Lannes' T vs Harish-Chandra restriction

(joint work with Nguyen Dang Ho Hai & Lionel Schwartz)

Vincent Franjou, Laboratoire Jean-Leray, Université de Nantes

Saas – August 17, 2016

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

Abstract

In the 1980's, Adams, Gunawardena and Miller computed Steenrod-algebra maps between elementary abelian group mod. p cohomologies. As a consequence, their decomposition is governed by the modular representations of the semi-groups of square matrices. Indeed, given $V_n = (\mathbb{Z}/p)^n$, and for a summand P in $\mathbb{F}_p[M_n(\mathbb{F}_p)]$, $L_P := \operatorname{Hom}_{M_n}(P, H^*V_n)$ is a summand in H^*V_n . Applying Lannes' T functor on these defines an intriguing construction for representation theorists. We show that $T(L_P) \cong L_P \oplus H^*V_1 \otimes L_{\delta(P)}$, defining a functor δ from $\mathbb{F}_p[M_n(\mathbb{F}_p)]$ -projectives to $\mathbb{F}_p[M_{n-1}(\mathbb{F}_p)]$ -projectives, and we relate this new functor δ to classical constructions in the representation theory of the general linear groups.

Theorem (VF, Nguyen Dang Ho Hai & Lionel Schwartz)

Let E be a reduced unstable injective module. Then there exists a (up to isomorphism) unique reduced injective unstable module $\delta(E)$ such that:

 $T(E) \cong E \oplus H \otimes \delta(E)$ with $H := H^*(\mathbb{Z}/p, \mathbb{F}_p)$

Computations of Harris & Shank ¹ support the statement. The case when $E = \operatorname{St}_n$ is the image of a Steinberg idempotent in $H^*(V_n, \mathbb{F}_p)$, $V_n = (\mathbb{Z}/p)^n$, appears there, and $\delta(E)$ is again a Steinberg:

$$\delta(\mathrm{St}_n) = \mathrm{St}_{n-1}$$

These authors admit to have been "somewhat surprised" by this "intriguing isomorphism".

¹John C. Harris & R. James Shank, *Lannes' T functor on summands of* $H^*(B(\mathbf{Z}/p)^s)$, Trans. Amer. Math. Soc. **333** (1992), 579–606. VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

T's spectrum

Our interest was tickled by Nguyen's proof ^{2 3} of Schwartz's conjecture on the action of T on reduced injectives.

Denote by K_n , the Grothendieck group of summands in $H^*(V_n, \mathbb{F}_p)$ where $V_n = (\mathbb{Z}/p)^n$. When E is in K_n , $H \otimes E$ is in K_{n+1} .

Corollary (NDHH 2015)

The operator induced by Lannes T-functor on K_n is diagonalizable over \mathbb{Q} , with eigenvalues $1, \ldots p^i, \ldots p^{n-1}, p^n$ and respective multiplicities $p^n - p^{n-1}, \ldots p^{n-i} - p^{n-i-1}, \ldots p - 1, 1.$

Indeed, when *E* is in K_n , $\delta(E)$ is in K_{n-1} . This is what Nguyen uses in his CRAS note to deduce the corollary. Although he uses topological arguments there.

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

²Nguyen Dang Ho Hai, On a conjecture of Lionel Schwartz about the eigenvalues of Lannes' T-functor, C. R. Math. Acad. Sci. Paris **353** (2015), 197–202.

³A proof of Schwartz's conjecture about the eigenvalues of Lannes' T-functor, J. Algebra **445** (2016), 115–124.

We wanted to prove that an isomorphism

$$\mathrm{T}(E)\cong E\oplus H\otimes \delta(E)$$

holds as unstable modules, not just with a virtual $\delta(E)$ in K_{n-1} .

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

1984

Let $\mathbb{F}_2[t_1, \ldots, t_n]$ be the ring of *n*-variable polynomial, seen as an unstable algebra over the Steenrod algebra, *i. e.* $H^*(V_n, \mathbb{F}_2)$ where $V_n = (\mathbb{Z}/2)^n$. Let M_n be the semi-group of $n \times n$ matrices with \mathbb{F}_2 entries, acting on polynomials by linear substitutions of variables.

Naturality of Steenrod operations tells that the actions commute. Indeed:

Theorem (Adams-Gunawardena-Miller)

 $\mathbb{F}_p[\mathrm{M}_n(\mathbb{F}_p)] \to \mathrm{End}_{\mathcal{U}}(H^*V_n)$ is an isomorphism.

