Kahn’s realizability problem

Cristina Costoya
(Joint with Antonio Viruel)

Alpine Algebraic and Applied Topology Conference



Realizability. How to play

e Give you a (abstract) group G
e Give you category C

e Give me back an object X in C such that Aute(X) =2 G

Example 1 Example 2

e G=17, ® G =Z7p,podd
e C = HoTop. e C = Groups,

e Then, X =8"

e Then, Aute(X) 2 Z,, ¥YX

So, finite groups can not, in general, be realized in the category of groups

Are finite groups realizable in HoTop,.?
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Our problem

Let £(X)= group of homotopy classes of self homotopy-equivalences of X

finite group G J

|l Realization

G = E(X) for some X? J
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Overview

® Proposed by Kahn in the late 60's, appears recurrently in literature

® The only general known procedure to tackle this problem is when
G = Aut(w), 7 a group. Then X = K(m, n), since £(X) & Aut(r).

e Approach £(X) by its distinguished subgroups
Ei(X), Eu(X),E(X)...

Example
Zp =2 E(S™)
Zy = E(K(Z3, n)) since Aut(Zs3) = Z,

Zy = E(X) for some 1-connected rational space X [Arkowitz-Lupton’'00]

Which finite groups are realizable by simply connected rational spaces?
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New perspective

Idea
Introduce graphs on the picture

groups — graphs
graphs — DGA's
DGA's — rational homotopy types

Theorem (Frucht'39, Realizability in C = Graphs)
Every finite group G is realizable by a finite, connected and simple graph G.

Example 1 (G = Zs, Cayley graph — simple graph)

A
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New perspective

Example 2 (G = ¥4, Cayley graph — simple graph )

a=(1,2)
B=@2,3)
Y=@3,4)
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New perspective

Example 2 (G = ¥4, Cayley graph — simple graph )

—:— a=(1,2)

—_ f=12,3)
—— 7=(3,4)
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New perspective

Example 2 (G = ¥4, Cayley graph — simple graph )

2431

2341

3142 4132
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Our problem revisited

Problem 1

Let G = (V, E) be a finite, simple, connected graph (with more than
one vertex). Does there exist a space X such that Aut(G) = £(X)?
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Solving Problem 1

> First, restrict ourselves Graphs, C Graph.
> Then, construct
A Graphsy, — DGA

(Ag,d) = (A(x1, %2, y1, ¥2, ¥3,2) ® N(xy, z,|v € V), d)

e generators in dimensions: |x1| = 8, |x2| = 10, |y1]| = 33, |y2| = 35,
|y3| =37, |Z| =119, |Xv| =40, |Zv| =119,

o differentials:

d(x)= 0 d(ys) = xx3

dx)= 0 dix,)= 0

dyi) = xixe  d(z) = yyex{x3 — y1y3xixe + yaysxf + xi° + x32
d(y2) = x2x3 d(z,)= x3+ Zlv,w]eEvaWxg‘

e A s contravariant (morphisms are as expected).
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Solving Problem 1

> First, restrict ourselves Graphs, C Graph.
> Then, construct
A : Graphs, — DGA
(Ag) d) = (A(X17 X2, Y1, Y2, Y3, Z) ® /\(XV7 ZV|V € V)7 d)
Homotopically Rigid Encodes G

e generators in dimensions: |x1| = 8, |x2| = 10, |y1| = 33, |y2| = 35,
|y3| =37, |Z| =119, |Xv| = 40, |Zv| =119,

o differentials:

d(x)= 0 d(ys) = xx3

dx)= 0 dix,)= 0

dy1) = xix2  d(z) = yexix — yiyaxixe + yaysxf + xi° + x3°
dly2) = xpx3  d(z) = X} + 20 e XXwXs

e A s contravariant (morphisms are as expected).

