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Goals for the talk

@ Discuss a new system of modular characteristic classes for
group representations over finite fields

@ Use it to detect nontrivial classes in H*(GLy(Fpr); Fp)
(for r = 1, and mostly for p = 2)

@ Discuss applications to (co)homology of Aut(F,) and
GLn(Z) (if time). Here Fj is the free group on n generators.

Anssi Lahtinen Modular characteristic classes



Modular characteristic classes?

paprime, g =p’, F afield

A H*(—; F)-valued characteristic class 6 for representations
over IFq is an assignment

G group, iy
(p representation of G over Fq) — () € H (G F).

p: G— GLn(]Fq)

This assignment must satisfy
@ 9(p) only depends on the isomorphism class of p
Q 4(f*p) =rf6(p) forall f: H— G. Here f*p=pof.
Call & modular if char(F) = p.
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Connection to cohomology of GL,(FF)

@ Characteristic class 6 ~ universal classes
0\ = 0(idar,(r,)) € H (GLn(Fq); F), n>0

@ Then 6(p) = p*(#M) when dim(p) = n
@ Conversely, given elements (") € H*(GLp(Fq); F), n > 0,
definining

0(p) = p*(6")  ifdim(p) =n

gives a characteristic class
@ 9" £ 0iff §(p) # 0 for some n-dimensional rep p
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Previous results on H*(GL,(Fy); IF)

Case char(IF) # p is well understood:
@ char(F) =0 = H*(GLy(Fq); F) =F
@ Quillen (1972): complete computation of H*(GLy(Fg); F),
¢ prime # p.
Case char(IF) = p remains poorly understood.

@ Quillen: computing H*(GLn(Fg); Fp) “seems to be a
difficult problem once n > 3.

@ First idea: work backwards from GL(F)
@ Second idea: work backwards from GL(Fg)

@ Neither works! Quillen (1972):
H*(GL(Fq); Fp) = H*(GLn(Fq); Fp) = Fp
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Results on H*(GL,(Fy); Fp)

Triviality results: H'(GLy(Fpr); Fp) = 0 when ...

@ Friedlander—Parshall (1983): 0 < i < r(2p — 3)

@ Quillen (1972) + Maazen (1979): 0 < i < | n/2]

@ Quillen (unpublished): 0 < i < nfor p" # 2

Nontriviality results:

@ Computations for n < 4: Quillen (1972), Aguadé (1980),
Tezuka—Yagita (1983),...

@ Sprehn (2015): H'(2P=3)(GL,(Fp); Fp) #0for2<n<p
(similar earlier results by Barbu (2004),
Bendel-Nakano—Pillen (2012))

@ Milgram—Priddy (1987): A set of algebraically independent
classes of cardinality equal to the Krull dimension of
H*(GLn(Fp); Fp). The classes live in very high degrees
(exponential in n).
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Summary of results on H*(GL(Fy); Fp)

@ Our understanding of H*(GLn(FFyr); Fp) remains very
incomplete!

@ There is a huge gap between known vanishing range
(linear in n) and the degrees of previously known nontrivial
classes (exponential in n)

@ In our work, we construct explicit nontrivial classes in
degrees linearin n
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Our characteristic classes

For simplicity, until further notice take g = p = 2,
H* = H*(—; F>).

Fact/Convention

Y5 < GLp(F2) induces an iso H*(GLz(Fz)) = H*(X2) = Faly].
We identify H*(GLa(F2)) = Fa[y].

For k > 0, let xx be the characteristic class defined by the
elements \") = iix*(y¥) € H¥(GLy(F2)) where

i GL2 ES T
GLa(F) g |72 ) ] e GLatE

(so xk(p) = p*(Xg(n)) when dim p = n). We set xo = 0.

(xk(p) is only defined when dim(p) > 2.)
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Alternative definition

Definition (second version)
Let p be a representation over I, of a group G with dim p > 2.

