David Barnes

Introduction Motivation Finite G

Rational S1 equivariant ring spectra

David Barnes

Joint work with John Greenlees, Magdalena Kedziorek and Brooke Shipley

August 16, 2016

> David Barnes

Introduction Motivation Finite G

Let
$$\mathcal{O}_{\mathcal{F}} = \prod_{n \ge 1} \mathbb{Q}[c_n]$$
 and $\mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} = \operatorname{colim}_n \mathcal{O}_{\mathcal{F}}[c_1^{-1}, \ldots, c_n^{-1}]$, with $\operatorname{deg}(c_n) = -2$.

Definition (The algebraic model $\mathcal{A}(\mathbb{T})$)

Let $\mathcal{A}(\mathbb{T})$ be the category whose objects are morphisms of $\mathcal{O}_{\mathcal{F}}\text{-modules}$ of the form

$$\beta: M \longrightarrow \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{Q}} V$$

such that β is an isomorphism after inverting \mathcal{E} .

A morphism is a pair (θ,ϕ) which makes the following square commute

$$\begin{array}{ccc} M & & \stackrel{\beta}{\longrightarrow} \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{Q}} V \\ & & & & \downarrow \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{Q}} \phi \\ M' & & \stackrel{\beta'}{\longrightarrow} \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{Q}} V' \end{array}$$

Let $d\mathcal{A}(\mathbb{T})$ be the associated category with differentials.

> David Barnes

Introduction Motivation Finite G

Theorem (The classification of rational T-spectra)

There is a (zig-zag) of symmetric monoidal Quillen equivalences between rational \mathbb{T} -equivariant spectra and $d\mathcal{A}(\mathbb{T})$.

Corollary (Homotopy level)

There is an equivalence of symmetric monoidal triangulated categories between the homotopy category of rational \mathbb{T} -equivariant spectra and $Ho(d\mathcal{A}(\mathbb{T})) = D\mathcal{A}(\mathbb{T})$.

Corollary (Rings and modules)

The categories of rational \mathbb{T} -equivariant ring spectra is Quillen equivalent to the category of ring objects in $d\mathcal{A}(\mathbb{T})$.

If E is a rational \mathbb{T} -equivariant ring spectrum, then the model category of E-modules is Quillen equivalent to the category of Θ E-modules in $d\mathcal{A}(\mathbb{T})$.

David Barnes

Introduction Motivation Finite G T-spectra

Theorem

Let G be a finite group. The category of rational G-spectra is symmetric monoidally Quillen equivalent to

()

$$\prod_{H)\leqslant G} \mathsf{Ch}(\mathbb{Q}[W_G H])$$

Greenlees and May 1992: Schwede and Shipley 2003: B. 2009 and Kedziorek 2014: homotopy level equivalence Quillen equivalence symmetric monoidal

Greenlees 1999

$$\operatorname{Ho}(\mathbb{T}\operatorname{Sp}_{\mathbb{Q}}) \xrightarrow{\simeq} D\mathcal{A}(\mathbb{T}) \implies \operatorname{T}\operatorname{Sp}_{\mathbb{Q}} \xrightarrow{\simeq} d\mathcal{A}(\mathbb{T})$$

 \downarrow
 $O(2) \text{ and } SO(3)$
cases

David Barnes

Introduction Motivation Finite G T-spectra

Theorem

Let G be a finite group. The category of rational G-spectra is symmetric monoidally Quillen equivalent to

()

$$\prod_{H)\leqslant G} \operatorname{Ch}(\mathbb{Q}[W_G H])$$

Greenlees and May 1992: Schwede and Shipley 2003: B. 2009 and Kedziorek 2014: homotopy level equivalence Quillen equivalence symmetric monoidal

Greenlees 1999Shipley 2002 $Ho(\mathbb{T} Sp_{\mathbb{Q}}) \simeq D\mathcal{A}(\mathbb{T})$ $\mathbb{T} Sp_{\mathbb{Q}} \simeq d\mathcal{A}(\mathbb{T})$

BGKS 2016 $\sim \rightarrow$ O(2) and SO(3)Monoidal QEcases

> David Barnes

Introduction Motivation Finite G

T-spectra

Corollary (Of Shipley's 2002 paper)

The category of rational \mathbb{T} -equivariant spectra is rigid: any model category whose homotopy category is triangulated equivalent to the homotopy category of rational \mathbb{T} -spectra is Quillen equivalent to rational \mathbb{T} -spectra.

