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I. Real Theories:

Everything is localized (possibly completed) at the prime p = 2.

We may construct a Z/2 = Gal(C/R)-equivariant model for
complex cobordism by retaining the Galois (i.e. complex
conjugation) action on the pre-spectrum given by Thom spaces:
BU(k)γk , where BU(k) is the Grassmannian of complex k -planes
in C∞ supporting the tautological bundle γk .
The structure maps are of the form:

Σ(1+α)BU(k)γk −→ BU(k+1)γk+1 ,

where Σ(1+α) represents the one point compactification of the
representation 1 + α = C (here α is the sign representation).

Notation: ΣV X := SV ∧ X, where SV is the one-point
compactification of a representation V .



Real complex cobordism MU is defined as the RO(Z/2) i.e
(Z⊕ Zα)-graded complex cobordism spectrum given by
spectrifying the Z/2 pre-spectrum above:

MU := colimk Σ−k(1+α)BU(k)γk ,

Define bigraded cohomology: MUa+bα(X) := [X,Σa+bαMU]Z/2

By construction, the spectrum MU supports a tautological
orientation µ ∈MU1+α(CP∞). So that:

MU∗(1+α)(CP∞) = MU∗(1+α)[[µ]],

MU∗(1+α)(CP∞ × CP∞) = MU∗(1+α)[[µ1, µ2]].

This yields a formal group law over π∗(1+α)(MU) that refines
the formal group law of MU. So one obtains classes
vk ∈MU(2k−1)(1+α) that lift the usual classes vk ∈MU2(2k−1).



We can now define the Z/2-equivariant versions of the spectra:
BP, BP〈n〉 and Real equivariant Johnson-Wilson spectra E(n):

E(n) := BP〈n〉[v−1
n ] = BP[v−1

n ]/〈vn+1,vn+2, · · · 〉.

These equivariant spectra have been extensively studied by
Hu-Kriz. They show, for example E(1) is equivalent to Atiyah’s
“real" K-theory KR.

Definition: The real Johnson-Wilson spectrum ER(n) is defined
as the homotopy fixed point spectrum: E(n)hZ/2.

The (integer graded) homotopy groups of E(n) and ER(n)
agree:

πt (ER(n)) = πt (E(n)).

For example, ER(1) is equivalent to usual real K-theory KO.



Two Remarks:

(1) Let λ = 2n+2(2n−1 − 1) + 1. Then there is a nilpotent class:

η ∈ πλ(E(n)) = πλ(ER(n)), 2η = η2n+1−1 = 0.

So for example, for n = 1, we have λ = 1 and : η ∈ π1(KO).

(2) There is an invertible class y ∈ πλ+α(E(n)) lifting v(2n−1)
n .

So we may shift cohomology classes to integral degree:

E(n)k(1+α)(X) −→ E(n)k(1−λ)(X), z 7→ ẑ := yk z.

In particular, vi ∈ E(n)(2i−1)(1+α) have integral shifts: v̂i

v̂i ∈ E(n)(2i−1)(1−λ) = ER(n)(2i−1)(1−λ), i ≤ n.

In the example of n = 1, we have: v̂0 = 2, v̂1 = 1. For general
n, the classes v̂i will typically have nonzero grading.



II. The Bockstein Spectral Sequence Er(X):
Theorem (KW): There is a fibration of ER(n)-module spectra:

ΣλER(n)
∪ η−→ ER(n) −→ E(n).

Multiplication by η generates a tower, and gives rise to a first
and fourth quadrant spectral sequence of ER(n)∗-modules
called the Bockstein spectral sequence:

Er (X)i,j ⇒ ER(n)j−i(X), |dr | = (r , r + 1).

The E1-term is given by:

E(X)i,j
1 = E(n)iλ+j−i(X), d1(z) = v−(2

n−1)
n (1− σ)(z),

where σ is complex conjugation acting on E(n)∗(X). Also,

d2k+1−1(v−2k

n ) = v̂kη
2k+1−1v−2n+k

n , |η| = (1,−λ+ 1).



Three Facts:

(1) Since η2n+1−1 = 0, the spectral sequence collapses at
E2n+1(X). In other words:

E2n+1(X) = E∞(X).

(2) For X = pt, the coefficients ER(n)∗ are a subquotient of

Z(2)[η, v̂1, . . . , v̂n−1,v±1
n ]

〈2η, η2n+1−1, η2k+1−1v̂k 〉
.

(3) The invertible class v2n+1

n survives and generates the
periodicity of ER(n). In other words, ER(n) is
2n+2(2n − 1)-periodic.



Internal structure of the BSS:

Notice that there is an Algebraic map:

ϕ : E(n)2∗ = Z(2)[v1, . . . ,vn,v−1
n ] −→ ER(n)(1−λ)∗, vi 7→ v̂i .

This map scales the degrees of classes by the factor (1− λ)/2.
The Bockstein spectral sequence for X = pt, is a spectral
sequence of finitely presented E(n)∗E(n)-comodules under the
map ϕ.

Corollary (KW): Let M be a Landweber flat E(n)∗-module, and
let (Er ,dr ) denote the Bockstein spectral sequence for X = pt.
Then (M⊗ϕ Er , id⊗ dr ) is a spectral sequence of
ER(n)∗-modules converging to M⊗ϕ ER(n)∗.

