A^{1}-homotopy invariance in spectral algebraic geometry

Adeel Khan
Universität Duisburg-Essen

Alpine Algebraic and Applied Topology Conference
Saas, 15–21 August 2016
Brave new algebra
Definition

An \mathbf{E}_∞-ring spectrum is a commutative monoid in the symmetric monoidal $(\infty, 1)$-category of spectra.

Any \mathbf{E}_∞-ring spectrum R gives rise to a multiplicative generalized cohomology theory on spaces.
Examples of E_∞-ring spectra

- The **sphere spectrum** \mathbb{S} is the unit of the monoidal structure, and admits a canonical E_∞-ring structure.
- For any ordinary commutative ring R, the **Eilenberg–MacLane spectrum** of R is an E_∞-ring spectrum (which we will denote again by R).
- The **complex K-theory spectrum** KU, and its connective version ku, are E_∞-ring spectra.
Algebraic K-theory
Let R be an \mathbb{E}_∞-ring spectrum.

Write $K^{cn}(R)$ for the connective algebraic K-theory spectrum of R. Write $K(R)$ for the nonconnective K-theory spectrum of R, defined by the Bass construction.
Question

How to compute the algebraic K-theory of the sphere spectrum?

This is a very difficult problem with many potential applications. Ausoni–Rognes have some important conjectures about it.

We propose to study a variant of K-theory that we can say more about, and which is related to algebraic K-theory by a spectral sequence.
Let $R\{t\}$ denote the free E_∞-R-algebra on one generator t. Explicitly:

$$R\{t\} = \bigoplus_{m \geq 0} R^\otimes m / \Sigma_m.$$

Remark

There is also a polynomial E_∞-R-algebra $R[t]$, whose homotopy groups are as expected: $\pi_i(R[t]) = \pi_i(R)[t]$.

However, $R\{t\}$ and $R[t]$ look very different outside characteristic zero.
As n varies, the R-algebras $R\{t\} \otimes^n$ can be given a canonical structure of simplicial object, which we denote $\Delta_{R, \bullet}$.

Definition

The **topological homotopy invariant K-theory spectrum of R** is defined as

$$TKH(R) := |K(\Delta_{R, \bullet})|,$$

i.e. the geometric realization of the simplicial spectrum $K(\Delta_{R, \bullet})$.
TKH is the “brave new” analogue of Weibel’s homotopy invariant K-theory KH of commutative rings.

The difference between KH and TKH is roughly analogous to the difference between HH and THH.
Nil-invariance of TKH

Theorem (−)

*Let R be a connective E_∞-ring spectrum. Then the canonical morphism of spectra

$$TKH(R) \xrightarrow{\sim} TKH(\pi_0(R))$$

is invertible.*

This is obtained as a consequence of a much stronger result about Morel–Voevodsky motivic homotopy theory in spectral algebraic geometry.

Remark

Nil-invariance also holds for another variant of K-theory, namely G-theory ($= K$-theory of coherent modules). This follows from C. Barwick’s Theorem of the Heart.
A spectral sequence

The skeletal filtration on the simplicial object $K(\Delta_R, \bullet)$ gives rise to:

Proposition (-)

There is a right half-plane convergent spectral sequence

$$E_1^{p,q} = N^{(p)}K_q(R) \Rightarrow TKH_{p+q}(R).$$

$N^{(p)}$ is defined iteratively with $N(K_q)$ denoting the functor $R \mapsto \text{Ker}(K_q(R[t]) \to K_q(R))$.

Question

Does this degenerate with \mathbb{Z}/ℓ coefficients, when ℓ is invertible in R, so that

$$K_q(R, \mathbb{Z}/\ell) = TKH_q(R, \mathbb{Z}/\ell)?$$
Spectral algebraic geometry (a.k.a. brave new algebraic geometry)
Spectral algebraic geometry is a version of algebraic geometry where the basic building blocks, commutative rings, are replaced by connective E_∞-ring spectra.

Hence an *affine spectral scheme* is of the form $\text{Spec}(R)$ for some connective E_∞-ring spectrum R.

Spectral schemes are then obtained by gluing affine spectral schemes along a natural notion of Zariski open immersion.
The underlying classical scheme

Every spectral scheme S has an underlying classical scheme S_{cl}. For $S = \text{Spec}(R)$, $S_{\text{cl}} = \text{Spec}(\pi_0(R))$.