Theorem (B. 2016)

The category of rational O(2)-equivariant spectra is Quillen equivalent to an algebraic model.

Theorem (Kędziorek 2016)

The category of rational SO(3)-equivariant spectra is Quillen equivalent to an algebraic model.

> David Barnes

Introduction

Motivation

Finite G

T-spectra

Let G be group, X a based topological space with G action and let F^* be a cohomology theory.

We need equivariant cohomology theories

- $F^*(X)$ has a G-action.
- This action can be trivial, and is always trivial for $G = \mathbb{T}$.
- There are non-trivial G-spaces X with $F^*(X) = 0$
- such as EG_+ the universal free space, $EG_+/G = BG_+$.
- $E\mathbb{T} = S^{\infty} \subset \mathbb{C}^{\infty}, \ B\mathbb{T} = \mathbb{C}P^{\infty}.$

Examples

- The borel construction: $F^*(X \wedge_G EG_+)$.
- Equivariant K-theory.
- Equivariant cobordism.

> David Barnes

Introduction Motivation

T-spectra

For V a representation of G, define S^V as the one-point compactification of V.

Definition

A *G*-equivariant cohomology theory F_G^* consists of cohomology theories

$$(F_G^V)^*: \mathsf{Ho}(G\operatorname{\mathsf{Top}}) o g\operatorname{\mathsf{Ab}}$$

such that $(F_G^{V \oplus W})^*(S^W \wedge X) \cong (F_G^V)^*(X).$

The point is that one can think of F_G^* as an RO(G)-graded cohomology theory.

Theorem (Equivariant Brown representability)

A G-equivariant cohomology theory F_G^* is represented by a G-spectrum F_G . That is $F_G^*(A) = [\Sigma^{\infty}A, F_G]_*^G$.

David Barnes

Motivation Finite G Definition

For G a compact Lie group, a G-spectrum X is a collection of based G-spaces X(V) for each finite dimensional real representation V of G, along with structure maps

$$X(V) \wedge S^W \longrightarrow X(V \oplus W)$$

A morphism $f: X \to Y$ is a collection of equivariant maps

 $f(V):X(V) \rightarrow Y(V)$ $f(V)(g \cdot x) = g \cdot f(V)(x)$

commuting with the structure maps. We call this category G Sp.

For each V there is an equivalence of categories

$$-\wedge S^V$$
: Ho(G Sp) $\xrightarrow{\cong}$ Ho(G Sp)

Example

For a *G*-space *A*, let $\Sigma^{\infty}A$ be the spectrum with $(\Sigma^{\infty}A)(V) = A \wedge S^{V}$.

David Barnes

Motivation Finite G

T-spectra

Definition

The model category of rational *G*-spectra $G \operatorname{Sp}_{\mathbb{Q}}$ is the category $G \operatorname{Sp}$ with weak equivalences those maps f such that $\pi_*^H(f) \otimes \mathbb{Q}$ is an isomorphism for all closed subgroups H of G.

The fibrant objects are those *G*-spectra *X* such that the adjoints of the structure maps $X(V) \rightarrow \Omega^W X(V \oplus W)$ are weak equivalences of *G*-spaces and $\pi_n^H(X)$ is rational for each $H \leq G$.

$$\pi_n^H(X) := \operatorname{colim}_V \pi_n(\Omega^V X(V))^H \cong [S^n \wedge G/H_+, X]^G$$

Theorem (Rational equivariant Brown representability)

An rational G-equivariant cohomology theory F_G^* is represented by a rational G-spectrum F_G .

