimi Si ¼ S

such that d : Si ! FðSi�1Þ and such that Si�1 q Si are split monomorphisms of dg S-

bimodules with cokernels isomorphic to a free S-bimodule.

Proof. Pushouts of elements of FðJÞ are as follows:

I ���! Pf��! W
a

FðJ aÞ

???yW
a

FðDaÞ ���! P4

�W
a

FðDaÞ
�
;

46 Merkulov and Vallette, Deformation theory of representations of prop(erad )s II

(AutoPDF V7 3/3/09 11:56) WDG Tmath J-2086 CRELLE, PMU:I(KN[A])2/3/2009 pp. 1–52 2086_6182 (p. 46)



with each Da equal to a Dk
m;n. Since the coproduct of free prop(erad)s is the free prop(erad)

on the sum of their generating spaces FðVÞ4FðV 0ÞGFðV lV 0Þ, the composite of two

such maps is equal to P ! P4F

�L
a

Da l
L
b

Db

�
. Hence a sequential colimit of such

pushouts has the form P ! P4FðDÞ, with D ¼
L
df1

Di an acyclic dg S-bimodule whose
components are free S-bimodules.

A pushout of an element of FðIÞ is

W
a

FðS aÞ ���!f Pf ��! W
a

FðI aÞ

???yW
a

FðDaÞ ���! Q

with each S a equal to an Sk
m;n and Da equal to a Dk

m;n. We denote by z the image under f

of the generating element of Sk�1
m;n . Notice that z is a cycle in P. If we denote by x and dx

the generating elements of Dk
m;n, the pushout Q is equal to P4F

�L
a

xa:K½Sop
m � Sn�

�
with dx ¼ z. Therefore a relative FðIÞ-cell complex is a map P ! P4FðSÞ, with S a dg
S-bimodule whose components are free S-bimodules. Since a relative FðIÞ-cell complex is
a sequential colimit of such pushouts, the filtration of S is given by this sequential guing of
cells. r

Theorem 36. The category of prop(erad )s has a cofibrantly model category structure

provided by the following three classes of morphisms. A map P !f Q is a

� weak equivalence if and only if it is a quasi-isomorphism of dg S-bimodules, that is a
quasi-isomorphism in any arity,

� fibration if and only if it is a degreewise surjection in any arity,

� cofibration if and only if it has the left lifting property with respect to acyclic fibra-

tions.

The generating cofibrations are the mapsFðIÞ ¼ fFðSk�1
m;n Þ ! FðDk

m;nÞg and the generating
acyclic cofibrations are the maps FðJÞ ¼ fI ! FðDk

m;nÞg.

Proof. The category of prop(erad)s has finite limits and colimits (1) by the preceding
section. To any dg S-bimodule M, we can consider the trivial (abelian) prop(erad) struc-
ture on I lM, that is the composite product is zero on M. So, it is easy to check that
the forgetful functor preserves filtered colimits (2). Recall from A.3 that the coproduct
P4FðDÞ admits a basis composed by (connected) graphs with vertices indexed elements
of P and D such that there is no pair of adjacent vertices indexed by two elements of P.
Therefore, P4FðDÞ is equal to the directed sum PlX , where X has a basis given by
graphs indexed by elements coming from P and at least one element from D. The map
P ! P4FðDÞ is the inclusion of P into the first summand so that it is enough to prove
that X is an acyclic chain complex. For every graph g indexed by elements of P and at least
one element of D, the resulting chain complex is isomorphic to a quotient by the action of
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some symmetric groups of tensor products of P and at least one D. Since D is an acyclic
chain complex made of free K½Sop

m � Sn�-modules, it is an acyclic projective chain complex
over any ring of symmetric subgroup. Hence the chain complex associated to any graph g

indexed by elements of P and at least one element of D is acyclic, which proves hypothesis
(3) of Transfer Theorem 32. r

A.5. Cofibrations and cofibrant objects. In this section, we make explicit the cofibra-
tions and the cofibrant objects in the model category of dg prop(erad)s. We refer to the Ap-
pendix of [11] for the case of operads.

