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Abstract. In this article we give a conceptual definition of Manin products in any
category endowed with two coherent monoidal products. This construction can be applied
to associative algebras, non-symmetric operads, operads, colored operads, and properads
presented by generators and relations. These two products, called black and white, are
dual to each other under Koszul duality functor. We study their properties and compute
several examples of black and white products for operads. These products allow us to de-
fine natural operations on the chain complex defining cohomology theories. With these op-
erations, we are able to prove that Deligne’s conjecture holds for a general class of operads
and is not specific to the case of associative algebras. Finally, we prove generalized versions
of a few conjectures raised by M. Aguiar and J.-L. Loday related to the Koszul property of
operads defined by black products. These operads provide infinitely many examples for this
generalized Deligne’s conjecture.

Contents

Introduction

1. 2-monoidal categories
1.1. Monoidal category
1.2. Definition of lax 2-monoidal category
1.3. Definition of 2-monoidal category
1.4. Examples of 2-monoidal categories
1.5. Bimonoids

2. Koszul duality pattern

D The title of this paper can be read “How to use Manin’s products to prove Deligne’s conjecture for Lo-
day algebras with Koszul property”.

(AutoPDF V7 20/12/07 16:11) WDG Tmath J-1878 CRELLE, PMU: D(A) 10/12/2007 pp. 1-60 1878_5698 (p. 1)




2 Vallette, Manin products

2.1. Quadratic (co)properads
2.2. Definition of the Koszul dual revisited
2.3. Relation with the Koszul dual properad
3. Manin products
3.1. A canonical map between free monoids
3.2. Definition of the white product
3.3. The black product
4. Manin products for operads
4.1. Relation between the Hadamard product and the white product
4.2. Binary quadratic operad and Koszul dual operad
4.3. Definition of the black product for operads
4.4. Examples
4.5. A counterexample
4.6. Adjunction
4.7. Cohomology operations
5. Black and white square-products for regular operads
5.1. Definitions of non-symmetric and regular operads
5.2. Definitions of black and white square-products
5.3. Adjunction
5.4. Non-symmetric cohomology operations
5.5. Generalized Deligne’s conjecture
5.6. The operad 2uad and its Koszul dual
5.7. Koszulity of 2uad and other operads defined by square products
Appendix A. Associative algebras, operads and properads
A.1. Associative algebras
A.2. Operads
A.3. Properads
A.4. P-gebras
A.5. Free and quadratic properad
A.6. Hadamard tensor product
Appendix B. Categorical algebra
B.1. Definition of the “ideal” notions
B.2. Relation with the classical definition
B.3. Various notions of modules
B.4. “generated by”
B.5. Ideal generated = free multilinear bimodule
References

Introduction

In his works on quantum groups and non-commutative geometry, Yu. I. Manin
defined two products in the category of quadratic algebras. An associative algebra A is
T(V) is the free algebra on V' and where (R) is the ideal generated by R = V®2, Let
A=T((V)/(R)and B=T(W)/(S) be two quadratic algebras. Any quadratic algebra gen-
erated by the tensor product V' ® W is determined by a subspace of (V' ® W)®2. Since
Rc V® and S =« W®2, one has to introduce the isomorphism
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23): VRVOIWRW S VRWRVRW

defined by the permutation of the second and third terms. The black and white products
were defined by Manin as follows:

AeB:=T(VQRW)/((23)(R®S)),
AoB:=T(VRW)/((23)(R® W® + V¥ ® S)).

Since (23) is an isomorphism, many properties of the algebras 4 and B remain true for their
black and white products. For instance, the white product of two quadratic algebras is
equal to their degreewise tensor product 4 ® B := @ A, ® B,. Therefore, one can apply

n=0

the method of J. Backelin [4] to prove that the white product of two Koszul algebras is
again a Koszul algebra.

Koszul duality theory is a homological algebra theory developed by S. Priddy [64] in
1970 for quadratic algebras. To a quadratic algebra 4 = T'(V)/(R) generated by a finite
dimensional vector space ¥, one can associate the Koszul dual algebra A' := T(V*)/(R").
Under this finite dimensional hypothesis, we have (A4 o B)! = A' e B', that is black and
white constructions are dual to each other under Koszul duality functor. The main result
of Manin is the following adjunction in the category of finitely generated quadratic
algebras

HomQ, Alg(A ° B!, C) = HOH’IQ Alg(A7 Bo C)

Using the general properties of internal cohomomorphisms, Manin proved that 4 e 4' is a
Hopf algebra and was able to realize well known quantum groups as black products of an
algebra with its Koszul dual. For more properties of Manin’s products for quadratic alge-
bras, we refer the reader to the book of A. Polishchuk and L. Positselski [63].

Koszul duality theory was later generalized to binary quadratic operads by V. Ginz-
burg and M. Kapranov [31] in 1994. This generalization comes from the fact that an op-
erad, like an associative algebra, is a monoid in a monoidal category. A quadratic operad
P =7 (V)/(R) is a quotient of a free operad by an ideal generated by a sub-S-module
R of F5)(V), the part of weight 2 of # (V). Let Z = 7 (V)/(R) and 2 =7 (W)/(S)
be two quadratic operads. A quadratic operad generated by the tensor product V ® W
is determined by a subspace of F)(V ® W). Since R < F5)(V) and S < F5)(W),
we need a map from Z) (V) ® F ) (W) to Fo)(V @ W). In the binary case, Ginzburg
and Kapranov mentioned in [32] two maps ¥ : Z5)(V) ® F2)(W) — Fo)(V ® W) and
D: F (VW) — Fu(V)® F) (W) and defined the black and white products for bi-
nary quadratic operads as follows:

Pe2:=F(VRW)/(PR®S)),
Po2:=FVRW)/( D' RRW*+V®®S)).

When the operad 2 = Z (V) /(R) is a binary quadratic operad generated by a finite dimen-
sional S-module V, they defined a Koszul dual operad by the formula ' .= 7 (V) /(R"),
where V'V(2) := V*(2) ® sgng, is the dual representation twisted by the signature represen-
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tation. As in the case of algebras, they proved that (# o :2)! = 2" e 2" and they showed the
adjunction

Homginq. 0p.(7  2', %) = Homginq. 0p.(#, 2 0 A),
in the category of finitely generated binary quadratic operads.

From the properties of black and white products for associative algebras and binary
quadratic operads, a few natural questions arise. Where do the functors ¥ and ® concep-
tually come from? Is the black or white product of two binary Koszul operads still a Koszul
operad? Can one do non-commutative geometry with an operad of the form 2 e 2'? One
can also add: is it possible to recover classical operads as black or white products of more
simple operads? Can black and white products help to describe the natural operations act-
ing on cohomological spaces? The aim of this paper is to answer these questions.

Let us recall that Koszul duality theory of associative algebras and binary quadratic
operads was extended to various other monoidal categories in the last few years. The fol-
lowing diagram shows these monoidal categories were Koszul duality holds. They are rep-
resented by the name of their monoids.

associative algebras >—— non-symmetric operads
b

operads >——— colored operads

dioperads

properads

Koszul duality for dioperads was proved by W. L. Gan in [25], it was proved by P. Van der
Laan in [72] for colored operads and by the author for properads in [69]. A properad is an
object slightly smaller than a prop which encodes faithfully a large variety of algebraic
structures like bialgebras or Lie bialgebras, for instance (see Appendix A for more details).
We would like to emphasize that the Koszul dual that appears naturally, without finite di-
mensional assumptions, is a comonoid (coalgebra, cooperad, coproperad, etc .. .). See Sec-
tion 2 for more details.

To answer the first question about the conceptual definition of the functors ¥ and @,
we introduce a new notion of category endowed with 2 coherent monoidal products. We
call it 2-monoidal category in Section 1. This definition generalizes previous notions given
by A. Joyal and R. Street in [36] in the framework of braided tensor categories and by C.
Balteanu, Z. Fiedorowicz, R. Schwinzl and R. Vogt in [7] in the framework of iterated
monoidal category and iterated loop spaces. All the examples given above are monoids
in a 2-monoidal category. In a 2-monoidal category, we define the functors ¥ and ® by
universal properties. This allows us to define white products for monoids presented by gen-
erators and relations in Section 3. Since the Koszul dual is a comonoid, we define a black

(AutoPDF V7 20/12/07 16:11) WDG Tmath J-1878 CRELLE, PMU: D(A) 10/12/2007 pp. 1-60 1878_5698 (p. 4)




Vallette, Manin products 5

product for comonoids presented by generators and relations. (This notion is introduced
and detailed in Appendix B.)

The white product defined here coincides with the one of Yu. I. Manin for quadratic
algebras 4 o B, with the one of Ginzburg-Kapranov for binary quadratic operads 2 o 2 and
with the one of R. Berger, M. Dubois-Violette and M. Wambst [13] for N-homogeneous
algebras. Note that the white product is defined without homogeneous assumption. There-
fore, one could apply them to non-homogeneous cases. In this sense, it would be interesting
to study the properties of the white products of Artin-Schelter algebras [3], [48].

Under finite dimensional assumptions, the twisted linear dual of the Koszul dual
cooperad gives the Koszul dual operad defined by [31]. Using this relation, we define a
black product for operads in Section 4. We do several computations of black and white
products and show that some classical operads can be realized as products of simpler oper-
ads. All these examples are products of Koszul operads and the result is again a Koszul
operad. This fact is not true in general and we provide a counterexample in Section 4.5.
Whereas this property holds for associative algebras, it is not true here because the functors
® and ¥ are not isomorphisms.

We extend the adjunction of Manin and Ginzburg-Kapranov and prove that 2 e %'
is a Hopf operad. Since operads are non-linear generalizations of associative algebras, the
notion of Hopf operad can be seen as a non-linear generalization of bialgebras. Hopf oper-
ads of the form 2 e #' can provide new examples of “quantum groups”, in the philosophy
of [53]. This adjunction also allows us to understand the algebraic structures on tensor
products or spaces of morphisms of algebras. For instance, it gives a description of the
structure of cohomology spaces.

Non-symmetric operads are operads without the action of the symmetric group. One
can symmetrize a non-symmetric operad to get an operad. (It corresponds to the functor £
in the diagram above.) The image of a non-symmetric operad under functor is called a reg-
ular operad. We define black m and white O square products for regular operads as the im-
age of black and white products of non-symmetric operads in Section 5. In the case of bi-
nary quadratic regular operads, the black square product given here corresponds to the one
introduced by K. Ebrahimi-Fard and L. Guo in [22] (see also J.-L. Loday [45]). We prove
the same kind of results for regular operads and square products as the ones for operads
and Manin’s products.

The adjunction for black and white square products allows us to construct natural
operations on the chain complex defining the cohomology of an algebra over a non-
symmetric (regular) operad. The example of associative algebras is very classical. Since
the introduction of this (co)chain complex by Hochschild in 1945, it has been extensively
studied. M. Gerstenhaber proved in the sixties that the cohomology of any associative al-
gebra is endowed with two coherent products: the commutative cup product and a Lie
bracket. This structure is now called a Gerstenhaber algebra. (Gerstenhaber also used this
Lie bracket to study deformations of associative algebras. This led to the work of Kontse-
vich on deformation-quantization of Poisson manifold thirty years later). In homotopy
theory, there is a topological operad, formed by configurations of disks in the plane and
called the little disks operad, whose action permits to recognize two-fold loop spaces. In
1976, F. Cohen proved that the operad defined by the homology of the little disks operad
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is equal to the operad coding Gerstenhaber algebras. Therefore the Hochschild cohomol-
ogy space is an algebra over the homology of the little disks operad. This surprising link
between algebra, topology and geometry led Deligne to formulate the conjecture that this
relation can be lifted on (co)chain complexes, that is the singular chain complex of the little
disks operad acts on the Hochschild (co)chain complex of an associative algebra. This con-
jecture was proved by several researchers using different methods. In the present paper, we
take a transversal approach. We prove that Deligne’s conjecture holds for a general class of
operads and is not specific to the case of associative algebras. Using Manin’s products, we
construct operations on the chain complex of any algebra over an operad of this class. (To
be more precise, finitely generated binary non-symmetric Koszul operads form this class.)
Since these operations verify the same relations as the ones on the Hochschild (co)chain
complex, Deligne’s conjecture is then proved with the same methods.

Since the white square product is the Koszul dual of the black square product, we can
compute the Koszul duals of operads defined by black square product. The first example is
the operad 2uad = ZYend m Yend defined by M. Aguiar and J.-L. Loday in [1]. Using the
explicit description of its Koszul dual and the method of partition posets of [70], we prove
that it is Koszul over Z, which answers a conjecture of Aguiar-Loday. Actually, with the
same method, we show that the families Zend®™”, Yias"" and Jri%end™", Trias"" are
Koszul over Z. These families provide infinitely many examples for which Deligne’s conjec-
ture holds over Z.

Appendix A is a survey on the notions of operads and properads. Appendix B yields a
categorical approach of algebra with monoids and comonoids ((co)ideal, (co)modules).

Unless stated otherwise, we work over a field k of characteristic 0.

1. 2-monoidal categories

In this section, we define the general framework of 2-monoidal category verified by the
examples studied throughout the text. The notion of 2-monoidal category given here is a
lax and more general version of the one given by A. Joyal and R. Street in [36] and the
one given by C. Balteanu, Z. Fiedorowicz, R. Schwinzl and R. Vogt in [7].

1.1. Monoidal category. We recall briefly the definitions of monoidal category, lax
monoidal functor and monoid in order to settle the notations for the next section. We refer
to the book of S. MacLane [49], Chapter VII and to the article of J. Bénabou [10] for full
references on the subject.

Definition (Monoidal category). A monoidal category (<7, X, I, a,r, /) is a category
o/ equipped with a bifunctor [X] : .o/ X o/ — .o/ and a family of isomorphisms

O(A,B7ci<AB)Cl>A(BC),
for every A, B and C in /. These isomorphisms are supposed to verify the pentagon

axiom. For every object 4 in .o/, there exists two isomorphisms /,: /[x] 4 — A and
rqe : AXII — A compatible with a.
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Example. Let (<, [x],/,a,r,[) be a monoidal category. The cartesian product
o/ x o/ is a monoidal category where the monoidal product [X? is defined by

(4,B)X*>(A4',B") := (AXI B,A' XI B'). The unit is (1,I). The associative isomorphisms
are given by

((A,B) 2 (A/,B/)) 2 (A”,B”) —_ ((A A/) A”, (BB/) B//)
l(“A.A’,A"vaB,B’,B”)
(4,B) @2 (4", B) @2 (4", B")) = (4 (4’ B 4"), B (B' &1 B").
The other isomorphisms are /(4 ) := (L1, /p) and r(4 ) := (r4, 7).
Definition (Monoid). Let (<7, [x],I) be a monoidal category. A monoid (M, i, u) is
an object M of .o/ endowed with two morphisms: an associative product p: M x| M — M
andawunitu:1— M.
Definition (Lax monoidal functor). A lax monoidal functor is a functor F between

two monoidal categories (7, X, 1y) — (%, Xy, 1) such that there exists a map
1: 1y — F(I) and a natural transformation

P F(A) Ky F(A") = F(AR., A'),

for every A, A" in .«/. This natural transformation is supposed to be compatible with the
associativity and the units of the monoidal categories:

e Associativity condition. For every A, A’ and A” in o7, the following diagram is
commutative

B
EF(a), Fa"), F(a”)

(F(A) B F(A") By F(A") F(A) Ry (F(4') Ba F(4"))
J((pA A’xﬁld J{id,y}(ﬂA/yA//
F(AE., A') By F(4") F(A) Ry F(A' R, 4")
Jf/’A. B!, A" J{q)A-A/.c/A”
" F(m/:/A/‘AII) //
F((AR., A" R, A") FAR, (4'®.,A")).

e Unit condition. For every A in .o/, the following diagram is commutative

F(ly) By F(4) —" F(l; B,/ 4)

2 lm,;/)
F(4)

F(A).

Iy Xy F(A)

The same statement holds on the right-hand side.
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8 Vallette, Manin products

The purpose of the definition of lax monoidal functors is to preserve monoids.

Proposition 1 ([10]). Let F : (Z, K.y, Ly) — (B, Xy, 13) be a lax monoidal functor
and let (M, u,u) be a monoid in </. The image of M under F is a monoid in . The product [i
is defined by

Pm, M

4 F(M) &y F(M) 2 (M ., M) 22 F(m).

And the unit u is defined by

! F(u)

F(M).

1.2. Definition of lax 2-monoidal category. Motivated by the examples treated in the
sequel, we define a general notion of category with two compatible monoidal products.

