Equivariant calculus and the tower of the identity on pointed G-spaces

Emanuele Dotto

University of Bonn

Saas-Almagell, 2016

- 2 Equivariant Excision and the Equivariant Taylor Tower
- 3 The Layers of the Tower

Calculus of Functors (G = 1)

Let $F: \mathscr{C} \to \mathscr{D}$ be a homotopy functor between model categories.

Theorem (Goodwillie)

There is a "Taylor tower" of functors

$$\dots \longrightarrow P_n F \longrightarrow P_{n-1}F \longrightarrow \dots \longrightarrow P_2F \longrightarrow P_1F \longrightarrow F(*)$$
$$D_n F$$

which satisfies:

- $F(X) \simeq \operatorname{holim}_n P_n F(X)$, sometimes,
- P_nF is "*n*-excisive" (a homology theory when n = 1),
- For $\mathscr{C} = \mathscr{D} = \operatorname{Top}_*$ the layer $D_n F = \operatorname{hofib}(P_n F \to P_{n-1}F)$ decomposes as:

$$D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge X^{\wedge n})_{h \Sigma_n}$$

Where $\partial_n F$ is a spectrum with Σ_n -action (naïve).

This is "Brown representability" for reduced homology theories of degree n.

What Goes Wrong Equivariantly?

Let G be a finite group. Let Top_*^G be the model category of G-spaces and fixed-points equivalences:

Definition

 $f \colon X \to Y \text{ is a w.e. if } f^H \colon X^H \to Y^H \text{ is a w.e. of spaces for all } H \leq G.$

We can of course set $C = D = Top_*^G$ and take the tower of $F: Top_*^G \to Top_*^G$. However:

lssues

• The layer is a naïve infinite loop space

$$D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge X^{\wedge n})_{h \Sigma_n}$$

 $(\partial_n F \text{ is a naïve } G \times \Sigma_n \text{-spectrum}).$

• This decomposition holds only when the G-action on X is trivial.

The Case n = 1 (Blumberg)

Let $F: \operatorname{Top}_*^G \to \operatorname{Top}_*^G$ be reduced: $F(*) \simeq *$. Then

 $P_1F(X) \simeq \operatorname{hocolim}_{n \in \mathbb{N}} \Omega^n F(\Sigma^n X)$

Construction

$$P_G F(X) \coloneqq \operatorname{hocolim}_{n \in \mathbb{N}} \Omega^{n \rho_G} F(\Sigma^{n \rho_G} X)$$

where $\rho_G = \mathbb{R}[G]$ is the regular representation of G.

Theorem (Blumberg)

 $P_GF(X)$ is the universal "G-linear" approximation of $F: P_GF$ is linear and

$$P_GF(\bigvee_J X) \xrightarrow{\simeq} \prod_J P_GF(X)$$

for every finite G-set J. It follows that "G-linear functors are equivalent to G-spectra".

E. Dotto (Bonn)

Program

- Formulate G-excision in "cubical terms",
- **2** Extend this notion to J-excision, for finite G-sets J,
- Extend the framework from Top^G_{*} to general "equivariant homotopy theories" (e.g. G-spectra).

Equivariant Homotopy Theory

Let G be a finite group.

Definition (D-Moi/Hill)

A G-model category is a functor $\underline{\mathscr{C}}: \mathcal{O}_G^{op} \to ModCat$ where:

- $\mathcal{O}_G = \{ \text{transitive } G \text{-sets and } G \text{-maps} \}$ is the orbit category of G,
- $\bullet \ ModCat$ is the category of model categories and left and right Quillen functors.

We will further assume that:

- $\underline{\mathscr{C}}(G/H) = \mathscr{C}^H$ is the category of *H*-objects in some category \mathscr{C} (as 1-categories),
- The functors $\mathscr{C}^H \to \mathscr{C}^K$ are the standard restrictions and conjugations.

This is a homotopy theory "parametrized" by the orbit category of G. [Barwick-D-Glasman-Nardin-Shah] for an ∞ -categorical setting.

Example) • The categories Top^H with the fixed-points model structures,

• The categories Sp^H of orthogonal *H*-spectra with the *H*-stable model structures.

Equivariant Diagrams

Let G be a finite group, I a category with G-action and $\mathscr C$ a G-model category.

Theorem (D-Moi)

There exists a model category of *I*-shaped diagrams $X: I \to \mathcal{C}$ with "*G*-action": natural maps $g: X_i \longrightarrow X_{gi}$ compatible with the group structure.

