Lundi 12 Juin


Retour à la vue des calendrier
Lundi 12 Juin
Heure: 11:00 - 11:30
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: Modélisation et Calcul Scientifique - Controllability of the Wave Equation with Rough Coefficients. -
Description: Belhassen Dehman
This talk  comes  from joint works with  N. Burq ( Univ. Paris Sud ) and J. Le Rousseau ( Univ. Paris Nord ).
Heure: 14:30 - 15:30
Lieu: Salle B407, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: EDP & Physique mathématique - Spectral asymptotics for kinetic Brownian motion on Riemannian manifolds -
Description: Zhongkai Tao The kinetic Brownian motion is a stochastic process that interpolates
between the geodesic flow and Laplacian. It is also an analogue of
Bismut’s hypoelliptic Laplacian operator. I will talk about a simple
proof of the convergence of the spectrum of kinetic Brownian motion to
the spectrum of base Laplacian for all compact Riemannian manifolds
without boundary, which generalizes recent work of Kolb--Weich--Wolf on
constant curvature surfaces and is analogous to the theorem of
Bismut--Lebeau for hypoelliptic Laplacian. As an application, we prove
the optimal convergence rate of kinetic Brownian motion to the
equilibrium (given by the spectral gap of the base Laplacian)
conjectured by Baudoin--Tardif. This is based on joint work with Qiuyu
Ren.