Multi-persistence, Saas 2016

TDA group, KTH Stockholm

Anders Lundman, Ryan Ramanujam Martina Scolamiero, Sebastian Öberg, Wojciech Chachólski, ...

Applied Topology

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Data system: a set U with measurements $\{U \xrightarrow{m_i} (X_i, d_i)\}_{i=1}^n$.

Statistical methods require small errors and precise measurements.

More and more data is:

- acquired by processes with unavoidable errors,
- acquired by measurements done using equipment with different technology and incomparable protocols,
- heterogenous.

Need methods that:

- reduce the dependence on the metric;
- extract properties preserved by for example rescaling.

Need homotopy theory of data systems

 $U \vdash \text{Invariants} \to I(U)$

- ▶ whose values are "easily" comparable for different U's
- visualizable
- CONTINUOUS
- feasible to calculate
- hopefully the outcome is suitable for statistical analysis

An invariant is a simplification process.

Topological Data analysis is the study of such invariants obtained from homological calculations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Starting point:

Data system: a set U with measurements $\{U \xrightarrow{m_i} (X_i, d_i)\}_{i=1}^n$.

Recovery with error information:

For $(r_1, \ldots, r_n) \in \mathbf{Q}_{\geq 0}^n$, define a simplicial complex $\mathbf{U}(r_1, \ldots, r_n)$:

- U is the set its 0-simplices
- $(x_0, \ldots, x_r) \in U^{r+1}$ is an *r*-simplex if there is a point *y* in *U* such that $d_i(x_i, y) \leq r_i$.

This leads to a persistence space $\mathbf{U} \colon \mathbf{Q}_{\geq 0}^n \to \text{Spaces}.$

Homological Invariants:

Apply homology to obtain a persistence module:

 $H_i(\mathbf{U}) \colon \mathbf{Q}_{\geq 0}^n \to \operatorname{Vect}_K$

Obtained persistence modules $H: \mathbf{Q}_{\geq 0}^n \to \operatorname{Vect}_K$ are quite special:

- ► they are compact objects in Fun(**Q**ⁿ_{>0}, Vect_K);
- and tame: there is G: Nⁿ → Vect_K and s ∈ Q_{>0}, such that H is isomorphic to the left Kan extension of G along the scaled lattice sNⁿ ⊂ Qⁿ_{>0}.

For example, for n = 2, H is tame if, for some s, it is constant on the half open squares $[as, (a+1)s) \times [bs, (b+1)s)$ for a, b in **N**:

(2 <i>s</i> ,0)	(2 <i>s</i> , <i>s</i>)	(2s,2s)		
(0,s)	(s,s)	(2s,s)	(3s,s)	
(0,0)	(<i>s</i> ,0)	(2s,0)	(3 <i>s</i> ,0)	(4 <i>s</i> ,0)

Example of tame and compact persistence modules

Free on one generator. Let
$$v \in \mathbf{Q}_{\geq 0}^n$$
. Set $[v, \infty)$: $\mathbf{Q}_{\geq 0}^n \to \operatorname{Vect}_{\mathcal{K}}$

$$[v,\infty)(w) = \begin{cases} K & \text{if } v \leq w & \text{non-zero maps} \\ 0 & \text{if } v \leq w & \text{between non-zero values} \end{cases}$$

Free. Let $\beta: \mathbf{Q}_{\geq 0}^n \to \mathbf{N}$ be function. It is called the Betti diagram of the free functor:

$$\oplus_{\mathbf{v}\in\mathbf{Q}_{\geq0}^n}[\mathbf{v},\infty)^{eta\mathbf{v}}$$

 β has finite support if and only if this functor is compact.

Bar. For $v \le w \in \mathbf{Q}_{\ge 0}^n$, the cokernel of the unique inclusion $[w, \infty) \subset [v.\infty)$ is denoted denoted by [v, w).

The category of tame functors $\text{Tame}(\mathbf{Q}_{\geq 0}^n, \text{Vect}_K)$ is like the category of multi graded modules over $\overline{K}[X_1, \ldots, X_n]$:

- It is Abelian with enough projectives,
- where all projectives are free.
- It is of dimension n: all tame persistence modules have a projective (free) resolution of length at most n.
- For n = 1, any tame and compact persistence module is isomorphic to a direct sum of bars ⊕^k_{i=1}[v_i, w_i).

Data Systems \longrightarrow Tame($\mathbf{Q}_{>0}^n, \operatorname{Vect}_K$)

Looking after invariants:

▶ whose values are computationally comparable for different U's

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- visualizable
- CONTINUOUS
- feasible to calculate

Data Systems \longrightarrow Tame($\mathbf{Q}_{\geq 0}^{n}$, Vect_K) $U \longmapsto H_{i}\mathbf{U}$

・ロト・日本・モート モー うへぐ

OK n = 1 whose values are computationally comparable for different U's

- NO n > 1 whose values are computationally comparable for different U's
- OK n = 1 visualizable
- NO n > 1 visualizable
 - ? CONTINUOUS
 - OK feasible to calculate

Need to simplify further

Betti diagrams and Euler characteristics:

Minimal sets of gen (topological features of the data system)

 $F \longmapsto$ a minimal set of generators for F

Extract continuous invariants of tame persistence modules?

