Configuration categories and embedding spaces

Pedro Boavida de Brito (joint work with Michael Weiss)

IST, Lisbon

Alpine Algebraic and Applied Topology Conference August 2016

Theorem (Smale-Hirsch)

Immersion theory is bundle theory. Let M^m and N^n be smooth manifolds with m < n. The map

$$\operatorname{imm}(M, N) \to \Gamma(E \to M)$$

is a weak equivalence, where E is the space of triples (x, y, α) where $x \in M$, $y \in N$ and $\alpha : T_x M \to T_y N$ injective linear map.

Examples: $\operatorname{imm}(\mathbb{R}^m, \mathbb{R}^n)$ is the space of linear injective maps from \mathbb{R}^m to \mathbb{R}^n , alias O(n)/O(n-m). More generally, $\operatorname{imm}(\mathbb{R}^m, N)$ is $V_m(N)$ the *m*-frame bundle of *N*.

Example with boundary: Let N be a manifold with ∂ . The space of immersions relative to a fixed immersion on (a neighborhood of) the boundary is $\operatorname{imm}_{\partial}(D^m, N) \simeq \Omega^m V_m(N \setminus \partial N)$.

Main theorem (B-Weiss)

Let N be a smooth manifold with boundary of dim $n \ge 5$, or $n \ge 4$ if $N \cong D^n$. Fix an embedding $S^m \to \partial N$. The square

is homotopy cartesian whenever $n - m \ge 3$.

Here Γ is the space of pairs (y, α) with $y \in N \setminus \partial N$ and α a derived map of operads $E_m \to E_{T_yN}$; $injmap_{\partial}^s(D^m, N)$ is the union of path components of the space of injective maps $(rel\partial)$ that contain a smooth map. The lower hor. map is *m*-fold loops on the map $V_m(N \setminus \partial N) \to \Gamma$. The right-hand map? Later.

High dimensional knots

Alexander isotopy: $injmap_{\partial}(D^m, D^n)$ is contractible.

Corollary (earlier variants: Arone-Turchin, Dwyer-Hess and Turchin)

If $n-m \geq 3$, then

$$\mathsf{emb}_{\partial}(D^m, D^n) \to \mathsf{imm}_{\partial}(D^m, D^n) \to \Omega^m \mathbb{R}\mathsf{map}(E_m, E_n)$$

is a homotopy fiber sequence of *m*-fold loop spaces.

If m = 1 the right hand-map has a homotopy retraction $\Rightarrow \text{emb}_{\partial}(D^1, D^n)$ is also a 2-fold loop space (Salvatore, Sinha).

In fact: (Millett) if N is contractible and $n \ge 5$, then $injmap_{\partial}(D^m, N)$ is also contractible! So get a similar homotopy fiber sequence in that case.

Let M^m be a (topological) manifold. Write $\underline{k} = \{1, \ldots, k\}$.

Definition (Andrade)

An object in con(M) is an embedding $\underline{k} \hookrightarrow M$ for some $k \ge 0$.

A morphism from $x : \underline{k} \hookrightarrow M$ to $y : \underline{\ell} \hookrightarrow M$ is a pair (α, H) where $\alpha : \underline{k} \to \underline{\ell}$ is a map of finite sets and H is a path in map (\underline{k}, M) from x to $y\alpha$ subject to:

 $H_s(x_i) = H_s(x_j)$ for some $s \Rightarrow H_t(x_i) = H_t(x_j)$ for all t > s

That is, when collisions occur, they cannot be undone.

These are (reversed) exit paths in the stratified space $map(\underline{k}, M)$. Nerve: $con(M)_0$ = space of objects; $con(M)_1$ = space of morphisms; $con(M)_2$ = space of 2-composable morphisms; etc. A few basic properties:

- Reference map to Fin, the category of finite sets.
- Fiberwise complete: Let con(M)₁^{he} denote the subspace of morphisms which are homotopy invertible. These correspond to isotopies of configurations (underlying map of finite sets is a bijection). So the square

is homotopy cartesian.

Functoriality: If M → N is an injective map, then get con(M) → con(N) over Fin.

The space of morphisms with a fixed target object $y : \underline{\ell} \hookrightarrow M$ is identified with

$$\coprod_{\alpha:\underline{k}\to\underline{\ell},\ k\ge 0} \prod_{i=1}^{\ell} \operatorname{emb}(\alpha^{-1}(i), T_{y_i}M)$$

(using a result of Miller on exit paths in Quinn's homotopically stratified spaces.)

This only depends on the dimension of M and ℓ . So, for $U \subset M$ open, the square

is homotopy cartesian.

