Modular characteristic classes for representations over finite fields

Anssi Lahtinen

Universität Hamburg

Alpine conference on algebraic and applied topology Saas-Almagell, August 2016

Joint work with David Sprehn Preprint: arXiv:1607.01052

Goals for the talk

- Discuss a new system of modular characteristic classes for group representations over finite fields
- Use it to detect nontrivial classes in $H^*(GL_n(\mathbb{F}_{p^r}); \mathbb{F}_p)$ (for r=1, and mostly for p=2)
- Discuss applications to (co)homology of $Aut(F_n)$ and $GL_n(\mathbf{Z})$ (if time). Here F_n is the free group on n generators.

Modular characteristic classes?

p a prime, $q = p^r$, \mathbb{F} a field

Definition

A $H^*(-; \mathbb{F})$ -valued characteristic class θ for representations over \mathbb{F}_q is an assignment

$$\left(\underbrace{\frac{G \text{ group},}{\rho \text{ representation of } G \text{ over } \mathbb{F}_q}}_{\rho \colon G \to GL_n(\mathbb{F}_q)}\right) \longmapsto \theta(\rho) \in H^*(G; \, \mathbb{F}).$$

This assignment must satisfy

- **1** $\theta(\rho)$ only depends on the isomorphism class of ρ
- ② $\theta(f^*\rho) = f^*\theta(\rho)$ for all $f: H \to G$. Here $f^*\rho = \rho \circ f$.

Call θ modular if char(\mathbb{F}) = p.

Connection to cohomology of $GL_n(\mathbb{F}_q)$

• Characteristic class $\theta \rightsquigarrow universal\ classes$

$$heta^{(n)}:= heta(\mathsf{id}_{GL_n(\mathbb{F}_q)})\in H^*(GL_n(\mathbb{F}_q);\,\mathbb{F}),\quad n\geq 0$$

- Then $\theta(\rho) = \rho^*(\theta^{(n)})$ when $\dim(\rho) = n$
- Conversely, given elements $\theta^{(n)} \in H^*(GL_n(\mathbb{F}_q); \mathbb{F}), n \geq 0$, definining

$$\theta(\rho) := \rho^*(\theta^{(n)})$$
 if $\dim(\rho) = n$

gives a characteristic class

• $\theta^{(n)} \neq 0$ iff $\theta(\rho) \neq 0$ for some *n*-dimensional rep ρ

Previous results on $H^*(GL_n(\mathbb{F}_q); \mathbb{F})$

Case char(\mathbb{F}) $\neq p$ is well understood:

- $\operatorname{char}(\mathbb{F}) = 0 \Rightarrow H^*(GL_n(\mathbb{F}_q); \mathbb{F}) = \mathbb{F}$
- Quillen (1972): complete computation of $H^*(GL_n(\mathbb{F}_q); \mathbb{F}_\ell)$, ℓ prime $\neq p$.

Case char(\mathbb{F}) = p remains poorly understood.

- Quillen: computing $H^*(GL_n(\mathbb{F}_q); \mathbb{F}_p)$ "seems to be a difficult problem once $n \geq 3$."
- First idea: work backwards from $GL(\mathbb{F}_q)$
- Second idea: work backwards from $GL_n(\bar{\mathbb{F}}_q)$
- Neither works! Quillen (1972): $H^*(GL(\mathbb{F}_q); \mathbb{F}_p) = H^*(GL_n(\overline{\mathbb{F}}_q); \mathbb{F}_p) = \mathbb{F}_p$

Results on $H^*(GL_n(\mathbb{F}_{p^r}); \mathbb{F}_p)$

- Triviality results: $H^{i}(GL_{n}(\mathbb{F}_{p^{r}}); \mathbb{F}_{p}) = 0$ when . . .
 - Friedlander–Parshall (1983): 0 < i < r(2p 3)
 - Quillen (1972) + Maazen (1979): $0 < i < \lfloor n/2 \rfloor$
 - Quillen (unpublished): 0 < i < n for $p^r \neq 2$

Nontriviality results:

- Computations for $n \le 4$: Quillen (1972), Aguadé (1980), Tezuka-Yagita (1983),...
- Sprehn (2015): $H^{r(2p-3)}(GL_n(\mathbb{F}_{p^r}); \mathbb{F}_p) \neq 0$ for $2 \leq n \leq p$ (similar earlier results by Barbu (2004), Bendel–Nakano–Pillen (2012))
- Milgram–Priddy (1987): A set of algebraically independent classes of cardinality equal to the Krull dimension of $H^*(GL_n(\mathbb{F}_p); \mathbb{F}_p)$. The classes live in very high degrees (exponential in n).

