Chromatic unstable homotopy, plethories, and the Dieudonné correspondence Alpine Algebraic and Applied Topology Conference

Tilman Bauer, KTH Stockholm

August 18, 2016

Adams-type spectral sequences for computing [X, Y]

The classical, homological Adams spectral sequence:

$$\mathsf{Ext}_{\mathcal{A}_*}^{**}(H_*X,H_*Y) \Longrightarrow [X,Y]_*$$

X, Y spectra

 A_* dual Steenrod algebra, a commutative \mathbf{F}_p -Hopf algebra H_*X , H_*Y coefficients in \mathbf{F}_p , comodules over A_*

 $Ext_{\mathcal{A}_*}$ of comodules over a coalgebra

 $[X, Y]_*$ graded homotopy classes, more realistically $[X, Y_p]$

Adams-type spectral sequences for computing [X, Y]

The stable Adams-Novikov spectral sequence based on a ring spectrum E:

$$\mathsf{Ext}^{**}_{E_*E}(E_*X, E_*Y) \Longrightarrow [X, Y]_*$$

X, Y spectra

 E_*E stable cooperations, a Hopf algebroid

 E_*X , E_*Y comodules over E_*

 Ext_{E_*E} of comodules over a Hopf algebroid

 $[X, Y]_*$ graded homotopy classes, more realistically $[X, Y_E]$

Hopf algebroids vs. bialgebras

 (E_*, E_*E) is a Hopf algebroid if E_*E is a flat E_* -module. A Hopf algebroid is a cogroupoid object in E_* -algebras. Alternatively: E_*E is an E_* -bimodule with a multiplication

 $E_*E_{E_*}\otimes_{E_*}E_*E \to E_*E$ (tensor over $E_*\otimes E_*$)

and a comultiplication

$$E_*E \rightarrow E_*E \otimes_{E_*} E_*E$$
 (left-right tensor product).

It is a bialgebra with respect to two different tensor structures, only one of which is symmetric monoidal. This is the point of view that generalizes to the unstable setting.

Adams-type spectral sequences for computing [X, Y]

The unstable spectral sequence based on a ring spectrum E:

$$\operatorname{Ext}_{\mathcal{K}}^{**}(E_*X, E_*Y) \Longrightarrow [X, Y]_*$$

X, Y CW complexes

 \mathcal{K} "unstable cooperations", a "bialgebra" in coalgebras E_*X, E_*Y comodules over \mathcal{K} (in coalgebras), free E_* -modules $\operatorname{Ext}_{\mathcal{K}}$ some nonlinear derived functor $[X, Y]_*$ graded homotopy classes, more realistically $[X, Y_E^{\circ}]$. Fringed, i. e. $[X, Y]_{0,1}$ are only sets/groups. Adams-type spectral sequences for computing [X, Y]

There are adjoint functors

$$\Omega^{\infty}$$
: *E*-module spectra \leftrightarrows Top: $E \wedge \Sigma^{\infty}(-)_{+}$

The associated monad $Y \mapsto E(Y) = \Omega^{\infty}(E \wedge Y_+)$ gives a bar construction

$$(Y \rightarrow) \quad E(Y) \rightrightarrows E(E(Y)) \cdots$$

with Tot $E^{\bullet}(Y) = Y_{E}^{\circ}$.

The Bousfield spectral sequence from applying $[X, -]_*$ to the associated tower gives the unstable Adams spectral sequence we are looking for (Bendersky-Curtis-Miller 1978).

It is not obvious how to algebraically describe the E_2 -term.

Adams-type spectral sequences for computing [X, Y]A comonadic point of view

Simplifying assumption: E_* is a graded field, e.g. E = K(n).

Let \mathcal{K} be the **co**monad $E_* \circ EM$ on Mod_{E_*} . For any space X, E_*X is a \mathcal{K} -comodule.

