Landweber Flat Real pairs and ER(n)-cohomology.

Nitu Kitchloo, Vitaly Lorman, Steve Wilson.

August, 2016

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

I. Real Theories:

Everything is localized (possibly completed) at the prime p = 2.

We may construct a $\mathbb{Z}/2 = \text{Gal}(\mathbb{C}/\mathbb{R})$ -equivariant model for complex cobordism by retaining the Galois (i.e. complex conjugation) action on the pre-spectrum given by Thom spaces: BU(k)^{γ_k}, where BU(k) is the Grassmannian of complex *k*-planes in \mathbb{C}^{∞} supporting the tautological bundle γ_k .

The structure maps are of the form:

$$\Sigma^{(1+\alpha)} \mathrm{BU}(\mathbf{k})^{\gamma_k} \longrightarrow \mathrm{BU}(\mathbf{k}+1)^{\gamma_{k+1}},$$

where $\Sigma^{(1+\alpha)}$ represents the one point compactification of the representation $1 + \alpha = \mathbb{C}$ (here α is the sign representation).

Notation: $\Sigma^{V} X := S^{V} \land X$, where S^{V} is the one-point compactification of a representation *V*.

Real complex cobordism \mathbb{MU} is defined as the RO($\mathbb{Z}/2$) i.e ($\mathbb{Z} \oplus \mathbb{Z}\alpha$)-graded complex cobordism spectrum given by spectrifying the $\mathbb{Z}/2$ pre-spectrum above:

$$\mathbb{MU} := \operatorname{colim}_k \Sigma^{-k(1+\alpha)} \mathrm{BU}(\mathbf{k})^{\gamma_k},$$

Define bigraded cohomology: $\mathbb{MU}^{a+b\alpha}(X) := [X, \Sigma^{a+b\alpha}\mathbb{MU}]^{\mathbb{Z}/2}$

By construction, the spectrum \mathbb{MU} supports a tautological orientation $\mu \in \mathbb{MU}^{1+\alpha}(\mathbb{CP}^{\infty})$. So that:

$$\mathbb{MU}^{*(1+\alpha)}(\mathbb{CP}^{\infty}) = \mathbb{MU}^{*(1+\alpha)}[[\mu]],$$

$$\mathbb{MU}^{*(1+\alpha)}(\mathbb{CP}^{\infty}\times\mathbb{CP}^{\infty})=\mathbb{MU}^{*(1+\alpha)}[[\mu_1,\mu_2]].$$

This yields a formal group law over $\pi_{*(1+\alpha)}(\mathbb{MU})$ that refines the formal group law of MU. So one obtains classes $v_k \in \mathbb{MU}_{(2^k-1)(1+\alpha)}$ that lift the usual classes $v_k \in \mathrm{MU}_{2(2^k-1)}$. We can now define the $\mathbb{Z}/2$ -equivariant versions of the spectra: \mathbb{BP} , $\mathbb{BP}\langle n \rangle$ and Real equivariant Johnson-Wilson spectra $\mathbb{E}(n)$:

$$\mathbb{E}(n) := \mathbb{BP}\langle n \rangle [\mathbf{v}_n^{-1}] = \mathbb{BP}[\mathbf{v}_n^{-1}] / \langle \mathbf{v}_{n+1}, \mathbf{v}_{n+2}, \cdots \rangle.$$

These equivariant spectra have been extensively studied by Hu-Kriz. They show, for example $\mathbb{E}(1)$ is equivalent to Atiyah's "real" K-theory KR.

Definition: The real Johnson-Wilson spectrum ER(n) is defined as the homotopy fixed point spectrum: $\mathbb{E}(n)^{h\mathbb{Z}/2}$.

The (integer graded) homotopy groups of $\mathbb{E}(n)$ and ER(n) agree:

 $\pi_t(\mathrm{ER}(n)) = \pi_t(\mathbb{E}(n)).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For example, ER(1) is equivalent to usual real K-theory KO.

Two Remarks:

(1) Let $\lambda = 2^{n+2}(2^{n-1}-1) + 1$. Then there is a nilpotent class:

$$\eta\in\pi_\lambda(\mathbb{E}({\it n}))=\pi_\lambda(\mathrm{ER}({\it n})), \qquad 2\eta=\eta^{2^{n+1}-1}=0.$$

So for example, for n = 1, we have $\lambda = 1$ and : $\eta \in \pi_1(KO)$.