Local-to-global: con(-) is a homotopy cosheaf wrt open covers $\{U_i \rightarrow M\}$ with the property that every finite subset $S \subset M$ is contained in some U_i .

For such a cover, and for every $k \ge 0$, the collection

$${\operatorname{emb}}(\underline{k}, U_i) \to \operatorname{emb}}(\underline{k}, M) \}_{i \in I}$$

forms an open cover. It follows (Dugger-Isaksen) that

$$\underset{[n]\in\Delta}{\text{hocolim}} \quad \coprod_{i_0,\ldots,i_n} \operatorname{emb}(\underline{k}, U_{i_0}\cap\cdots\cap U_{i_n}) \to \operatorname{emb}(\underline{k}, M)$$

is a weak equivalence.

The square

$$\begin{array}{c} \operatorname{hocolim}_{[n]\in\Delta} & \coprod_{i_0,\ldots,i_n} \operatorname{con}(U_{i_0}\cap\cdots\cap U_{i_n})_1 \longrightarrow \operatorname{con}(M)_1 \\ & & \downarrow \\ & & \downarrow \\ \operatorname{hocolim}_{[n]\in\Delta} & \coprod_{i_0,\ldots,i_n} \operatorname{con}(U_{i_0}\cap\cdots\cap U_{i_n})_0 \longrightarrow \operatorname{con}(M)_0 \end{array}$$

is ho. cartesian \Rightarrow top horizontal map is also a weak equivalence.

$$\Rightarrow$$
 same for con $(M)_k$ for $k \ge 2$.

Can recover E_n from $con(\mathbb{R}^n)$.

Roughly, there is a natural zigzag of weak equivalences

$$E_n \xleftarrow{\simeq} \cdots \xrightarrow{\simeq} A(\operatorname{con}(\mathbb{R}^n))$$

where A is some (homotopy invariant) functor from simplicial spaces over NFin to (∞) operads.

More details: Let Tree denote the category whose objects are non-empty, finite rooted trees (Moerdijk-Weiss).

Morphisms: Such a tree T freely generates an operad Free(T) with the set of edges as colors and generating operations specified by the vertices. Then set

$$\hom_{\mathsf{Tree}}(S, T) := \{ \texttt{operad maps } \mathsf{Free}(S) \to \mathsf{Free}(T) \}$$

A functor from Tree^{op} to spaces is called a dendroidal space; the nerve $N_d P$ of an operad is given by

$$(N_d P)_T = hom_{Operads}(Free(T), P)$$

If P has a single colour:

$$(N_d P)_T = \prod_{v \in T} P(|v|)$$

where v runs over the vertices of T and |v| = set of inputs at v.

Theorem (Cisinski-Moerdijk)

The homotopy theory of dendroidal spaces satisfying Segal + Rezk-type conditions is equivalent to the homotopy theory of operads in spaces.

To relate to configuration categories:

Let simp(Fin) be the category of simplices of NFin. Objects are (non-empty) strings of maps of finite sets

 $S_0 \to \cdots \to S_k$,

and morphisms are given by composing maps or inserting identities.

A simplicial space over the nerve of Fin, $X \rightarrow N$ Fin, is the same as a functor simp(Fin)^{op} \rightarrow spaces. There are maps

$$simp(Fin) \xrightarrow{\psi} Tree^{rc} \xrightarrow{\iota} Tree$$

where Tree^{*rc*} is the subcategory of trees with no leaves and root-preserving maps.

Note: $(\iota \psi)^* N_d E_n \simeq \operatorname{con}(\mathbb{R}^n).$

Have:

$$\mathsf{PSh}(\mathsf{simp}(\mathsf{Fin})) \xleftarrow{\psi^*}{\psi_*} \mathsf{PSh}(\mathsf{Tree}^{\mathsf{rc}}) \xleftarrow{\iota_*}{\iota^*} \mathsf{PSh}(\mathsf{Tree})$$

(left adjoints on top)

For X an operad (dendroidal space) with a single color such that X(0) and X(1) are contractible, the (co)unit maps

$$X \leftarrow \mathbb{L}\iota_! \mathbb{R}\iota^* X
ightarrow \mathbb{L}\iota_! (\mathbb{R}\psi_* \mathbb{L}\psi^*\iota^* X)$$

are weak equivalences.

Theorem (B-Weiss)

Let ${\cal P}$ and ${\cal Q}$ be operads with contractible spaces of 0 and 1-arity operations. Then

$$\psi^*\iota^*: \mathbb{R}\mathsf{map}_{Operads}(P, Q) \to \mathbb{R}\mathsf{map}_{\mathsf{Fin}}(\psi^*\iota^* P, \psi^*\iota^* Q)$$

is a weak equivalence.

