On the vanishing of negative equivariant K-theory

Marc Hoyois

Conjecture (Weibel, 1980)

Let X be a Noetherian scheme of Krull dimension d. Then

$$K_i(X) = 0$$
 for all $i < -d$.

Equivalently, the spectrum $K^B(X)$ is (-d)-connective.

Known cases:

- ► X is an excellent surface [Weibel, 2001]
- X is essentially of finite type over a field of characteristic zero [Cortiñas–Haesemeyer–Schlichting–Weibel, 2008]
- K_{<−d}(X)[1/p] = 0 if X is quasi-excellent and p is nilpotent on X [Kelly, 2014]
- ► $K_{<-d}(X)[1/n] = 0$ if *n* is nilpotent on *X*, $K_{<-d}(X, \mathbb{Z}/n) = 0$ if *n* is invertible on *X* [Kerz-Strunk, 2016]

Equivariant K-theory

For \mathfrak{X} an Artin stack, denote by:

- D_{qcoh}(𝔅) = holim_{Spec(A)→𝔅} D(A) the dg-category of quasi-coherent sheaves
- ▶ $D_{\mathsf{perf}}(\mathfrak{X}) \subset D_{\mathsf{qcoh}}(\mathfrak{X})$ the subcategory of \otimes -dualizable objects

Definition

The K-theory spectrum $K^B(\mathfrak{X})$ is the nonconnective K-theory of $D_{perf}(\mathfrak{X})$, in the sense of Schlichting and Cisinski–Tabuada. For $i \in \mathbb{Z}$,

$$K_i(\mathfrak{X}) = \pi_i(K^B(\mathfrak{X})).$$

Example

If G is a linearly reductive group scheme over a field F, then $K_0(BG)$ is the representation ring of G over F.

Theorem (H–Krishna)

Let *S* be a Noetherian scheme and *G* an *S*-group scheme which is either **locally diagonalizable** or **finite flat of degree invertible on** *S*. Let $\mathfrak{X} = [X/G]$ where *X* is *G*-equivariantly quasi-projective over *S*.

- If n is nilpotent on X, $K_i(\mathfrak{X})[1/n] = 0$ for all $i < -\dim(X)$.
- If n is invertible on X, $K_i(\mathfrak{X}, \mathbb{Z}/n) = 0$ for all $i < -\dim(X)$.

Remarks:

- ▶ If *G* is a finite **discrete** group, the quasi-projectivity assumption can be dropped.
- ► For a more canonical formulation, replace dim(X) by the cdh cohomological dimension of X.
- Like Kerz–Strunk, we actually prove a stronger vanishing result about homotopy K-theory.

Homotopy K-theory

Let X be a Noetherian scheme with dim(X) = d.

Definition

The **homotopy** *K***-theory** spectrum of *X* is

$$KH(X) = |K^B(\Delta^{\bullet} \times X)|.$$

Theorem (Weibel)

 $KH(X)[1/n] = K^B(X)[1/n]$ if n is nilpotent on X. $KH(X, \mathbb{Z}/n) = K^B(X, \mathbb{Z}/n)$ if n is invertible on X.

Theorem (Kerz–Strunk)

KH(X) is (-d)-connective.

Equivariant homotopy K-theory

Let $\mathfrak{X} = [X/G]$ be as in the main theorem, with dim(X) = d.

Definition

The **homotopy** K-**theory** spectrum of \mathfrak{X} is

$$KH(\mathfrak{X}) = |K^B(\Delta^{\bullet} \times \mathfrak{X})|.$$

Theorem (Krishna-Ravi)

 $KH(\mathfrak{X})[1/n] = K^B(\mathfrak{X})[1/n]$ if n is nilpotent on \mathfrak{X} . $KH(\mathfrak{X}, \mathbb{Z}/n) = K^B(\mathfrak{X}, \mathbb{Z}/n)$ if n is invertible on \mathfrak{X} .

Theorem (H–Krishna)

 $KH(\mathfrak{X})$ is (-d)-connective.

Overview of the Kerz-Strunk proof, I

The first main ingredient is **cdh descent** for KH:

Theorem (Morel-Voevodsky, Ayoub, Cisinski)

Let

- X be a qcqs scheme,
- $Z \subset X$ a closed subscheme,
- $p: X' \to X$ an abstract blowup with center Z.

Then there is a long exact sequence

 $\cdots \rightarrow KH_i(X) \rightarrow KH_i(Z) \oplus KH_i(X') \rightarrow KH_i(p^{-1}Z) \rightarrow KH_{i-1}(X) \rightarrow \cdots$

This is a formal consequence of:

- ▶ KH(X) is the underlying spectrum of a **motivic spectrum** KGL_X ∈ SH(X) such that, for every $f: Y \to X$, $f^*(KGL_X) \simeq KGL_Y$.
- the gluing and proper base change theorems in stable motivic homotopy theory.

Overview of the Kerz-Strunk proof, II

The second main ingredient is flatification by blowups:

Theorem (Gruson-Raynaud)

Let X be a Noetherian scheme, $U \subset X$ an open subset, Y a finite type X-scheme, and \mathcal{F} a finite type \mathcal{O}_Y -module flat over U. Then there exists a closed subscheme $Z \subset X \setminus U$ such that the strict transform of \mathcal{F} is flat over $Bl_Z(X)$.