Example) Let $G = \mathbb{Z}/2$, and $I = (\bullet \rightarrow \bullet \leftarrow \bullet)$ with G-action

If Y is a pointed $\mathbb{Z}/2$ -space, the following is a $\mathbb{Z}/2$ -equivariant diagram in Top_* :

Equivariant Diagrams

Let G be a finite group, I a category with G-action and $\mathscr C$ a G-model category.

Theorem (D-Moi)

There exists a model category of *I*-shaped diagrams $X: I \to \mathcal{C}$ with "*G*-action": natural maps $g: X_i \longrightarrow X_{gi}$ compatible with the group structure.

Example) Let $G = \mathbb{Z}/2$, and $I = (\bullet \rightarrow \bullet \leftarrow \bullet)$ with G-action

If Y is a pointed $\mathbb{Z}/2$ -space, the following is a $\mathbb{Z}/2$ -equivariant diagram in Top_* :

Equivariant Homotopy Limits and Colimits

Let G be a finite group, I a category with G-action and $\mathscr C$ a G-model category.

Theorem (D-Moi)

There are well-behaved homotopy limit and colimit functors

holim, hocolim: $\{I\text{-shaped } G\text{-diagrams in } \mathscr{C}\} \longrightarrow \mathscr{C}^G$

Example) Let $G = \mathbb{Z}/2$ and Y a pointed $\mathbb{Z}/2$ -space, then

$$\operatorname{holim}\left(\begin{array}{c} * \\ \downarrow \\ * \longrightarrow Y \end{array}\right) = \Omega Y = Map_*(S^1, Y)$$

Equivariant Homotopy Limits and Colimits

Let G be a finite group, I a category with $G\text{-}{\rm action}$ and ${\mathscr C}$ a $G\text{-}{\rm model}$ category.

Theorem (D-Moi)

There are well-behaved homotopy limits and colimits functors

holim, hocolim: $\{I\text{-shaped } G\text{-diagrams in } \mathscr{C}\} \longrightarrow \mathscr{C}^G$

Example) Let $G = \mathbb{Z}/2$ and Y a pointed $\mathbb{Z}/2$ -space, then

$$\operatorname{holim}\left(\begin{array}{c} & * \\ & \downarrow \\ & * & Y \\ & * & Y \end{array}\right) = \Omega^{\operatorname{sign}} Y = Map_*(S^{\operatorname{sign}}, Y)$$

Consequence

This gives a systematic way of incorporating representations into equivariant homotopy theory.

E. Dotto (Bonn)

Equivariant Calculus

Reformulation of G-Excision

Let J be a finite G-set, and $\mathcal{P}(J)$ the category of (all) subsets of J. G acts on $\mathcal{P}(J)$ by $g \cdot U = \{g \cdot j \mid j \in U\}.$

Definition (Equivariant cubes)

A J-cube is a diagram $X: \mathcal{P}(J) \to \mathscr{C}$ with a G-action.

Let $F: \mathscr{C}^G \to \mathscr{D}^G$ be a homotopy functor.

Definition (G-excision)

F is G-excisive if

$$F_*: \{G_+\text{-cubes in } \mathscr{C}\} \longrightarrow \{G_+\text{-cubes in } \mathscr{D}\}$$

sends cocartesian cubes to cartesian cubes. (Here $G_+ = G \amalg \{+\}$).

Theorem (D-Moi)

Suppose that $F(*) \simeq *$. The following are equivalent:

- F is G-excisive,
- F sends cocartesian J-cubes to cartesian J-cubes, for every finite G-set J,
- $F(X) \simeq \Omega^{\rho_G} F(\Sigma^{\rho_G} X)$, (that is $F \simeq P_G F$),
- F is excisive and $F(\bigvee_J X) \simeq \prod_J F(X)$ (Blumberg's definition).

Let J be a finite G-set. Let $F\colon \mathscr{C}^G \to \mathscr{D}^G$ be a homotopy functor.

Definition (*J*-excision)

F is J-excisive if

 $F_*: \{J_+\text{-cubes in } \mathscr{C}\} \longrightarrow \{J_+\text{-cubes in } \mathscr{D}\}$

sends "strongly cocartesian" cubes to cartesian cubes.