The goal now is to identify those spaces X, so that we may
model Er (X) as M⊗ϕ Er (pt) for a suitable subalgebra of
permanent cycles: M ⊆ ER(n)∗(X). Such spaces are
surprisingly common.



III. The Projective Property and LFRP:

Definition: A pointed Z/2-space Z is called Projective if
H∗(Z,Z) is of finite type, and Z is homeomorphic to a space of
the form

∨
I (CP∞)kI for some sequence kI .

A Z/2-equivariant H-space Y is said to have the Projective
Property if there exists a projective space Z endowed with an
equivarinat map f : Z −→ Y, such that H∗(Y,Z/2) is generated
as an algebra by the image of f .

Eamples of spaces with projective propery:

MUk(1+α), BPk(1+α), BP〈n〉k(1+α) for k < 2n+1.

Theorem (KW): If Y is a space with the projective property,
then the map ρ given by forgetting the equivariant structure:

ρ : E(n)∗(1+α)(Y) −→ E(n)2∗(Y),

is an isomorphism of MU∗(1+α)-algebras.



The above theorem, along with the shift isomorphism yields:
Corollary (KW): If Y is a space with the projective property,
then we have an isomorphism:

ϕ : E(n)2∗(Y) −→ ER(n)∗(1−λ)(Y).

Definition (LFRP): Let X be a (non-equivariant) space such that
E(n)∗(X) is Landweber flat. Assume that there exists a space Y
with the projective property equipped with a map: X −→ YZ/2

such that the composite map: ι : X −→ YZ/2 −→ Y is surjective
in E(n), and that the natural map:

ι∗ϕ : E(n)2∗(Y) −→ ER(n)∗(1−λ)(X),

factors through E(n)2∗(X). Then we call the pair (X,Y), a
Landweber Flat Real Pair. One can show that the factorization:
E(n)2∗(X) −→ ER(n)∗(1−λ)(X) is injective. Call its image
Ê(n)∗(X). We treat the case n = 1 separately.



IV. The Main theorem and Examples:

Theorem (KLW): Assume that (X,Y) is a LFRP. Let
Ê(n)∗(X) ⊆ ER(n)∗(1−λ)(X) denote the (injective) image of the
above factorization. Then there is an isomorphism of algebras:

ER(n)∗ ⊗ Ê(n)∗(X) −→ ER(n)∗(X),

where the tensor product is being taken over Ê(n)∗(pt).

Two Remarks:

(1) The ring Ê(n)∗(X) is abstractly isomorphic to E(n)∗(X) with
a rescaling of degrees and so the above theorem shows that
ER(n)∗(X) is obtained from E(n)∗(X) by a subtle base change.

(2) The Künneth theorem holds:

ER(n)∗(X1 × X2) = ER(n)∗(X1) ⊗̂ER(n)∗(X2),

where the completed tensor product is over ER(n)∗.



Examples of LFRP (X,Y):

X = K(Z,2m + 1), Y = BP〈2m − 1〉(22m−1)(1+α)

X = K(Z/2q,2m), Y = BP〈2m − 1〉(22m−1)(1+α)

X = K(Z/2,m), Y = BP〈m − 1〉(2m−1)(1+α)

X = BO, Y = BP〈1〉(1+α) ∼= BU

X = BSO, Y = BP〈1〉2(1+α) ∼= BSU

X = BSpin, Y = BP〈1〉2(1+α) ∼= BSU

X = B̃Spin, Y = BP〈1〉3(1+α) ∼= BU〈6〉

B̃Spin is the fiber of p1 : BSpin −→ K(Z,4).



We can be more explicit in some cases, for example:

ER(n)∗(BO) = ER(n)∗[[ĉ1, . . . , ]]/〈ĉi − ĉ∗i 〉 ∼ E(n)∗(BU)/〈ci − c∗i 〉.

In general Ê(n)∗(X) is a regraded quotient of E(n)∗(Y).

All the previous examples tie into short exact sequences of
completed algebras.

Definition: A sequence of complete, augmented topological R
algebras:

A −→ B −→ C,

is a called SES of completed algebras if the following is a SES of
R-modules:

0 −→ B ⊗̂ I(A) −→ B −→ C −→ 0,

where I(A) denotes the augmentation ideal of A, and the
completed tensor product is taken over R.



Theorem (KLW): The following are SES of completed
ER(n)∗-algebras:

ER(n)∗(K(Z/2,1)) −→ ER(n)∗(BO) −→ ER(n)∗(BSO),

ER(n)∗(K(Z/2,2)) −→ ER(n)∗(BSO) −→ ER(n)∗(BSpin),

ER(n)∗(BSpin) −→ ER(n)∗(B̃Spin) −→ ER(n)∗(K(Z,3)),

ER(n)∗(K(Z/2,3)) −→ ER(n)∗(B̃Spin) −→ ER(n)∗(BO〈8〉).

Two Remarks:

(1) All the above SES’s are induced by topological connective
covers.

(2) The ring ER(n)∗(K(Z/2,3)) is trivial if n < 3, so we notice:

ER(n)∗(B̃Spin) = ER(n)∗(BO〈8〉), n ≤ 2.