Definition. A Noise is a sequence $\{S_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{\geq 0}}$ of collections of tame persistence modules, called components. Elements in S_{ϵ} are called ϵ -small. These collections are required to satisfy:

- ▶ $0 \in S_{\epsilon}$ for any ϵ ;
- $S_{\tau} \subset S_{\epsilon}$ if $\tau \leq \epsilon$;
- If 0 → F → H → G → 0 is an exact sequence of tame persistence modules, then:

- if $H \in S_{\epsilon}$, then $F, G \in S_{\epsilon}$;

- if $F \in S_{\tau}$ and $G \in S_{\epsilon}$, then $H \in S_{\tau+\epsilon}$.

Collection $\cup_{t>\epsilon} S_t \subset \cup_{t\geq \epsilon} S_t$ are Serre classes.

Standard Noise in the direction of a cone.

Let V be a subset $\mathbf{Q}_{\geq 0}^{n}$. Define:

$$\mathcal{V}_{\epsilon} = \left\{ F ext{ tame } \mid ext{ for any } x \in F(u) egin{array}{c} ext{there is } v \in V ext{ s.t. } v_i \leq \epsilon \ x \in ext{Ker}(F(u) o F(u+v)) \end{array}
ight\}$$

If V is a cone, then $\{\mathcal{V}_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{>0}}$ is a noise.

Domain noise. Let $\{X_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{\geq 0}}$ be a sequence of subsets of $\mathbf{Q}_{\geq 0}^{n}$. Define:

$$\mathcal{X}_{\epsilon} = \{F \text{ tame } | \text{ if } F(u) \neq 0, \text{ then } u \in X_{\epsilon}\}$$

If $X_{\tau} \subset X_{\epsilon}$ for any $\tau \leq \epsilon$, then $\{\mathcal{X}_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{>0}}$ is a noise.

Dimension noise. Let $\{k_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{\geq 0}}$ be a sequence of natural numbers. Define:

$$\mathcal{N}_{\epsilon} = \left\{ \mathsf{F} \; \mathsf{tame} \mid \mathsf{dim}\mathsf{F}(u) \leq k_{\epsilon} \; \mathsf{for any} \; u \in \mathbf{Q}_{\geq 0}^n
ight\}$$

If $k_0 = 0$ and $k_{\tau} + k_{\epsilon} \leq k_{\tau+\epsilon}$, then $\{\mathcal{N}_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{>0}}$ is a noise.

Intersection noise. If $\{S_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{\geq 0}}$ and $\{\mathcal{T}_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{\geq 0}}$ are noises, then so is their intersection: $\{S_{\epsilon} \cap \mathcal{T}_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{> 0}}$.

Noise generated by a functor. Let F be a tame persistence module and $\alpha \in \mathbf{Q}_{\geq 0}$. Define $\langle F, \alpha \rangle$ to be the intersection of all the noises $\{S_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{\geq 0}}$ that contain F in S_{α} .

For r = 1, up to rescale, there is only one noise whose components are closed under direct sums.

Topology and metric on tame persistence modules.

Let $\{S_{\epsilon}\}_{\epsilon \in \mathbf{Q}_{>0}}$ be a noise.

Two tame persistence modules F and G are α -close if there are natural transformations: $F \xleftarrow{f} H \xrightarrow{g} G$. such that:

 $\ker(f) \in \mathcal{S}_{ au_1}, \ \operatorname{coker}(f) \in \mathcal{S}_{ au_2}, \ker(g) \in \mathcal{S}_{ au_3}, \ \ \ker(g) \in \mathcal{S}_{ au_4}$ $au_1 + au_2 + au_3 + au_4 < lpha$

This defines a metric on tame persistence modules. Discs:

 $B(F, \alpha) = \{G \text{ tame } | G \text{ is } \alpha \text{-close to } F\}$

form a base for a topology on the collection of tame persistence modules.

This topology can be used to construct a continuous invariant of a persistence module.

Let F be a tame persistence module.

A bar code of F is a function $\text{bar}_i(F) \colon \mathbf{R}_{\geq 0} \to \mathbf{N}$ defined as:

$$\mathsf{bar}_i(F)_lpha := \mathsf{min}\{\mathsf{rank}_iG \mid G \in B(F, lpha)\}$$

A bar code is a non increasing function that measures how many features stay alive after a time α .

Theorem. $\mathsf{Tame}(\mathbf{Q}_{\geq 0}^{n},\mathsf{Vect}_{\mathcal{K}}) \longrightarrow \{\mathsf{Functions} \ \mathbf{R} \rightarrow \mathbf{N}\}$ $F \longmapsto \mathsf{bar}_{0}(F)$

is a continuous function (in fact 1-Lipschitz).

 $\mathsf{Tame}(\mathbf{Q}^n_{\geq 0}, \mathsf{Vect}_{\mathcal{K}}) \longrightarrow \{\mathsf{Functions} \ \mathbf{R} \to \mathbf{N}\}$ $F \longmapsto \mathsf{bar}(F)$

OK values are computationally comparable for different F's

- OK visualizable
- OK CONTINUOUS
 - ? feasible to calculate
 - If n = 1 and the standard noise, bar(F) recovers the usual 1-persistence bar code.
 - ▶ If *n* > 1, then calculating bar(−) is an NP hard problem.

Data system:

▶ a set U with measurements $\{U \xrightarrow{m_i} (X_i, d_i)\}_{i=1}^n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

a choice of a noise