9 Octobre - 15 Octobre


Retour à la vue des calendrier
Mardi 10 Octobre
Heure: 13:30 - 14:30
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: PM - EDP - Sharp Hadamard local well-posedness, enhanced uniqueness and pointwise continuation criterion for the incompressible free boundary Euler equations -
Description: Mihaela IfrimWe provide a complete local well-posedness theory in $H^s$
based Sobolev spaces for the free boundary incompressible Euler
equations with zero surface tension on a connected fluid domain.
Our well-posedness theory includes: (i) Local well-posedness in
the Hadamard sense, i.e., local existence, uniqueness, and the
first proof of continuous dependence on the data, all in low
regularity Sobolev spaces; (ii) Enhanced uniqueness: Our
uniqueness result holds at the level of the Lipschitz norm of
the velocity and the $C^{1,frac{1}{2}}$ regularity of the free
surface; (iii) Stability bounds:  We construct a nonlinear
functional which measures, in a suitable sense, the distance
between two solutions (even when defined on different domains)
and we show that this distance is propagated by the flow; (iv)
Energy estimates: We prove refined, essentially scale invariant
energy estimates for solutions,  relying on   a newly
constructed family of elliptic estimates; (v) Continuation
criterion: We give the first proof of a sharp continuation
criterion in the physically relevant pointwise norms, at the
level of scaling. In essence, we show that solutions can be
continued as long as the velocity is in $L_T^1W^{1,infty}$ and
the free surface is in $L_T^1C^{1,frac{1}{2}}$, which is at the
same level as the Beale-Kato-Majda criterion for the
boundaryless case; (vi) A  novel proof of the construction of
regular solutions.

 
 Our entire approach is in the Eulerian framework and can be
adapted to work in more general fluid domains. 
Mercredi 11 Octobre
Heure: 13:30 - 16:00
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: Théorie Ergodique et Systèmes Dynamiques - Normal numbers with constraints -
Description: Olivier Carton
We first recall the definition of normality which is a kind of (very) We consider normal number digit dependencies in their We quantify precisely how much digit dormal.  real numbers are absolutely normal.
Heure: 13:30 - 16:00
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: Théorie Ergodique et Systèmes Dynamiques - Perfect necklaces -
Description: Verónica Becher
A necklace is a circular word over a finite alphabet. A necklace is (n,k)?perfect if each word of length n occurs exactly k times, at We present different families of perfect The discrete discrepancy  of a  necklace is  function that  indicates how far away the segments For some perfect necklaces their exact discrepancy is known. These  perfect necklaces are used 
Jeudi 12 Octobre
Heure: 10:15 - 12:00
Lieu: Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: Topologie algébrique - Corecognition for iterated suspensions -
Description: Oisín Flynn-Connolly
Vendredi 13 Octobre
Heure: 10:30 - 12:00
Lieu: Salle B407, bâtiment B, LAGA, Institut Galilée, Université Paris 13
Résumé: Géométrie Arithmétique et Motivique - Pas d'exposé -
Description: Conférence en l'honneur de Jan Nekovar à l'IHES