Panorama Abelian groups \mathbb{T} -equivariant cohomology theories The \mathbb{T}' -equivariant sphere Pictures Cech cohomology and $\pi_*^*(\mathbb{S})$

Rational equivariant cohomology theories and affine formal covers of the sphere

John Greenlees University of Sheffield

> Saas 16/8/16

Table of contents

- Panorama
 - Materials
 - The Grail
 - The Quest
 - One true path
- Abelian groups
 - The ring
 - Modules
- 3 T-equivariant cohomology theories
- $oldsymbol{4}$ The \mathbb{T}^r -equivariant sphere
- 6 Pictures
- **6** Cech cohomology and $\pi_*^{\mathcal{G}}(\mathbb{S})$

Models

Dream: Algebraic models for rational equivariant cohomology theories

- *G*-equivariant cohomology theories = Ho (*G*-spectra)
- $\bullet \otimes \mathbb{Q}$
- A(G)

Conjecture

- There is a Quillen equivalence $(G-spectra)/\mathbb{Q} \simeq d\mathcal{A}(G)$
- \bullet $\mathcal{A}(G)$ is small and calculable
- of injective dimension = rank (G)
- a category of sheaves of modules over the space of subgroups of G

Status

Group	Isotropy	ASS	Но	Quillen	Monoidal
Finite		GM92	(ASS)	ScS03	B09, K14
<i>SO</i> (2)		G99	(ASS)	GS11	BGKS16
O(2)		G98	(ASS)	B12	
<i>SO</i> (3)		G01	(ASS)	K14	
T^r		G08	(Quillen)	GS14	
G	free			GS14	
G	toral	G15		BGK(?)	

B=D.Barnes, K=M.Kedziorek, M=J.P.May, Sc=S.Schwede, S=B.Shipley

Materials
The Grail
The Quest
One true path

The proof

$\mathsf{Theorem}$

For the above groups G, there is a (small, convenient, calculable) algebraic model:

$$G$$
-spectra/ $\mathbb{Q} \simeq d\mathcal{A}(G)$

Proof.

 $G ext{-spectra}/\mathbb{Q}\stackrel{*}{\simeq} \mathsf{Diagrams}$ of module $G ext{-spectra}$ over ring $G ext{-spectra}$

 \simeq Diagrams of module spectra over ring spectra

 \simeq Diagrams of modules over DGAs

 \simeq Diagrams of modules over rings $\simeq \mathcal{A}(G)$

Abelian groups

We all know about abelian groups..... Let's make them more complicated.....

The ring

• Abelian groups = \mathbb{Z} -modules

•

$$\mathbb{Z}^{\square} = \left(egin{array}{ccc} (\mathbb{Z}) & \longrightarrow & \mathbb{Q} \ \downarrow & & \downarrow \ \prod_{m{p}} \mathbb{Z}^{\wedge}_{m{p}} & \longrightarrow & (\prod_{m{p}} \mathbb{Z}^{\wedge}_{m{p}}) \otimes \mathbb{Q} \end{array}
ight)$$

Modules

 $M \otimes \mathbb{Z}^{\square} = \left(\begin{array}{ccc} (M \otimes \mathbb{Z}) & \longrightarrow & M \otimes \mathbb{Q} \\ \downarrow & & \downarrow \\ M \otimes \prod_{n} \mathbb{Z}_{n}^{\wedge} & \longrightarrow & M \otimes (\prod_{n} \mathbb{Z}_{p}^{\wedge}) \otimes \mathbb{Q} \end{array} \right)$

$$\otimes \mathbb{Z}^{\square} : \mathbb{Z}\text{-mod} \xrightarrow{} \mathbb{Z}^{\square}\text{-mod} : Pull$$

Proposition

•

$$\mathbb{Z}$$
-mod \simeq cell- \mathbb{Z}^{\square} -mod

T-equivariant cohomology theories I

• \mathbb{T} -spectra, finite isotropy groups (\mathbb{T} =circle group)