(2) There is an invertible class $y \in \pi_{\lambda+\alpha}(\mathbb{E}(n))$ lifting $v_n^{(2^n-1)}$. So we may shift cohomology classes to integral degree:

$$\mathbb{E}(n)^{k(1+\alpha)}(X) \longrightarrow \mathbb{E}(n)^{k(1-\lambda)}(X), \qquad z \mapsto \hat{z} := y^k z.$$

In particular, $v_i \in \mathbb{E}(n)_{(2^i-1)(1+\alpha)}$ have integral shifts: \hat{v}_i

$$\hat{\mathbf{v}}_i \in \mathbb{E}(n)_{(2^i-1)(1-\lambda)} = \mathrm{ER}(n)_{(2^i-1)(1-\lambda)}, \qquad i \leq n.$$

In the example of n = 1, we have: $\hat{v}_0 = 2$, $\hat{v}_1 = 1$. For general n, the classes \hat{v}_i will typically have nonzero grading.

II. The Bockstein Spectral Sequence $E_r(X)$: **Theorem** (KW): There is a fibration of ER(n)-module spectra: $\Sigma^{\lambda}ER(n) \xrightarrow{\cup \eta} ER(n) \longrightarrow E(n).$

Multiplication by η generates a tower, and gives rise to a first and fourth quadrant spectral sequence of ER(*n*)*-modules called the Bockstein spectral sequence:

$$\operatorname{E}_{r}(X)^{i,j} \Rightarrow \operatorname{ER}(n)^{j-i}(X), \quad |d_{r}| = (r, r+1).$$

The E₁-term is given by:

$$E(X)_{1}^{i,j} = E(n)^{i\lambda+j-i}(X), \quad d_{1}(z) = v_{n}^{-(2^{n}-1)}(1-\sigma)(z),$$

where σ is complex conjugation acting on $E(n)^*(X)$. Also,

$$d_{2^{k+1}-1}(v_n^{-2^k}) = \hat{v}_k \eta^{2^{k+1}-1} v_n^{-2^{n+k}}, \quad |\eta| = (1, -\lambda + 1).$$

Three Facts:

(1) Since $\eta^{2^{n+1}-1} = 0$, the spectral sequence collapses at $E_{2^{n+1}}(X)$. In other words:

$$\mathrm{E}_{2^{n+1}}(\mathrm{X})=\mathrm{E}_{\infty}(\mathrm{X}).$$

(2) For X = pt, the coefficients $ER(n)^*$ are a subquotient of

$$\frac{\mathbb{Z}_{(2)}[\eta, \hat{\mathbf{v}}_1, \dots, \hat{\mathbf{v}}_{n-1}, \mathbf{v}_n^{\pm 1}]}{\langle 2\eta, \eta^{2^{n+1}-1}, \eta^{2^{k+1}-1} \hat{\mathbf{v}}_k \rangle}.$$

(3) The invertible class $v_n^{2^{n+1}}$ survives and generates the periodicity of ER(*n*). In other words, ER(*n*) is $2^{n+2}(2^n - 1)$ -periodic.

Internal structure of the BSS:

Notice that there is an Algebraic map:

$$\varphi: \mathrm{E}(n)_{2*} = \mathbb{Z}_{(2)}[\mathrm{v}_1, \ldots, \mathrm{v}_n, \mathrm{v}_n^{-1}] \longrightarrow \mathrm{ER}(n)_{(1-\lambda)*}, \quad \mathrm{v}_i \mapsto \hat{\mathrm{v}}_i.$$

This map scales the degrees of classes by the factor $(1 - \lambda)/2$. The Bockstein spectral sequence for X = pt, is a spectral sequence of finitely presented $E(n)_*E(n)$ -comodules under the map φ .

Corollary (KW): Let M be a Landweber flat $E(n)^*$ -module, and let (E_r, d_r) denote the Bockstein spectral sequence for X = pt. Then $(M \otimes_{\varphi} E_r, id \otimes d_r)$ is a spectral sequence of $ER(n)^*$ -modules converging to $M \otimes_{\varphi} ER(n)^*$.