The letter \mathcal{U} is only here to stress the unstable condition. It is essential in the celebrated:

Theorem (Carlsson, Miller, Lannes-Zarati)

 H^*V_n is an injective unstable.

1980's

Given a projective $\mathbb{F}_p[M_n(\mathbb{F}_p)]$ -module P, put

 $L_P := \operatorname{Hom}_{\operatorname{M}_n - \operatorname{mod}}(P, H^*V_n).$

A direct summand in an injective unstable, L_P is an injective unstable. Also, if P is an indecomposable $\mathbb{F}_p[M_n(\mathbb{F}_p)]$ -projective, then L_P is an indecomposable injective unstable.

The Adams-Gunawardena-Miller theorem leads to:

Theorem (Harris-Kuhn, 1988)

The correspondence $P \mapsto L_P$ defines an equivalence from the category of projective $\mathbb{F}_p[M_n(\mathbb{F}_p)]$ -modules, to the category of injective unstable modules which are direct sums of indecomposable factors of H^*V_n , with inverse functor $\operatorname{Hom}_{\mathcal{U}}(-, H^*V_n)$.

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

Lannes' T functor

Lannes' magic functor $T: \mathcal{U} \to \mathcal{U}$ is left adjoint to the functor $M \mapsto M \otimes H$ where $H := H^*\mathbb{Z}/p$.

The exactness of Lannes' T-functor reflects the \mathcal{U} -injectivity of H. We use the reduced version \overline{T} , a left adjoint to the tensor product with $\overline{H} = \overline{H}^* \mathbb{Z}/p$.

Theorem (bis)

Let E be a reduced injective unstable module. Then there exists a (up to U-isomorphism) uniquely defined reduced injective unstable module $\delta(E)$ such that:

 $\overline{\mathrm{T}}(E)\cong H\otimes\delta(E)$

Moreover, if E is in H^*V_n , then $\delta(E)$ is in H^*V_{n-1} .

Lannes' T-functor: examples

A classical computation by Lannes gives an End(V)-isomorphism of unstable modules

$$\mathrm{T}H^*(V) = H^*(V)^V \cong \mathrm{Hom}_{\mathbb{F}_p}(\mathbb{F}_p[V], H^*(V)) = \mathbb{F}_p^V \otimes H^*(V).$$

The right End(V)-action on the right-hand side is given by:

$$(\phi\otimes x).arphi=(\phi\circarphi)\otimesarphi^*(x)$$
 .

For the reduced version

$$\overline{\mathrm{T}}H^*(V)=\mathcal{J}(V)\otimes H^*V,$$

where $\mathcal{J}(V)$ denotes the quotient of the vector space of set maps, \mathbb{F}_p^V , by the sub-space of constant maps.

As a module over the Steenrod algebra, this is just $p^n - 1$ copies of H^*V .

$$\overline{\mathrm{T}}(L_{\mathcal{P}}) \cong \mathrm{Hom}_{\mathrm{M}_n-\mathrm{mod}}(\mathcal{P}, \mathcal{J}(\mathcal{V}_n) \otimes \mathcal{H}^*\mathcal{V}_n).$$

This is a submodule in direct sums of copies of H^*V_n , and it is $\mathcal{N}il$ -closed.

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

GL_n variant

To use classical GL_n -representation theory, consider, for a projective P:

$$M_P := \operatorname{Hom}_{\operatorname{GL}_n - \operatorname{mod}}(P, H^*V_n).$$

The best example is for $P = \operatorname{St}_n$, the Steinberg module. For p = 2, $M_{\operatorname{St}_n} \cong L_{\operatorname{St}_n} \oplus L_{\operatorname{St}_{n-1}}$ – a typical decomposition. Let us illustrate in proving Harris & Shank's result. We want to use adjonctions, in particular restriction and induction.

$$\overline{\mathrm{T}}(M_{\mathrm{St}_n}) \cong \operatorname{Hom}_{\mathrm{GL}_n}(\operatorname{St}_n, \mathcal{J}(V_n) \otimes H^*V_n) \\ \cong \operatorname{Hom}_{\mathrm{GL}_n}(\mathcal{J}(V_n)^{\#} \otimes \operatorname{St}_n, H^*V_n)$$

A character computation identifies the left-hand side:

Lemma (NDHH)

 $\mathcal{J}(V_n)^{\#} \otimes \operatorname{St}_n$ is isomorphic to $\operatorname{Ind}_{\operatorname{GL}_{n-1}}^{\operatorname{GL}_n}(\operatorname{St}_{n-1})$.

