Kahn's realizability problem

Cristina Costoya (joint with Antonio Viruel)

Alpine Algebraic and Applied Topology Conference

Realizability. How to play

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in C such that $Aut_{\mathcal{C}}(X) \cong G$

Example 1

Example 2

- $G = \mathbb{Z}_p, p \text{ odd}$ • $G = \mathbb{Z}_2$
- $C = HoTop_*$
- Then, $X = \mathbb{S}^n$

- C = Groups.
- Then, $\operatorname{Aut}_{\mathcal{C}}(X) \cong \mathbb{Z}_p, \forall X$

So, finite groups can not, in general, be realized in the category of groups

Are finite groups realizable in *HoTop*_{*}?

Our problem

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

 \Downarrow Realization

 $G \cong \mathcal{E}(X)$ for some X?

Overview

- Proposed by Kahn in the late 60's, appears recurrently in literature
- The only general known procedure to tackle this problem is when $G = Aut(\pi), \pi$ a group. Then $X = K(\pi, n)$, since $\mathcal{E}(X) \cong Aut(\pi)$.
- Approach $\mathcal{E}(X)$ by its distinguished subgroups

 $\mathcal{E}_{\sharp}(X), \mathcal{E}_{*}(X), \mathcal{E}^{*}(X) \dots$

Example

$$\mathbb{Z}_2 \cong \mathcal{E}(S^n)$$

$$\mathbb{Z}_2 \cong \mathcal{E}(\mathcal{K}(\mathbb{Z}_3, n))$$
 since $Aut(\mathbb{Z}_3) \cong \mathbb{Z}_2$

 $\mathbb{Z}_2 \cong \mathcal{E}(X)$ for some 1-connected rational space X [Arkowitz-Lupton'00]

Which finite groups are realizable by simply connected rational spaces?

Idea

Introduce graphs on the picture

Theorem (Frucht'39, Realizability in C = Graphs) Every finite group G is realizable by a finite, connected and simple graph G.

Example 1 ($G = \mathbb{Z}_3$, Cayley graph \rightarrow simple graph)

Example 2 ($G = \Sigma_4$, Cayley graph \rightarrow simple graph)

Example 2 ($G = \Sigma_4$, Cayley graph \rightarrow simple graph)

Example 2 ($G = \Sigma_4$, Cayley graph \rightarrow simple graph)

Our problem revisited

Problem 1

Let $\mathcal{G} = (V, E)$ be a finite, simple, connected graph (with more than one vertex). Does there exist a space X such that $\operatorname{Aut}(\mathcal{G}) \cong \mathcal{E}(X)$?

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

 $A: Graph_{fm} \longrightarrow DGA$ $(A_{\mathcal{G}}, d) = (\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d)$

• generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_\nu| = 40$, $|z_\nu| = 119$,

• differentials:

$$\begin{array}{lll} d(x_1) = & 0 & d(y_3) = & x_1 x_2^3 \\ d(x_2) = & 0 & d(x_v) = & 0 \\ d(y_1) = & x_1^3 x_2 & d(z) = & y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} + x_2^{12} \\ d(y_2) = & x_1^2 x_2^2 & d(z_v) = & x_v^3 + \sum_{[v,w] \in E} x_v x_w x_2^4 \end{array}$$

• A is contravariant (morphisms are as expected).

Costoya (UDC

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

 $A: \mathit{Graph}_{\mathit{fm}} \longrightarrow \mathit{DGA}$

 $(\mathcal{A}_{\mathcal{G}}, d) = \left(\bigwedge(x_1, x_2, y_1, y_2, y_3, z) \otimes \bigwedge(x_v, z_v | v \in V), d \right)$ Homotopically Rigid Encodes \mathcal{G}

• generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_\nu| = 40$, $|z_\nu| = 119$,

• differentials:

$$\begin{array}{lll} d(x_1) = & 0 & d(y_3) = & x_1 x_2^3 \\ d(x_2) = & 0 & d(x_v) = & 0 \\ d(y_1) = & x_1^3 x_2 & d(z) = & y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} + x_2^{12} \\ d(y_2) = & x_1^2 x_2^2 & d(z_v) = & x_v^3 + \sum_{[v,w] \in E} x_v x_w x_2^4 \end{array}$$

• A is contravariant (morphisms are as expected).

