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Realizability. How to play

• Give you a (abstract) group G

• Give you category C

• Give me back an object X in C such that AutC(X ) ∼= G

Example 1

• G = Z2

• C = HoTop∗

• Then, X = Sn

Example 2

• G = Zp, p odd

• C = Groups,

• Then, AutC(X ) 6∼= Zp, ∀X

So, finite groups can not, in general, be realized in the category of groups

Are finite groups realizable in HoTop∗?
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Our problem

Let E(X )= group of homotopy classes of self homotopy-equivalences of X

finite group G

⇓ Realization

G ∼= E(X ) for some X?
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Overview

• Proposed by Kahn in the late 60’s, appears recurrently in literature

• The only general known procedure to tackle this problem is when
G = Aut(π), π a group. Then X = K (π, n), since E(X ) ∼= Aut(π).

• Approach E(X ) by its distinguished subgroups

E](X ), E∗(X ), E∗(X ) . . .

Example

Z2
∼= E(Sn)

Z2
∼= E(K (Z3, n)) since Aut(Z3) ∼= Z2

Z2
∼= E(X ) for some 1-connected rational space X [Arkowitz-Lupton’00]

Which finite groups are realizable by simply connected rational spaces?
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New perspective

Idea
Introduce graphs on the picture

groups −→ graphs

graphs −→ DGA’s

DGA’s −→ rational homotopy types

Theorem (Frucht’39, Realizability in C = Graphs)
Every finite group G is realizable by a finite, connected and simple graph G.

Example 1 (G = Z3, Cayley graph → simple graph)

Costoya (UDC) Kahn’s realizability problem 5 / 35



New perspective

Example 2 (G = Σ4, Cayley graph → simple graph )
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New perspective

Example 2 (G = Σ4, Cayley graph → simple graph )
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Our problem revisited

Problem 1

Let G = (V ,E ) be a finite, simple, connected graph (with more than
one vertex). Does there exist a space X such that Aut(G) ∼= E(X )?
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Solving Problem 1

B First, restrict ourselves Graphfm ⊂ Graph.
B Then, construct

A : Graphfm −→ DGA

(AG , d) =
(
Λ(x1, x2, y1, y2, y3, z)⊗ Λ(xv , zv |v ∈ V ), d

)
• generators in dimensions: |x1| = 8, |x2| = 10, |y1| = 33, |y2| = 35,
|y3| = 37, |z | = 119, |xv | = 40, |zv | = 119,

• differentials:

d(x1) = 0
d(x2) = 0
d(y1) = x3

1 x2

d(y2) = x2
1 x

2
2

d(y3) = x1x
3
2

d(xv ) = 0
d(z) = y1y2x

4
1 x

2
2 − y1y3x

5
1 x2 + y2y3x

6
1 + x15

1 + x12
2

d(zv ) = x3
v +

∑
[v ,w ]∈E xvxwx

4
2

• A is contravariant (morphisms are as expected).
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Solving Problem 1
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|y3| = 37, |z | = 119, |xv | = 40, |zv | = 119,

• differentials:

d(x1) = 0
d(x2) = 0
d(y1) = x3

1 x2

d(y2) = x2
1 x

2
2

d(y3) = x1x
3
2

d(xv ) = 0
d(z) = y1y2x

4
1 x

2
2 − y1y3x

5
1 x2 + y2y3x

6
1 + x15

1 + x12
2

d(zv ) = x3
v +

∑
[v ,w ]∈E xvxw (u1x

5
1 + u2x

4
2 ), u1, u2 ∈ Q∗

• A is contravariant (morphisms are as expected).
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Solving Problem 1

Theorem
Let G, AG defined as previously. Then:

• There exists a split short exact sequence

K → Aut(AG)→ Aut(G)

where K is abelian and torsion-free.

• AG is an elliptic algebra (hence Poincaré duality) of formal
dimension d = 208 + 80|V |

• Let XG the rational elliptic 1-connected space whose Sullivan
minimal model is AG . The monoid of self-homotopy classes of XG is

[XG ,XG ] = {f0, f1} ∪ Aut(G)
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Solving Problem 1

Theorem
Every finite group G is realized by infinitely many (non homotopically
equivalent) rational elliptic spaces X . That is, G ∼= E(X ).

D. Kahn’90
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Applications

Idea (Crowley-Löh, 2015)

Degree theorems “à la Gromov” are strongly related with the existence of
inflexible manifolds

Definition (Inflexible manifold)

An oriented closed connected manifold M is inflexible if

{deg f | f : M → M continuous} ⊂ {−1, 0, 1}

Inflexible manifolds are constructed (using rational homotopy theory) in
dimensions 64 ∪ {d · k | k ∈ N, d = 108, 208, 228} (≡ 0 (mod 4)).
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Applications

Recall that

• XG is an elliptic space of formal dimension d = 208 + 80|V | such that

[XG ,XG ] = {f0, f1} ∪ Aut(G)

• Therefore, if XG is the rationalisation of a manifold M, then M is
inflexible

But d ≡ 0 (mod 4) so we are in the bad range of the obstruction theory of
Barge and Sullivan

Modifying our construction we get . . .
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Applications

Theorem

For any connected finite graph G, there exist ÃG , X̃G such that:

• ÃG is an elliptic dga of formal dimension d = 2(208 + 80|V |)− 1. Since

d ≡ 3 (mod 4), X̃G is the rationalization of a d-manifold MG .

