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Adams-type spectral sequences for computing [X,Y]

The classical, homological Adams spectral sequence:

Ext∗∗A∗(H∗X,H∗Y) =⇒ [X,Y]∗

X, Y spectra
A∗ dual Steenrod algebra, a commutative Fp-Hopf algebra

H∗X, H∗Y coefficients in Fp, comodules over A∗

ExtA∗ of comodules over a coalgebra
[X,Y]∗ graded homotopy classes, more realistically [X,Yp̂]
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Adams-type spectral sequences for computing [X,Y]

The stable Adams-Novikov spectral sequence based on a ring spectrum E:

Ext∗∗E∗E(E∗X,E∗Y) =⇒ [X,Y]∗

X, Y spectra
E∗E stable cooperations, a Hopf algebroid

E∗X, E∗Y comodules over E∗

ExtE∗E of comodules over a Hopf algebroid
[X,Y]∗ graded homotopy classes, more realistically [X,YÊ]
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Hopf algebroids vs. bialgebras

(E∗,E∗E) is a Hopf algebroid if E∗E is a flat E∗-module. A Hopf algebroid
is a cogroupoid object in E∗-algebras.
Alternatively: E∗E is an E∗-bimodule with a multiplication

E∗E E∗⊗E∗ E∗E→ E∗E (tensor over E∗ ⊗ E∗)

and a comultiplication

E∗E→ E∗E⊗E∗ E∗E (left-right tensor product).

It is a bialgebra with respect to two different tensor structures, only one of
which is symmetric monoidal. This is the point of view that generalizes to
the unstable setting.
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Adams-type spectral sequences for computing [X,Y]

The unstable spectral sequence based on a ring spectrum E:

Ext∗∗K (E∗X,E∗Y) =⇒ [X,Y]∗

X, Y CW complexes
K “unstable cooperations”, a “bialgebra” in coalgebras

E∗X, E∗Y comodules over K (in coalgebras), free E∗-modules
ExtK some nonlinear derived functor

[X,Y]∗ graded homotopy classes, more realistically [X,YÊ]. Fringed,
i. e. [X,Y]0,1 are only sets/groups.
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Adams-type spectral sequences for computing [X,Y]

There are adjoint functors

Ω∞ : E-module spectra ⇆ Top : E ∧ Σ∞(−)+

The associated monad Y 7→ E(Y) = Ω∞(E ∧ Y+) gives a bar construction

( Y→ ) E(Y) ⇒ E(E(Y)) · · ·

with Tot E•(Y) = YÊ.
The Bousfield spectral sequence from applying [X,−]∗ to the associated
tower gives the unstable Adams spectral sequence we are looking for
(Bendersky-Curtis-Miller 1978).
It is not obvious how to algebraically describe the E2-term.
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Adams-type spectral sequences for computing [X,Y]
A comonadic point of view

Simplifying assumption: E∗ is a graded field, e.g. E = K(n).

ModE Top

ModE∗

Ω∞

E∧Σ∞(−)+

E∗

EM
∼

Let K be the comonad E∗ ◦ EM on ModE∗ . For any space X, E∗X is a
K-comodule.

Theorem (BCM 78 for certain connective E, Bendersky-Thompson 00
for nonconnective E)

Es,t
2 = ExtK-comodules(E∗X,E∗Y)
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Adams-type spectral sequences for computing [X,Y]
A comonadic point of view

Example
For E = H Fp, K is the free unstable algebra functor on a graded vector
space (rather, its linear dual).

This defines the spectral sequence and identifies its E2-term. But
It forces us to use the cobar construction – unsuitable for daily use!
It does not exhibit the bialgebraic structure we saw in the stable case

Aim: Give an algebraic description of the object P for which K is the
cofree construction.
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History, previous work

Aim: Give an algebraic description of the object P for which K is the
cofree construction.
Boardman-Johnson-Wilson 95: P is E∗(E∗). This has the following
structure:

An E∗-coalgebra because En are spaces
A Hopf algebra because En are infinite loop spaces, furthermore a
morphism E∗ → HomHopf(P,P)
A Hopf ring because E∗ is a ring space
An “enriched” Hopf ring by including the action of E∗(E∗) in an
ad-hoc way.

Problem: what is the (co)composition actually defined on?
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History, previous work

A similar algebraic structure has appeared in algebra: Tall-Wraith monoids
(Tall-Wraith 70), a.k.a. plethories, studied extensively by Borger-Wieland
2005.
Problem: this works for cohomology E∗(E∗), and a profinite topology has
to be taken into account.
Stacey-Whitehouse 09: give a description of a “completed” version of
plethories when E∗ is a field (and some more general situations)
B 14: “formal plethories”: definition that works when E∗ is a Prüfer
domain, informed by algebraic geometry.
But these structures are complex and unwieldy.
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Formal groups
(but not what you think)

From now on, assume that k = E∗ is a perfect graded field, i.e.:
k0 is perfect
If k has period l and of characteristic p then (l, p) = 1.

