A¹-homotopy invariance in spectral algebraic geometry

Adeel Khan Universität Duisburg-Essen

Alpine Algebraic and Applied Topology Conference Saas, 15–21 August 2016 Brave new algebra

Definition

An \mathbf{E}_{∞} -ring spectrum is a commutative monoid in the symmetric monoidal $(\infty, 1)$ -category of spectra.

Any \mathbf{E}_{∞} -ring spectrum R gives rise to a *multiplicative* generalized cohomology theory on spaces.

- The sphere spectrum \$ is the unit of the monoidal structure, and admits a canonical E_∞-ring structure.
- For any ordinary commutative ring *R*, the Eilenberg–MacLane spectrum of *R* is an E_∞-ring spectrum (which we will denote again by *R*).
- The complex K-theory spectrum KU, and its connective version ku, are E_∞-ring spectra.

Algebraic K-theory

Let *R* be an \mathbf{E}_{∞} -ring spectrum.

Write $K^{cn}(R)$ for the connective algebraic K-theory spectrum of R. Write K(R) for the nonconnective K-theory spectrum of R, defined by the Bass construction.

Question

How to compute the algebraic K-theory of the sphere spectrum?

This is a very difficult problem with many potential applications. Ausoni–Rognes have some important conjectures about it.

We propose to study a variant of K-theory that we can say more about, and which is related to algebraic K-theory by a spectral sequence. Let $R{t}$ denote the free \mathbf{E}_{∞} -R-algebra on one generator t. Explicitly:

$$R\{t\} = \bigoplus_{m \ge 0} R^{\otimes m} / \Sigma_m.$$

Remark

There is also a polynomial \mathbf{E}_{∞} -*R*-algebra R[t], whose homotopy groups are as expected: $\pi_i(R[t]) = \pi_i(R)[t]$.

However, $R{t}$ and R[t] look very different outside characteristic zero.

As *n* varies, the *R*-algebras $R\{t\}^{\otimes n}$ can be given a canonical structure of simplicial object, which we denote $\Delta_{R,\bullet}$.

Definition

The **topological homotopy invariant K-theory** spectrum of R is defined as

$$TKH(R) := |K(\Delta_{R,\bullet})|,$$

i.e. the geometric realization of the simplicial spectrum $K(\Delta_{R,\bullet})$.

TKH is the "brave new" analogue of Weibel's homotopy invariant K-theory *KH* of commutative rings.

The difference between KH and TKH is roughly analogous to the difference between HH and THH.

Nil-invariance of TKH

Theorem (-) Let R be a connective \mathbf{E}_{∞} -ring spectrum. Then the canonical morphism of spectra

 $TKH(R) \xrightarrow{\sim} TKH(\pi_0(R))$

is invertible.

This is obtained as a consequence of a much stronger result about Morel–Voevodsky motivic homotopy theory in spectral algebraic geometry.

Remark

Nil-invariance also holds for another variant of K-theory, namely G-theory (= K-theory of coherent modules). This follows from C. Barwick's Theorem of the Heart.

The skeletal filtration on the simplicial object $\mathcal{K}(\Delta_{R,\bullet})$ gives rise to:

Proposition (-)

There is a right half-plane convergent spectral sequence

$$E_1^{p,q} = N^{(p)}K_q(R) \Rightarrow TKH_{p+q}(R).$$

 $N^{(p)}$ is defined iteratively with $N(K_q)$ denoting the functor $R \mapsto \operatorname{Ker}(K_q(R\{t\}) \to K_q(R)).$

Question

Does this degenerate with \mathbf{Z}/ℓ coefficients, when ℓ is invertible in R, so that

$$K_q(R, \mathbf{Z}/\ell) = TKH_q(R, \mathbf{Z}/\ell)?$$

Spectral algebraic geometry (a.k.a. brave new algebraic geometry)

Spectral algebraic geometry is a version of algebraic geometry where the basic building blocks, commutative rings, are replaced by connective E_{∞} -ring spectra.

Hence an *affine spectral scheme* is of the form Spec(R) for some connective E_{∞} -ring spectrum R.

Spectral schemes are then obtained by gluing affine spectral schemes along a natural notion of Zariski open immersion.

Every spectral scheme S has an underlying classical scheme S_{cl} . For S = Spec(R), $S_{cl} = \text{Spec}(\pi_0(R))$. One thinks of S as a *nilpotent thickening* of S_{cl} .

Morel-Voevodsky homotopy theory

Let S be a (classical) scheme. The S^1 -stable motivic homotopy category $\mathbf{SH}(S)$ is built out of smooth schemes over S by imposing a Mayer–Vietoris condition and homotopy invariance with respect to the affine line \mathbf{A}^1 . Given a morphism of connective \mathbf{E}_{∞} -ring spectra $A \to B$, we have the **cotangent complex L**_{B/A}, a connective B-module, which controls the deformation theory of the A-algebra B.