David Barnes

Motivation Finite G

 \mathbb{T} -spectra

Definition

The category of 'free' *G*-spectra or **spectra with a** *G*-**action** Sp[G]. Is the category of *G*-objects and *G*-equivariant morphisms in Sp.

The weak equivalences of Sp[G] are those maps which forget to π_* -isomorphisms of non-equivariant spectra.

Theorem (Greenlees and Shipley 2014)

The model category $Sp_{\mathbb{Q}}[G]$ is Quillen equivalent to the category of torsion $H^*(BN; \mathbb{Q})[W]$ -modules. Where N is the identity component of G and W = G/N and BN has a W-action.

General aim

For each compact Lie group G, find a simple algebraic category $\mathcal{A}(G)$ which is symmetric monoidally Quillen equivalent to $G \operatorname{Sp}_{\mathbb{O}}$.

David Barnes

Introduction

Motivatior

Finite G

∏-spectra

Facts for finite G

- The homotopy category is generated by G/H_+ for varying H.
- $[\Sigma^\infty {\it G}/{\it H}_+, \Sigma^\infty {\it G}/{\it K}_+]^{{\it G}{\Bbb Q}}_*$ is concentrated in degree zero.
- $\mathbb{S} = \Sigma^{\infty} S^0$, $[\mathbb{S}, \mathbb{S}]^{G\mathbb{Q}}_* \cong A(G) \otimes \mathbb{Q} \cong \prod_{(H) \leqslant G} \mathbb{Q}$.
- The homotopy category is generated by $e_H \Sigma^{\infty} G/H_+$ for varying H.

Lemma

There is a symmetric monoidal Quillen equivalence

$$\operatorname{GSp}_{\mathbb{Q}} \xrightarrow{\Delta} \prod_{(H) \leq G} \prod_{(H) \leq G} L_{e_H \mathbb{S}} \operatorname{GSp}_{\mathbb{Q}}$$

 $L_{e_H \mathbb{S}} G \operatorname{Sp}_{\mathbb{Q}}$ is the model category with weak equivalences those f with $e_H \pi_*^K(f) \otimes \mathbb{Q}$ an isomorphism for all $K \leq G$.

The fibrant objects are the fibrant objects of $G \operatorname{Sp}_{\mathbb{Q}}$ such that $X \to e_H X$ is a weak equivalence in $G \operatorname{Sp}_{\mathbb{Q}}$.

> David Barnes

Introduction Motivation Finite G

 \mathbb{T} -spectra

The model category $L_{e_H S} G \operatorname{Sp}_{\mathbb{Q}}$ is generated by $e_H \Sigma^{\infty} G/H_+$. The self maps of this generator are very simple:

$$F(e_HG/H_+, e_HG/H_+)^G \simeq W_GH_+$$

Lemma

The Morita-type Quillen adjunction below is a Quillen equivalence.

By work of Shipley 2007,

$$\operatorname{Sp}_{\mathbb{Q}}[W_{G}H] \underset{\operatorname{QE}}{\simeq} \operatorname{Ch}(\mathbb{Q}[W_{G}H])$$

David Barnes

Introduction Motivation

Finite G

T-spectra

Theorem (Kedziorek 2014)

Let G be a finite group, $N = N_G H$ and $W_G H = N_G H/H$. There are symmetric monoidal Quillen equivalences

$$L_{e_{\mathcal{H}}^{G}\mathbb{S}}G\operatorname{Sp}_{\mathbb{Q}}\underset{\overline{F_{\mathcal{N}}(G,-)}}{\overset{i^{*}}{\leftarrow}}L_{e_{\mathcal{H}}^{N}\mathbb{S}}N\operatorname{Sp}_{\mathbb{Q}}\underset{(-)^{H}}{\overset{\varepsilon^{*}}{\leftarrow}}\operatorname{Sp}_{\mathbb{Q}}[W_{G}H] \simeq \operatorname{Ch}(\mathbb{Q}[W_{G}H])$$

Recap

- Split the category using the Burnside ring.
- Take fixed points of each piece.
- Use algebraicization / Shipleyfication.
- Simple as $W_G H$ finite (all homotopy is in degree zero).