Examples

- An *n*-excisive functor is <u>n</u>-excisive, for the trivial *G*-set $\underline{n} = \{1, \dots, n\}$,
- Let M be a $\mathbb{Z}[G]$ -module. The Dold-Thom construction M(-): $\operatorname{Top}_*^G \to \operatorname{Top}_*^G$ is G-linear,
- Let *E* be a *G*-spectrum. $E \land (-)$: $\operatorname{Top}_*^G, \operatorname{Sp}^G \to \operatorname{Sp}^G$ is *G*-linear. In particular the identity on Sp^G is *G*-linear,
- Let A be a commutative ring, M an A-bimodule. There is a $\mathbb{Z}/2\text{-spectrum}$

$$\mathrm{THR}(A; M) = |[k] \longmapsto HM \land (HA)^{\wedge \underline{k}}|$$

where $\mathbb{Z}/2$ acts on $\underline{k} = \{1, \dots, k\}$ by $i \mapsto k - i + 1$. Then

$$\operatorname{THR}(A; M(-)): \operatorname{Top}_*^{\mathbb{Z}/2} \longrightarrow \operatorname{Sp}^{\mathbb{Z}/2}$$

is $\mathbb{Z}/2$ -excisive.

• Let K be a finite G-set. The norm $(-)^{\wedge K}$: $\operatorname{Sp}^G \to \operatorname{Sp}^G$ is $K \times G = |K| \times G$ -excisive.

The Equivariant "Tower"

Let $F: \mathscr{C}^G \to \mathscr{D}^G$ be a homotopy functor.

Theorem (D)

There are *J*-excisive approximations $F \rightarrow P_J F$, and an essentially unique map $P_J F \rightarrow P_K F$ if there is $K \rightarrow J$ injective on orbits.

Basic Properties

Properties

• Suppose $F(*) \simeq *$ and J transitive. Then

```
P_J F(X) \simeq \operatorname{hocolim}_n \Omega^{nJ} F(\Sigma^{nJ} X)
```

where nJ denotes the permutation representation $\mathbb{R}[nJ]$,

• For every subgroup $H \leq G$

 $(P_{nG}F)|_{H} \simeq P_{nH}(F|_{H})$

• There is a non-equivariant equivalence

$$(P_J F)|_1 \simeq (P_{|J/G|} F)|_1$$

We think of P_J as an enhancement of $P_{|J/G|}$ that builds in the orbits of J.

Convergence

Q

What kind of convergence should one expect? After all, often enough

 $F \simeq \operatorname{holim}_n P_n F$

Consider the "naïve" and "genuine" equivariant stable homotopy monads

$$Q = \Omega^{\infty} \Sigma^{\infty}$$
 and $Q_G = \Omega^{\infty \rho_G} \Sigma^{\infty \rho_G}$: $\operatorname{Top}^G_* \to \operatorname{Top}^G_*$

Arone-Kankaanrinta: Carlsson:

Then maybe also

$$\begin{split} TotQ^\bullet &\simeq \operatorname{holim}_n P_n I \\ TotQ^\bullet & \stackrel{\simeq}{\longrightarrow} TotQ^\bullet_G \\ \operatorname{holim}_n P_{nG}I &\simeq TotQ^\bullet_G &\simeq \operatorname{holim}_n P_n I. \end{split}$$

Theorem (D)

Let $J_1 \subsetneq J_2 \subsetneq \ldots$, and suppose $F: \operatorname{Top}^G_* \to \operatorname{Top}^G_*$ commutes with fixed-points (e.g. F = I). Then

$$\operatorname{holim}_n P_{J_n} F \simeq \operatorname{holim}_n P_n F$$

E. Dotto (Bonn)

Equivariant Calculus

Delooping the Layers

By the previous result, sometimes,

$$F \simeq \operatorname{holim} \left(\begin{array}{c} \dots \longrightarrow P_{nG}F \longrightarrow P_{(n-1)G}F \longrightarrow \dots \longrightarrow P_{2G}F \longrightarrow P_{G}F \right)$$
$$D_{nG}F \xrightarrow{\checkmark} D_{nG}F \xrightarrow{\checkmark} D_{nG}F \xrightarrow{\checkmark} D_{nG}F \xrightarrow{\sim} D_{nG}F$$

The layer $D_{nG}F$ is nG-excisive and satisfies $P_{kG}D_{nG}F \simeq *$ for k < n.

Definition

 Φ is *J*-homogeneous if it is *J*-excisive and $P_K \Phi \simeq *$ for every *G*-subset $K \subsetneq J$.

