A combinatorial model for certain Taylor towers

Kristine Bauer*

University of Calgary in collaboration with: R. Eldred, B. Johnson, R. McCarthy

July 15, 2016

◆□→ ◆舂→ ◆注→ ◆注→ 注

The Cast

The goal of this talk is to explain the relationship between these characters:

- The forgetful functor $U: s.Comm_{\mathbb{Q}} \rightarrow s.Mod_{\mathbb{Q}}$;
- The de Rham complex for $\mathbb{Q} \to B$:

$$\dots \leftarrow \Omega^3_{B/\mathbb{Q}} \leftarrow \Omega^2_{B/\mathbb{Q}} \leftarrow \Omega_{B/\mathbb{Q}} \leftarrow B$$

U(B ⊗_Q sk₁ Δ[•]_{*}) where sk₁ is the simplicial 1-skeleton;
Functor calculus Taylor towers.

- Rezk: Connected U(B ⊗_{HQ} sk₁ Δ[•]_{*}) to the de Rham complex via the homotopy spectral sequence of this cosimplicial object.
- Goodwillie-Waldhausen: Connected the functor calculus tower of the forgetful functor from rational commutative ring spectra to S-modules to the de Rham complex.

Prequel: calculus of functions

Recall that if $f : \mathbb{R} \to \mathbb{R}$ is C^{∞} , then

• The *n*th Taylor polynomial of *f* about *b* at *x* is

$$T_n^b f(x) = f(b) + f'(b)(x-b) + \dots + \frac{f^{(n)}(b)(x-b)^n}{n!}$$

• The Taylor series of f about b at x is

$$T^{b}_{\infty}f(x) = \sum_{n\geq 0} \frac{f^{(n)}(b)(x-b)^{n}}{n!}$$

and if f is nice (analytic) then $T_{\infty}^{b}f(x) = f(x)$ for x near b (radius of convergence).

The setting

Let

- C_g be a simplicial model category; with initial object A and terminal object B;
- g is the unique map $g: A \to B$ in \mathcal{C}_g
- S a category of spectra (stable model category);
- $F: \mathcal{C}_g \to \mathcal{S}$ a functor which preserves weak equivalences.

A Taylor tower for F is any tower of functors and natural transformations

$$F \rightarrow \cdot \rightarrow P_n F(X) \rightarrow P_{n-1} F(X) \rightarrow \cdots \rightarrow P_1 F(X) \rightarrow P_0 F(X)$$

such that

- Each functor $P_n F$ is polynomial degree *n* for some notion of degree *n*;
- The functors $P_n F$ are universal amongst degree *n* functors with natural transformations from *F*.

Goodwillie's *n*-excisive tower P_nF :

- Polynomial degree n means n-excisive, i.e. P_nF takes strongly homotopy co-cartesian n-cubes to homotopy cartesian n-cubes.
- Let $D_n F = \text{hofib}(P_n F \to P_{n-1}F)$. Then

 $D_n F(X) \simeq \partial_n F \wedge_{h\Sigma_n} X^{\wedge n}.$

- There are good notions of *analyticity* and *convergence*.
- If G is *n*-excisive and there is a natural transformation $F \to G$ with constants κ and c such that

for any $A \rightarrow X \rightarrow B$ in C_g where $X \rightarrow B$ is k-connected for some $k \ge \kappa$, then $F(X) \rightarrow G(X)$ is at least ((n+1)k-c)-connected

then $P_n F \simeq G$.

See Goodwillie 92, Goodwillie 03, Kuhn 07, BJM15.

Johnson-McCarthy discrete calculus

The discrete calculus tower has a different notion of degree *n*:

 $\bullet~$ If ${\mathcal C}$ is pointed, ${\it F}$ is linear iff it is reduced and

$$F(X \coprod Y) \simeq F(X) \times F(Y).$$

• For general functors from C_g , the failure of F to be linear is measured by the 2nd cross effect, the iterated homotopy fiber of

• The *n*th cross effect is defined by the iterated homotopy fiber of an *n*-cube which is $F(X_1 \coprod_A \cdots \coprod_A X_n)$ in its initial corner.

A functor with $cr_n F \simeq \star$ is degree *n*.

Johnson-McCarthy discrete calculus

If $\ensuremath{\mathcal{C}}$ is pointed, there is an adjuntion

$$\operatorname{Fun}(\mathcal{C},\mathcal{S}) \xrightarrow[]{cr_n} [cr_n]{\Delta} \operatorname{Fun}(\mathcal{C}^n,\mathcal{S})$$

This produces a cotriple $\perp_n = \Delta \circ cr_n$. If C is not pointed, \perp_n is still a cotriple. [Johnson-McCarthy 03, BJM15]

Definition (Johnson-McCarthy 03, BJM15)

The universal degree *n* approximation to $F : \mathcal{C}_g \to \mathcal{S}$ is

$$\Gamma_n^g F(X) = \operatorname{hocof}\left(|\perp_n^* F(X)| \to F(X)\right).$$

Theorem (BJM15)

When F commutes with realizations,

$$\Gamma_n^g F \simeq P_n F.$$

2 At the initial object A,

$$\Gamma_n^g F(A) \simeq P_n F(A).$$

Note: 'commutes with realizations' is a mild condition; for example if F satisfies the limit axiom and is *n*-excisive, then F commutes with realizations by Mauer-Oats 01.