Theorem (BCM 78 for certain connective E, Bendersky-Thompson 00 for nonconnective E)

$$E_2^{s,t} = \mathsf{Ext}_{\mathcal{K}\text{-comodules}}(E_*X, E_*Y)$$

Adams-type spectral sequences for computing [X, Y]A comonadic point of view

Example

For $E = H\mathbf{F}_{p}$, \mathcal{K} is the free unstable algebra functor on a graded vector space (rather, its linear dual).

This defines the spectral sequence and identifies its E_2 -term. But

- It forces us to use the cobar construction unsuitable for daily use!
- It does not exhibit the bialgebraic structure we saw in the stable case

Aim: Give an algebraic description of the object ${\cal P}$ for which ${\cal K}$ is the cofree construction.

History, previous work

Aim: Give an algebraic description of the object ${\cal P}$ for which ${\cal K}$ is the cofree construction.

Boardman-Johnson-Wilson 95: \mathcal{P} is $E_*(\underline{E}_*)$. This has the following structure:

- An E_* -coalgebra because \underline{E}_n are spaces
- A Hopf algebra because \underline{E}_n are infinite loop spaces, furthermore a morphism $E_* \to \operatorname{Hom}_{\operatorname{Hopf}}(\mathcal{P}, \mathcal{P})$
- A Hopf ring because \underline{E}_* is a ring space
- An "enriched" Hopf ring by including the action of $E^*(\underline{E}_*)$ in an ad-hoc way.

Problem: what is the (co)composition actually defined on?

History, previous work

A similar algebraic structure has appeared in algebra: *Tall-Wraith monoids* (**Tall-Wraith 70**), a.k.a. *plethories*, studied extensively by Borger-Wieland 2005.

Problem: this works for *co*homology $E^*(\underline{E}_*)$, and a profinite topology has to be taken into account.

Stacey-Whitehouse 09: give a description of a "completed" version of plethories when E_* is a field (and some more general situations)

B 14: "formal plethories": definition that works when E_* is a Prüfer domain, informed by algebraic geometry.

But these structures are complex and unwieldy.

Formal groups

(but not what you think)

From now on, assume that $k = E_*$ is a *perfect* graded field, i.e.:

- k₀ is perfect
- If k has period l and of characteristic p then (l, p) = 1.

Definition

A formal scheme is a directed colimit of functors represented by finite-dimensional k-algebras.

 $\begin{array}{rcl} \mathsf{Top} & \to & \mathsf{formal \ schemes}/k \\ & X & \mapsto & \mathsf{Spf} \ E^*(X) = \operatornamewithlimits{colim}_{F \subset X \ \mathsf{finite}} \mathsf{Spec} \ E^*(F) \\ & X \ \mathsf{double \ loop \ space} & \mapsto & \mathsf{formal \ (abelian) \ group \ }/k \end{array}$

Formal groups

For simplicity, assume even grading, so that everything is commutative.

Lemma (Fontaine)

Every formal group G over perfect k splits naturally

$$\textit{G} = \textit{G}^{\sf c} imes \textit{G}^{\sf \acute{e}t}, \quad \textit{where}$$

 G^{c} is connected, i. e. $G^{c}(k') = 0$ for all extensions k' of k $G^{\acute{e}t}$ is étale.

There is an equivalence

étale group schemes	\leftrightarrow	<i>discrete</i> Gal(<i>k</i>)- <i>modules</i>
G	\mapsto	$\operatorname{colim}_{k < k'} G(k')$
$Spfmap_{Gal(k)}(M,\bar{k})$	\leftarrow	М

Formal groups

If A is an abelian group, considered as a trivial Gal(k)-module, then

$$\operatorname{Spf} \operatorname{map}_{\operatorname{Gal}(k)}(A, \overline{k}) = \operatorname{Spf} \operatorname{map}(A, k) = \underline{A}$$

is the constant group scheme.