David Barnes

Introduction Motivation Finite G T-spectra Facts for $\ensuremath{\mathbb{T}}$

- The homotopy category is generated by \mathbb{T}/H_+ for varying H.
- $[\Sigma^{\infty}\mathbb{T}/H_+, \Sigma^{\infty}\mathbb{T}/K_+]^{\mathbb{T}\mathbb{Q}}_*$ is not concentrated in degree zero.
- $[\mathbb{S},\mathbb{S}]^{\mathbb{TQ}}_*\cong A(G)\otimes \mathbb{Q}\cong \mathbb{Q}.$

We decompose the sphere spectrum $\mathbb{S} = \Sigma^{\infty} S^0$. Let \mathcal{F} be the family of finite subgroups of \mathbb{T} . There is a cofibre sequence of based \mathbb{T} -spaces

$$E\mathcal{F}_+
ightarrow S^0
ightarrow ilde{E}\mathcal{F}$$

There is a pullback square of $\mathbb{T}\text{-spectra}$

$$\begin{array}{c} \mathbb{S} \longrightarrow \mathsf{DEF}_+ \\ \downarrow & \downarrow \\ \tilde{\mathsf{EF}} \longrightarrow \mathsf{DEF}_+ \land \tilde{\mathsf{EF}} \end{array}$$

Caution: while $\tilde{E}\mathcal{F} = S^{\infty V} = \operatorname{colim}_{V^{\mathbb{T}}=0} S^{V}$ is a ring spectrum, it is not a commutative ring \mathbb{T} -equivariant orthogonal spectrum.

> David Barnes

Introduction Motivation Finite G T-spectra We want to decompose $\mathbb{T}\operatorname{Sp}_{\mathbb{Q}}$ using that decomposition of the sphere. For this we need some model category technology. We want to describe a pullback of model categories

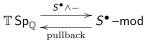
Definition

Define the category S^{\bullet} -mod to have **objects** the quintuples (X, f, Y, g, Z) where $X \in \mathbb{T} \operatorname{Sp}_{\mathbb{Q}}$, Y and $Z \in DE\mathcal{F}_+$ -mod and $f: X \wedge DE\mathcal{F}_+ \to Y$ and $g: Z \to Y$ are maps in $DE\mathcal{F}_+$ -mod.

Morphisms are triples that make the obvious squares commute. A map is a weak equivalence if each component is a weak equivalence. The cofibrations are defined objectwise.

> David Barnes

Introduction Motivation Finite G T-spectra There is a Quillen adjunction as below, but it is not a Quillen equivalence.



The derived unit map is essentially

$$X
ightarrow \mathrm{pullback}(X \wedge \tilde{E}\mathcal{F}
ightarrow X \wedge \tilde{E}\mathcal{F} \wedge DE\mathcal{F}_+ \leftarrow X \wedge DE\mathcal{F}_+)$$

and hence is a weak equivalence. It follows that the left adjoint $S^{\bullet} \wedge -$ is full and faithful. We just need to make it essentially surjective. For this we use a cellularisation (right Bousfield localisation).

> David Barnes

Introduction Motivation Finite G

T-spectra

Let K be the set of "cells": $\{S^{\bullet} \land (\mathbb{T}/C_n)_+ \mid n \ge 1\} \cup \{S^{\bullet} \land (\mathbb{T}/\mathbb{T})_+\}.$

Definition

The model category K-cell- S^{\bullet} -mod has the same fibrations as S^{\bullet} -mod. The cofibrant objects are those built from the objects of K using homotopy colimits. The weak equivalences are those maps $f: M \to N$ such that for each $k \in K$

$$[k, M]^{S^{\bullet}} \xrightarrow{\cong} [k, N]^{S^{\bullet}}$$

This is essentially replacing $Ho(S^{\bullet}-mod)$ by the full subcategory generated by the images of K.