Act II: de Rham complex

Let C be the category of simiplicial commutative A_{\bullet} -algebras.

- The Kähler differentials Ω_{B_i/A_i} are the free B_i -module generate by symbols db subject to d(b+c) = db + dc and d(bc) = bdc + cdb.
- The de Rham complex is $DR_A(B)$:

$$\cdots \leftarrow \Omega^3_{B_i/A_i} \leftarrow \Omega^2_{B_i/A_i} \leftarrow \Omega^1_{B_i/A_i} \leftarrow B_i$$

where Ω_{B_i/A_i}^n is the *n*th exterior power of Ω_{B_i/A_i}^1 .

 Note that this is a cochain complex of A-modules. We will specialize to A_● = Q_●, a constant simplicial object.

Here A_{\bullet} is inital, but B_{\bullet} isn't terminal.

The terminal object B is like the center of expansion for the Taylor series of functions, b.

- $T^b_{\infty}f(x) = f(x)$ for x near b.
- $P_{\infty}F(X) \simeq F(X)$ for $X \to B$ highly connected.

If we want to let B vary, we should see what happens when we let b vary.

The Taylor series $T_n^b f(0)$ as a function of b

It is still a series:

$$T_n^b f(0) = f(b) - f'(b)b + \dots + (-1)^n \frac{f^{(n)}(b)b^n}{n!}.$$

- T^b_nf(0) needn't be polynomial degree n, even if f was polynomial degree n.
- $T^b_{\infty} f(0)$ wants to recover the **number** f(0), not the function f.

$T^{b}_{\infty}f(0)$ wants to recover the **number** f(0)

If f is polynomial degree n, then

$$\frac{d}{db}T_{\infty}^{b}f(0) = \frac{d}{db}\sum_{k=0}^{n} \frac{(-1)^{n}f^{(n)}(b)b^{n}}{n!}$$
$$= \sum_{k=0}^{n} \frac{(-1)^{n}f^{(n+1)}(b)b^{n}}{n!} + \sum_{k=0}^{n} \frac{n(-1)^{n}f^{(n)}(b)b^{n-1}}{n!}$$
$$= 0$$

because the latter is a telescoping sum.

Hence, $T^b_{\infty}f$ is constant, and for b = 0 it is f(0).

Definition

Let $F : {}_A \backslash \mathcal{C} \to \mathcal{S}$. The varying center tower $V_n F$ is defined by

$$V_nF(g:A\to X)=\Gamma_n^gF(A).$$

Properties of this tower:

- $V_n F$ is a functor.
- One are natural transformations V_nF → $V_{n-1}F$ making $\{V_nF\}_{n\geq 0}$ into a tower.
- It is NOT a Taylor tower (not polynomial).
- **(**) When it converges, it converges to the constant functor F(A).

Back to de Rham

Theorem (Goodwillie-Waldhausen, BEJM)

Let $g : \mathbb{Q} \to B_{\bullet}$.

$$V_n U(g: \mathbb{Q} \to B_{\bullet}) \simeq DR^n_{\mathbb{Q}}(B_{\bullet})$$

where $DR^n_{\mathbb{Q}}(B_{\bullet})$ denotes the truncation of the de Rham complex at the *n*-th stage.

To explain this, recall $V_n U(g : \mathbb{Q} \to B_{\bullet}) = \Gamma_n^g U(\mathbb{Q})$, and in this case $\Gamma_n^g = P_n$. We will show:

- $DR_{X_{\bullet}}^{n}(B_{\bullet})$ is *n*-excisive as a functor of C_{f} .
- ② If $X_{\bullet} \to B_{\bullet}$ is $k \ge 1$ connected, then $U(X) \to DR_{\mathbb{Q}}^{n}(X_{\bullet})$ is at least (n+1)k (n+1)-connected.

Then at $X_{\bullet} = \mathbb{Q}$, $DR^n_{\mathbb{Q}}(B_{\bullet}) \simeq \Gamma^g_n U(\mathbb{Q}) =: V_n U(g : \mathbb{Q} \to B)$.

$DR_{X\bullet}^n(B_{\bullet})$ is *n*-excisive

For this, we work one Ω^n at a time.

- $\Omega^1_{B_{\bullet}/X_{\bullet}}$ is degree 1 because $\Omega^1_{B_{\bullet}/X_{\bullet}} = I/I^2$ where $I = \ker(B \otimes_X B \to B)$.
- $\Omega_{B_{\bullet}/X_{\bullet}}^{n}$ is degree *n* because $\Omega_{B_{\bullet}/X_{\bullet}}^{n} := (\Omega_{B_{\bullet}/X_{\bullet}}^{1})_{\Sigma_{n}}^{\otimes n}$ and rationally, this is $(\Omega_{B_{\bullet}/X_{\bullet}}^{1})_{h\Sigma_{n}}^{\otimes n}$.
- Functors of this form are homogeneous degree *n* by fundamental results of Goodwillie.

