Jeudi 9 Février


Retour à la vue des calendrier
Jeudi 9 Février
Heure: 10:15 - 12:00
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: Topologie algébrique - Quelques résultats sur la structure des représentations des catégories additives -
Description: Aurélien DjamentLes foncteurs d'une petite catégorie
additive A vers les k-modules, où k est un anneau commutatif,
appelées aussi représentations de A à coefficients dans k,
interviennent de façon récurrente en topologie algébrique ou en
théorie des représentations. Une notion fondamentale est celle de
foncteurs polynomial (qui généralise celle de foncteur additif),
introduite au début des années 1950 par Eilenberg et Maclane ; ces
foncteurs sont bien mieux compris que les foncteurs arbitraires.
Dans un travail avec Touzé et Vespa, nous avons introduit la
notion de foncteur antipolynomial, qui se comporte de
façon "orthogonale" à la précédente, et montré que les foncteurs simples
de A vers des espaces vectoriels de dimension finie sur un corps
algébriquement clos sont les produits tensoriels d'un foncteur
polynomial simple et d'un foncteur antipolynomial simple.
J'expliquerai ce résultat ainsi que des conséquences et
généralisations, qui permettent notamment de résoudre certains
problèmes de finitude sur des foncteurs.