Proposition 37. A map f : P q Q is a cofibration in the model category of dg
prop(erad )s if and only if it is a retract of a map P ! P4FðSÞ, with isomorphisms on do-

mains, where S is a dg S-bimodule whose components are free S-bimodules, endowed with an

exhaustive filtration

S0 ¼ f0gHS1 HS2 H � � �HColimi Si ¼ S

such that d : Si ! FðSi�1Þ and such that Si�1 q Si are split monomorphisms of dg S-

bimodules with cokernels isomorphic to a free S-bimodule.

A map f : P q
@

Q is an acyclic cofibration in the model category of dg prop(erad )s if
and only if it is a retract of a map P ! P4FðDÞ, with isomorphisms on domains, where
D ¼

L
df1

Di is an acyclic dg S-bimodule whose components are free S-bimodules with each

Di equal to a direct sum of dg S-bimodules Dk
m;n.

Proof. The proposition follows from general results on the (acyclic) cofibrations of
cofibrantly generated model categories. Explicitely, we apply [17], Proposition 2.1.18 to the
cofibrantly generated model category of prop(erad)s. This proposition gives explicitly that
(acyclic) cofibrations of prop(erad)s are retracts of relative FðIÞ-cell complexes (relative
FðJÞ-cell complexes). We conclude by Lemma 35. r

Applied to P ¼ I , this proposition gives the following corollary.

Proposition 38. A dg prop(erad ) is cofibrant for this model category structure if and

only if it is a retract of a quasi-free prop(erad ) FðSÞ, where the components of S are free

S-bimodules, endowed with an exhaustive filtration

S0 ¼ f0gHS1 HS2 H � � �HColimi Si ¼ S

such that d : Si ! FðSi�1Þ and such that Si�1 q Si are split monomorphisms of dg S-

bimodules with cokernels isomorphic to a free S-bimodule.

Remark. In the model category of dg prop(erads) on non-negatively graded dg
S-bimodules, a dg prop(erad) is cofibrant if and only if it is retract of a quasi-free
prop(erad) FðSÞ whose components are free S-bimodules. The extra assumption on the
filtration is automatically given by the homological degree.

Recall that we are working over a field of characteristic 0.
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Lemma 39. Any quasi-free prop(erad ) FðXÞ is a retract of a quasi-free prop(erad )
FðSÞ, where the components of S are free S-bimodules. Moreover, if X is endowed with an

exhaustive filtration

X0 ¼ f0gHX1 HX2 H � � �HColimi Xi ¼ X

such that d : Xi ! FðXi�1Þ and such that Xi�1 q Xi are split monomorphisms of dg
S-bimodules, then S can be chosen with the same property and such that the cokernels of

the Si�1 q Si are free S-bimodules.

Proof. Let Xðm; nÞ denote the set of equivalence classes under the action of
Sop

m � Sn. For simplicity, we use the generic notation X . We choose a set of representatives
fxigi AI of X . Let S be the free S-bimodule generated by the fxigi AI. The generator
associated to xi will be denoted by si. For any x in X , we consider the sub-group
Sx :¼ fs A Sop

m � Sn j x:s ¼ wðsÞx; wðsÞ A Kg. In this case, w is a character of Sx. We define
the following element of S:

NðxiÞ :¼
1

jSxi j
P

wðs�1Þ:sis;

where the sum runs over s A Sxi . The image under the boundary map q of an xi is a sum of
graphs of the form

P
Gðxi1 ; . . . ; xikÞ. We define the boundary map q 0 on FðSÞ by

q 0ðsiÞ :¼
P 1

jSxi j
P

wðs�1Þ:G
�
Nðxi1Þ; . . . ;NðxikÞ

�
s;

where the second sum runs over s A Sxi . Finally, we define the maps of dg prop(erad)s
FðSÞ ! FðX Þ by si 7! xi and FðX Þ ! FðSÞ by xi 7! NðxiÞ. They form a deformation
retract, which preserves the filtration of X when it exists. r

Corollary 40. In the model category of dg prop(erads), any quasi-free properadFðXÞ,
where X is endowed with an exhaustive filtration

X0 ¼ f0gHX1 HX2 H � � �HColimi Xi ¼ X

such that d : Xi ! FðXi�1Þ and such that the Xi�1 q Xi are split monomorphisms of dg
S-bimodules is cofibrant.