The goal now is to identify those spaces X, so that we may model $E_r(X)$ as $M \otimes_{\varphi} E_r(pt)$ for a suitable subalgebra of permanent cycles: $M \subseteq ER(n)^*(X)$. Such spaces are surprisingly common.

III. The Projective Property and LFRP:

Definition: A pointed $\mathbb{Z}/2$ -space *Z* is called *Projective* if $H_*(Z, \mathbb{Z})$ is of finite type, and *Z* is homeomorphic to a space of the form $\bigvee_I (\mathbb{CP}^{\infty})^{k_I}$ for some sequence k_I .

A $\mathbb{Z}/2$ -equivariant H-space Y is said to have the *Projective Property* if there exists a projective space Z endowed with an equivarinat map $f : Z \longrightarrow Y$, such that $H_*(Y, \mathbb{Z}/2)$ is generated as an algebra by the image of f.

Eamples of spaces with projective propery:

$$\underline{\mathbb{MU}}_{k(1+\alpha)}, \quad \underline{\mathbb{BP}}_{k(1+\alpha)}, \quad \underline{\mathbb{BP}}\langle n \rangle_{k(1+\alpha)} \quad \text{for } k < 2^{n+1}.$$

Theorem (KW): If Y is a space with the projective property, then the map ρ given by forgetting the equivariant structure:

$$\rho: \mathbb{E}(n)^{*(1+\alpha)}(\mathbf{Y}) \longrightarrow \mathbf{E}(n)^{2*}(\mathbf{Y}),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is an isomorphism of $\mathbb{MU}^{*(1+\alpha)}$ -algebras.

The above theorem, along with the shift isomorphism yields: **Corollary** (KW): If Y is a space with the projective property, then we have an isomorphism:

$$\varphi: \mathrm{E}(n)^{2*}(\mathrm{Y}) \longrightarrow \mathrm{ER}(n)^{*(1-\lambda)}(\mathrm{Y}).$$

Definition (LFRP): Let X be a (non-equivariant) space such that $E(n)^*(X)$ is Landweber flat. Assume that there exists a space Y with the projective property equipped with a map: $X \longrightarrow Y^{\mathbb{Z}/2}$ such that the composite map: $\iota : X \longrightarrow Y^{\mathbb{Z}/2} \longrightarrow Y$ is surjective in E(n), and that the natural map:

$$\iota^* \varphi : \mathrm{E}(\mathbf{n})^{2*}(\mathrm{Y}) \longrightarrow \mathrm{ER}(\mathbf{n})^{*(1-\lambda)}(\mathrm{X}),$$

factors through $E(n)^{2*}(X)$. Then we call the pair (X, Y), a *Landweber Flat Real Pair*. One can show that the factorization: $E(n)^{2*}(X) \longrightarrow ER(n)^{*(1-\lambda)}(X)$ is injective. Call its image $\hat{E}(n)^{*}(X)$. We treat the case n = 1 separately.

IV. The Main theorem and Examples:

Theorem (KLW): Assume that (X, Y) is a LFRP. Let $\hat{E}(n)^*(X) \subseteq ER(n)^{*(1-\lambda)}(X)$ denote the (injective) image of the above factorization. Then there is an isomorphism of algebras:

 $\operatorname{ER}(n)^* \otimes \widehat{\operatorname{E}}(n)^*(X) \longrightarrow \operatorname{ER}(n)^*(X),$

where the tensor product is being taken over $\hat{E}(n)^*(pt)$.

Two Remarks:

(1) The ring $\hat{E}(n)^*(X)$ is abstractly isomorphic to $E(n)^*(X)$ with a rescaling of degrees and so the above theorem shows that $ER(n)^*(X)$ is obtained from $E(n)^*(X)$ by a subtle base change.

(2) The Künneth theorem holds:

 $\operatorname{ER}(n)^*(X_1 \times X_2) = \operatorname{ER}(n)^*(X_1) \,\widehat{\otimes} \, \operatorname{ER}(n)^*(X_2),$

シック・ボート 小田 ト 小田 ト うらく

where the completed tensor product is over $ER(n)^*$.

