Jeudi 14 Janvier
Heure: 
10:00  11:30 
Lieu: 
Exposé en ligne 
Résumé: 
Topologie algébrique  A model for homotopy E?cooperads  
Description: 
Lorenzo Guerra ing, homotopies are incorporated into the associativity conditions of operadicwe describe a notion of Segal Hopf cooperads in their strict and homotopy verEalgebras. Their interest lies, at least in part,EIn the first part of the talk, that will (mostly) have an expository flavour, I recall Mandell’s theorem, and I will state some of our results. In the second and I will tentatively provide an outline of some proofs. 
Vendredi 15 Janvier
Heure: 
10:30  11:30 
Lieu: 
Exposé en distanciel 
Résumé: 
Géométrie Arithmétique et Motivique  The ppart of BSD for rational elliptic curves at Eisenstein primes  
Description: 
Giada GrossiLien researchseminars.org 
Heure: 
14:00  15:00 
Lieu: 
https://bbb.math.univparis13.fr/b/emmmwhajj 
Résumé: 
Modélisation et Calcul Scientifique  Autour de la détection de perturbations par imagerie  
Description: 
Jérémi Heleine Lien pour assister au séminaire :&nbsp;https://bbb.math.univparis13.fr/b/emmmwhajj 
Heure: 
15:30  16:30 
Lieu: 
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13 
Résumé: 
PM  EDP  Propagation of chaos and corrections to mean field for classical interacting particles  
Description: 
Mitia DuerinckxWe consider a system of classical particles, interacting via a smooth, longrange potential, in the meanfield regime, and we analyze the propagation of chaos in form of sharp estimates on manyparticle correlation functions. While approaches based on the BBGKY hierarchy are doomed by uncontrolled losses of derivatives, we propose a novel nonhierarchical approach that relies on discrete stochastic calculus with respect to initial data. This result allows to rigorously truncate the BBGKY hierarchy to an arbitrary precision on the meanfield timescale, thus justifying the socalled Bogolyubov corrections to mean field. As a byproduct, we also discuss the justification of the LenardBalescu relaxation for a spatially homogeneous system. 
Heure: 
15:30  16:30 
Lieu: 
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13 
Résumé: 
Équations aux Dérivées Partielles nonlinéaires  Propagation of chaos and corrections to mean field for classical interacting particles  
Description: 
Mitia DuerinckxWe consider a system of classical particles, interacting via a smooth, longrange potential, in the meanfield regime, and we analyze the propagation of chaos in form of sharp estimates on manyparticle correlation functions. While approaches based on the BBGKY hierarchy are doomed by uncontrolled losses of derivatives, we propose a novel nonhierarchical approach that relies on discrete stochastic calculus with respect to initial data. This result allows to rigorously truncate the BBGKY hierarchy to an arbitrary precision on the meanfield timescale, thus justifying the socalled Bogolyubov corrections to mean field. As a byproduct, we also discuss the justification of the LenardBalescu relaxation for a spatially homogeneous system. 

