The Poincaré–Hopf theorem for line fields (revisited) (joint with D. Crowley)

Mark Grant

Alpine Algebraic and Applied Topology Conference $(18 + \delta)$ th August 2016

Line fields

Line fields

Let M^m be a smooth manifold of dimension $m \ge 2$.

Definition

A line field on M is a smooth section $\xi:M\to PTM$ of the projectivized tangent bundle.

In other words, a line field is a smooth assignment

$$x \mapsto \xi(x) \subset TM_x$$

of a one-dimensional subspace of the tangent space at each point.

Line fields

Line fields, or nematic fields, are of interest in soft-matter physics, where they are used to model nematic liquid crystals.

(Images: https://en.wikipedia.org/wiki/Liquid_crystal)

A nowhere zero vector field $v: M \to TM$ gives rise to a line field by setting

$$\xi(x) = \langle v(x) \rangle \subset TM_x$$

to be the line spanned by v(x).

However, not every line field can be lifted to a nowhere zero vector field.

Proposition

A closed manifold M admits a line field if and only if it admits a nowhere zero vector field.

Proof: A line field ξ on M may be viewed as a line sub-bundle $\xi \subset TM$.

Fix a metric on M, then the sphere bundle

$$p_{\xi}: \widetilde{M} := S(\xi) \to M$$

is the associated double cover.

Note that \widetilde{M} has a canonical nowhere zero vector field which lifts $p_{\xi}^* \xi$. By the multiplicativity of the Euler characteristic for covers,

$$0 = \chi(\widetilde{M}) = 2\,\chi(M),$$

hence $\chi(M)=0$ and M admits a nowhere zero vector field.

Line fields

Theorem (Poincaré–Hopf)

Let $v: M \to TM$ be a vector field with isolated zeroes at $x_1, \ldots, x_n \in M$. Then

$$\sum_{i=1}^{n} \operatorname{ind}_{v}(x_{i}) = \chi(M).$$

The index $\operatorname{ind}_v(x_i) \in \mathbb{Z}$ is the degree of the composition

$$f: S \xrightarrow{v|_S} STM|_S \xrightarrow{\Phi} S \times S^{m-1} \xrightarrow{\pi_2} S^{m-1},$$

where:

- v|_S is the restriction of (the normalization of) v to a small sphere S centred at x_i;
- Φ is a trivialisation, and
- π_2 is projection onto the second factor.

Poincaré–Hopf Theorem for line fields

Definition

A line field on M with singularities at $x_1, \ldots, x_n \in M$ is a line field on the complement $M \setminus \{x_1, \ldots, x_n\}$.

A vector field with zeroes determines a line field with singularities, but a line field with singularities need not lift to a vector field.

Question What is the analogue of Poincaré–Hopf for line fields with singularities?

Poincaré–Hopf Theorem for line fields

The singularities are known as topological defects in the Physics literature.

Of particular interest are point defects in 2 and 3 dimensions, and line defects or disclinations in 3 dimensions (which may be knotted).

(Images: http:

//www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html, http://www.personal.kent.edu/~bisenyuk/liquidcrystals/textures1.html)

Hopf's result

Theorem (Hopf)

A line field ξ with singularities x_1, \ldots, x_n on a closed orientable surface Σ has

$$\sum_{i=1}^{n} \operatorname{hind}_{\xi}(x_i) = \chi(\Sigma).$$

The Hopf index $hind_{\xi}(x_i) \in \frac{1}{2}\mathbb{Z}$ is the number of total rotations made by ξ as a simple closed curve around x_i is traversed.

Reference: H. Hopf, *Differential Geometry in the Large*, LNM 1000, (1983) (Based on lectures given at Stanford University in 1956).

Line field singularities and their Hopf indices.

Markus' result

Definition

A singularity x_i of a line field ξ on M^m is called (non)-orientable if the restriction of ξ to a small sphere S centred at x_i lifts (does not lift) to a vector field.