Theorem

Let Φ : $\operatorname{Top}^G_* \to \operatorname{Top}^G_*$ be *J*-homogeneous. Then

 $\Phi\simeq \Omega^{\infty J}\widehat{\Phi}$

for some $\widehat{\Phi}$: $\operatorname{Top}^G_* \to \operatorname{Sp}^G$. In particular

 $D_{nG}F\simeq \Omega^{\infty\rho_G}\widehat{D_{nG}F}$

Digression: Equivariant Deloopings

Given $X \in \operatorname{Top}^G_*$, how does one prove that $X \simeq \Omega^{\rho_G} Y$?

For G = 1, construct a fiber sequence $X \to E \to Y$ with $E \simeq *$, or equivalently

$$\begin{array}{ccc} X \twoheadrightarrow E \\ \downarrow & \downarrow \\ E \twoheadrightarrow Y \end{array}$$

homotopy cartesian, with $E \simeq *$.

Construction

In general, define a homotopy cartesian G_+ -cube Z with

- $Z_{\varnothing} = X$
- $Z_{G_+} = Y$

•
$$Z_U \simeq_{G_U} *$$
 for every $\varnothing \neq U \subsetneqq G_+$

Then

$$X \simeq \underset{\emptyset \neq U \subset G_+}{\operatorname{holim}} Z_U \simeq \Omega^{\rho_G} Y$$

E. Dotto (Bonn)

Let Λ be a finite group, \mathcal{R} a collection of subgroups of Λ . Let $\overline{E}\mathcal{R}$ be a pointed Λ -space s.t.

$$(\overline{E}\mathcal{R})^{\Gamma} \simeq \begin{cases} S^{0} & \text{if } \Gamma \in \mathcal{R} \\ * & \text{if } \Gamma \notin \mathcal{R} \end{cases}$$

Suppose $\Lambda = G \times \Sigma_k$, and that \mathcal{R} contains only graphs of group homomorphisms $\rho: H \to \Sigma_k$, for $H \leq G$.

Construction

We let $(-)_{h\mathcal{R}}$: $\operatorname{Sp}^{G \times \Sigma_k} \to \operatorname{Sp}^G$ be the homotopy \mathcal{R} -orbits functor:

$$E_{h\mathcal{R}} \coloneqq E \wedge_{\Sigma_k} \overline{E}\mathcal{R}.$$

Let \mathcal{F}_k be the collection of graph subgroups of $G\times \Sigma_k.$ For $n\in \mathbb{N}$ we let

$$\mathcal{F}_{k}(n) = \begin{cases} \{graph(\rho: H \to \Sigma_{k}) \mid (\rho^{*}k)/H = n-1\} & \text{if } n < k \\ \{graph(\rho: H \to \Sigma_{k}) \mid (\rho^{*}n)/H = n-1 \text{ or } \rho = 1\} & \text{if } n = k \\ \varnothing & \text{if } n > k \end{cases}$$

Theorem (D)

There is an equivalence of functors $\operatorname{Sp}^G \to \operatorname{Sp}^G$

$$D_{nG}(X^{\wedge k})_{h\mathcal{F}_k} \simeq (X^{\wedge k})_{h\mathcal{F}_k(n)}$$

The Identity Functor

Let $I: \operatorname{Top}_*^G \to \operatorname{Top}_*^G$ be the identity functor, \mathcal{F}_k the family of all graphs $H \to \Sigma_k$, for $H \leq G$, T_k the partition complex of $\{1, \ldots, k\}$ (with the trivial *G*-action).

Theorem (D)

$$D_{nG}I(X) \simeq \Omega^{\infty G} \bigvee_{k=n}^{n|G|} \left(\operatorname{Map}_{*}(T_{k}, \mathbb{S}_{G}) \wedge X^{\wedge k} \right)_{h \mathcal{F}_{k}(n)}$$

Remark

$$\Phi^{H} \bigvee_{k=n}^{n|G|} \left(\operatorname{Map}_{*}(T_{k}, \mathbb{S}_{G}) \wedge X^{\wedge k} \right)_{h \mathcal{F}_{k}(n)} \simeq \bigvee_{\substack{[H \subseteq K] \\ K/H=n-1 \\ \text{or } K=n}} \Phi^{H} \left(\operatorname{Map}_{*}(T_{K}, \mathbb{S}_{H}) \wedge X^{\wedge K} \right)_{h Aut_{K}}$$

where T_K is the partition complex of the *H*-set *K*.

E. Dotto (Bonn)

The End

Thank you!