Pt/ G+ Emb(F2, p)/ G x GLa(F2) —— pt/ GLa(F2)
We set xo(p) = 0 and xx(p) = m7*(y*) for k > 0.

@ Emb denotes linear embeddings
@ “/” denotes homotopy orbits: X /T = EI xr X

The action of GLy(F2) on Emb(IFg, p) is free with orbit space
Gra(p). So  factors as
Emb(F3,p) / G x GLa(F2) = Gra(p) ) G — pt/ G.

Thus m makes sense. Compatibility of transfers with pullbacks
= Yk IS a characteristic class.

Anssi Lahtinen Modular characteristic classes



Properties of the characteristic classes

@ Vanishing on decomposables:

xk(p®n) =0

whenever dim(p), dim(n) > 0.

@ Tensor product formula: Let p, n be representations of
elementary abelian 2-groups G, H with dim(p),dim(»n) > 2.
Then

wloin) = 3 (7)) % ) € HA(G x ),
itj=k

(p&n the external tensor product: (g, h)- v w = gv® hw.)
@ Nontriviality: xx(idg,r,) = ¥* € H*(GLoF>) for k > 0.
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The characteristic classes of Fa[X 5]

Let us compute the characteristic classes of Fo[>7].

Lemma

K o ik :
y*“e H(X3) ifk>0
Fo[Xs]) =
xk(F2[Z2]) {OEHO(ZQ) k=0

We have
Fo[¥2] ~ i*(idgL,(r,))

where i: Yo — GLp(F») is the inclusion. So
Xk(F2[X2]) = i*xk(idaL,(r,)) = I*(V*) = y*

when k > 0. Moreover, yo = 0 by definition. O
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The characteristic classes of F»[X]]

H*(£5) = Fa[y1, ..., yn] where y; =1 x -

Theorem
k
weEp - X, ,n)yr---y;r.
Nir

i1+ tin=

i yeeesin>0
xk(F2[23])
= xk(F2[X2]®")
k
= 5 (i ez xRl
HAein=k N
k . ,
/1+ +[nk 1y.-+51n
i1 yeeeyin>0
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Consequences of the computation

Theorem
Xk(]F2[Zr27]) Zl1+ +in= (,1, L )Y1 : yrI;7
iy 7ln>0
Q: When is (1 i) #0 mod 2?
A: Precisely when there is no carry when summing up i, ..., in
in binary.

Corollary

xk(F2[X5]) # O precisely when k has at least n ones in its
binary expansion.

Corollary

Suppose k has at least n ones in its binary expansion. Then
X&) # 0 € HY(GLn(F2)).

The smallest example is k = 2" — 1. Linearly related to 2"!
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Parabolic induction maps

What about H*(GL4(F2)) when d is not a power of 27

For m < n, the parabolic induction map ®m, , is
Pmn=hon™: H(GLm(F2)) = H*(GLs(F2))

where

i GLm & T

incl
Example

Xf(n) = by p(y¥) for k > 0.

Lemma

Pmno®ym=®,foralll <m<n.
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Classes in H*(GLy(F2)

—
—
N—

Corollary
XN = o n (! )) forall n < N.
In particular, Xk ;é 0 implies that x ;é 0foralln<N.

Recall that Xk ;é 0 whenever k has at least n ones in binary.
We get

Theorem
Foranyd > 2,

Xi) # 0 € H(GLq(F2))
whenever the binary expansion of k has at least log,(d) ones.

The smallest example is k = 2/109:91 _ 1 < 2d — 3.
Get nontrivial classes in H*(GL4(F2)) in linear degrees for all d!
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Odd primes

We have a H*(—; IF)-valued characteristic class x,, for reps over
F,r for each a € H*(GLy(Fyr); IF). Here char(F) = p. Recall that
H*(GL2(FF2); F2) = F2[y]; we have xx = x .

