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Immersion theory (50s/60s)

Theorem (Smale-Hirsch)

Immersion theory is bundle theory. Let Mm and Nn be smooth
manifolds with m < n. The map

imm(M,N)→ Γ(E → M)

is a weak equivalence, where E is the space of triples (x , y , α)
where x ∈ M, y ∈ N and α : TxM → TyN injective linear map.

Examples: imm(Rm,Rn) is the space of linear injective maps from
Rm to Rn, alias O(n)/O(n −m). More generally, imm(Rm,N) is
Vm(N) the m-frame bundle of N.

Example with boundary: Let N be a manifold with ∂. The space of
immersions relative to a fixed immersion on (a neighborhood of)
the boundary is imm∂(Dm,N) ' ΩmVm(N\∂N).
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Spaces of smooth embeddings

Main theorem (B-Weiss)

Let N be a smooth manifold with boundary of dim n ≥ 5, or n ≥ 4
if N ∼= Dn. Fix an embedding Sm → ∂N. The square

emb∂(Dm,N) injmaps∂(Dm,N)

imm∂(Dm,N) ΩmΓ

is homotopy cartesian whenever n −m ≥ 3.

Here Γ is the space of pairs (y , α) with y ∈ N\∂N and α a derived
map of operads Em → ETyN ; injmaps∂(Dm,N) is the union of path
components of the space of injective maps (rel∂) that contain a
smooth map. The lower hor. map is m-fold loops on the map
Vm(N\∂N)→ Γ. The right-hand map? Later.
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High dimensional knots

Alexander isotopy: injmap∂(Dm,Dn) is contractible.

Corollary (earlier variants: Arone-Turchin, Dwyer-Hess and
Turchin)

If n −m ≥ 3, then

emb∂(Dm,Dn)→ imm∂(Dm,Dn)→ ΩmRmap(Em,En)

is a homotopy fiber sequence of m-fold loop spaces.

If m = 1 the right hand-map has a homotopy retraction
⇒ emb∂(D1,Dn) is also a 2-fold loop space (Salvatore, Sinha).

In fact: (Millett) if N is contractible and n ≥ 5, then
injmap∂(Dm,N) is also contractible! So get a similar homotopy
fiber sequence in that case.
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Configuration categories

Let Mm be a (topological) manifold. Write k = {1, . . . , k}.

Definition (Andrade)

An object in con(M) is an embedding k ↪→ M for some k ≥ 0.

A morphism from x : k ↪→ M to y : ` ↪→ M is a pair (α,H) where
α : k → ` is a map of finite sets and H is a path in map(k ,M)
from x to yα subject to:

Hs(xi ) = Hs(xj) for some s ⇒ Ht(xi ) = Ht(xj) for all t > s

That is, when collisions occur, they cannot be undone.

These are (reversed) exit paths in the stratified space map(k ,M).

Nerve: con(M)0 = space of objects; con(M)1 = space of
morphisms; con(M)2 = space of 2-composable morphisms; etc.
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A few basic properties:

Reference map to Fin, the category of finite sets.

Fiberwise complete: Let con(M)he1 denote the subspace of
morphisms which are homotopy invertible. These correspond
to isotopies of configurations (underlying map of finite sets is
a bijection). So the square

con(M)he1 con(M)0

Finhe
1 Fin0

is homotopy cartesian.

Functoriality: If M ↪→ N is an injective map, then get
con(M)→ con(N) over Fin.

Pedro Boavida de Brito Configuration categories and embedding spaces



The space of morphisms with a fixed target object y : ` ↪→ M is
identified with

∐
α:k→`, k≥0

∏̀
i=1

emb(α−1(i),TyiM)

(using a result of Miller on exit paths in Quinn’s homotopically
stratified spaces.)

This only depends on the dimension of M and `. So, for U ⊂ M
open, the square

con(U)1 con(M)1

con(U)0 con(M)0

target target

is homotopy cartesian.
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Local-to-global

Local-to-global: con(−) is a homotopy cosheaf wrt open covers
{Ui → M} with the property that every finite subset S ⊂ M is
contained in some Ui .

For such a cover, and for every k ≥ 0, the collection

{emb(k,Ui )→ emb(k,M)}i∈I

forms an open cover. It follows (Dugger-Isaksen) that

hocolim
[n]∈∆

∐
i0,...,in

emb(k ,Ui0 ∩ · · · ∩ Uin)→ emb(k ,M)

is a weak equivalence.
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The square

hocolim
[n]∈∆

∐
i0,...,in

con(Ui0 ∩ · · · ∩ Uin)1 con(M)1

hocolim
[n]∈∆

∐
i0,...,in

con(Ui0 ∩ · · · ∩ Uin)0 con(M)0

target target

is ho. cartesian ⇒ top horizontal map is also a weak equivalence.

⇒ same for con(M)k for k ≥ 2.
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Relation to operads

Can recover En from con(Rn).

Roughly, there is a natural zigzag of weak equivalences

En
'←− · · · '−→ A(con(Rn))

where A is some (homotopy invariant) functor from simplicial
spaces over NFin to (∞) operads.
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More details: Let Tree denote the category whose objects are
non-empty, finite rooted trees (Moerdijk-Weiss).

Morphisms: Such a tree T freely generates an operad Free(T )
with the set of edges as colors and generating operations specified
by the vertices. Then set

homTree(S ,T ) := {operad maps Free(S)→ Free(T )}

A functor from Treeop to spaces is called a dendroidal space; the
nerve NdP of an operad is given by

(NdP)T = homOperads(Free(T ),P)

.
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If P has a single colour:

(NdP)T =
∏
v∈T

P(|v |)

where v runs over the vertices of T and |v | = set of inputs at v .

