Mardi 5 Janvier
Heure: 
13:00  14:00 
Lieu: 
Sans doute en ligne (à confirmer). 
Résumé: 
MB  Unified approach to fluid approximation of linear kinetic equations with heavy tails  
Description: 
Émeric Bouinanomalousit is a governed by a fractional diffusion equation. Lebeau and Puel proved last year the first similar result for FokkerPlanck operator, in dimension 1 and assuming that the equilibrium distribution has finite mass. Fournier and Tardif gave an alternative probabilistic proof, more general (covering any dimension and infinitemass equilibrium distribution) but nonconstructive. We present a unified elementary approach, fully quantitative, that covers all previous cases as well as new ones. This is a joint work with Clément Mouhot (University of Cambridge). 
Jeudi 7 Janvier
Heure: 
10:00  11:30 
Lieu: 
Exposé en ligne 
Résumé: 
Topologie algébrique  Moduli spaces of curves and GrothendieckTeichmuller group  
Description: 
Geoffroy Horel 
Vendredi 8 Janvier
Heure: 
13:00  13:30 
Lieu: 
Salle B407, bâtiment B, LAGA, Institut Galilée, Université Paris 13 
Résumé: 
Modélisation et Calcul Scientifique  An introduction to Balanced Viscosity solutions to (multi)rateindependent systems  
Description: 
Riccarda Rossi 
Heure: 
15:30  16:30 
Lieu: 
en ligne 
Résumé: 
PM  EDP  Sharp constant in the curl inequality and ground states for curlcurl problem with critical exponent  
Description: 
Jaroslaw MederskiSharp Sobolevtype inequalities have been widely studied by a large number of authors and the best Sobolev constants play an important role e.g. in mathematical physics. 
Heure: 
15:30  16:30 
Lieu: 
en ligne 
Résumé: 
Équations aux Dérivées Partielles nonlinéaires  Sharp constant in the curl inequality and ground states for curlcurl problem with critical exponent  
Description: 
Jaroslaw MederskiSharp Sobolevtype inequalities have been widely studied by a large number of authors and the best Sobolev constants play an important role e.g. in mathematical physics. 