One thinks of S as a nilpotent thickening of S_{cl}.
Morel–Voevodsky homotopy theory
Let S be a (classical) scheme. The S^1-stable motivic homotopy category $\text{SH}(S)$ is built out of smooth schemes over S by imposing a Mayer–Vietoris condition and homotopy invariance with respect to the affine line \mathbb{A}^1.
Étale and smooth morphisms in spectral AG

Given a morphism of connective \mathbf{E}_∞-ring spectra $A \to B$, we have the **cotangent complex** $L_{B/A}$, a connective B-module, which controls the deformation theory of the A-algebra B.

Definition

*The morphism $A \to B$ is **étale** (TAQ-étale) if it is of finite presentation and $L_{B/A} = 0$.*

*The morphism $A \to B$ is **smooth** (TAQ-smooth) if it is of finite presentation and $L_{B/A}$ is a finitely generated projective module (i.e. a direct summand of $B^\oplus k$ for some k).*
Proposition (Toën–Vezzosi)
A morphism $A \to B$ is étale if and only if it is flat and induces an étale morphism $\pi_0(A) \to \pi_0(B)$ of commutative rings.

The analogue for smooth morphisms fails!

Example
The morphism of connective E_∞-ring spectra $F_p \to F_p\{t\}$ is smooth, but $F_p \to F_p[t]$ is not.

Conceptually, the reason is the existence of nontrivial Steenrod operations in characteristic $p > 0$.
Hence we have another version of smoothness for spectral schemes:

Definition

A morphism $A \to B$ is $♭$-smooth if it is flat, and induces a smooth morphism $\pi_0(A) \to \pi_0(B)$ of commutative rings.

We let Sm_S denote the category of smooth spectral S-schemes.

We let $\text{Sm}^{♭}_S$ denote the category of $♭$-smooth spectral S-schemes.
Corresponding to our two notions of smoothness, we also have two affine lines.

Definition

*The affine line over $S = \text{Spec}(R)$ is the spectral scheme $\mathbb{A}^1_S = \text{Spec}(R\{t\})$.***

Definition

*The flat affine line over $S = \text{Spec}(R)$ is the spectral scheme $\mathbb{A}^1_{b,S} = \text{Spec}(R[t])$.***

\mathbb{A}^1_S lives in Sm_S, while $\mathbb{A}^1_{b,S}$ lives in Sm^b_S.
The two pairs $(\text{Sm}/_{S}, \mathbb{A}^{1}_{S})$ and $(\text{Sm}^{b}_{/S}, \mathbb{A}^{1}_{b,S})$ give rise to two different candidates for the motivic homotopy category over S:

$\text{SH}^{\text{brave}}(S) =$ brave new motivic homotopy category

$\text{SH}^{b}(S) =$ cowardly old motivic homotopy category

When S is a classical scheme, $\text{SH}^{b}(S)$ recovers the usual $\text{SH}(S)$.

We have the following analogue of an important theorem of Morel–Voevodsky in classical motivic homotopy theory:

Theorem (−)

Let S be a spectral scheme, $i : Z \hookrightarrow S$ a closed immersion, and $j : U \hookrightarrow S$ the complementary open immersion. Then there is a short exact sequence of stable presentable $(\infty, 1)$-categories

$$\text{SH}^\text{brave}(Z) \to \text{SH}^\text{brave}(S) \to \text{SH}^\text{brave}(U).$$

I do not know whether this holds for the flat version $\text{SH}^\flat(S)$.
Nil-invariance

The localization theorem has the following immediate consequence:

Corollary

Let S be a spectral scheme. Then there is a canonical equivalence of stable $(\infty, 1)$-categories

\[\mathcal{SH}^{\text{brave}}(S) \to \mathcal{SH}^{\text{brave}}(S_{\text{cl}}). \]
We return to our nil-invariance result for TKH:

Theorem (-)

For each connective E_∞-ring spectrum R, there is a canonical isomorphism of spectra

$$TKH(R) \sim TKH(\pi_0(R)).$$

This theorem follows from the previous corollary, after proving that TKH satisfies A^1-homotopy invariance and a Mayer–Vietoris condition, and that it is in fact representable by the group completion of the A_∞-monoid $\biguplus_{n \geq 0} BGL_n$ (over quasi-compact quasi-separated spectral base schemes).
Generalized motivic cohomology theories

More generally, we obtain nil-invariance for any cohomology theory E that is representable in $\mathbf{SH}^{\text{brave}}$ (as a cartesian section).
Questions

1. What is the analogue of the condition of regularity for R, that ensures $K(R) = TKH(R)$?

2. Is there a comparison isomorphism $TKH(R, \mathbb{Z}/\ell) = K(R, \mathbb{Z}/\ell)$ when ℓ is invertible in R?

3. Are there any \mathbb{A}^1-homotopy invariant cohomology theories of E_{∞}-ring spectra that arise in nature?

4. Motivic cohomology of E_{∞}-ring spectra?