Examples of LFRP (X, Y):

$$\begin{split} X &= \mathrm{K}(\mathbb{Z}, 2m+1), \quad \mathrm{Y} = \underline{\mathbb{BP}}\langle 2m-1 \rangle_{(2^{2m}-1)(1+\alpha)} \\ X &= \mathrm{K}(\mathbb{Z}/2^{q}, 2m), \quad \mathrm{Y} = \underline{\mathbb{BP}}\langle 2m-1 \rangle_{(2^{2m}-1)(1+\alpha)} \\ X &= \mathrm{K}(\mathbb{Z}/2, m), \quad \mathrm{Y} = \underline{\mathbb{BP}}\langle m-1 \rangle_{(2^{m}-1)(1+\alpha)} \\ X &= \mathrm{BO}, \quad \mathrm{Y} = \underline{\mathbb{BP}}\langle 1 \rangle_{(1+\alpha)} \cong \mathrm{BU} \\ X &= \mathrm{BSO}, \quad \mathrm{Y} = \underline{\mathbb{BP}}\langle 1 \rangle_{2(1+\alpha)} \cong \mathrm{BSU} \\ X &= \mathrm{BSpin}, \quad \mathrm{Y} = \underline{\mathbb{BP}}\langle 1 \rangle_{2(1+\alpha)} \cong \mathrm{BSU} \\ X &= \overline{\mathrm{BSpin}}, \quad \mathrm{Y} = \underline{\mathbb{BP}}\langle 1 \rangle_{3(1+\alpha)} \cong \mathrm{BU} \langle 6 \rangle \\ \widetilde{\mathrm{BSpin}} \text{ is the fiber of } \mathrm{p}_1 : \mathrm{BSpin} \longrightarrow \mathrm{K}(\mathbb{Z}, 4). \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

We can be more explicit in some cases, for example:

 $\mathrm{ER}(n)^*(\mathrm{BO}) = \mathrm{ER}(n)^*[[\hat{\mathbf{c}}_1,\ldots,]]/\langle \hat{\mathbf{c}}_i - \hat{\mathbf{c}}_i^* \rangle \sim \mathrm{E}(n)^*(\mathrm{BU})/\langle \mathbf{c}_i - \mathbf{c}_i^* \rangle.$

In general $\hat{E}(n)^*(X)$ is a regraded quotient of $E(n)^*(Y)$.

All the previous examples tie into short exact sequences of completed algebras.

Definition: A sequence of complete, augmented topological R algebras:

$$A \longrightarrow B \longrightarrow C$$
,

is a called *SES of completed algebras* if the following is a SES of R-modules:

$$\mathbf{0} \longrightarrow B \,\hat{\otimes}\, \mathrm{I}(\mathrm{A}) \longrightarrow B \longrightarrow C \longrightarrow \mathbf{0},$$

where I(A) denotes the augmentation ideal of A, and the completed tensor product is taken over R.

Theorem (KLW): The following are SES of completed $ER(n)^*$ -algebras:

 $\operatorname{ER}(n)^{*}(\operatorname{K}(\mathbb{Z}/2,1)) \longrightarrow \operatorname{ER}(n)^{*}(\operatorname{BO}) \longrightarrow \operatorname{ER}(n)^{*}(\operatorname{BSO}),$ $\operatorname{ER}(n)^{*}(\operatorname{K}(\mathbb{Z}/2,2)) \longrightarrow \operatorname{ER}(n)^{*}(\operatorname{BSO}) \longrightarrow \operatorname{ER}(n)^{*}(\operatorname{BSpin}),$ $\operatorname{ER}(n)^{*}(\operatorname{BSpin}) \longrightarrow \operatorname{ER}(n)^{*}(\widetilde{\operatorname{BSpin}}) \longrightarrow \operatorname{ER}(n)^{*}(\operatorname{K}(\mathbb{Z},3)),$ $\operatorname{ER}(n)^{*}(\operatorname{K}(\mathbb{Z}/2,3)) \longrightarrow \operatorname{ER}(n)^{*}(\widetilde{\operatorname{BSpin}}) \longrightarrow \operatorname{ER}(n)^{*}(\operatorname{BO}\langle 8\rangle).$

Two Remarks:

(1) All the above SES's are induced by topological connective covers.

(2) The ring $ER(n)^*(K(\mathbb{Z}/2,3))$ is trivial if n < 3, so we notice:

 $\operatorname{ER}(n)^*(\widetilde{\operatorname{BSpin}}) = \operatorname{ER}(n)^*(\operatorname{BO}\langle 8\rangle), \quad n \leq 2.$