Observation: If X is a space, $E^*(X)/\operatorname{nil} \cong E^*(\pi_0 X)$ has trivial $\operatorname{Gal}(k)$ -action. In particular, when X is a commutative, associative grouplike *H*-space, $(\operatorname{Spf} E^*(X))^{\text{ét}}$ is always constant.

Definition

A cohomological formal group is a formal group with constant étale part.

The category of cohomological formal groups

Theorem (B)

The category of cohomological formal groups

- is abelian
- has all colimits and limits, and directed colimits are exact
- has a generator and a cogenerator
- is well-powered and co-well-powered.

Corollary (Freyd)

Any functor from cohomological formal groups to another category C that preserves limits, has a left adjoint. Any functor that preserves colimits has a right adjoint.

In particular, the forgetful functor to formal schemes has a left adjoint Fr.

Tensor products of formal groups

Corollary (Goerss 1999)

The category of cohomological formal groups is closed monoidal with respect to a tensor product \otimes classifying bilinear maps of formal groups.

Example $\underline{A} \otimes \underline{B} \cong \underline{A} \otimes \underline{B}$

Example

 $\operatorname{Fr}(X \times Y) \cong \operatorname{Fr}(X) \otimes \operatorname{Fr}(Y)$

In characteristic 0, every connected formal group is the zero component of a free formal group (Milnor-Moore), so this is nearly a complete description.

Formal I-algebra schemes

Definition

Let *I* be a graded commutative ring. A formal *I*-algebra scheme is a formal group *A* with $\underline{I} \rightarrow A$, $A \otimes A \rightarrow A$ making it into a functor from *k*-algebras to *I*-algebras.

Example

If F is a commutative ring spectrum, Spf $E^*\underline{F}_*$ is a cohomological F_* -algebra scheme.

Lemma

Composition gives:

 $\{f. \ l-alg \ schemes/k\} \times \{f. \ schemes/k\} \rightarrow \{f. \ schemes/l\}$ $\{f. \ l-alg \ schemes/k\} \times \{f. \ k-alg \ schemes/k\} \rightarrow \{f. \ l-alg \ schemes/k\}$

Formal plethories

Lemma

Composition gives:

 $\{f. \ l-alg \ schemes/k\} \times \{f. \ schemes/k\} \rightarrow \{f. \ schemes/l\}$ $\{f. \ l-alg \ schemes/k\} \times \{f. \ k-alg \ schemes/k\} \rightarrow \{f. \ l-alg \ schemes/k\}$

In particular, composition \circ is a non-symmetric monoidal structure on k-algebra schemes over k, and schemes over k are tensored over it.

Definition

A **formal plethory** is a cohomological formal k-algebra scheme P with a comonoid structure

$$P \rightarrow P \circ P, P \rightarrow \mathsf{id}$$

A (left) comodule over a formal plethory *P* is a formal scheme *X* with a coaction $X \rightarrow P \circ X$.

Thus: algebra for \otimes , coalgebra for \circ .

Formal plethories

Example

Spf $E^*\underline{E}_*$ is a formal plethory, and Spf $E^*(X)$ is a comodule over it for any space X.

Theorem (2014, "nonlinear Künneth theorem")

For E, F commutative ring spectra, E_* a graded field, and X a space, there is an isomorphism

$$\mathsf{Spf}(E^*(F(X)) = \mathsf{Spf}\,E^*(\Omega^{\infty}(F \wedge X)_+) \cong \mathsf{Spf}\,E^*\underline{F}_* \circ \mathsf{Spf}\,F^*X$$

Corollary

The functor $C \mapsto \text{Spf } C^*$ from coalgebras to formal schemes extends to an equivalence between \mathcal{K} -coalgebras and $\text{Spf } E^*\underline{E}_*$ -comodules. Thus

$$E_2 = \operatorname{Ext}_{\operatorname{Spf} E^* \underline{E}_* \operatorname{-comod}}(\operatorname{Spf} E^*(S^*), \operatorname{Spf} E^*(X)) \Rightarrow \pi_* X_{\widehat{E}}.$$