Summary of results on $H^*(GL_n(\mathbb{F}_{p^r}); \mathbb{F}_p)$

- Our understanding of H*(GL_n(F_p); F_p) remains very incomplete!
- There is a huge gap between known vanishing range (linear in n) and the degrees of previously known nontrivial classes (exponential in n)
- In our work, we construct explicit nontrivial classes in degrees linear in n

Our characteristic classes

For simplicity, until further notice take q = p = 2, $H^* = H^*(-; \mathbb{F}_2)$.

Fact/Convention

 $\Sigma_2 \hookrightarrow GL_2(\mathbb{F}_2)$ induces an iso $H^*(GL_2(\mathbb{F}_2)) \xrightarrow{\approx} H^*(\Sigma_2) = \mathbb{F}_2[y]$. We identify $H^*(GL_2(\mathbb{F}_2)) = \mathbb{F}_2[y]$.

Definition

For k > 0, let χ_k be the characteristic class defined by the elements $\chi_k^{(n)} = i_! \pi^*(y^k) \in H^k(GL_n(\mathbb{F}_2))$ where

$$GL_n(\mathbb{F}_2) \stackrel{i}{\leftarrow_{\mathsf{incl}}} \begin{bmatrix} GL_2 & * \\ & GL_{n-2} \end{bmatrix} \stackrel{\pi}{\longrightarrow_{\mathsf{proj}}} GL_2(\mathbb{F}_2)$$

(so
$$\chi_k(\rho) = \rho^*(\chi_k^{(n)})$$
 when dim $\rho = n$). We set $\chi_0 = 0$.

 $(\chi_k(\rho))$ is only defined when $\dim(\rho) \geq 2$.)

Alternative definition

Definition (second version)

Let ρ be a representation over \mathbb{F}_2 of a group G with dim $\rho \geq 2$.

$$\operatorname{pt}/\!\!/ G \overset{\pi}{\longleftarrow} \operatorname{Emb}(\mathbb{F}_2^2,\rho)/\!\!/ G \times \operatorname{GL}_2(\mathbb{F}_2) \overset{\tau}{\longrightarrow} \operatorname{pt}/\!\!/ \operatorname{GL}_2(\mathbb{F}_2)$$

We set $\chi_0(\rho) = 0$ and $\chi_k(\rho) = \pi_! \tau^*(y^k)$ for k > 0.

- Emb denotes linear embeddings
- "//" denotes homotopy orbits: $X/\!\!/\Gamma = E\Gamma \times_{\Gamma} X$

The action of $GL_2(\mathbb{F}_2)$ on $Emb(\mathbb{F}_2^2, \rho)$ is free with orbit space $Gr_2(\rho)$. So π factors as

$$\mathsf{Emb}(\mathbb{F}_2^2,\rho) /\!\!/ \, G \times \mathit{GL}_2(\mathbb{F}_2) \xrightarrow{\cong} \mathsf{Gr}_2(\rho) /\!\!/ \, G \to \mathsf{pt} /\!\!/ \, G.$$

Thus $\pi_!$ makes sense. Compatibility of transfers with pullbacks $\Rightarrow \chi_k$ is a characteristic class.

Properties of the characteristic classes

Vanishing on decomposables:

$$\chi_k(\rho\oplus\eta)=0$$

whenever $dim(\rho), dim(\eta) > 0$.

• Tensor product formula: Let ρ , η be representations of elementary abelian 2-groups G, H with $\dim(\rho)$, $\dim(\eta) \geq 2$. Then

$$\chi_k(\rho \hat{\otimes} \eta) = \sum_{i+j=k} {k \choose i} \chi_i(\rho) \times \chi_j(\eta) \in H^k(G \times H).$$

 $(\rho \hat{\otimes} \eta \text{ the external tensor product: } (g,h) \cdot v \otimes w = gv \otimes hw.)$

• Nontriviality: $\chi_k(\mathrm{id}_{GL_2\mathbb{F}_2}) = y^k \in H^k(GL_2\mathbb{F}_2)$ for k > 0.

The characteristic classes of $\mathbb{F}_2[\Sigma_2]$

Let us compute the characteristic classes of $\mathbb{F}_2[\Sigma_2^n]$.

Lemma

$$\chi_k(\mathbb{F}_2[\Sigma_2]) = \begin{cases} y^k \in H^k(\Sigma_2) & \text{if } k > 0\\ 0 \in H^0(\Sigma_2) & \text{if } k = 0 \end{cases}$$

Proof.