• The self-monoid [X̃G , X̃G ] ∼= {f0, f1} ∪ Aut(G). Hence MG is inflexible.

Theorem
For every finite group G , there exist infinitely many inflexible manifolds MG

such that
E((MG )Q) ∼= G
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What happens if G acts on a module M?
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Realizability level 2. How to play

• Algebraic structure (G ,M)

G is a group, M is a finitely generated ZG -module

• Homotopy invariant
(
E(−), πk(−)

)
πk(−) is a ZE(−)-module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the ZG -module M is
isomorphic to the ZE(X )-module πk(X ), for some k ≥ 2?

B“Homotopique dual” of the G -Moore spaces problem (Steenrod’60)

B It implies realizability of groups
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Realizability level 2. How to play

• Algebraic structure (G ,V )

G is a group, V is a finitely generated QG -module

• Homotopy invariant
(
E(−), πk(−)

)
πk(−) is a QE(−)-module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the QG -module V is
isomorphic to the QE(X )-module πk(X ), for some k ≥ 2?

B“Homotopique dual” of the G -Moore spaces problem (Steenrod’60)

B It implies realizability of groups
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New Perspective

Idea
Introduce Invariant Theory on the picture.

B G acts on Q[V ]: for g ∈ G , p ∈ Q[V ], (gp)(v) = p(g−1v).

B G -invariant function: p ∈ Q[V ] such that for all g ∈ G , gp = p.

B The invariant ring Q[V ]G : all the G - invariant functions in Q[V ]

(Characterization of finite G ≤ GL(V ) , Hilbert, Noether)

Let V be a finitely generated and faithful QG -module. Then, there exists
algebraic forms p1, . . . , pr ∈ Q[V ]G such that, for f ∈ GL(V )

f ∈ G if and only if pi ◦ f = pi , ∀i

we modify those algebraic forms
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Solving Problem 2

Lemma
There exist a family Q = {q0, q1, . . . qr , qr+1} ⊂ Q[V ]G where

1. q0 =
N∑
1

λj
6=0

v2
j , for a good choice of basis of V ∗ (N = dimQV ),

2. deg(qi ) < deg(qi+1) for all i ,

3. qr+1 = (q0)s for s � N

such that G is the orthogonal group O(Q) ≤ GL(V ).

Definition (Realizable family of forms)

A family of algebraic forms Q ⊂ Q[v1, . . . , vN ] verifying 1, 2 and 3.

For an arbitrary realizable family, and any n > deg(qr+1) . . .
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Solving Problem 2
M(Q,n) =

(
Λ(x1, x2, y1, y2, y3, z , vj | j = 1, . . . ,N), d

)
deg x1 = 8, d(x1) = 0

deg x2 = 10, d(x2) = 0

deg y1 = 33, d(y1) = x3
1 x2

deg y2 = 35, d(y2) = x2
1 x

2
2

deg y3 = 37, d(y3) = x1x
3
2

deg vj = 40, d(vj) = 0

deg z = 80n + 39, d(z) =
r+1∑
i=1

qix
10n+5−5 deg(qi )
1 + q0(x10n−5

1 + x8n−4
2 )

+ x
10(n−1)
1 (y1y2x

4
1 x

2
2 − y1y3x

5
1 x2 + y2y3x

6
1 )

+ x10n+5
1 + x8n+4

2 .
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4
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2
2 − y1y3x
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6
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2 .

Codifies the action
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Solving Problem 2
Theorem

E(M(Q,n)) ∼= O(Q)

Corollary
Let G be a finite group, and V a finitely generated faithful QG -module.
Then, there exists a Postnikov piece X such that, for some k ≥ 2,(

G ,V
) ∼= (

E(X ), πkX
)

Example (realization of infinite groups)

Let O(m; k) < GLm+k(R) preserving:

q0 = x2
1 + x2

2 + . . .+ x2
m − x2

m+1 − . . .− x2
m+k .

The family Q = {q0, (q0)m+k+1} ⊂ Q[x1, . . . , xm+k ] is realizable. Then,

B O(Q) can be realized by infinitely many (rational) spaces.

B O(Q) ∼= O(m; k)(Q), which is an infinite group for m ≥ 2.
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Our solutions to Problem 1 and Problem 2 depend on:

B A very specific homotopically rigid algebra. It is not unique:

For a fixed k > 4, define Mk =
(

Λ(x1, x2, y1, y2, y3, z), d
)

deg x1 = 5k − 2, d(x1) = 0

deg x2 = 6k − 2, d(x2) = 0

deg y1 = 21k − 9, d(y1) = x3
1 x2

deg y2 = 22k − 9, d(y2) = x2
1 x

2
2

deg y3 = 23k − 9, d(y3) = x1x
3
2

deg z = 15k2 − 11k + 1, d(z) = x3k−12
1 (x2

1 y2y3 − x1x2y1y3 + x2
2 y1y2)

+ x
6k−2

2
1 + x

5k−2
2

2 .