Definition
A formal scheme is a directed colimit of functors represented by
finite-dimensional k-algebras.

Top → formal schemes/k
X 7→ Spf E∗(X) = colim

F⊂X finite
Spec E∗(F)

X double loop space 7→ formal (abelian) group /k
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Formal groups
For simplicity, assume even grading, so that everything is commutative.

Lemma (Fontaine)
Every formal group G over perfect k splits naturally

G = Gc × Gét, where

Gc is connected, i. e. Gc(k′) = 0 for all extensions k′ of k
Gét is étale.

There is an equivalence

étale group schemes ↔ discrete Gal(k)-modules
G 7→ colim

k<k′
G(k′)

Spf mapGal(k)(M, k̄) ↢ M
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Formal groups

If A is an abelian group, considered as a trivial Gal(k)-module, then

Spf mapGal(k)(A, k̄) = Spf map(A, k) = A

is the constant group scheme.
Observation: If X is a space, E∗(X)/nil ∼= E∗(π0X) has trivial
Gal(k)-action. In particular, when X is a commutative, associative
grouplike H-space, (Spf E∗(X))ét is always constant.

Definition
A cohomological formal group is a formal group with constant étale part.
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The category of cohomological formal groups

Theorem (B)
The category of cohomological formal groups

is abelian
has all colimits and limits, and directed colimits are exact
has a generator and a cogenerator
is well-powered and co-well-powered.

Corollary (Freyd)
Any functor from cohomological formal groups to another category C that
preserves limits, has a left adjoint. Any functor that preserves colimits has
a right adjoint.

In particular, the forgetful functor to formal schemes has a left adjoint Fr.
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Tensor products of formal groups

Corollary (Goerss 1999)
The category of cohomological formal groups is closed monoidal with
respect to a tensor product ⊗ classifying bilinear maps of formal groups.

Example
A⊗ B ∼= A⊗ B

Example
Fr(X× Y) ∼= Fr(X)⊗ Fr(Y)

In characteristic 0, every connected formal group is the zero component of
a free formal group (Milnor-Moore), so this is nearly a complete
description.
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Formal l-algebra schemes

Definition
Let l be a graded commutative ring. A formal l-algebra scheme is a formal
group A with l→ A, A⊗ A→ A making it into a functor from k-algebras
to l-algebras.

Example
If F is a commutative ring spectrum, Spf E∗F∗ is a cohomological
F∗-algebra scheme.

Lemma
Composition gives:

{f. l-alg schemes/k} × {f. schemes/k} → {f. schemes/l}
{f. l-alg schemes/k} × {f. k-alg schemes/k} → {f. l-alg schemes/k}
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Formal plethories
Lemma
Composition gives:

{f. l-alg schemes/k} × {f. schemes/k} → {f. schemes/l}
{f. l-alg schemes/k} × {f. k-alg schemes/k} → {f. l-alg schemes/k}

In particular, composition ◦ is a non-symmetric monoidal structure on
k-algebra schemes over k, and schemes over k are tensored over it.

Definition
A formal plethory is a cohomological formal k-algebra scheme P with a
comonoid structure

P→ P ◦ P,P→ id

A (left) comodule over a formal plethory P is a formal scheme X with a
coaction X→ P ◦ X.
Thus: algebra for ⊗, coalgebra for ◦.
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Formal plethories
Example
Spf E∗E∗ is a formal plethory, and Spf E∗(X) is a comodule over it for any
space X.

Theorem (2014, “nonlinear Künneth theorem”)
For E, F commutative ring spectra, E∗ a graded field, and X a space, there
is an isomorphism

Spf(E∗(F(X)) = Spf E∗(Ω∞(F ∧ X)+) ∼= Spf E∗F∗ ◦ Spf F∗X

Corollary
The functor C 7→ Spf C∗ from coalgebras to formal schemes extends to an
equivalence between K-coalgebras and Spf E∗E∗-comodules. Thus

E2 = ExtSpf E∗E∗-comod(Spf E∗(S∗),Spf E∗(X))⇒ π∗XÊ.
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Corollary
The functor C 7→ Spf C∗ from coalgebras to formal schemes extends to an
equivalence between K-coalgebras and Spf E∗E∗-comodules. Thus

E2 = ExtSpf E∗E∗-comod(Spf E∗(S∗),Spf E∗(X))⇒ π∗XÊ.