Costoya (UDC

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

 $A: \mathit{Graph_{fm}} \longrightarrow \mathit{DGA}$

 $(\mathcal{A}_{\mathcal{G}}, d) = \left(\bigwedge(x_1, x_2, y_1, y_2, y_3, z) \otimes \bigwedge(x_v, z_v | v \in V), d \right)$ Homotopically Rigid Encodes \mathcal{G}

• generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_\nu| = 40$, $|z_\nu| = 119$,

• differentials:

• A is contravariant (morphisms are as expected).

Theorem

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

• There exists a split short exact sequence

 $K \to \operatorname{Aut}(A_{\mathcal{G}}) \to \operatorname{Aut}(\mathcal{G})$

where K is abelian and torsion-free.

- A_G is an elliptic algebra (hence Poincaré duality) of formal dimension d = 208 + 80|V|
- Let X_G the rational elliptic 1-connected space whose Sullivan minimal model is A_G. The monoid of self-homotopy classes of X_G is

$$[X_{\mathcal{G}}, X_{\mathcal{G}}] = \{f_0, f_1\} \cup \mathsf{Aut}(\mathcal{G})$$

Theorem

Every finite group G is realized by infinitely many (non homotopically equivalent) rational elliptic spaces X. That is, $G \cong \mathcal{E}(X)$.

Before we get into specific categories of problems, let me say that there are two very broad problems - somewhat vague and general - that most workers agree are very important:

<u>A.</u> Calculate the groups $\mathcal{E}(X)$ explicitly in as many cases as possible, and express the known calculations in the most simple and concrete terms.

<u>B.</u> Develop applications of the group $\mathcal{E}(X)$ to other parts of topology (and mathematics in general).

D. Kahn'90

Applications

Idea (Crowley-Löh, 2015)

Degree theorems "à la Gromov" are strongly related with the existence of inflexible manifolds

Definition (Inflexible manifold)

An oriented closed connected manifold M is inflexible if

$$\{ \deg f \mid f : M \to M \text{ continuous} \} \subset \{-1, 0, 1\}$$

Inflexible manifolds are constructed (using rational homotopy theory) in dimensions $64 \cup \{d \cdot k \mid k \in \mathbb{N}, d = 108, 208, 228\} (\equiv 0 \pmod{4})$.

Applications

Recall that

• $X_{\mathcal{G}}$ is an elliptic space of formal dimension d = 208 + 80|V| such that

$$[X_{\mathcal{G}}, X_{\mathcal{G}}] = \{f_0, f_1\} \cup \mathsf{Aut}(\mathcal{G})$$

• Therefore, if $X_{\mathcal{G}}$ is the rationalisation of a manifold M, then M is inflexible

But $d \equiv 0 \pmod{4}$ so we are in the bad range of the obstruction theory of Barge and Sullivan

Modifying our construction we get ...

Applications

Theorem

For any connected finite graph \mathcal{G} , there exist $\widetilde{A}_{\mathcal{G}}, \widetilde{X}_{\mathcal{G}}$ such that:

- $\widetilde{A}_{\mathcal{G}}$ is an elliptic dga of formal dimension d = 2(208 + 80|V|) 1. Since $d \equiv 3 \pmod{4}$, $\widetilde{X}_{\mathcal{G}}$ is the rationalization of a *d*-manifold $M_{\mathcal{G}}$.
- The self-monoid $[\widetilde{X}_{\mathcal{G}}, \widetilde{X}_{\mathcal{G}}] \cong \{f_0, f_1\} \cup \operatorname{Aut}(\mathcal{G})$. Hence $M_{\mathcal{G}}$ is inflexible.

Theorem

For every finite group G, there exist infinitely many inflexible manifolds $M_{\rm G}$ such that

$$\mathcal{E}((M_G)_{\mathbb{Q}})\cong G$$

What happens if G acts on a module M?

Realizability level 2. How to play

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

Homotopy invariant (ε(-), π_k(-))
 π_k(-) is a Zε(-)-module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the $\mathbb{Z}G$ -module M is isomorphic to the $\mathbb{Z}\mathcal{E}(X)$ -module $\pi_k(X)$, for some $k \ge 2$?

"Homotopique dual" of the G-Moore spaces problem (Steenrod'60)
 It implies realizability of groups

Realizability level 2. How to play

• Algebraic structure (G, V)

G is a group, V is a finitely generated $\mathbb{Q}G$ -module

Homotopy invariant (ε(−), π_k(−))
 π_k(−) is a Oε(−)-module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the $\mathbb{Q}G$ -module V is isomorphic to the $\mathbb{Q}\mathcal{E}(X)$ -module $\pi_k(X)$, for some $k \ge 2$?