Corollary

The functor $C \mapsto \text{Spf } C^*$ from coalgebras to formal schemes extends to an equivalence between \mathcal{K} -coalgebras and $\text{Spf } E^*\underline{E}_*$ -comodules. Thus

 $E_2 = \mathsf{Ext}_{\mathsf{Spf}\, E^*\underline{E}_*\text{-}comod}(\mathsf{Spf}\, E^*(S^*), \mathsf{Spf}\, E^*(X)) \Rightarrow \pi_*X_{E}^{\hat{}}.$

- + Fully algebraic description of E_2
- Cobar construction still the only obvious resolution what are injective Spf E^{*} <u>E</u>_{*}-comodules??

From now on, char(k) = p > 0. Semi-classically:

Theorem

Let I be a \mathbf{Z}_p -algebra. Then there is an equivalence of abelian categories

$$\begin{cases} \text{discrete cohomological} \\ \text{l-module schemes/k} \end{cases} \xrightarrow{D} \begin{cases} \text{Modules } M \text{ over} \\ \mathcal{R} = W(k) \otimes_{\mathbf{Z}_{p}} l\langle F, V \rangle / (FV-p) \\ \text{s. t. } M = M_{0} \oplus M_{c} \text{ where} \\ V|_{M_{0}} = \text{id}, V|_{M_{c}} \text{ nilpotent} \end{cases}$$

Remark: If one drops the cohomologicality requirement, V has finite order on M_0 instead of order 1.

The Dieudonné correspondence

Example

$$D(\underline{A}) = A$$
 with $V = id, F = p$

Example

$$D(\widehat{\mathbb{G}}_{a}) = k[V^{\pm 1}]/k[V] = \langle \bullet \xleftarrow{V} \bullet \xleftarrow{V} \cdots \rangle, \quad F = 0$$

Example (and Proposition)

For the free formal group Fr(X) on a scheme $X = \operatorname{Spec} A$, A finite:

D(Fr(X)) = Hom(CW(A), CW(k))

CW(A) = p-typical "co-Witt vectors" are to W(A) what \mathbf{Z}/p^{∞} is to \mathbf{Z}_p .

The tensor product

Theorem (Goerss '99, Buchstaber-Lazarev '07)

Given two formal I-modules M, N,

 $D(M \otimes N) \cong D(M) \boxtimes D(N),$

where

$$A \boxtimes B = \mathcal{R} \otimes_{\mathcal{W}(k) \langle \mathcal{V} \rangle} (A \otimes B) / \sim,$$

 $Fx \otimes Va \otimes b \sim x \otimes a \otimes Fb$, $Fx \otimes a \otimes Vb \sim x \otimes Fa \otimes b$

In particular, formal *l*-algebra schemes correspond to \boxtimes -algebras *A* with unit $l \rightarrow A$.

The evaluation product

Theorem (B)

The evaluation product

 $\{cohomological \ formal \ l-modules\} \times \{k-algebras\} \xrightarrow{ev} \{l-modules\}$

satisfies $G(A) = D(G) \circ A$, where

$$M \circ A = \operatorname{Tor}^{W(k)}(M, CW(A))^{F,V} = \ker \begin{pmatrix} \operatorname{Tor}(F, \operatorname{id}) - \operatorname{Tor}(\operatorname{id}, V) \\ \operatorname{Tor}(V, \operatorname{id}) - \operatorname{Tor}(\operatorname{id}, F) \end{pmatrix}$$

Note: \circ is linear on the left, but not on the right.

The evaluation product, simplified

If / is an $\mathbf{F}_{\text{p}}\text{-}\text{algebra},$ there is a simpler description.