Equivalently, x_i is (non)-orientable if the restriction to S of the associated double cover $p_{\xi}|_S : \widetilde{S} \to S$ is (non)-trivial.

If m = 2, then x_i is orientable if and only if $\operatorname{hind}_{\xi}(x_i) \in \mathbb{Z}$.

If m > 2, then all singularities are orientable.

The Markus index $mind_{\xi}(x_i) \in \mathbb{Z}$ is defined as follows:

For m even, it is the degree of the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}.$$

For $m \geq 3$ odd, orienting ξ near x_i gives a lift $\tilde{f} : S \to S^{m-1}$ of $f : S \to \mathbb{R}P^{m-1}$. Choose base points and suspend, and take the degree of the composition

$$S^m \xrightarrow{\Sigma \tilde{f}} S^m \longrightarrow \mathbb{R}P^m.$$

Theorem (Markus)

A line field ξ with singularities x_1, \ldots, x_n on a closed manifold M^m has

$$\sum_{i=1}^{n} \operatorname{mind}_{\xi}(x_i) = 2\chi(M) - \boldsymbol{k},$$

where k is the number of non-orientable singularities.

Reference: L. Markus, *Line element fields and Lorentz structures on differentiable manifolds*, Ann. Math. 62, (1955)

Unfortunately, there are counter-examples to Markus' Theorem for m=2 and $m\geq 3$ odd.

Poincaré–Hopf Theorem for line fields Markus' result

Example: The baseball

There is a line field on S^2 , known colloquially as "the baseball", with four non-orientable singularities of Hopf index $\frac{1}{2}$ and Markus index 1.

This contradicts Markus' Theorem, since

$$\sum_{i=1}^{n} \operatorname{mind}_{\xi}(x_i) = 4 \neq 0 = 2\chi(S^2) - 4$$

Example: The hedgehog

This is a line field on $\mathbb{R}P^m$ with a single orientable singularity of Hopf index 1 and Markus index 2.

For $m\geq 3$ odd this contradicts Markus' Theorem, since

$$\sum_{i=1}^{n} \operatorname{mind}_{\xi}(x_i) = 2 \neq 0 = 2\chi(\mathbb{R}P^m).$$

Our result

We define the projective index by

$$\operatorname{pind}_{\xi}(x_i) = \begin{cases} \operatorname{deg}(f) \in \mathbb{Z} & \text{if } m \text{ even,} \\ \operatorname{deg}_2(f) \in \mathbb{Z}/2 & \text{if } m \text{ odd,} \end{cases}$$

where $f:S^{m-1}\rightarrow \mathbb{R}P^{m-1}$ is the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}.$$

Our result

Theorem (Crowley–G.)

A line field ξ with singularities x_1,\ldots,x_n on a closed manifold M^m has

$$\sum_{i=1}^{n} \operatorname{pind}_{\xi}(x_i) = 2\chi(M).$$

The equality is congruence mod 2 when m is odd.

Remarks

This corrects Markus' Theorem, and extends Hopf's Theorem to dimensions m>2.

Our proof is similar to that of Markus, but we introduce normal indices to clarify some issues when m = 2.

Normal indices

Normal indices

Let x be an isolated zero of the vector field $v: M \to TM$. Recall that $\operatorname{ind}_{v}(x)$ is the degree of the composition

$$f: S \xrightarrow{v|_S} STM|_S \xrightarrow{\Phi} S \times S^{m-1} \xrightarrow{\pi_2} S^{m-1}$$

If $a \in S^{m-1}$ is a regular value of f, then $v|_S$ is transverse to the embedding $\sigma = \sigma_a : S \hookrightarrow STM|_S$ given by

$$\sigma(y) = \Phi^{-1}(y, a).$$

Then $\operatorname{ind}_{v}(x)$ equals the oriented intersection number

$$\sigma(S) \pitchfork v(S) \in \mathbb{Z}.$$

Suppose M endowed with a Riemannian metric. Then the outward unit normal to S defines an embedding $\eta: S \hookrightarrow STM|_S$.

