11 Janvier - 17 Janvier


Retour à la vue des calendrier
Jeudi 14 Janvier
Heure: 10:00 - 11:30
Lieu: Exposé en ligne
Résumé: Topologie algébrique - A model for homotopy E?cooperads -
Description: Lorenzo Guerra
ing, homotopies are incorporated into the associativity conditions of operadicwe describe a notion of Segal Hopf cooperads in their strict and homotopy verEalgebras. Their interest lies, at least in part,E-In the first part of the talk, that will (mostly) have an expository flavour, I recall Mandell’s theorem, and I will state some of our results. In the second and I will tentatively provide an outline of some proofs.
Vendredi 15 Janvier
Heure: 10:30 - 11:30
Lieu: Exposé en distanciel
Résumé: Géométrie Arithmétique et Motivique - The p-part of BSD for rational elliptic curves at Eisenstein primes -
Description: Giada GrossiLien researchseminars.org
Heure: 14:00 - 15:00
Lieu: https://bbb.math.univ-paris13.fr/b/emm-mwh-ajj
Résumé: Modélisation et Calcul Scientifique - Autour de la détection de perturbations par imagerie -
Description: Jérémi Heleine

Lien pour assister au séminaire : https://bbb.math.univ-paris13.fr/b/emm-mwh-ajj
Heure: 15:30 - 16:30
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: PM - EDP - Propagation of chaos and corrections to mean field for classical interacting particles -
Description: Mitia DuerinckxWe consider a system of classical particles, interacting via a smooth,
long-range potential, in the mean-field regime, and we analyze the
propagation of chaos in form of sharp estimates on many-particle
correlation functions. While approaches based on the BBGKY hierarchy are
doomed by uncontrolled losses of derivatives, we propose a novel
non-hierarchical approach that relies on discrete stochastic calculus
with respect to initial data. This result allows to rigorously truncate
the BBGKY hierarchy to an arbitrary precision on the mean-field
timescale, thus justifying the so-called Bogolyubov corrections to mean
field. As a by-product, we also discuss the justification of the
Lenard-Balescu relaxation for a spatially homogeneous system.
Heure: 15:30 - 16:30
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: Équations aux Dérivées Partielles non-linéaires - Propagation of chaos and corrections to mean field for classical interacting particles -
Description: Mitia DuerinckxWe consider a system of classical particles, interacting via a smooth,
long-range potential, in the mean-field regime, and we analyze the
propagation of chaos in form of sharp estimates on many-particle
correlation functions. While approaches based on the BBGKY hierarchy are
doomed by uncontrolled losses of derivatives, we propose a novel
non-hierarchical approach that relies on discrete stochastic calculus
with respect to initial data. This result allows to rigorously truncate
the BBGKY hierarchy to an arbitrary precision on the mean-field
timescale, thus justifying the so-called Bogolyubov corrections to mean
field. As a by-product, we also discuss the justification of the
Lenard-Balescu relaxation for a spatially homogeneous system.