▶ By definition of negative *K*-theory, there is a surjective map

 $\operatorname{coker}\left(\mathsf{K}_0(X imes \mathbb{A}^i) o \mathsf{K}_0(X imes \mathbb{G}^i_m)\right) \twoheadrightarrow \mathsf{K}_{-i}(X), \quad i > 0.$

- ► Using flatification, if X is reduced with an ample family of line bundles, any negative K-theory class on Δ^k × X can be killed by blowing up X.
- The vanishing of KH_{<-d}(X) is then proved by induction on d using cdh descent and the spectral sequence for the simplicial spectrum K^B(Δ[•] × X).

Now for the equivariant story

- A suitable equivariant version of flatification by blowups was proved by Rydh.
- To complete the proof, following Kerz–Strunk, we need cdh descent for equivariant homotopy K-theory.

Theorem (H)

Let

- $\mathfrak{X} = [X/G]$ be as in the main theorem,
- $\mathfrak{Z} \subset \mathfrak{X}$ a closed substack,
- $p: \mathfrak{X}' \to \mathfrak{X}$ an abstract blowup with center \mathfrak{Z} .

Then there is a long exact sequence

 $\cdots \to KH_i(\mathfrak{X}) \to KH_i(\mathfrak{Z}) \oplus KH_i(\mathfrak{X}') \to KH_i(p^{-1}\mathfrak{Z}) \to KH_{i-1}(\mathfrak{X}) \to \cdots$

To prove this, we need stable equivariant motivic homotopy theory.

Stable equivariant motivic homotopy theory, I

For a scheme X, SH(X) is a \otimes -triangulated category built from smooth X-schemes. But smooth schemes can vary more generally in families parametrized by **stacks**, so it is reasonable to expect an extension

This can be done for nice enough stacks, such as quotient stacks [X/G] where X is G-equivariantly quasi-projective over a base S and G is either

- ▶ finite locally free of degree invertible on *S*,
- of multiplicative type,
- arbitrary reductive if S/\mathbb{Q} .

Stable equivariant motivic homotopy theory, II

The construction of $\mathsf{SH}(\mathfrak{X})$ is similar to the classical case, with a few tweaks:

- ▶ $Sm_{\mathfrak{X}}$: smooth quasi-projective \mathfrak{X} -stacks
- H_•(𝔅): pointed presheaves of spaces F on Sm_𝔅 satisfying:
 Nisnevich excision: If 𝔅 → 𝔅 is an étale neighborhood of a closed substack 𝔅 ⊂ 𝔅, then F(𝔅) ≃ F(𝔅)' ×_{F(𝔅)' < 𝔅} F(𝔅 < 𝔅).
 affine bundle invariance: If 𝔅' → 𝔅 is a torsor under a vector bundle, then F(𝔅) ≃ F(𝔅').
- For every vector bundle V over \mathfrak{X} , let

$$S^{V} = \mathbb{P}(V \oplus \mathbb{A}^{1})/\mathbb{P}(V).$$

Then SH(\mathfrak{X}) is the symmetric monoidal category obtained from H_•(\mathfrak{X}) by formally adjoining monoidal inverses S^{-V} .

Stable equivariant motivic homotopy theory, III

Theorem (H)

The extended SH(-) comes with six operations

$$f^* \dashv f_*$$
, $f_! \dashv f^!$ (for f quasi-projective), $\otimes \dashv \operatorname{Hom}$,

with many expected properties.

In particular:

- ▶ **Gluing:** If $i: \mathfrak{Z} \hookrightarrow \mathfrak{X}$ is a closed immersion with open complement $j: \mathfrak{U} \hookrightarrow \mathfrak{X}$, then $(i^*, j^*): SH(\mathfrak{X}) \to SH(\mathfrak{Z}) \times SH(\mathfrak{U})$ is comonadic.
- Proper base change: Given a cartesian square

with p projective, $f^*p_* \simeq q_*g^* \colon \mathsf{SH}(\mathfrak{X}') \to \mathsf{SH}(\mathfrak{Y}).$

Theorem (H)

For $\mathfrak{X} = [X/G]$ as in the main theorem, $KH(\mathfrak{X})$ is the underlying spectrum of a motivic spectrum $KGL_{\mathfrak{X}} \in SH(\mathfrak{X})$. Moreover, for every $f: \mathfrak{Y} \to \mathfrak{X}$ quasi-projective, $f^*(KGL_{\mathfrak{X}}) \simeq KGL_{\mathfrak{Y}}$.

As before, this formally implies that KH satisfies cdh descent, hence concludes the proof of the main theorem.

Sketch of proof:

- The existence of KGL_X follows from three basic properties of KH: homotopy invariance, Nisnevich descent, and Bott periodicity.
- The equivalence f*(KGL_𝔅) ≃ KGL_𝔅 is trivial if f is smooth or if 𝔅 is a scheme. To prove it in general, the idea is to find an explicit presentation of KGL_𝔅 in terms of infinite Grassmannians ∪_{𝔅/𝔅} Gr_n(𝔅), which are stable under quasi-projective base change.

Thank you!