Connectivity

If $X_{\bullet} \to B_{\bullet}$ is k > 1 connected, then $U(X) \to DR_{X_{\bullet}}^{n}(B_{\bullet})$ is (n+1)k - (n+1)-connected.

- Assume that $X_{\bullet} \to B_{\bullet}$ is an isomorphism in dimensions $\leq k$, injective in dimensions > k.
- Then $\Omega^1_{B_i/X_i} = 0$ for $0 \le i \le k$.
- Then $\Omega^m_{B_i/X_i} = 0$ for $0 \le i \le mk$.
- As a result, the map

$$DR_{X_{\bullet}}(B_{\bullet}) \rightarrow DR_{X_{\bullet}}^{n}(B_{\bullet})$$

is at least (n+1)k - (n+1)-connected.

• By the Poincare Lemma, each row satisfies $DR_{X_i}(B_i) \simeq X_i$ Evaluating at $X_{\bullet} = \mathbb{Q}$, we get

$$V_n U(\mathbb{Q} \to B_{\bullet}) = DR^n_{\mathbb{Q}}(B_{\bullet}).$$

Act III: Cosimplicial models

Rezk-Goodwillie-Waldhausen now says:

$$V_{\infty}U(\mathbb{Q} \to B) \simeq DR_{\mathbb{Q}}(B) \simeq Tot|B \otimes_{\mathbb{Q}} \mathsf{sk}_1 \Delta^{ullet}_*|.$$

Theorem (BEJM)

Let
$$g : A \to B$$
 and $F : \mathcal{C}_g \to \mathcal{S}$. For any $n \ge 0$,

$$V_{\infty}F(g)
ightarrow \mathit{Tot}|\Gamma^g_{\infty}F(X\otimes_A \mathrm{sk}_n\,\Delta^{ullet}_*)|$$

and the tower of spectra

$$\{V_k F(g)\}_{k\geq 1} = \{\Gamma_k^g F(A)\}_{k\geq 1}$$

is pro-equivalent to the Tot-tower of spectra

$${Tot^{m(k+1)}|\Gamma_k^g F(X \otimes_A \operatorname{sk}_n \Delta^{\bullet}_*)|}_{k \ge 1}.$$

An outline of the proof

Work inductively, first proving it for linear functors:

Proposition (BEJM)

If F is degree 1 relative to g, then

$$F(A) \simeq \operatorname{Tot}^m |F(X \otimes_A \operatorname{sk}_n \Delta^{ullet}_*)|$$

for all $m \ge n + 1$. This gives a pro-equivalence of the constant tower F(A) with the Tot-tower on the right.

then polynomial functors:

Proposition

For all $k \ge 1$ and $n \ge 0$, the map

$$V_k F(g) = \Gamma_k^g F(A) \to Tot^m |\Gamma_k^g F(X \otimes_A \operatorname{sk}_n \Delta_*^{\bullet})|$$

is an equivalence for each $m \ge (n+1)k$. This gives a pro-equivalence.

When F is degree 1,

$$F(X \otimes_A U) \simeq F(X) \otimes_{F(A)} U$$

for any finite non-empty set U because $F(X \otimes_A - -)$ comes from a cocartesian cube.

Now,

$$F(A) \simeq F(X) \otimes_{F(A)} \emptyset = F(X) \otimes_{F(A)} \operatorname{Tot}^m \operatorname{sk}_n \Delta^{ullet}_*$$

whenever $m \ge n+1$.

In \mathcal{S} , the coproduct is weakly equivalent to a product, and Tot commutes with products:

$$F(A) \simeq \operatorname{Tot}^m(F(X) \otimes_{F(A)} \operatorname{sk}_n \Delta^{\bullet}_*) \simeq \operatorname{Tot}^m F(X \otimes_A \operatorname{sk}_n \Delta^{\bullet}_*).$$

Apply the geometric realization to finish.

Convergence

Let $\mathcal{C} = Top$ or \mathcal{S} . We say F is weakly ρ -analytic relative to g provided that for any object $A \to X \to B$ in \mathcal{C}_g with $X \to B$ ρ -connected, $F(X) \simeq \Gamma^g_{\infty} F(X)$.

Theorem (BEJM)

If g is c-connected, F is weakly ρ -analytic relative to g, and F commutes with realizations, then

$$V_{\infty}F(g) \simeq \operatorname{Tot} |F(B \otimes_A \operatorname{sk}_n \Delta^{ullet}_*)|$$

whenever $n \ge \rho - c - 1$ is non-negative.

As a special case,

$$V_{\infty}U(\mathbb{Q} o B) \simeq \operatorname{Tot} |B \otimes_{\mathbb{Q}} \operatorname{sk}_{1} \Delta^{ullet}_{*}|.$$