Definition (Lax 2-monoidal category). A lax 2-monoidal category is a category
(o/,¥,1,®,K), such that both (o7, [x],7) and («/, ®,K) are monoidal categories and
such that the bifunctor ® : .o/ X o/ — o/ is a lax monoidal functor with respect to the
monoidal products x> and [x].

The last assumption of the definition describes the compatibility between the two
monoidal structures. The next proposition makes it more explicit.

Proposition 2. A lax 2-monoidal category is a category (o, [X,1, ®,K), such
that both (</,[x1,1) and (o/, ®, K) are monoidal categories. These two monoidal structures
are related by a natural transformation called the interchange law

Pa,4' BB
———

(A®A) X (B® B (AXB) ® (4" X B'),

where A, A', B and B' are in </. This interchange law is supposed to be compatible with the
associativity of the first monoidal product [X], that is

o®
A®A!, BB, Cc®C!
ekt

(4@ 4)R(BRB))K(CRC) (AR AR (B®B)K(CQC))

J/(ﬂA.A/.B.B/id Jid%,g’.c.c/
(AxB)® (4" WB)) K (C® ) (A®A)X(BRC)® (B'XC))

J{‘WAB.A’B’,C, c’/ J/(WA,A’,BC.B’C’

5
%4,B,c®% 1 g1 o1

(ARB)KC)® (A ®B)XC’)

(AR (BRC))® (4’ X (B'XC),

where oc p.c I8 the associativity morphism for the monoidal product

M:(AKBECS AR (BXE C).

There exists amap 1 : I — I ® I such that for every A and A’ in </, the following dia-
gram is commutative
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Vallette, Manin products 9

IF(A®A) IT®NRUARA) X T ARI®A)
] l/?ljb,
(A®4")
F(A).

The same statement holds on the right-hand side.
Proof. The proof is a straightforward application of the definition. []

Proposition 3. Let (o/,[X,1,®,K) be a lax 2-monoidal category. Consider two
[Xl-monoids M and N in o/. Their ®-product M ® N is a [Xl-monoid.

Proof. 1t is a direct corollary of Definition 2 and Proposition 1. []

Motivated by the example of braided monoidal categories, A. Joyal and R. Street
gave the first notion of a category endowed with two compatible monoidal products in
[36]. In their definition, the monoidal categories are non-necessarily strict but the inter-
change law is supposed to be a natural isomorphism. This last condition forces the two
monoidal products to be isomorphic.

In order to model n-fold loop spaces, C. Balteanu, Z. Fiedorowicz, R. Schwéinzl and
R. Vogt introduced in [7] the notions of n-fold monoidal category. Their notion of 2-fold
monoidal category is, in some sense, a lax version of the one given by Joyal and Street since
they do not assume the interchange law to be an isomorphism. But they require the mono-
idal structures to be strict and the two units are equal.

In the definition of a lax 2-monoidal category, we do not ask the monoidal structures
to be strict. The two units need not be isomorphic. And the interchange law is not an iso-
morphism. Therefore, the notion given here is a lax version of the one of Joyal-Street and
the one of Balteanu-Fiedorowicz-Schwéinzl-Vogt. The definition of lax 2-monoidal cate-
gory was suggested by our natural examples, that we make explicit in Section 1.4.

1.3. Definition of 2-monoidal category. Working in the opposite category, we get the
dual notion of colax 2-monoidal category. Finally, we call a 2-monoidal category a category
which is both lax and colax 2-monoidal.

Definition (Comonoid). A comonoid C is a monoid in the opposite category. It is
endowed with two morphisms: a coassociative coproduct C — C [x] C and a counit C — 1.

Definition (Colax monoidal functor). A colax monoidal functor is a functor F be-
tween two monoidal categories (<7, X/, [;) — (%, X1, I3) such that there exists a map
Iy — F(I) and a natural transformation

Y F(A) Xy F(A") — F(AR., A").

This natural transformation is supposed to be compatible with the associativity and the
units of the monoidal categories. Explicitly, these compatibilities are given by the reversed
diagrams defining a lax monoidal functor.
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10 Vallette, Manin products

The purpose of the definition of colax monoidal functors is to preserve comonoids.

Proposition 4 (Bénabou [10]). Let F : (o, Xy, Ly) — (B, Xy, 13) be a colax mono-
idal functor and let C be a comonoid in /. The image of C under F is a comonoid in 9.

Definition (Colax 2-monoidal category). A colax 2-monoidal category is a category
(o/,¥,1,®,K), such that both (o7, [x],I) and («/, ®,K) are monoidal categories and
such that the bifunctor ® : &/ X o/ — .o/ is a colax monoidal functor.

A category (o7, [X], I, ®, K) is a colax 2-monoidal category if it is endowed with nat-
ural transformations, called the interchange laws,

V4, 41,88
—

(A4®4)E (B B) ANB) ® (4 ®B),
verifying the same commutative diagram as the one defining a lax 2-monoidal category,
with the maps ¢ replaced by the maps .

Proposition 5. Let (/,[x1,I,®,K) be a colax 2-monoidal category. Consider two
[Xl-comonoids M and N in /. Their ®-product M ® N is a [X]-comonoid.

Proof. 1t is a direct corollary of Definition 1.3 and Proposition 4. []

Definition (2-monoidal category). A  2-monoidal category is a category
(o/,X,1,®,K), such that both (o7, [x],7) and («/, ®,K) are two monoidal categories
and such that the bifunctor ® : .o/ X .o/ — .o/ is a lax and colax monoidal functor.

Definition (Strong 2-monoidal category). A strong 2-monoidal category is a 2-
monoidal category where the bifunctor ® : .o/ x .o/ — .o/ is a strong monoidal functor,
that is the interchange laws are isomorphisms.

1.4. Examples of 2-monoidal categories. In the this section, we study the relation be-
tween the composition product [x] and the Hadamard product ®, in the category of S-
bimodules and in the subcategories of S-modules and k-modules. These notions are re-
called in Appendix A.

Proposition 6. The categories (k-Mod, ®,k), (S-Mod,o,I) and (S-biMod, [x], 1)
endowed with the Hadamard tensor products are 2-monoidal categories. The first one is a
strong 2-monoidal category and it is a full sub-2-monoidal category of the second one, which
is a full sub-2-monoidal category of the last one.

Proof.

e In the first category, the two monoidal products are equal, that is
= ® = ®;. The interchange laws are given by the twisting isomorphism
2): NNV Vi—>NRV:RV,® Va.

e In the category of S-modules with [X] =0, ® = ®y the first interchange law
@,y w, e map comes from the well defined natural map
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(V@V')o (W W)(n):=
<‘ +_@: (Ve V")) & (W& W(it) ® - ®c(W ® W')(i1) ®s, x..xs, k[&])g

!

( B V) (W(i) ®--®x W(ir)) ®s; x-xS;, k[gn])

R Si

& @ VO (W) O @ W) ®, .5, IS )

ij++i=n
— (Vo W)® (Vo W')(n).
The other map corresponds to the transpose of this one. It is well defined on invariants in-
stead of coinvariants. Since we work over a field k of characteristic 0, we use the classical

isomorphism between invariants and coinvariants to fix this.

e In the last case, which includes the two first, the interchange law map is the direct
generalization of the one written above. Its explicit description is

VV)E (W W)(m,n) =

® (@ KS:) 9, (1 ® V)LD ®s, KIS} | @, (W @ W)(1)®5 kIS )
Lk.7.i P xS,

Xl
=

|
N@N* (_EB (K[Sm] ®s, V(1,k) ®s_k[S} ]®s, W(],7) ®s, k[Si])
eN"\j

kg0
® (kISy] @5, V'(1.F) @, KS; | @5, W'(1.) @5,K15,) )
!
(@ K154 @5, V0.B) ®, KIS | @5, W(30)©5, KIS
NeN \] ! g S SPxS,

k50

op
Sb xS,

N

/;.],z

© @ (@ ks, ©, /(1.0 s, KIS{ | ©s, (3.0 ©5 k(5]
eN"\J, ’ S xS,
=(VRW)® (V' " W')(m,n).

Note that the first map preserves the shape of the underlying graph of the composition,
whereas the second one does not. Therefore, this interchange law map is injective but not
an isomorphism. The reverse natural transformation

(VERW)@ (V' RIW)(mn) — (VR V)R (W W' (m,n)

is given by the projection on pairs of composition of (V' [x] W) ® (V' [x] W') based on the
same 2-levelled graph (see A.3). To such pairs, it is straightforward to associate an element
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12 Vallette, Manin products

of (V® V') X (W ® W'). This map is the transpose of the first one. It is the composite of
an epimorphism with an isomorphism, therefore it is an epimorphism. []

Remark. In the same way, we can also show that the underlying category of non-
. 1 . .
symmetric operads, 5 props [59], dioperads [25], colored operads are 2-monoidal catego-

ries. We refer to [71], Section 5 and to [57], Section 9 for surveys of these notions.

1.5. Bimonoids. In this section, we define the notion of bimonoid that generalizes the
notion of bialgebra in any lax 2-monoidal category.

Let (<7, xI,1, ®, K) be a lax 2-monoidal category. Proposition 1 shows that the cat-
egory of [X-monoids, denoted by .Zon%, is a monoidal category for the monoidal product

®.

Definition (Bimonoid). A bimonoid is a comonoid in the monoidal category
(Mon®, ®,K).

Examples. The examples of the categories (k-Mod, ®;,k), (S-Mod,o,I) and
(S-biMod, [, I) endowed with the Hadamard tensor products, give the following notions.

e In the case of k-modules, we find the classical notion of bialgebras.

¢ In the case of S-modules, we find the notion of Hopf operads. We refer the reader
to the recent preprint of M. Aguiar and S. Mahajan [2] for a study of Hopf monoids in the
category of species which is a very close notion.

¢ In the case of S-bimodules, this generalizes the notion of Hopf operads to proper-
ads. We call them Hopf properads.

When £ is a Hopf operad, the category of #-algebras is stable under the tensor prod-
uct (see A).

Proposition 7. Let 2 be a Hopf properad. The tensor product A ® B of two P-gebra
is again a P-gebra.

Proof. The proof is straightforward. []

2. Koszul duality pattern

We work in the abelian monoidal category (dg-S-biMod, [x],1) of dg-S-bimodules
(see Appendix A). A monoid in this category is called a (dg-)properad. Since the abelian
monoidal categories of differential graded vector spaces and dg-S-modules are abelian
monoidal subcategories of dg-S-bimodules, the sequel includes the cases of (dg-)associative
algebras and (dg-)operads. In the following of the text, we will implicitly work in the differ-
ential graded context without writing “dg”, for the sake of simplicity. We use a very
general language since most of what follows can be generalized to other examples (colored
operads, non-symmetric operads, for instance). Denote by (V') the free properad
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Vallette, Manin products 13

(monoid) on ¥ and by # ¢(V) the cofree connected coproperad (comonoid) on V (see Ap-
pendix A for more details).

The Koszul dual coproperad is usually defined by the top homology groups of the bar
construction. The purpose of this section is to prove that the construction of the Koszul
dual can be described with a pure categorical or algebraic point of view. This section is a
generalization of Section 2.4 of E. Getzler and J. D. S. Jones preprint [30].

2.1. Quadratic (co)properads. Let (V, R) be a quadratic data, that is R = F 5 (V).
Since the underlying S-bimodule of the free properad # (V) and the cofree connected cop-
roperad Z (V) are isomorphic®, we consider the following sequence in S-biMod

R Fy(V) o F(V) 2 F(V) — F5/(V) — FZ5(V)/R=: R.

A quadratic data will be written (¥, R) or equivalently (¥, R). To such a sequence, we can
naturally define a quotient properad of % (V) and a subcoproperad of 7 (V') (see Appen-
dix B.4).

Definition (Quadratic properad generated by V' and R). The quadratic properad gen-
erated by V and R is the quotient properad of % (V') by the ideal generated by R— 7 (V).
We denote it by 2(V,R) = Z (V) /(R).

Definition (Quadratic coproperad generated by " and R). The quadratic coproperad
generated by V and R is the subcoproperad of # (V') generated by Z (V') — R. We de-
note it by €(V, R).

For example, the quadratic coalgebra generated by (V, R) is equal to

n—2 . .
CV,R=k®@VOP NV*RRR Ve

n=2 i=0

Remark. We proved in [69], Corollary 7.5 that when a properad is Koszul, it is nec-
essarily quadratic. Therefore, there is no restriction to study only the quadratic case.

2.2. Definition of the Koszul dual revisited. Koszul duality theory comes from ho-
mological algebra, when one tries to find small resolutions (minimal models) of algebraic
structures (associative algebras, operads, properads, colored operads, for instance).

The Koszul dual cooperad of an operad £ is defined by the top homology of the bar
construction #(2) (see [24], Section 5 and [30], Section 2.4). In [69], Section 7, we used the
same idea to define the Koszul dual coproperad of a properad. The purpose of this section
is to prove that the Koszul dual coproperad is a quadratic coproperad and to prove the
dual statement.

Let 2 = 2(V,R) be a quadratic properad. Recall from [69], Section 4 that the bar
construction #(2) of 2 is the chain complex defined on Z ¢(s2) by the unique coderivation

2) This should also come from the fact that the colored operad coding properad is Koszul-autodual.
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14 Vallette, Manin products

¢ which extends the partial composition of 2. Dually, the cobar construction of a copro-
perad is the chain complex .Z (s~'%), where the differential d is the unique derivation which
extends the partial composition coproduct of €.

When 2 = 2(V, R) is a quadratic properad, it is weight graded. Denote this grading
by (). In this case, the bar construction of 2 decomposes with respect to this grading. The
part of weight (w) of #.(2) begins with

o
Bo(P) () - 0 = Fo)(sP)) —

Let 9') be its top homology group H, (,%’ (9)(w)) and 2 .= @?‘ Using

H,(%. (Z2) )) = kerd, we proved in [69], Proposition 7.2, that #i is a subcoproperad of
F(sPq)) = F (V).

Dually, let ¥ = (V, R) be a quadratic coproperad. It is a connected coproperad,
that is weight graded and such that % ) = k. Once again, its cobar construction is the direct
sum of subcomplexes indexed by the weight

d _
Q.((g)( e ?”(w)(s 1(5(1)) — 0.

) O
D_eﬁne %' to be the top homology groups of the cobar construction of %, that is
@H (Qu(%),,,y)- Since H_,(Qu(%),,)) = cokerd, %' is a quotient properad of

1( ~ F
F (s Cny) =F (V).

Theorem 8. Let (V, R) be a quadratic data. Denote by s*R the image of R in Fp)(sV')
and by s7>R the quotient of,%*f(g) (s7'V) by s72R.

The Koszul dual coproperad of #(V,R) is equal to 2(V, R)' = %(sV,s®R). Dually,
the Koszul dual properad of €(V,R) is equal to €' := P(s~'V,s 2R). Therefore, we have
P =P and 6" = €

Proof. The cobar construction of ¢ has the following form

_ _ d _
Qu(B) )t = Tl C 1) + 5 62)) = Tl (s € 1)) — 0,
1

where %w)(sfl(g(l) +s71‘€(2)) stands for the sub-S-bimodule of #,, (s’l‘g(l) +s*1f€(2))
1
composed by graphs with w — 1 Vertices indexed by elements of s~'% (1) and just one
Vertex 1ndexed by an element of s~ (6 . The image of d is the kernel of the cokernel
Ty (V) — (6' (o) OF d. Since %1 is a quotlent properad of Z (s'V), Imd»>Z (s™'V) is
an ideal monomorphism. From the shape of Q,(%), we see that the image of d is made of
graphs indexed by s~!' V' with at least one subgraph in s~2R. Therefore, the image of d is
equal to the image of 1 : Z (s7' V) & (Z (s 'V) + s 2R) X F (s~ ' V), that is the ideal gen-
erated by s~>R by Proposition 57 of Appendix A.

We dualize the arguments (in the opposite category) to get the dual statement. The
last assertion is easily verified. []

(AutoPDF V7 20/12/07 16:11) WDG Tmath J-1878 CRELLE, PMU: D(A) 10/12/2007 pp. 1-60 1878_5698 (p. 14)




Vallette, Manin products 15

A properad is called a Koszul properad when the homology of its bar construction is
concentrated in top dimension, that is when H,(%(2)) = 2

2.3. Relation with the Koszul dual properad. To an S-bimodule M, we associate
its linear dual M* := {M(m,n)"},, . The linear dual * of a coproperad (%, A) is always a
properad: define the composition product by the formula ¢* X ¢* — (¥ X %)" A @
But we need a finite dimensional assumption on the underlying S-bimodule to have the
dual result. The main explanation for such a phenomenon is that there exists a map
V*® W* — (V® W)", which is an isomorphism when ¥ and W are finite dimensional
vector spaces.