Kahn's realizability problem 11 /35



Solving Problem 1

> First, restrict ourselves Graphs, C Graph.
> Then, construct
A : Graphs, — DGA
(Ag) d) = (A(X17 X2, Y1, Y2, Y3, Z) ® /\(XV7 ZV|V € V)7 d)
Homotopically Rigid Encodes G

e generators in dimensions: |x1| = 8, |x2| = 10, |y1| = 33, |y2| = 35,
|y3| =37, |Z| =119, |Xv| = 40, |Zv| =119,

o differentials:

dxi)= 0 d(ys) = x5

dx)= 0 dix,)= 0

diy1) = xix d(z) = yiexixd — yiyaxixe + yoyax® + xi° 4+ x32
dly2) = xix3  d(z) = X+ 20 wee Xoxw(Ud + u2x3), un, up € QF

e A s contravariant (morphisms are as expected).
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Solving Problem 1

Theorem
Let G, Ag defined as previously. Then:

e There exists a split short exact sequence
K — Aut(Ag) — Aut(G)
where K is abelian and torsion-free.

e Ag is an elliptic algebra (hence Poincaré duality) of formal
dimension d = 208 + 80| V/|

e Let Xg the rational elliptic 1-connected space whose Sullivan
minimal model is Ag. The monoid of self-homotopy classes of Xg is

[Xg, Xg] = {fo, i} U Aut(G)
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Solving Problem 1

Theorem
Every finite group G is realized by infinitely many (non homotopically
equivalent) rational elliptic spaces X. That is, G = £(X).

Before we get into specific categories of problems, let me say that there are two
very broad problems - somewhat vague and general - that most workers agree are very
important:

A. Caleulate the groups £(X) explicitly in as many cases as possible, and express the
known calculations in the most simple and concrete terms.

B. Develop applications of the group £(X) to other parts of topology (and mathematics
in general).

D. Kahn'90
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Applications

Idea (Crowley-L&h, 2015)

Degree theorems “a la Gromov” are strongly related with the existence of
inflexible manifolds

Definition (Inflexible manifold)
An oriented closed connected manifold M is inflexible if

{deg f | f : M — M continuous} C {-1,0,1}

Inflexible manifolds are constructed (using rational homotopy theory) in
dimensions 64 U {d - k | k € N, d = 108,208,228} (=0 (mod 4)).
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Applications

Recall that

e X is an elliptic space of formal dimension d = 208 + 80|V/| such that

[Xg, Xg] = {fo, i} U Aut(G)

® Therefore, if Xg is the rationalisation of a manifold M, then M is
inflexible

But d =0 (mod 4) so we are in the bad range of the obstruction theory of
Barge and Sullivan

Modifying our construction we get ...

Kahn's realizability problem 16 / 35



Applications

Theorem

For any connected finite graph G, there exist /Zg,)?g such that:

e Ag is an elliptic dga of formal dimension d = 2(208 + 80|V/|) — 1. Since
d =3 (mod 4), Xg is the rationalization of a d-manifold M.

e The self-monoid [Xg, Xg] = {fy, 1} U Aut(G). Hence Mg is inflexible.

Theorem
For every finite group G, there exist infinitely many inflexible manifolds Mg
such that

E((Mg)o) = G
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What happens if G acts on a module M?
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Realizability level 2. How to play

e Algebraic structure (G, M)
G is a group, M is a finitely generated ZG-module
* Homotopy invariant (£(—), 7x(—))
k(=) is a ZE(—)-module
Problem 2 (realizability of actions)
Is there a finite Postnikov piece X such that the ZG-module M is
isomorphic to the ZE(X)-module 7, (X), for some k > 27

> “Homotopique dual” of the G-Moore spaces problem (Steenrod'60)

> It implies realizability of groups
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Realizability level 2. How to play

e Algebraic structure (G, V)
G is a group, V is a finitely generated QG-module
* Homotopy invariant (£(—), 7x(—))
k(=) is a Q€(—)-module
Problem 2 (realizability of actions)
Is there a finite Postnikov piece X such that the QG-module V is
isomorphic to the Q€ (X)-module 7, (X), for some k > 27

> “Homotopique dual” of the G-Moore spaces problem (Steenrod'60)

> It implies realizability of groups
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New Perspective

Idea
Introduce Invariant Theory on the picture.

