On the vanishing of negative equivariant K-theory

Marc Hoyois
Weibel’s conjecture on negative K-theory

Conjecture (Weibel, 1980)

Let X be a Noetherian scheme of Krull dimension d. Then

$$K_i(X) = 0 \quad \text{for all} \quad i < -d.$$

Equivalently, the spectrum $K^B(X)$ is $(-d)$-connective.

Known cases:

- X is an excellent surface [Weibel, 2001]
- X is essentially of finite type over a field of characteristic zero [Cortiñas–Haesemeyer–Schlichting–Weibel, 2008]
- $K_{<-d}(X)[1/p] = 0$ if X is quasi-excellent and p is nilpotent on X [Kelly, 2014]
- $K_{<-d}(X)[1/n] = 0$ if n is nilpotent on X,
 $K_{<-d}(X, \mathbb{Z}/n) = 0$ if n is invertible on X [Kerz–Strunk, 2016]
Equivariant K-theory

For X an Artin stack, denote by:

- $D_{qcoh}(X) = \text{holim}_{\text{Spec}(A) \to X} D(A)$ the dg-category of quasi-coherent sheaves
- $D_{perf}(X) \subset D_{qcoh}(X)$ the subcategory of \otimes-dualizable objects

Definition

The K-theory spectrum $K^B(X)$ is the nonconnective K-theory of $D_{perf}(X)$, in the sense of Schlichting and Cisinski–Tabuada. For $i \in \mathbb{Z}$,

$$K_i(X) = \pi_i(K^B(X)).$$

Example

If G is a linearly reductive group scheme over a field F, then $K_0(BG)$ is the representation ring of G over F.
The main theorem

Theorem (H–Krishna)

Let S be a Noetherian scheme and G an S-group scheme which is either locally diagonalizable or finite flat of degree invertible on S. Let $\mathcal{X} = [X/G]$ where X is G-equivariantly quasi-projective over S.

- If n is nilpotent on X, $K_i(\mathcal{X})[1/n] = 0$ for all $i < -\dim(X)$.
- If n is invertible on X, $K_i(\mathcal{X}, \mathbb{Z}/n) = 0$ for all $i < -\dim(X)$.

Remarks:

- If G is a finite discrete group, the quasi-projectivity assumption can be dropped.
- For a more canonical formulation, replace $\dim(X)$ by the cdh cohomological dimension of \mathcal{X}.
- Like Kerz–Strunk, we actually prove a stronger vanishing result about **homotopy K-theory**.
Let X be a Noetherian scheme with $\text{dim}(X) = d$.

Definition

The **homotopy K-theory** spectrum of X is

$$KH(X) = |K^B(\Delta^\bullet \times X)|.$$

Theorem (Weibel)

- $KH(X)[1/n] = K^B(X)[1/n]$ if n is nilpotent on X.
- $KH(X, \mathbb{Z}/n) = K^B(X, \mathbb{Z}/n)$ if n is invertible on X.

Theorem (Kerz–Strunk)

$KH(X)$ is $(-d)$-connective.
Let $\mathcal{X} = [X/G]$ be as in the main theorem, with $\dim(X) = d$.

Definition

The **homotopy K-theory** spectrum of \mathcal{X} is

$$KH(\mathcal{X}) = |K^B(\Delta^\bullet \times \mathcal{X})|.$$

Theorem (Krishna–Ravi)

- $KH(\mathcal{X})[1/n] = K^B(\mathcal{X})[1/n]$ if n is nilpotent on \mathcal{X}.
- $KH(\mathcal{X}, \mathbb{Z}/n) = K^B(\mathcal{X}, \mathbb{Z}/n)$ if n is invertible on \mathcal{X}.

Theorem (H–Krishna)

$KH(\mathcal{X})$ is $(-d)$-connective.
The first main ingredient is **cdh descent** for KH:

Theorem (Morel–Voevodsky, Ayoub, Cisinski)

Let
- X be a qcqs scheme,
- $Z \subset X$ a closed subscheme,
- $p : X' \to X$ an abstract blowup with center Z.

Then there is a long exact sequence

$$
\cdots \to KH_i(X) \to KH_i(Z) \oplus KH_i(X') \to KH_i(p^{-1}Z) \to KH_{i-1}(X) \to \cdots
$$

This is a formal consequence of:
- $KH(X)$ is the underlying spectrum of a **motivic spectrum** $KGL_X \in SH(X)$ such that, for every $f : Y \to X$, $f^*(KGL_X) \simeq KGL_Y$.
- the **gluing** and **proper base change** theorems in stable motivic homotopy theory.
The second main ingredient is **flatification by blowups**:

Theorem (Gruson–Raynaud)

Let X be a Noetherian scheme, $U \subset X$ an open subset, Y a finite type X-scheme, and \mathcal{F} a finite type \mathcal{O}_Y-module flat over U. Then there exists a closed subscheme $Z \subset X \setminus U$ such that the strict transform of \mathcal{F} is flat over $\text{Bl}_Z(X)$.

- By definition of negative K-theory, there is a surjective map

 $$\text{coker} \left(K_0(X \times \mathbb{A}^i) \to K_0(X \times \mathbb{G}_m^i) \right) \to K_{-i}(X), \quad i > 0. $$

- Using flatification, if X is reduced with an ample family of line bundles, any negative K-theory class on $\Delta^k \times X$ can be killed by blowing up X.

