|
 |
Lundi 9 Janvier
Heure: |
11:00 - 12:00 |
Lieu: |
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13 |
Résumé: |
Modélisation et Calcul Scientifique - Propriétés de divers schémas pour une équation de Hamilton-Jacobi contrainte - |
Description: |
Benoit Gaudeul Les équations d'Hamilton-Jacobi contrainte apparaissent comme limite de normbreux modèles d'écologie (voir Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, . Il y a quelques années Hélène Hivert a proposé un schéma pour ce type d'équations et l'a récemment appliqué au cas particulier $H(p)=p^2$ (voir Concentration in Lotka-Volterra parabolic equations: an asymptotic-preserving scheme, V. Calvez, H. Hivert and H. Yolda?). Pour traiter le cas général, de nombreuses adaptations sont nécessaires. |
Heure: |
13:30 - 14:30 |
Lieu: |
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13 |
Résumé: |
PM - EDP - Probabilistic local well-posedness for the Schrodinger equation posed for the Grushin Laplacian - |
Description: |
Mickael Latocca |
|
|