The Steinberg case

$$\begin{aligned} \overline{\mathrm{T}}(M_{\mathrm{St}_n}) &\cong \operatorname{Hom}_{\mathrm{GL}_n}(\operatorname{St}_n, \mathcal{J}(V_n) \otimes H^*V_n) \\ &\cong \operatorname{Hom}_{\mathrm{GL}_n}(\mathcal{J}(V_n)^{\#} \otimes \operatorname{St}_n, H^*V_n) \\ &\cong \operatorname{Hom}_{\mathrm{GL}_n}(\operatorname{Ind}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_n}(\operatorname{St}_{n-1}), H^*V_n) \\ &\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}, \operatorname{Res}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_n}(H^*V_n)) \\ &\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}, H^*V_{n-1} \otimes H) \\ &\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}, H^*V_{n-1}) \otimes H \\ &\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}, H^*V_{n-1}) \otimes H \\ &\cong \operatorname{Hom}_{\mathrm{St}_{n-1}} \otimes H. \end{aligned}$$

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

The Steinberg case extended

$$\overline{\mathrm{T}}(M_{\mathrm{St}_{n}\otimes X}) \cong \operatorname{Hom}_{\mathrm{GL}_{n}}(\operatorname{St}_{n}\otimes X, \mathcal{J}(V_{n})\otimes H^{*}V_{n})$$

$$\cong \operatorname{Hom}_{\mathrm{GL}_{n}}(\mathcal{J}(V_{n})^{\#}\otimes \operatorname{St}_{n}, X^{\#}\otimes H^{*}V_{n})$$

$$\cong \operatorname{Hom}_{\mathrm{GL}_{n}}(\operatorname{Ind}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_{n}}(\operatorname{St}_{n-1}), X^{\#}\otimes H^{*}V_{n})$$

$$\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}, \operatorname{Res}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_{n}}(X^{\#}\otimes H^{*}V_{n}))$$

$$\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}, \operatorname{Res}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_{n}}(X^{\#})\otimes H^{*}V_{n-1}\otimes H)$$

$$\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}, \operatorname{Res}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_{n}}(X^{\#})\otimes H^{*}V_{n-1})\otimes H$$

$$\cong \operatorname{Hom}_{\mathrm{GL}_{n-1}}(\operatorname{St}_{n-1}\otimes \operatorname{Res}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_{n}}X, H^{*}V_{n-1})\otimes H$$

$$\cong \operatorname{Hom}_{\mathrm{St}_{n-1}\otimes \operatorname{Res}_{\mathrm{GL}_{n-1}}^{\mathrm{GL}_{n}}X \otimes H.$$

A theorem of George Lusztig from 1976 (also due to John W. Ballard) states that a projective GL_n -module can always be written as $\operatorname{St}_n \otimes X$ where X is a virtual GL_n -module. This proves that, for P a projective GL_n -module,

$$\overline{\mathrm{T}}(M_P) \cong H \otimes M'$$

where M' is a formal sum of direct summands of H^*V_{n-1} .

Now let's get real, first for GL_n .

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

The GL_n case

Instead of $\mathcal{J}(V)$, we may consider its Kuhn dual $\mathcal{I}(V) := \mathcal{J}(V^*)^* =$ the augmentation ideal in the group algebra of V^* .

This doesn't change much:

because $\mathcal{I}(V)$ and $\mathcal{J}(V)$ have the same Jordan-Hölder subquotients, the GL_n -projectives $P \otimes \mathcal{J}(V_n)^{\#}$ and $P \otimes \mathcal{I}(V_n)^{\#}$ are isomorphic.

$$\overline{\mathrm{T}}(M_P) = \mathrm{Hom}_{\mathrm{GL}_n}(P, \mathcal{J}(V_n) \otimes H^*V_n) \cong \mathrm{Hom}_{\mathrm{GL}_n}(P \otimes \mathcal{J}(V_n)^{\#}, H^*V_n) \\ \cong \mathrm{Hom}_{\mathrm{GL}_n}(P \otimes \mathcal{I}(V_n)^{\#}, H^*V_n) \cong \mathrm{Hom}_{\mathrm{GL}_n}(P, \mathcal{I}(V_n) \otimes H^*V_n).$$

The point is that the right-hand side is an H unstable module: an unstable module provided with an H-module structure, for which the Cartan formula holds. Explicitly, one gets a M_n -equivariant H-action:

$$u.((\mu)\otimes x)=(\mu)\otimes \mu^*(u)x$$

for μ in V_n^* , $(\mu) = [\mu] - [0]$ in $\mathcal{I}(V_n)$, u in H, and x in $H^*(V_n)$.