- The vanishing of $KH_{<-d}(X)$ is then proved by induction on d using cdh descent and the spectral sequence for the simplicial spectrum $K^B(\Delta^\bullet \times X)$.

Marc Hoyois

On the vanishing of negative equivariant K-theory
Now for the equivariant story

- A suitable equivariant version of flatification by blowups was proved by Rydh.
- To complete the proof, following Kerz–Strunk, we need cdh descent for equivariant homotopy K-theory.

Theorem (H)

Let

- $\mathcal{X} = [X/G]$ be as in the main theorem,
- $\mathcal{Z} \subset \mathcal{X}$ a closed substack,
- $p: \mathcal{X}' \to \mathcal{X}$ an abstract blowup with center \mathcal{Z}.

Then there is a long exact sequence

$$
\cdots \to KH_i(\mathcal{X}) \to KH_i(\mathcal{Z}) \oplus KH_i(\mathcal{X}') \to KH_i(p^{-1}\mathcal{Z}) \to KH_{i-1}(\mathcal{X}) \to \cdots
$$

To prove this, we need stable equivariant motivic homotopy theory.
For a scheme X, $\text{SH}(X)$ is a \otimes-triangulated category built from smooth X-schemes. But smooth schemes can vary more generally in families parametrized by stacks, so it is reasonable to expect an extension

$$\{\text{schemes}\}^{\text{op}} \xrightarrow{\text{SH}} \{\otimes\text{-triangulated categories}\}.$$

This can be done for nice enough stacks, such as quotient stacks $[X/G]$ where X is G-equivariantly quasi-projective over a base S and G is either

- finite locally free of degree invertible on S,
- of multiplicative type,
- arbitrary reductive if S/\mathbb{Q}.

Marc Hoyois

On the vanishing of negative equivariant K-theory
The construction of $\text{SH}(\mathcal{X})$ is similar to the classical case, with a few tweaks:

- $\text{Sm}_{\mathcal{X}}$: smooth quasi-projective \mathcal{X}-stacks
- $\text{H}_{\cdot}(\mathcal{X})$: pointed presheaves of spaces F on $\text{Sm}_{\mathcal{X}}$ satisfying:
 - **Nisnevich excision**: If $\mathcal{Y}' \to \mathcal{Y}$ is an étale neighborhood of a closed substack $\mathcal{Z} \subset \mathcal{Y}$, then $F(\mathcal{Y}) \simeq F(\mathcal{Y}') \times_{F(\mathcal{Y}' \setminus \mathcal{Z})} F(\mathcal{Y} \setminus \mathcal{Z})$.
 - **affine bundle invariance**: If $\mathcal{Y}' \to \mathcal{Y}$ is a torsor under a vector bundle, then $F(\mathcal{Y}) \simeq F(\mathcal{Y}')$.

- For every vector bundle V over \mathcal{X}, let

 $$S^V = \mathbb{P}(V \oplus \mathbb{A}^1)/\mathbb{P}(V).$$

Then $\text{SH}(\mathcal{X})$ is the symmetric monoidal category obtained from $\text{H}_{\cdot}(\mathcal{X})$ by formally adjoining monoidal inverses S^{-V}.
Theorem (H)

The extended $\text{SH}(_)$ comes with **six operations**

$$f^* \dashv f_*, \quad f_! \dashv f^! \ (\text{for } f \text{ quasi-projective}), \quad \otimes \dashv \text{Hom},$$

with many expected properties.

In particular:

- **Gluing:** If $i : \mathcal{Z} \hookrightarrow \mathcal{X}$ is a closed immersion with open complement $j : \mathcal{U} \hookrightarrow \mathcal{X}$, then $(i^*, j^*) : \text{SH}(\mathcal{X}) \to \text{SH}(\mathcal{Z}) \times \text{SH}(\mathcal{U})$ is comonadic.

- **Proper base change:** Given a cartesian square

$$\begin{array}{ccc}
\mathcal{Y}' & \xrightarrow{g} & \mathcal{X}' \\
q \downarrow & & \downarrow p \\
\mathcal{Y} & \xrightarrow{f} & \mathcal{X}
\end{array}$$

with p projective, $f^* p_* \simeq q_* g^* : \text{SH}(\mathcal{X}') \to \text{SH}(\mathcal{Y})$.
Theorem (H)

For $\mathcal{X} = [X/G]$ as in the main theorem, $KH(\mathcal{X})$ is the underlying spectrum of a motivic spectrum $KGL_{\mathcal{X}} \in SH(\mathcal{X})$. Moreover, for every $f : \mathcal{Y} \to \mathcal{X}$ quasi-projective, $f^*(KGL_{\mathcal{X}}) \simeq KGL_{\mathcal{Y}}$.

As before, this formally implies that KH satisfies cdh descent, hence concludes the proof of the main theorem.

Sketch of proof:

- The existence of $KGL_{\mathcal{X}}$ follows from three basic properties of KH: homotopy invariance, Nisnevich descent, and Bott periodicity.

- The equivalence $f^*(KGL_{\mathcal{X}}) \simeq KGL_{\mathcal{Y}}$ is trivial if f is smooth or if \mathcal{X} is a scheme. To prove it in general, the idea is to find an explicit presentation of $KGL_{\mathcal{X}}$ in terms of infinite Grassmannians $\bigcup_{E/\mathcal{X}} \text{Gr}_n(E)$, which are stable under quasi-projective base change.
Thank you!