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55 morphological types of neurons





The Blue Brain Project

I An intricate and biologically accurate digital reconstruction
of the neocortical column of a 14 days old rat.

I Each microcircuit consists of roughly 3 · 104 neurons of 55
distinct morphological types and approximately 8× 106

connections between neurons.

I The reconstruction allows recovering an abundance of
information, including

I the full adjacency matrix,
I the type and spatial position of each individual neuron, and
I full spiking data for each neuron under varying conditions.

I This gives rise to graphs (directed, potentially weighted,
and time dependent).

I Graphs give rise to topological objects.



Abstract ordered simplicial complexes and
the directed flag complex of a directed graph

An abstract ordered simplicial complex is a collection S of finite
ordered sets, such that

σ ∈ S =⇒ τ ∈ S, ∀τ ⊂ σ.

The subsets σ ∈ S are called the simplices of S.

I A directed graph G is a pair (V,E) where V is the set of
vertices and E ⊆ V × V is the set of directed edges.

I The directed flag complex of a directed graph G is the
abstract directed simplicial complex S = S(G), whose
n-simplices are ordered (n+ 1)-tuples of vertices

Sn = {(v0, v1, . . . , vn) | (vi, vj) ∈ E, ∀0 ≤ i < j ≤ n}



Analysis of the Blue Brain Project Reconstruction

Topological Analysis of Structure

At our disposal 42 reconstructed microcircuits based on the
cortex of 5 individual rats. Adjacency matrices for each
microcircuit - average size 31,000 with average connectivity of
0.8%. In addition we generated:

I Erdős-Rényi random connectivity matrices with the same
size and average connectivity as the reconstruction.

I Two sets of controlled randomisations of an average
microcircuit, preserving distance-dependent connection
probability across i) all pairs of layers, and ii) all pair of
morphological types, but otherwise random.

I A set of controlled randomisations of an average
microcircuit according to Peter’s rule: Connect two
neurons if they contain arbors with distance at most 3µm,
and then prune uniformly until the required average
connectivity is obtained.



Distribution of simplices
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For each of the connectivity matrices we computed the directed
flag complex. The complexes resulting from the Blue Brain
reconstruction show dramatically different behaviour from the
randomised matrices.



Euler characteristic and (mod 2) homology (mod 2)
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On the left, the Euler characteristic of the complex of each
individual reconstruction, sorted by the animal that gave rise to
the data. On the right the same with respect to betti 5.



Euler characteristic and (mod 2) homology

Rats 1 and 5 cannot be clearly distinguished, but the others
form clearly distinguishable groups.



Dimension and directionality matter
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Correlation is strongest between the last two neurons in a
simplex, and is rising with dimension. This provides evidence to
the importance of simplices, dimension and directionality.



Dimension and directionality matter
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The Transmission-Response method

I The microcircuit is stimulated in time intervals of 50ms for
a whole second. The reaction is recorded in time bins
t = 0 . . . 199 of 5 ms each (size optimised by
experimentation).

I Let A denote the structural connectivity matrix for the
given microcircuit.

I In each time bin k consider the “successful transmission”
connectivity matrix Ak where Ak

i,j = 1 if and only if the
following three conditions are satisfied:

I Ai,j = 1, i.e., there is a structural connection from neuron i
to neuron j,

I neuron i fired in time bin k, and
I neuron j fired within 7.5ms after neuron i did (optimised by

experimentation).



Patterns of activity

0
15
30

Tr
ia

ls

0
15
30

0
15
30

0
15
30

0 200 400 600 800 1000
t (ms)

0
15
30

0
20
40

FR
 (H

z)

0
20
40

0
20
40

0
20
40

0
20
40

0 1 2 3

4

3

2

1

-1

0

1

C
or

re
la

tio
n

0

1
2

3
4

L23 PC

L4 PC
L4 PC

L5 TTPC
L5 TTPC

n.r. -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Correlation coefficient

0

1

2

3

4

5

Si
m

pl
ex

 m
em

be
rs

hi
p 

ov
er

-/u
nd

er
 e

xp
re

ss
io

n

1D

2D

3D

4D

5D

6D

A1 A2

A3

B

−0.10.0 0.1 0.2 0.3 0.4 0.5 0.6
Correlation coefficient

n.r.:
18%

<0:
27%

>0: 55%

~8 mio. connections

10 connections

VPM

I III  I   III II I I
I I    II   I    I II

C D

0

2

4

6

8

10

Hz

Grouping 1

Grouping 2

Grouping 3

-10 -5 70 75 80 85
msms

0 20 40 60 80 100 120
β1 (cumulative)

20

40

60

80

100

N
um

be
r o

f s
im

pl
ic

es
 d

im
 >

 3
 (c

um
ul

at
iv

e)

104

104

mean +- SEM

Trail of the number of high-dimensional (≥ 3) simplices in a
transmission-response graph against Betti 1 for three
thalamocortical input patterns.



Patterns of activity
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Point vs. Circle Experiment
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”Point vs. Circle” stimulation. Top left shows the evolution of
the signal. The other panels show the reaction as measured by
standard methods in neuroscience.



Time series of topological invariants
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initial response due to recovery time required.



Correct classification
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In the indicated time bins topological invariants give the
highest percentage of correct classifications performed by
Gaussian Bayes classifier based on each of the metrics.



Segregation, Clustering, Integration, Small worldness

Based on a survey paper by Rubinov and Sporns: There are
many graph theoretic invariants which proved useful in
neuroscience. We restrict to a few such invariants.