Definition

The normal index $\mathrm{ind}_v^\perp(x)\in\mathbb{Z}$ is defined to be the oriented intersection number

 $\eta(S) \pitchfork v(S) \in \mathbb{Z}.$

The normal index counts the number of times v points outwards on S (with signs).

Lemma

We have

$$\operatorname{ind}_{v}^{\perp}(x) = \operatorname{ind}_{v}(x) + (-1)^{m-1}.$$

Proof: Calculate intersection numbers in

$$H^*(S \times S^{m-1}) \cong H^*(S) \otimes H^*(S^{m-1}).$$

The Poincaré dual of $\Phi_*\sigma_*([S])$ is $(-1)^{m-1} \times \beta$, and the Poincaré dual of $\Phi_*\eta_*([S])$ is $\alpha \times 1 + (-1)^{m-1} \times \beta$.

Take cup products with the Poincaré dual of $\Phi_*v_*([S])$ and compare to give the result.

Normal indices

Now let x be an isolated singularity of the line field $\xi: M \to PTM$. Recall that $pind_{\xi}(x)$ is the degree of the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}$$

If $a \in \mathbb{R}P^{m-1}$ is a regular value of f, then $\xi|_S$ is transverse to the embedding $\sigma = \sigma_a : S \hookrightarrow PTM|_S$ given by

$$\sigma(y) = \Phi^{-1}(y, a).$$

Then $p \operatorname{ind}_{\xi}(x)$ equals the intersection number

$$\operatorname{pind}_{\xi}(x) = \begin{cases} \sigma(S) \pitchfork \xi(S) &\in \mathbb{Z} & \text{if } m \text{ even,} \\ \sigma(S) \pitchfork_2 \xi(S) &\in \mathbb{Z}/2 & \text{if } m \text{ odd.} \end{cases}$$

The normal line to S defines an embedding $\eta: S \hookrightarrow PTM|_S$.

Definition The normal projective index is defined by

$$\operatorname{pind}_{\xi}^{\perp}(x) = \begin{cases} \eta(S) \pitchfork \xi(S) & \in \mathbb{Z} & \text{if } m \text{ even,} \\ \eta(S) \pitchfork_2 \xi(S) & \in \mathbb{Z}/2 & \text{if } m \text{ odd.} \end{cases}$$

The normal projective index counts the number of times ξ is normal to S (with signs if m is even).

Proof: This is a calculation in the integral (co)homology of $S \times \mathbb{R}P^{m-1}$, analogous to the previous Lemma.

Lemma When $m \ge 3$ is odd, we have

$$\operatorname{pind}_{\xi}(x) \equiv \operatorname{pind}_{\xi}^{\perp}(x) \equiv 0 \in \mathbb{Z}/2.$$

Proof: The map $f: S \to \mathbb{R}P^{m-1}$ lifts through the standard double cover $S^{m-1} \to \mathbb{R}P^{m-1}$, and therefore $\operatorname{pind}_{\xi}(x) = \operatorname{deg}_2(f) \equiv_2 0$. Since σ and η represent the same mod 2 homology class, the result follows.

The proof The proof Theorem (Crowley–G.)

A line field ξ with singularities x_1, \ldots, x_n on a closed manifold M^m has

$$\sum_{i=1}^{n} \operatorname{pind}_{\xi}(x_i) = 2\chi(M).$$

The equality is congruence mod 2 when m is odd.

Proof: When $m \ge 3$ is odd, trivial consequence of $p \operatorname{ind}_{\xi}(x_i) \equiv_2 0$.

Remark: The Markus index $\min_{\xi}(x_i) \in \mathbb{Z}$ is not well-defined for m odd, since the two lifts $\tilde{f}: S \to S^{m-1}$ differ by a map of degree $(-1)^m = -1$.

One may define an index in \mathbb{N}_0 , but the hedgehog example suggests the above result is the best we can hope for.

So suppose m even, and let ξ be a line field on M^m with singularities x_1, \ldots, x_n .