Definition

The morphism $A \rightarrow B$ is étale (TAQ-étale) if it is of finite presentation and $L_{B/A} = 0$.

The morphism $A \to B$ is **smooth** (TAQ-smooth) if it is of finite presentation and $L_{B/A}$ is a finitely generated projective module (i.e. a direct summand of $B^{\oplus k}$ for some k).

Proposition (Toën-Vezzosi)

A morphism $A \to B$ is étale if and only if it is flat and induces an étale morphism $\pi_0(A) \to \pi_0(B)$ of commutative rings.

The analogue for smooth morphisms fails!

Example

The morphism of connective \mathbf{E}_{∞} -ring spectra $\mathbf{F}_{p} \rightarrow \mathbf{F}_{p}\{t\}$ is smooth, but $\mathbf{F}_{p} \rightarrow \mathbf{F}_{p}[t]$ is not.

Conceptually, the reason is the existence of nontrivial Steenrod operations in characteristic p > 0.

Hence we have another version of smoothness for spectral schemes:

Definition

A morphism $A \to B$ is b-smooth if it is flat, and induces a smooth morphism $\pi_0(A) \to \pi_0(B)$ of commutative rings.

We let $Sm_{/S}$ denote the category of smooth spectral *S*-schemes. We let $Sm_{/S}^{\flat}$ denote the category of \flat -smooth spectral *S*-schemes. Corresponding to our two notions of smoothness, we also have two affine lines.

Definition

The affine line over S = Spec(R) is the spectral scheme $A_S^1 = \text{Spec}(R\{t\})$.

Definition

The flat affine line over S = Spec(R) is the spectral scheme $\mathbf{A}_{b,S}^1 = \text{Spec}(R[t])$.

 \mathbf{A}_{S}^{1} lives in Sm_{/S}, while $\mathbf{A}_{\flat,S}^{1}$ lives in Sm_{/S}^b.

The two pairs $(Sm_{/S}, \mathbf{A}_{S}^{1})$ and $(Sm_{/S}^{\flat}, \mathbf{A}_{\flat,S}^{1})$ give rise to two different candidates for the motivic homotopy category over *S*: $\mathbf{SH}^{\text{brave}}(S) =$ brave new motivic homotopy category $\mathbf{SH}^{\flat}(S) =$ cowardly old motivic homotopy category When *S* is a classical scheme, $\mathbf{SH}^{\flat}(S)$ recovers the usual $\mathbf{SH}(S)$. We have the following analogue of an important theorem of Morel–Voevodsky in classical motivic homotopy theory:

Theorem (-)

Let S be a spectral scheme, $i : Z \hookrightarrow S$ a closed immersion, and $j : U \hookrightarrow S$ the complementary open immersion. Then there is a short exact sequence of stable presentable $(\infty, 1)$ -categories

$$\mathbf{SH}^{\mathrm{brave}}(Z) \to \mathbf{SH}^{\mathrm{brave}}(S) \to \mathbf{SH}^{\mathrm{brave}}(U).$$

I do not know whether this holds for the flat version $\mathbf{SH}^{\flat}(S)$.

The localization theorem has the following immediate consequence:

Corollary

Let S be a spectral scheme. Then there is a canonical equivalence of stable $(\infty, 1)$ -categories

 $\mathbf{SH}^{\mathrm{brave}}(S) \rightarrow \mathbf{SH}^{\mathrm{brave}}(S_{\mathrm{cl}}).$

We return to our nil-invariance result for TKH:

Theorem (-)

For each connective \mathbf{E}_{∞} -ring spectrum R, there is a canonical isomorphism of spectra

 $TKH(R) \xrightarrow{\sim} TKH(\pi_0(R)).$

This theorem follows from the previous corollary, after proving that *TKH* satisfies \mathbf{A}^1 -homotopy invariance and a Mayer–Vietoris condition, and that it is in fact representable by the group completion of the \mathbf{A}_{∞} -monoid $\sqcup_{n\geq 0}BGL_n$ (over quasi-compact quasi-separated spectral base schemes).

More generally, we obtain nil-invariance for any cohomology theory E that is representable in **SH**^{brave} (as a cartesian section).

- 1. What is the analogue of the condition of regularity for R, that ensures K(R) = TKH(R)?
- 2. Is there is a comparison isomorphism $TKH(R, \mathbf{Z}/\ell) = K(R, \mathbf{Z}/\ell)$ when ℓ is invertible in R?
- 3. Are there any A^1 -homotopy invariant cohomology theories of E_{∞} -ring spectra that arise in nature?
- 4. Motivic cohomology of $\boldsymbol{\mathsf{E}}_\infty\text{-ring}$ spectra?