Definition (Locally finite S-bimodule). An S-bimodule M is locally finite if for every
m and n in N, the dimension of the module M (m, n) is finite over k.

Proposition 9. When V is a locally finite S-bimodule, the linear dual of the quadratic
coproperad €(V, R) generated by V and R is the quadratic properad F (V*)/(R*‘), where
RY < Fo (V) = Fiy (V7).

Proof. The image under * of the terminal object (see Appendix B.4)

Z5(V)/R
] “\\
F(V))E(V,R) «— F(V) «——< G(V,R)

gives the initial object of

/R)*
(7°¢ /(/VR)* FUV) —— 6(V,R)".

*

Since V' is locally finite, we can identify (37 C(V)) with the free properad on
V*: Z(V*). (The (co)free (co)properad on V' is given by a direct sum of particular tensor
powers of V.) Therefore, (37 5(V) /R)* is isomorphic to the orthogonal of R, that is
Rt ={feFn(V) = Fu(V ) | fr = 0}. We conclude by the uniqueness property of the
initial object. [

When 2(V, R) is a quadratic properad generated by a locally finite S-bimodule, we
con51der the linear dual of the Koszul dual coproperad 2. By Proposition 9, we have
2(V,R)" =2(s'V* s72RY). In the case of finitely generated associative algebra, it is
the definition given by S. Priddy [64]. In the case of binary quadratic operads, V. Ginzburg
and M. Kapranov ([31], Section 2) defined a twisted Koszul dual operad by the formula
P = P(VV,R"), where M"(n) = M*(n) ® sgng . The reason for this lies in Quillen
functors which are the bar and cobar constructions between Z-algebras and #'-coalgebras
(see [65] and [30], Section 2). The bar construction of a Z-algebra A4 is the cofree 2'-
coalgebra on the suspension of 4, that is 2!(s4). In general, we have
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16 Vallette, Manin products

P(54) = (1) s, (A" = @57 (n) @ seng, ®s, A",
nx1 nx1
We define the suspension operad by S(n) := 5"k ® sgng , with the signature action of the
symmetric group. Actually, S is equal to the operad of endomorphisms of s~'k, that is
S = End(s~'k). We have 2'(s4) = s(S ® #')(A4). Up to suspensions, 2!(sA4) is the cofree
“2'-coalgebra” on A. The operad 2 is Koszul if and only if 2' is Koszul, which is also
equivalent to 2' is Koszul.

3. Manin products

The aim of this section is to provide a general and intrinsic framework for the defini-
tions of Manin’s black and white products. We first give the conceptual definition of Man-
in’s white product of monoids in any lax 2-monoidal category. Then, we dualize the argu-
ments to get the notion of black product of comonoids in any colax 2-monoidal category.

We make explicit all the constructions in the category of S-bimodules. But they re-
main valid in general 2-monoidal categories with mild assumptions (existence of the free
monoid, cofree comonoid, for instance). These constructions also hold for non-symmetric
operads (see Section 5) and colored operads, for instance. We denote the vertical connected
composition product of S-bimodules and the Hadamard horizontal tensor ® 4 by ®, to
lighten the notations.

3.1. A canonical map between free monoids. V. Ginzburg and M. M. Kapranov
mentioned in [32] a morphism of operads ® : Z (V@ W) — Z (V) ® F (W) “which re-
flects the fact that the tensor product of an & (V)-algebra and an % (W )-algebra is an
F(V ® W)-algebra”. We describe and extend this map ® to a more general setting.

Proposition 10. Let (o/,[X,I,®,K) be a lax 2-monoidal category such that
o/, XI,1) admits free monoids. There exists a natural morphism of monoids
O FVRIW)—F(V)RF(W).

Proof. Let V and W be two objects in .o/. There is a natural map
Uz Quzgwy: VRO W — F(V)®F(W). Using Proposition 3, we know that
F(V)® Z (W) is a monoid for [x]. By the universal property of the free monoid on
V' ® W, there exists a unique morphism of monoids @ which factors the previous map

Uyew

vew 2 F(ve w)

\
ElL0)
Py )

FV) @ F(W). O

Examples.

e When .o/ is the category of k-modules, the map @ is the direct sum of the isomor-
phisms (V @ W)®" =~ V'®" @ W®" induced by the twisting map.

¢ In the category of S-modules, the map @ corresponds to the injective morphism of
operads # (V@ W)»—Z (V) ® Z (W) mentioned in [32].
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Vallette, Manin products 17

e For S-bimodules, the previous construction gives a morphism of properads be-
tween the free properad Z (V' ® W) and the Hadamard product % (V) ® % (W). Once
again, this map is always injective but not an isomorphism in general.

One remark before to conclude this section. The purpose of this paragraph was to
show that the definition of the map @ is canonical and does not depend on the bases of
the modules involved here. Now, if we choose a basis for the free operad, for instance, we
can make the map ® more explicit. In this case, the image of a tree 7" with vertices indexed
by elements of V' ® W under ® is the tensor product of the same tree 7" with vertices in-
dexed by the corresponding elements of V" with the tree 7" whose vertices are indexed by the
corresponding elements of .

3.2. Definition of the white product. In this section we define the white product for
every pair of properads defined by generators and relations. When the two properads are
quadratic, the resulting white product is again quadratic. Since an associative algebra is an
operad and an operad is a properad, this construction summarizes what can be found in the
literature. In the case of quadratic associative algebras, it corresponds to the original no-
tions introduced by Yu. I. Manin [53] and in the case of binary quadratic operads, it corre-
sponds to the definitions of V. Ginzburg and M. Kapranov [31], [32].

The properties of the morphism @ lead directly to the definition of the white product.
Let 2 and 2 be two properads defined by generators and relations, 2 = % (V) /(R) and
2 =% (W)/(S). And denote the projections 7y : # (V) — Z and nty : F (W) — 2.

Consider the following composite of morphisms of properads
Tp @noo®: F(VROW)>F(V)QF (W) > 2R® 2.

Since it is a morphism of properads, its kernel is an ideal of # (V' ® W). It is the ideal gen-
erated by @ ' (R® Z (W) + Z (V) ® S) in Z(V @ W).

Definition (White product). Let 2 =% (V)/(R) and 2 = 7 (W)/(S) be two prop-
erads defined by generators and relations. The quotient properad

P02 =FVRW)/( @' (RIF(W)+F(V)®S))
is called the white product of % and 2.

The definition of the white product of two properads shows that the morphism @ fac-
tors through a natural morphism of properads ® : # 0 2 — 2 ® 2. In the abelian category
S-bimodules, ® is the image of 7, ® 7y o ®. Hence, it is a monomorphism.

Ty Qmny

FWVOW) s FV)QF(W) ™% 202
Pod

Let A be a #-gebra and B a 2-gebra, since the tensor 4 ® B is a # ® 2-gebra, we get the
following result.
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18 Vallette, Manin products

Proposition 11. The tensor product A ® B is a gebra over the white product 2 o 9.

Example. Let 2 and 2 be two operads. The tensor product of a #-algebra with a 2-
algebra is a # ® 2-algebra. We can partially dualize this statement. Let C be a 2-coalgebra
and A be a Z-algebra, the space of morphisms Homy(C, 4) is a 2 ® 2-algebra (see [11],
Proposition 1.1). It is also a 2 o 2-algebra by Proposition 11. As explained by G. Barnich,
R. Fulp, T. Lada, and J. Stasheff in [8], when C is a cocommutative coalgebra, Homy (C, A)
is always a Z-algebra. This comes from the fact that @om is the unit object for ® and o.
Motivated by structures appearing in Lagrangian field theories in physics, these authors
studied the algebraic structures of Homy(C, 4) when C is a coassociative coalgebra and 4
a Lie algebra or a Poisson algebra. Since Homy(C, A) is a 2 o 2-algebra, Manin’s white
product for operads gives a way to describe such structures.

The white product is a construction that preserves the grading of the properads.

N M
Proposition 12. If S < @ #,)(V) and R = @ F (., (W), the white product of P

w=0 w=0 max(N, M)
and 2 is a properad generated by V ® W with relations in @  F,)(VQ W).
w=0

If S and R are homogeneous of weight N, that is S, R = Fx)(V), then 2 o 2 is once
again a properad defined by homogeneous relations of weight N.

Proof. It comes from the definition of the morphism ® which preserves the
grading. []

Examples.

e let A and B be two quadratic associative algebras. The white product 4 o B
is equal to T(V @ W)/((23)(R® W®* + V®2® S)), which is the definition given by
Manin in [53], [52]. It is isomorphic via ® to the Hadamard (or Segre) product
A ®y B := @ A @ B(y. This crucial property allowed J. Backelin to prove in his thesis

n

[4] that the white product of two Koszul algebras is a Koszul algebra.

e An associative algebra 4 = T(V)/(R) is N-homogeneous if R = V®N_ R. Berger,
M. Dubois-Violette and M. Wambst generalized Manin’s black and white products to N-
homogeneous algebras in [13]. Berger and Marconnet proved that the black product of two
N-homogeneous Koszul algebra is still Koszul under some extra assumptions (distributiv-
ity) in [14], Proposition 2.8. For two N-homogeneous algebras, the definition given above
coincide with their definition. Note that the definition given here can be applied to non-
homogeneous algebras. The class of Artin-Schelter algebras [3] provide interesting exam-
ples of non-homogeneous algebras. It would be interesting to study the properties of the
white product of such algebras, for instance the ones of global dimension 4 of [48].

® When 2 and 2 are binary quadratic operads, the modules #») (V) and F5) (W)
are equal to Z (V)(3) and Z (W)(3). In that case, we get RQ F (W) =RQ F(W)(3)
and Z(V)® S =7 (V)(3) ® S. This construction is the original one described by Ginz-
burg and Kapranov in [31], [32]. Note that in this case, the white product is not, in general,
equal to the Hadamard product. (The morphism @ is not an isomorphism in general.) A
direct consequence of this fact is that the white product of two Koszul operads is not nec-
essarily a Koszul operad again. See Section 4.5 for a counterexample.
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Vallette, Manin products 19

3.3. The black product. We dualize the arguments and work in the opposite cate-
gory. This gives the definition black product of coproperads.

Proposition 13. Let (o/,X,1,®,K) be a colax 2-monoidal category such that

(o, X1,1) admits cofree comonoids. There exists a natural morphism of comonoids
VY. ZVRW)—F(V)QF(W).

Definition (Black product). The black product of two coproperads %(V, R) and
&(W,S) is the image of the morphism of comonoids ¥ o (1 ® 1)

FWR@W) ' FV) @ F(W) e 4(V,R) @ E(W,3)

It is equal to €(V,R) e« €(W,S) =4 (V@ W,¥(R® S)).
Black and white constructions are dual to each other under linear duality.

Theorem 14. Let (V, R) and (W, S) be two quadratic data, with V and W locally fi-
nite. We have the following isomorphism of properads

(4(V,R) e G(W,S)) ~4(V,R) o 4(W,S)".

Proof. Since l*p is the transpose of ¢, we have ¥ = '@y j -, up to isomorphism like

(Z(V)QF (W) =F(V)Q®F(W). Therefore, we get
YRR S) =) . (REQF(W*)+F(V*)®S*).

By Proposition 9, we have

IIZ

(6¢(V,R) e G(W,S)) =2(V*"®@ W, ¥(R®S)")

IIZ

(
PV @W by (RE®F (W) + 7 (V)@ S*))
2(

IIZ

V*, RY) o 2(W*, SY)
~4(V,R) oc6(W,S)". O

2

One of the main interest of the classical notions of black and white products is that
one gives the other via the Koszul dual functor. In the next sections, we define a black
product for monoids (operad and non-symmetric operads). The translation of Theorem 14
in this framework will give the relation with Koszul dual functor.

4. Manin products for operads

In this section, we study Manin products for (symmetric) operads. We first give a suf-
ficient condition for the white product to be equal to the Hadamard product. Then, we re-
call the bases used to describe binary quadratic operads and their Koszul dual operad. We
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20 Vallette, Manin products

refer the reader to [31], [44] and [58] for complete references. We make our constructions
explicit for binary quadratic operads in order to do computations. The linear dual version
of the black product for cooperads defines a product for operads which corresponds to the
definition of Ginzburg and Kapranov, where we make the signs precise. We give an exam-
ple of a pair of Koszul operads such that their product is not Koszul. This shows that black
and white products for operads do not behave like black and white products for associative
algebras. Following Yu. I. Manin, we prove that 2 ¢ 2' is always a Hopf operad. Finally,
we describe the relation between unitary operators and black products.

4.1. Relation between the Hadamard product and the white product. We saw in
the previous section that the composite (7 ® my)o ® factors through its image
®: 2092 Q2. Therefore, ® is an isomorphism if and only if the composite
(n» ® my) o @ is an epimorphism. We shall give a sufficient condition for this.

Consider the case of binary quadratic operads, that is quadratic operads generated by
binary operations (¥ (n) = 0 for n % 2). In this case, the free operad on V is given by (non-
planar) binary trees with vertices labelled by operations of V. Denote by T such a tree with
n — 1 vertices and the induced label morphism by £§ : V=D — 7 (V)(n).

Proposition 15. Let & be a binary quadratic operad such that for every n 2 3 and ev-
ery binary tree T with n — 1 vertices, the composite iy o L7 : VO — Z(V)(n) — 2(n)
is surjective.

For every binary quadratic operad 2, the white product 2 o 9 is equal to the Hadamard
product ? ® 2.

Proof. It is enough to prove that (7» ® 75) o @ is an epimorphism. Let p ® g be
an elementary tensor of Z(n) ® 2(n), where 2 =% (W)/(S). The element g of 2(n)

can be written ¢ = an o2 (wi,...,wi_)), with {T;} a finite set of trees and {w!}
i=1 ’
clements of W(2). By the assumption, there exists vi,...,vl | in V(2) such that
p=mnypo Ly (vi,...,vl_)), for every T;. Therefore, we have
J LS .
p:EanoLPT (vf,...,00 ).

1

Finally, it shows that

1
P®6]=(7Ty®ﬂ,@)od)<—

k . . . .
kza?vlj@w(u{ @ Wi, ..., U, ®W,’l_l)). O

i=1

The condition of this proposition means that every operation of & can be written by
any type of composition of generating operations. In the next corollary, we show that the
operads Gom, Perm and €omIrias are examples of such operads. Recall briefly that ¥om
is the operad for commutative algebras. The operad Zerm was introduced by F. Chapoton
in [16] and ¥omTrias was defined in [70], Appendix A.

Corollary 16. For every binary quadratic operad 2, we have:
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® Gomo2=Com® 2=29. The operad €om is neutral for the white product in the
category of binary quadratic operads.

o Permo 9 = Perm ® 2 and €omTrias o 2 = ComITrias R 2.

Proof. The operad om is generated by V(2) = k with trivial action of S, and
the associativity relation. Hence, we have only one commutative operation with arity n,
that is ¥om(n) = k. Therefore, for every tree T, the morphism %y is a surjection on k
and ¥omo 2 =Com® 2 = 2.

The operad Zerm corresponds to commutative operations with one input emphasized
(see [70], 4.2 and [18], 1.3.2). In arity n, we have n operations Zerm(n) =k.ef @ --- @ k.e)}
where e/’ corresponds to the corolla with » inputs such that the ith input (or branch) is em-
phasized. The composition of corollas gives a corolla where the leaf emphasized is the one
with a path to the root via emphasized branches.

Let T be a binary tree with n — 1 vertices. To get e/', it is enough to look at the unique path
from the ith leaf to the root and index the vertices on this path with the relevant operations.

1 2\32/4
N/
\

ef

4
= e

The operations of ¥omJrias(n) are corollas with at least one leaf emphasized and the proof
is the same. []

This corollary shows that the Hadamard product of one operad %om, Perm or
®omIrias with any other binary quadratic operad is again a binary quadratic operad.
For %om, the result is obvious. In the particular case of Zerm this result was proved di-
rectly by F. Chapoton in [16]. For every binary quadratic operad 2, he constructed by
hand a quadratic operad isomorphic to Zerm ® 2. This construction is actually the white
product Zerm o 2.

Proposition 17. We have Perm o ofs = Dias.