+ Fully algebraic description of E2

– Cobar construction still the only obvious resolution – what are
injective Spf E∗E∗-comodules??
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From now on, char(k) = p > 0. Semi-classically:

Theorem
Let l be a Zp-algebra. Then there is an equivalence of abelian categories

{
discrete cohomological
l-module schemes/k

}
D−→


Modules M over

R = W(k)⊗Zp l⟨F,V⟩/(FV− p)
s. t. M = M0 ⊕Mc where
V|M0 = id,V|Mc nilpotent


Remark: If one drops the cohomologicality requirement, V has finite order
on M0 instead of order 1.
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The Dieudonné correspondence

Example

D(A) = A with V = id, F = p

Example

D(Ĝa) = k[V±1]/k[V] = ⟨• V←− • V←− · · · ⟩, F = 0

Example (and Proposition)
For the free formal group Fr(X) on a scheme X = Spec A, A finite:

D(Fr(X)) = Hom(CW(A),CW(k))

CW(A) = p-typical “co-Witt vectors” are to W(A) what Z/p∞ is to Zp.
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The tensor product

Theorem (Goerss ’99, Buchstaber-Lazarev ’07)
Given two formal l-modules M, N,

D(M⊗ N) ∼= D(M)⊠ D(N),

where
A ⊠ B = R⊗W(k)⟨V⟩ (A⊗ B)/ ∼,

Fx⊗ Va⊗ b ∼ x⊗ a⊗ Fb, Fx⊗ a⊗ Vb ∼ x⊗ Fa⊗ b

In particular, formal l-algebra schemes correspond to ⊠-algebras A with
unit l→ A.
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The evaluation product

Theorem (B)
The evaluation product

{cohomological formal l-modules} × {k-algebras} ev−→ {l-modules}

satiesfies G(A) = D(G) ◦ A, where

M ◦ A = TorW(k)(M,CW(A))F,V = ker
(

Tor(F, id)− Tor(id,V)
Tor(V, id)− Tor(id,F)

)
Note: ◦ is linear on the left, but not on the right.
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The evaluation product, simplified

If l is an Fp-algebra, there is a simpler description.

Theorem
If l is an Fp-algebra, M ◦ A ∼= M⊗V

F W(A), where

M⊗F W(A) = M⊗W(A)/(Fm⊗ a−m⊗ Va)

and
M⊗V

F W(A) = ker(V⊗ id− id⊗F) on M⊗F W(A)
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The evaluation product, simplified

M⊗F W(A) = M⊗W(A)/(Fm⊗ a−m⊗ Va)

in more explicit terms:
Define polynomials ci(x, y) inductively by

xpn
+ ypn

= c0(x, y)pn
+ pc1(x, y)pn−1

+ · · ·+ pncn(x, y)

c0(x, y) = x + y, c1(x, y) =
p−1∑
i=1

1

p

(
p
i

)
xiyp−i, . . .

Then M⊗F W(A) is generated by symbols (m, a) modulo left linearity and

(m, a) + (m, b) ∼
∞∑
i=0

(Fim, ci(a, b))
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The composition product

Theorem (B)
Given a two k-algebra scheme F and G, D(G ◦ F) = D(F) ◦ D(G). Here,

M ◦ N = (M⊗V
F N),

where M⊗F N is generated by (m, n) modulo left linearity and

(m, n) + (m, n′) = (m, n + n′) + (Fm,Vc1(n, n′)) + · · · ,

(M⊗V
F N) = ker(V⊗ id− id⊗V(−)p).

The R-module structure on M ◦ N is given by V(m, n) = (m,Vn) and
F(m, n) = (m,Fn) + (Fm, np). The multiplication is componentwise.
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The plethory for K(1), p > 2

Classical stable computation:

K(n)∗(K(n)) = P(b1, b2, . . . )/(bpn

i − v?nbi)⊗
∧

(a0, . . . , an−1).

Make this an R-module by defining F = 0, V(ai) = ai−1, V(bi) = bi−1.
Then it becomes a (⊠, ◦)-bialgebra.
Let P = D(Spf K(n)∗K(n)∗) be the plethory for K(n) under the Dieudonné
correspondence.
Stabilization: P→ K(n)∗K(n) is surjective [Kuhn,Wilson].

Theorem
There is a short exact sequence of (⊠, ◦)-bialgebras

k→ k[e]/(e2p−1 − e)→ P→ K(1)∗K(1)→ k.
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Theorem
There is a short exact sequence of (⊠, ◦)-bialgebras

k→ k[e]/(e2p−1 − e)→ P→ K(1)∗K(1)→ k.

More precisely, P ∼= k[e]/(e2p−1 − e)⊗ K(1)∗K(1) as algebras,
|e| = (1, 1), |a0| = (2, 1), |bi| = (2pi, 2)

V(bi) = bi−1, V(b1) = e2 =: b0, V(e) = V(a0) = 0

F(a0) = (1− v−1
1 e2p−2v1)a0, F(bi) = 0 = F(e)

ψ(e) = e ◦ e, ψ(a0) = a0 ◦ e1 + e21 ◦ a0,
∑

n≥0
Fψ(bn) =

∑
i,j≥0

Fbpj

i ◦ bj
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