•
$$R = \mathbb{S}$$
, $\mathcal{E}^{-1}\mathbb{S} = S^{\infty W(\mathbb{T})} = \bigcup_{W^{\mathbb{T}} = 0} S^W = \widetilde{E}\mathcal{F}$

•
$$\mathbb{S} \longrightarrow S^{\infty W(\mathbb{T})} \longrightarrow \Sigma E \mathcal{F}_{+} \simeq \bigvee_{n} \Sigma E \langle n \rangle$$

•

$$\mathbb{S}^{\square} = \left(egin{array}{ccc} (\mathbb{S}) & \longrightarrow & \widetilde{E}\mathcal{F} \ \downarrow & \downarrow \ F(E\mathcal{F}_+,\mathbb{S}) & \longrightarrow & \widetilde{E}\mathcal{F} \wedge F(E\mathcal{F}_+,\mathbb{S}) \end{array}
ight)$$

Proposition

$$\mathbb{S}$$
-mod \simeq cell- \mathbb{S}^{\square} -mod

T-equivariant cohomology theories II

$$\mathbb{S}^{\square} = \left(\begin{array}{ccc} (\mathbb{S}) & \longrightarrow & S^{\infty W(\mathbb{T})} \\ \downarrow & & \downarrow \\ \prod_{n} F(E\langle n \rangle, \mathbb{S}) & \longrightarrow & S^{\infty W(\mathbb{T})} \wedge \prod_{n} F(E\langle n \rangle, \mathbb{S}) \end{array} \right)$$

- Equivariant cohomology theories are built from cohomology of geometric \mathbb{T} -fixed points (i.e., $H^*(X^{\mathbb{T}})$ and Borel cohomology of C_n -fixed points (i.e., $H^*(E(\mathbb{T}/C_n)_+ \wedge_{\mathbb{T}/C_n} X^{C_n})$ for all n.
- $\pi_*^{\mathbb{T}}(S^{\infty W(\mathbb{T})}) = \mathbb{Q}, \ \pi_*^{\mathbb{T}}(F(E\langle n \rangle, \mathbb{S})) = H^*(B(\mathbb{T}/C_n)) = \mathbb{Q}[c]$

T-equivariant cohomology theories III

•

•
$$\pi_*^{\mathbb{T}}(S^{\infty W(\mathbb{T})}) = \mathbb{Q}, \ \pi_*^{\mathbb{T}}(F(E\langle n \rangle, \mathbb{S})) = \mathbb{Q}[c]$$

$$(\cdot)^{\square} = \left(egin{array}{ccc} \mathbb{Q} & & \mathbb{Q} \\ & & \downarrow & \\ \prod_{n} \mathbb{Q}[c] & \longrightarrow & \mathcal{E}^{-1} \prod_{n} \mathbb{Q}[c] \end{array}
ight)$$

• $\mathcal{A}(\mathbb{T})$ objects of $(\cdot)^{\square}$ -mod so that horizontal and vertical are extensions of scalars

$$egin{array}{ccc} V & \downarrow & & \downarrow \\ N & \longrightarrow & P & \end{array}$$

such that
$$P = \mathcal{E}^{-1}N$$
 and $P = \mathcal{E}^{-1}\prod_n \mathbb{Q}[c] \otimes V$.