In particular, for every m, n, the map

 $\psi^*\iota^* : \mathbb{R}\operatorname{map}(E_m, E_n) \to \mathbb{R}\operatorname{map}_{\mathsf{Fin}}(\operatorname{con}(\mathbb{R}^m), \operatorname{con}(\mathbb{R}^n))$

is a weak equivalence.

Definition

The local configuration category of M is the overcategory of con(M) over the subspace of objects consisting of configurations of cardinality 1.

I.e. $\operatorname{con}^{\operatorname{loc}}(M)_0 \subset \operatorname{con}(M)_1$ consisting of morphisms over $\underline{k} \to \underline{1}$, $k \ge 0$.

Properties:

- reference map to Fin, fiberwise complete
- con^{loc}(-) is "functorial" with respect to *local* embeddings.
- local-to-global: con^{loc}(-) is a homotopy cosheaf with respect to all open covers

Parametrized version: \mathbb{R} map_{Fin}(con^{loc}(M), con^{loc}(N)) is identified with the section space of a fibration $E \to M$ where the fiber over $x \in M$ is

$$\{(y, \alpha) : y \in N, \alpha \text{ a derived operad map } E_{T_xM} \to E_{T_yN}\}$$

Theorem (B-Weiss)

```
There is a commutative square
```

which is homotopy cartesian whenever $n - m \ge 3$.

Proof: manifold functor calculus (and so it relies on the multiple disjunction lemmas of Goodwillie-Klein).

Fix an embedding of a collar of ∂M into a collar of ∂N .

Theorem (B-Weiss)

There is a commutative square

which is homotopy cartesian whenever $n - m \ge 3$.

Theorem (B-Weiss)

$$injmap_{\partial}(D^m, D^n) \simeq \mathbb{R}map_{\mathsf{Fin}_*}^{\partial}(\mathsf{con}(D^m), \mathsf{con}(D^n)).$$

That is, the restriction map

 $\mathbb{R}\mathsf{map}_{\mathsf{Fin}_*}(\mathsf{con}(D^m),\mathsf{con}(D^n)) \to \mathbb{R}\mathsf{map}_{\mathsf{Fin}_*}(\mathsf{con}(D^m\backslash 0),\mathsf{con}(D^n\backslash 0))$

is a weak homotopy equivalence. As opposed to the usual Alexander trick, this is difficult!

Combine with the operadic description to get the main theorem for disks. The argument for a general N is deduced from the case of disks, through smoothing theory.

Let emb^{TOP} and imm^{TOP} denote the spaces of (locally flat) topological embeddings and immersions, respectively.

Theorem (Morlet, Lashof)

Let $m, n \ge 5$. The commutative square

is homotopy cartesian.

Sketch proof of the main theorem for an arbitrary target N: Let $e: D^m \to N$ be a smooth embedding extending $\partial D^m \to \partial N$. Take a normal tube around e, i.e.

$$f: D^m \times D^{n-m} \hookrightarrow N$$

such that $f^{-1}(\partial N) = \partial D^m \times D^{n-m}$. By smoothing theory and the main theorem for disks (...),

is homotopy cartesian. Top horizontal map is a weak equivalence, so the lower horizontal map is also weak equivalence over the basepoint component determined by f. Now vary e.

Application to spaces of homeomorphisms

Let TOP(n) denote the top. group of homeomorphisms of \mathbb{R}^n and TOP(n, m) the subgroup of those homeomorphisms which fix \mathbb{R}^m pointwise. Let TOP(n)/TOP(n, m) denote the homotopy fiber of

 $BTOP(n) \rightarrow BTOP(n,m)$.

There is a diagram of *m*-fold loop maps:

The top sequence is a homotopy fiber sequence by Morlet, Lashof, Lees...

Conclusion: the map

$TOP(n)/TOP(n,m) \rightarrow \mathbb{R}map(E_m, E_n)$

is an iso on π_i for i > m.

Question: Is the map

$$TOP(n)/TOP(n,m) \rightarrow \mathbb{R}map(E_m,E_n)$$

an almost weak equivalence (ho. fibers contractible or empty)? **Dwyer:** Is the map

$$TOP(n) \rightarrow \mathbb{R}Aut^h(E_n)$$

a weak equivalence?

Calculate $\pi_* \mathbb{R}$ map (E_m, E_n) ? Rationally, recent work by Fresse-Turchin-Willwacher (via graph complexes and Kontsevich formality).