For p odd, H*(GL>(Fp); Fp) is the subring of
H*(Fp; Fp) = Fp(x) ® Fply], [x|=1,ly|=2.
spanned by monomials x3y?, a € {0,1}, b > 0, withp—1|a+b.

Let p be odd. Then

_ b
XeapFAER) = (1 Y (7 e oy
S AN o PERRRY
byt +bn=b
p—1|aj+b;#0 Vi
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Odd primes, continued

Let p be odd. Then
xym(Fp[Fp]) # 0 € H2™(Fp; Fp)

iff the sum of the p-ary digits of m is k(p — 1) for some k > n
and
Xxym(Fo[Fp]) # 0 € H2™ 1 (Fp; Fp)
iff the sum of the p-ary digits of m is k(p — 1) — 1 for some
k > n.

Smallest examples: m=p" —1and m=p" — p" 1 — 1,
respectively.

Corollary

Nontrivial elements X((Xd) € H*(GL4(Fp); Fp) in degrees linear in
d.

Anssi Lahtinen Modular characteristic classes



Consequences for Aut(F,) and GL,(Z)

The regular representation ¥} — GLpn(Fp) factors through
many interesting groups. For example:

FolF7]

-

FI % Epn —' AUt(Fpr) — 2 GLpn(Z) 22" GLp(Fp)

Corollary
Suppose a € H*(GLa(Fp); Fp) is such that x.(Fp[Fpj]) # 0.
Then

Xa(pcan) # 0 € H (GLp(Z); Fp)

and
Xa(ﬂ';b/v’can) #0¢€ H*(AUt(FP”); FP)-

Get lots of nontrivial classes. These live in the unstable range
where the cohomology of GL,(Z) and Aut(F,) is poorly
understood.
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Consequences for homology

Computation of x,(Fp[Fj]) ~» indecomposable elements in
Observation

H. (L1, BXn), H«(Ll, BAut(F,)) and H.(| |, BGLx(R)) have ring
structures induced by

Yo X Tm -2 Toem
Aut(Fp) x Aut(Fm) == Aut(Fp.im)
GLy(R) x GLm(R) % GLnym(R)

Moreover, H,(| |,, B¥n), H:(l,, BGLs(R)) have an additional
product o induced by

Yo X Ym = Yhm

GLA(R) x GLn(R) 2 GLpym(R)



Consequences for homology, continued

Theorem

Suppose by, ..., by € Z are positive multiples of p — 1 such that
there is no carry when by, . .., b, are added together in base p.
Letb = by + - - - + bp. Then the following elements are
indecomposable in their respective rings:

(i) ix(Ep, -+ 0 Ep,) € Hap(Aut(Fpn)) in H. (|, BAUt(Fy))
(i) EZ o---o0 EZ € Hap(GLp(2)) in H. (Ll BGLk(Z))

(ili) EyP o0 Ey? € Hap(GLpn(Fp)) in Ha(| | BGLK(Fp)).

(Hx = H.(—; Fp), for p = 2, replace 2b by b.)

Here i: an — AUt(Fpn) and Ek S Hgk(ZP), Eﬁ S Hgk(GLp(R))
are certain explicit elements. (For p = 2, replace 2k by k.)
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Consequences for homology, continued

Sketch of proof.

The elements in (i) and (ii) map to the element in (iii) under the
ring homomorphisms induced by

Aut(Fpn) =225 GLpn(Z) 2% GLp(Fp)
so it is enough to prove (iii). We have
Fp Fp
Eb1 © ooo® Ebn = (Preg)*(zb1 X oo X an)
where zy € H,(F,) is the dual of y* € H*(Fp). Thus

b
(X5 EpP o+ 0 Ep) = (xyo(FplFp), Zb, X -+ X Z,) # 0.

Indecomposability now follows from the vanishing of x,» on
decomposable representations. O
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Thank you!

Preprint: arXiv:1607.01052
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