> G acts on Q[V]: for g € G, p € Q[V], (gp)(v) = p(g~1v).
> G-invariant function: p € Q[V] such that for all g € G, gp = p.
> The invariant ring Q[V]€: all the G- invariant functions in Q[V/]

(Characterization of finite G < GL(V/) , Hilbert, Noether)

Let V be a finitely generated and faithful Q G-module. Then, there exists
algebraic forms py, ..., p, € Q[V]® such that, for f € GL(V)

feG ifandonlyif pjof=p;, Vi

we modify those algebraic forms
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Solving Problem 2

Lemma
There exist a family Q = {qo, q1,---Gr, gr11} C Q[V]® where

N
1. g = Z )\jvf, for a good choice of basis of V* (N = dimgV),
£0

1
2. deg(q;) < deg(qit1) for all i,
3. gry1 = (qo)* for s> N

such that G is the orthogonal group O(Q) < GL(V).

Definition (Realizable family of forms)
A family of algebraic forms Q C Q[wv1, ..., vn] verifying 1, 2 and 3.

For an arbitrary realizable family, and any n > deg(q,+1) - ..
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Solving Problem 2
M(Q,n) = (A(X17X2a.y17.y2a.y3az7 Vi |J = 17~ . 7N)7d)

degx1 = 8, d(Xl) =0
deg x, = 10, d(x) =0
deg y1 = 33, d(y1) = i x
deg y» = 35, d(y2) = x7x3
degys = 37, d(ys3) = x1%3
deg v; = 40, d(v;)=0
r+1

degz=80n+39, d(z)= Z q;X110"+5_5deg(qf) + 004" + ")
i=1

10(n—1
+ X1 m )()’1Y2XfX22 — y1y3xpxa + yay3x?)
4 xJOnH5 | 8+
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Solving Problem 2
M(Q,n) = (A(X17X2a.y17.y2a.y37z7 Vi |J = 17' . 7N)7d)

degx1 = 8, d(Xl) =0
deg x; = 10, d(x) =0
degy; = 33, d(y1) = x3x
deg y> = 35, d(y2) = x7x3
degys = 37, d(ys) = x5
deg v; = 40, d(v;)=0
r+1

degz=80n+39, d(z)= Z in110n+5_5deg(qf) + QO(X110’775 + X§n74)
i—1

10(n—1
+ X7 (n )()/1)/2XfX22 - }/1)/3X15X2 + )/2}/3X16)

+ Xil0n+5 + X28n+4.

Codifies the action
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Solving Problem 2

Theorem

E(Ma.m) = 0(Q)
Corollary

Let G be a finite group, and V a finitely generated faithful Q G-module.
Then, there exists a Postnikov piece X such that, for some k > 2,

(G, V) = (E(X), mX)
Example (realization of infinite groups)
Let O(m; k) < GLm4k(R) preserving:

_ 2 2 2 2 2
Qo=X3 +X + ...+ X —Xpy1 — -0 — Xppgke

The family Q = {qo, (q0)" ™ "'} C Q[x1, . . ., Xm+«] is realizable. Then,

> O(Q) can be realized by infinitely many (rational) spaces.

> O(Q) = O(m; k)(Q), which is an infinite group for m > 2.



Our solutions to Problem 1 and Problem 2 depend on:

> A very specific homotopically rigid algebra. It is not unique:

For a fixed k > 4, define M, = (A(Xl,Xz,}/l,y2,)/3az)7 d)

degx1:5k—2, d(Xl)ZO
degxp = 6k — 2, d(x) =0
degy; =21k -9, d(y1) = X2 xo
degy, = 22k — 9, d(y) = xf
degy; = 23k — 9, d(ys) = xux
degz = 15k* — 11k +1, d(z) = 3k 2(xZyays — xvey1ys + XEyy2)
M 5k—2
+x° X

Theorem [My, M,] = {0,1}

> Rational homotopy theory (finite type over @, not over Z).
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Realizability. An integral approach

Following our approach for Q

> Find an integral homotopically rigid space.