The *H*-action on $\mathcal{I}(V_n) \otimes H^*V_n$ is free, and

the quotient $\mathbb{F}_p \otimes_H (\mathcal{I}(V) \otimes H^*V)$ is a reduced injective unstable module. Explicitly, there is an $\operatorname{End}(V)$ -equivariant iso. of unstable modules:

$$\mathbb{F}_{p} \otimes_{H} (\mathcal{I}(V) \otimes H^{*}V) \to \bigoplus_{\mu \in V^{*} \setminus \{0\}} H^{*}(\operatorname{Ker} \mu)$$

sending $1 \otimes ((\mu) \otimes x)$ to $\mu^*(x)$ in the summand $H^*(\operatorname{Ker} \mu)$.

To sum up, we know that $\overline{\mathrm{T}}(M_P) \cong \mathrm{Hom}_{\mathrm{GL}_n}(P, \mathcal{I}(V_n) \otimes H^*V_n)$ is an unstable free *H*-module with reduced injective quotient. We want to factor it with *H*. This is a case to be found in Bourguiba's 2009 paper:

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

Bourguiba's criterium

To sum up: $\overline{\mathrm{T}}(M_P) \cong \mathrm{Hom}_{\mathrm{GL}_n}(P, \mathcal{I}(V_n) \otimes H^*V_n)$ is an *H*-free unstable module with reduced injective quotient. We want to factor *H*. This is a case to be found in Bourguiba's 2009 paper⁴:

Theorem (Bourguiba 2009, Theorem 3.2.1)

Let E be an H-free unstable module and let $\mathcal{E}(E)$ be its injective hull (as an H-unstable module). We suppose that $\mathbb{F}_p \otimes_H E$ is reduced and let I be its injective hull (as an unstable module). Then $\mathcal{E}(E)$ is isomorphic, as an H unstable module, to $H \otimes I$.

We conclude: $\overline{\mathrm{T}}(M_P) \cong H \otimes \mathrm{Hom}_{\mathrm{GL}_n}(P, \bigoplus_{\mu \in V_n^* \setminus \{0\}} H^*(\mathrm{Ker}\,\mu))$

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

⁴Dorra Bourguiba, *On the classification of unstable H*^{*}*V*-*A*-*modules*, J. Homotopy Relat. Struct. **4** (2009), 69–82.

The M_n case

When dealing with all matrices, we cannot use the contragredient, so we only get the isomorphism after taking Hom_{M_n} :

 $\overline{\mathrm{T}}(L_P) \cong \mathrm{Hom}_{\mathrm{M}_n}(P, \mathcal{I}(V_n) \otimes H^*V_n) \cong H \otimes \mathrm{Hom}_{\mathrm{M}_n}(P, \bigoplus_{\mu \in V_n^* \setminus \{0\}} H^*(\mathrm{Ker}\,\mu))$

Theorem

The functor $\operatorname{Hom}_{M_n}(-, \bigoplus_{\mu \in V_n^* \setminus \{0\}} H^*(\operatorname{Ker} \mu))$ induces an exact functor from M_n -proj to M_{n-1} -proj, which we denote again by δ_n , such that for each P in M_n -proj, there is an isomorphism of unstable modules:

$$\overline{\mathrm{T}}(L_P)\cong H\otimes L_{\delta_n(P)}.$$

The isomorphism is not natural, but the functor δ_n is quite explicit.

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

Interpretation

So far, we implicitely considered V_{n-1} to be the hyperplane of zero last coordinate in V_n ; and the group GL_{n-1} as a subgroup of GL_n via the inclusion

$$g\mapsto egin{pmatrix} g&0\0&1\end{pmatrix}.$$

The (parabolic) subgroup of GL_n which stabilizes V_{n-1} is a semi-direct product LU of two subgroups:

the Levi subgroup $L := \operatorname{GL}_{n-1} \times \operatorname{GL}_1$, and a unipotent subgroup U. Inflation is the simplest way to extend a representation from a subgroup H to HU, by just letting the elements of the normal subgroup U act by the identity. It is right adjoint to taking U-coinvariant.