We have

$$\mathbb{F}_2[\Sigma_2] \approx i^*(\mathsf{id}_{GL_2(\mathbb{F}_2)})$$

where $i : \Sigma_2 \to GL_2(\mathbb{F}_2)$ is the inclusion. So

$$\chi_k(\mathbb{F}_2[\Sigma_2]) = i^* \chi_k(\operatorname{id}_{GL_2(\mathbb{F}_2)}) = i^*(y^k) = y^k$$

when k > 0. Moreover, $\chi_0 = 0$ by definition.

The characteristic classes of $\mathbb{F}_2[\Sigma_2^n]$

$$H^*(\Sigma_2^n) = \mathbb{F}_2[y_1, \dots, y_n]$$
 where $y_i = 1 \times \dots \times \stackrel{i}{y} \times \dots \times 1$.

Theorem

$$\chi_k(\mathbb{F}_2[\Sigma_2^n]) = \sum_{\substack{i_1 + \dots + i_n = k \\ i_1, \dots, i_n > 0}} {k \choose i_1, \dots, i_n} y_1^{i_1} \cdots y_n^{i_n}.$$

Proof.

$$\chi_{k}(\mathbb{F}_{2}[\Sigma_{2}^{n}])
= \chi_{k}(\mathbb{F}_{2}[\Sigma_{2}]^{\hat{\otimes}n})
= \sum_{i_{1}+\dots+i_{n}=k} {k \choose i_{1},\dots,i_{n}} \chi_{i_{1}}(\mathbb{F}_{2}[\Sigma_{2}]) \times \dots \times \chi_{i_{n}}(\mathbb{F}_{2}[\Sigma_{2}])
= \sum_{i_{1}+\dots+i_{n}=k} {k \choose i_{1},\dots,i_{n}} y_{1}^{i_{1}}\dots y_{n}^{i_{n}}$$

Consequences of the computation

Theorem

$$\chi_k(\mathbb{F}_2[\Sigma_2^n]) = \sum_{\substack{i_1 + \dots + i_n = k \\ i_1, \dots, i_n > 0}} \binom{k}{i_1, \dots, i_n} y_1^{i_1} \cdots y_n^{i_n}.$$

Q: When is $\binom{k}{i_1,...,i_n} \neq 0 \mod 2$?

A: Precisely when there is no carry when summing up i_1, \ldots, i_n in binary.

Corollary

 $\chi_k(\mathbb{F}_2[\Sigma_2^n]) \neq 0$ precisely when k has at least n ones in its binary expansion.

Corollary

Suppose k has at least n ones in its binary expansion. Then $\chi_k^{(2^n)} \neq 0 \in H^k(GL_{2^n}(\mathbb{F}_2)).$

The smallest example is $k = 2^n - 1$. Linearly related to $2^n!$

Parabolic induction maps

What about $H^*(GL_d(\mathbb{F}_2))$ when d is not a power of 2?

Definition

For $m \le n$, the parabolic induction map $\Phi_{m,n}$ is

$$\Phi_{m,n} = i_! \circ \pi^* \colon H^*(GL_m(\mathbb{F}_2)) \to H^*(GL_n(\mathbb{F}_2))$$

where

$$GL_n(\mathbb{F}_2) \xleftarrow{i}_{\mathsf{incl}} \begin{bmatrix} GL_m & * \\ & GL_{n-m} \end{bmatrix} \xrightarrow{\pi} GL_m(\mathbb{F}_2).$$

Example

$$\chi_k^{(n)} = \Phi_{2,n}(y^k) \text{ for } k > 0.$$

Lemma

$$\Phi_{m,n} \circ \Phi_{\ell,m} = \Phi_{\ell,n}$$
 for all $\ell \leq m \leq n$.

Classes in $H^*(GL_d(\mathbb{F}_2))$

Corollary

$$\chi_k^{(N)} = \Phi_{n,N}(\chi_k^{(n)})$$
 for all $n \leq N$.

In particular, $\chi_k^{(N)} \neq 0$ implies that $\chi_k^{(n)} \neq 0$ for all $n \leq N$. Recall that $\chi_k^{(2^n)} \neq 0$ whenever k has at least n ones in binary. We get

Theorem

For any $d \ge 2$,

$$\chi_k^{(d)} \neq 0 \in H^k(GL_d(\mathbb{F}_2))$$

whenever the binary expansion of k has at least $log_2(d)$ ones.