Theorem

There is a Quillen equivalence

$$\mathbb{T}\operatorname{Sp}_{\mathbb{Q}} \xrightarrow[pullback]{S^{\bullet} \land -} K \operatorname{-cell} S^{\bullet} \operatorname{-mod}$$

Lemma

Rational S1 equivariant

ring spectra

T-spectra

Taking fixed points induces Quillen equivalences:

$$\begin{array}{rcl} & L_{\tilde{E}\mathcal{F}}\mathbb{T}\operatorname{Sp}_{\mathbb{Q}} & \simeq & \operatorname{Sp}_{\mathbb{Q}} \\ & DE\mathcal{F}_{+}-\operatorname{mod} & \simeq & (DE\mathcal{F}_{+})^{\mathbb{T}}-\operatorname{mod} \\ & L_{DE\mathcal{F}_{+}\wedge\tilde{E}\mathcal{F}}DE\mathcal{F}_{+}-\operatorname{mod} & \simeq & L_{(DE\mathcal{F}_{+}\wedge\tilde{E}\mathcal{F})^{\mathbb{T}}}(DE\mathcal{F}_{+})^{\mathbb{T}}-\operatorname{mod} \end{array}$$

We define a new diagram of model categories S^{\bullet}_{top} using the right hand side of the above.

Theorem

There is a Quillen equivalence

$$S^{\bullet} - \operatorname{mod} \xrightarrow[(-)^T]{} S^{\bullet}_{top} - \operatorname{mod}$$

Lemma

Taking fixed points induces Quillen equivalences:

$$\begin{array}{rcl} & L_{\tilde{E}\mathcal{F}}\mathbb{T}\operatorname{Sp}_{\mathbb{Q}} &\simeq & \operatorname{Sp}_{\mathbb{Q}} \\ & DE\mathcal{F}_{+}\operatorname{-mod} &\simeq & (DE\mathcal{F}_{+})^{\mathbb{T}}\operatorname{-mod} \\ & L_{DE\mathcal{F}_{+}\wedge\tilde{E}\mathcal{F}}DE\mathcal{F}_{+}\operatorname{-mod} &\simeq & L_{(DE\mathcal{F}_{+}\wedge\tilde{E}\mathcal{F})^{\mathbb{T}}}(DE\mathcal{F}_{+})^{\mathbb{T}}\operatorname{-mod} \end{array}$$

We define a new diagram of model categories S^{\bullet}_{top} using the right hand side of the above.

Theorem

There is a Quillen equivalence by the cellularisation principle [Greenlees and Shipley 2013]

$$K$$
-cell- S^{\bullet} -mod $\underbrace{\langle - \rangle^{\mathbb{T}}}_{(-)^{\mathbb{T}}} K^{\mathbb{T}}$ -cell- S^{\bullet}_{top} -mod

ring spectra David Barnes

Rational S1 equivariant

Introduction Motivation Finite G

 \mathbb{T} -spectra

> David Barnes

Introduction Motivation Finite G

 $\mathbb{T} ext{-spectra}$

Using the work of Shipley we can again get an algebraic version of the category. $% \left({{{\left[{{{C_{{\rm{B}}}} \right]}} \right]_{{\rm{B}}}}} \right)$

Theorem

There is a diagram of model categories

$$S^{\bullet}_t = \left(\Theta DE\mathcal{F}^{\mathbb{T}}_+ \right) \text{-}\mathsf{mod} \rightarrow \mathit{L}_{\mathcal{A}}(\Theta DE\mathcal{F}^{\mathbb{T}}_+) \text{-}\mathsf{mod} \leftarrow \mathsf{Ch}(\mathbb{Q}) \right)$$

such that the model categories below are symmetric monoidally Quillen equivalent.