Remark. In the non-negatively graded case, any quasi-free prop(erad) is cofibrant.

Proof. It is a direct corollary of Proposition 38 and Lemma 39. r

Theorem 41. Any dg properad Q admits a cofibrant replacement of the form

FðSÞ !!@ Q, where the components of S are free S-bimodules, endowed with an exhaustive

filtration

S0 ¼ f0gHS1 HS2 H � � �HColimi Si ¼ S

such that d : Si ! FðSi�1Þ and such that Si�1 q Si are split monomorphisms of dg S-

bimodules with cokernels isomorphic to a free S-bimodule.
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Proof. Any dg properad Q admits a cofibrant replacement I q P !!@ Q. Since P is
cofibrant, it is retract P !@ FðSÞ !!@ P of such an FðSÞ by Proposition 38. r

We can simplify such a cofibrant replacement as follows.

Theorem 42. A quasi-free cofibrant replacement FðSÞ !!@ Q induces a quasi-free cofi-

brant replacement FðXÞ !!@ Q, where the action of the symmetric groups on the components

of X is the same as the action on their image in Q. Moreover, X is endowed with an exhaus-

tive filtration

X0 ¼ f0gHX1 HX2 H � � �HColimi Xi ¼ X

such that d : Xi ! FðXi�1Þ and such that Xi�1 q Xi are split monomorphisms of dg S-

bimodules.

Proof. The dg S-bimodule which generates the quasi-free cofibrant replacement
FðSÞ !!@ Q is a free S-bimodule. Let us denote by sa the generators and qa their im-
age in Q. We define X to be the S-bimodule generated by the qa and we consider
the free properad FðX Þ on X . In FðSÞ, the image of sa under the di¤erential map
d is equal to dðsaÞ ¼

P
Gðsa1 ; . . . ; sakÞ. We define the di¤erential map of FðXÞ by

dðqaÞ ¼
P

Gðqa1 ; . . . ; qakÞ. The map FðSÞ !!@ Q factors through FðSÞ !!@ FðX Þ !!@ Q.
Finally, FðXÞ is cofibrant by Corollary 40. r

The di¤erence between resolution FðSÞ and FðXÞ is that in FðSÞ, the symmetry of
the operations of Q is deformed up to homotopy whereas in FðXÞ only the relations are
deformed up to homotopy. (The same phenomenon appears for resolutions of the operad
Com of commutative algebras where the former corresponds to Ey operads and the later to
Cy.)

We can now choose to work with such cofibrant models. The extra filtration on the
space of generators, which appears conceptually here, is similar to the one used by Sullivan
[46] in rational homotopy theory and by Markl in [30] for operads.

Let P be a dg properad. Its space of indecomposable elements is the cokernel of the
composite map with non-trivial elements, m : PnP ! P. The space of indecomposable ele-
ments inherits a di¤erential map from the one of P which makes it into a dg S-bimodule.
The associated functor Indec : dg properads ! dgS-bimodules is left adjoint to the aug-
mentation functor M 7! Ml I , where the properad structure on Ml I is the trivial one.

The following last result will allow us to prove that the deformation complex defined
in a does not depend on the quasi-free model chosen to make it explicit.

Proposition 43. Any weak equivalence (quasi-isomorphism) between two quasi-free

cofibrant dg properads FðX Þ !@ FðY Þ induces a weak equivalence (quasi-isomorphism)
between the spaces of indecomposable elements X !@ Y.

Proof. The two categories of dg properads and dg S-bimodules have model catego-
ries structures. Since the augmentation functor preserves fibrations and acyclic fibrations,
by [17], Lemma 1.3.4, the indecomposable functors, being its left adjoint, preserves cofibra-
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tions and acyclic cofibrations. And by Brown’s Lemma ([17], Lemma 1.1.12), it preserves
weak equivalences between cofibrant objects. r
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