> Find a functor from a combinatorial category to integral spaces.

Idea
Introduce Toric Topology in the picture
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Homotopically rigid space

HP>® ~ BS3

Definition (Degree)
For f : HP™ — HP™, if deg(Qf : S® — S3) = k, we say that deg(f) = k.

(Feder-Gitler, Sullivan)
Self-maps of HP° have either degree zero or any odd square integer.

(Classiﬁcation Theorem, Mislin)
Self-maps of HP are classified up to homotopy by their degree.

Corollary
E(HP™) = {1}
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Polyhedral product functor

Let K be a simplicial complex on a set V of vertices, vy, ..., v,.
Let (X, ) be a pointed space.

Definition(Bucthstaber-Panov, Bahri-Bendersky-Cohen-Gitler, Notbohm-Ray)
> For o C V face of K, the o—power of X is:

X7 ={(X1,-..,xn) € X" | xi =xifvi ¢ o}
> The polyhedral product is the (homotopy) colimit of the diagram:

XK. CAT(K) — Top.
o — X
By abuse of notation, we will also denote by XX:

hocolim X* ~ colim XX = U X7 C X"
ceK
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Polyhedral product functor, examples

Example 1
XA~ X" the n-fold product
XOAI=1 ~  TnX  the fat wedge
X" ~ % the trivial space

Example 2 (Davis-Januszkiewicz space)

For X = BS!, (BS')K ~ DJ(K) where H*(DJ(K); Z) = Z[K] .
face ring of K

Recall that: Z[K] = Sz(V)/(vy : U ¢ K).

square free monomials
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Conjecture

For a simplicial complex K,
E((BS®)K) = Aut(K)
Example 1
For K= A[n—1]
5((853)") ~ ¥,
(Iwase)

Example 2
For X = BS!, K = A[n— 1]

E((BSHAI-1) = GL(n,z) % T, Aut(A[n—1])
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Solving Conjecture
Let K be a simplicial complex
Proposition
£((BS*)F) /" ((BS?)¥) = Aut(K)
Proof
> First, show H*((BS3)K;7Z) = Z[K] with generators in degree 4.
> Then, identify £((BS®)K)/£*((BS?)¥) to the image of

Vv E((BSYF) —  Aut(H*((BS?)X; 7))
f — H4(f; Z)

> Finally, the entries of My € GL(n,Z) induced by H*(f;Z) are non

negative integers (degrees of self-maps of BS®). Then M; and M;-1 are
permutation matrices, and Imvy = Aut(K). O
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Solving Conjecture

Theorem
Let K be a simplicial complex of dimension 1. Then

£ ((BS*)") = {1}

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom—Ray)
Fix notation X = BS3.

> Stepl We have:
(XK, xK] e xe xRk xR xR xo
P
F e e B~ )N
we also have, for a face o of K:

[X7, X] ( = : {(0,0,...,3;,0) | a; = 0 or a; odd square}
Iwase N———
dimo+1
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Solving Conjecture

> Step 2 We then have, for every j = 1,..., n, for every p prime:
e (x) ~ {xe. X110 € CAT(K) }

;i ifvi€o
f f;° ~ J J
- ! p{* ifviéo

Is there f % Idxk inducing the same family?

> Step 3 The obstruction for the unicity lies in lim' M;? for
Mn;?: CAT?(K) — Ab
o mi(map(X7, X} )¢)
that can be computed as the cohomology of a cochain complex

NPy = [T NP(ow)

gg—01—> " —>0p

As dim K = 1, NZ3(N;?) = 0, N2(M,) =0, and HY(N*(MyP)) =0. [



Solving Conjecture

Corollary 1
Let K be a simplicial complex of dimension 1. Then

E((BS®)K) = Aut(K)

Corollary 2
Every finite group is realizable by infinitely many integral spaces.
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