I The degree ki of a node i: the number of nodes connected
to i.

I A basic measure of segregation at a node i: The number ti
of triangles with i as a vertex.

I The clustering coefficient of a node i: Ci = 2ti
ki(ki−1) = the

number of triangles divided by the number of possible
triangles. The clustering coefficient of the network:
C = 1

n

∑
iCi.

I Measure of integration: L = 1
n

∑
i Li, where Li is the

average path length from i to any other node.

I Small worldness: Higher than random segregation, close to
random integration.



Topological metrics - k-valence

Let X be a directed abstract simplicial complex.

I For v ∈ X0, let mout
k (v) denote the outgoing k-valence of v

- the number of simplices σ ∈ Xk, such that v is an initial
vertices in σ.

I Similarly, define min
k (v) - the incoming k-valence of v.

I Define mk(v) - the k-valence of v to be the number of
k-simplices in X which contain v.

mout
1 (3) = 6, min

1 (3) = 1,m1(3) = 7,

mout
2 (3) = 4, min

2 (3) = 0, m2(3) = 6.



Topological metrics - Degree polynomials

I Define the local degree polynomial of v ∈ X0 by

Mv(t) =
∑
k≥0

mk(v)tk.

I Similarly define incoming and outgoing local degree
polynomials M in

v (t) and Mout
v (t) resp.

I Define the global degree polynomial of X by

MX(t) =
1

|X0|
∑
v∈X0

Mv(t).

I Similarly define incoming and outgoing global degree
polynomials M in

X (t) and Mout
X (t) resp. Notice:

Mout
X (t) = M in

X (t) =
1

|X0|
∑
k≥0
|Xk|tk.



Topological metrics - Bottleneck polynomials

I Define the k-th bottleneck coefficient of v ∈ X0 by

bk(v) =
mout

k (v)

min
k (v)

.

I Define the bottleneck polynomial of v ∈ X0 to be

Bv(t) =
∑
k≥0

bk(v)tk.

I The bottleneck polynomial of X by

BX(t) =
1

|X0|
∑
v∈X0

Bv(t).



Topological metrics - clustering and segregation

I Define

N in
k (v) =

{
min

1 (v)!

(min
1 (v)−k)! min

1 (v) ≥ k

0 min
1 (v) < k

,

Nout
k (v) =

{
mout

1 (v)!

(mout
1 (v)−k)! mout

1 (v) ≥ k
0 mout

1 (v) < k
,

and

Nk(v) =

k∑
i=0

N in
i (v) ·Nout

k−i(v).

I The number Nk(v) is the largest number of k -simplices
that can be formed with v as a vertex given the edges
incident to it.



Topological metrics - clustering and segregation

For example, when k = 2 and min
1 (v),mout

1 (v) ≥ 2,

N2(v) = m1(v)(m1(v)− 1)−min
1 (v)mout

1 (v),

which is the maximal number of directed triangles to which a
vertex that is the source of mout

1 (v) edges and the target of
min

1 (v) edges can belong.

I For every k ≥ 2, the k-clustering coefficient of v ∈ X0 is the
ratio

Ck(v) =
mk(v)

Nk(v)
.

I The clustering polynomial of v ∈ X0 is defined by

Sv(t) = 1 + t+
∑
k≥2

Ck(v)tk.



Topological metrics

I The segregation polynomial of a simplicial complex S is
defined by

SX(t) =
1

|X0|
∑
v∈X0

Sv(t).

I Notice that the coefficient of t2 in SX(t) is the classical
clustering coefficient of the graph corresponding to the
1-skeleton of X.



Example 1: Bottleneck polynomial - By layer

Coefficients of t and t2.



Example 2: Segregation polynomial - by layer

Coefficients of t2 and t3.



Highways and Flow

I Let X be an oriented simplicial complex, and let x, y ∈ X0

be any two vertices.

I A d-dimensional highway from x to y is either a d-simplex
(x, x1, . . . xd−1, y) in Xd or a sequence of (d+ 1)-simplices

σ0, . . . , σm

in X, such that σi ∩ σi+1 is a back d-face of σi and a front
d-face of σi+1, for all i ≥ 0, and such that x is an initial
vertex in σ0 and y is a final vertex in σm.



Example: 1-highways



Example: 1-highways



Example: 1-highway graph



Highways and Flow

I For vertices v, w ∈ X0, and d ≤ 0, let id(v, w) denote the
integration coefficient of the pair (v, w), i.e. the minimal
length of a d-dimensional highway from v to w if one exists,
and set id(v, w) = 0 if it doesn’t or if v = w and d > 0.
Also set i0(v, v) = 1.

I If the edges of a simplicial complex are weighted, then one
can assign a max flow capacity on a d-dimensional highway
fd(v, w) to each pair or vertices (v, w) (0 if such a highways
does not exist).

I These are harder (more expensive in time and memory) to
compute, but there are good approximation algorithms.



Highways and Flow

I The integration polynomial of a (weighted) oriented
simplicial complex X is defined by

IX(t) =
1

|X0|(|X0 − 1|)
·

∑
(x,y)∈X0×X0

∑
d≥0

id(x, y)td.

I The flow polynomial of a (weighted) oriented simplicial
complex X is defined by

FX(t) =
1

|X0|(|X0 − 1|)
·

∑
(x,y)∈X0×X0

∑
d≥0

fd(x, y)td.