Theorem [Mk ,Mk ] = {0, 1}

B Rational homotopy theory (finite type over Q, not over Z).
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Realizability. An integral approach

Following our approach for Q

B Find an integral homotopically rigid space.

B Find a functor from a combinatorial category to integral spaces.

Idea
Introduce Toric Topology in the picture
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Homotopically rigid space

HP∞ ' BS3

Definition (Degree)

For f : HP∞ → HP∞, if deg(Ωf : S3 → S3) = k , we say that deg(f ) = k.

(Feder-Gitler, Sullivan)
Self-maps of HP∞ have either degree zero or any odd square integer.

(Classification Theorem, Mislin)

Self-maps of HP∞ are classified up to homotopy by their degree.

Corollary

E(HP∞) = {1}
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Polyhedral product functor

Let K be a simplicial complex on a set V of vertices, v1, . . . , vn.
Let (X , ∗) be a pointed space.

Definition(Bucthstaber-Panov, Bahri-Bendersky-Cohen-Gitler, Notbohm-Ray)

B For σ ⊂ V face of K , the σ−power of X is:

Xσ = {(x1, . . . , xn) ∈ X n | xi = ∗ if vi /∈ σ}

B The polyhedral product is the (homotopy) colimit of the diagram:

XK : CAT (K ) → Top∗
σ 7→ Xσ

By abuse of notation, we will also denote by XK :

hocolim XK ' colim XK =
⋃
σ∈K

Xσ ⊆ X n

Costoya (UDC) Kahn’s realizability problem 29 / 35



Polyhedral product functor, examples

Example 1

X∆[n−1] ' X n the n-fold product
X ∂∆[n−1] ' T nX the fat wedge

X ∅ ' ∗ the trivial space

Example 2 (Davis-Januszkiewicz space)

For X = BS1, (BS1)K ' DJ(K ) where H∗(DJ(K );Z) ∼= Z[K ]
face ring of K

.

Recall that: Z[K ] = SZ(V )/(vU : U /∈ K ).
square free monomials
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Conjecture

For a simplicial complex K ,

E((BS3)K ) ∼= Aut(K )

Example 1

For K = ∆[n − 1]

E
(
(BS3)n

) ∼=
(Iwase)

Σn

Example 2

For X = BS1, K = ∆[n − 1]

E
(
(BS1)∆[n−1]

) ∼= GL(n,Z) 6∼= Σn
∼= Aut

(
∆[n − 1]

)
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Solving Conjecture

Let K be a simplicial complex

Proposition

E
(
(BS3)K

)
/E∗
(
(BS3)K

) ∼= Aut(K )

Proof

B First, show H∗((BS3)K ;Z) ∼= Z[K ] with generators in degree 4.

B Then, identify E
(
(BS3)K

)
/E∗
(
(BS3)K

)
to the image of

ψ : E((BS3)K ) → Aut
(
H4((BS3)K ;Z)

)
f 7→ H4(f ;Z)

B Finally, the entries of Mf ∈ GL(n,Z) induced by H4(f ;Z) are non
negative integers (degrees of self-maps of BS3). Then Mf and Mf −1 are
permutation matrices, and Imψ = Aut(K ). �
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Solving Conjecture
Theorem
Let K be a simplicial complex of dimension 1. Then

E∗
(
(BS3)K

) ∼= {1}
Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray)

Fix notation X = BS3.

B Step1 We have:

[XK ,XK ]
injection
 [XK ,X n]

{πj}n1 [XK ,X ]
injection
 

∏
p

[XK ,X∧p ]

f  f  {fj}n1  {fj∧p | p}
n
1

we also have, for a face σ of K :

[Xσ,X ] ∼=
(Iwase)

{(0, 0, . . . , ai , 0)︸ ︷︷ ︸
dimσ+1

| ai = 0 or ai odd square}
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Solving Conjecture

B Step 2 We then have, for every j = 1, . . . , n, for every p prime:

E∗(XK )  
{

[Xσ,X∧p ] | σ ∈ CAT (K )
}

f  fj
σ 'p

{
πj if vj ∈ σ
∗ if vj /∈ σ

Is there f 6' IdXK inducing the same family?

B Step 3 The obstruction for the unicity lies in limi Πi
p for

Πi
p : CAT op(K ) → Ab

σ 7→ πi (map(Xσ,X∧p )f σj )

that can be computed as the cohomology of a cochain complex

Nn(Πi
p) =

∏
σ0→σ1→···→σn

Πi
p(σn)

As dim K = 1, N≥3(Πi
p) = 0, N2(Π2

p) = 0, and H1(N∗(Π1
p)) = 0. �
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Solving Conjecture

Corollary 1

Let K be a simplicial complex of dimension 1. Then

E
(
(BS3)K

) ∼= Aut(K )

Corollary 2

Every finite group is realizable by infinitely many integral spaces.
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