The smallest example is $k = 2^{\lceil \log_2 d \rceil} - 1 \le 2d - 3$.

Get nontrivial classes in $H^*(GL_d(\mathbb{F}_2))$ in linear degrees for all d!

Odd primes

We have a $H^*(-; \mathbb{F})$ -valued characteristic class χ_{α} for reps over \mathbb{F}_{p^r} for each $\alpha \in H^*(GL_2(\mathbb{F}_{p^r}); \mathbb{F})$. Here $char(\mathbb{F}) = p$. Recall that $H^*(GL_2(\mathbb{F}_2); \mathbb{F}_2) = \mathbb{F}_2[y]$; we have $\chi_k = \chi_{y^k}$.

Fact

For p odd, $H^*(GL_2(\mathbb{F}_p); \mathbb{F}_p)$ is the subring of

$$H^*(\mathbb{F}_{\rho}; \mathbb{F}_{\rho}) = \mathbb{F}_{\rho}\langle x \rangle \otimes \mathbb{F}_{\rho}[y], \ |x| = 1, |y| = 2.$$

spanned by monomials x^ay^b , $a \in \{0,1\}$, $b \ge 0$, with p-1|a+b.

Theorem

Let p be odd. Then

$$\chi_{x^{a}y^{b}}(\mathbb{F}_{p}[\mathbb{F}_{p}^{n}]) = (-1)^{n-1} \sum_{\substack{a_{1} + \dots + a_{n} = a \\ b_{1} + \dots + b_{n} = b \\ p-1 \mid a_{i} + b_{i} \neq 0 \ \forall i}} \binom{b}{b_{1}, \dots, b_{n}} x^{a_{1}} y^{b_{1}} \times \dots \times x^{a_{n}} y^{b_{n}}.$$

Odd primes, continued

Proposition

Let p be odd. Then

$$\chi_{\mathcal{Y}^m}(\mathbb{F}_p[\mathbb{F}_p^n]) \neq 0 \in \mathcal{H}^{2m}(\mathbb{F}_p^n; \mathbb{F}_p)$$

iff the sum of the p-ary digits of m is k(p-1) for some $k \ge n$ and

$$\chi_{xy^m}(\mathbb{F}_{\rho}[\mathbb{F}_{\rho}^n]) \neq 0 \in H^{2m+1}(\mathbb{F}_{\rho}^n; \mathbb{F}_{\rho})$$

iff the sum of the p-ary digits of m is k(p-1)-1 for some $k \ge n$.

Smallest examples: $m = p^n - 1$ and $m = p^n - p^{n-1} - 1$, respectively.

Corollary

Nontrivial elements $\chi_{\alpha}^{(d)} \in H^*(GL_d(\mathbb{F}_p); \mathbb{F}_p)$ in degrees linear in d.

Consequences for $Aut(F_n)$ and $GL_n(\mathbf{Z})$

The regular representation $\mathbb{F}_p^n \to GL_{p^n}(\mathbb{F}_p)$ factors through many interesting groups. For example:

$$\overbrace{\mathbb{F}_{\rho}[\mathbb{F}_{\rho}^{n}]}^{\mathbb{F}_{\rho}[n]} \underbrace{\mathbb{F}_{\rho}^{n} \stackrel{c}{\longrightarrow} \Sigma_{\rho^{n}} \stackrel{i}{\longrightarrow} \operatorname{Aut}(F_{\rho^{n}}) \stackrel{\pi_{ab}}{\longrightarrow} \operatorname{GL}_{\rho^{n}}(\mathbf{Z}) \stackrel{\rho_{can}}{\longrightarrow} \operatorname{GL}_{\rho^{n}}(\mathbb{F}_{\rho})}$$

Corollary

Suppose $\alpha \in H^*(GL_2(\mathbb{F}_p); \mathbb{F}_p)$ is such that $\chi_{\alpha}(\mathbb{F}_p[\mathbb{F}_p^n]) \neq 0$. Then

$$\chi_{lpha}(
ho_{ extsf{can}})
eq 0 \in H^*(GL_{p^n}(\mathbf{Z}); \, \mathbb{F}_p)$$

and

$$\chi_{\alpha}(\pi_{ab}^* \rho_{can}) \neq 0 \in H^*(\operatorname{Aut}(F_{p^n}); \mathbb{F}_p).$$

Get lots of nontrivial classes. These live in the unstable range where the cohomology of $GL_n(\mathbf{Z})$ and $Aut(F_n)$ is poorly understood.