Proof. Using the complete description of Perm, .«/s and Zias, Chapoton proved in
[16] that Perm ® ofs = Dias. Apply the previous corollary to conclude. [
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4.2. Binary quadratic operad and Koszul dual operad. The preceding section gives a
method for computing the white product for a particular class of operads. When we cannot
apply this method, we need the explicit form of the products to compute them. In this sec-
tion, we describe a basis for binary quadratic operads and their Koszul dual operads.

Recall that the free operad Z (V') on V is given by trees with the vertices indexed
by elements of V', with respect to the action of the symmetric groups. When V' is an S;-
module, that is a module over the symmetric group S,, we have #5)(V) = # (V)(3), the
part with 3 inputs of the free operad on V which is isomorphic to

where the summand V' ® (V' ® k) corresponds to the compositions on the left and the
summand V' ® (kK ® V') corresponds to the compositions on the right . Since the action
of S, maps one to the other, we choose the one on the left and % (7)(3) is isomorphic to
the induced representation Indg’, s (V' ® (V ® k)). Therefore, #(1)(3) can be identified
with 3 copies of V' ® V represented by the following types of tree:

<
<]
<

Denote them by g oy v, g oy v and u oy v.
Thc?2 action of the permlgtation (12) is given by (uo; v)(lz) = p oy v12),
(won v)( ) = g op V12, (wom v)( ) = pop w2 and the action of (132) is given by
123
(Iu Oy V)< ) = UO(u41) V.

Remark. This basis is different from the one in [31], p. 228. The one given here has
nice symmetric properties with respect to the action of S3 that we will use in 4.4 to simplify
the computations.

The dual representation V'* of an S,-module V" is the vector space V* = Hom(V, k)
endowed with the following right action of the symmetric group. For f: V' — k and
oeS,, we have (f7)(x) := f(x? ). We will need to twist the dual representation by the
signature, thatis V'V := V" ® sgng .

Let V' be an S-module concentrated in arity 2, that is an S;-module. When V' is a
finite dimensional k-vector space, denote by u,v,#,{,... one of its basis, stable by the
action of S;, and by u*,v*,#*,{", ... the dual basis. Therefore

=t v =vigt =gt =0

forms a basis of V¥ such that (u¥)"? = —(u(12)". We define the following non-degenerate
bilinear form
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F(B)@F(V)3) Lk,

1 ifo=pB u=nandv=_
0 otherwise.

Spog v, op ) ;:{

For a sub-S3;-module R of # (V)(3), we consider its orthogonal
R ={QeF(VY)(3)|{0,Q) =0, Yw € R}
for this bilinear form.

Since the action of S; on the bilinear form <,) is given by the signature
{w?, Q% = sgn(s).{w, Q> we have that R is a sub-S;-module of Z(VV)(3). Note
that the non-degenerate bilinear form {, ) defines an isomorphism of S;-modules from
F(V)(3)" to Z(VY)(3).

Recall from 2.3 that under finite dimensional assumptions, the Koszul dual operad of

F(V)/(R) is ' = Z(VV)/(R'). This bilinear form provides a method for computing it.
The canonical isomorphism (¥V)” = ¥ induces (R*)" =~ R and (#') = 2.

Examples. The operad ¥om for commutative (associative) algebras (4, ) is gener-
ated by the one dimensional S;-module V := k.x with trivial action. Denote by #; = * oy x,
t, = x oy ¥ and #3 = x oy * the elements of the basis of # (17)(3). The associativity relation
is the quadratic relation ¢ = t, = 3. Therefore, the operad ¥om has the following presen-
tation ¥om = 9(/{*)/([1 — I, lh — Z3).

The operad Zie for Lie algebras (L,[,]) is generated by the one dimensional S,-
module V' := k.[,] where the action is given by the signature. If we denote by ¢{, ¢} and
t the elements of the basis of % (V/)(3), the Jacobi relation corresponds to ¢ + 15 + 5 =0
and the operad Zie is given by Lie = F (k.[,])/(t] + th + t}).

Under the identification V' = V'V, we have
(= 0) k@ (12— 13).k)" = (£ + 1+ 1) k.
Therefore we get ¥om' = Zie (and ZLie' = Gom).

4.3. Definition of the black product for operads. Using the notions of the previous
section, we define a black product for binary quadratic operads.

The definition of the white product is based on the morphism ® (see 3.1). For binary
quadratic operads, this morphism @ : 7 (V® W)(3) — Z(V)(3) ® Z (W)(3) is the com-
ponentwise projection. For instance, for compositions of type I, we have

X y z X y z X y z

uy & My H

We describe a general method that will be applied later in other cases.
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When V' is finite dimensional, the Koszul dual of binary quadratic operad
Z(V)/(R) can be defined by means of a particular non-degenerate bilinear form on
F(V)(3)® F(VVY)(3) (see 4.2) denoted by <, »;. For the moment, we do not need its ex-
plicit description. Since this bilinear form is non-degenerate, it induces an isomorphism
Oy : F(V)(3) = Z(VV)(3)". Let V and W be two finite dimensional k-modules. Define
the morphism W by the following commutative diagram

F(V)(3) ® F(W)(3) ® k.sgns, F(V® W ® ksgns,)(3)

lHV@@HW@Sgn T0V1®W®sgn
F(V(3)' ®@Z(WY)(3)" ® k.sgng, 97(( Ve W k.sgngz)v)(3)v
(FIB) @ F(WY)(3) —— L F(rv @ WG,

where ~ stands for the natural isomorphism for the linear dual of a tensor product, since
the modules are finite dimensional. The morphism W defined here is a twisted version of the
one defined in 3.3.

Recall that @y pv is the morphism Z (VY @ WY) — Z(VV) Q@ F(WY).

Lemma 18. Let ? = 7 (V)/(R) and 2 = 7 (W)/(S) be two binary quadratic oper-
ads such that V and W are finite dimensional. The orthogonal of ¥(R ® S) for {, >y g wesen
is D)y (RE® F (W) + F(VY) ® 5%,

Proof. By definition of the transpose of @y j-+, we have
P ®s), XDygwesm = I ® 8, Pvv wv (X)) (7 mes(v)«(#w)eF(w)
= ({r, =y L8, =>w) o Oyv wv(X),

for every (r,s) € R x S and every X € %((V QW® k.sgngz)v). Therefore, we have
PY(R® S)*

= {X € ﬁ"((V@ W ® k.sgngz)v)@) |V(r,s) € R x S<‘I’(r®s),X>V®W®kvsgn52 = O}

={XeFZ(V'@W")3)|V(r,s) e Rx SKr,=>p.{s,—>p) o Ppv wv(X) =0}
={XeF(V QW )3)| Py (X)eR-@F (W) +F(VY)® S}
=0,y (RF@F(W)+Z(V)®ST). O

Definition (Black product for operads). Let 2 =% (V)/(R) and 2 =7 (W)/(S) be
two binary quadratic operads with finite dimensional generating spaces. Define their black
product by the formula

Pe2=F(VRW®Rksgng,)/(Y(R®S)).

Proposition 19. For binary quadratic operads generated by finite dimensional S,-
modules, this definition of black product verifies (2 o ,@)! = 2" 02" and corresponds to the
one of Ginzburg and Kapranov [32].
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Proof. Itis a direct corollary of Lemma 18. []
Since ¥om is the neutral element for o, we have that Zie is the neutral element for e.
4.4. Examples. We make explicit some computations of black and white products.
For the definitions of the various operads encountered in this section, we refer the reader to
[46].
In order to compute black and white products for operads where the space of gener-

ators V is equal to k[S;| = uk @ u' .k, with u.(12) = i/, we will adopt the following con-
vention. Denote by vy, ..., v;2 the 12 elements of 7 (V)(3).

uomp— (zx)y | 9 | wonpu < (yz)x
porpu e z(xy) | 10 | u oy y(zx)
Worp < z(yx) | 11 | g/ o ot — y(xz)
pon p' < (zy)x | 12| porp’ < (yx)z

porp = (xp)z

# o pt— x(yz)

R[N

1
2
3| Wonp < x(zy)
4 | pom ' « (xz2)y

This labelling corresponds to the labelling of the permutoassociahedron [38]. Figure 1 rep-
resents it with the action of the symmetric group Ss.

(12)

2(xy)

Figure 1. The permutoassociahedron.
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An associative algebra is a vector space with a binary associative operation, that
is pu(p(a,b),c) = u(a,u(b,c)). With these notations, the relations of associativity of
the operad .o/s become v; — v;yy, for i=1,3,57,9,11. A (right) preLie algebra is a
vector space with a binary operation such that its associator is right symmetric, that
is ,u(,u(a,b),c) —,u(a,u(b, c)) = u(u(a, c),b) —,u(a, u(e, b)) This relation corresponds to
v; — Vir1 + viya — vip3 for i = 1,5,9 with our conventions. The operation of a Zerm-algebra
verifies u(u(a,b), ) = u(a, u(b, ¢)) = u(a, u(c,b)) which gives here v; = viy1 = viy2 = vis3
for i =1,5,9. Note that ZreLie is the Koszul dual of Zerm and vice versa (cf. [17]).

We now give an example of computation.

Theorem 20. We have PreLiece Com = %inb, PreLice ofs = Yend and
Perm o Lie = PLeib.

Proof. Denote by v the commutative generating operation of ¥om and by wy, ws, wog
the related elements of # (v.k)(3). We write the associativity relation of v : w; — ws = 0 and
ws — wg = 0. We have

(1) (01 — 02+ v3 —va) ® (w1 —ws)) = P01 @ wi + v4 @ ws),

Q) W((0r— 2+ 03— 0a) ® (w5 — w5)) = B((12 — v3) @ o — 14 @ ws),

(3) Y ((vs — vg +v7 — v3) @ (w1 — ws)) =¥ ((v7 — v6) @ w1 — vs @ ws),

(4) P ((vs — v+ v7 — v5) ® (Ws — w)) = P(vs ® ws + vg ® wy),

(5)  W((v9 —vip + 011 — v12) ® (Wi — ws)) =¥ (—v12 ® wi + (V10 — v11) @ Ws),
(6)  ((vo—vio+vi1 — v12) ® (ws —wo)) =P ((v11 — v10) ® ws — v9 @ wy).

The action of (132) sends (1) to (4), (3) to (6) and (5) to (2). The image of (1) under
(13) is (3). Therefore, we only need to make (1) and (2) explicit. If we identify
(ke ® p' k) @ v.k ® k.sgng, with y.k @ y’.k via the isomorphism of S;-modules

HOV® 1=,

vl =
the morphism ¥ becomes

F((porp) ® (vorv)) =¥ @wi) =yory =z

and

‘P((ﬂ/ o i) ® (von V)) =Y @w) = —y' o1y = —z.

The image of the other elements are obtained from these two by the action of S3. For in-
stance, we have W(v3 @ wy) = —z3, WY(va ® wy) = z4 and ¥(vs ® ws) = zs.
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We get
Y01 @ wi + 04 @ ws) =yory—yomy,

W((2—v3) @wo — 04 @ws) = —y" oy —y oy’ +yomy.
Finally, if we represent the operation y(x, y) by x x y, we have

(x*py)*z=(x*z)*Y,

(xxz)*xy=x*x(z*xp)+x*(y*z),
where we recognize the axioms of a Zinbiel algebra (cf. [46]).

The two other identities are obtained by Koszul duality using Proposition 19. From
Proposition 17 Perm o .o/s = Dias, we get PreLie o /s = (Perm o <fs) = (Zias) = Dend.
The last equality Permo Zie= Peib is the Koszul dual of the first one
PreLie e €om = Zinb. [

Jean-Louis Loday defined the operad Zend by two operations such that their sum is
an associative product (see [46]). In the same way, he defined the operad Zinb with one
product such that its symmetrized version is an associative (and commutative) product.
This process is often called a splitting of associativity. Proposition 20 shows that we can in-
terpret the operation ZrelLie ® — as a natural way of splitting the associativity.

A commutative algebra is an associative algebra. Therefore, we have a morphism of
operads .o/s — ¥om. Since a commutative algebra is a Perm-algebra and a Perm-algebra is
an associative algebra, the previous morphism factors through .oZs — Perm — €om. Simi-
larly, a Zinbiel algebra is a dendriform algebra Yend — Zinb. We can factor this mor-
phism by a new operad PreLie @ Zerm using the functor PrelLic o —

“om
PreLice—

Yend —— PreLic ¢ Perm —— Zinb.

s ————— Perm

We describe this new type of algebra.

Theorem 21. An algebra over the operad PreLie @ Perm is a dendriform algebra such
that the two operations < and > verify the two extra relations

X<(y<z2)+x<(y=z2)=x<(z=<y)+x=<(z>y),

x=(y<z)=x>(z>y).

Using the notation x* y :=x <y —+ x >y, we sum up the 5 relations of a PreLie @ Perm-
algebra by
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(x<y)<z=x=<(yxz),
(x=y)<z=x> (y<2),
(xxy)=z=x> (y > 2),

<(y*z)=x=<(zxy),
x=(y=<z)=x=(z>y).

A Perm-algebra is an associative algrebra which is symmetric on the right. A
PrelLie @ Perm-algebra is a dendriform algebra with right-symmetric relations.

Proof. Denote by w the generating operation of the operad Zerm and by
wi,...,wis the related elements of # (w.k @ w'.k)(3). The space of relations ¥(R® S) is
generated by the elements W ((v; — viy1 + vit2 — vi43) @ (wj — wyy1)), for i€ {1,5,9} and
je{1,2,3,5,6,7,9,10,11}. Reduce the computations using the action of S3 (the symme-
tries can be seen on the permutoassociahedron), it remains 5 relations among which 3 cor-
respond to the following ones:

(7) (v — 2+ 03 —v4) ® (Wi —w2)) = (1 @ wi + (12 — v3) @ w2),
(8) ‘P((Ul — Uy + U3 — U4) ® (W5 — WG)) = lP(—U4 Q@ ws — 11 ® Wé),

9) W ((or —v2+ 03— va) @ (w7 — wg)) =¥ (v1 ® w7 + (v2 — v3) @ wy).

Identify the representation (u.k ® u'.k) ® (w.k ® ' k) ® k.sgng, with the two copies of
k[Ss] : 0.k[Ss] ® B[Sy = 0.k @ o’ k ® B.k @ Bk via the isomorphism of S,-modules

UR R 1 — « and 4/ @Ro®1— —p,
U R0 ®l——d and uR®aw' @1+ p.
The morphism ¥ becomes
Y ((uorp) ® (worw)) =Y¥(vy @ wy) = o a
V(1 onp) @ (@0 opw)) =¥(v, @ wy) = —o oy
and
lP((,u' onu') ® (v oy a))) =¥(v; ® wp) = —a o1 B,
for instance. Hence, the relations (7), (8) and (9) are
aopo—o oo —a oyp,
wom f—f ora,
Bloip —Bonp —pone

If we represent the operation o(x,y) by x <y and f(x,y) by x > y, these 3 relations
become

(AutoPDF V7 20/12/07 16:11) WDG Tmath J-1878 CRELLE, PMU: D(A) 10/12/2007 pp. 1-60 1878_5698 (p. 28)




Vallette, Manin products 29
(x<y)<z=x<(y<z)+x=<(y>2),
(z=x)<y=z»(x=<Y),
z=(y=x)=(CZ=py)=x+(z=<y)»x,

which are the axioms defining dendriform algebras [46].
The two other relations are
(10) lI’((U1 — U+ 03 —04) @ (W2 — Ws)) =o' oga+ao o f’ — o' on f+o oo,
(11) ‘P((U] —Uz+U3—U4)®(W6—W7)) :ﬂ/OIO(—ﬂ/ O]ﬂ/.
And they give after identification
x<(y<z2)+x<y=z2)=x<(z=<py)+x=<(z>Y)
x=(y<z)=x>=(z>y). O

A PrelLic e Perm-algebra is a Perm-algebra with splitting of the associativity
relation.

Proposition 22. Let (A,<,>) be a PreLie @« Perm-algebra. With the operation
% := < + =, the vector space (A, ) becomes a Perm-algebra.

Proof. Consider the sum of the relations. []

Since a Prelie-algebra gives a Zie-algebra by anti-symmetrization of the product,
we have a morphism of operads Zie — PreLie. Taking the black prgcij})lct of this mor-
phism with an operad 2, we get a morphism of the form 2 = Zie e ? == PreLic @ 2. A

Prelie @ P-algebra has twice more generating operations than 2 and this morphism corre-
sponds to take the sum of them. Denote it by 4 ¢ 2 = +. In the previous cases, we had

oAs — Perm — Yom

| | |

YDend —— PreLie ¢ Perm —— inb.