Theorem (Cisinski-Moerdijk)

The homotopy theory of dendroidal spaces satisfying Segal +
Rezk-type conditions is equivalent to the homotopy theory of
operads in spaces.
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To relate to configuration categories:
Let simp(Fin) be the category of simplices of NFin. Objects are
(non-empty) strings of maps of finite sets

S0 → · · · → Sk ,

and morphisms are given by composing maps or inserting identities.

A simplicial space over the nerve of Fin, X → NFin, is the same
as a functor simp(Fin)op → spaces. There are maps

simp(Fin)
ψ−→ Treerc

ι−→ Tree

where Treerc is the subcategory of trees with no leaves and
root-preserving maps.

Note: (ιψ)∗NdEn ' con(Rn).
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Have:

PSh(Tree)PSh(Treerc)PSh(simp(Fin))
ψ∗

ψ∗

ι!

ι∗

(left adjoints on top)

For X an operad (dendroidal space) with a single color such that
X (0) and X (1) are contractible, the (co)unit maps

X ← Lι!Rι∗X → Lι!(Rψ∗Lψ∗ι∗X )

are weak equivalences.
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Theorem (B-Weiss)

Let P and Q be operads with contractible spaces of 0 and 1-arity
operations. Then

ψ∗ι∗ : RmapOperads(P,Q)→ RmapFin(ψ∗ι∗P, ψ∗ι∗Q)

is a weak equivalence.

In particular, for every m, n, the map

ψ∗ι∗ : Rmap(Em,En)→ RmapFin(con(Rm), con(Rn))

is a weak equivalence.
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Local configurations

Definition

The local configuration category of M is the overcategory of
con(M) over the subspace of objects consisting of configurations of
cardinality 1.

I.e. conloc(M)0 ⊂ con(M)1 consisting of morphisms over k → 1,
k ≥ 0.
Properties:

reference map to Fin, fiberwise complete

conloc(−) is ”functorial” with respect to local embeddings.

local-to-global: conloc(−) is a homotopy cosheaf with respect
to all open covers
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Parametrized version: RmapFin(conloc(M), conloc(N)) is
identified with the section space of a fibration E → M where the
fiber over x ∈ M is

{(y , α) : y ∈ N, α a derived operad map ETxM → ETyN}
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A homotopy pullback square

Theorem (B-Weiss)

There is a commutative square

emb(M,N) RmapFin(con(M), con(N))

imm(M,N) RmapFin(conloc(M), conloc(N))

which is homotopy cartesian whenever n −m ≥ 3.

Proof: manifold functor calculus (and so it relies on the multiple
disjunction lemmas of Goodwillie-Klein).
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∂ version

Fix an embedding of a collar of ∂M into a collar of ∂N.

Theorem (B-Weiss)

There is a commutative square

emb∂(M,N) Rmap∂Fin∗
(con(M), con(N))

imm∂(M,N) Rmap∂Fin∗
(conloc(M), conloc(N))

which is homotopy cartesian whenever n −m ≥ 3.
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The Alexander trick for configuration categories

Theorem (B-Weiss)

injmap∂(Dm,Dn) ' Rmap∂Fin∗
(con(Dm), con(Dn)).

That is, the restriction map

RmapFin∗(con(Dm), con(Dn))→ RmapFin∗(con(Dm\0), con(Dn\0))

is a weak homotopy equivalence. As opposed to the usual
Alexander trick, this is difficult!

Combine with the operadic description to get the main theorem for
disks. The argument for a general N is deduced from the case of
disks, through smoothing theory.
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Smoothing theory

Let embTOP and immTOP denote the spaces of (locally flat)
topological embeddings and immersions, respectively.

Theorem (Morlet, Lashof)

Let m, n ≥ 5. The commutative square

emb(M,N) embTOP(M,N)

imm(M,N) immTOP(M,N)

is homotopy cartesian.
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Sketch proof of the main theorem for an arbitrary target N:
Let e : Dm → N be a smooth embedding extending ∂Dm → ∂N.
Take a normal tube around e, i.e.

f : Dm × Dn−m ↪→ N

such that f −1(∂N) = ∂Dm × Dn−m. By smoothing theory and the
main theorem for disks (. . . ),

injmaps∂(Dm,Dn) Rmap∂Fin(con(Dm), con(Dn))

injmaps∂(Dm,N) Rmap∂Fin(con(Dm), con(N))

is homotopy cartesian. Top horizontal map is a weak equivalence,
so the lower horizontal map is also weak equivalence over the
basepoint component determined by f . Now vary e.
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Application to spaces of homeomorphisms

Let TOP(n) denote the top. group of homeomorphisms of Rn and
TOP(n,m) the subgroup of those homeomorphisms which fix Rm

pointwise. Let TOP(n)/TOP(n,m) denote the homotopy fiber of

BTOP(n)→ BTOP(n,m) .

There is a diagram of m-fold loop maps:

emb∂(Dm,Dn) ΩmO(n)/O(n,m) ΩmTOP(n)/TOP(n,m)

emb∂(Dm,Dn) ΩmO(n)/O(n,m) ΩmRmap(Em,En)

The top sequence is a homotopy fiber sequence by Morlet, Lashof,
Lees...
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Conclusion: the map

TOP(n)/TOP(n,m)→ Rmap(Em,En)

is an iso on πi for i > m.
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Speculations

Question: Is the map

TOP(n)/TOP(n,m)→ Rmap(Em,En)

an almost weak equivalence (ho. fibers contractible or empty)?

Dwyer: Is the map

TOP(n)→ RAuth(En)

a weak equivalence?

Calculate π∗Rmap(Em,En)? Rationally, recent work by
Fresse-Turchin-Willwacher (via graph complexes and Kontsevich
formality).
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