Consequences for homology

Computation of $\chi_{\alpha}(\mathbb{F}_{p}[F_{p}^{n}]) \rightsquigarrow$ indecomposable elements in $H_{*}(\bigsqcup_{n} BAut(F_{n}); \mathbb{F}_{p})$ and $H_{*}(\bigsqcup_{n} BGL_{n}(R); \mathbb{F}_{p}), R = \mathbf{Z}, \mathbb{F}_{p}$.

Observation

 $H_*(\bigsqcup_n B\Sigma_n)$, $H_*(\bigsqcup_n BAut(F_n))$ and $H_*(\bigsqcup_n BGL_n(R))$ have ring structures induced by

$$\begin{array}{ccc} \Sigma_n \times \Sigma_m \stackrel{\sqcup}{\longrightarrow} \Sigma_{n+m} \\ \operatorname{\mathsf{Aut}}(F_n) \times \operatorname{\mathsf{Aut}}(F_m) \stackrel{*}{\longrightarrow} \operatorname{\mathsf{Aut}}(F_{n+m}) \\ GL_n(R) \times GL_m(R) \stackrel{\oplus}{\longrightarrow} GL_{n+m}(R) \end{array}$$

Moreover, $H_*(\bigsqcup_n B\Sigma_n)$, $H_*(\bigsqcup_n BGL_n(R))$ have an additional product \circ induced by

$$\Sigma_n \times \Sigma_m \xrightarrow{\times} \Sigma_{nm}$$

$$GL_n(R) \times GL_m(R) \xrightarrow{\otimes} GL_{n+m}(R)$$

Consequences for homology, continued

Theorem

Suppose $b_1, \ldots, b_n \in \mathbf{Z}$ are positive multiples of p-1 such that there is no carry when b_1, \ldots, b_n are added together in base p. Let $b = b_1 + \cdots + b_n$. Then the following elements are indecomposable in their respective rings:

(i)
$$i_*(E_{b_1} \circ \cdots \circ E_{b_n}) \in H_{2b}(\operatorname{Aut}(F_{p^n}))$$
 in $H_*(\bigsqcup_k \operatorname{BAut}(F_k))$

(ii)
$$E_{b_1}^{\mathbf{Z}} \circ \cdots \circ E_{b_n}^{\mathbf{Z}} \in H_{2b}(GL_{p^n}(\mathbf{Z}))$$
 in $H_*(\bigsqcup_k BGL_k(\mathbf{Z}))$

(iii)
$$E_{b_1}^{\mathbb{F}_p} \circ \cdots \circ E_{b_n}^{\mathbb{F}_p} \in H_{2b}(GL_{p^n}(\mathbb{F}_p))$$
 in $H_*(\bigsqcup_k BGL_k(\mathbb{F}_p))$. $(H_* = H_*(-; \mathbb{F}_p); \text{ for } p = 2, \text{ replace 2b by b.})$

Here $i: \Sigma_{p^n} \hookrightarrow \operatorname{Aut}(F_{p^n})$ and $E_k \in H_{2k}(\Sigma_p)$, $E_k^R \in H_{2k}(GL_p(R))$ are certain explicit elements. (For p = 2, replace 2k by k.)

Consequences for homology, continued

Sketch of proof.

The elements in (i) and (ii) map to the element in (iii) under the ring homomorphisms induced by

$$\operatorname{\mathsf{Aut}}(\mathcal{F}_{p^n}) \xrightarrow{\pi_{\mathit{ab}}} \mathit{GL}_{p^n}(\mathbf{Z}) \xrightarrow{\rho_{\mathit{can}}} \mathit{GL}_{p^n}(\mathbb{F}_p)$$

so it is enough to prove (iii). We have

$$E_{b_1}^{\mathbb{F}_p} \circ \cdots \circ E_{b_n}^{\mathbb{F}_p} = (\rho_{reg})_* (z_{b_1} \times \cdots \times z_{b_n}).$$

where $z_k \in H_*(\mathbb{F}_p)$ is the dual of $y^k \in H^*(\mathbb{F}_p)$. Thus

$$\langle \chi_{y^b}^{(p^b)}, E_{b_1}^{\mathbb{F}_p} \circ \cdots \circ E_{b_n}^{\mathbb{F}_p} \rangle = \langle \chi_{y^b}(\mathbb{F}_p[\mathbb{F}_p^n]), z_{b_1} \times \cdots \times z_{b_n} \rangle \neq 0.$$

Indecomposability now follows from the vanishing of χ_{y^b} on decomposable representations.

Thank you!

Preprint: arXiv:1607.01052