"Homotopique dual" of the G-Moore spaces problem (Steenrod'60)
 It implies realizability of groups

Idea

Introduce Invariant Theory on the picture.

- \triangleright G acts on $\mathbb{Q}[V]$: for $g \in G$, $p \in \mathbb{Q}[V]$, $(gp)(v) = p(g^{-1}v)$.
- \triangleright G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p.
- \triangleright The invariant ring $\mathbb{Q}[V]^G$: all the *G* invariant functions in $\mathbb{Q}[V]$

(Characterization of finite $G \leq GL(V)$, Hilbert, Noether)

Let V be a finitely generated and faithful $\mathbb{Q}G$ -module. Then, there exists algebraic forms $p_1, \ldots, p_r \in \mathbb{Q}[V]^G$ such that, for $f \in GL(V)$

$$f \in G$$
 if and only if $p_i \circ f = p_i, \ \forall i$

we modify those algebraic forms

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots, q_r, q_{r+1}\} \subset \mathbb{Q}[V]^G$ where 1. $q_0 = \sum_{1}^{N} \lambda_j v_j^2$, for a good choice of basis of V^* ($N = \dim_{\mathbb{Q}} V$),

2.
$$\deg(q_i) < \deg(q_{i+1})$$
 for all i ,

3.
$$q_{r+1} = (q_0)^s$$
 for $s \gg N$

such that G is the orthogonal group $O(Q) \leq GL(V)$.

Definition (Realizable family of forms)

A family of algebraic forms $\mathcal{Q} \subset \mathbb{Q}[v_1, \dots, v_N]$ verifying 1, 2 and 3.

For an arbitrary realizable family, and any $n > deg(q_{r+1}) \dots$

Costoya (UDC

Solving Problem 2 $\mathcal{M}_{(\mathcal{Q},n)} = (\Lambda(x_1, x_2, y_1, y_2, y_3, z, v_j \mid j = 1, \dots, N), d)$ $\deg x_1 = 8$, $d(x_1) = 0$ $d(x_2) = 0$ $\deg x_2 = 10$, deg $y_1 = 33$, $d(y_1) = x_1^3 x_2$ $d(y_2) = x_1^2 x_2^2$ deg $y_2 = 35$. $\deg y_3 = 37$. $d(y_3) = x_1 x_2^3$ deg $v_i = 40$, $d(v_i) = 0$ $d(z) = \sum_{i=1}^{r+1} q_i x_1^{10n+5-5\deg(q_i)} + q_0(x_1^{10n-5} + x_2^{8n-4})$ $\deg z = 80n + 39$, $+ x_1^{10(n-1)}(y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6)$ $+ x_1^{10n+5} + x_2^{8n+4}$.

Solving Problem 2 $\mathcal{M}_{(\mathcal{Q},n)} = (\Lambda(x_1, x_2, y_1, y_2, y_3, z, v_j \mid j = 1, ..., N), d)$ $\deg x_1 = 8$, $d(x_1) = 0$ $\deg x_2 = 10.$ $d(x_2) = 0$ $d(y_1) = x_1^3 x_2$ deg $y_1 = 33$, $d(y_2) = x_1^2 x_2^2$ $\deg y_2 = 35$, $d(y_3) = x_1 x_2^3$ $\deg y_3 = 37.$ deg $v_i = 40$, $d(v_i) = 0$ $d(z) = \sum_{i=1}^{r+1} q_i x_1^{10n+5-5\deg(q_i)} + q_0(x_1^{10n-5} + x_2^{8n-4})$ $\deg z = 80n + 39$, $+ x_1^{10(n-1)}(y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6)$ $+ x_1^{10n+5} + x_2^{8n+4}$.

Codifies the action

Solving Problem 2 Theorem

$$\mathcal{E}(\mathcal{M}_{(\mathcal{Q},n)})\cong O(\mathcal{Q})$$

Corollary

Let G be a finite group, and V a finitely generated faithful $\mathbb{Q}G$ -module. Then, there exists a Postnikov piece X such that, for some $k \ge 2$,

 $(G, V) \cong (\mathcal{E}(X), \pi_k X)$

Example (realization of infinite groups) Let $\mathcal{O}(m; k) < GL_{m+k}(\mathbb{R})$ preserving:

$$q_0 = x_1^2 + x_2^2 + \ldots + x_m^2 - x_{m+1}^2 - \ldots - x_{m+k}^2.$$

The family $\mathcal{Q} = \{q_0, (q_0)^{m+k+1}\} \subset \mathbb{Q}[x_1, \dots, x_{m+k}]$ is realizable. Then,

 \triangleright O(Q) can be realized by infinitely many (rational) spaces.

