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Brave new algebra



E∞-ring spectra

Definition

An E∞-ring spectrum is a commutative monoid in the symmetric

monoidal (∞, 1)-category of spectra.

Any E∞-ring spectrum R gives rise to a multiplicative generalized

cohomology theory on spaces.
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Examples of E∞-ring spectra

• The sphere spectrum S is the unit of the monoidal structure,

and admits a canonical E∞-ring structure.

• For any ordinary commutative ring R, the Eilenberg–MacLane

spectrum of R is an E∞-ring spectrum (which we will denote

again by R).

• The complex K-theory spectrum KU, and its connective

version ku, are E∞-ring spectra.
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Algebraic K-theory



Algebraic K-theory

Let R be an E∞-ring spectrum.

Write K cn(R) for the connective algebraic K-theory spectrum of R.

Write K (R) for the nonconnective K-theory spectrum of R, defined

by the Bass construction.
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K (S)

Question

How to compute the algebraic K-theory of the sphere spectrum?

This is a very difficult problem with many potential applications.

Ausoni–Rognes have some important conjectures about it.

We propose to study a variant of K-theory that we can say more

about, and which is related to algebraic K-theory by a spectral

sequence.
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Topological homotopy invariant K-theory

Let R{t} denote the free E∞-R-algebra on one generator t.

Explicitly:

R{t} =
⊕
m>0

R⊗m/Σm.

Remark

There is also a polynomial E∞-R-algebra R[t], whose homotopy

groups are as expected: πi (R[t]) = πi (R)[t].

However, R{t} and R[t] look very different outside characteristic

zero.
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Topological homotopy invariant K-theory

As n varies, the R-algebras R{t}⊗n can be given a canonical

structure of simplicial object, which we denote ∆R,•.

Definition

The topological homotopy invariant K-theory spectrum of R is

defined as

TKH(R) := |K (∆R,•)|,

i.e. the geometric realization of the simplicial spectrum K (∆R,•).
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Topological homotopy invariant K-theory

TKH is the “brave new” analogue of Weibel’s homotopy invariant

K-theory KH of commutative rings.

The difference between KH and TKH is roughly analogous to the

difference between HH and THH.
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Nil-invariance of TKH

Theorem (-)

Let R be a connective E∞-ring spectrum. Then the canonical

morphism of spectra

TKH(R)
∼−→ TKH(π0(R))

is invertible.

This is obtained as a consequence of a much stronger result about

Morel–Voevodsky motivic homotopy theory in spectral algebraic

geometry.

Remark

Nil-invariance also holds for another variant of K-theory, namely

G -theory (= K-theory of coherent modules). This follows from C.

Barwick’s Theorem of the Heart.
8



A spectral sequence

The skeletal filtration on the simplicial object K (∆R,•) gives rise

to:

Proposition (-)

There is a right half-plane convergent spectral sequence

Ep,q
1 = N(p)Kq(R)⇒ TKHp+q(R).

N(p) is defined iteratively with N(Kq) denoting the functor

R 7→ Ker(Kq(R{t})→ Kq(R)).

Question

Does this degenerate with Z/` coefficients, when ` is invertible in

R, so that

Kq(R,Z/`) = TKHq(R,Z/`)?
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Spectral algebraic geometry (a.k.a.

brave new algebraic geometry)



Spectral schemes

Spectral algebraic geometry is a version of algebraic geometry

where the basic building blocks, commutative rings, are replaced

by connective E∞-ring spectra.

Hence an affine spectral scheme is of the form Spec(R) for some

connective E∞-ring spectrum R.

Spectral schemes are then obtained by gluing affine spectral

schemes along a natural notion of Zariski open immersion.
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The underlying classical scheme

Every spectral scheme S has an underlying classical scheme Scl.

For S = Spec(R), Scl = Spec(π0(R)).

