|
 |
Lundi 12 Juin
Heure: |
11:00 - 11:30 |
Lieu: |
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13 |
Résumé: |
Modélisation et Calcul Scientifique - Controllability of the Wave Equation with Rough Coefficients. - |
Description: |
Belhassen Dehman This talk  comes  from joint works with  N. Burq ( Univ. Paris Sud ) and J. Le Rousseau ( Univ. Paris Nord ). |
Heure: |
14:30 - 15:30 |
Lieu: |
Salle B407, bâtiment B, LAGA, Institut Galilée, Université Paris 13 |
Résumé: |
EDP & Physique mathématique - Spectral asymptotics for kinetic Brownian motion on Riemannian manifolds - |
Description: |
Zhongkai Tao The kinetic Brownian motion is a stochastic process that interpolates between the geodesic flow and Laplacian. It is also an analogue of Bismut’s hypoelliptic Laplacian operator. I will talk about a simple proof of the convergence of the spectrum of kinetic Brownian motion to the spectrum of base Laplacian for all compact Riemannian manifolds without boundary, which generalizes recent work of Kolb--Weich--Wolf on constant curvature surfaces and is analogous to the theorem of Bismut--Lebeau for hypoelliptic Laplacian. As an application, we prove the optimal convergence rate of kinetic Brownian motion to the equilibrium (given by the spectral gap of the base Laplacian) conjectured by Baudoin--Tardif. This is based on joint work with Qiuyu Ren. |
Mardi 13 Juin
Heure: |
13:30 - 14:30 |
Lieu: |
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13 |
Résumé: |
PM - EDP - Para-differential Calculus on Compact Lie Groups and Spherical Capillary Water Waves - |
Description: |
Chengyang Shao The study of a particular non-linear dispersive partial differential equation usually requires a version of pseudo-differential calculus. In this talk, we aim to introduce a toolbox of coordinate-independent para-differential calculus defined on compact Lie groups. We will first briefly review previous approaches for pseudo-differential and para-differential calculus on compact manifolds, together with their applications to dispersive equations. Next, we will construct para-differential calculus on a compact Lie group using representation theory, emphasizing the role played by localization property and classical differential symbols. Finally, we will describe how this para-differential toolbox applies to the spherical capillary water waves equation, a non-local, quasi-linear dispersive differential equation defined on the 2-sphere. |
Mercredi 14 Juin
Heure: |
13:30 - 15:00 |
Lieu: |
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13 |
Résumé: |
Théorie Ergodique et Systèmes Dynamiques - Exposé annulé - |
Description: |
Exposé annulé (Pierre Dehornoy) |
Vendredi 16 Juin
Heure: |
10:30 - 11:30 |
Lieu: |
Salle B407, bâtiment B, LAGA, Institut Galilée, Université Paris 13 |
Résumé: |
Géométrie Arithmétique et Motivique - Fonctorialité de la correspondance de Simpson p-adique par image directe propre - |
Description: |
Ahmed Abbes Faltings a dégagé en 2005 un analogue p-adique de la correspondance de Simpson (complexe) dont la construction a été reprise par différents auteurs, selon plusieurs approches. Après un rappel de celle que j'ai initiée avec Michel Gros, j'expliquerai comment nous établissons la fonctorialité de la correspondance de Simpson p-adique par image directe propre, ce qui conduit à une généralisation de la suite spectrale de Hodge-Tate relative. |
|
|