$$\mathcal{K}_t^{\mathbb{T}}$$
-cell- S_t^{ullet} -mod $\simeq \mathcal{K}^{\mathbb{T}}$ -cell- S_{top}^{ullet} -mod

We know that we have isomorphisms of commutative rings

$$H_*(\Theta DE\mathcal{F}_+^{\mathbb{T}}) \cong \pi_*^{\mathbb{T}}(DE\mathcal{F}_+) \cong \mathcal{O}_{\mathcal{F}} = \prod_{n \ge 1} \mathbb{Q}[c_n]$$

hence $\Theta DE\mathcal{F}_+^{\mathbb{T}}\simeq \mathcal{O}_\mathcal{F}$ by a formality argument.

> David Barnes

Introduction Motivation Finite G T-spectra We now have the diagram of model categories

$$\mathcal{O}_{\mathcal{F}}\operatorname{\mathsf{-mod}} \to L_{\mathcal{A}}\mathcal{O}_{\mathcal{F}}\operatorname{\mathsf{-mod}} \leftarrow \operatorname{Ch}(\mathbb{Q})$$

We know that A is a ring object and

$$H_*(A) \cong \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} = \operatorname{colim}_n \mathcal{O}_{\mathcal{F}}[c_1^{-1}, \ldots, c_n^{-1}]$$

but we do not know that that A is commutative. This ring is not formal! However the map $\mathcal{O}_{\mathcal{F}} \to \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}}$ is formal and this suffices to show that

$$L_A \mathcal{O}_F \operatorname{\mathsf{-mod}} \simeq \mathcal{E}^{-1} \mathcal{O}_F \operatorname{\mathsf{-mod}}$$

This sequence of Quillen equivalences takes the set of cells $K_t^{\mathbb{T}}$ to a set of cells K_a .

> David Barnes

Introduction Motivation Finite G T-spectra We have shown that the model category of rational $\mathbb{T}-\text{spectra}$ is symmetric monoidally Quillen equivalent to

$${\it K_a-{\sf cell-}}(\mathcal{O}_{\mathcal{F}}\operatorname{{\mathsf{-mod}}}\to\mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}}\operatorname{{\mathsf{-mod}}}\leftarrow{\sf Ch}(\mathbb{Q}))\operatorname{{\mathsf{-mod}}}$$

Call this category $d\hat{\mathcal{A}}$. An object is an $\mathcal{O}_{\mathcal{F}}$ -module M, a $\mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}}$ -module N and a rational chain complex V with maps

$$\mathcal{E}^{-1}M \to N \leftarrow \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{Q}} V$$

Recall that $d\mathcal{A}(\mathbb{T})$ is the category whose objects are morphisms of $\mathcal{O}_{\mathcal{F}}$ -modules of the form

$$\beta: M \longrightarrow \mathcal{E}^{-1}\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{Q}} V$$

such that β is an isomorphism after inverting \mathcal{E} . We can include $d\mathcal{A}(\mathbb{T})$ into $d\hat{\mathcal{A}}$ by defining $N = \mathcal{E}^{-1}M$. This gives an adjunction between the two categories.

> David Barnes

Introduction Motivation Finite G

 $\mathbb{T} ext{-spectra}$

We can use another formality argument to identify the cells, and hence we can show that the cellularisation has exactly the effect of requiring that the structure maps of $d\hat{A}$ are homology isomorphisms.

Theorem

The model categories $d\hat{A}$ and $d\mathcal{A}(\mathbb{T})$ are Quillen equivalent.

Theorem (The classification of rational \mathbb{T} -spectra)

There is a (zig-zag) of symmetric monoidal Quillen equivalences between rational \mathbb{T} -equivariant spectra and $d\mathcal{A}(\mathbb{T})$.