The \mathbb{T}^r -sphere

• Repeat for the *r*-torus $G = \mathbb{T}^r$

•

$$\mathbb{S}^{\square} = \left(egin{array}{ccc} (\mathbb{S}) & \longrightarrow & \widetilde{E}\mathcal{F} \ \downarrow & \downarrow \ F(E\mathcal{F}_+,\mathbb{S}) & \longrightarrow & \widetilde{E}\mathcal{F} \wedge F(E\mathcal{F}_+,\mathbb{S}) \end{array}
ight)$$

- $F(E\mathcal{F}_+, \mathbb{S})$ is still algebraic (essentially $\prod_F H^*(BG/F)$)
- It remains to understand $\widetilde{E}\mathcal{F}$ which can be done by induction on dimension and the inclusion-exclusion principle

$\widetilde{\mathcal{E}}\mathcal{F}$

- $\widetilde{E}\mathcal{F}$ has geometric isotropy $\widetilde{\mathcal{F}} = \{K \mid K \text{ not } \textit{finite}\}$ (a cofamily)
- We build it from simpler pieces, namely

$$S^{\infty W(K)} = \bigcup_{W^K = 0} S^W$$
 with geometric isotropy $V(K) = \{H \mid H \supseteq K\}$

a principal cofamily.

- In rank 1 $\widetilde{E}\mathcal{F} = S^{\infty W(G)}$ so this is easy
- In rank 2

$$\begin{array}{ccc} (\widetilde{E}\mathcal{F}) & \longrightarrow & S^{\infty W(G)} \\ \downarrow & & \downarrow \\ \prod_{H} S^{\infty W(H)} & \longrightarrow & S^{\infty W(G)} \wedge \prod_{H} S^{\infty W(H)} \end{array}$$

$$S(G) = \text{Spec}(S)^{*}$$

$$X(G) = \text{Spec}(T(H^*(GG/F)))$$

$$= \coprod_{F} \text{Spec}(H^*(G/F))$$

$$= \coprod_{F} LG/F$$

$$Spec(J) = \prod_{F} LG/F$$

Calculating the homotopy of $\mathbb S$

- Organize the inductive construction to a single cube
- Find S as a pullback of affine, formal ring spectra
- Consider the poset of closed subgroups of G
- Consider the coefficient system $K \mapsto H^*(BG/K)$
- Add information on Euler classes
- Observe the homotopy of the ring spectra at the vertices comes from the coefficient system
- Define the associated Cech cohomology
- This calculates $\pi_*^{\mathcal{G}}(\mathbb{S})$

Rank 1

In ring spectra we have

$$\begin{array}{ccc} S^{\infty W(G)} & & \downarrow \\ DE\mathcal{F}_{+} & \rightarrow & S^{\infty W(G)} \wedge DE\mathcal{F}_{+} \end{array}$$

and in rings

$$\prod_{F} H^{*}(BG/F) \rightarrow \mathcal{E}_{G}^{-1} \prod_{F} H^{*}(BG/F)$$

Rank 2

In rank 2, the layout of the vectors is

Panorama
Abelian groups
T-equivariant cohomology theories
The T'-equivariant sphere
Pictures
Cech cohomology and $\pi_{\mathcal{L}}^{\mathcal{L}}(\mathbb{S})$

The diagram of ring spectra is as follows:

and the diagram of rings is as follows:

Cech cohomology

Associated to this covering we have

$$C^s_{cts}(\Sigma;R) = \prod_{(d_0 > \cdots > d_s)} C^{(d_0 > \cdots > d_s)}_{cts}(\Sigma;R)$$

$$C_{cts}^{(d_0>\cdots>d_s)}(\Sigma;R) = \prod_{K_0} \mathcal{E}_{K_0}^{-1} \prod_{K_1\subset K_0} \mathcal{E}_{K_1}^{-1}\cdots \mathcal{E}_{K_{s-1}}^{-1} \prod_{K_s\subset K_{s-1}} \prod_{\tilde{K_s}} H^*(BG/\tilde{K_s})$$

= continuous functions on $\coprod_{K_0\supset K_1\supset\cdots\supset K_s}\coprod_{\tilde{K}_s}X(G/\tilde{K}_s,\tilde{K}_0/\tilde{K}_s)$

Corollary

There is a spectral sequence

$$H^*_{cts}(\Sigma, R) \Rightarrow \pi_*^{\mathcal{G}}(\mathbb{S})$$

The end

Thank you for listening!