Let D_i be a coordinate disk containing x_i and no other singularities, and let $S_i = \partial D_i$. Then $N := M \setminus \bigcup int(D_i)$ is a compact with boundary

$$\partial N \approx \bigsqcup_{i=1}^{n} S_i \approx \bigsqcup_{i=1}^{n} S^{m-1}.$$

The restriction $\xi|_N$ is a line field with associated double cover $p: \widetilde{N} \to N$.

Each restriction $p|_{S_i}: \widetilde{S}_i \to S_i$ is a double cover of S^{m-1} , which is trivial if and only if x_i is orientable.

The proof

By gluing in *m*-disks along the boundary components of \widetilde{N} , we obtain a closed manifold \widetilde{M} and a double cover

$$\pi:\widetilde{M}\to M$$

extending $p: \widetilde{N} \to N$.

This double cover may be branched if m = 2, with branch points of index 2 above the non-orientable singularities.

The line field $\xi|_N$ lifts canonically to a vector field $\tilde{\xi}$ on \tilde{N} , which extends to a vector field v on \tilde{M} .

Each pre-image $\pi^{-1}(x_i)$ consists of one or two isolated zeroes of v.

This is intuitively clear: the number of times ξ is normal to S equals the number of times v agrees with the outward normal on \tilde{S} .

Proof of Lemma: The double cover $\pi: \widetilde{M} \to M$ induces a 4-fold cover $\overline{\pi}: ST\widetilde{M}|_{\widetilde{S}} \to PTM|_S$, and there is pullback square

where $\widetilde{\eta}: \widetilde{S} \to ST\widetilde{M}|_{\widetilde{S}}$ denotes the outward unit normal to \widetilde{S} . It follows that $\overline{\pi}^*\eta_!(1) = 2 \, \widetilde{\eta}_!(1)$. The proof

By a similar argument, $\overline{\pi}^*\xi_!(1) = 2 v_!(1)$. Therefore,

$$\begin{aligned} 4 \operatorname{p} \operatorname{ind}_{\xi}^{\perp}(x) &= 4 \left\langle \eta_{!}(1) \cup \xi_{!}(1), [PTM|_{S}] \right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), 4 [PTM|_{S}] \right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), \overline{\pi}_{*}[ST\widetilde{M}|_{\widetilde{S}}] \right\rangle \\ &= \left\langle \overline{\pi}^{*} \eta_{!}(1) \cup \overline{\pi}^{*} \xi_{!}(1), [ST\widetilde{M}|_{\widetilde{S}}] \right\rangle \\ &= \left\langle 2 \widetilde{\eta}_{!}(1) \cup 2 v_{!}(1), [ST\widetilde{M}|_{\widetilde{S}}] \right\rangle \\ &= 4 \sum_{y \in \pi^{-1}(x)} \operatorname{ind}_{v}^{\perp}(y), \end{aligned}$$

and the conclusion follows.

The proof

We now apply Riemann-Hurwitz and the classical Poincaré-Hopf formula.

$$2\chi(M) = k + \chi(\widetilde{M}) = k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v(y)$$

= $k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \left(\operatorname{ind}_v^{\perp}(y) + 1 \right)$
= $k + (2n - k) + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v^{\perp}(y)$
= $2n + \sum_{i=1}^{n} \operatorname{p} \operatorname{ind}_{\xi}(x_i)$
= $2n + \sum_{i=1}^{n} \left(\operatorname{p} \operatorname{ind}_{\xi}(x_i) - 2 \right)$
= $\sum_{i=1}^{n} \operatorname{p} \operatorname{ind}_{\xi}(x_i).$

Further problems

Further problems

- Extend to manifolds with boundary.
- Give a differential-geometric proof in all dimensions using the higher-dimensional Gauss–Bonnet Theorem (Allendoerfer–Weil, Chern).
- What can we say about disclinations (lines of singularities)? Does the topology of M³ restrict which knots and links can occur?
- Are there such Poincaré–Hopf Theorems for other types of field (such as biaxial nematics)?