One thinks of S as a nilpotent thickening of Scl.
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Morel–Voevodsky homotopy theory



The classical motivic homotopy category

Let S be a (classical) scheme. The S1-stable motivic homotopy

category SH(S) is built out of smooth schemes over S by imposing

a Mayer–Vietoris condition and homotopy invariance with respect

to the affine line A1.
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Étale and smooth morphisms in spectral AG

Given a morphism of connective E∞-ring spectra A→ B, we have

the cotangent complex LB/A, a connective B-module, which

controls the deformation theory of the A-algebra B.

Definition

The morphism A→ B is étale (TAQ-étale) if it is of finite

presentation and LB/A = 0.

The morphism A→ B is smooth (TAQ-smooth) if it is of finite

presentation and LB/A is a finitely generated projective module

(i.e. a direct summand of B⊕k for some k).
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Étale and smooth morphisms in spectral AG

Proposition (Toën–Vezzosi)

A morphism A→ B is étale if and only if it is flat and induces an

étale morphism π0(A)→ π0(B) of commutative rings.

The analogue for smooth morphisms fails!

Example

The morphism of connective E∞-ring spectra Fp → Fp{t} is

smooth, but Fp → Fp[t] is not.

Conceptually, the reason is the existence of nontrivial Steenrod

operations in characteristic p > 0.
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Étale and smooth morphisms in spectral AG

Hence we have another version of smoothness for spectral schemes:

Definition

A morphism A→ B is [-smooth if it is flat, and induces a smooth

morphism π0(A)→ π0(B) of commutative rings.

We let Sm/S denote the category of smooth spectral S-schemes.

We let Sm[
/S denote the category of [-smooth spectral S-schemes.
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Homotopy invariance in spectral AG

Corresponding to our two notions of smoothness, we also have two

affine lines.

Definition

The affine line over S = Spec(R) is the spectral scheme

A1
S = Spec(R{t}).

Definition

The flat affine line over S = Spec(R) is the spectral scheme

A1
[,S = Spec(R[t]).

A1
S lives in Sm/S , while A1

[,S lives in Sm[
/S .
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Motivic homotopy theory in spectral AG

The two pairs (Sm/S ,A
1
S) and (Sm[

/S ,A
1
[,S) give rise to two

different candidates for the motivic homotopy category over S :

SHbrave(S) = brave new motivic homotopy category

SH[(S) = cowardly old motivic homotopy category

When S is a classical scheme, SH[(S) recovers the usual SH(S).
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The localization theorem

We have the following analogue of an important theorem of

Morel–Voevodsky in classical motivic homotopy theory:

Theorem (-)

Let S be a spectral scheme, i : Z ↪→ S a closed immersion, and

j : U ↪→ S the complementary open immersion. Then there is a

short exact sequence of stable presentable (∞, 1)-categories

SHbrave(Z )→ SHbrave(S)→ SHbrave(U).

I do not know whether this holds for the flat version SH[(S).
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Nil-invariance

The localization theorem has the following immediate consequence:

Corollary

Let S be a spectral scheme. Then there is a canonical equivalence

of stable (∞, 1)-categories

SHbrave(S)→ SHbrave(Scl).
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TKH

We return to our nil-invariance result for TKH:

Theorem (-)

For each connective E∞-ring spectrum R, there is a canonical

isomorphism of spectra

TKH(R)
∼−→ TKH(π0(R)).

This theorem follows from the previous corollary, after proving that

TKH satisfies A1-homotopy invariance and a Mayer–Vietoris

condition, and that it is in fact representable by the group

completion of the A∞-monoid tn>0BGLn (over quasi-compact

quasi-separated spectral base schemes).
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Generalized motivic cohomology theories

More generally, we obtain nil-invariance for any cohomology theory

E that is representable in SHbrave (as a cartesian section).
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Questions

1. What is the analogue of the condition of regularity for R, that

ensures K (R) = TKH(R)?

2. Is there is a comparison isomorphism

TKH(R,Z/`) = K (R,Z/`) when ` is invertible in R?

3. Are there any A1-homotopy invariant cohomology theories of

E∞-ring spectra that arise in nature?

4. Motivic cohomology of E∞-ring spectra?
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