 $\triangleright \quad O(\mathcal{Q}) \cong \mathcal{O}(m; k)(\mathbb{Q}), \text{ which is an infinite group for } m \ge 2.$ Costoya (UDC)
Kahn's realizability problem

Our solutions to Problem 1 and Problem 2 depend on:

▷ A very specific homotopically rigid algebra. It is not unique:

For a fixed
$$k > 4$$
, define $\mathcal{M}_k = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z), d \right)$

deg $x_1 = 5k - 2$, $d(x_1) = 0$ deg $x_2 = 6k - 2$, $d(x_2) = 0$ deg $y_1 = 21k - 9$, $d(y_1) = x_1^3 x_2$ deg $y_2 = 22k - 9$, $d(y_2) = x_1^2 x_2^2$ deg $y_3 = 23k - 9$, $d(y_3) = x_1 x_2^3$ deg $z = 15k^2 - 11k + 1$, $d(z) = x_1^{3k-12}(x_1^2 y_2 y_3 - x_1 x_2 y_1 y_3 + x_2^2 y_1 y_2)$ $+ x_1^{\frac{6k-2}{2}} + x_2^{\frac{5k-2}{2}}$.

Theorem $[\mathcal{M}_k, \mathcal{M}_k] = \{0, 1\}$

 \triangleright Rational homotopy theory (finite type over \mathbb{Q} , not over \mathbb{Z}).

Costoya (UDC

Realizability. An integral approach

Following our approach for $\ensuremath{\mathbb{Q}}$

- ▷ Find an integral homotopically rigid space.
- ▷ Find a functor from a combinatorial category to integral spaces.

Idea Introduce Toric Topology in the picture

Homotopically rigid space

 $\mathbb{H}P^{\infty} \simeq BS^3$

Definition (Degree) For $f : \mathbb{H}P^{\infty} \to \mathbb{H}P^{\infty}$, if $\deg(\Omega f : S^3 \to S^3) = k$, we say that $\deg(f) = k$.

(Feder-Gitler, Sullivan)

Self-maps of $\mathbb{H}P^{\infty}$ have either degree zero or any odd square integer.

(Classification Theorem, Mislin)

Self-maps of $\mathbb{H}P^{\infty}$ are classified up to homotopy by their degree.

 $\begin{aligned} & \mathsf{Corollary} \\ & \mathcal{E}(\mathbb{H}P^{\infty}) = \{1\} \end{aligned}$

Polyhedral product functor

Let K be a simplicial complex on a set V of vertices, v_1, \ldots, v_n . Let (X, *) be a pointed space.

Definition(Bucthstaber-Panov, Bahri-Bendersky-Cohen-Gitler, Notbohm-Ray)

▷ For $\sigma \subset V$ face of *K*, the σ -power of *X* is:

$$X^{\sigma} = \{(x_1, \ldots, x_n) \in X^n \mid x_i = * \text{ if } v_i \notin \sigma\}$$

▷ The polyhedral product is the (homotopy) colimit of the diagram:

$$egin{array}{rcl} X^{K}: {\it CAT}(K) & o & {\it Top}_{*} \ \sigma & \mapsto & X^{\sigma} \end{array}$$

By abuse of notation, we will also denote by X^{K} :

$$\operatorname{hocolim} X^{K} \simeq \operatorname{colim} X^{K} = \bigcup_{\sigma \in K} X^{\sigma} \subseteq X^{n}$$

Polyhedral product functor, examples

Example 1

$$egin{array}{rcl} X^{\Delta[n-1]}&\simeq&X^n& ext{the n-fold product}\ X^{\partial\Delta[n-1]}&\simeq&T^nX& ext{the fat wedge}\ X^{\emptyset}&\simeq&*& ext{the trivial space} \end{array}$$

Example 2 (Davis-Januszkiewicz space) For $X = BS^1$, $(BS^1)^K \simeq DJ(K)$ where $H^*(DJ(K); \mathbb{Z}) \underset{\text{face ring of } K}{\cong} \mathbb{Z}[K]$.