Theorem

If I is an \mathbf{F}_{p} -algebra, $M \circ A \cong M \otimes_{F}^{V} W(A)$, where

$$M \otimes_F W(A) = M \otimes W(A) / (Fm \otimes a - m \otimes Va)$$

and

$$M \otimes_F^V W(A) = \ker(V \otimes \operatorname{id} - \operatorname{id} \otimes F) \text{ on } M \otimes_F W(A)$$

The evaluation product, simplified

$$M \otimes_F W(A) = M \otimes W(A)/(Fm \otimes a - m \otimes Va)$$

in more explicit terms:

Define polynomials $c_i(x, y)$ inductively by

$$x^{p^n} + y^{p^n} = c_0(x, y)^{p^n} + pc_1(x, y)^{p^{n-1}} + \dots + p^n c_n(x, y)$$

$$c_0(x,y) = x + y, \quad c_1(x,y) = \sum_{i=1}^{p-1} \frac{1}{p} {p \choose i} x^i y^{p-i}, \dots$$

Then $M \otimes_F W(A)$ is generated by symbols (m, a) modulo left linearity and

$$(m, a) + (m, b) \sim \sum_{i=0}^{\infty} (F^i m, c_i(a, b))$$

The composition product

Theorem (B)

Given a two k-algebra scheme F and G, $D(G \circ F) = D(F) \circ D(G)$. Here, $M \circ N = (M \otimes_{F}^{V} N)$,

where $M \otimes_F N$ is generated by (m, n) modulo left linearity and

$$(m, n) + (m, n') = (m, n + n') + (Fm, Vc_1(n, n')) + \cdots,$$
$$(M \otimes_F^V N) = \ker(V \otimes \operatorname{id} - \operatorname{id} \otimes V(-)^p).$$

The \mathcal{R} -module structure on $M \circ N$ is given by V(m, n) = (m, Vn) and $F(m, n) = (m, Fn) + (Fm, n^p)$. The multiplication is componentwise.

The plethory for K(1), p > 2

Classical stable computation:

$$\mathcal{K}(n)_*(\mathcal{K}(n)) = \mathcal{P}(b_1, b_2, \dots) / (b_i^{p^n} - v_n^? b_i) \otimes \bigwedge (a_0, \dots, a_{n-1}).$$

Make this an \mathcal{R} -module by defining F = 0, $V(a_i) = a_{i-1}$, $V(b_i) = b_{i-1}$. Then it becomes a (\boxtimes, \circ) -bialgebra.

Let $P = D(\text{Spf } K(n)^* \underline{K(n)}_*)$ be the plethory for K(n) under the Dieudonné correspondence.

Stabilization: $P \rightarrow K(n)_*K(n)$ is surjective [Kuhn,Wilson].

Theorem

There is a short exact sequence of (\boxtimes, \circ) -bialgebras

$$k \rightarrow k[e]/(e^{2p-1}-e) \rightarrow P \rightarrow K(1)_*K(1) \rightarrow k.$$

Theorem

There is a short exact sequence of (\boxtimes, \circ) -bialgebras

$$k \rightarrow k[e]/(e^{2p-1}-e) \rightarrow P \rightarrow K(1)_*K(1) \rightarrow k.$$

More precisely, $P \cong k[e]/(e^{2p-1} - e) \otimes K(1)_*K(1)$ as algebras,

•
$$|e| = (1, 1), |a_0| = (2, 1), |b_i| = (2p^i, 2)$$

• $V(b_i) = b_{i-1}, V(b_1) = e^2 =: b_0, V(e) = V(a_0) = 0$
• $F(a_0) = (1 - v_1^{-1}e^{2p-2}v_1)a_0, F(b_i) = 0 = F(e)$
• $\psi(e) = e \circ e, \ \psi(a_0) = a_0 \circ e_1 + e_1^2 \circ a_0, \ \sum_{n \ge 0} F\psi(b_n) = \sum_{i,j \ge 0} Fb_i^{p^j} \circ b_j$