Therefore, the black product with ZrelLie is a general splitting of the relations.
One interesting property of the black and white products is to recover classical oper-

ads and morphisms between them by means of products from simpler operads. We have the
dual diagram of operads

ofs — Prelie — Yle

| | |

Dias —— PrelLie o Perm —— ZLeib.
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The operad ZreLie allows to factor the map .oZs « Zie. The notion of PrelLie-algebra is
important and has application in deformation theory and differential geometry for instance
(see [17]). The second row Zias «+ Zeib was introduced by J.-L. Loday with a view toward
applications in algebraic K-theory (see the introduction of [46]). The operad Zias appears
naturally when one tries to build a bicomplex in algebraic K-theory with the same
form then the one in cyclic homology (the additive counterpart of algebraic K-theory).
Since the operad PreLie o Perm factors the map Leib — Zias, we expect the operad
PrelLie o Perm to appear in these fields in the future.

Recall from [17], that a basis for ZreLie(n) is given by the set of rooted trees with n
vertices labelled by {1,...,n}. From Corollary 16, we have

PrelLie o Perm = PreLie ® Perm.

Therefore, a basis for ZreLie o Zerm(n) is provided by the set of rooted trees with n
vertices labelled by {1,...,n} with one vertex emphasized. We leave to the reader to
describe the composition map of this operad. (Use the composition of ZreLie based on
rooted trees given in [17] with the fact that only the insertion of a tree in an emphasized
vertex keeps a vertex emphasized.)

4.5. A counterexample. In this section, we show that the category of Koszul operads
is not stable by white and black products. We exhibit a pair of Koszul operads whose black
product is not Koszul.

Consider the nilpotent operad ./~ defined by a generating skew-symmetric binary op-
eration such that every composition of it vanishes.

Lemma 23. The operad PreLic e N is equal to the quadratic operad generated by a
binary operation © with the following relations: (xo y)oz=0and xo (yoz) =xo(zo ),
for every x, y, z.

Proof. We use the same notations v; for the space R of relations of the operad

PreLie. The space S of relations of the nilpotent operad is generated by wy, ws and wy.
By symmetry of the relations, we only have to compute the three terms

(12) ‘P((vl —U2+U3—U4)®W1) =¥ @w;) =coy0,
(13) Y (01 —v2+vs—va) @ws) =V ((—v2+v3) @ws) = —0 oy o+ 0" oy ¢,
(14)  W((01 —v2+v3 — 04) @ wy) = P(—0g ® wy) = o oppy ©.
They correspond to
(xoy)oz=0, xo(yoz)=xo(zoy) and (xoz)oy=0. O
Theorem 24. The operad PreLiec o N is not Koszul.

Proof. Because of its relations, the operad #reLie ® 4" has no operations in arity
n for n greater than 4, that is (Z?reLiee A")(n) =0 for n = 4. Recall that the Poincaré
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dim(2(n))

series of an operad Z is defined by f»(x) := ) .

nx1
Appendix B.5.c.). When an operad 2 is Koszul, its Poincaré series and the Poincaré series

of its dual verify the equation f, (—f»(—x)) =x ([31], Formula (3.3.2)). The Poincaré

x" (see [31], Section 3 or [46],

series —fpreLicet(—X) is X — x2 + §x3 . Its inverse for the composition is

3 5 17 21 99 55 4 715
X+ o+ o X T T T x10

2 YTy 2 s T 16 T

Since the 10™ coefficient is negative, this series does not correspond to the Poincaré series
of an operad. Therefore the operad ZreLie o /" is not Koszul. []

The operad ZreLie is Koszul (see [17] for a proof in characteristic 0 and [18] for a
more general one). Any nilpotent operad is Koszul (the Koszul dual is a free operad, which
is Koszul). So the operad ZreLie o /" is the black product of two Koszul operads which is
not a Koszul operad. This result comes from the fact the morphism ¥ (and the morphism
®) is not an isomorphism in general. The morphism ¥ is a projection and kills part of the
relations. Therefore, the coherence between the relations, expressed by the Koszul property,
does not hold anymore.

4.6. Adjunction. In this section, we generalize the main result of [52] about the ad-
junction between the black and the white products to k-ary quadratic operads.

Let k be an integer greater than 2. Consider the category of k-ary quadratic operads,
that is quadratic operads generated by a finite dimensional S-module concentrated in arity
k. A morphism between two k-ary quadratic operads # (V') /(R) and # (W)/(S) is a mor-
phism induced by a map of Sg-modules V' (k) — W (k). Denote this category by k.q-Op.

One can generalize the basis and the non-degenerate bilinear form of 4.2 for the bi-
nary case to the k-ary case. Then Lemma 18 and Proposition 19 also hold in k.q-Op, which
defines black products in this category. Recall from V. Gnedbaye [33] the notion of k-Lie
algebra, that is a module endowed with a k-ary antisymmetric bracket satisfying a general-
ized Jacobi relation. We denote the associated operad by Zie*?. Gnedbaye proved that
Zie is the Koszul dual operad of %om< (denoted stAs<¥” in [33]), where a Gom*-
algebra is module equipped with a k-ary commutative and totally associative operation.

Proposition 25. The black and white products endow the category of k-ary quadratic
operads with a structure of symmetric monoidal category, where the operad Lie<* is the unit
object for & and the operad €om*’ is the unit object for o.

Proof. The same arguments as in 4.1 show that for a k-ary quadratic operad 2, we
have Gom® o2 = om™® @ 2 =2. If ne(k—1).N+1, om® (n) =k, otherwise
Gom (n) = 2(n) = 0. The rest of the proof is straightforward. []

Theorem 26. There is a natural isomorphism

Homk_q‘op(@ ° ,@, 9?) = Homk_q_op(@, ,@! o %)
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Hence, the tensor category of k-ary quadratic operads with the black product e is
endowed with an internal Hom object denoted hom,(2, %) :=2'oR. Dually,
cohom(2, 2) := 2 e 2' defines an internal coHom object in (k.q.Op, o, €y).

Proof. Let 2=7(V)/(R), 2=F(W)/(S) and 2= 7 (X)/(T) be three k-ary
quadratic operads. There is a one-to-one bijection between maps f : V@ W ®sgn — X
and maps g : V' — WY ® X. It remains to show that Z (f)(W(R® S)) = T is equivalent
to Z(9)(R) c® (St @ F(X)+FZ (W) ®T). By Lemma 18, we have

(Z(@)R), 0 (ST @F(X)+ F (W) ®T) ) gy = F (@R, ¥(S® TH) gy
(

F()(YR®S)),T),,
which concludes the proof. []

For another point of view on this type of adjunction and coHom objects in another
operadic setting, we refer the reader to D. Borisov and Yu. I. Manin [15].

Corollary 27. Let 2 be a k-ary quadratic operad. The operad end(Z?) := 2 o P isa
comonoid in (k.q.Op, o, ).

Proof. The proof comes from general methods of coHom objects. [

Composing A with ®@ : end(2) o end(#?) — end(2) ® end(Z), we get that ' e Z is a
comonoid for the tensor product, that is a Hopf operad (see 1.5).

Theorem 28. For every k-ary quadratic operad 2, the operad end(?) = 7' o 2 is a
Hopf operad.

The first example is Gom = Gom e Lie. Other examples are Prelic @ Perm,
Zinb o Leib.

In [53], Yu. I. Manin proved the equivalent theorem for quadratic algebras. This al-
lowed him to realize quantum groups as black products of an algebra with its Koszul dual
algebra. In this spirit, the previous theorem gives a method to get new “quantum groups”,
that is Hopf operads.

The tensor product of a Lie algebra with a commutative algebra is again a Lie alge-
bra (Courant algebras for instance). This result can be widely generalized. Let 2 be a k-ary
quadratic operad. For any #'-algebra 4 and any Z-algebra B, their tensor product 4 ® B
is a Zie<®> algebra (see [46], Appendix B.5.a., for a proof in the binary case and see [34],
Theorem 2.3, for a proof in the ternary case). In the language of operads, it means that
there exists a morphism of operads Zie®> > 7' ® #. In the particular case of 2 — Zeib
and 2 = Zinb, J.-L. Loday and I. Dokas refined this result and proved in [21] that the
previous map factors through ZreLie. We now give a conceptual proof of the existence of
the map from Zie$®> to #' ® # and show that it always comes from a composite with the
white product.

(AutoPDF V7 20/12/07 16:12) WDG Tmath J-1878 CRELLE, PMU: D(A) 10/12/2007 pp. 1-60 1878_5698 (p. 32)




Vallette, Manin products 33

Proposition 29. For every k-ary quadratic operad 2, there is a canonical morphism of
operads Lie®> L P o P, defined by the commutative diagram

i L P

P o 2.

Proof. Apply Theorem 40 to the triple of operads Zie<*”, 2 and 2. We get a
natural isomorphism Homy, g op(Zie*” @ 2, 2) =~ Homy q op(ZLie*?, 7' o 2). Since Liek”
is the unit object for e, we have Homy qop(2,?) = Homy qop(Ziek?, 2 0 2). Define
Zie®> L 2 o 2 to be the image of the identity of 2 under this isomorphism. []

4.7. Cohomology operations. In this section, we recall the definition of the intrinsic
Lie bracket on the chain complex defining the cohomology theories for algebras over a
Koszul operad. We use the previous section to define another Lie bracket on the same
space. Because of the symmetries, this operation vanishes on cohomology.

Let (2,u7) and (2,u?) be two augmented dg-operads and let p : Z — 2 be a mor-
phism of augmented dg-operads. This morphism makes 2 a module over #. Denote by
,Ltﬁ:l) the partial composition of 2, that is the composition of two non-trivial operations
of 2.

Definition (Derivation). A homogenous morphism 0 :  — 2 is a homogenous deri-
vation of p if

doult 1y =iy o(@®p) +uio(p®a).

This formula, applied to elements p; ® p, of Z ® 2, where p; and p, are homogeneous
elements of 2, gives

dou”(pr ® p2) = 1 (3(p1) ® p(p2)) + (=) (p(p1) ® 2(p2)).

A derivation is a sum of homogeneous derivations. The set of homogeneous derivations
with respect to p of degree n is denoted Der,(#, 2) and the set of derivations is denoted
Der; (2, 2) or simply Der(#, 2) when the morphism p is obvious.

We recall the definition of the cohomology of Z-algebras, when 2 is a Koszul
operad. Let 4 be a #-algebra, that is there is a morphism of operads 2 — End(4). Denote
by Q(2') = (Z(s7'#"),0) the cobar construction of 2!, where the differential 0 is the
unique derivation which extends the partial coproduct of the Koszul dual cooperad #'.
Since 2 is a Koszul operad, Q(2') is a quasi-free resolution of 2.

Q27 — 2
N
End(A).

Lemma 30. Let (#,0) = 2 be a resolution of # and let [ be an homogeneous deri-
vation of degree n in Der) (%, End(4)). One has f o0 € Delr;’_1 (%,End(4)).
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Proof. The degree of f o 0 is n — 1. It remains to show that f o0 is a derivation.
Since (#, 0) is a dg-operad, we have

fodou? =fou”o(0@Id+1d® 0)
=1 o (f@p+p®[f)o(I@Id+1d®0)

=u" o (fod)@p+p®(f00)).
Since Z is concentrated in non-negative degree and 4 is concentrated in degree 0, the com-
posite pod =¢oegodisnull. [J

The deformation theory of the map 2 KA End(A) is studied via the following cochain
complex defined by M. Markl in [54]. The cohomology of a #-algebra A4 is defined on the
space of derivations of p (see also [66], [55] and [40]).

Definition. The cohomology of a P-algebra A is defined by the (deformation) chain
complex

C3(A) := (Der’,(Q(#'), End(4)), d),

where the differential 0 is the pullback by 6, that is d(f) := f o 0.
Since Q(2') is a free operad, we have
Der$ (Q(#'), End(4)) = Homg (7 (s~'#'), End(4)) =~ Hom¢ ' (7', End(4))
~ Hom} ' (#(4), 4),

where Homs (M, N) denotes the set of S-equivariant maps between the S-modules M and
N.

As in the paper of M. Kontsevich and Y. Soibelman [40], we can consider the aug-
mented chain complex Hom¢ (2, End(4)) =~ Hom} (#2'(4), 4). Up to a shift of degree,
the last space corresponds to the Hochschild (co)chain complex for associative algebras,
Harrison cohomology of commutative algebras and Chevalley-Eilenberg for Lie algebras.
Notice that in the literature, this cohomology is called the cohomology of 4 with coefficient
in 4. Since this chain complex is defined to control the deformation of the morphism ®,
that is the structure of #-algebra on A, we call it the cohomology £ with coefficient in A
or simply the cohomology of A, once the operad is chosen.

In these three cases, the chain complex is a dg-Lie algebra whose bracket is often
called the intrinsic bracket (see J. Stasheff [68]). The space Homy (2", End(A4)) of mor-
phisms from a dg-cooperad to a dg-operad is an S-module with the action by conjugation,
that is (f.0)(p) := (f(p.c™")).o. Moreover, it is a dg-operad, called the convolution operad
in [11], Section 1. On the direct sum of the S,-modules of an operad, one can define a pre-
Lie product » whose anti-symmetrization gives a Lie bracket. When the operad is the con-
volution operad Hom} (', End(A4)), the preLie product is a degree 0 operation given by

frg=2 2 2@ 2 L2 End(4) ® End(4) %~ End(4)
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where A’ is the partial coproduct of the cooperad 2. The intrinsic Lie bracket is defined by
[f,g] = f +g— (—=D!¥g « . The space of S-equivariant morphisms Homs (2',End(A4))
is equal to the space of invariants Homy (?i, End(A))S with respect to the action by conju-
gation. It is a subspace of the convolution operad Homy, (,@i, End(A)) stable under the pre-
Lie product *. (See for instance [72] for a proof of this in the coinvariant context. Since we
work over a field k of characteristic 0, the isomorphism between invariants and coinvar-
iants allows us to conclude.) The induced Lie bracket on C3,(4) = Homs (2, End(4)) de-
fines an intrinsic Lie bracket on cohomology. (We refer the reader to [60] a complete study
of the deformation complex.)

When 2 = .o/s, it is exactly the structure defined by M. Gerstenhaber in [26] and
when # = Zie it is the Lie bracket of Nijenhuis and Richardson, which controls the formal
deformations of Z-algebra structure (see D. Balavoine [6], Section 4).

Let 4 be a 2-algebra and C be a 2'-coalgebra, we have by Proposition 29 that
Homy(C, A) is naturally endowed with a structure of P o P-algebra and ZieK-algebra
(see also Section 3.2). Applied to C = 2'(A4), this result gives that the chain complex
C5(A) is a P o P-algebra and a Zie*>-algebra. In the binary case, it means that
Hom} (2'(A4), A) is equipped with another Lie bracket {,} of degree —1. Let « be a mor-
phism of degree —1 defined as follows:

0 P By = P(2) = 52(2) — 2(2) -2 % End(A).

It is a twisting cochain, that is « is solution to the Maurer-Cartan equation o x « = 0, when
2 and A are concentrated in degree 0 (see Getzler-Jones [30], Section 2.3). The Lie bracket

{f,g} is equal to

. . . . o 1yl
P Do P2 @, # O BTSN 0O By

A) ® End(4) %4 End(4).
Note that in the binary case, the latter Lie bracket {,} is not equal to the intrinsic Lie
bracket [, ]. For instance, there is a shift of degree between the two.

Lemma 31. For every [ and g in C5,(A), we have

of)=fre] and {f,g}=0f %g+(~D"\f xdg—a(f xg).
Proof. The proof is straightforward and left to the reader. []

Equipped with the intrinsic Lie bracket [,], C5,(A4) becomes a dg-Lie algebra. The
second formula shows that the Lie bracket {,} vanishes on cohomology. This result and
formula can be explained as follows. The preLie product comes from the partial composi-
tion of the operad. The general composition product of an operad defines symmetric braces.
Since the partial composition of the operad generates the global one, the preLie product
generates the symmetric braces. (See also J.-M. Oudom and D. Guin [62] and [41] for a
proof of this result.) Therefore, we cannot expect to have other products than the intrinsic
Lie bracket in general. In particular examples, it would be interesting to see if the structure
of 2 o #'-algebra induces a non-trivial structure on cohomology. We will see in 5.3 how to
refine this study when the operad is not symmetric (regular).
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5. Black and white square-products for regular operads

K. Ebrahimi-Fard and L. Guo in [22] and J.-L. Loday in [45] defined and used an
analog of Manin’s black product for regular operads that they called the black square prod-
uct. In this section, we give the conceptual definitions of Manin’s black and white square
products for regular operads. They are not equal to the black and white ““circle”-products
in the category of operads. Actually, they come from the black and white products in the
category of non-symmetric operads.