Recall that: $\mathbb{Z}[K] = S_{\mathbb{Z}}(V)/(v_U : U \notin K)$.

Conjecture

For a simplicial complex K,

 $\mathcal{E}((BS^3)^K) \cong Aut(K)$

Example 1 For $K = \Delta[n-1]$

$$\mathcal{E}((BS^3)^n) \cong \sum_{\text{(lwase)}} \Sigma_n$$

Example 2
For
$$X = BS^1$$
, $K = \Delta[n-1]$
 $\mathcal{E}((BS^1)^{\Delta[n-1]}) \cong GL(n,\mathbb{Z}) \not\cong \Sigma_n \cong Aut(\Delta[n-1])$

Let K be a simplicial complex

Proposition

$$\mathcal{E}((BS^3)^K)/\mathcal{E}^*((BS^3)^K) \cong Aut(K)$$

Proof

- ▷ First, show $H^*((BS^3)^K; \mathbb{Z}) \cong \mathbb{Z}[K]$ with generators in degree 4.
- $\,\triangleright\,$ Then, identify $\mathcal{E}\bigl((BS^3)^K\bigr)/\mathcal{E}^*\bigl((BS^3)^K\bigr)$ to the image of

$$\psi: \mathcal{E}((BS^3)^{\kappa}) \to Aut(H^4((BS^3)^{\kappa}; \mathbb{Z}))$$

$$f \mapsto H^4(f; \mathbb{Z})$$

▷ Finally, the entries of $M_f \in GL(n, \mathbb{Z})$ induced by $H^4(f; \mathbb{Z})$ are non negative integers (degrees of self-maps of BS^3). Then M_f and $M_{f^{-1}}$ are permutation matrices, and $Im \psi = Aut(K)$.

Theorem Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*((BS^3)^K) \cong \{1\}$$

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray) Fix notation $X = BS^3$.

 $\begin{array}{c|c} & \mathsf{Step1} \text{ We have:} \\ & [X^{K}, X^{K}] & \stackrel{\textit{injection}}{\leadsto} & [X^{K}, X^{n}] & \stackrel{\{\pi_{j}\}_{1}^{n}}{\leadsto} & [X^{K}, X] & \stackrel{\textit{injection}}{\leadsto} & \prod_{p} [X^{K}, X_{p}^{\wedge}] \\ & f & \rightsquigarrow & f & \rightsquigarrow & \{f_{j}\}_{1}^{n} & \rightsquigarrow & \{f_{j}\}_{1}^{n} \end{array}$

we also have, for a face σ of K:

$$\begin{bmatrix} X^{\sigma}, X \end{bmatrix} \cong_{(lwase)} \{\underbrace{(0, 0, \dots, a_i, 0)}_{\dim \sigma + 1} \mid a_i = 0 \text{ or } a_i \text{ odd square} \}$$

Costoya (UDC

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\begin{array}{ll} \mathcal{E}^*(X^{\mathcal{K}}) & \rightsquigarrow & \left\{ [X^{\sigma}, X_p^{\wedge}] \mid \sigma \in CAT(\mathcal{K}) \right\} \\ f & \rightsquigarrow & f_j^{\sigma} \simeq_p \begin{cases} \pi_j & \text{if } v_j \in \sigma \\ * & \text{if } v_j \notin \sigma \end{cases}$$

Is there $f \simeq Id_{X^{\kappa}}$ inducing the same family?

▷ Step 3 The obstruction for the unicity lies in $\lim^{i} \Pi_{i}^{p}$ for

$$\begin{array}{rcl} \Pi_i{}^p: {\it CAT}{}^{op}({\it K}) & \to & {\cal A}b \\ \sigma & \mapsto & \pi_i({\it map}({\it X}^\sigma, {\it X}^\wedge_p)_{f_j^\sigma}) \end{array}$$

that can be computed as the cohomology of a cochain complex

$$N^{n}(\Pi_{i}^{p}) = \prod_{\sigma_{0} \to \sigma_{1} \to \dots \to \sigma_{n}} \Pi_{i}^{p}(\sigma_{n})$$

As dim K = 1, $N^{\geq 3}(\Pi_{i}^{p}) = 0$, $N^{2}(\Pi_{2}^{p}) = 0$, and $H^{1}(N^{*}(\Pi_{1}^{p})) = 0$.

Corollary 1 Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Corollary 2

Every finite group is realizable by infinitely many integral spaces.