Start with the inclusion

$$H^*V_{n-1}\hookrightarrow igoplus_{\mu
eq 0} H^*$$
 Ker μ

of H^*V_{n-1} as the factor indexed by the n-th coordinate form μ_0 . Every element of U fixes μ_0 , and is the identity on V_{n-1} . Thus, the inclusion inflates to a $\operatorname{GL}_{n-1}U$ -equivariant map:

$$\operatorname{Inf}_{\operatorname{GL}_{n-1}}^{\operatorname{GL}_{n-1}} H^* V_{n-1} \hookrightarrow \bigoplus_{\mu \neq 0} H^* \operatorname{Ker} \mu.$$

It corresponds by Ind/Res adjunction to the GL_n -equivariant map

$$\mathbb{F}_{p}[\operatorname{GL}_{n}] \bigotimes_{\mathbb{F}_{p}[\operatorname{GL}_{n-1}U]} H^{*}V_{n-1} \cong \operatorname{Ind}_{\operatorname{GL}_{n-1}U}^{\operatorname{GL}_{n}} \operatorname{Inf}_{\operatorname{GL}_{n-1}}^{\operatorname{GL}_{n-1}U} H^{*}V_{n-1} \to \bigoplus_{\mu \neq 0} H^{*}\operatorname{Ker} \mu,$$

sending $g \bigotimes x$ to $g^*(x)$ in $H^* \operatorname{Ker}(\mu_0 \circ g)$. It is surjective because GL_n acts transitively on $\{\operatorname{Ker} \mu\}$. Since the vector space on the left-hand side is isomorphic to $|GL_n|/|\operatorname{GL}_{n-1}U| = p^n - 1$ copies of H^*V_{n-1} , the map is bijective. VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction

18 / 20

Comparison with Harish-Chandra restriction

$$\bigoplus_{\mu \in V_n^*} H^* \operatorname{Ker} \mu \cong \operatorname{Ind}_{\operatorname{GL}_{n-1}U}^{\operatorname{GL}_n} \operatorname{Inf}_{\operatorname{GL}_{n-1}}^{\operatorname{GL}_{n-1}U} H^* V_{n-1}$$
$$\cong \operatorname{Ind}_{LU}^{\operatorname{GL}_n} \operatorname{Ind}_{\operatorname{GL}_{n-1}U}^{LU} \operatorname{Inf}_{\operatorname{GL}_{n-1}}^{\operatorname{GL}_{n-1}U} H^* V_{n-1}$$
$$\cong \operatorname{Ind}_{LU}^{\operatorname{GL}_n} \operatorname{Inf}_{L}^{LU} \operatorname{Ind}_{\operatorname{GL}_{n-1}}^{L} H^* V_{n-1}$$

The composite $\operatorname{Ind}_{LU}^{\operatorname{GL}_n} \operatorname{Inf}_{L}^{LU}$ is known as Harish-Chandra induction: starting with a *L*-module, inflate the action to the parabolic *LU* by letting *U* act by the identity; then apply induction to GL_n .

Harish-Chandra restriction R_L is defined as the (left) adjoint of Harish-Chandra induction. Explicitly, starting with a $\mathbb{F}_p[\operatorname{GL}_n(\mathbb{F}_p)]$ -module X, the Harish-Chandra restriction of X is obtained by restricting to the parabolic subgroup, followed by taking coinvariants of the corresponding unipotent U:

$$\mathsf{R}_L X = (\operatorname{Res}_{LU}^{GL_n} X)_U.$$

Comparison with Harish-Chandra restriction

$$\operatorname{Hom}_{\operatorname{GL}_n}(P,\bigoplus H^*\operatorname{Ker}\mu) \cong \operatorname{Hom}_{\operatorname{GL}_n}(P,\operatorname{Ind}_{LU}^{\operatorname{GL}_n}\operatorname{Inf}_{L}^{LU}\operatorname{Ind}_{\operatorname{GL}_{n-1}}^{L}H^*V_{n-1})$$
$$\cong \operatorname{Hom}_{L}(\operatorname{R}_LP,\operatorname{Ind}_{\operatorname{GL}_{n-1}}^{L}H^*V_{n-1})$$
$$\cong \operatorname{Hom}_{\operatorname{GL}_{n-1}}(\operatorname{Res}_{\operatorname{GL}_{n-1}}^{L}\operatorname{R}_LP,H^*V_{n-1})$$

Theorem

For each P in GL_n -proj, there is an isomorphism of unstable modules:

$$\overline{\mathrm{T}}(M_P)\cong H\otimes M_{\delta_n(P)},$$

where $\delta_n(P)$ in GL_{n-1} -proj is the Harish-Chandra restriction for the Levi subgroup $\operatorname{GL}_{n-1} \times \operatorname{GL}_1$, restricted to GL_{n-1} .

VF (Nantes), NDHH (Hue), LS (P13) Lannes' T vs Harish-Chandra restriction