5.1. Definitions of non-symmetric and regular operads. Recall that a non-symmetric
operad is an operad without the actions of the symmetric groups. From a non-symmetric
operad {2, }, .-, We can associate an S-module by the collection of the free S,-modules
on 2(n) := 2, ®, k[Sy]. The composition product for the operad 2 is defined from the
non-symmetric one. Such an operad is called a regular operad. Denote X this functor from
non-symmetric operads to operads. Therefore, the category of regular operads is the image
of ¥ and is equivalent to the category of non-symmetric operads. Denote by U the inverse
functor:

, U
non-symmetric operads = regular operads.
b3

Let # = 7 (V)/(R) be a binary quadratic regular operad. In that case, we have that " and
R are regular modules, that is V' = V' ®, k[S;| and R = R’ ®, k[S3]. The non-symmetric
operad 2’ = U(2) is once again binary and quadratic. It is given by 2’ = F(V")/(R’).

5.2. Definitions of black and white square-products. A non-symmetric operad is a
monoid in the category of non-negative graded modules with a non-symmetric version of
o (see Appendix A). Under the Hadamard product, this category forms a 2-monoidal cate-
gory. Hence, we can apply arguments of Section 3 and consider the morphism ® and the
induced white product for non-symmetric operads. From two binary quadratic regular op-
erads Z = 7 (V)/(R) and 2 = 7 (W)/(S), we study the associated white product

UP)oU2)=F(V' @W)/ (@' (RQFW)+F(V)®F5)).
The idea is now to come back to the category of regular operads using the functor X.

Definition (White square-product). The white square-product of two binary qua-
dratic regular operads 2 and 2 is defined by the formula

202:=%(U(2)0 U(2)).

More explicitly, the white square-product of £ and 2 is equal to
202=F(V'@W Qk[S:))/ (D' (R@F W)+ FZ(V')®S')) ®K[S3]).

Note that the definition given above does not correspond to Definition 3.1 of K.
Ebrahimi-Fard and L. Guo in [22] (see Remark below).

Proposition 32. Let A be a P-algebra and B a 2-algebra, their tensor product A ® B
is an algebra over the white square-product 2 00 2.
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Proof. The proof is the same as Proposition 11. [

Let ¥ be an S;-module. The part # (1)(3) with 3 inputs of the free operad on V is
isomorphic to

FB) =(V®s, VRk®Lk®V)) ®s, k[S3],

where the summand V' ® (V ® k) corresponds to the compositions on the left and the
summand V' ® (k ® V') corresponds to the compositions on the right \P/ . When V' is a sum
of regular representations V = V' ® k[S,], we have

FWB) =@V eV ®k®V)) ®klS;

Therefore, 7 (1')(3) can be identified with 2 copies of V' ® V' represented by the following
types of tree\ﬂ/ and \7 . These two copies correspond to the part of arity 3 of the free non-
symmetric operad on V’. We denote the first composition based on the pattern\ﬁ/ by oy v
and the second one based on ?/ by w op v, where u is below v.

In the appendix B of [46], J.-L. Loday described the non-degenerate bilinear form
{, > for regular operads. It comes from the following one for non-symmetric operads:

F(rB)@F(V")3) k.
<,Lt o1V, C 01 €> = +C(ﬂ)€(1}),
<,U o2V, C 02 é> = _C(ﬂ)é(v)7

the other products being null.

We define the black product of binary non-symmetric operad like in 4.3 (the non-
degenerate bilinear form is given below). Applying the same ideas, we have the analog of
Lemma 18 and Proposition 19.

Lemma 33. Let

P=F (V' ®Kk[S:])/ (R ®Kk[S3]) and 2=F (W' ®k[S:])/(S' ® k[S;3])

be two regular operads such that the V' and W' are finite dimensional. The orthogonal of
Y(R'Q®S") for ,»is (O, (RLQF(W"™)+ F (V™) ®S")).

Definition (Black square product). Let 2’ =7 (V')/(R’) and 2’ = 7 (W')/(S’) be

two binary quadratic non-symmetric operads with finite dimensional generating spaces.
Define their black product by the formula

202 =FV' W)/ (YR ®S)).
The black square product of two binary quadratic regular operads is defined by

7m2:=3(U(?)e U(2)).
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Proposition 34. For binary quadratic regular operads generated by finite dimensional
!
modules, this definition of black product verifies (?m2) = #' 02"

Finally, we can use the particular form of the bilinear product {, ) to make explicit
the morphism ¥ and show that the black square-product defined here corresponds to the
one of [45] and [22].

Proposition 35. Under the same hypotheses, let r ® s be an elementary tensor
of R"® S’'. Denote r =ry +ry, where ry is the part of r corresponding to the composi-
tions of the form \<( and 1, is the part of r corresponding to the compositions of
the form . In the same way, write s=s1+ 8. The image of r®s under ¥ is
Yrs) =0 (rn®s)—o(rn®s).

Proof. Note that r; ® s; and r, ® s, belong to Im®. For X € Z(V"* ® W'™)(3),
denote the image of X under @, by ®.(X) => Dy (X) ® Oy~ (X). More precisely,
we decompose the image of X under ®, with the two types of compositions
(D*(X) = (D*(Xl + Xz) = Zl q)VI*(Xl) ® (I)W/*(Xl) + 22 CDV/*(Xz) X Dy - (Xz) We have

@' (rn®@s1) -0 '(r ® 52), F (E)X)ygw:
=<0 (n®s51), ZE)X)Drgw — (O (n®%), 7 (E)(X)rew
=2 1<, @y (X1) Dy K51, @y (X)) D yrr + D512, @y (X2) Yy L2, @i (X2) D s
= 21K @y (X1) Dy 8, @y (K1) dyyr 4 20 @y (X2) Dy s, Qe (X2) Dy
=2 @y (X)) L5, @y (X) gy
= (Z<V7_>V"<S7_>W’)O(D*(X)' D

Corollary 36. The black-square product defined here is equal to the one defined in [22]
and in [45].

Remark. The white square-product is equal to
202 =7V QW @k[S:))/ (P (R @F(W)+FZ(V')®S')) ®k[S3])

and the black square-product to #m2:=Z (V' Q@ W' @ k[S,])/((¥(R' ® S')) ® k[S3]).
The definition of O proposed by K. Ebrahimi-Fard and L. Guo in [22] corresponds to
Y(RQFW)+F(V')®S') instead of @ '(R' @ F(W')+F(V')® S'). We have
P RFW)+FZ(V)®S)cP(RQF(W)+F(V')®S'). But the second
module can be slightly bigger than the first one (see the example of Zias O Zias in [22],
page 309). This explains why the white square-product defined in [22] is not the Koszul
dual of the black square-product.

With the explicit form of the black square-product, we get the following property
which is [45], Proposition 2.4.

Proposition 37 ([45]). For two binary quadratic regular operads 2 and 2, there exists
a canonical epimorphism ? 2 — #1039
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Proof. We have to show that Do W (R’ ® S') =« R" @ Z(W')(3)+ Z(V')(3) ® S.
Let r ® s be an elemental tensor of R’ ® S’. Denote r ® s = (r; +12) ® (51 + 52). From
Proposition 35, we get

PoVYr®s)=r®@s1—n®@s=>F1+r)@s1 —rn® (s1+ 5)
eRQFWN3) +Z(V)3)®S. O

The proposition means that any £ 0O 2-algebra is a & m 2-algebra. This result to-
gether with Proposition 32, gives the following corollary ([22], Proposition 3.3).

Corollary 38 ([22]). For any P-algebra A and 2-algebra B, their tensor A ® B is a
2 m 2-algebra.

Remark. The operads y* and y~ discovered by J.-L. Loday in [44] factors this
projection
!

Dend m Yias ){D YDend O Dias.

\/

!

Going from the left to the right, there is one more relation each time. (The dimensions of
the spaces of relations are 15, 16 and 17 respectively.)

5.3. Adjunction. We can apply the same methods as in Section 4.6 to prove the
same kind of adjunction for black and white square products for regular operads. Consider
the category of k-ary quadratic regular operads denoted by k.q-Reg. One can extend black
and white square products in this category. Recall from [33] that a rotally associative k-ary
algebra is a module equipped with a regular k-ary operation such that all the quadratic
compositions are equal. Denote the corresponding operad by T.«Zs*>. Dually, a partially
associative k-ary algebra is a module equipped with a regular k-ary operation such that the
sum of all quadratic compositions is zero. Denote the corresponding operad by P.oZs”.
Gnedbaye proved that these two operads are Koszul dual to each other.

Proposition 39. The black and white square products endow the category of k-ary
quadratic regular operads with a structure of symmetric monoidal category, where the operad

P.o/s® is the unit object for m and the operad T <75 is the unit object for 0.

Theorem 40. There is a natural isomorphism
Homy g reg(7 8 2, %) = Homy g ree(?, 2' OZ).

Proposition 41.  For every k-ary quadratic regular operad 2, there is a canonical mor-
phism of operads P<ts®> 5 2' 02, defined by the commutative diagram

Paso L, P o
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This proposition can be seen as a refinement of Proposition 29. When £ is a k-ary
regular quadratic operad, the map ZLie®> — #' ® 2 factors through P.oZs*?, where the
morphism Zie<¥>? — P.o/s**? is induced by the anti-symmetrization of the k-ary partially
associative product as in the binary case.

5.4. Non-symmetric cohomology operations. In this section, we refine the arguments
of Section 4.7 for non-symmetric (regular) operads. This gives non-vanishing natural oper-
ations on the deformation chain complex of any algebras over such operads. More pre-
cisely, we prove that, under some assumptions, the (co)chain complex defining the coho-
mology of algebras is a multiplicative operad.

Recall from [28] that an operad with multiplication is a non-symmetric operad %
endowed with a morphism .oZs — Z£. Let & be a finitely generated binary non-symmetric
Koszul operad. Following Section 4.7, the chain complex defining the cohomology of a
P-algebra A is equal to C3(A4) = Homj (#',End(4)) which is a non-symmetric (convo-
lution) operad. By Proposition 41, there is a morphism of operads .«Zs — 2' ® 2. Since
2" = 2" we have

oAs — P ® P = Homy(#', 2) % Homy (7', End(4)).
These results form the following proposition.

Proposition 42. For every finitely generated binary non-symmetric Koszul operad 2
and every P-algebra A, the chain complex defining its cohomology C5,(A) is an operad with
multiplication.

The multiplication .«Zs — 2 of an operad £ allows us to define a canonical cosimpli-
cial structure on it (see [50], Section 3) and then a differential map d by alternate summa-
tion (see [28], Formula (5)). Denote by m the image of the associative operation. The face
maps d' : (n) — P(n+ 1) are defined by

moy, p ifi=0,
di(p) =< poim ifO<i<n+]l,
moy p ifi=n+1.

The differential d is equal to d(f) :=m* f — (—l)m *m = [m, f].

Lemma 43. With the same assumptions, the differential 0(f) on C5,(A) is equal to
—DVlap. Hence, the chain complex C5,(A) is always cosimplicial.
7

Proof. The image of the associative operation in Homy (%', End(4)) is the map
o : 2 (2) — Hom(A®?2, A) defined in Section 4.7. We prove in Lemma 31 that the differen-
tial on C3(A) is equal to o(f) = [f, o] = (=D)Y'd(f). O

Therefore, the chain complex C3,(A4) is endowed with two types of operations: braces
operations induced by the non-symmetric operadic structure and an associative operation
called the cup product coming from the properties of Manin’s products. In [28], M. Gersten-
haber and A. A. Voronov defined the notion of homotopy G-algebra which gives the com-
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patibility between these types of operations. Their purpose was to describe the operations
acting of the chain complex of Hochschild cohomology of an associative algebra. Actually,
the structure of homotopy G-algebra on the deformation chain complex and the structure
of Gerstenhaber algebra on cohomology is universal among finitely generated binary non-
symmetric Koszul operads.

Corollary 44. For every finitely generated binary non-symmetric Koszul operad & and
every P-algebra A, the chain complex C5,(A) is a homotopy G-algebra and the cohomology
space H3,(A) is a Gerstenhaber algebra.

Proof. Apply [28], Theorem 3, which asserts that any multiplicative operad induces
a homotopy G-algebra on the direct sum of its components. To prove the second part, ap-
ply the computations of the proof of Corollary 5 of [28]. [

5.5. Generalized Deligne’s conjecture. Finally, we extend and prove Deligne’s con-
jecture to any algebra over a finitely generated binary non-symmetric Koszul operad, which
includes the original case of associative algebras.

The little disk operad 2, is a topological operad defined by configurations of disks on
the plane. In 1976, F. Cohen showed that the homology operad H.(%,) is equal to the op-
erad coding Gerstenhaber algebras [19]. This led P. Deligne to make the following wish “I
would like the complex computing Hochschild cohomology to be an algebra over [the sin-
gular chain operad of the little disks] or a suitable version of it” in [20]. By suitable version
of it, he meant another operad homotopically equivalent to &,. This conjecture can be seen
as a lifting on the level of chain complexes of the result of F. Cohen. In 1999, J. E. McClure
and J. H. Smith gave a prove of this conjecture in the following way. First, they construct a
topological operad ¥ whose chain version acts on any multiplicative operad. Then, they
show that this operad is equivalent to the little disks operad. This proof with Proposition
42 shows that Deligne conjecture can be generalized to any finitely generated binary non-
symmetric Koszul operads and is not specific to the case of associative algebras.

Theorem 45. For every finitely generated binary non-symmetric Koszul operad & and
every P-algebra A, the chain complex C,(A) is an algebra over an operad equivalent to the
singular chains of the little disks operad.

Proof. Since C5,(A) is an operad with multiplication, the operad % of [50] acts on it.
And this operad is weakly equivalent to the little disks operad by [50], Theorem 3.3. [

Notice that the non-symmetric case is very different from the symmetric one. The Lie
bracket {,} described in Section 4.7 vanishes on cohomology. When the algebra is mod-
elled by a non-symmetric operad, this Lie bracket is the symmetrization of an associative
operation, the cup-product, which is not necessarily trivial on cohomology.

In [56], M. Markl defined the notion of natural operations on cohomology and asked
a few questions and conjectures about the operad %, generated by these operations. Here
we have proved that, for binary non-symmetric Koszul operads, the Gerstenhaber operad
imbeds into #4. For more precise statements depending on the operad £, one has to work
with 2' 0 2. In the symmetric case, operations of 2' o 2 could give non-trivial operations
in cohomology.
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Remark. In [73], D. Yau proved this generalized Deligne’s conjecture for a few op-
erads found by J.-L. Loday. His method is based on a notion of pre-operadic system which
ensures that C3,(4) = Homy (2", End(4)) is an operad. Actually this notion comes from
the axioms of a basis for the Koszul dual cooperad. The cohomology space of an algebra
over any non-symmetric Koszul operad is always a non-symmetric operad (convolution
operad from the Koszul dual cooperad to the endomorphism operad). Then, the author
shows, case by case, that the cohomology of the operad is multiplicative. In fact, the ad-
junction of Manin’s products for non-symmetric binary operads always provides a mor-
phism .oZs — C5,(A4).

5.6. The operad 2uad and its Koszul dual. In this section, we study the example of
black square-product 2uad = Yend m Yend introduced by M. Aguiar and J.-L. Loday in
[1]. We prove that the Koszul dual of 2uad is the operad

Quad' = Perm ® ZDias = Perm o Dias.

The operad Zend is a split of one associative product x into two products < and
>, * =<+ . The operad 2uad was defined by M. Aguiar and J.-L. Loday in [1]
as a split of an associative product x into four products 7, \, , and ~, that is
*=,/4+\,+ . +\. It was proved in [22] that this operad 2uad is equal to the black
square-product Zend m Yend. Therefore one can interpret the splitting of associativity
with the black square-product with Zend. At the end of their paper, M. Aguiar and J.-L.
Loday raised one question “what is the Koszul dual of the operad 2uad?” and two conjec-
tures. The first conjecture deals with the dimensions of the S,-modules 2uad(n) and the
second one is that the operad Zuad is Koszul. In the rest of this section, we answer these
questions.

The previous section gives a direct answer to the first question.
Proposition 46. The Koszul dual of 2uad is equal to 2uad' = Dias 0 Dias.

Proof. Since the Koszul dual of Zend is the operad Zend' = Zias ([46], Proposition
8.3), we have

Quad' = (Zend m Dend)' = Dend' © Dend' = Dias Dias,
from Proposition 34. []

It remains to use the explicit form of the white square-product to describe
Yias O Yias.

Theorem 47. The operad 2uad' = Zias 0 Zias is isomorphic to
Perm R Dias = Perm Q Perm Q s.
Proof. Denote the basis of Zend’(2) by <.k @ >.k and its dual basis, the basis
of Zias'(2), by -k ®F.k. The induced basis of 2uad’(2) = (Zend m Zend)'(2) is

{(<®<,<®>,>®<,~® >} and the induced basis of 2uad’(2) = (Ziast Zias)'(2)
is {(1® 1, 4®F,F® -,F ®F}. The relations of Zias are easy to remember. Represent
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the operation - by the tree Y and the operation i by the tree Y. Any element of
F (Hk ®F.k)(3) can be seen as a tree with exactly one path from one leaf to the root.
For example, the composition 4 o} F corresponds to the tree . To get the relations
of Yias, identify the trees with paths from the same leaf. For instance, we have
<o F =F oy -, which corresponds to \</ = \? The relations of Zias are

_|01_|:—|02_|I—|02|— (L),
—|01|—:|—02—| (]‘4)7
|—01—|:|—01|—:|—02|— (R),

where the first line corresponds to the Left leaf, the second one to the Middle leaf and the
last one to the Right leaf. For simplicity, denote these compositions and relations by

Li=1L;=L1},
M = M,
R| =R} =R,.

The operad Zias is equal to Z (V' ® k[S3])/(R’ ® k[S3]). One can see that the following
relations are elements of (R® Z (V') + 7 (V') ® R) N Im ®:

(LLL) L®L=L®L=L/QL,=L,QL! =L!® L,
(LLM) Li®@M =L,QM, =L}® M,

(LLR) L®R =L ®R/=L,®R =L}QR,,

(M, M) M, ® M, =M, Q M,.

The other ones are obtained by the symmetries — and a® b — b ®a. We get

23 linearly independent elements in (R® Z (V') +Z(V')® R) nIm®. Since the
dimension of 2uad’'(3) is 23 =32 -9, we know that these elements form a basis of
(R®ZF(V')+Z (V') ® R) nIm ®. Hence, they give the relations defining 2uad'.

Interpret these relations in the same way as the ones of Zias. An element of

F ((Hk @+ k) ® (Hk @F.k))(3) can be seen as a tree with two kinds of paths, one glven
by the left side of ® and the second one by the right side of ®. For instance, the tree \<
represents (4 ® ) o; (- ® ), where the left side corresponds to = and the right side to -
This produces two indexes for the leaves. With this identification, the relations of Quad
mean that any elements written with trees such that the same leaves are indexed by the
same ““colors” are equal. Therefore, a basis for 2uad'(n) is given by planar corollas with n
leaves indexed by two colors. The composition of such trees is a corolla and to know which
leaf is indexed by which color, follow the path of the same color. As a consequence, we
have Zias 0 Zias = Perm ® Zias. (A basis for the operad Zias is given by corollas with
one leaf emphasized. Tensoring with Zerm induces another independent index of the
leaves. And the compositions are the same.) []

Remark. More generally, we get the duals of the operad coding octo-algebras of P.
Leroux [42] and its follow-up. Since Octo = Zend™, we get Octo' = Perm®* ® /s and,
forany ne N, (@end'”) Pias"" = Perm®" ® ofs.
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Corollary 48. The dimensions of the components of the Koszul dual of 2uad are equal
to

dim(o@uadl(n)) =n’nl.
Proof.  We have dim(2uad' (n)) = dim(ZPerm(n) ®, Zias(n)) = n’nl. O
Proposition 17 gives that
Dias O Dias = Perm Q Dias = Perm o Dias = Perm Q Perm Q s = Perm o Perm o ofs.

We have Zias = X(Perm) and Zias 0 Dias = X(Perm o Perm) = X(Perm®?). By duality,
we get another form for 2uad.

Corollary 49. We have 2uad = Perm e Perm o ofs.

5.7. Koszulity of 2uad and other operads defined by square products. Aguiar
and Loday made in [1] the conjecture that the operad 2uad is Koszul. We show this
statement using poset’s method of [70]. More generally, we prove that the operads of
the form Zend™" and Zias"" are Koszul. P. Leroux introduced in [43] the operad
Ennea = Jri%end m Tri%end. We prove the same results for the family Jri%end™" and
Jrias"". All these families provide infinitely many examples of the generalized Deligne’s
conjecture proved in Theorem 45.

In order to study the homological properties of the algebras over an operad, it is cru-
cial to prove that the operad is Koszul. We refer the reader to the paper of B. Fresse [24] or
to the book of M. Markl, S. Shnider and J. Stasheff [58] for a full treatment of the subject.
Since an operad is Koszul if and only if its Koszul dual is Koszul, we work with the sim-
plest one to prove that the pair is a pair of Koszul operads. In the case of the operads 2uad
and Quad' = Perm ® Zias, we will prove that the Koszul property holds for the last one,
Perm QR Jias.

Let 2 be an algebraic operad coming from an operad in the category of sets. For in-
stance, it is the case when the relations defining the operads only involve equalities between
two terms and no linear combination. The operads .oZs, ¥om, Perm and Zias are of this
type. In [70], we defined a family of partition type posets associated to such an operad 2
and proved that the operad is Koszul over Z and over any field k if and only if each max-
imal intervals of the posets are Cohen-Macaulay.

We saw in the proof of Theorem 47 that
Quad' = Perm ® YDias = Perm Q Perm Q ofs.

Therefore, 2uad' is a set operad with basis {(i, j,o)|1 <i,j <n,c€S,}. The partitions
associated to Zuad' are of the form (a(1),...,0(i),...,a(j),...,a(n)), where 1 <i,j <n

and o € S,.. The order between the 2uad'-partitions is given by the refinement of partitions
with respect to the two indexes. For instance, we have {(3,1,5),(2,4)} = {(3,1,5,2,4)}.

Lemma 50. For each n € N, the maximal intervals of the poset Il peymgaias(n) associ-
ated to the operad Perm ® Yias are totally semi-modular.
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Proof. The proof is the same as [18], Lemma 1.10, 1.15 and 2.6. [
Theorem 51. The operad 2uad is Koszul over 7.

Proof. The maximal intervals of the posets I1y.mezias(n) are totally semi-modular.
Therefore they are Cohen-Macaulay over Z by [5], [23]. One can see that the operad
Perm Q Yias is a basic set operad (see [70], page 6). Then we can apply [70], Theorem
9. O

Corollary 52. The dimensions of the homogeneous components of 2uad are equal to

dim (2uad(n)) = (n — 1)!2"Z_I< 3n )(’ -1 >

o \n+1+j j—n

Proof. When an operad £ is Koszul, there are relations between the dimensions of
2(n) and the dimensions of #'(n) (see [31], Theorem (3.3.2), or [46], Appendix B.5.c.). Use
these relations with Corollary 48 to conclude. [

More generally, we have seen that, for every ne N, (Zend '”)! = Perm®" @ .ofs,
which is a basic set operad. The related partitions have the same form as the ones for
Quad' but with n types of indices instead of 2.

Theorem 53. For every n, the operad Dend™" is Koszul over Z.
Proof. Apply the same arguments. [

J.-L. Loday and M. Ronco introduced in [47] the pair of Koszul dual operads
Trias and Tri%end. A Trias-algebra is a Zias-algebra with an extra operation. In [70],
we defined a commutative analogue of Jrias which we denoted by “omJrias. The
®omIrias-partitions are partitions with at least one element of each block emphasized.
The Jrias-partitions are ordered partitions with at least one element in the block empha-
sized. Using the same ideas as before, we have the following results. The operad
Trias®" =~ €omTrias®" @ .o/s. The maximal intervals of I1 0. are totally semi-modular.

Theorem 54. For every n, the operads Trias®" and Tri%end™" are Koszul over Z.

Recall from [22], Proposition 3.5, that Jri%end m Tri%end is isomorphic to the
é&nnea operad defined by P. Leroux in [43]. The previous theorem gives that the &nnea op-
erad is Koszul over Z.

From this result, we get four infinite families of operads for which Deligne’s conjec-
ture holds.

Corollary 55. Let 2 be an operad of the form Dend™", Dias"", Tri%end™" or
Trias®". Then for any P-algebra A, the chain complex C5,(A) is an algebra over an operad
equivalent to the singular chains of the little disks operad.

Proof. By the previous theorems, these operads are finitely generated binary non-
symmetric and Koszul. Then apply Theorem 45. []
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Notice that the poset’s method of [70] allowed us to prove that these operads are Kos-
zul over Z. Since the proof of Deligne’s conjecture [50] also works over the ring of integers,
this last corollary holds over Z.

Appendix A. Associative algebras, operads and properads

This appendix is a short survey on the notions of associative algebras, operads and

properads which are the main examples of 2-monoidal categories treated in this text. For
a complete treatment of the subject, we refer the reader to [69].

A.1. Associative algebras.

Associative algebras, operads and properads are monoids
in some monoidal categories.

Let k& be the ground field and let (k-Mod, ®,, k) be the monoidal category of k-
modules equipped with the tensor product over k.
Definition (Associative algebra). A monoid (A4, u,7) in (k-Mod, ®;,k) is an asso-
ciative algebra. The product y: A ®; A % A is associative and k - A is the unit of A.
The product of elements a;,

.,a; of A can be represented by an indexed branch, see
Figure 2.

Figure 2. Product of ay,...,q;.

Example. Let M be a k-module. Denote by End(M) := Homy (M, M) the space of
endomorphisms of M. With the composition of endomorphisms, End(/) is an associative
algebra.

An associative coalgebra is a comonoid in (k-Mod, ®y, k), that is a monoid in the
opposite category.

A.2. Operads.

An S-module is a collection {#(n)}, - of right modules over the
symmetric group S,. In the category of S-modules, one defines a monoidal product by
the following formula:

P o 2(n) = S ( D 2() @k (2i1) @y - ®r 2(i1)) s, x5, k[Si]
<I<n N\ir+-ti=n

).
S
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where the coinvariants are taken with respect to the action of the symmetric group S; given
by (p®kqi---q1 ®i0) == p" vy - - - i) vlofor pe 2(l), gy e 2(i}), 0 € S, and
v e S, such that v is the induced block permutation.

The notion of S-module is used to model the multi-linear operations acting on some
algebras. The monoidal product o reflects the compositions of operations and can be repre-
sented by 2-levelled trees whose vertices are indexed by the elements of 2 and 2, see Figure
3. The unit of this monoidal category is given by the S-module 7 = (k, 0,0, ...), which cor-
responds to the identity operation represented by |.

X X, X3 X4 X5 Xg X5 Xg

Figure 3. The monoidal product 2 o 2.

Definition (Operad). A monoid (2, u,n) in (S-Mod, o, 1) is called an operad. The
associative product y: 2 o # — 2 is called the composition product and 5 : I — 2 is the
unit.

Example. Let M be a k-module and consider End(M) := @ Homy(M®" M).
neN*

The permutation of the inputs of a morphism in Homy (M ®", M) makes End(M) into an
S-module. With the natural composition of morphisms, End(M) is an operad called the
endomorphism operad.

A cooperad is a comonoid in (S-Mod, o, I).

To every k-module ¥, one can associate an S-module V := (1,0,0,...) concentrated
in arity 1. This defines an embedding of k-Mod into S-Mod. One can check that this
embedding is compatible with the monoidal products, thatis ¥ ® W = V o W. Therefore,
(k-Mod, ®y, k) is a full monoidal subcategory of (S-Mod, o, ). Thus every associative al-
gebra is an operad.

We can forget the action of the symmetric groups and work in the category of N*-
graded vector spaces. This category is endowed with a monoidal product, a non-symmetric
analog of the previous one. We still denote it by o:

20 2(n) ::1</<< D 9(1)@,((Q(i1)®k...®k2(i;))>.

iy ++i=n

Definition (Non-symmetric operad). A monoid in this monoidal category is called a
non-symmetric operad.
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We can also define a notion of operads with colors indexing the inputs and the out-
puts. The composition of such operations have to fit with the colors. Such operads are
called colored operads (cf. [72], [12]).

A.3. Properads. We are going to pursue this generalization. Elements of an associa-
tive algebra can be seen as operations with one input and one output (see Figure 2). Ele-
ments of an operad represent operations with multiple inputs but one output. To model
operations with multiple inputs and multiple outputs, one uses the notion of S-bimodule.
An S-bimodule is a collection {#(m,n)}, ,.n- of modules over the symmetric groups
S, on the right and S,,, on the left. In this category, we define a monoidal product based
on the composition of operations indexing the vertices of a 2-levelled directed connected
graph, see Figure 4.

Vi Y2 V3 Va4

Figure 4. Composition of operations with multiple inputs and multiple outputs.

Let a and b be the number of vertices on the first and on the second level respectively.
Let N be the number of edges between the first and the second level. To an a-tuple of inte-
gers 7 := (iy,...,i,), we associate |1 :== i} + - - - + i,. Given two a-tuples 7 and J, we denote
by 2(7,7) the tensor product 2(ji,i1) ® - -+ ® 2(j4, i,) and we denote by S; the image of
the direct product of the groups S; x --- X S; in Sy;.

Definition (Connected permutations). Let N be an integer. Let k = (ki, ..., k) be a
b-tuple and 7= (ji,..., j.) be an a-tuple such that

k| =ki+-+ky=|]l=j1+-+ja=N.

A (k, 7)-connected permutation ¢ is a permutation of Sy such that the graph of
a geometric representation of ¢ is connected if one gathers the inputs labelled by
i+ +ji+1 . 4+ i+ jir, for 0<i<a—1, and the outputs labelled by
ki 4 +ki+1,. . ki+-+ki+kiiq, for 0<i<b—1. The set of (k, J)-connected
permutations is denoted by S¢ P

Example. Consider the permutation (1324) in S4 and take k = (2,2) and 7= (2,2).
If one links the inputs 1, 2 and 3, 4 and the outputs 1, 2 and 3, 4, it gives the following
connected graph:
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Oo—Q2 O—©

X

Oo—2 o—.
Therefore, the permutation (1324) is ((2,2), (2,2))-connected.

Let 2 and 2 be two S-bimodules, their monoidal product is given by the formula
. 2mn) = @ (@ kS, @5 210 @5, KIS{ | @5, 2050 @5 kS
NeN"\j k7 g " : SxS,

where the second direct sum runs over the b-tuples I, k and the a-tuples 7, 7 such that
|l| =m, |k| =17 = N, [i| =n and where the coinvariants correspond to the following
action of S;* x S,

0P ® - @RI X ®q. ®w
~Hffl @ Py @ @ Pri(h) @170V R (1) @+ @ Goia) @ V5 ',

for0eS,,, weS,, ge Slg ; and for r € S, with 7; the corresponding block permutation,
ve S, and v; the corresponding block permutation. The unit / for this monoidal product
is given by

{ I(1,1) :==k, and

I(m,n) :=0 otherwise.
We denote by (S-biMod, [x], ) this monoidal category.

Remark. We need to restrict compositions to connected graphs and connected per-
mutations in order to get a monoidal category (see [69], Proposition 1.6).

Definition (Properad). A properad is a monoid in the monoidal category
(S-biMod, X1, 7).

Example. Let M be a k-module and consider

End(M):= & Homy(M®" M®™).

m,neN*

The permutation of the inputs and the outputs of an element of Homy (M ®" M ®™) makes
End(M) into an S-bimodule. Once again, End(M), endowed with the natural (connected)
composition of morphisms, is a properad.

A comonoid in (S-biMod, [x], /) is called a coproperad.

To an S-module ¥, we associate an S-bimodule ¥ defined by

{ V(1,n):=V(n) and
V(m,n) =0 for m > 1.
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This defines an embedding of monoidal categories, that is VoW =V x W. The category
(S-Mod, o, 1) is a full monoidal subcategory of (S-biMod, [x],7). Hence, an operad is a
properad.

Since the notion of properad includes the one of associative algebras and operads, we
work in this general framework throughout the text. We resume these notions in the follow-
ing table:

MONOIDAL CATEGORY: (k-Mod, ®;) >—— (S-Mod, o) >—— (S-biMod, x]),

MoNoID: associative algebra >~——  operad >——  properad.

Remark that the first monoidal product &, is bilinear and symmetric, the second one o is
only linear on the left and has no symmetry. The third one [x] has no linear nor symmetric
properties in general.

Ad4. P-gebras. In this section, we precise the previous analogy with multi-linear
operations and recall the notion of an (al)gebra over a properad.

Let (A,p,u) be an associative algebra and let M be a k-module. Recall that a
structure of module over A on M is given by a morphism of associative algebras
¢: A — End(M). More generally, we have the following definition.

Definition (#-gebras). Let 2 be a properad and let M be a k-module. A structure of
P-gebra on M is a morphism of properads ¢ : # — End(M).

When £ is an operad, this corresponds to the notion of algebra over 2 or Z-algebra
(see V. Ginzburg and M. Kapranov [31]). There is an operad .«/s such that the category of
o/s-algebras is equal to the category of non-unital associative algebras, an operad %om
such that the category of $om-algebras is equal to the category of non-unital commutative
associative algebras and an operad .Zie such that the category of Zie-algebras is equal to
the category of Lie algebras.

Categories of “algebras” defined by products and coproducts (multiple outputs),
cannot be modelled by operads, one has to use properads. Recall from [69], that there is a
properad %i such that the category of #i-gebras is equal to the category of non-unital non-
counital bialgebras and there exists a properad %i.Zie such that the category of %iZie-
gebras is equal to the category of Lie bialgebras, for instance.

Remark. Following the article of J.-P. Serre [67], we choose to call a gebra any al-
gebraic structure like modules over an associative algebra, associative algebras, Lie alge-
bras, commutative algebras or bialgebras, Lie bialgebras, etc.... .

This point of view on algebraic structures allows us to understand and describe gen-
eral properties between different types of gebras. Constructions on the levels of operads or
properads induce general relations between the related types of gebras.

A.S. Free and quadratic properad. The forgetful functor U from the category of
properads to the category of S-bimodules has a left adjoint 7
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U : properads = S-biMod : #.

We gave an explicit construction of it in [71] by means of a particular colimit. For
every S-bimodule V, it provides the free properad # (V) on V. It is given by the direct
sum of connected directed graphs with the vertices indexed by elements of /. The compo-
sition product u is simply defined by the grafting of graphs. Therefore, the number of
vertices is preserved by x and it induces a natural graduation denoted ., (V") and called
the weight.

Remark that, when V is a k-module, we find the tensor algebra 7(7") on V, which is
the free associative algebra on V. When V' is an S-module, we get the free operad in terms
of indexed trees like in [31], Section 2.1.

We can generalize the notion of ideal for an associative algebra to ideals for operads
and properads (see Appendix B). Let 7 be an S-bimodule and R be a sub-S-bimodule of
Z (V), we consider the ideal generated by R in Z (V) and we denote it by (R). As usual,
the quotient .7 (V) /(R) has a natural structure of properads. When R = 75 (V'), the quo-
tient properad is called a quadratic properad. When V' is a k-module, this definition corre-
sponds to the notion of quadratic algebra (see Y. Manin [53]) and when V" is an S-module it
corresponds to the notion of quadratic operad of [31].

Examples. The symmetric and the exterior algebras are natural examples of qua-
dratic algebras. The operads .o/s, ¥om and Zie are the most common quadratic operads
(see [31]). The properads #iZLie of Lie bialgebras, ¢%i of infinitesimal bialgebras and
Zrob of Frobenius bialgebras are quadratic properads (see [69], Section 2.9).

Since R is homogeneous of weight 2, the quotient properad # (V)/(R) is graded by
the weight.

Dually, there is a connected cofree coproperad denoted Z (V') (see [69], Section 2.8).

A.6. Hadamard tensor product. We define another monoidal product in the cate-
gory of S-bimodules.

Definition (Hadamard product of S-bimodules). Let V" and W be two S-bimodules.
Their Hadamard product is defined by (V ®y W)(m,n) := V(m,n) ®; W(m,n).

When V' and W are S-modules, the Hadamard product is equal to
(V' ®u W)(n) := Vn) @ W(n).

When it is obvious that in the context we are dealing with the Hadamard product, we sim-
ply denote it by &.

This monoidal product is bilinear and symmetric. The unit of the Hadamard product
is the S-bimodule K defined by K(m,n) := k, with trivial action of S, and S,,, for all n, m
(and K(n) = k for S-modules). (The properad K models commutative and cocommutative
Frobenius algebras.)
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Appendix B. Categorical algebra

The aim of this section is to define the notion of “ideal of a monoid” in a modern,
categorical point of view. Working in the opposite category, we get the dual notion for co-
monoids. The other purpose of this categorical treatment is to characterize the ideal ““gen-
erated by’ and its dual notion.

B.1. Definition of the “ideal” notions. In this section we define the notions of ideal
monomorphism and ideal subobject of monoids. Dually, we define the notions of coideal epi-
morphism and coideal quotient.

Let us work in an abelian monoidal category, that is an abelian category .«/ endowed
with a monoidal product [x]. Consider the subcategory .#on., whose objects ar monoids
in .«/. One natural question now is to ask whether .#on_, is still an abelian category. The
answer is no because the class of monomorphisms is too wide, for instance. Recall that
in an abelian category the class of monomorphisms is equal to the class of kernels. Every
morphism 4 — B in .#on, admits a kernel i : K> A4 is .«/. The following diagram is com-
mutative:

KKK AR A B B

E,Uk lm J{ﬂB

K ——~ 4 L. B

where u, and py stand for the product of the monoid 4 and B respectively. Since
(fXR f)o(ixli)=(foi)X(foi)=0, the composite f ou, o (iX i) is equal to 0. By
the universal property of the kernel 7, there exists an associative map ug : K XK — K
making K into a monoid and i: K>»> A a morphism in .#Zon,. Hence kernels exist in
on and every kernel is a monomorphism. Actually, K has more properties than just be-
ing a submonoid of 4 (see B.2), which explains why not all monomorphisms are kernels.
On the other hand, let />~ A4 be a monomorphism of monoids, its cokernel 4/ in .7 is
not necessarily a monoid. Following Kummer’s language, we restrict our attention to ideal
monomorphisms, that is monomorphisms that are kernels in .#Zon_,.

Definition (Ideal monomorphism). Let />4 — Q be an exact sequence in .o,
where A is a monoid. In other words, /> A is the kernel of 4 — Q and 4 — Q is the
cokernel of /> A.

The monomorphism /> A in .#on_, is an ideal monomorphism if A — Q is a mor-
phism in .#on_,.

In this case, we say that [ is an ideal (subobject) of 4 and Q is naturally a quotient
monoid, also denoted by A/1I.

Dually, recall that a comonoid in ./ is a monoid in the opposite category .7 °P. If we
dualize the previous arguments in the opposite category, we can see that the category
%omon_, of comonoids in ./ is not an abelian category because the class of epimorphisms
is too big. The cokernel in .7 of a morphism in ¥omon,, is a morphism in ¥omon,, (and
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even more), but the kernel in ./ of a morphism in ¥omon,_, is not necessarily a morphism
in ¥omon,,. Therefore, every epimorphism of comonoids is not a cokernel. Once again, we
call coideal epimorphisms, the epimorphisms that are cokernels.

Definition (Coideal epimorphism). Let /> C — Q be an exact sequence in .o7,
where C is a comonoid. The epimorphism C — Q in ¥omon,, is a coideal epimorphism if
I — C is a morphism in ¥omon_,.

In this case, the subobject /> C is naturally a subcomonoid of C and the quotient Q
is called a coideal quotient.

Remark. The term coideal is already used in the literature, but stands for a (coideal)
subobject J > C (or a monomorphism) in .7 of a comonoid C such that its cokernel in .o/
is a morphism in ¥omon,,. It is equivalent to ask that the quotient C/J is a comonoid.

This notion does not correspond to the dual of the notion of ideal, where “dual”
means ““in the opposite category”.

B.2. Relation with the classical definition. We now relate this definition of ideal with
the classical notion. Let 1 »> 4 —» Q be a sequence in .#on,,, exact in .«Z. Denote by u 4
and p, the products of 4 and Q respectively. The morphism # is a morphism in .#Zon,,
means that the following diagram commutes:

AR A 0K Q
l/u Jﬂg
4 == o
Let x : K; > A [X] A be the kernel of 7 [X] 7 in ..
Proposition 56. Let .o/ be a monoidal category such that the monoidal product [x] pre-

serves epimorphisms. A monomorphism I A is an ideal monomorphism if and only if the
composite wo i, oK is equal to 0.

Proof. (=) It comes from mo u, ok = py o (nXn)ox =0.

(<) From the hypothesis, we have that 7 [x] 7 is an epimorphism. Therefore, it is the
cokernel of x and by the universal property of the cokernel, there exists a morphism
Ug : QX Q — Q such that 7 o i, factors through 7 [X] 7. It is then straightforward to check
that u, defines an associative product on Q. [

The extra assumption, that the monoidal product has to preserve epimorphisms, is
verified in every cases studied in this paper. For a proof of this fact, we refer to Proposition
1, Proposition 10 and [71], Section 5.

The problem is now to make explicit the kernel x : K;»— A4 [X] A of 7 [X] 7.

Definition (Multilinear part). The multilinear part in X of AX (X @ Y) [x] B is de-
fined either
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ObythecokernelofA.Y.B A.(X@Y).B

e or by the kernel of AX| (X @ Y) X B AR, ®B

AX Y X B,

since iy is a section of my, that is 7, o iy = Idy, these two objects are naturally isomorphic.
We denote it A X (X @ Y) X B.

It corresponds to elements of 4 [x] (X @ Y) [x] B with at least one element of X in
between.

Suppose that we are working in an abelian category .o/ such that every short exact
3

1 T
sequence splits, that is / >—— 4 = O or equivalently 4 ~ I @ Q. Once again, this

. . . . T . . .
condition is verified in every category studied here since they are categories of representa-
tions of finite groups over a field of characteristic 0.

Proposition 57. In a monoidal abelian category such that the monoidal product pre-
serves epimorphisms and where every short exact sequence splits, we have

=AX(A+1)+(A+1)X A4,

X (A+1)

where AX (A +1) _Im(A.(A(-BI)HA.(A@I) AR A).

Proof. 1t is enough to prove that A X1 (Q+ 1) + (Q + 1) X 4 is the kernel of 7 [X] 7.
We have the following commutative diagram:

O (Q®I) omA —2" 0RO
3102? TRA 77 IHQ
AR (0®I) ! ARA " AmOQ

N

AR (QON®(QONKA ——< (0B KA 2> (0O 1)K O,

where the two dotted arrows exist by the property of kernels applied to the first line and
last column. Since 4 [X] (Q + 1) + (Q + 1) X A is by definition the image of the morphism
i1 @ iy, it remains to show that z [X] 7 is the cokernel of i; @ i. The assumption that every
short exact sequence splits implies that the maps #; and 6, are epimorphisms. It is then
straightforward to check that 7 [X] 7 is the cokernel of iy @ ir. [

Since 1 : 1> A is the kernel of 7 : 4 — Q, there exists a morphism & making the fol-
lowing diagram commute:

AR (A+D)+(A+1) KA > AXA

| |

1 A
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Hence, we get mo 10 i = 0. When the monoidal product is additive on the left and on the
right, we have A ® (4+1) =A®I and (A+1) ® A=1® A. In this case, the notion of
ideal corresponds to the classical one.

Dually, let 7>>C = Q be a sequence in %omon,, exact in /. Denote by
7 : CX] C — CoKp the cokernel of 7 [x] 2. Note that when every short exact sequence splits,
we have CoKp 2 K; 2= CX (C+1)+ (C+1) X C.

Proposition 58. Let .o/ be a monoidal category such that the monoidal product [X] pre-
serves monomorphisms. An epimorphism C — Q is a coideal epimorphism if and only if the
composite y o A¢ o 1 is equal to 0.

Proof. We work in the opposite category and we apply Proposition 56. []

In the case of a coassociative coalgebra C =1 @ @, it means that the composite
TR CACRn)oAcol: I - QR CAC®Q is null. In other words, we have
Ac(c)eI®I, forcel.

B.3. Various notions of modules. We recall briefly the various notions of modules
and relate one of them to the notion of ideal.

Definition (Module). An object M of .o/ is a left module over a monoid A if there
exists a map A [x] M — M compatible with the product of 4. Dually, there is a notion of
right module. And a compatible left and right action defines a bimodule.

At first sight, the biadditive case could lead to the following definition: 7 is an ideal of
A if it is a bimodule over 4 : AX]1 — I and I xX] 4 — I. The main problem with such a
notion is that 4/7 is not a monoid when [X] is not biadditive. Instead of that, one has to
consider a linearized version of module.

Definition. An object M of .o/ is called a multilinear left module over A if it is en-
dowed with a map 4 X (4 @ M) — M compatible with the product and the unit of 4.

We have a similar notion on the right-hand sight and a notion of multilinear bimod-
ule. If we use this language, 7 is an ideal of A if and only if 7 is a multilinear bimodule with
the action induced by z .

Remark. The same notion arises from the work of D. Quillen on (co)homology
theories [66]. The coefficient for these theories are abelian group objects. When one wants
to make explicit Quillen (co)homology of monoids, these coefficients are an exactly linear
version of modules. We refer the reader to the paper of H. J. Baues, M. Jibladze and A.
Tonks [9] for a complete description in the case of operads, or more generally when the
monoidal product is additive only on one side.

Dualize these definitions to get the notions of comodules and (multi)linear comodules
over a comonoid C.

B.4. “generated by”. Following this categorical point of view, we define and make
explicit the notions of ideal generated by and subcomonoid generated by.
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Let £: R»—> A be a subobject of 4 in .7, where A is a monoid. We are going to con-
sider the ““cokernel” 4 — Q of & in .#on,,, that is the universal epimorphism of monoids
such that the composite R A — Q vanishes. The resulting quotient monoid Q is the larg-
est quotient of 4 with relations in R.

Since our leitmotiv is to treat together ideals and quotient monoids, we would rather
use the following presentation. Consider the category .#: of sequences (S) : >4 — Q in
on,,, exact in .o/ such that the composite R»»> A4 — Q is equal to 0. Since /— A4 is the
kernel of 4 — Q, this last condition is equivalent to the existence of a morphism 7 : R 1
in .o/ such that the following diagram commutes:

R

I —— A —= Q.

Let (S') : J>> 4 — O be another object of ¥, the morphisms between (S) and (S’) corre-
spond to the pair of morphisms (7, p) in .#on., such that the following diagram commutes:

N

I >— A4 ——» Q

Y
i
v

J.

Definition (Ideal generated by R). Let ./ be a category such that for every
monoid 4 and every subobject {: R>> A, the category & admits an initial object
S:(R)»»>A4— A/(R).

In this case, (R) is called the ideal generated by R and A/(R) is the induced quotient
monoid.

Remark. The terminal object of this category always exists and is given by the se-
quence A A — 0.

If we dualize the previous arguments in the opposite category, we get the same kind
of diagram but with C comonoid instead of 4 monoid.

Let & : S «— C be a quotient of C in .o/, where C is a comonoid. We aim to consider
the largest subcomonoid of C vanishing on S. This notion is given by “kernel” S «— C of &
in ¥omon,y, that is the universal monomorphism of comonoids such that the composite
S« C«< Qisequal to 0.

Consider the category ¥; of sequences (S): [ «— C <« Q in ¥omon,,, exact in .o/
such that the composite S «— C «< Q is equal to 0. There exists a morphism 7 : 1 — S
such that the diagram commutes:
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1

> Un

0.

Let (S) :J «— C << O be another object of ¥, the morphisms between (S) and (S')
correspond to the pair of morphisms (i, p) in ¥omon,, such that the following diagram
commutes:

Definition (Subcomonoid generated by S). Let .o be a category such that for every
comonoid C and every quotient {: S «— C, the category ¥ admits a terminal object
S:(S) « C—=C(S).

In this case, C(S) is called the subcomonoid of C generated by S and (S) is the in-
duced coideal quotient.

Remark. The initial object is the sequence C «— C «< 0.
B.5. Ideal generated = free multilinear bimodule. Since the notion of ideal is equiv-
alent to the notion of multilinear bimodule, the ideal of 4 generated by R is the free A4-

multilinear bimodule on R.

Proposition 59. The ideal generated by R in A is given by the image

22

Im(AR(A+R) KA~ A).

Proof. Using Proposition 57, we have that it is an ideal of 4. It is easy to see that
any ideal containing R also contains Im(A (A+R)X A4 £, A). J

If we dualize the arguments, we have the explicit form of the subcomonoid of C gen-
erated by R.

Proposition 60. Let S «— C be an epimorphism in </. The subcomonoid of C gener-
ated by S is given by the kernel of

: .
Ker(C 25 ¢ X% cr(C+8)® C).

Proof. Dualize. [
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